

ΠΑΝΕΠΙ΢ΣΗΜΙΟ ΘΕ΢΢ΑΛΙΑ΢

΢ΦΟΛΗ ΘΕΣΙΚΩΝ ΕΠΙ΢ΣΗΜΩΝ

ΔΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΣΑΠΣΤΦΙΑΚΩΝ ΢ΠΟΤΔΩΝ

ΠΛΗΡΟΥΟΡΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙ΢ΣΙΚΗ ΒΙΟΙΑΣΡΙΚΗ

ΒΑΘΙΔΣ ΑΡΦΙΤΔΚΤΟΝΙΚΔΣ ΤΔΦΝΗΤΩΝ ΝΔΥΡΩΝΙΚΩΝ

ΓΙΚΤΥΩΝ ΚΑΙ ΣΥΓΦΡΩΝΔΣ ΔΦΑΡΜΟΓΔΣ

Γιαμαντής Γημήτριος

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑ΢ΙΑ

Επιβλέπων

Ιακωβίδης Δημήτριος

Λαμία, 06/12 έτος 2017

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

UNIVERCITY OF THESSALY

SCHOOL OF SCIENCE

INFORMATICS AND COMPUTATIONAL BIOMEDICINE

DEEP ARTIFICIAL NEURAL NETWORK ARCHITECTURES

AND MODERN APPLICATIONS

Diamantis Dimitrios

Master Thesis

Supervisor

Iakovidis Dimitris

Lamia

06/12/2017

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

ΠΑΝΕΠΙ΢ΣΗΜΙΟ ΘΕ΢΢ΑΛΙΑ΢

΢ΦΟΛΗ ΘΕΣΙΚΩΝ ΕΠΙ΢ΣΗΜΩΝ

ΔΙΑΣΜΗΜΑΣΙΚΟ ΜΕΣΑΠΣΤΦΙΑΚΩΝ ΠΡΟΓΡΑΜΜΑ

ΠΛΗΡΟΥΟΡΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙ΢ΣΙΚΗ ΒΙΟΙΑΣΡΙΚΗ

ΚΑΣΕΤΘΤΝ΢Η

«ΤΠΟΛΟΓΙ΢ΣΙΚΗ ΙΑΣΡΙΚΗ ΚΑΙ ΒΙΟΛΟΓΙΑ»

ΒΑΘΙΔΣ ΑΡΦΙΤΔΚΤΟΝΙΚΔΣ ΤΔΦΝΗΤΩΝ ΝΔΥΡΩΝΙΚΩΝ

ΓΙΚΤΥΩΝ ΚΑΙ ΣΥΓΦΡΩΝΔΣ ΔΦΑΡΜΟΓΔΣ

Γιαμαντής Γημήτριος

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑ΢ΙΑ

Επιβλέπων

Ιακωβίδης Δημήτριος

Λαμία, 06/12 έτος 2017

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

«Υπεύζπλε Γήισζε κε ινγνθινπήο θαη αλάιεςεο πξνζσπηθήο επζύλεο»

Με πιήξε επίγλσζε ησλ ζπλεπεηώλ ηνπ λόκνπ πεξί πλεπκαηηθώλ δηθαησκάησλ, θαη γλσξίδνληαο

ηηο ζπλέπεηεο ηεο ινγνθινπήο, δειώλσ ππεύζπλα θαη ελππνγξάθσο όηη ε παξνύζα εξγαζία κε

ηίηιν «Βαζηέο αξρηηεθηνληθέο ηερλεηώλ λεπξσληθώλ δηθηύσλ θαη ζύγρξνλεο εθαξκνγέο»

απνηειεί πξντόλ απζηεξά πξνζσπηθήο εξγαζίαο θαη όιεο νη πεγέο από ηηο νπνίεο

ρξεζηκνπνίεζα δεδνκέλα, ηδέεο, θξάζεηο, πξνηάζεηο ή ιέμεηο, είηε επαθξηβώο (όπσο ππάξρνπλ

ζην πξσηόηππν ή κεηαθξαζκέλεο) είηε κε παξάθξαζε, έρνπλ δεισζεί θαηάιιεια θαη επδηάθξηηα

ζην θείκελν κε ηελ θαηάιιειε παξαπνκπή θαη ε ζρεηηθή αλαθνξά πεξηιακβάλεηαη ζην ηκήκα

ησλ βηβιηνγξαθηθώλ αλαθνξώλ κε πιήξε πεξηγξαθή. Αλαιακβάλσ πιήξσο, αηνκηθά θαη

πξνζσπηθά, όιεο ηηο λνκηθέο θαη δηνηθεηηθέο ζπλέπεηεο πνπ δύλαηαη λα πξνθύςνπλ ζηελ

πεξίπησζε θαηά ηελ νπνία απνδεηρζεί, δηαρξνληθά, όηη ε εξγαζία απηή ή ηκήκα ηεο δελ µνπ

αλήθεη δηόηη είλαη πξντόλ ινγνθινπήο.

Ο ΓΗΛΩΝ

Γηακαληήο Γεκήηξηνο

Ηκεξνκελία

06/12/2017

Υπνγξαθή

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

Σριμελής Επιτροπή:

Ιακωβίδησ Δημήτριοσ

 Δελήμπαςησ Κωνςταντίνοσ

Πλαγιανάκοσ Βαςίλειοσ

ΒΑΘΙΔΣ ΑΡΦΙΤΔΚΤΟΝΙΚΔΣ ΤΔΦΝΗΤΩΝ ΝΔΥΡΩΝΙΚΩΝ

ΓΙΚΤΥΩΝ ΚΑΙ ΣΥΓΦΡΩΝΔΣ ΔΦΑΡΜΟΓΔΣ

Γιαμαντής Γημήτριος

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

1

Abstract

The importance of artificial neural networks in today‟s artificial intelligence and more

specifically in the field of computer vision has been demonstrated by their remarkable

performance in a variety of applications. This thesis presents a survey in the field of Artificial

Neural Networks (ANN) with focus on deep learning. It investigates state of the art architectures

and modern applications. A detailed analysis of a special kind of ANN architecture, called

“Convolutional Neural Networks” (CNNs) is included. CNNs have been widely used to tackle

problems in computer vision with remarkable results. The usage and the results of CNN

architectures are investigated on various computer vision problems, including facial makeup

presence detection and the problem of abnormality detection in the human gastrointestinal tract,

by analyzing capsule endoscopy images.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

2

Acknowledgments

This thesis would not have been possible without the support given to me by my advisor and

mentor Dr. Dimitris Iakovidis Associate Professor, who inspired me to dive into the subject of

Artificial Neural Networks and in general the field of computer vision. His inspiring work

contributed drastically in my professional and academic carrier. I would also like to thank Mr.

Michael Vasilakakis for his support and know-how contribution in the general field of computer

vision.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

3

Contents

Abstract

Acknowledgments

Contents

1. Introduction

2. Artificial Neural Networks

2.1. Motivation

2.2. The Perceptron

2.3. Perceptron Weight Calculation

2.4. Activation Function

2.5. Neural Networks

3. Feed Forward Networks

3.1. Multilayer Percepron Networks

3.2. Training of Neural Networks

3.3. Gradient Decent Optimization Algorithms

3.3.1. Loss Function

3.4. Gradient Descent

3.4.1. Gradient Descent in Neural Networks

3.4.2. Stochastic Gradient Descent

3.4.3. Mini-Batch Gradient Descent

3.4.4. Newton‟s Optimization

3.4.5. Stochastic Gradient Descent with Momentum

3.4.6. Nesterov Accelerated Gradient

3.4.7. Adagrad

3.4.8. Adadelta

3.4.9. RMSprop

3.4.10. Adam

3.4.11. AdaMax

3.4.12. Nadam

3.4.13. Conclusion on Optimization Functions

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

4

3.5. Error Backpropagation

3.5.1. Loss Function Characteristics

3.5.2. Fundamental Equations of Backpropagation Algorithm

3.5.3. The Backpropagation Algorithm

3.6. The Loss Function

3.7. Genetic Algorithms

4. Neural Network Challenges

4.1. Overfitting

4.1.1. Early Stopping

4.1.2. Dropout

4.1.3. Weight Decay

4.1.4. L1 Regularization

4.1.5. Training Dataset Expansion

4.1.6. Training Dataset Pre-Processing

4.1.6.1. PCA and ZCA Whitening

4.1.7. Weight Initialization

4.1.8. Hyperparameter Selection

5. Convolutional Neural Networks

5.1. Convolution Layer

5.2. Pooling Layer

5.3. Normalization Layer

5.4. Fully Connected Layer

5.5. The Last Layer of a CNN Architecture

5.5.1. Multiclass Support Vector Machine Loss

5.5.2. Softmax Classifier

5.6. Parameter Sharing

5.7. Parameter Sharing

5.8. Fully Convolutional Neural Networks

5.9. Case Studies

5.9.1. LeNet

5.9.2. AlexNet

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

5

5.9.3. VGGNet

5.9.4. ZFNet

5.9.5. GoogleLeNet

5.9.6. ResNet

5.9.7. Region Based CNN architectures

5.9.8. Generative Adversarial Networks

5.9.9. Generating Image Descriptions

5.9.10. Spatial Transformer Networks

6. Other Neural Network Architectures

6.1. Autoencoders

6.1.1. Undercomplete Autoencoders

6.1.2. Regularized Autoencoders

6.1.2.1. Sparse Autoencoders

6.1.2.2. Denoising Autoencoders

6.1.2.3. Penalized Derivatives Regularization

6.1.2.4. Contractive Autoencoders

6.1.2.5. Hybrid Autoencoder Architectures

6.2. Self-Organizing Maps

6.3. Recurrent Neural Networks

6.3.1. Long Short-Term Memory Networks

6.3.2. Bidirectional Recurrent Neural Networks

7. Experiments and Results

7.1. Deep Learning on Robust Facial Makeup Detection

7.1.1. Network Architecture and Training Process

7.1.2. Results and Comparison

7.1.3. Conclusion and Future Work

7.2. Peephole Fully Convolutional Network

7.2.1. Network Architecture

7.2.2. Evaluation on MICCAI 2015 Gastroscopy Challenge Dataset

7.2.3. Evaluation on Wireless Capsule Endoscopy KID Dataset

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

6

7.2.4. PFCNN Architecture Comparison With The Existing State-Of-The-Art

Methodology

7.2.5. Evaluation On EndoVis 2017 GIANA – Polyp Detection In Colonoscopy

Videos Dataset

8. Conclusions and Future Work

9. Bibliography

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

1

1. Introduction

This thesis is about the concept of Artificial Neural Networks which is a subject of artificial

intelligence in computer science. More specifically, it aims to explore the areas of machine

learning via the usage of deep neural networks by reviewing the existing work that has been done

over the years in the field and by investigating novel approaches and applications. This thesis

presents applications experiments that have been done by applying the acquired knowledge in

the field of computer vision and more specifically in abnormality detection in images that were

obtained by capsule endoscopy, along with novel results from facial makeup detection.

1.1. History

Even before the invention of computers, humans where always fascinated by the idea of creating

a system that will present some short of intelligence. Stepping forward into that direction

artificial neural networks where invented as early as the mid 50s [1]. The idea behind them was

to mimic the biological neurons and the connections that appear between them in the human

brain.

(a)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

2

(b)

Figure 1 Historical overview of the number of articles published for “Artificial Neural Networks” on the top and

“Deep Learning” on the bottom.

The initial attempts were successful yet limited by the low computational power of early

computers combined with the lack of powerful algorithms to train such networks. Almost 30

years later, with the discovery of more robust training algorithms and the increase in

computation power, shifted the interest back to the field (Fig. 1). As the computational power

continued to increase, researchers started to exploit the power of deeper, more complex

networks, which lead to the creation of the concept of “deep learning” which effectively exploits

the power of deep neural networks in order to automatically capture the structural representation

of the data with which it is trained. This resembles closer the generic way that the biological

brain works, which contradicts the classic application specific feature extraction process that

other methodologies are following.

1.2. Aims and Contributions

This thesis aims to provide:

 An introduction to the concepts of artificial neural networks along with a historical

analysis

 Present methods of training deep neural networks

 Discuss the problems of training in deep neural networks

 Investigate various deep neural network architectures

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

3

 A novel application for facial makeup discovery using deep convolutional neural

networks

 A novel Peephole Fully Convolutional Neural Network (PFCNN), which is a deep fully

convolutional neural network architecture designed, but not limited, to deal with the

problem of abnormality detection in gastrointestinal images. Experiments shown the

proposed architecture is able to achieve state-of-the-art results.

1.3. Thesis Structure

The rest of this thesis consists of 7 sections. Section 2 contains a brief introduction of the concept

of artificial neural networks, along with a historical overview and inspiration that guided to the

creation of them. Some basic concepts are also presented aiming to help the reader understand

the sections that follow. Section 3 explores the field of feed forward neural networks, various

architectures that have been proposed and successfully used over the years, such as the

Multilayer Perceptron Networks (MLPs). The section contains an extensive overview of the

existing training methodologies and more specifically the backpropagation algorithm along with

modern variations of it that can be found in the modern bibliography. Section 4 is dedicated to

the challenges that are faced in the training process of a neural network and presents various

practices that are followed in order to overcome them. Section 5 focuses on a special type of

neural network, called Convolutional Neural Networks (CNN), which has attracted the attention

of research in the last years, mainly because of its performance in the field of Computer Vision

(CV). A chronological review of the most important modern deep convolutional neural network

architectures is included along with their contributions that each one brought to the field. In the

sixth section an overview of other type of network architectures is included such as the

autoencoders, which have been used extensively in the field of CV, and Self Organized Maps

(SOMs). The last section of the thesis is dedicated in the presentation of applications and results

that were obtained by applying the knowledge acquired from the previous sections. More

specifically, a novel approach of facial makeup discovery is presented that outperforms the

current state of the art methodologies in the field. Secondly results obtained from various

experiments that were performed by applying convolutional neural networks, and more

specifically a novel architecture named PFCNN, in the field of anomaly detection in images

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

4

obtained by the usage of endoscopic capsule in the human intestines, are presented and compared

with the previous state-of-the-art approach.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

5

2. Artificial Neural Networks

This section is providing a brief introduction in the concept of Artificial Neural Networks

(ANNs) their usage and where their source of inspiration came from.

2.1. Motivation

It is well known that the human brain contains billions of neurons (Fig. 2) that are connected

between each other via synapses and that these neurons are acting together in parallel and are

responsible for our logic.

Figure 2 A stripped down human brain neuron. Dendrites reassemble the input of the cell body (neuron), nucleus the

computational unit and axon the output of the neuron.

Artificial Neural Networks (ANNs) are inspired from that model and in fact are trying to mimic

the way that the human brain works. Unfortunately until today, a fully detailed picture of how

human brain works is missing. With that said, ANNs are a simplified simulation of the human

brain neurons and their synapses connected into a graph. Each artificial neuron, called

perceptron, is a tiny computational unit, which receives input signals and if a certain input

threshold is reached, it is activated.

2.2. The Perceptron

The basic computational unit trying to mimic the human brain neuron is called, perceptron. The

term perceptron along with the theory behind it was developed by [1] in the late 50‟s with basic

source of inspiration coming from the earlier work of [2]. As it can be noticed in (Fig. 3) a

perceptron is a direct translation of a biological neuron into a computational unit. Dendrites have

been replaced with weights 𝑊𝑖 the nucleus with an input and a weight sum which, known as

transfer function and the axon with a function 𝜑 known as an activation function.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

6

Figure 3 Generic illustration of a basic perceptron

Perceptron essentially computes the weighted sum of the inputs passed by an activation function

which produces a signal if and only if a threshold value is reached. Thus a perceptron can be

expressed as:

 𝑦 = 𝜑 𝑥𝑖𝑖 𝑤𝑖 (1)

By examining further the above equation it becomes clear that a single perceptron is a basic

linear binary classifier (Fig. 4.a) of the form:

 𝑓 𝑥 =
1, 𝑖𝑓 𝑤 ∙ 𝑥 + 𝑏 > 0
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Where 𝑤 ∙ 𝑥 is the dot product between input 𝑥 and weight 𝑤 matrices respectively. The 𝑏 term

stands for bias and is a parameter, independent from the input, introduced to help the decision

boundary, move away from the origin. That, rather small change, in the expression of a

perceptron, has an important impact as, a neuron with large bias, can easily be activated, or in

other words output 1, while, on the other hand, a large negative bias, can affect the perceptron,

making it extremely hard to get activated. The bias term can be thought as the parameter that

controls the ease of a perceptron to produce 1

Figure 4 On the left, a generic linear classifier with form 𝒇 𝒙 = 𝒘 ∙ 𝒙 + 𝒃. On the right, the NAND gate input space

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

7

To illustrate the effectiveness and the simplicity of the above model, it is helpful to perform a

basic example of modeling a typical NAND gate (Fig. 4.b). The gates have two inputs and one

output and the behavior of it can be seen in Table 1.

Table 1 The NAND gate behavior

𝑥1 𝑥2 𝑦

0 0 1

0 1 1

1 0 1

1 1 0

This elementary logic function can be expressed as a perceptron with two inputs and thus two

weights, a bias and a threshold such that:

 𝑓 𝑥1 , 𝑥2 =
1, 𝑖𝑓 −2 ∙ 𝑥1 ∙ −2 ∙ 𝑥2 + 3 > 0
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

where 𝑤1 = 𝑤2 = −2, 𝑏 = 3 .

This is a very simple example; however, the following question is raised: what can be done to

model a more complex expression, like the XOR gate; or in general any function that is not,

linearly separable? The following chapters illustrate how this can be done by combining multiple

perceptrons forming a network and, more importantly, how to adjust the weights of each

perceptron targeting a specific output.

2.3. Perceptron Weight Calculation

As seen in the previous example, it is possible to tune a perceptron to perform a binary

classification by adjusting the weights and the threshold of the system. The question that arises is

how to automatically compute those parameters. It is possible to be done by performing a brute

force methodology, by trial and error of random weights at random thresholds, but that would be

a resource wasteful idea without a guarantee backing it up. Thus the need for an automated way

of computing those parameters arises.

There are many ways that have been proposed in order to train a neural network, but in this

section a relatively simple one is presented which focuses on this specific example, yet it

presents the basic principles behind the process which are used in the sections that follow, where

an in-depth analysis is done for most commonly used ones.

In order to compute the weights and the threshold defined in (3) an iterative method is presented

that adjusts these parameters in each iteration based on the output of the perceptron [3]. This

process is called “training” of the network and requires a number of examples called “training

dataset” which are presented to the network on each iteration. At each presentation small

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

8

changes are applied to the parameters according to the “training rule”. It is important to note here

that the process described above is called “supervised learning” as the network learns from a

training dataset containing the inputs of the model along with the desired output.

Let 𝑤𝑖 be the weights of the network, and 𝑥𝑖 the input parameters. As training dataset let 𝑇

defined as a set 𝑇 = {𝑡1, 𝑡2 … 𝑡𝑖} containing example vectors 𝑡𝑖 = {𝑥1 , 𝑥2 … 𝑥𝑖 , 𝑦} where 𝑦 the

desired output. To simplify the computations the weights combined with bias and the inputs of

the model can be combined as a matrix 𝑊 and 𝑋 respectively (4).

 𝑤 =

𝑤1

𝑤2

…
𝑤𝑖

𝑏

, 𝑥 =

𝑥1

𝑥2

…
𝑥𝑖

 (4)

The output of the neuron 𝑧 (5) is computed by computing the dot product between the two

matrices of (4)

 𝑧 = 𝑤 ∙ 𝑥 (5)

To train the model the weight vector 𝑊 is adjusted according to the distance of the output 𝑧

compared to the desirable output 𝑦 presented into the training vector 𝑡𝑖 according to (6)

 𝑤 ′ = 𝑤 ± 𝑎 ∙ 𝑡 (6)

where 𝑎 a small number in range 0 < 𝑎 < 1 which is called “learning rate”. If the new output 𝑧 is

approaching the desired 𝑦 then the term 𝑎 ∙ 𝑦 will be positive and thus 𝑤 ′ = 𝑤 + 𝑎 ∙ 𝑦, on the

other hand, if the desired 𝑦 is moving away then 𝑤 ′ = 𝑤 − 𝑎 ∙ 𝑦. That leads to a learning rule that

accounts the output of the network combined with the desired output which is defined in (7)

 𝑤 ′ = 𝑤 + 𝑎 𝑦 − 𝑧 ∙ 𝑤 (7)

The (7) can now be rewritten as a desired weight change 𝛥𝑤 = 𝑤 ′ − 𝑤 and thus

 𝛥𝑤 = 𝑎 𝑦 − 𝑧 ∙ 𝑡 (8)

This equation is called the “perceptron rule” which was introduced in [1] and was historically the

first used to train logical unit models as the one illustrated in previous section. The perceptron

rule can be expressed algorithmically as:

while != 𝑦:

 foreach 𝑡𝑖 in 𝑇:

 𝑧 = evaluate model using 𝑡𝑖

 if != 𝑦:

 𝑤 = 𝑤′ according to (7)
 end if

 end foreach

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

9

end while

Variations of the above converge theorem was later introduced by [3] and later on in [4]. The

question that arises here is how this theorem can be generalized to multiple perceptrons; in fact

that was the main reason behind the [3] in which the obstacles were presented in detail.

Furthermore this obstacle placed the neuroscience research into a halt for more than 15 years, as

the power of the neural networks was put into question.

2.4. Activation Function

The activation function is an important part of a perceptron as it defines the way that the function

behaves based on different input. Without activation functions the network would not be able to

learn more complex, non-linear functional mapping between the input and the response variable.

Their purpose is to translate an input signal of a neuron in a network to an output signal, usually

within a specified range of values.

Figure 5 Step function

In the previous example the step function (Fig. 5) was utilized which outputs 1 only if the input

is greater than 0, otherwise it outputs zero. There are number of issues with this function, with

the most important one that, a small change in the input weights alter drastically the output of the

neuron. A more desirable function would be one that has the property to change according to the

magnitude of change on weights of the unit. In fact there are many functions that fulfill that

property with the most commonly used ones listed below:

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

10

(a) Logistic function

𝑎 𝑥 = 1 1 + 𝑒−𝛽𝑥

(b) Tanh function

𝑎 𝑥 =
1 − 𝑒−2𝛽𝑥

1 + 𝑒−2𝛽𝑥

(c) ReLU function

𝑎 𝑥 = 𝑚𝑎𝑥⁡ 0, 𝑥

Figure 6 Common activation functions

(Fig. 6.a) presents the logistic non-linear function which squashes the real number to the range

between 0 and 1. The major advantage of this function is that it follows a smooth change to the

output according to the provided input. On the other side, the squashing nature of it, makes it

prone to computational mathematical loss as small real numbers, between 0 and 1, are produced.

It is worth noting that when 𝛽 → ∞ the logistic function becomes same as the step function

(Fig. 5).

The tanh function illustrated in (Fig. 6.b) squashes real numbers between the range of -1 and 1

and effectively is used to overcome the issue of non zero-centered values. On the other hand it

suffers from the issue of saturation while training which is examined the following sections.

When the parameter 𝛽 → ∞ the function behaves same as the sign function. Logistic and tanh

functions are both belong to a group of functions known as Sigmoid functions and that is the

reason why neurons with this type of activation functions are commonly named “sigmoid

neurons”.

The Rectified Linear Unit (ReLU), is an extremely simple to compute function compared to the

previous ones, that became popular the last few years in the field of Artificial Neural Networks.

In (Fig. 6.c) the function outputs 0 when 𝑥 < 0 and then x when 𝑥 ≥ 0 is presented. It has the

desirable properties of a smooth change according to the input while and it doesn‟t saturate

easily while training. Unfortunately, at present, there are not enough mathematical evidence to

prove that this is the case; a well adopted heuristic argument is that the function doesn‟t saturate

in the limit of large x unlike the common sigmoid-like perceptron, which helps the training

process to continue.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

11

It is important to note here, that using the term “perceptron” to name the neurons that are using

activation functions different than the step function comes to contradiction with the original

source of the term. In fact a neuron that uses a sigmoid-like function is called “sigmoid neuron”

and in general a neuron can be named after the activation function that uses. In bibliography

though, the term perceptron has been used extensively to name any sort of artificial neuron and

that might create confusion. For historical reasons, the neurons are named by the well accepted

naming convention “perceptron” and use the term “sigmoid” or “ReLU” neuron only when it is

appropriate to note the activation function that has been used.

2.5. Neural Networks

It has been shown that an artificial neuron, or perceptron, can be used as a simple, linear, binary

classifier. Unfortunately when it comes to more complex function estimation a single neuron is

unable to the respective problem. A rather simple, yet accurate example is the modeling of the

XOR logical function. The XOR operator is a non-linear function which computes the eXclusive

OR operation. The non-linearity of the function can be seen bellow (Fig. 7) along with the truth

table of it.

Figure 7 The XOR function with the truth table on the left and the plot on the right.

As presented, there is no single line able separate the two dimensional space. For that reason the

need of extending the previous, primitive single-neural model, arises in order to accumulate the

power of more than one binary classifiers; and thus neurons. Bellow (Fig. 8) illustrates a more

complex model containing two input units 𝑥1 and 𝑥2, with each one of them been connected to

two neurons 𝑧1 and 𝑧2 and finally a single neuron 𝑌, which represents the output of the neural

network.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

12

Figure 8 The XOR function with the truth table on the left and the plot on the right.

The 𝑥1 and 𝑥2 parameters can be thought as fixed neurons that they have no input and they

produce always a constant value and thus that explains the reason of using the term units, instead

of neurons as it is more appropriate and thus that is the reason the term “units” is used instead of

“neurons” for the representation of them. It is also noticeable that all neurons are connected with

each other in a “feed-forward”, “fully-connected” way. The “feed-forward” term means that the

input is always traveling forward throughout the neurons until they reach the output neuron while

the “fully-connected” term stands for the fact that all neurons are connected between each other.

A detailed exploration of what those terms mean along with examination of alternative neuron

schemas is presented throughout the sections.

The fully connectivity of the neurons employed by the above three-neuron network, introduces

six weight parameters for the model, along with three biases, which sum up to nine in total “free-

parameters” that need to be fine tuned in order for the network to compute an acceptable

estimation of the desired function. With that in mind a conclusive evidence is validated that, the

number of “free-parameters” introduced into the system is increasing rapidly and thus, the

complexity of the overall system increases. For the above example, it is easy to compute these

weights by hand, but when it comes to larger networks, with some of them containing thousands,

or even million parameters, the need of an automated parameter computation quickly becomes

necessary.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

13

3. Feed Forward Networks

The neural network architectures that are examined in this section are called “Feed Forward

Networks”. The name of these networks came from their property of the signal flow which is

forwarded in one direction, following the neural connections from the input towards the output,

without any backward connections. Another important property of this neural arrangement is the

synchronous behavior of their signal propagation, meaning that their signal is propagated by one

neuron at a time interval, without introduction of any kind of “delays” or “accumulation” of

signals, which comes into contradiction with the human brain whom, neurons are connected in a

much more complex way, allowing them to activate, asynchronously. Even with that in mind,

this simplified approach of modeling the biological neurons, has proved extremely effective

solving both classification and regression problems [5], [6].

3.1. Multilayer Perceptrons

The first neural architecture that is examined in this section is called “Multilayer Perceptron”

(MLP). This architecture is effectively an extension of the perceptron theory, with the difference

that instead of using one or two layers of perceptrons, one for the input and one for the output of

the network, it incorporates one or many layers in between which are called hidden layers

(Fig. 8). The name “hidden” is due to the fact that these layers are not visible in the input or

output of the network and thus, they can be thought as a black box.

Figure 9 MLP network with two hidden layers of m neurons and three output neurons.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

14

Another characteristic of the typical MLP networks is that they are fully connected, which means

that every neuron is connected with all the neurons of the layer that follows (Fig. 9). This means

that an MLP with 100 inputs, 2 hidden layers of 50 and 10 neurons respectively and 2 output

neurons will result into 100 ∙ 50 + 50 ∙ 10 + 10 ∙ 2 = 5520 weights and 62 biases to be optimized.

It worth noting that following the Turing Machine [7] and the fact that using perceptrons a neural

network can simulate any logical TLU, it has been shown by [5] and [6] that a neural network of

just one hidden layer, is able to simulate any kind of continuous function. This is also known as

universal approximation theorem. That means that no matter the continuous function that is

desirable to be computed, there is a neural network able to simulate it. This universality can also

be extended to discontinues functions but only if the nature of the problem can accept a good

approximated solution.

The question that has to be answered is, what are the reasons for the usage of more than one

hidden layer in network architecture, as that comes in contradiction with the universal

approximation theorem. In practice, the same principles with software development apply here;

abstraction. Limiting an architecture to only one hidden layer, is resulting into an increase

number of neurons, which introduce more free parameters to the system and thus, increase the

overall complexity. To get around this issue, more hidden layers can be introduced, each sharing

the simulation load with the others and reduce the number of weights and biases that have to be

computed.

The introduction of multiple layers into the architecture raises a new type of hyper-parameter

that needs to be computed, the number of hidden layers. Unfortunately there is no mathematical

way of computing the number of hidden layers that are needed for each type of architecture or

how many neurons each of the layer will have. Instead, researchers have developed heuristics

methods which basically rely on train – validate – test approach. What that means is that a subset

of the training data 𝑇 is used as validation data while training the model. If the model does not

converge on the validation data, then additional hidden layers can be added or removed and also

alter the number of neurons of each layer [8][9].

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

15

3.2. Training of Neural Networks

In order to continue the analysis of the MLPs is important to answer the question of how to

compute the weights and the biases of the model.

There are many training algorithms that are available today in bibliography, which mainly fall

into two categories, genetic algorithms, and in general Evolutionary Algorithms [10][11],and

back-propagation based.

3.3. Gradient Descent Optimization Algorithms

There are many training algorithms which belong to this category and an examination of the

most popular ones starting from the least complicated is presented. Their main goal is to

minimize the error of the output of the network while adjusting the weights and the biases of the

model. To understand that, it helps to introduce a visual example on three dimensional space of

an upside down cliff containing a ball (Fig. 10) where the goal is to guide the ball to reach the

lowest point of the cliff called, global minima.

Figure 10 Visual example of an upside-down cliff and a ball following down-hill direction.

3.3.1. Loss Function

An important tool that allows the estimation of the performance of the output of an artificial

neural network is called loss function. This function is used to quantify the error produced by the

network compared to the expected value. In bibliography this function is commonly referred as

“loss function”, “cost function” or “optimization function” and is that function output that is

going to be minimized by adjusting the weights of the neurons. A loss function is defined as a

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

16

function dependant on four parameters (9), where 𝑥𝑖 , 𝑦𝑖 the input and output values of the

network.

 𝐶 𝑤, 𝑏, 𝑥𝑖 , 𝑦𝑖 (9)

A commonly used loss function is called mean square error (MSE), which is also known as

“quadratic function” and it is defined as follow

 𝐶 𝑤, 𝑏, 𝑥, 𝑦 =
1

2𝑛
 𝑦 𝑥 − 𝑎 2

𝑥 (10)

Here the 𝑤 and the 𝑏 parameters represent the weights and the biases of the network respectively,

𝑦 𝑥 the expected output and 𝑎 the actual output of the network, while the 𝑛 parameter represents

the total number of examples presented to the model. By examining the function in more detail,

it can be observed that the sum of the errors is always positive, yet it approaches 𝐶 𝑤, 𝑏 ≅ 0

when 𝑦 𝑥 ≅ 𝑎. Based on those observations this function can be used in order to minimize the

difference between the output of the network and the desired value that is desired to estimate,

thus and the name “optimization function”.

There are many loss functions used in bibliography, such as the square root and the cross entropy

loss function, which are presented in detail along with the examination of different analytical

training algorithms together with the pros and cons of them throughout the rest of the sections.

3.4. Gradient Descent

A relatively simple yet powerful algorithm that has been used to train artificial neural network is

called gradient descent and is one of the first introduced in the field. Gradient descent is an

iterative algorithm that given an optimization function 𝐶, tries to minimize it in each iteration by

altering the parameters of the function in small steps.

Lets imagine a function 𝑓 with n parameters that is minimized based on 𝐶. Let ∆𝑥𝑖 a small change

in direction of the function that is applied to 𝑥𝑖 original directions. Following the principles of

calculus the change of 𝐶 is obtained as (11) which has as a goal to obtain a negative ∆𝐶 and thus

minimize the 𝑓. To do so, the need to find a way of altering the parameters ∆𝑥1 and ∆𝑥2, arises.

 ∆𝐶 ≅
𝜗𝐶

𝜗𝑥1
∆𝑥1 + ⋯ +

𝜗𝐶

𝜗𝑥𝑖
∆𝑥𝑖 (11)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

17

Lets define ∆𝑥 as a transposed matrix of the variables and thus ∆𝑥 = ∆𝑥1, … , ∆𝑥𝑖
𝑇 along with the

gradient of 𝐶 as (12)

 𝛻𝐶 =
𝜗𝐶

𝜗𝑥1
, … ,

𝜗𝐶

𝜗𝑥𝑖

𝑇
 (12)

The equation (11) can now be rewritten with respect of ∆𝑥 and 𝛻𝐶 as (13)

 ∆𝐶 ≅ 𝛻𝐶 ∙ ∆𝑥 (13)

Based on (13) the goal of minimizing the ∆𝐶 become possible by the introduction of a parameter

𝑛 called learning rate (14) which is a small positive parameter.

 ∆𝑥 = −𝑛𝛻𝐶 (14)

Following (13) ∆𝐶 can be written as (15)

 ∆𝐶 ≅ −𝑛𝛻𝐶2 (15)

and because 𝛻𝐶2 will always be positive, ∆𝐶 ≤ 0 is guaranteed. The update now of the 𝑥 vector

can now be expressed as (16) which if repeated for certain amount of iterations, the parameters

of the function 𝑓 will reach a global minimum.

 𝑥 → 𝑥′ = 𝑥 − 𝑛𝛻𝐶 (16)

3.4.1. Gradient Descent in Neural Networks

The gradient descent technique can be utilized in the field of neural networks directly by trying

to estimate the best parameters on which the loss function 𝐶 is dependent on (Fig. 11). These

free parameters are the weights and biases of the network and thus applying them in (16) the

equations (17) and (18) are obtained respectively.

 𝑤 → 𝑤 ′ = 𝑤 − 𝑛
𝜗𝐶

𝜗𝑤
 (17)

 𝑏 → 𝑏′ = 𝑏 − 𝑛𝛻𝐶 = 𝑏 −
𝜗𝐶

𝜗𝑏
 (18)

The challenges of applying gradient descent on large number of parameters are profound as, the

goal of it is to minimize the quadratic cost function 𝐶 (9) and thus in order to compute the

gradient 𝛻𝐶 the need to compute the 𝛻𝐶𝑥 is unavoidable for each training example as the function

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

18

is ultimately an average computed by 𝐶𝑥 =
 𝑦 𝑥 −𝑎 2

2
 and thus 𝛻𝐶 =

1

𝑛
 𝛻𝐶𝑥𝑥 . The last

computation is expensive especially in terms of time for large number of training examples and

thus the learning, or in other words the minimization process of 𝐶, will occur slowly.

Figure 11 Visual example of loss function minimization with the value (red line) been minimized over time until it reaches the

global minima (black ×) of the function.

3.4.2. Stochastic Gradient Descent

To overcome the slow learning limitation of the normal gradient descent procedure, stochastic

gradient descent (SGD) was introduced. This variation works by randomly picking small number

𝑚 training examples, which is known as “mini-batch” and computing the gradient descent based

on them. In other words the gradient descent is estimated instead of fully computed over the

whole number of training input and thus the process is speeded up significantly. If the number of

training examples is enough, the estimation will be close to the original gradient and thus

converge faster.

Let mini-batch 𝑀 = {𝑋1 , 𝑋2 … , 𝑋𝑚 } of training dataset 𝑇, where 𝑀 ⊆ 𝑇, gradient descent can be

estimated by averaging the 𝛻𝐶𝑋𝑗
 and thus (19) which confirms that the computation of can be

obtained by a randomly chosen subset of 𝑇 (20)

 𝛻𝐶 =
 𝛻𝐶𝑥𝑥

𝑛
≅

 𝛻𝐶𝑋𝑗
𝑚
𝑗

𝑚
 (19)

 𝛻𝐶 ≅
1

𝑚
 𝛻𝐶𝑋𝑗

𝑚
𝑗 (20)

Using (19) in the field of neural networks an estimation of 𝛻𝐶𝑤 and 𝛻𝐶𝑏 as (21) and (22)

respectively is feasible,

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

19

 𝑤 → 𝑤 ′ = 𝑤 −
𝑛

𝑚

𝜗𝐶𝑋𝑗

𝜗𝑤𝑗 (21)

 𝑏 → 𝑏′ = 𝑏 −
𝑛

𝑚

𝜗𝐶𝑋𝑗

𝜗𝑏𝑗 (22)

where the 𝑗 are the sums over all the examples presented in the mini-batch 𝑀. This can be

applied over all the training examples in order to compute the changes to the weights and biases

of the network. Doing so is called “epoch” which represent a full iteration over all the training

examples presented to the model. Repeating the same process over and over again the loss

function is minimized.

The nature of stochastic gradient descent, which is based on estimation of the gradient, leads to a

more noisy convergence compared to the classic gradient descent approach (Fig 12). This might

lead to a wrong assumption that a model does not perform well based on the chosen hyper-

parameters. Based on that, monitoring of the network behavior should be done with patience. It

worth mentioning at this stage that there is a special kind of stochastic gradient descent; the one

with a mini-batch of size 1. This special case can be used in “on-line” learning approach (which

is practiced when only one training example is present, typically provided by a data-stream),

where for each training example a gradient descent update is performed. Unfortunately that does

not always converge and the learning might end up in a local minima.

Another important advantage of this procedure is that the learning is feasible without prior

knowledge of the whole training dataset. That gives the advantage of automatically generating

training examples while training and thus minimizes the storage and memory exhaustion of the

computational unit that the algorithm runs on.

Figure 12 Representation of GD (smooth line) versus SGD (noisy line) converge.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

20

3.4.3. Mini-Batch Gradient Descent

Mini-batch gradient descent (MBGD) is relatively similar to SGD, as it still relies on mini-

batches in order to shrink the time spend for the computation of the gradient, but instead of

updating the weights and biases of the model of every epoch, it updates on every mini-batch.

That reduces the fluctuation that is present on the original SGD graph and thus combines the best

out of both GD and SGD approaches.

It is important to note here that because it performs the update on every mini-batch completion, it

leverages new techniques of matrix multiplication on the Graphical Processing Unit (GPU) of a

computer without having the need to transfer the result of each mini-batch back to RAM which

involves time spent in CPU, this fact allows faster parameter computation and thus faster

training.

Batch sizes are heuristically chosen and usually fell between 50 and 250 training examples, yet

that‟s purely dependant on the nature of the problem. With that said, a common approach of

batch-size selection is the trial and error or the usage of Genetic Algorithms for parameter

optimization.

Unfortunately this algorithm does not always guarantee good convergence as it raises multiple

difficulties on learning rate selection. As expected a really low learning rate might result into

slow learning while a large one can introduce big fluctuation and thus unstable learning.

For this reason there have been developed ad-hoc solutions like, learning rate scheduling

[12][13] which can adjust the learning rate based on the fluctuation of the cost function. As an

example when the fluctuation is small, the learning rate can be increased while on the opposite,

decrease. These rules unfortunately have to be defined in advance and thus are not able to adapt

the dataset idiomorphic characteristics [14].

3.4.4. Newton’s Optimization

A different approach of minimizing a loss function 𝐶, is by following Newton‟s optimization

method [15]. Let 𝐶 𝑤 be the loss function that is subject to be minimized, with 𝑤 =

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

21

{𝑤1, 𝑤2 … 𝑤𝑛 } the corresponding weights of a network. Following the Taylor‟s theorem, an

approximation of the loss function can be expressed as (23)

 𝐶 𝑤 + 𝛥𝑤 = 𝐶 𝑤 +
𝜗𝐶

𝜗𝑋𝑤 𝑗
𝑗 𝛥𝑤 +

1

2
 𝛥𝑤𝑗

𝜗2𝐶

𝜗𝑤𝑗𝜗𝑤 𝑘
𝑗𝑘 + ⋯ (23)

Rewriting (23) with respect of gradient vector 𝛻𝐶, (24) is obtained

 𝐶 𝑤 + 𝛥𝑤 = 𝐶 𝑤 + 𝛻𝐶 ⋅ 𝛥𝑤 +
1

2
𝛥𝑤𝑇𝐻𝛥𝑤 + ⋯ (24)

Where 𝐻 represents the Hessian matrix, with 𝑗, 𝑘𝑡𝑕entries set as
𝜗2𝐶

𝜗𝑤𝑗𝜗𝑤 𝑘
. The C can now be

estimated by just computing the (25)

 𝐶 𝑤 + 𝛥𝑤 ≅ 𝐶 𝑤 + 𝛻𝐶 ⋅ 𝛥𝑤 +
1

2
𝛥𝑤𝑇𝐻𝛥𝑤 (25)

Now utilizing calculus the (24) can be minimized by applying (25)

 𝛥𝑤 = −𝐻−1𝛻𝐶 (26)

Following (26) an estimation that there will be a significant decrease in 𝐶 can be obtained by

applying (27)

 𝑤 → 𝑤 ′ = 𝑤 − 𝐻−1𝛻𝐶 (27)

(26) can also be extended for the bias terms as (28)

 𝑏 → 𝑏′ = 𝑏 − 𝐻−1𝛻𝐶 (28)

Applying that iteratively an algorithm can be formed that minimizes the loss function𝐶 known as

Newton‟s optimization algorithm which can be expressed in the following iterative steps:

1) Choose a starting point 𝑤

2) Compute 𝑤 ′ by applying (26)

3) Update 𝑤 ′ to new 𝑤 ′′ by replying (26) and thus 𝑤 ′′ = 𝑤 ′ − 𝐻′−1
𝛻′𝐶

The above approximation can be further optimized by minimizing the step of change on the

second step by introducing a learning rate parameter 𝑛 and thus (26) can be rewritten to (29)

 𝛥𝑤 = −𝑛𝐻−1𝛻𝐶 (29)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

22

Theoretically the above technique can lead to quicker converge than the standard gradient

descent approach. Unfortunately in practice the usage of second order derivatives in impractical

and relatively expensive as on each step it requires the calculation of all first order derivatives of

the model. In a neural network, where the number of free parameters are thousands if not

millions, makes the technique not computation wise, feasible. As an example imagine a network

with 105 free parameters. The Hessian matrix [16] itself it must be 105 ∙ 105 = 1010 total entries,

which is unreasonable in terms of both memory and computation consummation. For the these

reasons this methodology is not used in practice and thus more advanced algorithms have been

developed.

3.4.5. Stochastic Gradient Descent with Momentum

One problematic characteristic of the original SGD algorithm is when local minima create steep

curves in one dimension of the optimization function [17]. That steepness affects the algorithm

in such a way, which leads to hesitant movement towards the local minima slope (Fig. 13).

Figure 13 A) Vanilla SGD B) SGD with momentum [18]

To deal with this, momentum parameter has been introduced [19] to the gradient computation.

That parameter, which in fact affects the velocity of the minimization rate, mimics closely the

Hessian based technique, but without having to compute second order derivatives and thus, the

computation complexity is reduced. To understand how momentum parameter 𝑚 affects the

conversion speed a redefinition of the update of the weights and biases from SGD equations is

needed.

By introducing a term 𝒗 which stands for velocity and the change of it as (30)

 𝑣 → 𝑣 ′ = 𝑚𝑣 − 𝑛𝛻𝐶 (30)

where 𝑚 a constant momentum and 𝑛 the learning rate the update rule of 𝑤 → 𝑤′ can be

expressed as (31)

 𝑤 → 𝑤 ′ = 𝑤 + 𝑣′ (31)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

23

The 𝑚 parameter value ranges between 0 and 1. When 𝑚 = 1 from (30) is understandable that

𝑣 will build up on each iteration and thus the speed of change will become quickly, really high

and thus, fluctuation on learning will occur. On the other hand when 𝑚 = 0 velocity will not

build up and (28) will become the original gradient descent algorithm. Thus the 𝑚 parameter

controls the accumulation of speed of change towards the direction of the global minimum.

3.4.6. Nesterov Accelerated Gradient

One of the problems that the variation of gradient descent, momentum, suffers is that even if the

velocity of the estimated converge varies; the direction of it is not accelerated and thus, might

end up in local minima. To overcome this limitation Nesterov Accelerated Gradient (NAG) [20]

introduced.

The approach of NAG is instead of using the current 𝑣 for the 𝑤 parameter update, to alter (30)

to (32). This is done as an attempt to approximately look into the future direction of the gradient

ant thus instead of blindly searching for the global minima, the gradient direction is forced to

move violently to the correct direction (Fig. 14).

 𝑣 → 𝑣 ′ = 𝑚𝑣 − 𝑛𝛻𝐶 𝑤 − 𝑚𝑣 (32)

Compared to the previous algorithms, momentum gradient descent initially moves towards the

minima with a small step (small blue line) and then, the accumulated velocity pushes for big

“jump” ahead (long blue line). NAG (green line), initially makes a big jump towards the

direction of the previous gradient (brown line) and then measures the gradient where it ends up

in order to make the correction (red line).

Figure 14 Momentum gradient descent (blue line) versus NAG (green line).

Brown vector shows the jumps while red vector the change in direction of NAG. [21]

3.4.7. Adagrad

An addition to the original gradient based optimization algorithms is Adagrad [22] . This

algorithm performs learning rate adaptation based on the current state of free parameters. Larger

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

24

updates are done on the infrequent used parameters while smaller ones to the ones are frequently

used which, in this context it is well suited for sparse data.

To incorporate Adagrad algorithm into the classical SGD approach an alternation of the symbols

used for the updates of each free parameter is needed, as now, every update has a different

learning rate.

Let 𝑤𝑡,𝑖 be the free parameter that has to be updated were 𝑖 the index of the weight and 𝑡 the time

step. Let also 𝛻𝐶 𝑤𝑡,𝑖 be the gradient of 𝑖 parameter at time step 𝑡. Thus the update can be

expressed as (33)

 𝑤𝑡,𝑖 → 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 − 𝑛𝛻𝐶 𝑤𝑡,𝑖 (33)

Using Adagrad the learning rate will be adjust for every next time step such as (34)

 𝑤𝑡,𝑖 → 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 −
𝑛

𝐷𝑡
𝛻𝐶 𝑤𝑡,𝑖 (34)

where 𝐷𝑡 = 𝐺𝑡 + 𝜀 ,𝜀 is a smooth term usually set to 1𝑒 − 8 and 𝐺𝑡 a diagonal matrix with values the

sum of squires of the gradients of all the previous time steps.

Vectorizing the above equations an element-wise matrix multiplication can be performed

between the 𝐺𝑡 and the 𝛻𝐶 𝑤𝑡 (32), where ⨀ is the element wise matrix vector multiplication.

 𝑤𝑡 → 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

𝐷𝑡
⨀𝛻𝐶 𝑤𝑡 (35)

An example usage of it which reported great benefits over the traditional SGD algorithm was the

one used by Google[23] to recognize cats on YouTube videos. Another successful example that

was based on Adagrad was [24] which used the algorithm for the purpose of training a neural

network for the “Glove word embeddings”, where naturally frequent words require much smaller

updates than the infrequent ones.

An important gain from the Adagrad algorithm is the fact that are not rely on manually setting

the learning rate 𝑛; a small learning rate can be set initially, usually n = 0.001, and thus, the

need for trial and error approaches for optimization of this parameter, is no longer needed. On

the other hand Adagrad suffers from exploding sums, as every added term is positive which leads

to gradually vanishing learning rate and thus the learning process is set on halt.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

25

3.4.8. Adadelta

To solve the problem that Adagrad presents regarding the exploding sums which lead into

vanishing learning rate Adadelta [25] was proposed. Adadelta took a relatively simple approach

of fixing the issue by using only fixed size 𝑤 of accumulated gradients. The accumulated

gradients are stored in an efficient way by recursively define them as a decaying average of all

the previously computed squared gradients.

Let 𝐸 𝛻𝐶 𝑤 2 𝑡 be the running average at the time step 𝑡 and 𝛾 a momentum like parameter

which can be expressed as (36) where 𝛾 value is usually 0.9.

 𝐸 𝛻𝐶 𝑤 2 𝑡 = 𝛾𝐸 𝛻𝐶 𝑤 2 𝑡−1 + 1 − 𝛾 𝛻𝐶 𝑤 𝑡
2 (36)

The classical SGD can now be rewritten as (37) and (38)

 𝛥𝑤𝑡 =
−𝑛

𝐷𝑡
⨀𝛻𝐶 𝑤𝑡 (37)

 𝑤𝑡+1 = 𝑤𝑡 + 𝛥𝑤𝑡 (38)

where 𝐷𝑡 = 𝐺𝑡 + 𝜀 similar to Adagrad but now, 𝐺𝑡 is the decaying average vector over the previously

computed squared gradients 𝐸 𝛻𝐶 𝑤 2 𝑡which results into (39)

 𝛥𝑤𝑡 =
−𝑛

 𝐸 𝛻𝐶 𝑤 2 𝑡+𝜀
⨀𝛻𝐶 𝑤𝑡 (39)

The parameter 𝐸 𝛻𝐶 𝑤 2 𝑡 can be replaced with root mean square error criteria (RMS) of the

gradient. Based on the (39) it can be seen that the need for an initial learning rate is eliminated as

the update rule can be computed by (40) and (41).

 𝛥𝑤𝑡 =
−𝑅𝑀𝑆 𝛥𝑤 𝑡−1

𝑅𝑀𝑆 𝛻𝐶 𝑤 𝑡
𝛻𝐶 𝑤𝑡 (40)

 𝑤𝑡+1 = 𝑤𝑡 + 𝛥𝑤𝑡 (41)

That update rule change relies on the fact that 𝐸 𝛥𝑤2 𝑡 = 𝛾𝐸 𝛻𝐶 𝑤 2 𝑡−1 + 1 − 𝛾 𝛥𝑤𝑡
2 and

thus the RMS parameter updates are (42)

 𝑅𝑀𝑆 𝛥𝑤 𝑡 = 𝐸 𝛥𝑤2 𝑡 + 𝜀 (42)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

26

as 𝑅𝑀𝑆 𝛥𝑤 𝑡 is unknown and the approximation of it can be achieved by computing the RMS

until 𝑅𝑀𝑆 𝛥𝑤 𝑡−1.

3.4.9. RMSprop

A rather successful yet unpublished methodology which reminds Adadelta and was developed to

solve the same problem of vanishing learning rate, learning rate is called RMSProp [21]. The

update rule is computed by (43) and (44).

 𝐸 𝛻𝐶 𝑤 2 𝑡 = 0.9𝐸 𝛻𝐶 𝑤 2 𝑡−1 + 0.1𝛻𝐶 𝑤 𝑡
2 (43)

 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

 𝐸[𝛻𝐶 𝑤]𝑡
2+𝜀

𝛻𝐶 𝑤 𝑡
2 (44)

The author suggests an initial learning rate of 𝑛 = 0.001 and 𝛾 = 0.9. The difference between the

Adadelta is that RMSProp using exponentially decaying average of the squared gradients,

divides the learning rate. That also imposes that the algorithm depends on the learning rate that is

set which is the main difference in comparison to Adadelta which, eliminates the learning rate

factor from the update rule.

3.4.10. Adam

Another method to compute gradient descent with adaptive learning is called Adaptive Moment

Estimation (Adam) [26]. The methodology was inspired by Adadelta and RMSProp keeping the

exponentially decaying gradient average factor 𝑣𝑡 (46) and extending it by incorporating an

exponentially decaying average of the previous gradients 𝑚𝑡 (45), resembling the momentum

methodology. These two vectors are estimates of the first moment (mean) and second moment

(uncentered variance) of gradients, respectively.

 𝑚𝑡 = 𝑝1𝑚𝑡−1 + 1 − 𝑝1 𝛻𝐶 𝑤 𝑡 (45)

 𝑣𝑡 = 𝑝2𝑣𝑡−1 + 1 − 𝑝2 𝛻𝐶 𝑤 𝑡
2 (46)

where 𝑝1, 𝑝2 are the decay rates. The authors suggest an initial value of 𝑝1 = 0.9 and 𝑝2 =

0.999. The update rule can now be rewritten as (47).

 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

 𝑣𝑡+10−8 𝑚𝑡 (47)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

27

3.4.11. AdaMax

A variation of the Adam algorithm also proposed in the same publication by the authors is called

AdaMax [26]. Adam‟s update rule scales the gradient inversely proportionally to the 𝑙2 norm of

the previous gradients as the rule contains the 𝑣𝑡−1 term and current gradient 𝛻𝐶 𝑤 𝑡
2.

Leveraging that fact the authors proposed an alternative in which, the 𝑙2 norm was extended to

𝑙∞ norm. That has been accomplished by rewriting the (46) as (48) where 𝑛 is the norm factor.

 𝑣𝑡 = 𝑝1
𝑛𝑣𝑡−1 + 1 − 𝑝1

𝑛 𝛻𝐶 𝑤 𝑡
𝑛 (48)

A large number in 𝑛 parameter results into numerically unstable computations and thus a usual

range is either 𝑙1 or 𝑙2. A special case of infinite 𝑛 also results into stable behavior where (48)

can be now rewritten as (49), with the exception that now the vector is detonated as 𝑢𝑡 , in favor

of not mixing the two equations.

 𝑢𝑡 = 𝑝2
∞𝑣𝑡−1 + 1 − 𝑝2

∞ 𝛻𝐶 𝑤 𝑡
∞ = 𝑚𝑎𝑥⁡ 𝑝2𝑣𝑡−1 , 𝛻𝐶 𝑤 𝑡 (49)

By applying the (49) to the update rule of Adam (50) is obtained

 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

𝑢𝑡
𝑚𝑡 (50)

As the (49) relies on 𝑢𝑡 relies on max operation, it is not recommended to bias towards the zero

in oppose to the original Adam and thus that explains why there is not computation for the bias

correction of 𝑢𝑡 . Authors suggest 𝑛 = 0.002 and decay rates 𝑝1, 𝑝2 to be 0.9 and 0.999

respectively.

3.4.12. Nadam

An incorporation of Adam algorithm, which combines RMSprop with momentum, with Nesterov

Acceleration Gradient (NAG) is called Nesterov-accelerated Adaptive Moment Estimation [27].

For the incorporation of Adam, 𝑚𝑡 vector (45) has to be modified into (51) and thus the update

rule is translated into (52), where 𝛾 a momentum like parameter.

 𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝑛𝛻𝐶 𝑤𝑡 − 𝛾𝑚𝑡−1 (51)

 𝑤𝑡+1 = 𝑤𝑡 − 𝑚𝑡 (52)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

28

Nadam proposed an alternation to NAG computation, where instead of computing the

momentum step twice, to apply the momentum look-ahead directly on the vector update and thus

(51) and (52) can be rewritten as (53) and (54) respectively.

 𝑚𝑡 = 𝛾𝑚𝑡−1 + 𝑛𝛻𝐶 𝑤𝑡 (53)

 𝑤𝑡+1 = 𝑤𝑡 − 𝛾𝑚𝑡 + 𝑛𝛻𝐶 𝑤𝑡 (54)

With that alternation, instead of using the previous 𝑚𝑡−1 for the update, it relies only on the

current 𝑚𝑡 momentum vector.

For the incorporation of the Nesterov momentum to Adam, the replacements of original

algorithm are similar as with NAG (55), (56).

 𝑚𝑡 = 𝑝1𝑚𝑡−1 + 1 − 𝑝1 𝛻𝐶 𝑤 𝑡 (55)

 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

 𝑣𝑡+𝜀

𝑝1𝑚 𝑡−1+ 1−𝑝1 𝛻𝐶 𝑤 𝑡

1−𝑝1
𝑡 (56)

Where 𝑝1 the decay rate and
𝑝1𝑚 𝑡−1

1−𝑝1
𝑡 is a bias corrected estimation of the momentum vector from

the previous step, which is the estimation of current momentum vector 𝑚𝑡 . Replacing the (56)

with that (57) is obtained which is the final update rule of Nadam.

 𝑤𝑡+1 = 𝑤𝑡 −
𝑛

 𝑣𝑡+𝜀
 𝑝1𝑚𝑡

 1−𝑝1 𝛻𝐶 𝑤 𝑡

1−𝑝1
𝑡 (57)

3.4.13. Conclusion on Optimization Functions

In the previous sections I presented the most used optimization algorithms that are available

today. Yet the subject of finding better performing, in respect of both time and performance,

algorithms is still ongoing and thus a lot of effort has been put towards this field in the last years.

Concluding, in (Fig. 15) a visual representation of the paths which the presented algorithms are

following in order to reach the global minimum of function, illustrated in 2D surface.

What is noticeable in this illustration is that, SGD does not reach the global minima, while the

rest, although they might follow different directions, they succeed finding it. NAG and

Momentum are actually falling completely off track, and later on, correct themselves, violently

to the correct direction. This is due to the momentum incorporation in their update rule. It worth

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

29

noting here that NAG look-ahead estimation is able to quickly alter the direction towards the

negative slope.

Figure 15 Visual representation of the algorithms [18]

Summarizing, Adam and RMSProp are the most advanced optimizers that are showing good

performance in both computational complexity and speed [26]. Yet, interesting in recent

publications, vanilla stochastic gradient descent with learning rate scheduling is dominating the

field, although it takes significant more time to converge and run the risk of getting stack in local

minima.

3.5. Error Backpropagation

In the previous sections, numerous ways to optimize a function were presented; the incorporation

of them on how to train an artificial neural network has yet to be examined. The most well

known methodology to train, or in other words, calculate the optimal weights and biases of a

multilayer neural network is called backpropagation. This algorithm solves the problem of

applying changes to the free-parameters of the network, with respect of the output error. It was

originally introduced in mid 70s but did not get enough attention until the work of [28] which

illustrated many neural network architectures where backpropagation works much faster than the

earlier training approaches.

Let 𝑤𝑗𝑘
𝑙 be the weight on 𝑘𝑡𝑕 neuron in the 𝑙 − 1 𝑡𝑕 layer to the 𝑗𝑡𝑕 neuron on 𝑙𝑡𝑕 (Fig. 16).

Similarly let 𝑏𝑗
𝑙 , 𝑎𝑗

𝑙 be the bias and the activation function of the 𝑗𝑡𝑕 neuron in the 𝑙𝑡𝑕 layer,

respectively. An activation function of a specific neuron can now be expressed as (58) which

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

30

sums all the neurons 𝑘 of the layer 𝑙 − 1. To increase the computational performance of the

equation (58) a rewrite can be performed as (59) which utilizes matrix multiplication operations

 𝑎𝑗
𝑙 = 𝜎 𝑤𝑗𝑘

𝑙
𝑘 𝑎𝑗

𝑙−1 + 𝑏𝑗
𝑙 (58)

 𝑎𝑙 = 𝜎 𝑤𝑙𝑎𝑙−1 + 𝑏𝑙 (59)

where 𝑎𝑙notates a matrix of the activation function outputs of the 𝑙𝑡𝑕 layer, 𝑤𝑙 and 𝑏𝑙 matrices

with all the weights and biases of the neurons in 𝑙𝑡𝑕 layer and 𝑎𝑙−1 a matrix with the activation

function output of each neuron of the previous layer.

Figure 16 Weight vector 𝑤24
3 detonating connection from 4th node of the second layer to the 3rd layer [29]

While applying the equation (59) on a forward pass of the network to get the output of the last

layer, 𝑙 − 1 intermediate activation function matrices are computed. These matrices, which are

denoted as 𝑧𝑙 , are worth to be kept as they are used to speed up the next steps of the

backpropagation algorithm.

3.5.1. Loss Function Characteristics

Backpropagation has as a target to compute the partial derivatives
𝜗𝐶

𝜗𝑤
,
𝜗𝐶

𝜗𝑏
 of the cost function 𝐶

with respect of all the weights and bias of the network. In order to do that, backpropagation relies

on two characteristics of the cost function. The first characteristic is that 𝐶 can be expressed as a

an average sum of all 𝐶𝑡 of individual all training examples and thus 𝐶 =
1

𝑛
 𝐶𝑥𝑥 . The reason of

this is that backpropagation is able to compute the
𝜗𝐶𝑡

𝜗𝑤
,
𝜗𝐶𝑡

𝜗𝑏
 and later or average them in order to

compute the actual
𝜗𝐶

𝜗𝑤
,
𝜗𝐶

𝜗𝑏
. The second characteristic is to be able to express the cost function as a

function of the output of each neuron of the last layer and thus be able to express 𝐶 as 𝐶 = 𝐶 𝑎𝑙 .

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

31

As an example the quadratic cost function, where for a single training example 𝑡 can be written

as (60)

 𝐶 =
1

2
 𝑦 − 𝑎𝐿 2 =

1

2
 𝑦𝑗 − 𝑎𝑗

𝐿
2

𝑗 (60)

where 𝑦 is the desired output of the training example 𝑡 and thus it demonstrates a function which

relies on the output of the activations.

3.5.2. Fundamental Equations of Backpropagation Algorithm

Backpropagation algorithm, ultimately tries to compute the
𝜗𝐶

𝜗𝑤 𝑗𝑘
𝑙 ,

𝜗𝐶

𝜗𝑏𝑗
𝑙 based on the error of the

cost function 𝐶. In order to compute that an intermediate quantity is introduced, called “error of

the neuron 𝑗𝑡𝑕 neuron in the 𝑙𝑡𝑕 layer” notated as 𝛿𝑗
𝑙 . The goal is to compute the 𝛿𝑗

𝑙 matrices using

backpropagation and later then associate them with
𝜗𝐶

𝜗𝑤 𝑗𝑘
𝑙 and

𝜗𝐶

𝜗𝑏𝑗
𝑙 partial derivatives.

The error 𝛿𝑗
𝑙is defined as a small noise introduced when the input passes throwout the neurons of

the network in the feed-forward pass of the input signals. That small noise can be defined as

𝛥𝑧𝑗
𝑙to the input weights of the neuron, which instead of producing an output of 𝜎 𝑧𝑗

𝑙 , it produces

𝜎 𝑧𝑗
𝑙 + 𝛥𝑧𝑗

𝑙 . This small change propagates all way to the output neurons of the network and

affects the overall performance of the network, creating an overall effect that can be expressed as

𝜗𝐶

𝜗𝑧𝑗
𝑙 𝛥𝑧𝑗

𝑙 . The goal now is to compute the 𝛥𝑧𝑗
𝑙that reduces the overall loss function 𝐶output and

thus when the quantity
𝜗𝐶

𝜗𝑧𝑗
𝑙 is large can lower down the cost by choosing a𝛥𝑧𝑗

𝑙with opposite sign.

On the other hand when the
𝜗𝐶

𝜗𝑧𝑗
𝑙 is close to zero, the 𝛥𝑧𝑗

𝑙has also to be close to zero, which in other

words it means that the neuron is already optimized. Based on the above the quantity 𝛿𝑗
𝑙 can be

defined as (61)

 𝛿𝑗
𝑙 ≡

𝜗𝐶

𝜗𝑧𝑗
𝑙 , 𝛿𝑙 ≡

𝜗𝐶

𝜗𝑧 𝑙 (61)

where 𝛿𝑙 is the error of the 𝑙𝑡𝑕 layer in a vectorized form.

In the output layer of a neural network the components 𝛿𝑙 can be computed as (62)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

32

 𝛿𝑗
𝐿 ≡

𝜗𝐶

𝜗𝑎𝑗
𝐿 𝜎′ 𝑧𝑗

𝐿 (62)

The first part of this expression, i.e.
𝜗𝐶

𝜗𝑎𝑗
𝐿, encapsulates the rate of change of the cost function in

respect of the activation function output of the 𝑗𝑡𝑕neuron of the last layer, where the last part

𝜎′ 𝑧𝑗
𝐿 , measures the rate of change of the activation function 𝜎at 𝑧𝑗

𝐿. Computationally the

equation (62) is relatively easy to calculate. The only additional overhead is to the computation

of 𝜎′ 𝑧𝑗
𝐿 . As an example by using the quadratic cost function the computation is as simple as

computing (63).

𝜗𝐶

𝜗𝑎𝑗
𝐿 = 𝑎𝑗

𝐿 − 𝑦𝑗 (63)

Equation (62) is expressing the rate of change of each neuron and thus to speed up the

computations a rewrite is needed to the matrix-based equivalent (64), where 𝛻𝑎𝐶 is a matrix

whom components are the partial derivatives
𝜗𝐶

𝜗𝑎𝑗
𝐿

 𝛿𝐿 = 𝛻𝑎𝐶𝜎′ 𝑧𝐿 (64)

The second equation that backpropagation relies on, computes the error 𝛿𝑙in terms of the error in

the next layer and can be expressed as (65)

 𝛿𝑙 = 𝑤𝑙+1
𝑇
𝛿𝑙+1 ⊙ 𝜎′ 𝑧𝑙 (65)

where 𝑤𝑙+1
𝑇
is the transposed weight matrix of the 𝑙 + 1 𝑡𝑕 layer. Breaking down the

components of (65) it can be seen that first component 𝑤𝑙+1
𝑇
multiplied by the error

𝛿 𝑙+1 expresses that the error is passed backward through the network and thus expresses an

error of the 𝑙𝑡𝑕 layer. The second component, relying on Hadamard product
1
 ⊙ 𝜎′ 𝑧𝑙 , expresses

the same thing but for the activation function and thus expresses a backward error propagation

through the activation function of the 𝑙𝑡𝑕 layer. By combining the (62) and (65) the error 𝛿𝑙 is

computed for any layer of the network.

1
 Hadamard product: binary operation between two matrices 𝐴, 𝐵 of the same dimension which produces a matrix of the same

dimensions such as 𝐴 ⊙ 𝐵 = 𝐴𝑖 ,𝑗 ∙ 𝐵𝑗 ,𝑖 , where 𝐴𝑖,𝑗 the element at row 𝑖 and column 𝑗 of the matrix 𝐴.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

33

The third equation that backpropagation relies on has to do with the rate of change of the cost

function with respect to any bias of the network and can be expressed as (66) which can be

equivalently rewritten in its matrix form (67).

𝜗𝐶

𝜗𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 (66)

𝜗𝐶

𝜗𝑏
= 𝛿 (67)

Based on (67) and because (62) and (65) is becoming clear how to compute exactly the error 𝛿𝑙

and thus the quantity
𝜗𝐶

𝜗𝑏
 is already known by the previous steps. It is noticeable here that the

𝛿 parameter of (67) is the error of the same neuron as the 𝑏 bias term.

The last equation that backpropagation makes use of is (68), which computes the rate of change

of the cost function with respect of any weight in neural network from which, it is already known

how to compute the error 𝛿𝑙and the 𝑎𝑙−1.

𝜗𝐶

𝜗𝑤
= 𝑎in𝛿out (68)

In other words the above equation expresses the quantity of
𝜗𝐶

𝜗𝑤
= 𝑎in𝛿out from which the 𝑎in is the

activation of the neural input to the weight 𝑤and 𝛿out is the error of the neural output with

weights 𝑤. One important characteristic of the 𝑎inparameter in the partial derivative computation

is that if the weight output from low-activation neurons learn slowly as if 𝑎in ≈ 0 then the

gradient
𝜗𝐶

𝜗𝑤
 will also be small. Another useful insight from the (62) is that if 𝜎 𝑧𝑙 ≈ 0 or

𝜎 𝑧𝑙 ≈ 1 then the 𝜎′ 𝑧𝑙 is approximately zero as the sigmoid function behaves flat on regions

close to zero or one. As a consequence of that it is becoming clear that a weight in the final layer

will learn slowly if the output neuron value is too high or too low which in bibliography is called

“saturated neuron” as the weights have stopped learning. Same applies for the biases of the

output neurons. By following the second equation of backpropagation (65) the above can be

extended for all the neurons of the network.

3.5.3. The Backpropagation Algorithm

Backpropagation can be expressed algorithmically by following the bellow 5 steps

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

34

1) Input t: Set the activations 𝑎1 for the input layer

2) Feedforward phase: for each layer 𝑙 in {2,3, … , 𝐿} compute the 𝑧𝑙 = 𝑤𝑙𝑎 𝑙−1 + 𝑏𝑙 and

𝑎𝑙 = 𝜎 𝑧𝑙

3) Output error 𝛿𝐿: Compute the matrix 𝛿𝐿 = 𝛻𝑎𝐶 ⊙ 𝜎′ 𝑧𝐿

4) Backpropagate the error through the network: for each layer 𝑙 in {𝐿 − 1, 𝐿 − 2, . . . ,2}

compute 𝛿𝑙 = 𝑤𝑙+1
𝑇
𝛿𝑙+1 ⊙ 𝜎′ 𝑧𝑙

5) Output: Compute the
𝜗𝐶

𝜗𝑤
= 𝑎in𝛿out and

𝜗𝐶

𝜗𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 which are the gradient of the

cost function 𝐶

By iterating the above steps it is visible that the error is backpropagated through the network and

hens, where the name of the algorithm comes from. It seems ambiguous that the algorithm starts

in reverse as it contradicts the normal expectations, but that comes from the fact that in order to

compute the overall error of the entire network which is a result of previous errors accumulated

by the neurons of each layer, a feed-forward phase need to be performed first, and then as a

result of that it is becoming possible to apply the chain rule, from mathematical calculus,

working backwards throughout the previous layers in order to obtain the final expression.

The same algorithm can be used in mini-batch gradient descent by following the steps outlined

below.

1) Input: training examples

2) For each training example 𝑡: set the input activations 𝑎𝑡,1

2.1) Feedforward phase: For each 𝑙 in {2,3, … , 𝐿} compute 𝑧𝑡,𝑙 = 𝑤𝑙𝑎 𝑡,𝑙−1 + 𝑏𝑙 and

𝑎𝑡,𝑙 = 𝜎 𝑧𝑡,𝑙

2.2) Output error 𝛿𝑡,𝐿: Compute the matrix 𝛿𝑡,𝐿 = 𝛻𝑎𝐶 ⊙ 𝜎′ 𝑧𝐿

2.3) Backpropagate the error through the network: for each layer 𝑙 in {𝐿 − 1, 𝐿 −

2, . . . ,2} compute 𝛿𝑡,𝑙 = 𝑤𝑙+1
𝑇
𝛿𝑡,𝑙+1 ⊙ 𝜎′ 𝑧𝑡,𝑙

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

35

3) Gradient descent: For each layer 𝑙 in {𝐿 − 1, 𝐿 − 2, . . . ,2} update the weights according to

the rule 𝑤𝑙 → 𝑤𝑙 − 𝑛 𝑚 𝛿𝑡,𝑙
𝑡 αt,l−1 and the biases 𝑏𝑙 → 𝑏𝑙 − 𝑛 𝑚 𝛿𝑡,𝑙

𝑡

To implement the above as a stochastic gradient descent, the only change that needs to be

applied is to wrap the steps into an outer loop that selects a subset of the training examples and

train with that in multiple epochs.

3.6. The Loss Function

Loss function plays a major role in the training process of a neural network as backpropagation

relies on it in order to estimate the change in the weights and biases of the network. Choosing the

right loss function might improve the performance of the training process significantly. In

previous sections I presented a simple cost function called “Root Mean Square Error” (RMS).

This cost function works well for small neural networks, however as the network becomes

deeper, the problem of “slow learning” is becoming unavoidable. To understand why this is

happening, it helps to consider the case of simple case scenario where the desired output of a

single sigmoid neuron is zero when the input is one (69).

 C =
 y−α 2

2
 (69)

The partial derivatives of (69) are computed by the equations (70) and (71) for the corresponding

weights and biases respectively:

𝜗𝐶

𝜗𝑤
= (𝑎 − 𝑦)𝜎′ 𝑧 𝑡 = 𝑎𝜎′ 𝑧 (70)

𝜗𝐶

𝜗𝑏
= (𝑎 − 𝑦)𝜎′ 𝑧 𝑡 = 𝑎𝜎′ 𝑧 (71)

Considering now that the sigmoid neuron output is getting nearly flat in the areas close to 1 the

corresponding 𝜎 ′ will be really small and thus, the learning process will slow down as the

derivatives (70) and (71) will also be very small.

To overcome the above limitation a different loss function can be utilized called “cross-entropy

cost function” (72).

 C = −
1

𝑛
 (𝑦𝑙𝑛(𝑎) + 1 − 𝑦 ln⁡(1 − 𝑎))𝑡 (72)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

36

This loss function has a characteristic that is never negative as both of the summing units are

always negative. Secondly if the output of the neuron is close to the desired output, then the

cross-entropy will be close to zero and thus if fulfills the desired properties of a cost function

demanded by backpropagation algorithm. Furthermore, in case of a sigmoid neuron it does not

rely on the 𝝈′ which is the route of the learning slowdown problem of the quadratic cost

function. To prove this a computation of the partial derivatives of the cost function follows (73)

𝜗𝐶

𝜗𝑤 𝑖
= −

1

𝑛
 (

𝑦

𝜎 𝑧
−

 1−𝑦

1−𝜎 𝑧
)

𝜗𝜎

𝜗𝑤 𝑖
𝑡 =−

1

𝑛

𝑦

𝜎 𝑧
−

 1−𝑦

1−𝜎 𝑧
 𝜎 ′ 𝑧 𝑡 𝑡𝑖 (73)

Expanding the (68) and because of the fact that a sigmoid function is calculated as 𝜎 𝑧 =

1/(1 + 𝑒−𝑧) and thus 𝜎′ 𝑧 = 𝜎 𝑧 (1 − 𝜎 𝑧), the (72) can be rewritten as (74) and similarly

into (75) for the biases

𝜗𝐶

𝜗𝑤 𝑖
=

1

𝑛
 𝑡𝑗 (𝑡 𝜎 𝑧 − 𝑦) (74)

𝜗𝐶

𝜗𝑏
=

1

𝑛
 (𝑡 𝜎 𝑧 − 𝑦) (75)

3.7. Genetic Algorithms

A genetic algorithm is trying to solve optimization problems by simulating the biological

evolution. It focuses on the genetic population based reproduction, mutation and recombination

with the goal of optimal generation selection.

To follow the approach that genetic algorithm requires, the definition of five components is

needed

1) A way to encode the solutions of the problem into chromosomes

2) An evaluation function which accepts chromosome results and returns ratings based on

how well they perform

3) To define operations which are applied to the parents when they reproduce. The most

commonly used are the crossover and the mutation

4) A way to initialize the population of chromosomes

5) The hyper-parameters of the above

The above components can be encoded into an algorithm that performs as follows:

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

37

1) Initialize the population based on a selected initialization function

2) Evaluate the initial population and compute the ratings

3) While stopping criteria are not met:

a. Stochastically or best performing member of population are picked as parents

b. Crossover or mutate the parents and produce children that are forming a

generation

c. Evaluate the generation and incorporate it into the population while removing the

least performing parents

The ultimate goal of this approach is to find the optimal hyper-parameters of a neural network,

which includes but not limited, to the number of hidden layers, the number of neurons of each

layer and can be extended with incorporation of other methodologies to compute the weights and

bias of the neurons.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

38

4. Neural network challenges

This section describes general challenges that are faced on both designing and training of neural

networks. More specifically, an initial introduction to the problem of model overfitting and ways

to overcome it, the initialization of the weights of the network and how these can be calibrated in

such a way, that can improve the training performance of the entire model and, lastly focus on

neural network training issue called vanishing and exploding gradient descent which affects deep

neural network architectures and challenges the scientific community until today.

4.1. Overfitting

A general problem that all models with large number of free parameters are exposed is called

overfitting. This problem lies on the fact that the model becomes really good on predicting data

that has already been trained with, but behaves poorly on generalization, or in other words is

unable to recognize patterns that are not similar to the patterns learned from the training data.

4.1.1. Early-stopping

In the process of training a neural network the training dataset is used to evaluate the

performance of the model by computing the results of the cost function. This works well, yet it is

prone to overfitting as the model free parameters are calibrated based on that dataset.

Furthermore another problematic characteristic of this approach is that the hyper parameters of

the model are chosen based on the performance of the training dataset. In order to evaluate the

model more accurately on every epoch, a validation dataset can be introduced. This dataset is

formed by splitting the original training dataset into two smaller ones; one which is used for

validation and another one which is used for training.

By using these datasets the evaluation criteria of each epoch depend on the accuracy of the

validation dataset, according to a process called early stopping [30]. The accuracy of each epoch

on validation dataset is evaluated when it starts to decrease while the accuracy of the training

dataset increases training is terminated (Fig. 17). When stochastic gradient descent algorithm or

equivalent is used, early stopping decision can become harder to be applied, as on every epoch

there might be contradictive accuracy changes between the two datasets. A good practice is to

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

39

allow a fixed number of epochs to be applied and then, only if the early stopping criteria are met

to stop the training process.

Figure 17 Validation and training dataset early stopping point [31]

Another approach is to keep a history of every epoch in a form of free-parameter snapshot, in

order to find the optimal accuracy between validation and training dataset, yet this approach

requires many resources and thus is avoided.

4.1.2. Dropout

A rather interesting solution to control the overfitting of neural networks that was recently

introduced is called “dropout layer” [32]. This technique is usually applied in deep neural

networks and in practice is randomly switching off neurons and its connections. An example of

this can be seen in (Fig. 18) where temporarily a fixed percentage of neurons are disabled. By

repeating this process over every epoch, the neurons are getting trained in a way that resembles

using multiple neural network architectures and thus, they learn to generalize better. Furthermore

the complexity of using multiple neural network architectures and then choosing the best is

minimized as with this technique, the trials are based on every epoch which would have been

computed on each network individually. This technique was used successfully in [33] were it

was described as a technique that reduces the complex co-adaptations of neurons.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

40

Figure 18 On the left a neural network before dropout and on the right a neural network after dropout process [29]

4.1.3. Weight Decay

Weight decay is a regularization technique which is also known as L2 regularization. In this

approach the idea lies on the modification of the cost function by incorporating an additional

term called “regularization term”.

Rewriting the original cross-entropy loss function (72) with the additional regularization term as

(76).

 C = −
1

𝑛
 𝑦𝑙𝑛 𝑎 + 1 − 𝑦 ln 1 − 𝑎 +𝑡

𝜆

2𝑛
 𝑤2

𝑤 (76)

The first term of (76) is the original cross-entropy loss function, while on the second one the sum

of the squares of all the weights was added. The scaling factor
𝜆

2𝑛
 , where 𝜆>0 and 𝑛 the number of

training examples, was added in order to regularize the parameter. This modification can also be

applied to different loss function, as an example the quadratic cost function which can be re-

written as (77).

 𝐶 =
1

2
 𝑦 − 𝑎𝐿 2 =

1

2
 𝑦𝑗 − 𝑎𝑗

𝐿
2

𝑗 +
𝜆

2𝑛
 𝑤2

𝑤 (77)

The general approach of applying L2 regularization to any cost function can be expressed as (78)

where 𝐶0 is the original cost function.

 𝐶 = 𝐶0 +
𝜆

2𝑛
 𝑤2

𝑤 (78)

This addition to the loss function, forces the network to learn small weights while larger weights

are allowed only if they result in a considerable change of the original cost function value. The

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

41

term that regulates the weight scale balance is 𝜆 where a small value swifts the attention to

minimize the original cost function 𝐶0 while a larger value swifts the preference to the small

weights.

To understand how the regularization factor 𝜆 helps to overcome the overfitting issue that appear

in neural networks training, a simple example is presented utilizing the stochastic gradient

descent algorithm. The partial derivatives of gradient descent can be computed with the

incorporation of the regularization factor which can be expressed as (79) and (80).

𝜗𝐶

𝜗𝑤
=

𝜗𝐶0

𝜗𝑤
+

𝜆

𝑛
𝑤 (79)

𝜗𝐶

𝜗𝑏
=

𝜗𝐶0

𝜗𝑏
 (80)

The computation of partial derivatives of bias are unchanged as the regularization term is only

applied to the computation of the partial derivatives of the weights of the network and thus the

update rule of backpropagation can be re-written as (81) and (82). The only difference of the

original gradient descent update rule is the rescale of the weights, which is also called weight

decay.

 𝑤 → 𝑤 ′ = 𝑤 − 1 −
𝑛𝜆

𝑛
 𝑤 − 𝑛

𝜗𝐶0

𝜗𝑤
 (81)

 𝑏 → 𝑏′ = 𝑏 − 𝑛
𝜗𝐶0

𝜗𝑏
 (82)

Based on (81) and (82) the stochastic gradient descent update rule can be expressed as (83) and

(84) where, as the gradient descent approach remains unchanged. The term 𝐶𝑡 is the

unregularized cost of each training example of each mini-batch as computed by the original

backpropagation algorithm.

. 𝑤 → 𝑤 ′ = 𝑤 − 1 −
𝑛𝜆

𝑛
 𝑤 −

𝑛

𝑚

𝜗𝐶𝑡

𝜗𝑤𝑡 (83)

 𝑏 → 𝑏′ = 𝑏 −
𝑛

𝑚

𝜗𝐶𝑡

𝜗𝑏𝑡 (84)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

42

4.1.3.1. Example Of Weight Decay

To evaluate the performance change of a typical MLP neural network architecture, the usage of

MNIST [34] dataset and benchmark is incorporated. This dataset was constructed by rescaling

and normalizing a subset of 70.000 handwritten digit images from NIST dataset. This subset has

be divided into 60.000 training and 10.000 test examples and is widely used as a performance

evaluation tool in the image recognition sector.

The neural network architecture that was used to evaluate the performance benefits of L2

regularization practice, consists by an input layer of 4096 neurons, as the images in the dataset

are scaled to 64x64 size and are grayscale, a 30 sigmoid neurons fully connected hidden layer

and an output layer of 10 neurons, one for each class presented in the dataset. For both

unregularized and regularized backpropagation algorithm the learning rate was set to 0.5 and a

mini-batch of size 10 was used with cross-entropy loss function. For the regularized version a

weight decay term was set to 𝜆 = 0.1. Evaluating both networks with a muted random function,

seeded with a constant value to eliminate performance changes on randomization factor, a value

of 82.27% accuracy was obtained from the unregulated network and 87.1% to the regulated one,

which is considered noticeable, as the only change on the unregulated network architecture was

the weight decay factor. Another noticeable difference was the converging speed improvement

of the regulated network, which steadily grew the accuracy onwards to 400 epochs, while the

first had started overfitting from the 280 epoch and then kept fluctuating between 82% accuracy

(Fig.19).

Figure 19 Accuracy graph over epochs on both (left) unregulated and (right) regulated networks [29]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

43

4.1.4. L1 Regularization

This form of regularization works on the same principles as the L2 regularization with the

difference of the regularization term of the cost function, which in this case, the term represents

the absolute sum of the weights of the network multiplied by the regularization factor 𝜆 and can

be written as (85)

 𝐶 = 𝐶0 +
𝜆

𝑛
 𝑎𝑏𝑠(𝑤)𝑤 (85)

Using calculus the partial derivative of (85) with respect of the weights of the network can be

written as (86), in which the 𝑠𝑔𝑛(𝑤) represents the sign of the weight 𝑤. The update rule of the

regularized model can be expressed as (80) and (81).

𝜗𝐶

𝜗𝑤
=

𝜗𝐶0

𝜗𝑤
+

𝜆

𝑛
𝑠𝑔𝑛(𝑤) (86)

 𝑤 → 𝑤 ′ = 𝑤 1 −
𝑛𝜆

𝑛
 − 𝑛

𝜗𝐶0

𝜗𝑤
 (87)

 𝑏 → 𝑏′ = 𝑏 − 𝑛
𝜗𝐶0

𝜗𝑏
 (88)

While L1 and L2 regularization have as an effect to alter the weights of the network, the first

shrinks the weights by a constant amount towards zero while on the second the shrinkage is

proportional to the weight. As a result, when the magnitude of |𝑤| is large the L1 regularized

network shrinks the weight less than L2. In contrast when the magnitude of the weight is small

L1 regularization will affect more the weight than an L2. Concluding L1 regularized networks

tend to focus the weights on a relatively smaller number of high importance neural connections,

while the rest are lead towards zero. While the difference between the two regularization forms is

definite, it is still unclear which performs the best and thus both of them are widely used in

literature.

4.1.5. Training Dataset Expansion

A common practice that is employed by researchers while training neural networks, is to increase

artificially the training dataset of the network. The reason behind this lies on the fact that, in

order to train a model with thousand or million parameters is relatively hard, by using a small

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

44

dataset, as that often results into overfitting those parameters to that limit set of examples. The

artificial expansion of the dataset can be performed systematically if the dataset allows it. An

example that is commonly used in the field of computer vision and more specifically in image

classification is to artificially rotate, scale and distort the training examples while keeping the

same class. That gives the model the chance to adjust the free parameters accordingly and thus

expanding the generalization capabilities of the whole network. An example taken from affNIST

[35] dataset is illustrated in (Fig. 20) which contains images artificially transformed from the

original MNIST dataset. Using this dataset which expands the training examples of original

MNIST dataset the training accuracy of the model reached 96.74% [29], i.e., is an increase of

9.64% is achieved which illustrates the performance gains that can be obtained by the artificial

pre-processing of the training dataset.

Figure 20 Grid of 10x17 artificially transformed 40x40 digits of the first column

and their 16 variations from affNIST dataset [35].

4.1.6. Training Data Pre-Processing

An interesting approach that can be applied to the original training dataset is to perform a

principal component analysis (PCA) [36]. In order to improve the generalization capabilities of

the model. PCA has been traditionally used in statistical and signal analysis in order to transform

multi-dimensional data that are possibly correlated, into linearly uncorrelated variables which are

called “principal components”. This idea has been successfully used in numerous studies

including [37] where this pre-processing methodology was used in order to eliminate the

problem of correlated information that exist in the real-world training data, and thus remove the

hyperspace overlap that exist between them.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

45

4.1.6.1. PCA and ZCA Whitening

PCA and Zero Component Analysis (ZCA) whitening are common image and audio pre-

processing methodologies that are applied to decorrelate information. In order to understand how

whitening works a simple example of applying PCA to raw data is presented.

Let us consider as training examples, grayscale images with pixel values 𝑥𝑖,𝑗 ∈ ℜ256 . In there

images, adjacent pixels are highly correlated as they usually correspond to the same object and

thus utilizing PCA the input space can be reduced with very little approximation error. Let

𝑋 = {𝑥 1 , 𝑥 2 , 𝑥 3 , … , 𝑥 𝑚 } be a dataset with input dimensions 𝑛 = 2, thus 𝑥𝑖,𝑗 ∈ ℜ2 (Fig.

20).The chosen dimensionality was peaked to simplify the visualization of the process.

Figure 21 Left) Pre-processed zero mean dataset visualization before PCA. Right) Two principal directions of variation [38]

Applying PCA to dataset 𝑋 a lower-dimensionality subspace can be found, on which the data can

be projected. In (Fig. 21) 𝑢1 is the primary principal direction of variation and 𝑢2 the secondary

direction of variation of the data which means that the data varies much more in 𝑢1 direction

than 𝑢2. The principals are found using (89) where Σ is the covariance matrix for the zero mean

x dataset. 𝑢1 and 𝑢2 can be obtained by the order of appearance of the eigenvectors of covariance

matrix Σ. Stacking the eigenvectors in columns results in the creation of matrix U (90), in which

the order of appearance of each eigenvector corresponds to the largest eigenvalue (𝜆1, 𝜆2, … , 𝜆𝑛).

 Σ =
1

m
 x i (x i)𝑇m

i=0 (89)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

46

 U =
| | | |

𝑢1 𝑢2 … 𝑢𝑛

| | | |
 (90)

The magnitude of the projection of 𝑥 onto the vector 𝑢𝑛 can be computed as 𝑢𝑛
𝑇𝑥 where 𝑢𝑛

𝑇 is the

transposed eigenvector 𝑢𝑛 . To represent the data 𝑥 in eigenvector basis, a rotation has to be

applied which is computed by (91).

 xrot =
𝑢1

𝑇𝑥

…
𝑢𝑛

𝑇𝑥

 = UTx (91)

In (Fig. 22) the visualization of the entire dataset transformed by xrot
 i = 𝑈𝑇𝑥(𝑖) , which is the

training dataset transformed by 𝑢1, 𝑢2 basis. A noticeable property of the 𝑈 matrix is that it

satisfies 𝑈𝑇𝑈 = 𝑈𝑈𝑇 = 𝐼; which is also called orthogonal matrix. This can be used in order to

rotate back the 𝑥𝑟𝑜𝑡 vectors to 𝑥 by computing x = Uxrot as Uxrot = 𝑈𝑈𝑇x = x.

Figure 22 𝐱𝐫𝐨𝐭 dataset visualization [38]

To reduce the data dimensionality using PCA, the principles of the matrix 𝑈 can be used. More

specifically if 𝑥 ∈ ℜ𝑛 and aiming to reduce the dimensionality of it into 𝑘 where 𝑘 < 𝑛 and thus

transform 𝑥 to 𝑥′ ∈ ℜ𝑘 then the first 𝑘 components of the 𝑈 matrix can be kept. This is possible

as the order of values in 𝑥𝑟𝑜𝑡 vector are in descending order and thus if the initial components of

𝑥 vector are largely correlated, the first values of 𝑥𝑟𝑜𝑡 vector will be significantly larger than the

later ones and thus an estimation of the original vector can be obtained by zeroing the values that

are close to zero. That can be expressed as (92):

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

47

 x′ =

xrot ,1

xrot ,2

…
xrot ,k

0

≈

xrot ,1

xrot ,2

…
xrot ,k

xrot ,n

xrot (92)

Applying (92) to the two dimensional example and by choosing k = 1 a one-dimensional

representation of the original x vector (Fig. 23.a) is obtained.

Figure 23 On the left, 𝐱′ visualization. On the right, 𝐱 visualization [38]

In order to utilize the k first principles and obtain an approximation of the original vector x, x′

vector has to be transformed by utilizing the U matrix (93). The visualization x vector can be

seen in (Fig. 23.b).

 x = U

x′1
x′2
…
x′k
0

= uix′i
k
i=0 (93)

When applying PCA to a dataset, the k hyper-parameter has to be chosen in such a way that the

minimum information loss with the maximum dimensional decrease will occur. Setting k = n

there will be no information loss and thus all of the variation of the original data will be retained.

Setting k = 0 zero retainsion will be obtained and thus all the variation will be lost. If 𝜆1 , 𝜆2 , … , 𝜆𝑛

are the eigenvalues of the covariance matrix Σ then the percentage, 𝛾, of variation retained by

keeping k principals can be obtained by (94). A common heuristic approach in case of applying

PCA in image pre-processing is to set 𝛾 ≥ 0.99 yet that strongly depends on the application as in

some cases the nature of the problem allows higher information loss in favor of higher

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

48

dimensionality reduction which in return will increase the overall performance in terms of time

that has to be spent while training a model.

 𝛾 =
 𝜆𝑗

𝑘
𝑗=1

 𝜆𝑗
𝑛
𝑗=1

 (94)

To apply PCA on a dataset, each of the features has to meet certain criteria and more precisely, a

common pre-processing step is to normalize the values of the features so they can have a mean

close to zero. This is not something that can be applied in most of the cases when it comes to

images. Natural images, or in other words, images that are obtained in the wild, have a property

called “stationarity” which means that statistically the pixels in one part of the image should be

the same as the others. That means that if the raw pixel of the images is used as a feature set,

then the nature of them already comply with the variance normalization criteria set by PCA. That

holds true for other kind of features such as audio, or text. The only normalization that has to be

done in such data is mean normalization which can be achieved utilizing (95) and (96).

 𝜇 𝑖 =
1

𝑛
 𝑥𝑗

 𝑖 𝑛
𝑗 =1 (95)

 𝑥𝑗
 𝑖 = 𝑥𝑗

 𝑖 − 𝜇 𝑖 (96)

A common data-preprocessing similar to PCA is called “whitening” or as it sometimes referred

in the literature “sphering”, aims to reduce the redundancy appearing in raw image data,

considering that adjacent pixels are highly correlated. This can be applied by utilizing the same

procedure as PCA. The covariance matrix in natural images closely resembles a diagonal matrix

and thus, to make each input feature have a unit variance, a rescaling of the original xrot ,i can be

done by dividing it with the square root of the corresponding eigenvalue value (97), where 𝜀 is a

small constant, usually of the order of 10−5, which is used in order to protect the xrot ,i
′ from

numerical explosion, as 𝜆𝑖 might take relatively small values and thus the division produce large

numbers. Following the same principles of PCA and combining it with whitening, which in fact

means keeping k principles from the resulted xrot
′ vector.

 xrot ,i
′ =

xrot ,i

 𝜆𝑖+𝜀
 (97)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

49

Another approach of transforming the data to have covariance identity 𝐼 is called ZCA whitening

[39]. Utilizing any orthogonal matrix 𝑅 then 𝑅𝑥𝑃𝐶𝐴𝑤𝑕𝑖𝑡𝑒
 will also have identity covariance. In

ZCA whitening 𝑅 = 𝑈 and thus 𝑥𝑍𝐶𝐴𝑤𝑕𝑖𝑡𝑒
= 𝑈𝑥𝑃𝐶𝐴𝑤𝑕𝑖𝑡𝑒

. Unlike PCA whitening, when ZCA

whitening is applied, usually the whole xrot
′ vector is kept and thus does not apply any

dimensional reduction. It has also been shown that, out of any 𝑅 rotational matrix choices, the

ZCA approach causes 𝑥𝑍𝐶𝐴𝑤𝑕𝑖𝑡𝑒
 to be as close as possible to the original 𝑥 vector and thus, has

the minimum information loss. An illustration of PCA whitening without dimensionality

reduction on grayscale images can be seen in (Fig. 24), where image patches are PCA whitened

by using 116 out of 144 principle components and preserving 99% of the variance achieving less

correlated features. It is worth noting that the whitened features have the same variance, which is

beneficial as a pre-processing step in most classification algorithm cases as that way they are

classified easier.

A B

Figure 24 (A) Image patches before and after (B) PCA whitening [40].

4.1.7. Weight Initialization

An important factor that has to be taken into consideration when training any kind of artificial

neural network is the initialization of the weights and biases of the model. This is important as

random weights might degrade the performance of the entire training process or even stop it

entirely. This can occur when weights or biases have zero value and thus the neurons are already

saturated before the training process.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

50

A common practice is to use random independent values that follow the Gaussian distribution

and they are normalized to have 0 mean and 1 standard deviation. Let 𝑧 be the sum of all the

weights and biases of a single neuron and thus (98).

 𝑧 = 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏 (98)

That means that 𝑧 is a sum of random Gaussian variables an extra bias term. Assuming that half

of 𝑥𝑖 will be turned off, or in other words they will be set to 0, and the rest are activated, if the

number of weights connected to a single neuron is large, for example 500 weights, 𝑧 will have a

value of 501 considering 500 weights and 1 bias. The standard deviation of 𝑧 will be 501 ≅

22.4 with zero mean (Fig 25) which shows that the 𝑎𝑏𝑠(𝑧) will be a large value and thus

𝑧 ≫ 1 𝑜𝑟 𝑧 ≪ −1. In case of a sigmoid neuron, this will lead to a pre-saturated neuron as 𝜎 𝑧

will be either strongly 0 or 1. As backpropagation works by applying small weights in order to

explore the surface of the cost function of the network, the changes will have little to no effect to

the neuron which leads to slow learning and thus damages the whole training process.

Figure 25 Gaussian distribution of the values of a 500 weight and 1 bias neuron [29]

In order to prevent this to occur, an alternative approach is to keep using Gaussian normalized

initial free parameters with mean zero, but unlike the previous approach, the standard deviation

will be around 1 𝑛 where 𝑛 the number of weights connected to the neuron. That causes the

Gaussian to be squashed down and thus have much less possibility for the neuron to be saturated

upon initialization. By following that in the previous example, the standard deviation of 𝑧 will be

 2/3 = 1.22 with a much sharper Gaussian distribution (Fig. 26).

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

51

Figure 26 Gaussian distribution with standard deviation 1.22 and mean zero [29]

To demonstrate the impact of free-parameter initialization in the training process of a model, a

neural network has been constructed and trained upon MNIST dataset. The architecture the

network was 784 input neurons, 1 hidden layer with 30 sigmoid neurons and an output layer of

10 neurons, one for each possible digit contained into the dataset. The cost function was

regularized using L2 regularization with 𝜆 = 5. For the stochastic gradient descent the chosen

learning rate was 𝑛 = 0.1 with batch size 𝑚 = 10. The network was trained using both

initialization approaches to illustrate the difference between the two approaches (Fig. 27). The

classification accuracy in both cases was ≅ 96.4% but following the regulated weight

initialization had an impact in converge speed as the accuracy reached its pick within the first 10

epochs, yet on the unregulated version, the stabilization of accuracy occurred only after 28

epochs.

Figure 27 Visualization of the training classification accuracy in 30 epochs. Blue line the unregulated initialization while orange

line the regulated approach [29]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

52

4.1.8. Hyperparameter Selection

In the neural network context, hyper-parameters are parameters that have to be decided prior the

training process of the model. These parameters, are dependent on the different set of algorithms

that are used while training which includes, the learning rate 𝑛, the regularization parameter 𝜆,

the batch size 𝑚 in case of stochastic gradient descent like algorithms. Unfortunately for these

parameters, there is no definite answer to what values they should get and thus, most of the

researches are following heuristic approaches. The same rule applies to the rest hyper-

parameters like the number of hidden layers that the network should have, the number of neurons

on each hidden layer and even the activation function of the neurons. In most of the cases the

most effective way is the trial and error, yet there are some basic principles that can be followed

as short paths.

Firstly to speed up the learning process a common practice is to keep the training dataset small

thus on each epoch, the accuracy can be monitored and if the model accuracy does not follow an

upwards direction alter the learning rate accordingly. Depending on the gradient descent

algorithm that is used, the learning rate and the regularization parameter are usually provided by

the creator of the algorithm, yet if that is not the case, a safe approach is to follow a learning rate

reduction by a factor of 10 on each trial. As an example a usual starting point for learning rate,

can be 𝑛 = 10−1, if the accuracy is unstable, then a lower learning rate should be applied. On the

other hand, if the classification accuracy grows steadily but slowly, learning rate should be

increased, usually again at the same rate as the reduction. To determine the number of epochs

that the model should be used, it is a good practice to follow early stopping approach and thus as

a consequence avoid overfitting too. For the regularization parameter, a common approach is

first to start the training without regularization at all and thus 𝜆 = 0, after learning rate

adjustments, the regularization parameter can be increased by a steady factor of 10, following the

same principles with learning rate, yet instead of starting from high values, usually the initial

value is as low as 𝜆 = 10−5.

Numerous automated techniques have been proposed to help on hyper-parameter selection for

neural networks. A common approach is the “grid search” which systematically searches through

grid in hyper-parameter space to find the optimal values. A review of existing algorithms along

with practical ways to implement them can be found in [41]. Another rather interesting Bayesian

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

53

optimization approach of parameter selection has been proposed in [42] in which a learning

algorithm‟s generalization performance is modeled as a sample from a Gaussian process.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

54

5. Convolutional Neural Networks

Deep learning is a class of machine learning algorithms which use multiple cascaded neural

layers for feature extraction. It can be used in supervised and unsupervised learning where

multiple levels of feature are extracted. The levels are forming a hierarchy on which higher level

features are extracted from lower level features that are up in the hierarchy. The training

algorithm that is used for these kinds of neural nets is usually gradient descent based back

propagation.

In recent years a lot of attention has been drawn to a special type of deep neural network

architecture called Convolution Neural Networks (CNNs). CNN is a type of multi-layer feed-

forward network architecture that at its core, contains at least one layer of neurons that perform a

special kind of operation known as “convolution”. They are inspired by the natural biological

process of animal visual cortex, in which neurons are individually responding to small regions of

the visual field. That has been initially discovered by examining the visual system of cats and

monkeys from the biologists Hubel and Wiesel in 1950s and 1960s. Later on in [43] it has been

identified that there are two basic types of visual cells in the brains. The first type is called

“single cells” whose output is maximized by edges with particular orientation within their

receptive field (the portion of the visual image that the cell is able to view). The second type of

cells referred as “complex cells” has a relatively larger receptive field than the first ones and

their output is insensitive to the exact position of the edges presented into that field.

Inspired by the discoveries of [43], in early 1980s there was an adoption of this in the field of

neural networks [44] with the name “Neocognitron”. The difference with the previous neural

network architectures was that the neurons did not require to share the same trainable weights

which means that instead of relying to a fully connected architecture, Neocognitron was able

utilize neurons similarly to how they work in the visual context of animals. Unfortunately due to

the lack of computer resources that were required to train such a network, the idea was halted

and no further research was done on it for more than a decade. In 1998, when computation

resources increased the initial design was improved [34] with the introduction of a 7 layer

Convolutional neural network trained to recognize digits from images with size 32x32, applied in

banking industry. In 2003 [45] a more generalized approach was introduced and simplified [46]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

55

opening the path to the scientific community to leverage the power of these kind of networks in

the field of computer vision.

One of the most well-known CNN architectures was introduced in 2012. It is known by the name

“AlexNet” [33] which was trained, using Graphical Processing Units (GPUs) to speed up the

training process utilizing a framework provided by NVIDIA known as Compute Unified Device

Architecture (CUDA) [47]. The model was trained using a dataset known as “ImageNet Large

Scale Visual Recognition Challenge” (ILSVRC) [48], which is an annual competition started in

2010. This competition is based on classification accuracy upon a dataset containing a large

number of images from the wild, following the principles set by PASCAL VOC challenge [49].

AlexNet was trained on a dataset from LSVRC-2010 which contains 1.3 million high resolution

images from 1000 classes and managed to achieve 39.7% and 18.9% error rates on top-1 and

top-5 scales outperforming by far previous state of the art approaches. AlexNet consists of 5

convolution layers, some of which were followed by max-pooling and normalization layers, and

they have two fully connected layers at the end followed by one output softmax layer of 1000

neurons. The resulting network of the above architecture had more than 60 million free-

parameters and 500.000 neurons which was considerably big for the time that was created. In

Fig. 28 an illustration of the above architecture is shown.

Figure 28 AlexNet architecture [50]

5.1. Convolution Layer

In a CNN architecture the most crucial layer that is used is called convolution layer. This is the

essential part of every CNN based architecture which is inspired by the biological visual cortex.

More specifically, a convolution layer is the same as any other hidden layer of a conventional

MLP architecture, with one distinct difference lying behind the neuron connections. While in a

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

56

typical MLP architecture all neurons of the previous layer will be connected with all the neurons

of the current layer, in a convolution layer, each neuron is connected with a specific set of

neurons from the previous layer, which is called “receptive field”.

The local receptive field, which can be seen in Fig. 29, is responsible for the topological specific

weights, or features, that CNNs are known for. Each neuron of a convolution layer is connected

to a specific set of neurons from its previous layer. When it comes to a 2D convolution layer, the

receptive field is defined as a rectangular set of neurons, with a size of 𝑤 × 𝑕, where 𝑤 is the

width and 𝑕 is the height of the rectangular area. Each neuron is connected to the next

rectangular set of neurons until the entire surface of neurons from the previous layer is covered.

These rectangular regions, can, but not always, overlap with each other. The distance by which

the rectangular region (filter) shifts on the input volume is called is called stride 𝑠.

Figure 29 Left: Receptive field demonstration for a neuron. Middle and Right: Overlapping receptive fields with stride 1 [29]

Another important parameter that most convolution layer architectures have is called padding 𝑝.

This parameter aroused from the fact that in some cases, the size of the rectangular area does not

fit precisely with the size of the input layer. For that reason blank input signals, or pixels in case

of images, are added around the original input layer (Fig 30).

Figure 30 [51] Zero padding 𝑝 = 1 of around an input image of 6x6 with resulting image 8x8.

Convolution operation is extended across the depth of the input volume. A common example of

that is when the input of the network is in fact an RGB image, where each channel can be

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

57

considered as a separate depth 𝒅 and thus creating a cube of width and height equal to the

dimension of the image and depth equal to the number of channels. In case of input with depth,

the receptive field of neurons, which is also known as “filter”, are running across the whole

width, height and the depth of the input layer. That results into the creation of multiple depth

filters, in the convolution layer. Each filter has now the same topological location of extraction,

yet it might differ vastly from the others as the actual input, belongs to different depth.

By known these parameters the calculation of the total number of neurons along with the total

number of weights that a convolution layer will have, is possible. Summarizing a convolution

layer has:

 Input volume of size 𝑊 × 𝐻 × 𝐷 where 𝑊 is its width, 𝐻 is its height and 𝐷 is its depth

 A set of hyper parameters defined as

o 𝐾 which is the number of filters that extracts

o 𝐹 known as spatial extent or filter size

o 𝑆 which is the stride or gap on which the filters are extracted

o 𝑃 is the padding that can be placed in case of input volume size mismatch

 An output volume of

o Width calculated as

 𝑊 ′ = (𝑊 − 𝐹 + 2𝑃)/(𝑆 + 1) (99)

o Height calculated as

 𝐻′ = (𝐻 − 𝐹 + 2𝑃)/(𝑆 + 1) (100)

o Depth 𝐾

The resulting number of weights 𝑊𝑓𝑖𝑙𝑡𝑒𝑟 of each filter can be calculated using equation (101),

and the total number of weights 𝑊𝑡𝑜𝑡𝑎𝑙 by (102).

 𝑊𝑓𝑖𝑙𝑡𝑒𝑟 = 𝐹 ∙ 𝐹 ∙ 𝐷 (101)

 𝑊𝑡𝑜𝑡𝑎𝑙 = (𝑊𝑓𝑖𝑙𝑡𝑒𝑟 ∙ 𝐾) (102)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

58

The total number of free parameters can be calculated by adding the number of biases for each

extracted filter which is 𝑊𝑡𝑜𝑡𝑎𝑙 + 𝐾. A simple example is presented.

 Input volume: RGB image of size 32 × 32 × 3

 Filter size: 5 × 5 × 3

 For stride 𝑆 = 1 and padding 𝑃 = 0 the resulting activation map size is:

o 28 × 28 × 3 as (92) and (93) results into (32 − 5 + 2 × 0) / 1 + 1

 Each neuron has 75 weights + 1 bias, which is a result of applying (94) and thus

 If there are 6 filters of this size the resulting activation maps have 450 weights and 6

biases

A special case of convolution layer can be obtained by setting the filter size to be equal to 1, no

zero padding and a stride of 1. That leads effectively to dimensionality reductionality. As an

example let input volume of 200 × 200 × 50, by using 20 filters of size 1 × 1 × 20 the resulting

volume can be reduced to 200 × 200 × 20. The most common use case of this practice is as a

replacement in the final layers of a CNN architecture, where fully connected layers are more

likely to be seen. Another use case of the above technique has been seen in GoogLeNet [52]

which is presented in Section 5.7.5.

5.2. Pooling Layer

A common practice that is applied in CNN architectures is the usage of pooling layers. A pooling

layer acts as a summarization of an input volume. The units of this layer have a receptive field,

following the same principles with any convolution layer, yet instead of computing convolution

operation, depending on the pooling operation, summarize the receptive field of each unit into a

single scalar value. That means that a pooling layer has as hyper-parameters the width, height

and depth of the receptive field, stride and padding. The most common pooling operations

applied in CNN architectures are max-pooling, L2-norm pooling and average pooling.

Max-pooling has been used extensively in many network architectures including [33], [52] and

[53]. The basic operation applied in a max-pooling layer is illustrated in (Fig. 31), where each

unit selects the maximum value of each rectangular region applying the argmax operation (103).

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

59

It is important to note here, that the pooling operation is applied on each depth of the input

volume and thus the resulting filters have the same depth as the original input volume.

 𝑉′ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑥𝑖𝑛𝑝𝑢𝑡) (103)

Average pooling follows the same principles as max-pooling, yet, instead of selecting the max

value of the unit receptive field, it computes the average value (104) from the values of the

rectangular region that is applied.

Figure 31 Left. Max-Pooling with size 2x2 and stride 2 [54]; Right. Average versus Max pooling [55]

 𝑉 ′ =
 𝑥𝑖𝑛𝑝𝑢𝑡

𝑘
𝑖=1

𝑘
 (104)

The most common pooling size that is used in the literature is 2x2 with a stride of 2 which

effectively down samples the input volume by discarding 75% of the activations. Higher pooling

sizes would result into larger information loss that, most of the time, it is not desirable. As a

general rule, max-pooling keeps the most important features of the activation map, such us

edges, while the average pooling acts like a low pass filter and thus extracts a smoothed-out

representation of the original activation map. Because of the above, in most CNN architectures

max-pooling is preferred as it helps the model to recognize edges and thus increases the overall

performance of the network.

The most profound benefit of pooling operation is the free-parameter reduction and thus lower

computation cost while training a model. Another benefit, which comes with the reduction of

spatial size of the model, is that pooling reduces overfitting. On the other hand it has been shown

that the benefits of pooling layer usage can be obtained by replacing them with larger filter size

of convolution layers [56] which reduces the overall implementation and computation

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

60

complexity that is introduced by intercepting different layer types in a CNN architecture. It has

been also shown that discarding completely pooling layers can be found important in training

good generative models such as variational autoencoders (VAEs) [57] or generative adversarial

networks (GANs) [58].

5.3. Normalization Layer

A layer type that has been shown in CNN architectures but has been fallen out of practice as their

contribution to the overall performance of the model has been seen minimal is the normalization

layer. There are many normalization operations that have been proposed in literature, such as

Local Response Normalization (LRN), Mean Variance Normalization (MVN) and Batch

Normalization (BN), which are inspired by the biological normalizations of signals that happen

in brain neurons and has been successfully used in [33].

LRN performs a “lateral inhibition” by normalizing over input regions. That has been shown to

be useful when ReLU activation is used in the layer that is to be normalized and it is because

ReLU neurons have unbound activations and thus, aiming to detect frequency features with large

response. That means that if normalization is done around local neighborhood of an explicit

neuron, it becomes more sensitive as compared to its neighbors. Unfortunately this operation will

also discriminate the responses that are uniformly large in any given local neighborhood and thus

if all the values are large the normalization of those values will diminish all of them. The goal of

the LRN is to encourage some kind of inhibition and boost the neurons with relatively large

activations [33]. The normalization can be done either to a specific channel or depth of the

previous layer, or it can be extended across all depth. In both cases the size of normalization

filter follows the same principles as any other layer and thus it can be configured based on the

size of the receptive field that normalization is desired. MVN is working similarly to LRN layer;

yet they perform different type of normalization. MVN layer normalizes the input volume values

so they will have 0 mean and a variance of 1.

5.4. Fully Connected Layer

In CNN architectures it is common to use fully connected layers as the last layers of the network.

This is because, convolution layers are used to exploit the local associations between the input

signals yet and not to decide if a set signals is strong enough to be considered significant. That

means by adding fully connected layers after the convolution layers the network is able to “look”

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

61

at the big picture of all the filters that have been extracted from the input volume and thus

perform classification of it.

5.5. The Last Layer of a CNN Architecture

As the last layer of a CNN architecture it is relatively common to choose a fully connected layer

in which the number of neurons are matching the number of classes that the dataset has. In other

words the last layer can also be called “classification layer” as it is the final layer from which the

network will output the results of the feed-forward process through the previous layers. It is also

common to use different activation functions for the neurons of this layer in comparison with the

previous layers. In most cases and especially to CNN architectures the usage of softmax or SVM

activation functions is used.

5.5.1. Multi-Class Support Vector Machine Loss

The Multi-class Support Vector Machine (SVM) [59] loss has been used extensively in the field

of neural networks. The SVM loss is set so that SVM wants to correct the class of each training

example to have a score higher than the rest, incorrect, classes. The margin ∆ between the correct

and the incorrect classes is fixed. Let 𝑥𝑖 and 𝑦𝑖 a training example and its class respectively. The

score function receives as a parameter the training example and computes vector 𝑓(𝑥𝑖 , 𝑊) of a

class scores 𝑠. Thus the score of the above example for the class 𝑗 will be 𝑠𝑗 = 𝑓(𝑥𝑖 , 𝑊)𝑗 .

Formalizing the above, the multi-class SVM loss for the 𝑖𝑡𝑕 training example can be expressed as

(105), where the threshold at 0 of the max operation is called “hinge loss”. It is also common to

use an L2 variation of multi-class SVM or “squared hinge loss” where the max function is

squared, which has as a result the larger penalization of violating margins.

 𝐿𝑖 = max(0, sj − sy + ∆)𝑗 !=𝑦𝑖
 (105)

The formal approach of applying the L1 and L2 multi-class SVM loss, has an issue when it

comes to practical implementations. The issue is based on the uniqueness of the weights that are

used and it appears in some cases where these weights are qualified for all classes presented in

the model and thus 𝑳𝒊 = 𝟎 for every 𝒊. That raises the need to regularize the function in order to

encode a preference towards certain sets of weights 𝑾 over the others. This can be done by

introducing a regularization penalty 𝑹(𝑾). There are many ways to do that, but the most

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

62

common use-case is the L2 norm that has as property the discourization of large weights utilizing

an element-wise quadratic penalty over all parameters (106).

 𝑅 𝑤 = 𝑊𝑘,𝑙
2

𝑙𝑘 (106)

Combining (106) [59] over the multi-class SVM loss (105) can now be rewritten into (107).

Notice that the regularization function is based purely on weights and not the data. The impact of

the regularization can be controlled by the hyper-parameter 𝝀. The hyper-parameter ∆ can be

safely set to 1 and that is because the parameter is there to create a difference between each class

and not to quantify it; with that said, ∆ can be any positive value.

 𝐿 =
1

𝑁
 [max(0, f xi , W j − f xi , W y j

+ ∆)] +𝑗 !=𝑦𝑖𝑖 𝜆 𝑊𝑘,𝑙
2 =

1

𝑁
 𝐿𝑖𝑖 + 𝜆𝑙𝑘 𝑅 𝑤 (107)

It is important to note here that there are other forms to apply SVM into multiple classes, which

includes but not limited the “One Vs All” (OVA) SVM which trains an independent binary SVM

for each class versus all the other classes. Another, less common, approach is the “All Vs All”

(AVA) SVM. An interesting comparison OVA approach can be seen in [60] which compares

multiple multi-class SVM approaches including AVA and the presented approach along.

5.5.2. Softmax Classifier

Softmax classifier is another commonly used classifier which has a different loss function than

SVM. While Multi-class SVM treats the outputs 𝑓(𝑥𝑖 , 𝑊) as scores, which are uncalibrated and

thus difficult to interpret, Softmax maps the output into intuitive probabilities. That is, Softmax

output can be read as probabilities of how much an input maps to each of the existing classes.

While the function mapping 𝑓(𝑥𝑖 , 𝑊) = 𝑊𝑥𝑖 remains unchanged, the scores can now be

interpreted as the unormalized log probabilities for each class and thus replace the hinge loss

with a cross-entropy loss of form (108) where 𝑓𝑗 is the 𝑗𝑡𝑕 element of the class vector scores 𝑓.

 𝐿𝑖 = −𝑙𝑜𝑔
𝑒𝑓 𝑦 𝑖

 𝑒
𝑓𝑗

𝑗

 = −𝑓 𝑦𝑖 + 𝑙𝑜𝑔⁡(𝑒𝑓𝑗
𝑗) (108)

The softmax function can be expressed as a function that takes an input 𝑧, 𝑧 ∈ 𝑅 and squeezes

the values between 0 and 1 with a sum equal to 1 (109).

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

63

 𝑓𝑗 (𝑧) =
𝑒

𝑧𝑗

 𝑒𝑧𝑘𝑘
 (109)

To understand how Softmax function works it is important to note that the cross-entropy between

a true probability distribution 𝑝 and the estimated distribution 𝑞 is defined as (110) and thus the

softmax classifier is minimizing the corss-entropy between the estimated class probabilities and

the real distribution. That means that the interpretation of the distribution is focused on the

correct class estimation and thus, in an optimal case, the probability vector 𝑝 which contains the

probabilities of an example to belong to all the available classes, will contain 1 only to the

correct class and zero to the rest. Furthermore as the cross-entropy can be written in terms of

entropy and the Kullback-Leibler (KL), divergence as 𝐻 𝑝, 𝑞 = 𝐻 𝑝 + 𝐷(𝑝||𝑞) and the

entropy of the data 𝑝 is zero this is equivalent to minimizing KL divergence between the two

distributions. In other words the cross-entropy objective is to accumulate all the mass of the

probability distributions to the correct class.

 𝐻 𝑝, 𝑞 = − 𝑝 𝑥 log 𝑞 𝑥 𝑘 (110)

In Fig. 32 a comparison between SVM and Softmax output is presented. A hypothetical weight

vector 𝑊 is used with an input vector 𝑥𝑖 and bias 𝑏. On one side, SVM treats the output as

unormalized scores of 𝑥𝑖 vector with, highest score focused on the correct class. On the other

hand Softmax treats the output scores as unormalized probabilities of 𝑥𝑖 vector belonging to all

the available classes and encourages the normalized log probability of the correct class to have

the maximum value. In both cases the selected class has the highest value, even though the

numbers are not comparable.

Figure 32 Softmax versus SVM output comparison. [61]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

64

5.6. Parameter sharing

A rather important aspect on which CNN differ from conventional neural network architectures,

like classical MLPs, is the way free parameters are computed. Each neuron is connected with a

receptive field, on which weights and biases need to be computed, yet instead of using different

parameters for each of those receptive fields that are formed in the convolution layer, the

parameters are shared between them. That is, the weights and bias of all the filters, with the same

size, on a convolution layer are having the same weights. That can be expressed as (111) where

𝜎 is the activation function of a neuron, 𝑏 the shared bias and 𝑤𝑙,𝑚 the array of 𝑤 × 𝑕 shared

weights. The 𝑎𝑗+𝑙,𝑘+𝑚 detonates the activation function output of the previous layer neuron at

position 𝑗 + 𝑙, 𝑘 + 𝑚.

 𝜎(𝑏 + 𝑤𝑙,𝑚𝑎𝑗+𝑙,𝑘+𝑚)𝑕
𝑚=0

𝑤
𝑙=0 (111)

Equation (103) is also known as mathematical convolution and is the one that gives the name to

this type of networks. That is why in literature, sometimes the equation is also written as (112) in

which 𝑎𝑙 ,𝑚 is the set of output activations of feature map 𝑚 in layer 𝑙, 𝑎𝑙−1 the set of input from

the previous layer and the ∙ the convolution operation between the input and the shared weights

of the feature map.

 𝑎𝑙 ,𝑚 = 𝜎(𝑏 + 𝑤 ∙ 𝑎𝑙−1) (112)

The parameter sharing introduces a concept where, the same filter is computed and reused across

all the input volume. In that way the same feature detector is used across all the image and thus

that introduces a translation invariance between the input volume and the convolution layer. In

that way all neurons in a convolution layer, are looking for the same feature and thus, if the same

feature is present in whichever part of the layer, the neurons will get activated. For that reason it

is common in literature to call the map between input volume and convolution layer, as “feature

map”. To increase the feature detection capabilities of a convolutional layer, more feature maps

can be added and thus, forming multiple layers of feature detectors. A visualization of feature

maps detected by a convolutional layer with 20 feature maps trained with MNIST dataset can be

seen in Fig. 33.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

65

Figure 33 20 feature maps formed by training a convolutional layer with MNIST dataset [29]

It is clear that the feature maps have a spatial structure with lighter and darker regions, sensitive

to corners. This resembles a lot the traditional approaches of feature extraction methodologies,

like Gabor filters etc; yet the extraction of those features are relatively different as they are

learned based on the training dataset and they do not follow a specific mathematical procedure.

It is important to note here that the parameter sharing approach is extended across the whole

depth of the input volume. Another important benefit of the parameter sharing approach in the

feature map formation is that there is a considerably large decrease in number of free parameters

required to compute in each layer, compared to traditional fully connected layers. This decrease

makes the entire training process considerably faster and thus allows the network to be trained

with relatively high number of inputs, like raw image pixels.

5.7. Fully Convolutional Neural Networks

The large number of free parameters that are introduced by the addition of fully connected layers

in the end of classic CNN architecture affects drastically the computation complexity in both the

training and testing process of any CNN architecture. Furthermore other layers such us, pooling,

introduce complexity to the overall design of any CNN architecture. For these reasons in recent

years, a more simplified approach has been adopted [62], [63] with name Fully Convolutional

Neural Networks (FCNNs). At its core FCNN architecture is composed only by convolutional

layers. The main different with the classic CNN architecture is that it learns filters everywhere;

even in the decision-making layers at the end of the network are filters. FCNN is learning

representation and making decisions based on local spatial input while appending a fully

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

66

connected layer at the end of it enables the network to learn using the global information and the

spatial arrangement of the input is lost.

5.8. Case Studies

There are many CNN architectures that have been proposed the last years that are dealing

specifically with image and audio data. In this section a presentation of the most interesting

architectures is presented along with their unique features that each one has to offer and how it

changed the way CNN architectures are formed.

5.8.1. LeNet

LeNet-5 [34] architecture, which consists of 5 layers, was the first CNN architecture presented in

literature that featured multiple convolution layers, combined with pooling and fully connected

layers as the final layers of the architecture.

Figure 34 LeNet-5 architecture overview [34]

In Fig. 34 an outline of the architecture is presented. More specifically the architecture features

an input layer for grayscale raw image data of 32x32 dimensions which means that the input

feature vector size is 1024. The input layer is followed by a convolution layer with 6 feature

maps of 28x28 filters followed by a max-pooling layer of 14x14 pooling filters. The second

convolution layer has as an input volume the filters extracted from the previous pooling layer

and extracts 16 feature maps of 10x10 filters. On this a second sub-sampling layer is added with

filter size 5x5 followed by 2 fully connected layer and an output layer of 10 neurons, one for

each possible class of the dataset. The architecture was trained upon MNIST dataset and it was

successfully used in banking industry. It is worth mentioning that, at that time the usage of

sigmoid activation functions was used as rectified linear units were not available before [33], yet

as the task was relatively simple compared to newer datasets, it did not affect the classification

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

67

performance. This architecture marks the initiation point where the newer approaches, like the

one presented in section 4 with name “AlexNet” was based on.

5.8.2. AlexNet

This architecture has been presented in detail in previous sections, yet it is worth mentioning

here that even if it was based on LeNet-5 initial architecture, it improved the initial model at

many points. The introduction of rectified linear units (ReLU) as activation functions for the

neurons of the network along with the introduction of local response normalization layers

reduced drastically the overfitting issues of the initial model allowing the entire architecture to

go deeper and thus improve the predictive power of the entire model. Furthermore the

experiments done by the authors helped to understand the importance of smaller filter sizes for

the feature maps. Finally, in this architecture the introduction of dropout layer in the last fully

connected layers to reduce overfitting was adopted.

5.8.3. VGGNet

An architecture with codename “VGGNet” [64] was proposed in 2014 aiming to explore how

deep a CNN architecture can grow. The architecture was based on simplicity, extracting

relatively small filters of size 3x3. The authors proposed two variations of the architecture, one

featuring 16 layer deep and another featuring 19 (Fig. 35). In both cases authors found

challenging the training process, specifically regarding convergence on the deeper networks, so

in order to make training easier they initially trained smaller versions of the network. The

network was trained in ILSVRC-2012-val dataset achieving a top-5 error of 7.5% and on

ILSVRC-2012-test with top-5 error of 7.4%.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

68

Figure 35 VGGNet-19 architecture [64]

One of the problems of VGGNet architecture is the vast number of free parameters that have to

be trained, as in the 16 layer architecture, the network contains 138million parameters which

made the training process a relatively computational and resource demanding operation, prone to

overfitting.

The networks that were trained by the authors, can be seen in (Fig. 36). Each time a smaller

network was converging, the authors introduced a larger one, utilizing the trained ones as

initializations. This process is also called “pre-training”. While this process is logically correct, it

is also relatively time consuming task as it requires an entire network to be trained, before it can

serve as an initialization for a deeper network. Nowadays, pre-training, in most cases, is no

longer used and instead, other methodologies are utilized, such as [65] which introduced the

concept of Parametric Rectified Linear Unit (PReLU) which is a generalization of classic ReLU

improving the model fitting with nearly zero extra computational cost and little overfitting risk.

This work also introduced a robust initialization method, which is based on the investigation of

variance of the responses in each rectified layer that particularly considers the rectified

nonlinearities enabling them to train extensively deeper rectified models.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

69

Figure 36 Variations of VGGNet architecture from smaller (A) to larger (E) [64]

5.8.4. ZFNet

This architecture known as “ZFNet” [66] was based on the initial “AlexNet” architecture,

keeping the same number of convolution and pooling layers while tweaking the hyperparameters

of them and more specifically expanding the size of the middle convolution layers (Fig. 37). That

made the network able to achieve a top-5 error rate of 14.8% in the ILSVRC 2013 competition

marking it as the winner. It is worth noting that although ZFNet follows a really similar

architecture with its predecessor of it, AlexNet, it was trained with only 1.3 million images while

AlexNet with 15 million. The first tweak of the original architecture was the alternation of the

first convolution layer filter sizes which changed from 11x11 pixel to 7x7. The reasoning behind

this decision was that, smaller filter sizes, especially in the initial convolution layer, allow the

network to retain a lot of original pixel information from the input volume. The original 11x11

proved to opt-out a lot of relevant information and thus that is one of the reasons that ZFNet was

able to be trained with much smaller dataset. Following this principle, the rest of the layers are

following an increased filter size, while the architecture moves deeper, providing more abstract

features to the final layers. While the winning of competition was a major achievement, the main

goal of the work was to understand the way that convolution neural networks work and more

specifically provide a way to visualize the feature maps of the convolution layers.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

70

Figure 37 ZFNet architecture break down [67]

In particular ZFNet showed that the power of CNN architectures come from the existence of

large datasets combined with large computational resources, usually, GPUs. Yet by that time,

there was no clear understanding of how these networks work. Their contribution to the field was

to provide a way to visualize the weights / feature maps extracted by convolution layers of the

network and thus increase the understanding of what features actually the layer learns. The

technique used to create these feature map visualizations is called “DeConvNet”, as the goal of

the technique is to act the opposite way than a convolution layer and thus, visualize the feature

maps in pixels.

The idea of DeConvNet is to attach a deconvolution layer right after every convolution layer of a

trained network. Then an image is fed into the network by performing a forward pass, just like in

any other CNN. To examine the features that a feature map has learned in the 𝒏𝒕𝒉 layer, the

activations of that map are held while, the rest of feature maps are set to zero. Then the feature

map is passed through the deconvolution layer which has the same features as the original CNN.

The input vector then passes through a series of unpooling, rectify and filter operations, one for

each preceding layer until the input space match the input volume. The result of the operation for

the first two layers on ZFNet model are illustrated in (Fig. 38). More particularly it can be seen

that the initial convolution layer learns more specific features about the images, like colors that

reassemble close the original input volume, while moving to deeper layers the network learn

more abstract features like corners.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

71

Figure 38 Deconvolution operation of the first and second layer of ZFNet model using as input the images in the right [67]

ZFNet and more specifically the deconvolution operation, gave a tool an important tool to CNN

researchers for effective understanding and debugging a CNN architectures, by providing a

visualization technique of the artifacts that a model learns.

5.8.5. GoogLeNet

In ILSVRC-2014 competition a remarkably different approach was introduced to the field of

CNN architectures with name “GoogLeNet” [52] which is also known as the “Inception” model.

This model features 22 layers (Fig. 39) and it was the winner of the competition with top-5 error

rate of 6.7%. While VGGNet was proposed in the same competition and followed the traditional

approach of stacking convolution and pooling layers with target of increase the depth and thus

the performance of network, Inception module followed a different approach. The authors

emphasized on the issues that traditional stacking approaches suffer, i.e., they require an

increased amount of computational resources, both in memory and power usage along with the

fact of increasing chances of model overfitting while number of free parameters increase.

Figure 39 GoogLeNet architecture visualization [52]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

72

To deal with these problems, the Inception module was introduced. As it can be observed in Fig.

39, the first change on the traditional CNN architecture, is that there are parts of the network that

are activated in parallel. A closer view of this is illustrated in Fig. 40. In this approach, each

Inception module has the chance to perform both convolution and pooling operations of multiple

filter sizes, instead of having to decide just one operation per layer. Later on, each of the mini-

layers output is concatenated, creating a new input volume for the next Inception module layer.

Figure 40 Left: general idea of the Inception module

Right: fully featured Inception module featuring parallel processing architecture [52]

While the original approach give many advantages over the traditional one, suffers from the

problem that the output volume of a standard Inception module layer is huge. To deal with this

problem, an introduction of 1x1 convolution layers was added to the original idea. These

convolution layers were added right before the 3x3 and 5x5 convolution layers and right after the

3x3 max-pooling layer, serving as a dimensionality reduction mechanism. The dimensionality

reduction provided by 1x1 convolution layer was similar to any pooling operation, but instead of

trying to deal with the width and height of the input volume, this is dealing with the depth

reduction of it. The main goal of this idea was to allow each Inception module layer to extract

both high grained details about the input volume, by using small filter sizes and on the other

hand, combine them, with more abstract details extracted by feature maps with larger filter size

as 5x5.

GoogLeNet contains in total 9 Inception module layers, with all of them containing over 100

layers. By not using any fully connected layer in the end of the CNN architecture, GoogLeNet

managed to reduce the number of free parameters drastically, having 12 times lower number than

the original AlexNet architecture. To fight overfitting, the authors introduced max-pooling

operations as a spatial size reduction mechanism along with ReLU layers after each convolution

layer that helped improve the nonlinearity of the network. The replacement for the last fully

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

73

connected layer was done by an average pooling layer, which reduced the input volume from

7x7x1024 to 1x1x1024. Concluding, GoogLeNet and in particular the Inception module, was the

first architecture proposal showing that CNN architectures do not have to be a collection of

sequential stacked up layers.

5.8.6. ResNet

In ILSVRC-2015 another, radical CNN architecture was introduced with codename “ResNet”

[53]. This approach was the winner of the competition with a remarkably low top-5 error rate of

3.6%, considerably lower than the pre-accentors and for the first time, outperforming the human

top-5 error rate which is between 5 and 10%. The idea was based on the introduction of residual

blocks, stacked up together in a top-down approach forming a deep convolution network of 152

layers (Fig. 41).

Figure 41 A residual network architecture of 34 layers [53]

Residual block relies on the idea of having an input volume 𝒙 feed forwarded through a series of

convolution – ReLU – convolution layers. Let this pass-through function be 𝐻 𝑥 = 𝐹 𝑥 + 𝑥.

In a traditional CNN approach 𝐻(𝑥) will be equal to 𝐹(𝑥) while in residual block, the 𝐹(𝑥)

output is combined with the original input vector 𝑥. That change resembles a slight change to the

original input volume which comes into contrast to the traditional approach as there the output

volume 𝐻 𝑥 resembles a completely new vector. Another reason for the effectiveness of the

residual block approach is that in backpropagation backward pass, the gradient flows easier

through the deep graph, compared to traditional approach, as the operations performed are

mainly additions (Fig. 42).

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

74

Figure 42 Stripped down, residual block operation [53]

This approach showed that CNN architectures can become very deep and yet trained effectively,

without suffering from overfitting. Interestingly ResNet input volume was compressed by a

factor of 4 from the second residual layer, and thus downscaled from 224x224 original input

volume size to 56x56. The network was able to be trained in two to three weeks utilizing 8 GPU

enabled machines. Finally the authors noted that naïve increase of the layers can lead to lower

performance, as their original approach was to train a network of 1202 layers, yet the results

were poor, compared to the proposed ResNet configuration, mainly because of overfitting due to

increased number of free parameters.

5.8.7. Region Based CNN Architectures

One of the domains that computer vision is dealing with since the begging of the sector, is the

problem of object detection. That is, initially detect if an object is present in an input volume and

then to locate it. So far the previous CNN architectures were dealing with the first part, or in

other words the detection of presence of an object in an input volume. Region Based CNNs and

more specifically R-CNN [68] in 2013 and later on Fast R-CNN [69] and Faster R-CNNs [70] in

2015, were introduced to tackle both of the problems of object detection, with the last one

achieving real-time object detection rates.

The original approach of R-CNN can be split into two different components; initially to propose

a region for the object in the image and then the classification step. For the region proposal step

the authors used Selective Search [71] while they note that any class agnostic region proposal

method can fit into the model. Selective Search approach produces 2000 different regions from

an input image that are most likely to contain and object. After the region extractions the sliced

images are resized in order to be fed into a pre-trained CNN network, which in the author case

was the AlexNet model. That network was used as a feature extractor, extracting a feature vector

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

75

for each of the proposed regions. These feature vectors were then used to train a set of linear

SVM classifiers who performed the final classification process. Finally the vectors were also fed

into a bounding box regressor to obtain the most accurate positions for the bounding boxes of the

objects into the final image. To combine similar overlapping bounding boxes a non-maxima

suppression were used. These steps of the process are illustrated in (Fig. 43).

Figure 43 Steps involved into R-CNN architecture [68]

Fast R-CNN was an alternation of the original design aiming to solve three main issues. On the

initial R-CNN design training was a computational expensive and slow process that involved

multiple stages, mainly CNN training to SVMs and then to bounding box regressors. Fast R-

CNN solved that issue by sharing the computation of convolution layers between different

proposals and swapping the order of generating region proposals and running the CNN. In this

approach the first step was to feed the image into the CNN model, then extract region proposal

features from the last convolution layer and finally fully connected layers, classification and

bounded box regressor layers were attached as final layers of the network (Fig 44). This

significantly reduced the complexity of the previous architecture and increased the speed towards

real-time object detection.

Figure 44 Fast R-CNN architecture [68]

The last work of the same authors, with name Faster R-CNNs was introduced the same year,

2015, with a target to provide a general purpose real-time object detector. The changes were not

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

76

radical yet significantly reduced the computation complexity of the pre-accentors proposals.

Mainly the change was the addition of a region proposal network (RPN) after the last

convolution layer of the network. This insertion gave the ability to the model to just look at the

last convolution feature map and produce region proposals from that; the same pipeline of Fast

R-CNN is used as the final steps of the architecture (Fig. 45). Faster R-CNNs were a ground

breaking approach into the field of object detection and have now become the standard.

Figure 45 Faster R-CNN architecture [68]

5.8.8. Generative Adversarial Networks

Generative Adversarial Networks (GAN) [72] are a special type of networks that are dealing

with prediction error maximization of trained CNNs, i.e. to “fool” a trained CNN. The goal of

these networks is, by using one image classified as A by a CNN, to alter it as less as possible, yet

enough to affect the prediction of a model (Fig. 46). There creation was inspired by the work of

[73] which was dealing with the fact that convolution neural networks, even if they are

performing relatively well in the field of computer vision, they actually “see” differently than the

biological vision. They tend to rely on simple, spatial, not heavily correlated features which can

easily lead to miss-classifications that, by the human brain have no logical explanation.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

77

Figure 46 Left: images that are correctly classified. Right: Slightly altered examples that lead to misclassification

Middle: visual representation of the distortion between the left and right examples [72]

GANs are working by combining two models, a generative model and a discriminative model.

The first has the role to generate slight changes to the input image in order to trick a CNN and

misclassify the input volume. On the other hand, the second, tries to detect the changes and

classify if the input volume is natural, authentic image, or it is artificially generated. The goal of

this procedure is to train the discriminative model by using the images generated by the

generative model; as the training process continues, both models are trained until they reach the

point discriminative model is unable to detect any change on the generated image compared to

the original one. Ultimate goal of the procedure is that the final model, is improved in such a

way, that is aware of the internal structural representation of the data and thus can be used as a

reliable feature extractor in a CNN architecture. As a sub-product of this procedure, the models

are able to create artificial images that are hardly recognized as unnatural [74].

5.8.9. Generating Image Descriptions

An interesting combination of CNN architecture combined with a bidirectional RNN was

presented in 2014 in [75]. The goal of this work was to train a model that is able to perform

object detection along with natural language descriptions for each detect object into an input

volume (Fig. 47).

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

78

Figure 47 Detected objects into a natural image, along with natural language descriptions for each region [75]

The framework can be broken down into two parts; the “alignment model” and the “generation

model”. The alignment model has as goal to align the visual data of the image and the textual

data, by accepting as an input an image and a descriptive natural language sentence of it. This

process is handled by [76] which is trained on compatible and incompatible image and sentence

pairs. The first step of the process is to process the images, without the sentences, using a pre-

trained R-CNN, which in the case of [75] was trained with ImageNet data. The results of the

processing, where scored and the top 19 regions and the image were represented into a 500

dimensional space feature vectors. To extract information about the natural language part of the

same images, a bidirectional recurrent neural network is used which serves as an illustration of

the information about the context of the words in the given sentences. Lastly computing the inner

product of both extracted features the framework computes the similarity between them.

The generation model, receives as an input the dataset created by the alignment model process

and outputs descriptions for the given images. A CNN is used in this process with the final,

softmax layer replaced with the input neurons of an RNN which serves as a probability

distribution extraction from the different words in a sentence.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

79

5.8.10. Spatial Transformer Networks

An interesting type of network created in 2015 with the name “Spatial Transformation

Networks” [77] or SPNs has as a goal to create images that are easier to be classified in later

phases and thus serves as a pre-processing stage of the input volume of a CNN. The two goals of

that pre-processing are the pose normalization and spatial attention, with the second meaning to

bring attention of the image towards the correct object which is blended into a crowded

environment.

Traditionally in CNNs the layer that was used to increase spatial invariance of the model, was

the max-pooling layer as it had the ability to maximize the importance of a specific response of

an input volume, by removing the weakest responses and thus the increasing the importance of

the relative position towards other feature locations. The proposed methodology, with name

“spatial transformer layer”, is dynamic in such a way, that it is producing different behaviors,

depending on the input volume.

Figure 48 Spatial transformer layer input signal flow broken down into three components [77]

The spatial transformer layer (SPL) can be broken down into three components (Fig. 48). The

first component is a localization network with an input volume, the original input and as output,

the spatial transformation that has to be applied. The parameters for an affine transformation, 𝜽,

can be a six-dimensional vector. The second component deals with the creation of a sampling

grid that is a result of wrapping the regular grid with the affine transformation created by the

previous localization layer. Lastly, the final component is called “sampler” and its whole purpose

is to perform a wrapping of the input feature map. The SPL can be added as any other layer in a

traditional CNN architecture and helps the network learn how to transform feature maps (Fig.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

80

49) in a way that minimizes the cost function during the training process. The importance of this

approach is that, instead of following the approach of altering completely a CNN architecture, by

extending the depth of the layers to increase the accuracy, it chooses a different and simpler way

of applying simple existing knowledge, and in this case affine transformation, to the data itself

and more importantly as just a drop-in layer that can be reused to any CNN architecture.

Figure 49 Spatial transformer layer process, applied to MNIST dataset [77]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

81

6. Other Types of Neural Networks

Beyond the traditional feed-forward neural network architectures that are based on supervised

learning in order to perform a classification challenge, there are other kind of networks which is

briefly discussed in the following sections. The detailed analysis of each of those individual

network architectures is beyond the scope of this work, yet a general overview of the most

important methodologies is inspiring.

6.1. Autoencoders

A type of network that is trained to copy its input volume to its output is called autoencoder. The

architecture it has at least one hidden layer whose parameters are trained in such a way that is

representing the input volume. The architecture can be broken down into two individual

components; the encoder 𝑓 𝑥 = 𝑕 and a decoder 𝑔 𝑕 = 𝑥. The 𝑓 𝑥 function tries to encode

an input volume 𝑥 into a symbolic, representation of 𝑕 mapped onto the weights and biases of

the hidden layers, while the decoder 𝑔(𝑕) receives as a parameter the encoded representation 𝑕

and translates it back into 𝑥. The goal of this procedure is to train the autoencoder in such a way,

that the mapping will not be direct and thus allow a certain number of error to be implied into the

original trained vector, let 𝑥′ and the decoding function be able to recall the original 𝑥 (105). The

generic autoencoder model is illustrated in (Fig. 50).

Figure 50 A generic autoencoder model

Because of this need, autoencoders are restricted in ways that will not allow them to fully copy

the input volume on which they are trained and thus, they are forced to learn the most important

aspects of their input which makes them a great tool to be used as a feature extractor.

Autoencoders are not a new idea as they have been proposed originally in 1987 [78] and since

then they have been improved and generalized [79][80]. They can be trained with the same

procedures like any other feed-forward network, typical mini-batch gradient descent and

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

82

backpropagation, yet there have been proposed other approaches like recirculation [81] in which

the activations of the network is compared with the original input. This process is more

biologically plausible than backpropagation approach, yet technically much more computation

intense process and thus, is not commonly seen in machine learning applications. Auto encoders

can be broken down into two main categories; the undercomplete and regularized autoencoders.

 𝑔(𝑓 𝑥′) = 𝑥 (105)

6.1.1. Undercomplete Autoencoders

The first autoencoder that was proposed was called undercomplete autoencoder. They operate by

using an encoder of input vector 𝑥 and mapping it into a smaller dimensional space 𝑕 finally

recalling it with a decoder of same size as the encoder input size. Generally an autoencoder

whose inner hidden layers neurons are smaller, dimensionally, than the input vector is called

undercomplete. The learning process is happening by minimizing a loss function, such as root

mean square loss, which is penalizing the output depending on how close is to the input vector.

An undercomplete autoencoder with a linear decoder and as a loss function it uses the mean

squared error, and it learns to span the same dimensional space as a typical PCA because PCA is

restricted to a linear map. That is because the model is trained to perform a copy task of the input

to output volume and as a byproduct the network has learned the principles of the subspace. On

the other hand an autoencoder with a non-linear encoder and decoder, can learn much more than

the classical PCA approach. In order to do that the autoencoder must be configured in advanced

with a smaller capacity than the one needed to fully represent the input volume, in order to limit

the model and force it to store the most important information of the input vector. Same as any

neural network, theoretically a nonlinear autoencoder with at least one hidden layer and enough

neurons is able to represent any type of input, yet in practice this is computationally exhausting

and thus more advanced architectures have been proposed, such as deep autoencoders or

autoencoders that are not dependant on their inner storage / number of neurons to be lower than

the input dimensional space.

6.1.2. Regularized Autoencoders

In order to deal with the problem of overcompletion that undercomplete autoencoders suffer

when their inner hidden layer is big enough to allow it to learn the input dimensional space and

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

83

thus let the model to not extract any useful features from the input space, regularized

autoencoders have been proposed. In practice regularized autoencoders have as basic principle,

not to limit the capacity of the model, but regularize the loss function to penalize overcomplete

behavior.

6.1.2.1. Sparse Autoencoders

Sparse autoencoders are a family of regularized autoencoders whose regularization function

relies on a penalizing function 𝐷(𝑕) on the hidden layers 𝑕 in addition to the typical

reconstruction error and thus, the loss function can be adjusted into (113). Their usage is

typically found as a feature extractor for other classification applications.

 𝐿 𝑥, 𝑔 𝑓 𝑥 + 𝐷(𝑕) (113)

There is no clear probabilistic interpretation of this regularization expression compared to others,

such as weight decay found in other regularization functions. Weight decay, is dependent on the

previous state of the weights and thus can be thought as a regularized maximum likelihood

corresponding to maximization of a probability 𝑝(𝜃|𝑥), which is equivalently interpreted to

maximum 𝑙𝑜𝑔(𝑝 𝑥 𝜃) + 𝑙𝑜𝑔⁡(𝜃). Therefore the term 𝑙𝑜𝑔 𝑝 𝑥 𝜃 is usually the data log-

likelihood and log-prior over parameters the 𝑙𝑜𝑔 𝑝(𝜃) term which incorporates the preference

over particular values of 𝜃. On the other hand, sparse autoencoder loss function regularization is

utilizing the data themselves and thus by definition not dependant on previous acquired

knowledge.

The entire sparse autoencoder can be seen as approximating maximum likelihood training of a

generative model. Let 𝑕 be the latent and 𝑥 the input parameters of the model with an explicit

joint distribution 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥, 𝑕 = 𝑝𝑚𝑜𝑑𝑒𝑙 𝑕 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥 𝑕 , where 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑕) is the prior

distribution of the model over latent parameters, which represents the model prior-knowledge of

𝑥 input volume. The log-likelihood can now be expressed as (114) which is similar to sparse

coding generative models, yet it uses the 𝑕 as the output of the parametric encoder (115) rather

than a result of an optimization that expresses the most likely 𝑕.

 𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥 = 𝑙𝑜𝑔⁡ 𝑝𝑚𝑜𝑑𝑒𝑙 𝑕, 𝑥 𝑕 (114)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

84

 𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙 𝑕, 𝑥 = 𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙 𝑕 + 𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥|𝑕 (115)

The term 𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙 𝑕 , of the equation (115) can be sparsity inducing such as the Laplacian

prior 𝑝𝑚𝑜𝑑𝑒𝑙 𝑕𝑖 =
𝜆

2
𝑒−𝜆|𝑕𝑖|, which corresponds to an absolute value sparsity penalty which

yields (116) and (117) where 𝑐 a constant value dependant only on the value of the

hyperparameter 𝜆 .

 𝐷 𝑕 = 𝜆 𝑕𝑖𝑖 (116)

 −𝑙𝑜𝑔 𝑝𝑚𝑜𝑑𝑒𝑙 𝑕 = (𝜆|𝑕𝑖| − 𝑙𝑜𝑔(
𝜆

2
)) = 𝐷 𝑕 + 𝑐𝑖 (117)

From the above the sparsity penalty introduction is just a consequence of the model distribution

over its latent parameters and thus is not a regularization term. As a result training these type of

autoencoders is a way of training a generative model and thus the features learned by them have

the useful feature of latent parameters that describe the input at great extend. In early work of

sparse autoencoders [82],[83], various sparsity forms have been explored, proposing connection

between the sparsity penalty and the 𝑙𝑜𝑔(𝑍) term arising from maximum likelihood applied on

undirected probability model 𝑝 𝑥 =
1

𝑍
𝑝′ (𝑥) which is based on the idea of minimizing the

𝑙𝑜𝑔(𝑍) regularize a probabilistic model from having high probabilities everywhere. This

connectivity leads to the fact that applying sparsity on an autoencoder prevents it from low

reconstruction error everywhere. Another way to achieve actual zeros in 𝑕 space, for sparse and

also denoising autoencoders has been introduced in [84] which exploit the properties of rectified

linear units (ReLUs) in the 𝑕 layers of the model. That is because ReLUs act as a prior that

enforces an absolute value penalty, zero and thus it provides an indirect control to the average

number of zeros into the representation of the encoded data.

6.1.2.2. Denoising Autoencoders

Denoising autoencoders (DAE) are similar to sparse autoencoders with difference on penalizing

function, in which instead the computing the penalty 𝐷, they rely on the computation of the

reconstruction error term and the addition of it in the cost function. Based on that the cost

function can be expressed as (118), where 𝑥′ is a noisy representation of the original 𝑥 input

vector and thus the goal of a DAE model to correct this noise and not just to copy the input

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

85

volume. It has been shown in [85] and [86], that this process forces the encoder 𝑓 and the

decoder 𝑔 to learn the structural representation of the input volume.

 𝐿(𝑥, 𝑔 𝑓 𝑥′) (118)

DAE process works by introducing a corruption process to the input volume 𝑥 such as 𝐶(𝑥′|𝑥)

which can be seen as a conditional distribution over the corrupted sampled features of the

vector 𝑥. The DAE model can learn the reconstruction distribution 𝑝𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝑥|𝑥′) by been

trained with pairs (𝑥, 𝑥′) by following a three-step procedure. Initially a sample is extracted from

the training 𝑥 vector. Secondly a new sample, this time corrupted 𝑥′, is extracted from

𝐶 𝑥′ 𝑥 = 𝑥). The two previous steps are creating a training pair (𝑥, 𝑥′) which is used by the

DAE in order to estimate the reconstruction probability distribution (119) where 𝑕 is the output

of the encoder 𝑓(𝑥′) and 𝑝𝑔(𝑕) the decoder output of the model.

 𝑝
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

 𝑥 𝑥′ = 𝑝
𝑔
 𝑥 𝑕 (119)

As a learning algorithm for the above procedure is relatively common to follow a gradient

descent based algorithm, such as mini-batch gradient descent on the negative

log-likelihood −𝑙𝑜𝑔(𝑝𝑔 𝑥 𝑕).

An alternative to maximum likelihood is the “score matching” proposed in [87] which provides

an estimator of probability distributions which is a product of encouraging a model to have the

same score as the data distribution at every training point 𝑥 and thus the score is a particular

gradient field 𝛻𝑥 𝑙𝑜𝑔(𝑝 𝑥). Learning the gradient field of 𝑙𝑜𝑔⁡(𝑝𝑑𝑎𝑡𝑎) is equivalent of learning

the structural representation of the 𝑝𝑑𝑎𝑡𝑎 .

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

86

Figure 51 Denoising Autoencoder training to map a (𝒙, 𝒙′) pair [88]

An important property of DAE models lying on the fact that their training criterion with the

conditional Gaussian 𝑝(𝑥|𝑕), makes the model to learn a vector field 𝑔 𝑓 𝑥 − 𝑥 capable to

estimate the score of the data distribution. An illustration of a DAE learning procedure can be

seen visually in (Fig. 51) in which, a DAE is trained to denoise a 𝑥′ vector back to its original

form 𝑥. The red crosses which are lying on top of the low-dimensional manifold black line are

representing the training examples 𝑥. Corruption process of 𝑥 into 𝑥′ is illustrated with a gray

circle and the green arrows are representing the dynamics appearing in the model while it is

trained to learn the vector field 𝑔 𝑓 𝑥 − 𝑥.

A specific type of autoencoder which has sigmoid neurons in its hidden units and linear neurons

to the reconstruction layer and trained with Gaussian noise and mean square error as

reconstruction cost function is equivalent to training a specific kind of undirected probabilistic

model known as RBF with Gaussian visible units [89] which is a model that provides explicit

probabilities of type 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥; 𝜃). By trying an RBF model using a procedure called “denoising

score matching” introduced by [90], it has been shown that the resulting learning algorithm is

equivalent to denoising training in the corresponding autoencoder. When the noise level is

minimized to be close to zero and the training examples are approaching infinity the consistency

of the model is restored, in comparison to a fixed noise level, in which regularized score

matching is not a consistent estimator and thus recovers a blurry version of the desired

distribution. It has also been shown that other connections between autoencoders and RBMs

exists, such as if the score matching is applied into an RBM model, then the cost function yields

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

87

an identical reconstruction error combined with a regularized term constructive penalty of a

contractive autoencoder (CAE) [91]. Yet another similarity shown in [92], is that a constructive

divergence training of RBMs is obtained by an autoencoder gradient.

An interesting property of a continuous-valued training vector 𝑥 has found by [85] in which has

been shown that the denoising Gaussian corruption and reconstruction distribution are

constructing a score estimator for any generic encoder and decoder parameterization. More

specifically a generic encoder and decoder model can be used to estimate score when it is trained

with squared error criterion (120) and input corruption (121) where 𝜎2 is the noise variance.

 𝑔 𝑓 𝑥′ − 𝑥
2
 (120)

 𝐶 𝑥′ = 𝑥′ 𝑥 = 𝑁(𝑥′ ; 𝜇 = 𝑥; Σ = 𝜎2𝐼 (121)

In Fig. 52 an illustration of the above training procedure outcome is shown. The 1-D curved

manifold surrounding the vector space learned by a DAE is depicted as the data concentrates in a

2-D space. The arrows are proportional to the reconstruction 𝑔 𝑓 𝑥 minus the input vector of

the model, and are pointing towards the highest estimated probability distribution. The smaller

the arrows, the closer are to a local or global maxima or minima of the estimated density

function. On the other hand when the arrows length is long, it means that the probability can be

increased by moving in the direction of them as the length is expressing the norm of the

reconstruction error.

Figure 52 Vector field learned by DAE on a 2-D space [88]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

88

Unfortunately there is no guarantee that the 𝑔 𝑓 𝑥 − 𝑥 is corresponding to the gradient of any

function or either the score and thus early results [89], where dependant to a specific

parameterization of the model whom 𝑔 𝑓 𝑥 − 𝑥 was obtained by derivative of a different

function. Only lately and more specifically in 2015 [93], a generalized version of [89] results

was found by identifying a family of swallow autoencoders whom reconstruction minus the input

vector corresponds to a score for all the members of that family. It is worth noting that DAE

family autoencoders can also be used beyond the field of probability distribution representation

and more specifically can be used as a generative model in which samples can be drawn by the

output distribution.

6.1.2.3. Penalized Derivatives Regularization

Autoencoders can also be regularized by following a strategy that utilizes a penalty 𝐷 similar to

sparse autoencoders, yet in different form (122). This procedure forces the model to learn a

function resilient to slight changes of the input vector 𝑥 and thus as the penalty is applied only to

the training vectors, it leads to a learning of features that capture the probability distribution of

the training examples. An autoencoder model that is based on this regularization approach is

called contractive autoencoder (CAE) and has theoretical connections to the previously described

DAEs, probabilistic modeling and manifold learning.

 𝐷 𝑕, 𝑥 = 𝜆 |𝛻𝑥𝑕𝑖 |𝑖 (122)

6.1.2.4. Contractive Autoencoders

Contractive Autoencoders or CAE, are another family of regularized autoencoders that were

introduced by the work of [91] in which an alternative penalizing, derivative based function was

introduced (123) in which 𝑕 = 𝑓(𝑥). This function is the squared Frobenius norm of the

Jacobian matrix [94], which contain the partial derivatives of the encoder 𝑓(𝑥) function.

 𝐷 𝑕 = 𝜆
𝜗𝑓 𝑥

𝜗𝑥

2

 (123)

Then name “contractive” of CAE model arises from the fact that its training procedure forces the

encoders input to be wrapped to a smaller neighborhood of output points as it is trained to resist

fluctuations of its input volume. The work of [85] shown that there is a connection between

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

89

contractive and denoising autoencoders as when a small Gaussian input noise is introduced to the

second, the outcome is a denoising reconstruction error equivalent to the contractive penalty of a

reconstruction function of a CAE that maps the input volume 𝑥 to 𝑟 = 𝑔(𝑓 𝑥). That, even if

the goal of the two encoders is different, with the first trying to make the reconstruction function

resilient to small alternations of the input volume and the second trying to make the feature

extraction function resilient to alternations of the input vectors, the outcome is the same.

The contractive capability of CAE model is limited only to local neighborhood of the input

volume as globally, two different points, 𝑥 and 𝑥′ will be mapped to a different 𝑓(𝑥) and 𝑓(𝑥′)

respectively. To shrink the Jacobian matrix in a sigmoid model, is to make the sigmoid units

saturate either to 0 either to 1. The outcome of this encouragement is that the autoencoder maps

the input volume to extreme values and thus the sigmoid output can be interpreted as binary

code. As a byproduct of the above, the CAE also maps the 𝑕 throughout the space of the inner-

storage hypercube.

In CAE, the balance of two forces that is enforced to any regularized autoencoder is the balance

between the reconstruction error and the contractive penalty 𝐷(𝑕); the balance between those

two forces is achieving an autoencoder whom derivatives
𝜗𝑓 𝑥

𝜗𝑥
 are tiny.

A comparison between CAE and PCA tangent vectors of the manifolds estimated between the

two approaches is illustrated in (Fig. 53) on an image from CIFAR-10 dataset. It is clearly seen

that although PCA is able to compute local accusations of the input volume, CAE is performing

much better. That is because the CAE approach is based on hidden layer(s) whose volume is

large enough to span across larger input space and thus exploit the inner connections of the input

volume.

Figure 53 Visualization of CAE and PCA tangent vectors [88]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

90

An issue of CAE model is that although contractive penalty is easy to compute in case of a

singular hidden layer architecture, it becomes computationally exhausting to deeper models. One

solution that was utilized by the authors of the model is to train each hidden layer individually

and then stack them all together in order to form a deeper autoencoder. Unfortunately the

tradeoff of this approach is that the result is not the same as training the entire encoder at once as

the Jacobian penalty when it is computed across all the layers and a singular one is different; yet

this approach is capable of preserving most of the desirable properties of the standard approach.

Another issue of CAE model has to do with the penalty regularization, where when it is not

regularized the model can fail to obtain any useful feature from the input volume. The

regularization that is proposed by the authors was to multiply the input volume with a small

constant 𝜺 and divide the output of the decoder with the same value. When 𝜺 is close to 0 the

contractive penalty is also approaching 0 without having to learn anything about the input

distribution, while the decoder maintains a perfect reconstruction. To achieve this, encoder and

decoder layer weights have to be bonded. To do so, both layers are normal neural network layers

consisted by affine transformation followed by an element-wise nonlinearity to impose a straight

forward way to set the weight matrix of the decoder to be the transposed matrix of the weights of

the encoder.

6.1.2.5. Hybrid Autoencoder Architectures

A hybrid encoder known as “Predictive Sparse Decomposition” (PSD) was introduced in 2008

by the work of [ref] (Kavukcuoglu et al., 2008) which combines the sparse coding with

parametric autoencoders. The idea is to train a parametric encoder 𝑓 𝑥 and decoder 𝑔 𝑕 to the

output of iterative inference and has successfully used for unsupervised image, video

(Kavukcuoglu et al., 2009, 2010; Jarrett et al., 2009; Farabet et al., 2011) and audio (Henaff et

al., 2011) feature extraction. The training procedure minimizes the equation (124) where 𝛾 and 𝜆

are hyperparameters of the minimization function following the same principles as sparse coding

as the minimization of the function relies on the balancing of two forces, the hidden layer

parameters and the model parameters .

 𝑥 − 𝑔 𝑕 2 + 𝜆 𝑕 + 𝛾 𝑕 − 𝑓 𝑥 2 (124)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

91

In applications that use PSD, interactive optimization methodology is only used during the

training phase and the parametric encoder is used to compute the features when model is

deployed as the evaluation of the encoder is much less computationally intense process in

comparison to the inferring 𝑕 with gradient descent. Another property of PSD model is that it can

be used as a layer in any deep neural network, such as CNNs, and be trained following different

criteria than the original approach presented here, as the encoder function is differentiable.

6.2. Self-Organizing Maps

Self-Organizing Map (SOM) [95] or Kohonen map is a type neural network that is trained using

unsupervised learning and is able to approximate high-dimensional input space by reducing it

into, typically two dimensional space in order to group it together into clusters (Fig. 54). That

is why the SOM networks are used typically when the discovery of data similarities in a dataset

is desirable while the dimensional space does not allow a clear suppuration.

More specifically SOM networks are usually two dimensional rectangular arrangement of

neurons that each hold a connection to each input value. Once the model is fed with the input

vector, the network is starting the training process of self organizing the input according to the

training rule. The weight vector of the neuron that is closest to the current state, is becoming the

winning neuron. During the training process, the input values are getting adjusted in order to

preserve the neighborhood relationships that exist in the input volume. The data similarity is

based on the distance of the weight vectors and the input volume computed usually with a basic

distance function, such as the classic Euclidian distance or Cosine distance.

Figure 54 Example SOM network neuron arrangement [96]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

92

The algorithm of SOM network training process is based on the fact that every vector in the

training dataset is competing between each other in order to become the winning representation.

Initially all the weights of the map are getting a default, random value which usually follows the

Gaussian distribution. After the initialization of the weights, a random vector from the training

dataset is selected and it is compared with the rest of the dataset in order to find which one is best

representing the sample. Each weight vector is neighbor with the rest of the weight vectors that

are close to it and the weight that is chosen is rewarded by increasing its probability, along with

the neighborhood to be more likely to be picked in the random selection process of the next

iteration. This process is repeated multiple times, usually a few thousand times until a threshold

is reached.

The entire process can be summarized into 6 steps:

1. Weight initialization

2. Randomly pick a vector from the training set

3. Compare each node with the selected vector and choose the best performing one

4. Neighborhood of the winning vector is calculated while the neighbors of it are

decreasing over each iteration

5. Allocate higher probability to the winning vector and its neighbors for the next iteration.

The closer neighbors are experiencing higher weight changes

6. Repeat from step 2, until the maximum number of iteration is reached.

An example of the resulting map after the training process is illustrated in (Fig. 55) where the

clusters are shown with light white color and the borders of each cluster via darker color. The

darker the color between the white groups, the higher distance and thus the further distinctable

are the clusters between each other.

Figure 55 Visualization of SOM output [97]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

93

6.3. Recurrent Neural Networks

Recurrent Neural Network (RNN) is a type of neural network that unlike feed-forward networks

their arrangement contains loops between the neurons of each layer. That means that in a single,

feed-forward pass of the input, the neurons of each layer, might have connections that are

coming as input from neurons that are from any layer of the network. More generally, the

connection arrangement of the entire network allows the neurons to contain cycles (Fig. 56).

That gives the network the ability to exhibit dynamic temporal behavior that acts as memory.

This ability gives them significant advantage over traditional feed-forward architectures on

problems that are related to sequential data, such us, speech recognition [98][99], text auto

correction[100] and more.

Figure 56 RNN architecture example with the hidden layer receiving input from the previous and output layer [101]

6.3.1. Long Short-Term Memory Neural Networks

A common recurrent neural network architecture that is used to classify, process and predict

time-series data, is called Long Short-Term Memory (LSTM) [102] and was proposed in 1997

and since then they have been used in numerous applications, including text compression,

unsegmented connected handwritten recognition [103] which was used to win the handwritten

completion of ICDAR [104] in 2009. LSTMs are widely used today in modern applications, such

as speech recognition in Android smartphones and typing speed encashment such as the iPhone

“QuickType” technology.

In LSTM architecture a network is constructed using LSTM units along with normal neurons.

LSTM units are a special kind of neurons that have the ability to remember their output for long

or short period of time. This is possible by not using any activation function within their

recurrent neurons and as an effect, their values are not vanishing when they are trained using the

backpropagation algorithm.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

94

In a typical RNN architecture, multiple simple chain modules are linked together in order to form

a chain. An example of that can be seen in (Fig. 58).

Figure 58 A traditional unrolled recurrent neuron, with activation 𝑨, current state 𝒉𝒕 and input 𝒙𝒕[105]

The same chain-like principle applies also to LSTM architectures, with the difference in the

LSTM units, whom instead of using simple activation function such as sigmoid function, they

are utilizing four layers that the input must pass until it reaches the output of the unit. This can be

seen in (Fig. 59) where, the layers are notated with yellow color and pair-wise operations

between the vectors with pink cycles. The core idea of the LSTM unit is the single straight line

that is passing throughout the unit and carries the previous state, altered slightly with pair-wise

operations of the current input value. This gives the power to the unit to alter the value of the

state on demand, by adjusting the affect of the pair-wise operations which are controlled by a

structure, called “gate”. A gate has the ability to optionally let information pass through and is

made by a sigmoid function and a multiplication operation on the current signal. The sigmoid

function, ranging from 0 to 1 gives the power to the gate to control how much of the information

will pass through and thus, a zero value would detonate, to block the entire signal while a value

of one, would allow the whole signal to pass through. Three of these gates are used in a typical

LSTM unit in order to gain full control over the signal that is passing through the unit and thus

regulate the state.

Figure 59 An LSTM unit utilizing four different layers that input must pass until it reaches the output [105]

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

95

The input signal of an LSTM unit is passing through four steps until it reaches the output of the

unit. Initially the signal is passing through the first gate which decides what information are

going to be left out from the unit state. It looks at the previous state 𝑕𝑡−1 and the current input 𝑥𝑡

and outputs a number between zero and one for each of the numbers of the cell previous state

𝐶𝑡−1 (128)

 𝑓𝑡 = 𝜎(𝑤𝑓 𝑕𝑡−1, 𝑥𝑡 + 𝑏𝑓) (128)

The second step is a combination of two functions that control what information will be stored in

the current state of the unit. The first function (129), decides which values are going to get

updated while the second (130) creates a vector of candidate values 𝐶𝑡
′ that might be added to

the state.

 𝑖𝑡 = 𝜎(𝑤𝑖 𝑕𝑡−1, 𝑥𝑡 + 𝑏𝑖) (129)

 𝐶𝑡
′ = 𝑡𝑎𝑛𝑕(𝑤𝐶 𝑕𝑡−1, 𝑥𝑡 + 𝑏𝐶 (130)

The third stage that the signal is passing is dealing with the update of the previous state 𝐶𝑡−1 into

the new 𝐶𝑡 state of the unit. This is done by multiplying the old state by the previously computed

value of 𝑓𝑡 in order to forget what information should be left out and then adding the value of

𝑖𝑡 ∙ 𝐶𝑡
′ which were computed by the previous step (131).

 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶𝑡
′ (131)

The final output of the unit is passing through a sigmoid layer which decides what information

from the current state will be output (132). The cell state passes through a tanh gate to align the

values in range 1 and -1 in order to be multiplied by the output of the sigmoid operation and thus,

output only the values that are decided to pass through (133). The steps are visually summarized

in (Fig. 60).

 𝑜𝑡 = 𝜎(𝑤𝑜 𝑕𝑡−1, 𝑥𝑡 + 𝑏𝑜) (132)

 𝑕𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛𝑕(𝐶𝑡) (133)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

96

Step 1 Step 2 Step 3 Step 4

Figure 60 Step by step signal passing throughout an LSTM unit [105]

There have been numerous variations of the above typical LSTM architecture proposed

throughout the years. One of the most popular ones is the addition of “peephole connections” to

the original model which was introduced in [106] which adds connections to all the gated layers

with the current state of the unit which can be expressed as (134), (135) and (136).

 𝑓𝑡 = 𝜎(𝑤𝑓 𝐶𝑡−1, 𝑕𝑡−1, 𝑥𝑡 + 𝑏𝑓) (134)

 𝑖𝑡 = 𝜎(𝑤𝑖 𝐶𝑡−1, 𝑕𝑡−1, 𝑥𝑡 + 𝑏𝑖) (135)

 𝑜𝑡 = 𝜎(𝑤𝑜 𝐶𝑡 , 𝑕𝑡−1, 𝑥𝑡 + 𝑏𝑜) (136)

Another variation employs a collaboration between the forget and input gates, step 1 and step 2

respectively. That gives the ability to the LSTM unit to forget only if something new is needed to

be added. The collaboration is done by introducing a new gate between the two steps that

subtracts the output of 𝑓𝑡 with 1 and thus (131) can be rewritten as (137)

 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + (1 − 𝑓𝑡) ∙ 𝐶𝑡
′ (137)

Lastly in 2014 a new type of LSTM unit was introduced [107] that alters entirely the inner

architecture of the unit. It was named as Gated Recurrent Unit (GRU) and combines forget and

input units into a single gate, called “update gate”. Another alternation is the merge of the cell

state 𝐶𝑡 and the hidden state 𝑕𝑡 . The resulting model, illustrated in (Fig. 61), is a lot simpler and

computationally efficient compared to the original LSTM unit.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

97

Figure 61 Visual representation of a GRU [105]

The four steps involved into the signal passing of a GRU unit are expressed in (138), (139),

(140) and (141)

 𝑧𝑡 = 𝜎(𝑤𝑧 𝑕𝑡−1, 𝑥𝑡) (138)

 𝑟𝑡 = 𝜎(𝑤𝑟 𝑕𝑡−1, 𝑥𝑡) (139)

 𝑕𝑡
′ = 𝑡𝑎𝑛𝑕(𝑤 𝑟𝑡 ∙ 𝑕𝑡−1, 𝑥𝑡) (140)

 𝑕𝑡 = 1 − 𝑧𝑡 ∙ 𝑕𝑡−1 + 𝑧𝑡 ∙ 𝑕𝑡
′ (141)

6.3.2. Bidirectional Recurrent Neural Networks

To increase the capacity of information that an RNN is capable to encode, Bidirectional

Recurrent Neural Networks (BRNNs) [108] was introduced. The idea behind this special kind of

RNN architecture is to connect two hidden layers of opposite directions to the same output and

like that create a bidirectional connection with the output layer, which can leverage the

information from the previous and next states of the model (Fig. 62). That is done by connecting

the neurons of the layers in two directions; one for positive time direction which resembles the

forward state and one for the negative time direction to handle the opposite states. This makes

the architecture capable of handling problems that require context of the input, such as,

handwritten recognition where the overall performance of the model can benefit by knowing the

letters before and after the current letter.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

98

Figure 62 On the left, a typical RNN architecture. On the right, a BRNN architecture with two hidden layers [108]

Training of such architecture requires an alternation to the typical backpropagation algorithm

were, initially the forward pass is done firstly on the positive and negative direction layers and

secondly to the output layer. The modification for the backward pass requires initially passing

from output layer, then the forward states and lastly the backward states. That is done because

the weights of the input and output layers of network cannot be updated at once.

There have been numerous successful applications that leverage the power of BRNN models in

fields such as, text translation[109], on-line handwritten text recognition [110], speech

recognition[111],[112] combined with LSTM network and in bioinformatics sector for protein

structure prediction [113],[114].

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

99

7. Experiments and Results

This section presents two case studies; the first one investigated the development of a deep

convolutional neural network for robust facial makeup detection and the second a novel deep

fully convolutional neural network for abnormality detection in images obtained from human

gastrointestinal tract.

7.1. Deep Learning on Robust Facial Makeup Detection

Facial makeup is a well-accepted cosmetic among the female population [115]. A less-known

aspect of makeup is that its use can raise security issues. It has the ability to effectively alter the

overall appearance of a human face, resulting in a performance degradation of face

authentication algorithms. To cope with this problem, facial makeup detection algorithms have

been proposed so that the presence of makeup is detected early in a face authentication process.

Only a few studies have addressed automated facial makeup detection. For this purpose, in [116]

hand crafted local shape, color and texture features were used to represent various facial Regions

of Interest (ROIs). Shape was encoded by means of GIST features (capturing the „gist‟ of a

scene) [117], color was encoded by means of up to third-order central moments, and for texture

encoding the well-known Local Binary Pattern (LBP) histograms was used [118]. AdaBoost

[119] and Support Vector Machine (SVM) [120] classifiers were used for the discrimination of

the faces with makeup based on these features. The experiments were based on two benchmark

datasets, namely the YouTube MakeUp (YMU) [121], and the Makeup In the “Wild” (MIW)

datasets [116]. A face authentication method tolerant in makeup changes has been proposed in

[122]. That method incorporates a makeup detection system based on facial features that are

similar to those used in [116]. They include skin color tone and smoothness, quantified by means

of color moments; skin texture, quantified by means of LBP histograms; and facial highlights,

quantified by means of chromaticities.

In this work a deep learning approach is proposed for makeup detection based on Convolutional

Neural Network (CNN) architecture. To the best of our knowledge this is the first deep learning-

based facial makeup detection methodology. Its main advantages over relevant state-of-the-art

methodologies include generality, independence from ROI detection algorithms, and minimal

annotation requirements, in the sense that it does not require any detailed, pixel-level annotation

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

100

of the images used for training. It requires only a weak, semantic annotation of these images,

indicating whether the depicted face has makeup or not.

Deep learning and especially CNNs have become extremely popular over the last decade mainly

because they can be trained without the need of handcrafted features. That property gives them

the power of learning image features by examples instead of relying on prior knowledge from an

expert. Their remarkable performance in classification of real-world images has been

demonstrated in a variety of applications, especially involving large scale image databases [48].

7.1.1. Network Architecture and Training Process

Inspired by the deep neural network architecture presented in [64] a smaller scale CNN was

constructed which is illustrated in (Fig. 63). This network consists of 4 learning layers, three

convolutional and one fully connected, all of them followed by intermediate layers that

contribute to the overall classification performance increase.

Figure 63 The proposed CNN architecture. Each layer is illustrated as a block with the number of inputs on the top left and

number of outputs on top right. The width w, height h and depth d of the input and output volume of each layer is illustrated on

top of each block in a vectorial form (𝒘, 𝒉, 𝒅).

The training of the CNN architecture was based on the mini-batch Stochastic Gradient Decent

(SGD) algorithm [123]. This approach differs from the traditional error back-propagation, in

that, instead of using all training examples for the estimation of the gradient in every iteration, it

uses several randomly selected small batches of examples. This helps the generalization of the

network while it favors a smaller memory footprint, which is important especially when the input

samples are whole images [13]. Training involves three parameters namely: learning rate n,

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

101

which controls the magnitude of bias and weight changes on each training epoch; weight decay

ι, which is multiplied on the weights after each update, preventing the weights from becoming

too large; momentum a, which adds a small percentage of the previous weight value to the next

update. In order to cope with possible overfitting of the network to the training data the early

stopping strategy was applied that stops the training process when the error in the validation

dataset is minimized.

7.1.2. Results and Comparison

Experiments were performed to assess the capability of the proposed CNN architecture to

classify facial images into two classes corresponding to faces with and without makeup. The

experimental procedure is based on the datasets used in [116]. For CNN training and validation

the YMU dataset (Fig. 64) was utilized which contains 604 faces of 302 women before and after

makeup, while for testing MIW dataset was used which contains 154 women faces before and

after makeup. In both datasets the images are 130 × 150 pixels in size with faces that are

considered faces in the wild. The cropped faces where extracted using a Viola-Jones framework

and cropped using automatically generated bounded boxes [124].

Figure 64 Sample images from YMU dataset. Six models before and after makeup is depicted. The dataset is diverse incorpo-

rating various ethnicities and poses of the face.

It should be noted that part of the images contained in both datasets are not ideal in the sense that

some faces that are not properly facing the camera or parts of them are covered by hair.

The YMU dataset was randomly shuffled and split into two non-overlapping subsets, an 80%

subset used for CNN training (483 images), and a 20% subset used for CNN validation (121

images). The average number of positive and negative labels were equally distributed, resulting

into 242 positive (with makeup) and 241 negative (without makeup) labels in the training subset,

and 60 positive and 61 negative labels in the validation subset.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

102

For the construction of the network the popular TensorFlow framework [125] and the utility

library of Keras [126] were utilized. The CUDA toolkit [127] was used in order to speed up the

training process in order to perform the computations on an NVIDIA GTX-960 Graphical

Processing Unit (GPU), with 1024 CUDA cores, 2GB of RAM and clock speed of 1127MHz.

The overall training time for the 380,000 neurons of the CNN was 4.8 minutes and the testing

time was 3.6 seconds. The parameters of the SGD used for training include a learning rate of

𝑛 = 0.01, a standard constant decay of λ = 10−6 and momentum 𝛼 = 0.9. The root mean

squared logarithmic was used as a loss function (142) where 𝑛 is the total number of

observations of each training iteration, 𝑝𝑖 is the prediction, and 𝑎𝑖 is the actual response for

sample 𝑖.

1

𝑛
 log 𝑝𝑖 + 1 − log 𝛼𝑖 + 1 2𝑛

𝑖=1 (142)

In addition, a batch size of 32 samples was used in each mini-batch training iteration, which led

to a slight improvement in the classification accuracy compared to larger batch sizes. Max

pooling of size 2 × 2 was chosen with zero padding and a stride of 2, which shown to be a good

size as it produces maximum summarization while favoring minimum information loss of the

visible units. Pooling layers were placed only after the second and the third convolutional layers

(Fig. 65). The use of pooling layers after every convolutional layer, which is the usual approach

in CNN design, resulted in a lower accuracy (by 8.2%). On the contrary, an increase in accuracy

was obtained using a dropout of 25% in the fully connected layer which increased the

performance of the network by 6.8%.

Figure 65 Misclassified images from MIW dataset. (a) Face wearing makeup classified as not wearing makeup (false negatives).

(b)-(c) Faces not wearing makeup classified as wearing makeup (false positives).

The results obtained after training of the CNN on the YMU dataset and testing on the MIW

dataset are summarized in Table 2, in comparison to the results presented in [116] using the

same dataset. Overall, the Area Under the Receiver Operating Characteristic (ROC) curve

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

103

(AUC) is 99.26%. The best classification accuracy achieved for a 0.6 decision threshold in the

output of the CNN is 98.05%. The true and false positive rates for this threshold are 98.7% and

97.4% respectively. These results indicate the robustness of the proposed methodology and its

comparative advantage over the state of the art, which is achieved without the use of handcrafted

features.

The faces that the best performing CNN architecture failed to classify correctly are illustrated in

(Fig. 66 The face in (Fig. 66.a) was classified as not wearing makeup, possibly because of the

smoothness characterizing its facial skin. The misclassification of the faces that were not wearing

makeup was possibly due to different facial poses along with the poor quality of the images.

Also, the face in (Fig. 66.c) includes hair that hides a part of its facial characteristics.

Table 2. Comparative results in terms of classification accuracy on the MIW test set.

CNN (proposed) SVM [116] AdaBoost [116]

AUC 99.26% 98.63% 98.5%

Classification accuracy 98.05% 95.45% 92.21%

7.2. Peephole Fully Convolutional Neural Network

In this thesis a novel CNN architecture is proposed, named Peephole Fully Convolutional Neural

Network (PFCNN), created in order to deal with the problem of large number of free parameters

that deep neural networks tend to suffer. Furthermore because of the small number of free

parameters it is able to be trained with a relatively small number of training examples in

comparison with the previous architectures, such the ones proposed by [33] and [64].

7.2.1. Network Architecture

The architecture of PFCNN is inspired by the work of [106] which introduced a peephole

connection in LSTM networks to give the gates a chance to react based on previous states of the

model. The multi-scale design is inspired by GoogLeNet architecture [52] were high and abstract

features are combined to produce a more complete description about the input volume. The

architecture is based in principles of Fully Convolutional Network were the fully connected

layers that are typically used as the last classification layers of a network architecture is omitted.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

104

This reduces the number of free parameters that the network has to be trained with and thus

allows the model to be trained well on datasets where the number of training examples is limited.

The proposed architecture is based on two characteristic components:

1. A Large-Medium-Small Convolutional Block (LMSCB)

2. A Peephole Connection

Large Medium Small Convolutional Block (Fig. 66) is a small convolutional neural network that

is formed by five convolution layers. The first convolution layer performs a 1x1 convolution

operation with N number of filters to the input space. The second, third and fourth perform

convolution operation to the output of the first convolution layer, with the same number of

filters, yet with different sizes. The second performs a convolution operation with filter size 8x8

in order to detect large features from the input space, while the third and fourth perform the same

operation but with filter size 4x4 and 2x2 to detect smaller features that would not have been

preserved by the larger convolution. The output features maps are concatenated and convolved

by the fifth and last convolution layer which has a filter size 1x1. All the convolution layers have

Parametric ReLU (PReLU) activations followed by a Batch Normalization[128].

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

105

Figure 66 The LMSCB module

The inclusion of the last batch normalization helps the layer that follows it by normalizing the

output of the previous layer so that it has mean close to 0 and standard deviation close to 1. This

copes with the problem of carefully choosing a relatively small learning rate, as without it, the

distribution of the inputs of each layer is changing during training as the parameters of the

previous layers are adjusted. The inclusion of batch normalization let the architecture to omit

entirely the usage of the commonly used Dropout layer, as the entire architecture did not show to

suffer from overfitting. Furthermore, because of the higher learning rate the entire architecture is

able to converge much faster, in comparison to the traditional approaches. PReLU was chosen

over the traditional ReLU activation function, as it proved by [65] that the addition of parameter

𝑎 (alpha) when the output of the activation is lower than 0 and is adjusted through gradient

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

106

descent, to the original function helped to solve the saturation problem of original ReLU function

(Fig. 67).

Figure 67 On the left, the ReLU activation function and on the right, the modified PReLU activation function.[65]

The second aspect that PFCNN architecture introduces is the addition of peephole connections

after every LSCB module (Fig. 68). The introduction is done by connecting the input of the

previous LSCB module with the output of it using the addition operation followed by an 1x1

convolution layer and Batch Normalization. This operation increases the significance of the

features that have been detected by the LSCB module and also preserves the ones that have been

left by the module. Peephole-like connections have also been seen in ResNet architecture [53],

yet their role there is significantly different as each peephole-like connection aims to perform a

small changes to the input volume by the addition of the previous convolution-ReLU-

convolution operation of the residual block. The LSCB module output, after the transformation

of it by the peephole connection is followed by a pooling operation. The pooling is done by a

convolution layer of size 2x2 and stride 2 with PReLU activations which are normalized with a

batch normalization. The usage of a convolution layer instead of a traditional max pooling was to

simplify the overall network architecture, as max pooling layer can be replaced by a convolution

layer of appropriate size and stride without affecting the overall predictive power of the model

[56] (Fig. 69).

Figure 69 Pooling layer of PFCNN

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

107

Figure 68 The LSMCB module with Peephole connection to the previous input

In the experiments that follow, the architecture utilized five LSCB modules with four of them

utilizing the peephole connection. From the datasets that was used in the experiments, the

reduction of number of LSCB modules shown a decrease is accuracy of the trained model while

the addition of more modules did not prove to be beneficial as the accuracy remained similar if

not the same.

7.2.2. Evaluation On MICCAI 2015 Gastroscopy Challenge

MICCAI 2015 Gastroscopy Challenge was a challenge held by MICCAI conference in 2015

where on the same dataset, multiple participants competed having as a goal to automatically

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

108

classify normal and abnormal gastroscopic images[129]. The gastroscopy challenge dataset was

derived from a total of 10000 images obtained from 544 healthy volunteers and 519 volunteers

having various abnormalities, such as cancer, bleeding and gastritis. The image had originally

768 × 576 pixels resolution and cropped to 489 × 409 pixels in order to be anonymized [130].

For the purpose of the challenge a subset of 698 images from 137 volunteers was selected (Fig.

70). The dataset then was split into two balanced subsets; one for training with 465 images and

one for test containing 233 images.

Figure 70 MICCAI 2015 Gastroscopy Challenge, sample images. First row contain normal images and the second images with

abnormalities

The proposed PFCNN architecture was trained and evaluated on the same dataset provided by

the challenge, using only semantically annotated images, which were resized to 63 × 53. No

additional data pre-processing was required to utilize the proposed architecture. The network was

trained using RMSProp optimizer with initial learning rate 𝑛 = 0.01 and fuzz factor 𝜖 = 1𝑒 − 8.

A fully connected layer was used as the last layer of the network using Softmax activation acting

as the classification layer of the model. The network was trained for 2000 epochs with mini-

batch of size 32 samples on an NVIDIA GTX-960 Graphical Processing Unit (GPU), with 1024

CUDA cores, 2GB of RAM and clock speed of 1127MHz. The entire training process took 2

hours as the network had only 9 million parameters to be trained. The model, was evaluated on

the test dataset provided by the challenge and achieved an Area Under Curve (AUC) of 98.68%

(Fig. 71).

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

109

Figure 71 Receiver operation characteristic curve (ROC) with AUC 98.68%.

7.2.3. Evaluation On Wireless Capsule Endoscopy KID Dataset

Wireless Capsule Endoscopy WCE is a non-invasive way of capturing images from the

gastrointestinal tract using a swallowable camera (Fig. 72) which has the size of a typical pill.

While this procedure offers a lot of benefits over traditional invasive methods, such as surgery, it

suffers from the lack of an automated methodology of examining the resulting video. Because of

this, a lot of manual human effort is required which typically requires an individual to spend 45

to 90 minutes to review the entire video which is prone to human error as the individual becomes

tired over the time.

Figure 72 A typical WCE swallowable pill

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

110

KID dataset [131] is a public, open access database of semantically annotated WCE images and

videos (Fig 73). The 2731 images contained in the dataset have resolution of 360 × 360 pixels

and containing 1778 non pathogenic images and 953 images of various pathogenic conditions

that are found to the entire gastrointestinal tract, such us vascular bleeding, polyps and

inflammatory conditions.

Figure 73 KID Dataset, sample images. First row contain normal images and the second images with abnormalities

In order to utilize the KID dataset to train and test PFCNN performance, the images were

cropped to 320 × 320 to remove the excess black border that surround the actual picture.

Furthermore the images were downscaled to 64 × 64 pixels to speed up the training process of

the network, as 10-fold cross validation procedure that followed to evaluate the performance of

the trained networks. On each fold of the cross validation procedure 10% of the original dataset

was excluded in order to be used as a test dataset. It is important to note here that on each

iteration a different subset was picked to assure the quality of the experiment. The PFCNN

configuration that was used was the same as with the one presented in section 7.2.1, in order to

evaluate the generality of the entire architecture. The average Receiver Operation Characteristic

(ROC) curve obtained by the evaluation of the model had an Area Under Curve (AUC) of

90.07% (Fig. 74).

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

111

Figure 74 Receiver Operation Characteristic curve (ROC) with AUC 90.07% obtained by training and testing the PFCNN on

KID dataset.

Using the same architecture on the same dataset but trained only to classify images that contain

vascular bleeding, yield a much higher AUC (98.77%) and classification accuracy (94.51%),

which shows that the model, if trained with images that contain the same abnormalities is able to

extract better and specialized feature maps.

7.2.4. PFCNN Architecture Comparison With The Existing State-Of-The-Art

Methodology

For the purpose of evaluating the performance of the purposed architecture, the experiments

described in sections 7.2.1 and 7.2.2 were compared with the previous state of the art

methodology presented in [132] which was also tested on the same datasets but used a manual

feature extraction procedure, were color-based features were extracted from patches around

salient points that were detected the images. The extracted features were then used in order to

create a visual vocabulary for the image that was used to form a Bag of Words (BoW) model,

which is a widely used method to model generic categories in classification and recognition

problems.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

112

A comparison of the results can be seen in Table 3 were the superiority of the proposed

architecture on both AUC and classification accuracy, over the previous state-of-the-art

methodology is presented.

Table 3. Comparative results between PFCNN and BoW-Based Weakly Supervised [132] approach

 PFCNN BoW-Based Weakly Supervised [132]

AUC– MICCAI 2015 98.68% 94.60%

ACCURACY – MICCAI 2015 93.14% 89.20%

AUC – KID 90.07% 80.20%

ACCURACY – KID 89.11% 76.80%

It is important to note, that the datasets used to train the PFCNN model were not preprocessed

more than resizing and cropping the input images. It is expected that applying more advanced

pre-processing approaches, such as ZCA whitening and automatic augmentation, such us

rotation, flipping along with higher resolution images can yield much better results. The purpose

of the experiments focused on evaluating the effectiveness and generality of the model, rather

optimizing it to deal with the specific datasets that was trained.

7.2.5. Evaluation On EndoVis 2017 GIANA – Polyp Detection In Colonoscopy Videos

Dataset

Endoscopic Vision Challenge 2017 [133] is a challenge held by MICCAI Conference 2017

[134] on which the proposed PFCNN architecture was evaluated on a sub-challenge with name

Gastrointestinal Image ANAlysis (GIANA). The GIANA challenge consists of three sub-

challenges, one for polyp detection, one for polyp segmentation and one for angiodysplasia

detection and segmentation. PFCNN was trained and evaluated on the polyp detection dataset

provided by the polyp detection sub-challenge.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

113

Figure 75 EndoVis 2017 – GIANA Polyp Detection challenge dataset, sample images. First row contain normal images and the

second images with abnormalities.

The polyp detection sub-challenge dataset contains a training dataset of 6502 images with

resolution 384 × 288 pixels (Fig. 75), obtained by 9 volunteer patients. The goal was to

automatically classify the images as normal and abnormal, where the first stands for images that

no polyp was detected and abnormal, the images that contain at least one polyp or part of it. The

dataset was initially cropped in order to remove the black border that surrounded the images and

then downscaled to the resolution of 120 × 112 pixels. No further transformation or automatic

image augmentation was used. The cross-validation of the dataset was done using the technique

of “leave one patient out” which means that for every trained model, the images of one patient

were left out of the training dataset in order to be used as a test dataset. The maximum Area

Under Curve obtained by the evaluation of the model on the entire dataset was 96.36% (Fig. 76)

and lowest 90.82% with average classification accuracy of 89.45%.

Figure 76 Receiver Operation Characteristic curve (ROC) with maximum (left) AUC 96.36% and lowest (right) AUC 90.86%

obtained by training and testing the PFCNN on EndoVis 2017 – GIANA Polyp Detection challenge dataset.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

114

8. Conclusions and Future Work

In this thesis the subject of artificial neural networks was presented. An introductory and

historical overview was presented, including the basics of how the artificial neurons work and

how, combining them together, layers can be formed in order to simulate from simple functions,

like the logical OR gate to more complex ones, such us hand written number recognition.

Furthermore, it has been shown that moving into more complex architectures and by increasing

both the number of neurons on each layer and network depth, the prediction power of the model

can be significantly increased. The thesis also examined the problems that arise on training such

deeper networks and presented multiple methodologies that can be applied in the training process

to overcome them. A special kind of deep neural network architecture was presented called

CNNs, along with an architectural break down of each layer that forms them, in order to provide

a deep understanding of how they function and why they perform better over the other traditional

approaches that can be found in the field of computer vision. Furthermore a review of the most

significant CNN architectures was presented along with the advantages that they brought into the

field. An application of CNNs was presented to tackle the problem of facial makeup detection,

showing the superiority of this approach over the traditional handcrafted feature extraction and

classification methodologies.

More importantly a novel CNN named as “Peephole Fully Convolutional Neural Network”

(PFCNN) was proposed. Extensive experiments were performed on datasets that contain images

from the gastrointestinal tract of humans. The results showed the superiority of the proposed

deep learning based model over the previous state-of-the-art approach.

Overall the following conclusions can be drawn:

 In recent years the attention has been drowned towards deep learning

 Deep neural networks, especially in computer vision problems, outperform the traditional

hand crafted feature and classification approaches

 Over the course of the last years, network depth has vastly increased, as deeper networks

tend to perform better, i.e AlexNet [33] which was developed 2012 had 5 convolution

layers, while ResNet [53] of 2015 had 152 layers.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

115

 Applying deep learning on facial makeup discover outperforms the state-of-the-art

traditional hand crafted feature approach [116]

 Results from applying the presented PFCNN architecture on different dataset of images

from the human gastrointestinal tract, shows that PFCNN outperforms the previous state-

of-the-art methodology [132]

The usage of facial makeup affects the performance of facial recognition algorithms, as

demonstrated in [121]. Therefore accurate prediction of the presence of makeup on human faces

can be an important pre-processing stage for face authentication systems. A novel approach to

facial makeup detection was presented based on a weekly supervised CNN. The proposed

approach eliminates the need of handcrafted features as it is capable to extract the appropriate

features automatically by providing only semantically annotated images. The experiments

performed using benchmark datasets showed that it outperforms state-of-the-art methods that are

based on handcrafted features. Future work includes further experimentation and optimization of

the proposed methodology using larger and more diverse datasets.

The generality of the proposed PFCNN architecture is promising as it is expected to perform

better when it is optimized for the specific dataset that is trained with. This generality will be

examined in the future as the model will be used in a wider spectrum of problems, such as, but

not limited, the ImageNet dataset.

The field of artificial neural networks, despite the fact that they exist for more than 50 years, is

still under heavy research. More and more attention is drowning towards them, especially after

the recent achievements that were obtained in the field of image classification, which shown that,

even simple yet deep neural networks are powerful enough to achieve a remarkable performance.

Unfortunately it is still unclear how deep neural networks function and why, and in some cases,

the training of them is becoming challenging. This, along with the progress that is done in

understanding the human brain, shows that the subject of neural networks is still widely open,

waiting for exploration and thus, promising for even better performance in the future.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

116

9. Bibliography

[1] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of brain

mechanisms,” 1961.

[2] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, Dec. 1943.

[3] M. Minsky and S. Papert, “Perceptrons.” M.I.T. Press, 1969.

[4] M. Kubat, “Neural networks: a comprehensive foundation by Simon Haykin, Macmillan,

1994, ISBN 0-02-352781-7.,” Knowl. Eng. Rev., vol. 13, no. 4, p. S0269888998214044,

Feb. 1999.

[5] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Control.

Signals, Syst., vol. 2, no. 4, pp. 303–314, Dec. 1989.

[6] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, Jan. 1989.

[7] A. M. Turing, “On computable numbers, with an application to the Entscheidungs

problem,” Proc. London Math. Soc., vol. 2, no. 1, pp. 230–265, 1937.

[8] N. Murata, S. Yoshizawa, and S. Amari, “Network information criterion-determining the

number of hidden units for an artificial neural network model,” IEEE Trans. Neural

Networks, vol. 5, no. 6, pp. 865–872, 1994.

[9] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of

deep networks,” in Advances in neural information processing systems, 2007, pp. 153–

160.

[10] A. J. Jones, “Genetic algorithms and their applications to the design of neural networks,”

Neural Comput. Appl., vol. 1, no. 1, pp. 32–45, Mar. 1993.

[11] D. Montana, “Neural network weight selection using genetic algorithms,” Intell. Hybrid

Syst., 1995.

[12] H. Robbins and S. Monro, “A Stochastic Approximation Method,” Ann. Math. Stat., vol.

22, no. 3, pp. 400–407, Sep. 1951.

[13] M. Moreira and E. Fiesler, “IDIAP Neural Networks with Adaptive Learning Rate and

Momentum Terms,” 1995.

[14] C. Darken, J. Chang, and J. Moody, “Learning rate schedules for faster stochastic gradient

search,” in Neural Networks for Signal Processing II Proceedings of the 1992 IEEE

Workshop, pp. 3–12.

[15] C. T. Kelley, Iterative methods for optimization. SIAM, 1999.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

117

[16] E. W. Weisstein, “Hessian,” 2012. [Online]. Available:

http://mathworld.wolfram.com/Hessian.html.

[17] R. S. Sutton, “Two problems with backpropagation and other steepest-descent learning

procedures for networks,” in Proc. 8th annual conf. cognitive science society, 1986, pp.

823–831.

[18] S. Ruder, “An overview of gradient descent optimization algorithms,” Sep. 2016.

[19] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural

Networks, vol. 12, no. 1, pp. 145–151, Jan. 1999.

[20] Y. Nesterov, “A method of solving a convex programming problem with convergence rate

O (1/k2).”

[21] G. Hinton, N. Srivastava, and K. Swersky, “Neural Networks for Machine Learning

Lecture 6a Overview of mini-­‐ batch gradient descent.”

[22] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for Online Learning

and Stochastic Optimization,” J. Mach. Learn. Res., vol. 12, no. Jul, pp. 2121–2159, 2011.

[23] J. Dean et al., “Large Scale Distributed Deep Networks.” pp. 1223–1231, 2012.

[24] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word

representation.,” in EMNLP, 2014, vol. 14, pp. 1532–1543.

[25] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” Dec. 2012.

[26] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 2014.

[27] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

[28] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986.

[29] M. A. Nielsen, “Neural Networks and Deep Learning.” Determination Press, 2015.

[30] F. Girosi, M. Jones, and T. Poggio, “Regularization Theory and Neural Networks

Architectures,” Neural Comput., vol. 7, no. 2, pp. 219–269, Mar. 1995.

[31] “. Early stopping the ANN training to avoid overfitting - Figure 2 of 2.” [Online].

Available: https://www.researchgate.net/figure/223790695_fig2_Figure-2-Early-stopping-

the-ANN-training-to-avoid-overfitting. [Accessed: 09-Jul-2017].

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A

Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15,

pp. 1929–1958, 2014.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks.” pp. 1097–1105, 2012.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

118

[34] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[35] “affNIST,” 2013. [Online]. Available: http://www.cs.toronto.edu/~tijmen/affNIST/.

[Accessed: 11-Jul-2017].

[36] K. Pearson, “LIII. On lines and planes of closest fit to systems of points in space,” Philos.

Mag. Ser. 6, vol. 2, no. 11, pp. 559–572, Nov. 1901.

[37] J. Mohamad-Saleh and B. Hoyle, “Improved neural network performance using principal

component analysis on Matlab,” Comput. internet …, 2008.

[38] “Unsupervised Feature Learning and Deep Learning Tutorial,” Stanford University, 2016.

[Online]. Available: http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/.

[Accessed: 13-Jul-2017].

[39] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” 2009.

[40] Chris McCormick, “Deep Learning Tutorial - PCA and Whitening · Chris McCormick,”

2014. [Online]. Available: http://mccormickml.com/2014/06/03/deep-learning-tutorial-

pca-and-whitening/. [Accessed: 14-Jul-2017].

[41] J. Bergstra, Y. Bengio, J. Bergstra, and Y. Bengio, Journal of machine learning research :

JMLR., vol. 13, no. 1. MIT Press, 2001.

[42] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Machine

Learning Algorithms.” pp. 2951–2959, 2012.

[43] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey

striate cortex.,” J. Physiol., vol. 195, no. 1, pp. 215–43, Mar. 1968.

[44] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position,” Biol. Cybern., vol. 36, no. 4, pp.

193–202, Apr. 1980.

[45] S. Behnke, Hierarchical Neural Networks for Image Interpretation, vol. 2766. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2003.

[46] P. Y. Simard, D. Steinkraus, and J. Platt, “Best Practices for Convolutional Neural

Networks Applied to Visual Document Analysis.” 01-Aug-2003.

[47] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with

CUDA,” Queue, vol. 6, no. 2, p. 40, Mar. 2008.

[48] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J.

Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[49] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The Pascal

Visual Object Classes (VOC) Challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338,

Jun. 2010.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

119

[50] World4jason, “AlexNet · research-log,” 2012. [Online]. Available:

https://world4jason.gitbooks.io/research-log/content/deepLearning/CNN/Model &

ImgNet/alexnet/alexnet.html. [Accessed: 16-Jul-2017].

[51] Aarshay Jain, “Deep Learning for Computer Vision - Introduction to Convolution Neural

Networks,” 2016. [Online]. Available:

https://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer-vision-

introduction-convolution-neural-networks/. [Accessed: 17-Jul-2017].

[52] C. Szegedy et al., “Going Deeper with Convolutions,” pp. 1–9, 2014.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”

Dec. 2015.

[54] “CS231n Convolutional Neural Networks for Visual Recognition,” 2015. [Online].

Available: http://cs231n.github.io/convolutional-networks/#pool. [Accessed: 18-Jul-

2017].

[55] Nouroz Rahman, “What is the benefit of using average pooling rather than max pooling? -

Quora,” 2017. [Online]. Available: https://www.quora.com/What-is-the-benefit-of-using-

average-pooling-rather-than-max-pooling. [Accessed: 18-Jul-2017].

[56] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for Simplicity:

The All Convolutional Net,” Dec. 2014.

[57] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” Dec. 2013.

[58] A. Rajaraman and J. D. Ullman, “Mining of Massive Datasets,” Lect. Notes Stanford

CS345A Web Min., vol. 67, p. 328, 2011.

[59] J. Weston and C. Watkins, “Multi-class support vector machines,” 1998.

[60] R. Rifkin and A. Klautau, “In Defense of One-Vs-All Classification,” J. Mach. Learn.

Res., vol. 5, no. Jan, pp. 101–141, 2004.

[61] Andrej Karpathy, “CS231n Convolutional Neural Networks for Visual Recognition.”

[Online]. Available: http://cs231n.github.io/linear-classify/#softmax. [Accessed: 22-Jul-

2017].

[62] D. Pathak, E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional multi-class

multiple instance learning,” arXiv Prepr. arXiv1412.7144, 2014.

[63] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2015, pp. 3431–3440.

[64] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale

Image Recognition,” Sep. 2014.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-

Level Performance on ImageNet Classification,” Feb. 2015.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

120

[66] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,”

Nov. 2013.

[67] Adit Deshpande, “The 9 Deep Learning Papers You Need To Know About

(Understanding CNNs Part 3) – Adit Deshpande – CS Undergrad at UCLA (‟19).”

[Online]. Available: https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-

Learning-Papers-You-Need-To-Know-About.html. [Accessed: 24-Jul-2017].

[68] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” Nov. 2013.

[69] R. Girshick, “Fast R-CNN,” Apr. 2015.

[70] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” Jun. 2015.

[71] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, “Selective

Search for Object Recognition,” Int. J. Comput. Vis., vol. 104, 2013.

[72] I. J. Goodfellow et al., “Adversarial Networks,” Jun. 2014.

[73] C. Szegedy et al., “Intriguing properties of neural networks,” Dec. 2013.

[74] R. Soumith, Emily, Arthur, “The Eyescream Project,” 2015. [Online]. Available:

http://soumith.ch/eyescream/. [Accessed: 25-Jul-2017].

[75] A. Karpathy and L. Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image

Descriptions,” Dec. 2014.

[76] A. Karpathy, A. Joulin, and L. Fei-Fei, “Deep Fragment Embeddings for Bidirectional

Image Sentence Mapping,” Jun. 2014.

[77] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial Transformer

Networks,” Nips, pp. 1–14, Jun. 2015.

[78] P. Gallinari, Y. Lecun, S. Thiria, and F. F. Soulie, “Memoires associatives distribuees:

Une comparaison (Distributed associative memories: A comparison).” Cesta-Afcet, 1987.

[79] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and singular value

decomposition.,” Biol. Cybern., vol. 59, no. 4–5, pp. 291–4, 1988.

[80] G. E. Hinton and R. S. Zemel, “Autoencoders, Minimum Description Length and

Helmholtz Free Energy.” pp. 3–10, 1994.

[81] G. E. Hinton, G. E. Hinton, and J. L. Mcclelland, “Learning Representations by

Recirculation,” Proc. IEEE Conf. NEURAL Inf. Process. Syst., 1988.

[82] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised Learning of

Invariant Feature Hierarchies with Applications to Object Recognition,” in 2007 IEEE

Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

121

[83] M. Ranzato, Y. Boureau, and Y. L. Cun, “Sparse Feature Learning for Deep Belief

Networks.” pp. 1185–1192, 2008.

[84] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks.” pp. 315–

323, 14-Jun-2011.

[85] G. Alain and Y. Bengio, “What Regularized Auto-Encoders Learn from the Data

Generating Distribution,” Nov. 2012.

[86] Y. Bengio, “Deep learning of representations: Looking forward,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2013, vol. 7978 LNAI, pp. 1–37.

[87] A. Hyvärinen, “Estimation of non-normalized statistical models by score matching,” J.

Mach. Learn. Res., vol. 6, no. Apr, pp. 695–708, 2006.

[88] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[89] A. Vincent, J. Herman, R. Schulick, R. H. Hruban, and M. Goggins, “Pancreatic cancer,”

Lancet, vol. 378, no. 9791, pp. 607–620, Aug. 2011.

[90] D. P. Kingma and Y. LeCun, “Regularized estimation of image statistics by Score

Matching.” 2010.

[91] K. Swersky, D. Buchman, N. D. Freitas, B. M. Marlin, and others, “On autoencoders and

score matching for energy based models,” in Proceedings of the 28th international

conference on machine learning (ICML-11), 2011, pp. 1201–1208.

[92] Y. Bengio and O. Delalleau, “Justifying and Generalizing Contrastive Divergence,”

Neural Comput., vol. 21, no. 6, pp. 1601–1621, Jun. 2009.

[93] H. Kamyshanska and R. Memisevic, “The Potential Energy of an Autoencoder,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 37, no. 6, pp. 1261–1273, Jun. 2015.

[94] E. W. Weisstein, “Jacobian,” 2012. [Online]. Available:

http://mathworld.wolfram.com/Jacobian.html.

[95] T. K. Kohonen, Self-Organizing Maps, vol. 30. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2001.

[96] “Kohonen Network - Background Information,” 2012. [Online]. Available:

http://www.lohninger.com/helpcsuite/kohonen_network_-_background_information.htm.

[Accessed: 02-Aug-2017].

[97] A. Jae-Wook and S. Sue Yeon, “SOM Tutorial.” [Online]. Available:

http://www.pitt.edu/~is2470pb/Spring05/FinalProjects/Group1a/tutorial/som.html.

[Accessed: 02-Aug-2017].

[98] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Based Recurrent Neural

Network Architectures for Large Vocabulary Speech Recognition,” Feb. 2014.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

122

[99] X. Li and X. Wu, “Constructing Long Short-Term Memory based Deep Recurrent Neural

Networks for Large Vocabulary Speech Recognition,” Oct. 2014.

[100] G. Lewis, “Sentence Correction using Recurrent Neural Networks,” 2016.

[101] Jonamjar, “Recurrent Neural Networks from Scratch - Jonamjar,” 2016. [Online].

Available: http://jonamjar.com/2016/12/22/recurrent-neural-networks/. [Accessed: 05-

Aug-2017].

[102] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,

no. 8, pp. 1735–1780, 1997.

[103] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber, “A

Novel Connectionist System for Unconstrained Handwriting Recognition,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 855–868, May 2009.

[104] “ICDAR2009,” 2009. [Online]. Available: http://www.cvc.uab.es/icdar2009/. [Accessed:

06-Aug-2017].

[105] C. Olah, “Understanding LSTM Networks,” 2015. [Online]. Available:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed: 06-Aug-2017].

[106] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,” in Proceedings of

the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000.

Neural Computing: New Challenges and Perspectives for the New Millennium, 2000, pp.

189–194 vol.3.

[107] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation,” Jun. 2014.

[108] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Trans.

Signal Process., vol. 45, no. 11, pp. 2673–2681, 1997.

[109] M. Sundermeyer, T. Alkhouli, J. Wuebker, and H. Ney, “Translation Modeling with

Bidirectional Recurrent Neural Networks,” Proc. 2014 Conf. Empir. Methods Nat. Lang.

Process., pp. 14–25, 2014.

[110] M. Liwicki, A. Graves, H. Bunke, and J. Schmidhuber, “A novel approach to on-line

handwriting recognition based on bidirectional long short-term memory networks,” in

Proceedings - 9th Int. Conf. on Document Analysis and Recognition, 2007, vol. 1, pp.

367–371.

[111] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional LSTM Networks for

Improved Phoneme Classification and Recognition,” pp. 799–804, 2005.

[112] A. Graves, N. Jaitly, and A. R. Mohamed, “Hybrid speech recognition with Deep

Bidirectional LSTM,” in 2013 IEEE Workshop on Automatic Speech Recognition and

Understanding, ASRU 2013 - Proceedings, 2013, pp. 273–278.

[113] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri, “Exploiting the past and the

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

123

future in protein secondary structure prediction.,” Bioinformatics, vol. 15, no. 11, pp. 937–

946, Nov. 1999.

[114] G. Pollastri and A. McLysaght, “Porter: A new, accurate server for protein secondary

structure prediction,” Bioinformatics, vol. 21, no. 8, pp. 1719–1720, Apr. 2005.

[115] A. Łopaciuk and M. Łoboda, “Global Beauty Industry Trends in the 21st Century,”

Knowl. Manag. Innov. Knowl. Learn., pp. 1079–1087, 2013.

[116] C. Chen, A. Dantcheva, and A. Ross, “Automatic facial makeup detection with application

in face recognition,” in 2013 International Conference on Biometrics (ICB), 2013, pp. 1–

8.

[117] C. Siagian and L. Itti, “Rapid Biologically-Inspired Scene Classification Using Features

Shared with Visual Attention,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 2, pp.

300–312, Feb. 2007.

[118] T. Ahonen, A. Hadid, and M. Pietikainen, “Face Description with Local Binary Patterns:

Application to Face Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no.

12, pp. 2037–2041, Dec. 2006.

[119] Y. Freund and R. Schapire, “A desicion-theoretic generalization of on-line learning and an

application to boosting,” Comput. Learn. theory, vol. 55, pp. 119–139, 1995.

[120] C.~Cortes, C.~Cortes, V.~Vapnik, and V.~Vapnik, “Support Vector Networks,” Mach.

Learn., vol. 20, no. 3, p. 273~-~297, Sep. 1995.

[121] A. Dantcheva, C. Chen, and A. Ross, “Can facial cosmetics affect the matching accuracy

of face recognition systems?,” in 2012 IEEE 5th International Conference on Biometrics:

Theory, Applications and Systems, BTAS 2012, 2012, pp. 391–398.

[122] Guodong Guo, Lingyun Wen, and Shuicheng Yan, “Face Authentication With Makeup

Changes,” IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 5, pp. 814–825, May

2014.

[123] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986.

[124] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” Comput. Vis. Pattern Recognit., vol. 1, p. I--511--I--518, 2001.

[125] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems.”

[126] F. Chollet, “Keras.” GitHub, 2015.

[127] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with

CUDA,” AMC Queue, vol. 6, no. April, pp. 40–53, 2008.

[128] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift,” Feb. 2015.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

124

[129] “EndoVisSub-Abnormal - Home.” [Online]. Available: https://endovissub-

abnormal.grand-challenge.org/. [Accessed: 01-Oct-2017].

[130] Y. Cong, S. Wang, J. Liu, J. Cao, Y. Yang, and J. Luo, “Deep sparse feature selection for

computer aided endoscopy diagnosis,” Pattern Recognit., vol. 48, no. 3, pp. 907–917,

Mar. 2015.

[131] D. K. Iakovidis and A. Koulaouzidis, “KID: A Capsule Endoscopy Database for Medical

Decision Support,” United Eur. Gastroenterol. J., vol. 2 (Supplem, 2015.

[132] M. Vasilakakis, D. K. Iakovidis, E. Spyrou, and A. Koulaouzidis, “Weakly-supervised

lesion detection in video capsule endoscopy based on a bag-of-colour features model,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10170 LNCS, pp. 96–103.

[133] “EndoVisSub2017-GIANA - Home,” 2017. [Online]. Available: https://endovissub2017-

giana.grand-challenge.org/. [Accessed: 04-Oct-2017].

[134] “MICCAI 2017 Conference.” [Online]. Available: http://www.miccai2017.org/.

[Accessed: 04-Oct-2017].

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 21:40:29 EEST - 18.216.62.43

