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Abstract
This work is focused in non-equilibrium thermally induced flows in cavities. Such 

configurations have lately received considerable attention due to their implementation in the 

cooling process of vacuum packed micro-electromechanical systems. The low pressure and 

small characteristic dimensions of these systems, lead to conditions that are beyond the range 

of application of the usual Navier-Stokes formulation, as the gas cannot be considered a 

continuous medium and a kinetic approach is required.

The problem is described by the integro-differential Boltzmann equation, which in contrast 

to the Navier-Stokes, considers the gas as a number of discrete particles. The solution of the 

Boltzmann equation though, is a demanding and computationally expensive task because of 

the complicated collision term. One of the methods to overcome this is using kinetic models 

that provide a relaxation to this term, reducing the computational cost. In the present work the 

Shakhov kinetic model equation has been numerically solved for the simulation of the flow.

In every point of the flow domain there are particles that have arrived after an arbitrary 

number of collisions since they were emitted from the boundary, and particles that have 

arrived without colliding. Whether the number of the former or latter kind of particles is 

bigger, has a great impact on the flow field, and leads to very interesting phenomena. Here a 

procedure is introduced for the deterministic calculation of the impact either of these kinds of 

particles has on the flow field.

It is believed that the present work has both scientific and technological interest and it may 

support the design and optimization of microdevices with respect to heat transfer mechanisms.
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Περίληψη
Η παρούσα εργασία επικεντρώνεται σε ροές εκτός θερμοδυναμικής ισορροπίας σε 

κοιλότητες λόγω θερμοκρασιακών βαθμιδών. Τέτοιες διατάξεις έχουν λάβει ενδιαφέρον τα 

τελευταία χρόνια λόγω της εφαρμογής τους στην ψύξη μικροηλεκτρομηχανολογικών 

εξαρτημάτων, σε καταστάσεις κενού. Η χαμηλές πιέσεις καθώς και οι μικρές διαστάσεις σε 

αυτά τα συστήματα, οδηγούν σε συνθήκες που βρίσκονται εκτός του εύρους εφαρμογής των 

εξισώσεων Navier-Stokes, καθώς καταρρέει η υπόθεση του συνεχούς μέσου, και απαιτούνται 
κινητικές προσεγγίσεις για την μοντελοποίηση.

Η μοντελοποίηση μπορεί να γίνει με βάση την ολοκληροδιαφορική εξίσωση Boltzmann, η 

οποία σε αντίθεση με τις εξισώσεις Navier-Stokes δεν θεωρεί το αέριο ως ένα συνεχές μέσο, 

αλλά ως ένα αριθμό σωματιδίων. Η επίλυση της εξίσωσης Boltzmann είναι μία απαιτητική 

και υπολογιστικά ακριβή διαδικασία, λόγω του πολύπλοκου όρου των μοριακών 

συγκρούσεων σε αυτή. Μία από τις μεθόδους που χρησιμοποιούνται για την αποφυγή του 

υπολογισμού αυτού του όρου είναι η χρήση των κινητικών μοντέλων. Τα κινητικά μοντέλα 

παρέχουν μία χαλάρωση αυτού του όρου, μειώνοντας σημαντικά το υπολογιστικό φορτίο. 

Στην παρούσα εργασία το κινητικό μοντέλο του Shakhov έχει χρησιμοποιηθεί.

Σε κάθε σημείου του ροϊκού πεδίο υπάρχουν σωματίδια που φτάνουν απευθείας αφού 

ανακλαστούν από τα τοιχώματα, και σωματίδια που φτάνουν αφού συγκρουστούν με άλλα. 

Το αν υπερτερεί σε κάποιο σημείο ο αριθμός του πρώτου ή δεύτερου είδους σωματιδίων έχει 

μεγάλη σημασία στη δομή του ροϊκού πεδίου και οδηγεί σε ενδιαφέροντα φαινόμενα. Στην 

παρούσα εργασία αναπτύσσεται μία μέθοδος για τον ντετερμινιστικό προσδιορισμό της 

επίδρασης που έχει το κάθε είδος στο ροϊκό πεδίο.
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Πιστεύεται πως η παρούσα εργασία έχει επιστημονικό καθώς και τεχνολογικό ενδιαφέρον 

και μπορεί να βοηθήσει στην βελτιστοποίηση μια κατηγορίας μικροηλεκτρομηχανολογικών 

εξαρτημάτων.
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Chapter 1 Introduction

1.1 The origin of kinetic theory

The nature of matter itself has been a topic of debate among philosophers and scientist 

since the ancient times. They were divided into two schools, the one believing that matter is a 

continuum, much like time, and the other believing that all things were composed by tiny bits 

of matter and between them there was empty space. As time and science advanced these two 

ideas generated some interesting paradoxes, but the most interesting thing was that in many 

cases both of those methods were to produce very similar results. One of the main paradoxes 

was that, if all things are composed of tiny bits of matter, then all interaction between them 

could be time-reversed (assuming elastic collisions between them), as their motion could be 

modeled by the classical mechanics. If it is so, then why are macroscopic processes 

irreversible?

Such questions were answered by kinetic theory. Kinetic theory first originated in 1738 

when Daniel Bernoulli stated in his book Hydrodynamica [1] that gasses consist of large 

amounts of molecules travelling in all directions, that pressure is the force excreted by those 

molecules to a surface during a collision, and that heat is just the kinetic energy of the 

molecules. Great advances in Kinetic Theory were to come much later, when in 1878 

Clausius [2] introduced the mean free path and Maxwell in 1860 [3] who laid the road for a 

statistical description of gasses, introducing the concept of the velocity distribution function, a 

tool that could be used to compute the probability of finding a molecule in a certain range of 

its microscopic velocity. Although Maxwell came very close to extracting the expression for 

the calculation of this function (the Boltzmann equation), it was Boltzmann in 1872 [4] that 

made the final steps to its derivation and so this expression is accorded to him.

1.2 The Knudsen number and flow regimes

Kinetic theory using the velocity distribution function and the Boltzmann equation can be 

used to provide interesting theoretical results, such as the transport coefficients, for all dilute 

gasses. The solution of the Boltzmann equation though is a very demanding process, and is 

used for the simulation of practical problems only when absolutely necessary. The main 

advantage it has against other methods of gas modeling is that the only assumption that needs
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to be made is the specification of the intermolecular interaction model, so it is has a greater 

range of applications than most continuum methods. The dimensionless parameter that gives 

us the information of whether the solution of the Boltzmann equation is needed, or that other 

approaches are valid is the Knudsen number.

The Knudsen number is defined as the ratio of the mean free path of the molecules over a 

characteristic length of the problem [5]

Kn = -  (1.1)
L

The mean free path for the Hard Sphere model for a single gas can be expressed as [5]

λ  =
m

Ί ϊ π ά 2 p
(1.2)

where m is the molecular mass, d is the diameter of the molecule and p  is the gas density. It 

is seen that for a specific gas the mean free path is a function only of density, and is inversely 

proportional to it. The Knudsen number is a measure of the gas rarefaction, and a measure of 

the departure from thermodynamic equilibrium.

The Knudsen number is related to other important dimensionless parameters, such as the 

rarefaction parameter

pu0 2 Kn
(1.3)

and the Mach and Reynolds numbers [5]

Kn Ma
Re

(1.4)

where P is the gas pressure, μ  is the dynamic viscosity, u0 =. 2 —  T is the most probable
V m

molecular thermal velocity, kB is the Boltzmann constant and γ  is the ratio of the specific 

heats of the gas.

According to the Knudsen number the flow regimes can be defined, as shown below in 

Table 2. The Boltzmann equation, although valid in the whole range of the Knudsen number, 

is utilized only in the transition and free molecular regimes because of the high computational 

cost that it requires.
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Table 1: The cross and direct effects

Heat flux Momentum flux Mass flux

VT Heat conduction Thermal creep Thermal diffusion

VP Mechanocaloric effect Poiseuille flow Baroeffect

VC Duffour effect Diffusion baroeffect Diffusion flow

When the Knudsen number is small and the flow is in the continuum regime, the 

macroscopic approach of the Euler and Navier Stokes equations can be used with very good 

accuracy. As the Knudsen number is increased and we move to the Slip regime, the no slip 

boundary conditions associated with the Navier Stokes equations start to collapse. This can be 

treated with velocity slip and temperature jump boundary conditions [6], and the range of 

their application is extended. In those regimes the flow is near thermodynamic equilibrium.

As the Knudsen number is increased and the flow further departs from thermodynamic 

equilibrium, the Newton, Fourier and Fick laws do not hold and the continuum approach 

collapses. It is in those regimes, the transition and free molecular, that very interesting non­

equilibrium phenomena start to appear, and the flow can only be simulated using kinetic 

approaches [7],[8].

If we consider the three driving forces acted on gases being temperature gradient, pressure 

gradient and concentration gradient, then the result of those forces according to continuum 

approaches will be heat flux, momentum flux and mass flux respectively. Those are called 

direct effects. In flows far from thermodynamic equilibrium six more effects are present, the 

cross effects. They are shown in Table 1. Those effects are beyond the range of the continuum 

models, and can be modeled by kinetic approaches.

The direct solution of the Boltzmann equation is a very hard and computationally 

demanding process. To overcome this, certain methods are used in order to obtain kinetic 

solutions without solving the exact Boltzmann equation (BE). One of them is the use of 

kinetic models. Kinetic models provide a relaxation to the collisional term of the BE, making 

the solution faster. The most well-known kinetic models are the BGK [9], the Shakhov [10] 

and Ellipsoidal [11] models for monatomic single gas flows, the Rykov [12] and Holway [13] 

models for polyatomic single gas flows and the McCormak [14] model for gas mixtures.

3



Table 2: Knudsen regimes

Range of Kn Regime Governing Equations Numerical approach

K n ^ O Continuum

(inviscid)

Euler

Kn<  10 3 Continuum

(viscous)

Navier Stokes

Typical CFD schemes

10“3 < < 10"1 Slip

(viscous)

Navier Stokes with 

slip boundary conditions, 

Generalized equations.

10 1 <Kn <10 Transition Boltzmann Analytical methods,

(Knudsen) Kinetic models Variational methods,

Discrete velocity 

method

Integro-moment method 

DSMC

10 <Kn Free molecular Boltzmann and kinetic 

models without collisions

Method of 

characteristics

Test particle Monte 

Carlo

In order for a model to be accepted it must: satisfy the collision invariants, satisfy the H- 

theorem and provide the correct expressions for the transport coefficients.

Another very widely used method for the simulation of such flows is the Direct Simulation 

Monte Carlo method (DSMC) [7]. This is a stochastic method, in contrast to the direct 

solution of the BE or model equations. For the solution the flow domain is discretized and a 

big number of fictional particles (simulators) are distributed on the field, each of them 

corresponding to a large number of real particles. Then the real motion of the particles is
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divided into two parts, the free motion according to a distance proportional to their velocities 

and the time step, and a collision part, where the collisions are simulated in a stochastic 

manner. The macroscopic quantities are sampled for a large number of time steps, and are 

calculated using the simulator particles microscopic quantities.

A number of methods have been proposed, using high-order equations [15] derived from 

the BE. Those methods are able to simulate flows in the slip and early transition regimes, 

capturing effects that are beyond the NSF (Navier-Stockes-Fourier) analysis. The most know 

of them are the Burnett equations. Those methods have some known problems, like stability 

issues, and can be misleading when used in the whole transition regime.

1.3 Temperature driven flows and related applications

The literature survey on rarefied gas flows driven by temperature differences on the basis 

of kinetic theory is very extensive. A thorough description of various types of thermal flows 

may be found on a recent book by Sone [6]. A brief description of thermal creep, 

thermophoresis and thermal-stress slip flow is given here.

Thermal creep is one of the six cross effects mentioned. It is momentum transfer due to 

temperature gradient. When a temperature gradient is imposed to a wall, momentum is 

transferred in a direction opposing that of the temperature gradient, leading to a flow from 

cold-to-hot. This phenomenon is not prevailing in the continuum regime, as the natural 

convection is the dominant effect. In the absence of gravity, or in cases where gravitational 

forces are negligible, such as rarefied flows, thermal creep is very important.

An explanation to thermal creep, shown in Figure 1 is the following. Particles in the hot 

side of the wall travel with large thermal velocities and as they collide with the wall in a

VT

Hot Side

Figure 1: Thermal creep flow
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differential area dS their velocity is decreased. Particles from the cold side of the wall have 

small thermal velocities. As they collide with the wall at a differential area dS their velocity is 

increased. In both cases the velocity is increased when moving from cold to hot, and 

decreased when moving in the other way. This leads to momentum transfer, opposite to the 

temperature gradient.

Thermophoresis [16] is a phenomenon of temperature induced flows around particles 

submerged in a gas with temperature gradient, when the dimension of the particles is of the 

order of a mean free path. This flow exerts a force on the particle, called thermal force. If the 

particle is free, it drifts because of the thermal force. This whole phenomenon is called 

thermophoresis. This flow has long been of interest, especially in the field of aerosol sciences.

Thermal stress [17] is exerted on any surface element in a gas with a nonuniform 

temperature gradient, as a result of the different thermal velocities the incident to the surface 

molecules have. If we consider a differential volume element in such a gas, then the 

contribution of the thermal stress on the volume of the gas surrounded by this volume element 

vanishes when integrated over the element, if the linear theory is applicable. In the special 

case where a surface of this volume element is part of the boundaries of the flow, the situation 

is different. Since the molecules emitted from the boundary have no tangential contribution 

(in the case of the diffuse boundary conditions), the thermal stress on this surface is reduced. 

Thus the balance of the thermal stress on the volume element is violated and a flow is 

induced, the thermal-stress slip flow. The difference between this kind of flow and the 

thermal creep flow, is that in the latter the temperature gradient is imposed on the boundary, 

whereas in the former case the boundaries can be isothermal.

One of the first instances where these kinds of flows were observed was in 1873, the 

Crookes’ radiometer shown in Figure 2. It consists of an airtight bulb kept in partial vacuum 

and four rectangular vanes suspended by an axis, in a vertical orientation. One side of each 

vane is colored black, while the other is white, leading to different thermal radiation 

absorption coefficients. When the radiometer is exposed to thermal radiation, the vanes start 

rotating with the black colored side trailing. While it is clear now that the flow is induced due 
to thermal creep because of the temperature gradient, it became a topic of scientific debate 

when first observed as there was not an apparent driving force to set the vanes in motion.
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Figure 2: The Crookes’ radiometer

In the recent years, due to advances in the fields of nano/micro-electromechanical systems 

and a need for pumping in vacuum setups, these forces have begun to find applications in 

those areas. In the field of pumping the Knudsen pump, or Knudsen compressor has been 

developed. It consists of arrays of tube elements connecting the upstream and downstream 

vessels, their diameter being in the range of l(T3m. The ends of those tube elements in the 

vicinity of the upstream vessel are kept at low temperature and the ends at the vicinity of the 

downstream are at a larger temperature. Thermal creep predicts a flow from cold-to-hot in 

those tubes. The pumping ability of this pump is regulated by the length of the tubes and their 

length, while the ultimate pressure difference that can be achieved is regulated by the 

Poisseuille flow, in the direction opposing thermal creep flow, expected due to the pressure 

difference of the vessels.

Temperature driven flows in nano/micro-electromechanical systems have been used in a 

number of setups in the recent years, mainly in sensor apparatuses. They offer considerable 

advantages compared to devices used different operating principals, as they usually have no 

moving parts, are of small size and often provide high resolution. Mass flows sensors have 

been developed, utilizing two temperature sensors (one upstream and one downstream of the 

flows) and a heat source between them. Through the different temperature readings, the mass 

flow rate can be extracted. Accelerometers have been constructed consisting of highly 
accurate temperature sensors inside of a sealed cavity containing a rarefied gas and a heat 

source. When external forces are acted upon the gas, the temperature profile is altered. This 

deviation from the temperature profile when no external forces are acted is linked to the force, 

and the acceleration is calculated.

7



1.4 Thesis objectives and structure

Thermally driven flows in microenclosures have lately received considerable attention. At 

some extend this is due to the potential implementation of such flows in the emerging field of 

microfluidics [18] and more specifically in vacuum packed MEMS [19],[20] as well as in 

micropumps [21],[22] and microactuators/microsensors [23],[24], In addition to that, over the 

years, temperature driven flows in cavities have been commonly applied in rarefied gas 

dynamics as prototype problems in order to investigate theoretically interesting physical 

phenomena [25[29] as well as to benchmark and validate novel numerical schemes 

[30],[31],[32],

In the present work, thermally induced flows in two-dimensional rectangular enclosures 

with several boundary condition configurations are investigated in a wide range of the 

Knudsen number covering the slip and transition regimes. Modeling is based on the numerical 

solution of the Shakhov kinetic model. The influence of the Knudsen number, the temperature 

ratio and the cavity aspect ratio on the bulk quantities is examined. Depending on the flow in 

addition to the well-known thermal creep flow, the recently reported flow pattern from hot-to- 

cold in the vicinity of the boundaries is observed. Furthermore, a deterministic procedure 

equivalent to the stochastic decomposition introduced in [33] is developed in order to 

separately calculate the streaming and collision parts of the distribution function and help 

explain the mentioned hot-to-cold flow.

The thesis is outlined as follows:

• A literature review is presented in Chapter 2. The basic concepts, equations and 

expressions used in this work are presented.

• The mathematical formulation of the problem is presented in Chapter 3. The system of 

equations along with the moments and the appropriate boundary conditions are derived 

and their discretized form is presented.

• The deduction of the mentioned deterministic decomposition in done in Chapter 4.

• The results are presented and discussed in Chapter 5. In section 5.2 the half heated 
cavity problem, which is used as a benchmark problem, is discussed. In section 5.3 the 

bottom wall heated cavity flow with given temperature or heat flux is provided. In 

section 5.4 the non-isothermal lateral walls cavity flow is presented.

• Closing the thesis some concluding remarks are made in Chapter 6.
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Chapter 2 Literature review

2.1 The Boltzmann equation

The velocity distribution function f ( £ , r , t ) , where ξ is the molecular velocity vector, r is 

the position vector and t is time, is defined so that f{j;,r,t)dl;dr is the average number of

particles in the differential phase space element d ^ d r , and is a fundamental quantity in 

kinetic theory [5], It contains the whole information of the gas microstate and all macroscopic 

quantities can be derived as moments of the distribution function. For the kinetic 

determination of the distribution function the Boltzmann equation (BE) is used. The 

derivation of the BE for monatomic single gases is presented in Appendix A. Following the 

procedure of Appendix A we obtain the BE in the following form

It is seen that the only quantities in the BE that need to be specified are the differential 

cross section σ  and the differential solid angle dCl that are given by the molecular 

interaction model, some of them are [5] the Flard Sphere model (FIS), the Inverse Power Law 

model (IPL), the Maxwell model which is a special case of the IPL model, the Variable Hard 

Sphere model (VHS), the Variable Soft Sphere model (VSS), the Generalized Hard Sphere 

model (GHS) and the Generalized Soft Sphere model (GSS). Apart from those quantities each 

model provides expressions for transport coefficients used in the macroscopic approach.

In the derivation of the BE two main assumptions were made. BE is only applicable in 

dilute gasses (when the distance between molecules is much larger than the molecular 

diameter) as only binary collisions were assumed. It is noted that gases in atmospheric 

pressure are in dilute conditions. The other assumption is the molecular chaos or

(2 . 1)

rate of change o f the average 
number of particles

o f the average rate of change due 
f particles to free motion

rate o f change due 
to field forces

rate of change due to collisions
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Stosszahlansatz. It was introduced by Boltzmann and states that the velocities of colliding 

molecules are uncorrelated.

During each collision there are some quantities that are conserved. If ψ is such a quantity 

then during a collision of the form the conservation equation can be written

as

ψ{ξ) + ψ{ξχ ) = ψ[ξ*) + ψ[ξΐ)  (2·2)

It can be shown that the average rate of change of a quantity ψ due to collisions is [5]

(δψΛ
\  dt y  coll

λ co « co oo 4 /r- J  ■/(/)(/(?)<*? = - /  \  \ w ^ )
-00 -co  -00 0

(2.3)

where N  is the number density. If we interchange the two velocity integration variables, 

substitute them with their post collision velocities, interchange the latter and sum the four 

expressions we get
°° __ _  1 ® ® 4 i  , ^  ,  __ . vj J( f )y / [%)d4 = - \  J J + ''λβ,σάΩΛξ,άξ
— 00 — OO — 00 0

and using Eq. (2.2)

] : ( / ) Ψ { ξ ) ά ξ = ] [ ^ / ( τ ~ ξ Α + ξ ^ + ρ ^ ψ [ ξ ) ά ξ = α  (2.4)

Substituting ψ with m,m<̂  and — in the previous expression and performing the

integration using the integral expressions for the macroscopic quantities as presented in the 

next section we get the macroscopic conservation equations

1 '
VP

P

P

—  + U · 
dt

= -V-U

' ™ +ϋ · ν ϋ
\ dt j
( de —· — A 
-  + U-Ve 
dtV

= p F - V - P

= -V · Q + p F  · ΰ - P : VU

mass conservation

momentum conservation

energy conservation

(2.5)
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where p  is the density, U is the macroscopic velocity, F is the force field, P is the stress 

tensor, e is the energy and Q is the heat flux vector. The previous equations are valid in the 

whole range of the Knudsen number. One of the reasons that the macroscopic approach fails 

to model rarefied flows is that the constitutive laws (e.q. Fourier’s, Newton’s and Fick’s for 

the Navier-Stokes model) are not valid in those regimes.

A particular solution of the BE when no external forces are present (f  = o) and for an

equilibrium state ^  = 0, ^  = 0
dt dr

is the global Maxwellian distribution defined as [5]

/ M N
k  bK B J

3/2

m y

exp (2 .6)

where N,T,U  are constants. The distribution of the same form when N,T,U  are depended

on t andr is the local Maxwellian distribution and does not satisfy the above mentioned 

special case of the BE in principal.

2.2 Macroscopic quantities

Macroscopic quantities of practical interest can be obtained as moments of the distribution 

function using the following expressions [5],[6]:

Number density (2.7)

Velocity (2.8)

Stress tensor (2.9)

Temperature
Γ Μ _ 3 * ( μ ) * . Μ  f [ ' ' ^

(2.10)

Fleat flux Q f  >)=f  J( ξ - ϋ ) 1 ( | - c 7 ) / f , J , / p i (2.11)
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H quantity H(r,t^ = tjin άξ (2.12)

/where £s is the Boltzmann constant and c0 is a constant to make — dimensionless. The H
co

quantity may be related to entropy S and the so-called H-theorem to the second law of 

thermodynamics.

2.3 The BGK and Shakhov kinetic models

As mentioned the solution of the BE is a very demanding task that requires a lot of 

computational cost, mainly due to the fivefold integral on the right hand side. One way to 

overcome this difficulty is the substitution of the collision integral with expressions given by 

kinetic models.

The most basic and well know kinetic model is the BGK model [9]. It assumes that each 

molecule will be in the state of local equilibrium after only one collision. The mathematical 

expression of the BGK model is:

= (2.13)μ
It has been extensively used to model isothermal single gas flows, with considerable success. 

It cannot model non isothermal flows though as it cannot provide the correct expressions for 

the viscosity and thermal conductivity coefficients simultaneously, as it yields for the Prandtl 

number Pr = 1 instead of 2 / 3 .

An extension of the BGK model, able to handle non isothermal flows is the Shakhov model 

[10], which has been used extensively in the present work. The mathematical expression is:

2 ( / )  = ^ ( / 4 - / )  (2.H)

where

1 +  -

Α ( ^ Γ )2

f  /— —·\2 Λ

Γ ξ - Ό )
η ι { ξ - υ ) 5

ν ’ ) 2 kBT 2
V )

(2.15)
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This model provides the correct value of the Prandtl number Pr = 2 / 3, but is limited to single 

monatomic gas flows.

2.4 Boundary conditions

The boundary conditions for flows simulated using the BE are part of the solution. Their 

main objective is the correlation the distribution of the molecules departing from the boundary 

with that of the incoming molecules. The most widely used type of boundary condition is the 

Maxwell diffuse-specular. In the case of purely diffuse boundary conditions the distribution of 

molecules departing from the boundary is the local Maxwellian distribution characterized by 

the wall temperature and velocity. Specular reflection assumes that molecules arriving to the 

boundary collide with it in an elastic way, and are reflected without exchanging energy with

the boundary. Taking n as a unit vector normal to the boundary with direction towards the 

flow field, we can denote the incoming distribution as / ~ [ ξ  j when ξ -n< 0 and the

outgoing as / + ^  j when ξ ■ n > 0. A general expression for the boundary conditions is [34]

/*(?)=- [ (?)<*? (2.i6)
ξ n<0 ^

where W {ξ' —> £ j is the scattering kernel and is the probability that a molecule arriving at the

boundary with velocity £ will depart with velocity ξ .

In the case of specular reflection we expect that only the velocity component normal to the 

boundary will change, and will become the opposite, that is [5]

r ( l)= /- ( i-2 ( |.i)« )  (2.i7)

leading to the scattering kernel

ψ Α ξ - + ξ )  = δ ξ ' - ξ  + 2 (!·« )«  (2.18)

where δ  is the Dirac function according to ^ δ [ τ - a^(p[r^dr = φ(α^.

In the case of purely diffuse boundary conditions, the outgoing distribution is the local 

Maxwellian characterized by the wall conditions,
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( \

(?)
m12kBnTw J

3/2

exp
m ( I - t v )2

2 kBTw
(2.19)

where Tw is the wall temperature Uw is the wall velocity and Nw is a parameter ensuring the 

impermeability condition. The above expression gives the scattering kernel

f  \ 3/2m exp
m(?■■U„.

2 kBTw
(2 .20)

In practice the boundary interaction is not purely specular neither purely diffusive. It is 

more accurate to assume that a portion a of the molecules is reflected diffusively and the 

remaining ( l -  a) undergoes specular reflection, leading to the diffuse-specular scattering 

kernel

ψ [ ξ  -+|) = α»ψ· - ^ ή + ( 1 - α ) Ι Τ , ( ξ (2.21)

where a is the accommodation coefficient.

One drawback of the diffuse-specular scattering kernel is that the probability of a molecule 

reflecting according to specular or diffusive reflection is independent of the velocity 

magnitude and direction. The Epstein scattering kernel overcomes this drawback, but was 

criticized as the coefficients used in it are chosen empirically [35],

2.5 Deterministic solution of model kinetic equations

Several methods have been developed for the solution of the Boltzmann and model 

equations. In this work the discrete velocity method has been used. In the discrete velocity 

method the continuous spectrum of molecular velocities is replaced by a discrete set of 

velocities, accordingly chosen in order to achieve good accuracy. Since the molecular velocity 

takes discrete values it is possible to replace the Boltzmann or model equation with a set of 

partial integrodifferential equations with the physical space coordinates being the free 

variables.

This method has been extensively used over the years to solve the kinetic model equations. 

It was initially applied to simple, one dimensional geometries for linearized equations 

[36],[37]. The Poiseuille and Couette flows for parallel plates where simulated for small
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pressure gradients and wall velocities respectively, as well as the Poiseuille flow between 

concentrical cylinders. It was also applied to linear heat transfer problems between plates and 

cylinders. Later two dimensional geometries were simulated, for linear cases [38-[45], such as 

the driven cavity flow and flows through ducts of different cross sections . Moreover, non­

linear flows have been successfully simulated using the discrete velocity method, in one­

dimensional cases such as the heat transfer between coaxial cylinders [46], Two dimensional 

nonlinear flows where this method was successfully applied include pressure driven flows 

through slits, orifices and tubes [47],[48].

Considerable effort has been made over the years in order to make this method more 

efficient. One approach is to implement a conservative scheme as described in [49], In such a 

numerical scheme the macroscopic quantities calculated at the end of each time step are 

corrected so that they satisfy the conservation equations. When a trivial numerical scheme is 

implemented, dense computational grids have to be used in order to ensure that the 

conservation principals are not violated. Using the conservative scheme requires more 

computational effort per iteration than a trivial scheme, but since coarse grids can be used 

without lack in accuracy, the overall CPU time requirement is decreased.

Another approach is to use the so-called accelerated form of the equations, as described in 

[50], In this delicate approach the kinetic equation is substituted by a system of equations, its 

size depending on the number of moments to be calculated, and this system is iteratively 

solved. One of the equations is in non-accelerated form, meaning that the computational effort 

for this equation alone is comparable to the computational effort for the trivial scheme. It is 

apparent that since the whole system of equations has to be solved, the computational effort 

per iteration is increased, but the number of iterations required for convergence is 

dramatically decreased. An interesting point is that the greatest improvements were noticed in 

near hydrodynamic cases, a regime where the trivial scheme has a very slow convergence 

rate.
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Chapter 3 Problem description and formulation

3.1 Flow configuration

The present work is focused in the simulation of temperature driven cavity flows through 

kinetic theory. The Shakhov model equation [10] was used, as it provides the correct viscosity 

and thermal conductivity coefficients, in contrast with the BGK. The Shakhov model has been 

proven to be a reliable model for non-isothermal flows [51-[55]. The parameters 

characterizing the flow are the Knudsen number, the temperature ratio of the cold over the hot 

walls, the aspect ratio H  / W of the cavity and the IPL parameter. The macroscopic quantities 

of interest are the temperature T(x' ,y' )  and density N(x' ,y' )  distributions, the velocity

U ( x \ y ') and heat flux Q(x' ,y')  vectors and the stress tensorF* . (x ',y ').

It is convenient here to introduce the following non-dimentionlization:
1 i τ  ΛΓ 1 WI2 H_ x _ y _ T _ N 

* ~ W , y ~ W ’ T~ T ’ U~ Nn

a rr / l  n

, N 0=—  J \N (x ',y ')d x 'd y '
-W/ 2  0

« = - ,  ζ  = ~ ,  u0 = J 2 ^ - T 0, q =m
Q p

N 0kBT0u0
Pa = N0kBT0

h = ^L
Nn

(3.1)

where N0 is the average density and u0 is the most probable molecular velocity.

The cross section of the cavity along with the geometric parameters, the origin of the 

coordinate system and the flow structure are shown in Figure 3. Four different cavity 

configurations were simulated. In the first configuration, Figure 4a, the right half of the 

boundaries (x > 0) is kept at a high temperature TH while the rest is at a lower temperature

Tc . This case has already been investigated in [25] and the results were used to benchmark 

the code. Two types of vortices were observed, type-I rotating so that the velocity in the 

vicinity of the horizontal walls is from cold to hot, and type-II counter-rotating to type-I
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Figure 3: View of the cavity and the axes origin.
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Figure 4: The four different cavity configurations simulated.
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vortices. In the second case, Figure 4b, the bottom wall of the cavity is kept at a high 

temperature TH, while the other three walls are at a lower temperature Tc . The third case,

Figure 4c, is similar to the second, except that the bottom wall temperature is unknown and the 

heat flux is known. In both of those cases two types of vortices appear, type-I vortices having 

velocity in the vicinity of the bottom walls directed from cold to hot, and type-II counter­

rotating to them. In the fourth case, Figure 4d, the bottom wall is at a high temperature TH, the 

top wall is at lower temperature Tc , while the lateral walls have a linear temperature 

distribution between TH and Tc according to Ts =TH ~{TH - T c )y ' /H  . Again, two types of

vortices are present, types I and II, with velocities in the vicinity of the lateral walls heading 

from cold-to-hot and from hot-to-cold respectively.

3.2 Governing equations

The nonlinear steady-state two dimensional Shakhov model equation is

(3.2)

where P is the local pressure, μ  = μ(Τ)  is the viscosity at local temperature T and

(3.3)

with

(3.4)

being the local Maxwellian. Introducing the dimensionless distribution function g = fu\ / N0 

along with the non-dimensional variables of Eq. (3.1) the reference Knudsen number as



and the IPL molecular interaction model [7] that yields a viscosity o f the form μ  = μ0
(

V^o J

with ω e  [0.5, l] where ω -  0.5 and ω = 1 correspond to the limiting cases o f Hard Sphere and

Maxwell molecules respectively, we get the non-dimensional form o f the Shakhov model 

equation:

dg dg _ 1 4 π
- + c„

dx ' dy Kn0 2
-ητ \-ω (s'-s)

= g M

i

15 ητ v ’

(3.6)

(3.7)

g
M n

( \3/2
\ π τ )

exp (3.8)

To close the problem the above integrodifferential equation must accompanied by the 

boundary conditions and the expressions for the macroscopic quantities. The integral 

expressions for the macroscopic properties are derived through Eqs. (2.7)-(2.12) and are given 

by:

Number density n = |  g d ζ (3.9)

Velocity u =~ f ^ g d £ (3.10)

Stress tensor Pv n  = 2f (  ζ, -  ut ) ( ζ Γ  Uj) gdC (3.11)

Temperature (3.12)

Heat flux q = \ { ^ ~ u) ( C ~ u)gdC (3.13)

H quantity h(r,t)  = \g\n[g]dlZ (3.14)

In (3.14) c0 has been constituted by IV0 / u\ .

Here the Maxwell diffuse specular boundary conditions were used, in the dimensionless 

form [8]
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&+ (*> y, ζ χ» ζ Ζ) = aS M + (! -  a )  g~ (x, y, ζ χ -  2 n  ■ ζ χ, ζ ν - 2  η · ζ γ, ζΖ) (3.15)

where g + is the outgoing distribution, g is the incoming distribution and n is the unit vector 

perpendicular to the wall. For each of the four walls, and assuming pure diffuse reflection the 

above boundary condition becomes
,2 '

s ; , „ d * > o > c v , , c ) = — ^
bottom

(  ,——bottom
exp (

f '  bottom \  
ζ - “ ·  )

_bottom

§ ι ο ρ { Χ ^ ζ χ ’ ζ γ ’ ζ ζ )  , , \ 3 /2  e X P

\KTW )

ζ -U top

lop

S le f t
f  1 ^- - , γ , ζ , , ζ  ζ,
V  2 J

Jeft

8 ,right ^2 ,*£,,<■,. i , ) -

K * f

right

exp r left (3.16)

3/2 exp
ζ - " Τ ) 2

r right

The parameter nw is computed in terms of the incoming distribution, in order to satisfy the 

impermeability condition:

u-n = 0 => |  ζ -n g ά ζ  = 0 => J ζ -ng* άζ+  J ζ -ng <3ζ = 0 (3.17)
ζ·η>  0 ζ·η<  0

In the case of known heat flux at a boundary the temperature tw of the boundary is not 

known and has to be calculated along with the nw parameter using the following expressions:

u -n = 0=> J ζ■ng +dζ+  J ζ ■ n g ~ d ζ  = 0
ζ·η>  0 ζ·η<  0

* = *„=>_{ ( ? “ w) (C~u)g+dc + J  ( ? - m ) ( ζ - ι ή  g~ dt; = qv
(3.18)

ζ·η>  0 ζ·η<0

The above equations are coupled as both tw and nw appear in the outgoing distribution term.
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3.3 Projection procedure

Although the problem is two-dimensional in the physical space Eq. (3.6) is five 

dimensional as g  = g(x,y ,cx,cy,cz). To reduce the computational cost it is possible to

eliminate the c. component of the molecular velocity using the projection procedure. During 

this procedure the Shakhov equation, the boundary conditions and the integral expressions for 

the macroscopic quantities are integrated all over c, resulting in a system for two reduced

distribution functions. This procedure is irreversible as information is lost during the 

integration, but due to the symmetry in the z-direction the lost information is of no practical 

interest. The two reduced distribution functions are:

φ[χ ,γ ,ζχ, ζ })  = ^ ά ζ ζ (3.19)
R

ψ {χ ,γ ,ζ Ι , ς γ ) = \ ς ] ί ά ζ Ι (3.20)
R

Applying the projection procedure to Eqs. (3.6)-(3.14) the following expressions are deduced:

δφ dcp _ 1 \[π 
dx y dy Kn 2

ητ 1 -ω

dy/ dy/ _ 1 ^  
dx y dy Kn 2

where

m

(<ps -φ )

°{ψ°-ψ)

φ3=φΜ

ψ5 =ΨΜ

1 +

1 +

( ί~Ζ ~\2
4 1 - Γζ - u ) ( £ - “)
15 ητ2 q V τ

\

( 1~ϊ· ~Ϋ
4 1 -  (ζ ~ η]

( ί - « )
15 ητ2 q ν τ

V

with

Μ , ιφ = —  exp 
πτ

Μ

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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(3.26)μ η
Ψ = —  exp 2π

The expressions for the macroscopic quantities become

Number density 

Velocity 

Shear Stress 

Temperature 

Heat flux 

H quantity

= \φ ά ζ

u = — ̂ ε(ράζ

P A r , t ) = 2\ & - uM ^ y ~ Uy ) (Pd ^

q = \[(c-u) φ+ψ)[ζ-ιιΥ ζ

h ( r ,? j  = J  ζοΐη φ
\[πτ

ά ζ -  — η 
2

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

In order to express the h quantity in terms of the reduced distribution function, we assume 

that due to the equilibrium in the z direction the distribution function can be expressed as

1
[29] g  = g xygz, where g z = - = e x p

V7ZT T
. Using Eq. (3.19) for the reduced distribution

function we get
oo co cc ^

<P=\  => φ  = f g x,yg zdCz ^>φ = g x<y f -jF-exp
. v  πτ

£ ^ φ  = g x,y ■

Substituting g  = - j =  exp 
\Ιπτ

. c

T
into Eq. (3.14) we get Eq. (3.32) after some routine

manipulation.

The expressions for the boundary conditions become:

Mφ =φ = πτ„
■exp b - “- ) 2 (3.33)
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(3.34)ψ+ = ψΜ -  _iL-exp
2π

In the case of known heat flux

u-n = 0=> J ζ · η (ρ+άζ+  J ζ · η φ ~ ά ζ  = 0
ζ·η>  0 ζ·η< 0

ζ·η>  0

? = ?„=> J {c~u) φ+ ( c ~ u)dC+  J ( ζ - u )  φ~+ψ~ ( c - u ' ) d £  = q
ζ·η<  0

_ \ 2

This boundary condition is applied to the bottom wall of the cavity to get

uv = 0 ^  J ζ, φ+ ^ ? +  { ζ, φ -^ ?  = 0
C>o i y < 0

qv = v.
C y > °

j (£-«) <P++ Ψ +
C y < 0

(Cy -  Uy ) ά ζ  + J [ζ  -  w) φ- + =
Substituting the expressions for the outgoing distribution, setting the wall velocity to 0 and 

performing the integrations, we get

bottom

A
and ribottom -2 A π

_ bottom (3.35)

where

0 co 0 co — 2

A= J J Cj φ ' dcxdcy and B= j* J { ζ -u}  φ~ +ψ~ (Cy - u y)dCxdcy (3.36)

3.4 Discretization

For the molecular velocity space discretization the discrete velocity method has been used. 

It is computationally efficient to present the velocity vector in polar coordinates according to 

ζ χ =ccos(<9) and ζ γ =csin((9). The continuum spectrum of molecular velocities (c,/9) is

replaced by a set of discrete velocities (cm,$ ) where cm e(0,oo), m = 1,2,...,M and 

θη & (0,2π), η = 1,2,...,7V. The magnitudes cm are taken to be the roots of the Legendre 

polynomial of order M  accordingly mapped form (-1,1) to (0,oo), while the polar angles
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are θη = π { 2 η - \ ) Ι  N . The implemented deterministic algorithm has been repeatedly applied

to solve nonlinear flows and heat transfer problems with considerable success [48],[56], [57], 

For the physical space discretization a second order finite volume scheme is used [57], The 

flow domain is divided into I x J  rectangular elements. Upon the molecular velocity space 

discretization the deduced equations are integrated over each space element defined by 

[jc(_1/2,xi+1/2] and [τ,·_1/2,Τ,·+ι/2 j  · After this procedure the discretized equations are:

1 + β  Tdl 0 + „2„ r a o  1 + C “ y , ,2. „  WOO = RHSq>

1+C U H0+C J »1+ -

(k+1/2) (λγ+1/2) +1/2) (3.37)

(3.38)

where

Td 00 = - m n mc cos <9 c sin (9 1
------ -  + -
2 Ay 42Ax

r a 0 i = ^ . . ‘:° sA + £ J ^ + i
2Δχ 2Ay 4

^COSff, Sm θη , 1
2Δχ 2Ay 4

c cos θ„ c sin 6f 1
Td11 = + w n _I___ m

2Δχ
^ + 

2Ay 4

1

iU70 2

1 V^r

K n <> 2

1

M ) 2

1

K n o 2

«r

nr_l-<y

77Γ

m

Δ - ω

\(*)

J 1/2,7—1/2 

\ «

J i - \ l2 , j+ l l2

\(*)

J 1+1/2,_/-l/2 

\W

/i+1/2,7+1/2

(3.39)

+

RHSy/ =

+

r  1 V 7τ

v A/7n 2

r  1 \ [ π

v a :« 0 2

r  1 \ [ π

v K n o 2

r  1

2

η τ ] ωφ ?

\ «

7  i+ \/2 ,j+ \/2 ,m ,n  

\ ( k )

+
1 . 1 - ω „ 5

/7Γ1
y

m ^ V

«Γ1 “y 5

Y*)
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(3.40)

(3.41)

where A: is the iteration index.
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The macroscopic quantities are calculated through expressions (3.27-3.32). The integrals

are estimated using the Gauss-Legendre quadrature for the velocity magnitude integration and 

the trapezoidal rule for the polar angle integration. The discrete expressions derived are:

Number density
Μ  N

n [k+l) = Y T  (p {k + m )w  Α Θi,j  /  j /  j T  1 . i.m.n m
m=1 n=1

(3.42)

Velocity
1 Μ N

„ H = _ L y y c cosθ ω ( Μ / 2 ) Μ , Α Θx lj /  J /  J m n r i , j ,m ,n  m
n i , j  m=1 n=1

(3.43)

i Μ  N

MH = l y y c sin9 c p ^ xl2)w  Α Θy l.J /  -i /  j m n r i , j ,m ,n  m
m=\ n=\

(3.44)

Shear stress
Μ N

= 2Σ Σ ( c m cos 9 n -  u * ij) ( c „  sin θ η -  u yy ) <
/w=l n=1

^ i+1/2̂ w Α Θri, j ,m ,n  m (3.45)

Temperature
0 Μ  N , s o(w)= 2 y  y  c2 (w/2) (i+i/2) 2

»,y  ̂ /  j /  -μ m Ti,j ,m ,n  τ  i,j,m,n j  m
3 r l i  j m=1 «=1 -4

[ u 2.. + u 1 · )( * U fiJ/ (3.46)

Heat flux

Μ N

<&T) = Σ Σ  (c« cos f)n -  uxi j ) + (cm sin θη -  uyi j )
m= \ «=1

Μ  N  r

m -\  n=1 '—L~
9 y , +j  = Σ Σ (g , cos θ η -  uxiJ ) + { c m sin θη -  uyi j )

Μ N

H quantity * < Γ = Σ Σ < 0
m=\ n-\

φ«+υ2)i i,j,m,n

τ  τ  i , j , m , n

^ k+V2K w (k+m)

{cm cos θη -  uxi j ) wmAO

(3.47)

(c„,sin 0n- u yiJ)wmA0

(3.48)

(3.49)

In the above expressions wm and ΑΘ are the weights associated with the velocity magnitude 

and polar angle integrations respectively.

The simulation stops when a convergence criteria given by

=max{|«,5) - 'C ~ 1>| + K * j - ux u \ + \uytj ~ uy u \  + Vu - < Γ )|} <error Π.50)

where "error" is chosen empirically, is fulfilled.



A known issue with the boundary conditions used is that they are always discontinuous at 

the comers of the flow domain. This is because the nw parameters calculated for the same

comer node but for a different wall, e.g. nb°tt°m and n[fl for the bottom left comer, are 

different. In order to overcome this difficulty we do not calculate the nw parameters of the

comers directly using the integral expressions derived, but they are estimated using an 

extrapolation for each wall, and the two different parameters estimated this way are averaged 

as show bellow:
bottom , ..i Mbottom

bottom +  n w, 3 bottom bottom „ bottom„  _  o  bottomfiw, i  —  2nw 2 w.V  3

left Jeft
left _  Π '>· · 1 + Π >ν,3 _  2  left _  left

n w ,  2 ~  n " ' ·  1 Z  vv 2 " w .  :w, 2 w, 3

nbottom ,J e ft
1 — n w, 1 ~

bottom left ~  /  bottom . left \  (  bottom . Mleft \
nw, 1 + « w , i  2 1 « w, 2 + « w , 2 j - ( « w , 3  + «vv.3 j

the same procedure is done for the density and temperature as well.

In closed domain flows the total mass of the gas has to remain constant throughout the 

simulation. A problem that came up with this configuration is that since the boundary 

conditions are part of the solution, the initial estimation can be far from the final solution and 

during the first few iterations of the code the velocity normal to the walls is not necessarily 

zero. This causes an artificial mass flow rate through the boundaries and the final mass in the 

cavity is not the same as the initial. To overcome this, in the first few iterations we calculate 

the average dimensionless number density in the cavity and normalize the number density of 

each node with this average. Another possible solution is to obtain the nw parameters 

analytically for the free molecular limit and use those values of nw as an initial guess. This 

way the mass is conserved at high reference Knudsen numbers, but as the Knudsen number is 

decreased the final values of nw become much different from the initial guess and the same 

problem arises. A final solution is to start from an initial guess, iterate for a few iterations and 

initialize the problem using the calculated values of ntv as the new initial guess. Repeating 

this procedure several times the initial values of the nK converges and the code is allowed to

carry on with the simulation of the flow. This procedure however comes with a considerable 

computational cost.
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Chapter 4 Decomposition of the distribution function

4.1 Introduction

In general the distribution at each point of the flow domain consists of particles arriving 

from the domain boundaries without any collisions with other particles and particles arriving 

after an arbitrary number of collisions with other particles. The former part of the distribution 

function is named ballistic part and the latter collision part. In this chapter a method is 

introduced for the decomposition of the distribution function into these two parts. The two 

parts of the solution are named this way to distinguish this from other decompositions 

proposed, such as the splitting in the free molecular and collisional parts. These 

decompositions are used because they offer either less computational effort, or improved 

accuracy in certain formulations, especially in formulations with strong boundary induced 

discontinuities [41],[58],[59], The proposed decomposition does not offer any computational 

advantages, but is a tool that can be used to explain certain phenomena that are observed in 

rarefied gas flows.

Such flows are characterized by relatively large Knudsen numbers, meaning that the mean 

free path is comparable to a characteristic length of the problem. In those regimes a particle 

can travel a significant distance after being emitted from the wall before colliding with other 

particles. This particle will carry the boundary information, such as temperature, to a location 

far from the boundary, and this leads to very interesting non equilibrium phenomena, such as 

the thermal creep flow. As most of the non-equilibrium phenomena depend on this 

mechanism, it is of great scientific importance to develop a method that is able to give a 

quantitative measure of the contribution of the ballistic and collisional parts.
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4.2 Decomposition using the DSMC method

This decomposition has been achieved modifying the traditional DSMC algorithm in [33] 

by S. Stefanov. This was achieved by adding an index / . for each simulator particle

j  = 1,2,..., Number o f particles. Particles whose index value is 0 are part of the ballistic 

distribution and those with value 1 are part of the collision distribution. When a particle is 

emitted from the boundary its index value is set to 0, and when a pair of particles collides 

both their index values are set to 1, while no change is made during the free motion of 

particles. The distribution function is decomposed as

g(x>y>£) = g (h) (*> y> ? ) + g (c) (4 -1)

where g {h) andg(c) denote the ballistic and collision parts of the distribution function 

respectively. During the simulation the particles’ indexes change their values all the time. 

During the sampling procedure, where the macroscopic quantities are calculated, the two 

kinds of particles are sampled separately, to deduce the ballistic and collisional parts of the 

macroscopic quantities.

Based on the above description it is deduced that for the ballistic part of the distribution the 

boundaries act as a source, while the bulk flow acts as a sink. The situation is reversed for the 

collision part of the particle distribution, where the bulk flow acts as a distributed source and 

the walls as a sink. The equivalent deterministic procedure is not trivial, an attempt is made in 

the next section while some results are presented in Section 5.4.3.

4.3 Kinetic decomposition

The equivalent procedure was achieved using the kinetic model equations and the results 

are generally in agreement with the ones obtained using the DSMC method. In order to 

distinguish between the two methods, the term streaming instead of ballistic is used here. In 

Figure 5 c is the magnitude of the molecular velocity, Θ is the polar angle, s0 is the distance

from the point (x,y)  to the boundary along the characteristic and g + is the outgoing 

distribution.
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Figure 5: View of the cavity with the outgoing distribution and the distance s0.

Taking the non-dimensional Shakhov model equation we have:

„dg . „dg  1 4 π  1 \Ιπ s
ccost?— -t-csin^^-H ------------ n r  g  = ----------- n r  g

dx Kn0 2
(

\

cos# — + sin (9 —
dx dy j

dy Kn0 2

1 ^  1 -0  1 l-ω sH------ --—  m  g  = ---------- m  g
Kn0 2 Kn0 2

dg 1 \[π  ,_ω
-c —  + ---------- n r  g

ds Kn0 2
1 l-a> 5/7Γ g

V«0 2
(4.2)

Then, integrating the above expression from 0 to s0 and assuming that the factor

1 \[π .- m  is constant, we get
Kn0 2 

g{x>y>c,0) = g + exp
v

Overall distribution ._________

1 η τχ~ω
Kn0 2

1 -s/^

oM > 2

η τχ~ω s
------ g  exp

1 \[π 
Kn0 2

1 - ω  $ητ — ds (4.3)

Streaming part Collision part

In the above expression the term in the left hand side is the overall distribution g , the first 

term in the right hand side is the streaming part g (s) and the second term of the right hand side
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is the collision part g {c). The above procedure can be used for the reduced distribution 

functions, yielding:

<p(x,y,c,6) = <p+ exp
Overall distribution

1 4 π  ,
Kn0 2

-ητ -ω  S o 1 \[π mΛ - ω

0 K% 2 c
-φ exp 1 \[π 

Kn0 2
-ητl—ω ds (4.4)

breaming part Collision part

and

y/(x,y,c,0) -  ψ+ exp
Overall distribution

1 \[π-ητ l - ω  s o 1 \[π
ο Κη0 2

η τχ~ω s------ ψ exp 1 ^---------- ητ —
Κη0 2 c

ds (4.5)

Streaming part Collision part

Using the discrete velocity method described in the previous chapter we solve the problem to 

obtain φ, ψ and the correspond expressions for the boundary conditions qf and ψ+. The 

direct calculation of the collision part using the expressions

Itl
i Knn 2

ητι~ω s------ φ exp 1 \[π
Έη0^2

-ητ 1-ω ds (4.6)

and

„<■>=} 1 ^
o Kn0 2

ητχ~ω s------ ψ exp 1 λ/ / γ 

Kn0 2
„  _1 ω sητ — ds (4.7)

is complicated due to the path integral that needs to be calculated. This can be avoided 

calculating the streaming parts and then, knowing the overall distributions, the collision parts 

can be calculated through the expressions φ = φ<s) + φ(c) and ψ = ψ{5) + ψ(6).

The calculation of the ballistic part is performed in the following manner. The expressions

<p(s) = <p+ exp 1 \[π 
Kn0 2

-ητ 1-ω ^0 and i//(s) = ψ + exp 1 \[π 
Kn0 2

-ητι-ω^  
c

are used in each

physical space element, where the quantities n and τ are mean values of those quantities at 

the four nodes of the element. This way the assumption made is overcome. The solution 

method will be described for one case, as depending on the polar angle we solve for a 

different node and the outgoing distribution is emitted from a different side of the element.
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Δχ
We calculate the distance s0 = ------  of the characteristic as shown in Figure 6, and the

cos <9

point along the vertical side where the distribution is emitted is yx = _y . —s0 s in # . The 

outgoing distribution is estimated as a weighted average of the distribution in the adjusting

nodes, as φ+ = w ^ XJ_h m + w2< p ? \ and ψ + = ™λψ (*\;_χ̂ η + w ^ f \ um n, where w, =„(s) (S ) , ( S ) y} - y  i

ΔΤ

and w2 = ----  1 . Substituting those in the above expressions we get
Ay

= <P+ eXP
1 \[π 

Kn0 2
- m

\-a> s0 (4.8)

and

^ (S), ψ exp 1 4~n
Kn0~2

-ητ Ι - ω  S 0 (4.9)

Figure 6: View of a grid element with the outgoing distribution and the distance sg .
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It is noted that the outgoing distributions denoted by the plus superscript are not necessarily 

the boundary conditions on the domain boundaries, but the distributions coming into the 

physical space elements.

The expressions for the macroscopic quantities become 

n = |  φάο = J (V s) +(p(c)̂ )dc = J <p{s)dc + J^ (c)c/c = n(s) +n(c) 

for the number density and

ui - —\ ctfdc  = — f c (  <p(€) + (p{c)) dc = — f c ^ (s)dc + — [ cxp^dc = u f1 + n\
τη J  Τη J   ̂ ' y i J Τη J

(4.10)

(c) (4.11)

for the velocity vector.

Having solved the overall problem, the overall macroscopic quantities are calculated, and 

calculating the streaming part of the distribution function, we integrate it to get the streaming 

part of the macroscopic quantities and through the above expressions, the collisional parts are 

calculated.
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Chapter 5 Results and discussion

5.1 Computational parameters

The flow is characterized by the reference Knudsen number, in all of the cases checked, the 

temperature ratio in all but the known heat flux cases, where the value of the heat flux is 

known and the aspect ratio of the cavity H  !W  for the non-isothermal lateral walls case. The 

computational grid used was different in each case, and its parameters are summarized in the 

following table.

Table 3: The computational parameters for each case.

C ase I J M agn itu d es A n gles E rror

Half heated cavity 200 200 40 200 IQ-10

Bottom wall heated 

cavity with given 

temperature

400 400 80 400 10‘13

Bottom wall heated 

cavity with given 

heat flux

200 200 40 200 10-1°

Cavity with lateral 

walls having linear 

temperature variation

400 400*H/W 80 400 10'10

It is noted that for the known bottom wall temperature and the linear temperature 

distribution along the vertical walls problems the temperature of the hot wall was used for the 

non-dimensionalization, while on the other two cases the temperature of the cold walls was
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used. Therefore, the dimensionless quantities of these cases cannot be directly compared with 

each other and a transformation is required. Also, the reference Knudsen number used in 

section 5.2 for the half heated cavity is not the one defined at (3.5), but has been multiplied by 

the factor π ! 4 to match the definition of [25]. Finally, it is noted that upon convergence, all 

conservation principals are fulfilled.

5.2 Half heated cavity

In the half heated cavity problem, the boundaries at x < 0 have a constant temperature Tc 

and the boundaries at x > 0 have a constant temperature TH, with TH >TC. Simulations were 

performed for one temperature ratio (TH / Tc = 2) andKn0 = 0.05,0.5 and 5. The problem has

been previously solved in [25] and the solution was repeated in this work for benchmarking 

purposes.

Since the boundary conditions are symmetric with the axis of symmetry at y = 0.5, all 

results in this section are shown for the half of the flow domain. The effect of gas rarefaction 

in the flow field pattern can be seen in Figure 7. For small Knudsen numbers the biggest part 

of the bottom half of the flow domain is covered by a vortex (vortex Type-I) rotating so that 

the velocity in the vicinity of the bottom wall is from cold towards hot regions, due to thermal 

creep. Of course a second vortex of this kind exists in the upper part of the cavity, due to 

symmetry, and is counter rotating to the ones shown in Figure 7. In the bottom comers of the 

cavity two more vortices appear, counter rotating to the Type-I vortex (vortex Type-II), 

having a velocity in the vicinity of the bottom wall heading for hot towards cold regions. 

These vortices are created due to the viscous forces acted on them and in those regions are 

greater than the thermal creep forces. As the gas rarefaction is increased the Type-II vortices 

start to occupy a greater part of the cavity, squeezing the Type-I vortex towards the top part of 

the cavity.

In Figure 8 we can see the distribution of ux along various horizontal planes of the cavity 

for various Knudsen numbers. Focusing to the distribution of ux along the bottom wall 

(y = 0) we see that for Kn0 = 0.05 the biggest part of the bottom wall has a positive ux and 

only in small regions near the comers ux becomes negative. As the Knudsen number increases
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those regions become bigger, and in Kn0 = 5 the biggest part of the bottom wall has a 

negative ux, contrary to the velocity expected due to thermal creep.

The terms vortex Type-I and II are used here instead of the trivial terminology primary and 

secondary, as both kinds of vortices can be important in the description of the flow field, 

depending on the gas rarefaction. It is seen that as the Knudsen number increases the Type-II 

vortices start to occupy a considerable part of the flow domain. Moreover it can be seen at 

Figure 8 that the magnitude of ux in the vicinity of the Type-II vortices can be greater than

the magnitude in the vicinity of Type-I vortex. This flow, directed form hot to cold regions, is 

unexpected and of great interest as it is opposed to the normal thermal creep flow expected. It 

is also seen in Figure 8 and Figure 9 that as the gas rarefaction is increased, the magnitude of 

the velocities is decreased, and in the free molecular regime no motion is present as expected.

This problem was solved mainly for benchmarking purposes as mentioned above. It can be 

seen through Figures 8-13 that the comparison between the two results is very good. Of 

course there are small deviations but they are expected as in the present work the Shakhov 

kinetic model was used, while in [25] the BGK kinetic model was applied, and the BGK 

model cannot provide the correct viscosity and thermal conductivity simultaneously.

The boundary conditions in this configuration are discontinuous and a known issue of the 

DVM is the propagation of boundary induced discontinuities, known as ray effects. Those ray 

effects can be seen in Figure 8 and Figure 9 as small oscillations of the curves in the results of 

the present work. In the results of [25] they are not apparent as a sophisticated numerical 

procedure was used to cope with the discontinuities. Those discontinuities can also be seen at 

Figure 12 and Figure 13 at the distributions along the bottom wall. Because of the numerical 

procedure used in [25] they are much more visible compared to the results of the current work 

where they are smoothed. The discontinuity of the density distribution is much stronger in 

large Knudsen numbers, as expected, and is becoming weaker as the Knudsen number is 

decreased.

On the other hand the temperature discontinuity is strong even at small Knudsen numbers. 

Finally, we can see that the distributions of density and temperature at j/ = 0.01 are 

continuous even at high Knudsen numbers, as the discontinuities are rapidly diminished by 

viscous forces.
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(c) Kn0=0.05

Figure 7: Streamlines for various Knudsen numbers
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(a) Κπ =  5
y=0 - O -  y=0.1

(b) Kn =  5

(d) Kn =  0.5

(f) Kn =  0.05

Figure 8: Distribution of the horizontal component of the velocity along horizontal planes for 

various Knudsen numbers: present results (left) and results of [25] (right).
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(a) Kn =  5

—Ο.δ Ο χ  Ο.δ

(b) Κη =  5

-0 .5  Ο χ  0.5

-0 .5  Ο χ  0.5

(Ο Κη =  0.05

Figure 9: Distribution of the vertical component of the velocity along horizontal planes for 

various Knudsen numbers: present results (left) and results of [25] (right).
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(a) Kn =  5

(c) Kn = 0.5 (d) Kn =  0.5

Figure 10: Density contours for various Knudsen numbers: present results (left) and results of 

[25] (right)
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(b) Kn =  5

(d) Kn =  0.5

(e) Kn =  0.05 (f) Kn =  0.05

Figure 11: Temperature contours for various Knudsen numbers: present results (left) and

results of [25] (right)
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(d) Kn = 0.5

Figure 12: Distribution of density along horizontal planes for various Knudsen numbers: 

present results (left) and results of [25] (right).
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(e) Kn =  0.05 (0 Kn =  0.05

Figure 13: Distribution of temperature along horizontal planes for various Knudsen numbers 

present results (left) and results of [25] (right).
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5.3 Bottom wall heated cavity

In this formulation the bottom wall of the cavity is hot while the other three walls are kept 

at a constant lower temperature Tc . Two cases of this formulation where checked, in the first 

the bottom wall is kept at a constant given temperature TH, while on the second the heat flux

departing from the bottom wall is given and the wall temperature is part of the solution. In 

order to check the coherency of the results, the distribution of heat flux along the bottom wall 

that was taken from the solution of the given bottom wall temperature problem was used as a 

boundary condition for the given heat flux problem and the distribution of the wall 

temperature was the same as the one used as a boundary condition for the initial problem.

5.3.1 Dirichlet boundary conditions (given wall temperature)

This configuration, a cavity with one hot and three cold walls, is very commonly found in 

micro-electromechanical systems. During their design either the temperature ratio is assumed 

and the geometry and flow characteristics are chosen so that it is sufficient for the cooling, or 

the heat flux is assumed. In this section the given temperature case is investigated.

The flow was simulated for 0.1 <Kn0, three temperature ratios Tc / TH =0.1, 1, 10 and

only hard sphere molecules (&> = 0.5) where assumed. In Figure 14 we see temperature

contours and streamlines. At small Knudsen numbers the largest part of the cavity is occupied 

by vortices rotating so that the vertical velocity in the vicinity of the lateral walls is negative 

(Type-I), leading to a mass flow from cold towards hot regions. Two more vortices exist 

(Type-II), even in small Knudsen numbers, counter-rotating the Type-I vortices. The Type-II 

vortices are restricted to small regions near top of the lateral walls at small Knudsen numbers. 

As the Knudsen number is increased the Type-II vortices start to expand squeezing the Type-I 

vortices towards to the bottom part of the cavity. As can be seen in Figure 15 the greatest part 

of the lateral wall has a velocity from hot towards cold regions and in some cases the 

magnitude of u in the vicinity of the lateral walls is greater for the Type-II vortices, than for

the Type-I. So it is clear that this unexpected flow from hot to cold regions exists in this 

formulation too.
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Since these kinds of configurations are used mainly for the cooling of MEMS, it is of great 

practical interest to calculate the heat flux departing from the bottom plate. Figure 16 shows 

the dimensionless heat flux departing from the bottom plate in terms of the reference Knudsen 

number for various temperature ratios. The dimensionless heat flux increases, as the Knudsen 

number increases and tends to an asymptotic value as Kn0 —> oo . A very interesting finding is 

that the dimensionless heat flux does not necessarily increase as the temperature difference 

increases, but is seen to have a maximum around TC/TH =0.5. The comparison shown in

Figure 16 between the results of the current work (DVM) and the results of [60] (DSMC) 

have a good agreement, validating this interesting finding. Some dimensional results for the 

heat flux departing from the bottom plate per unit length in the z-direction are provided in 

Figure 17.

A well-known issue of the Discrete Velocity Method is the propagation of boundary 

induced discontinuities, especially at high Knudsen numbers, known as ray effects. A simple 

procedure was used to cope with the discontinuous boundary conditions at the two comers of 

the bottom wall. Along a small length at the two ends of the bottom wall, equal to 5% of the 

total side length of the square cavity, the temperature is taken to have a linear variation 

between Tc and TH . Although the ray effects were diminished this way, the boundary 

conditions are still strongly discontinuous. Figure 18 shows the boundary conditions for 

Kn0 = 1, TC/TH =0.1 and for three values of the molecular velocity magnitude. It is seen that

at the two comers of the bottom wall the boundary conditions are strongly discontinuous, 

despite the mentioned procedure. Another observation is that the value of the boundary 

conditions quickly tends to zero as the molecular velocity magnitude increases.
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(a) Κπο-0.1 Tc /TH—0.1 (b) Kn0=0.1 Tc/Th=0.9
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(c) Kjiq—1 Tc/T„-0.1 (d) Kn0-1 Tc/Th-0.9
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(e) Kn0-1 0 Tc/T„-0.1 (f) Kno=10 Tc/Th=0.9

Figure 14: Streamlines and temperature contours for various Knudsen numbers with 

TC/TH= 0.1 (left) and Tc / TH = 0.9 right
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Figure 15: Distribution of the tangential velocity along the lateral walls for various 

temperature ratios and Knudsen numbers.
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Figure 16: Average dimensionless heat flux departing from the bottom plate of a square 

enclosure in terms of the Knudsen number and for various temperature ratios.

Figure 17: Dimensional heat flux in terms of the reference pressure for a square cavity of side 

W = 50pm and for T0=TH = 1000K .
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Figure 18: The boundary conditions forATw0= l, Tc / TH = 0.1 and for three values of the 

molecular velocity magnitude.
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5.3.2 Neumann boundary conditions (given heat flux)

In this configuration the heat flux departing from the bottom plate is given and the wall 

temperature is part of the solution. Figure 19 shows temperature contours and streamlines for 

Kn0 =0.1 and 1 with qw = 0.5 and 1. The flow pattern is the same as in the given bottom wall

temperature, as this is essentially the same set-up. Both Vortex-type I and II are present, in 

both reference Knudsen numbers shown in Figure 19. The type-II vortices are restricted close 

to the lateral walls for Kn0 = 0 .1 , but still cover the biggest part of the wall, while for

Kn0 = 1 they are well developed covering the biggest part of the cavity.

Using the given heat flux boundary condition we can determine the operating temperatures 

for given geometry and flow conditions of the device, so that it is able to cope with the design 

load. The average dimensionless bottom wall temperature is given in Table 4 in terms of the 

dimensionless heat flux and the Knudsen number. This average dimensionless bottom wall 

temperature can in some cases be far from the actual values of the dimensionless bottom wall 

temperature distribution. This can be observed in Figure 20 where the distribution of the 

dimensionless bottom wall temperature is plotted for gtv= land Kn0 = 0.01, 0.1, la n d  10.

While for large reference Knudsen numbers the distribution is almost flat, for small values of 

the reference Knudsen number the distribution can have a large curvature, and the average 

value can be far from the actual.

Some dimensional results for the average bottom wall temperature are presented in Figure 

21 in terms of the heat flux departing from the bottom plate for various values of the reference 

pressure for a square cavity of side W -  50 μηι and T0 =TC = 100X .

Table 4: Average wall temperature for various reference Knudsen numbers and heat fluxes.

Kn0 97

0.01 0.05 0.1 0.5 1 5

0.01 1.15 1.67 2.24 5.71 9.02 —

0.1 1.03 1.17 1.33 2.5 3.81 12.21

1 1.02 1.10 1.20 1.92 2.77 8.70

10 1.02 1.09 1.18 1.37 2.63 8.46
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(c) Kn0=l qw=0.5 (d) K.n0=l qw=l

Figure 19: Streamlines and temperature contours for qw =0.5 (right), (left) and Kn0 =0.1

(top), 1 (bottom).
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Figure 20: Distribution of bottom wall temperature for qw = 1 and KnQ = 0.01, 0.1, 1 and 10

Figure 21: Dimensional heat flux departing from the bottom plate for a square cavity of side 

W = 50pm and T0 =TC =100Kin terms of the average bottom wall temperature for various 

values of the reference pressure.
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5.4 Non-Isothermal lateral wall cavity

In this formulation the bottom wall is kept at a constant temperature TH , the top wall is 

kept at a lower temperature Tc and the lateral walls have a linear temperature distribution 

between the cold and hot temperatures. Simulations were conducted for three temperature 

ratios Tc / TH = 0A, 1, 10 , 0.01 < ΑΓ/7 <10 covering parts of the slip and free molecular 

regimes and the whole transition regime, three aspect ratios of the cavity H tW  = 0.5, 1, 2 

and two values of the IPL parameter ω = 0.5, 1 corresponding to the two limiting cases of 

hard sphere and Maxwell molecules respectively.

5.4.1 Flow domain

The effect of gas rarefaction on the flow structure is shown in Figure 23. For Kn0 =0.01 

only two vortices (Type-I) are present rotating so that the vertical velocity in the vicinity of 

the lateral walls is from cold towards hot regions, as expected due to thermal creep flow. As 

the Knudsen number is increased two additional vortices appear (Type-II) counter-rotating to 

the Type-I vortices. At Kn0 = 0.1 the Type-II vortices are restricted to regions near the bottom

comers of the cavity but as the Knudsen numbers is further increased they expand covering 

larger regions of the flow domain, and the Type-I vortices are squeezed towards the upper 

part of the cavity. Those Type-II vortices rotate so that the vertical component of the velocity 

in the vicinity of the lateral walls is from hot towards the cold regions, that is in the opposite 

direction of the expected thermal creep flow. Of course as the Knudsen numbers tends to 

infinity all motion in the cavity vanishes.

Figure 24 shows the streamlines and temperature contours for Tc / TH =0.5,0.9 and the 

typical values of Kn0 =0.1, 1, 10. Comparing the flow pattern of this figure and Figure 23 the 

effect of the temperature ratio to the flow structure can be derived. As the temperature ratio 

and in effect the temperature gradient along the lateral walls are decreased the Type-II 
vortices become thinner, covering small parts of the flow domain, yet they can cover even the 

whole length of the lateral walls.

A quantitative description of the flow field is given in Figure 22, where the x and y 

components of the macroscopic velocity on vertical and horizontal planes, respectively, 

crossing the centers of the Type-I vortices are plotted. The results are for a square enclosure
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with TC/TH = 0.1 and Kn0 = 0.01, 0.1, 1. Along with the results of the present work 

(Shakhov), results of [33] have been included (DSMC) for comparison purposes. The 

distributions of u are symmetric about x = 0 and the points where uy changes sign 

correspond to the x coordinate of the center of the two eddies of Type-I. The sign of 

ux changes only once for Kn0 =0.01 and 0.1 meaning that only the two Vortex-type I are

present (actually for Kn0=01 the Type-II vortices have been created but are restricted to the 

bottom comers). For Kn0=1 the sign changes several times meaning that the Type-II vortices

are present. These observations are in accordance to the flow patterns shown in Figure 23. 

Another observation is that for all the cases the magnitude of the velocity is in the order of 

10“2 or less (the local Mach is about 10% higher than the dimensionless velocity), which is 

typical of rarefied temperature driven flows. The maximum values of the Mach number were 

observed around Kn0 =0.1. Also as the Knudsen number is increased the magnitude of wvin

the vicinity of the Type-II vortices is increased and can become larger than the u in the

vicinity of the Type-I vortices. These latter remarks are confirmed by the dimensionless flow 

rates of the Vortex-type I and II presented in Tables 5 and 6 respectively for various 

temperature ratios and reference Knudsen numbers. The former ones are computed integrating 

the dimensionless flux nux in the y direction from the center of the Vortex-type I to the top 

wall and the latter ones by integrating the flux nuv in the x direction from the center of the 

Vortex-type II to the side wall. It is seen in Table 5 that that starting from ATn0=0.01as the 

Knudsen number is increased and for the same temperature ratio, the flow rate of Vortex-type 

I is increased obtaining a maximum value around Kn0= 0.07 and then is constantly decreased 

as the Knudsen number keeps increasing, for all temperature ratios. The corresponding flow 

rates of Vortex-type II in Table 6 indicate a maximum aroundKn0=l.2 . The exact physical

reasoning for these maximum flow rates with regards to the reference Knudsen number is 

contributed to the number of collisions between particles and between particles and 

boundaries as the gas rarefaction is changing. In addition, while for Kn0 < 0.1 the flow rate of 

the Vortex-type II is several orders of magnitude smaller compared to the corresponding ones
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Table 5: Dimensionless flow rate of Vortex-type I in a square enclosure for various Kn0 and Tc / TH

Kn0

C ti
0.01 0.06 0.07 0.08 0.1 1 10

0.1 6.34(-4) 1.70(-3) 1.72(-3) 1.71 (-3) 1.67(-3) 2.89(-4) 2.76(-5)

0.5 2.87(-4) 7.51 (-4) 7.53(-4) 7.44(-4) 7.08(-4) 8.60(-5) 6.38(-6)

0.9 5.07(-5) 1.31 (-4) 1.31 (-4) 1.30(-4) 1.23(-4) 1-21 (-5) 6.99(-7)

Table 6: Dimensionless flow rate of Vortex-type I in a square enclosure for various Kn0 and Tc / TH

tc / th

Kn0

0.1 1 1.1 1.2 1.3 10

0.1 2.55(-6) 1.18(-4) 1.198(-4) 1.204(-4) 1.202(-4) 3.99(-5)

0.5 6.98(-7) 2.46(-5) 2.504(-5) 2.513(-5) 2.512(-5) 8.70(-6)

0.9 8.41 (-8) 2.85(-6) 2.902(-6) 2.936(-6) 2.942(-6) 1.08(-6)

of vortex Type-I, as the Knudsen number is increased the two flow rates become of the same 

order and in some cases the former ones are even larger. Also, for the same Knudsen number 

as the temperature difference is increased the flow rate is also increased.

The effect of the lateral walls in the flow pattern may be seen in Figure 25, where 

streamlines and temperature contours for two rectangular enclosures, namely, 

H / W  = 0.5 and 2 for the specific case of Tc / TH =0.1 and Kn0 =1 are plotted. Comparing

the flow fields of Figure 25 with the equivalent for a square cavity of Figure 23, it is seen that 

as the aspect ratio is increased the presence of the Vortex-type II becomes more dominant 

covering a larger part of the flow domain. Obviously, as the aspect ratio is increased the 

importance of the non-isothermal side walls compared to the bottom and top walls is also 

increased.
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Since this is a thermally induced flow it is reasonable to investigate the effect of the 

intermolecular collision model and this is done by including in Figure 26 some results for 

Maxwell molecules for the specific cases of Tc / TH = 0.1 and Kn0 =0.1 and 1. Comparing the 

plotted streamlines and temperature contours with the corresponding ones for hard spheres in 

Figure 23 it is observed that for Kn0 =0.1 there is actually no effect, while for Kn0 =1 there 

are differences.

5.4.2 Lateral walls

Flere, a more thorough description of the macroscopic quantities in the vicinity of the 

boundaries of the enclosure is provided. This includes the y components of the velocity and 

heat flux as well as the shear stress along the lateral walls and the average heat flux from the 

bottom wall.

In Figure 27 the tangential velocity u along the lateral walls of a square enclosure for

small, moderate and large temperature differences in a wide range of the reference Knudsen 

number are provided. When u <0, the flow is from the top to bottom and corresponds to the

expected thermal type flow as described by the Vortex-type I pattern, while when uy > 0 the 

flow is the other way around and corresponds to the unexpected flow pattern as described by 

Vortex-type II. It is observed that when Kn0 = 0.01 the values of u are negative and only very 

close to y=0 and 1 very small positive values appear. The Vortex-type I flow covers the whole 

flow domain. When Kn0 =0.1 both positive and negative values of u are observed. The

positive values are close to the two ends and the negative values in the middle part of the wall. 

That implies that although the Vortex-type I flow still covers most of the whole flow field, 

counter rotating vortices at the bottom and top comers have been created, which, as the 

Knudsen number is increased, grow and merge into a Vortex-type II along the whole length of 

the side wall. These observations qualitatively hold for all three temperature ratios

According to the R13 approach in [31], the formation of the Vortex-type II is explained by 

the opposite contribution of the two different terms of the tangential velocity at the wall, 

which in the present notation, is written as

Λ13
U„ =  ■

(rw + 0 .5 /^)
\[π τ (5.1)
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The superscript R13 has been added here, in order to distinguish in our discussion the 

tangential velocity obtained by Eq. (5.1) from the one obtained through the kinetic solution. 

The first term in the parenthesis is the viscous part of the tangential wall velocity and the 

second one to the transpiration part, caused by the shear stress and the tangential heat flux, 

respectively. The respective magnitude of these terms determines the sign of the tangential 

velocity and the local direction of the flow along the side walls. In order to examine the 

validity of this theory, the kinetic results of p  and qy are introduced to compute, according

to Eq. (5.1), the viscous and transpirational parts of the wall tangential velocity and the whole 

velocity as well.

The shear stress p  and the tangential heat flux qy along the lateral wall at x = -1 / 2 of a 

square enclosure for various Knudsen number and temperature ratios are provided in Fig. 28. 

It is seen that always p < 0 and qy > 0 so they have an opposite contribution to the

tangential velocity. Since, however, as the Knudsen number is increased, both the values of 

the heat flux and the absolute values of the shear stresses are increased, it is necessary to 

further compute the contribution of each part separately.

In Figure 29, the tangential velocities obtained by kinetic theory and according to Eq. (5.1), 

denoted by u and uyu respectively for Kn0 =0.01, 0.1, 1 and 2, are plotted. When the

velocity distributions are negative the transpirational part of the solution dominates and the 

flow along the lateral walls is from cold-to-hot (Vortex-type I), while when they are positive 

the viscous part dominates and the flow is from hot-to-cold (Vortex-type II). The agreement 

between the kinetic and R13 theory in small Knudsen numbers is very good and then, as the 

flow becomes more rarefied, the discrepancies, as expected, are increased. In general, the 

good qualitative agreement for Kn0 <0.1 indicates that the theory developed in [31] in order

to explain the formation of the hot-to-cold flow in the vicinity of the walls is valid in the slip 

regime and fails as the Knudsen number is increased.

It has been pointed in the previous section that the aspect ratio of the enclosure effects 

significantly the flow configuration and quantities. To further demonstrate the effect of the 

lateral walls, the tangential velocity and heat flux along the lateral walls of enclosures with 

H  /W  = 0.5 , 1 and 2 for TCITH =0.1 and Kn0 = 1 are plotted in Figure 30. For the specific 

Knudsen number and temperature ratio the velocities are positive for all thre aspect ratios and 

approximately of the same magnitude resulting to stiffer velocity gradients as H /W  is
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decreased. The tangential heat flux is significantly increased as H IW  is decreased, i.e., as 

the effect of the side walls is decreased.
In Figure 31 the average dimensionless heat flux departing from the bottom plate

0.5

qm = |  qv(x,0)dx is plotted in terms of the reference Knudsen number Kn0 for
- 0.5

TC/TH-  0.1, 0.5 and 0.9. The corresponding results for the large temperature difference

obtained by the DSMC method in [33] are included for comparison purposes. It is seen that 

the agreement between the corresponding Shakhov and the DSMC results is excellent. The 

dependency of qav versus Kn0 is qualitatively similar to the pure heat conduction problem 

between parallel plates, which corresponds to the limiting case of H I W -  0. However, 

quantitatively there are major differences and as HI  W is increased the average heat flux is 

decreased, e.g. the computed values of qav for H I W  = 0.5, 1 and 2 are 0.35, 0.14 and 0.057 

respectively. Concerning the effect of the collision parameter ω on qav it turns out that it is 

small since the values of the computed average heat fluxes for hard sphere and Maxwell 

molecules are close. Finally, it is seen that in this case as the temperature difference between 

the top and bottom plates is increased the average heat flux for the same Kn0 is also

increased. Some dimensional results of the average heat flux departing from the bottom plate 

in terms of the reference pressure are seen in Figure 32.

In Figure 33 and Figure 34 the reduced distribution function is plotted in terms of the 

molecular velocity in various points of the cavity. Subfigures a,c,g and i correspond to the 

four cavity comers, subfigures b,d,f and h correspond to the middle of the stated wall and 

subfigure e corresponds to the center of the cavity. Figure 33 the distribution function for 

TC/TH =0.1 and Kn0 =0.05 is shown. We observe that along the top wall the majority of

particles are concentrated in a small region of the molecular velocity space near c = 0 and the 

number of particles outside of this region is very small, while in the other cases the 

distribution still has a maximum for c -  0 but is more evenly distributed. In some of the 

subfigures some weak discontinuities can be seen. The situation is much different in Figure 

34 for Kn0=2,  where for all the cases the majority of particles is consecrated in small 

regions, and in the general case these regions are not symmetric with respect to the polar
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angle of the molecular velocity. In all of the cases there are very strong discontinuities of the 

distribution function.
One of the main assumptions behind continuum models is that the flow is near equilibrium 

and the distribution function is either the local Maxwellian (Stokes analysis) or near the local 

Maxwellian (NSF analysis). When the reference Knudsen number is small this assumption is 

in the general case correct, whereas in large reference Knudsen numbers it fails. This can be 

seen in Figure 35, where the distribution function and the corresponding Maxwellian are 

plotted for TC/TH =0.1 and Kn0 =0.05 and 2 at the center of the cavity. It is observed that

for the small Knudsen number the distribution is indeed close to the local Maxwellian, 

whereas for the large Knudsen number the two distributions are very different.

Finally in Figure 36 a comparison is made between the distribution function at the middle 

of the top wall for Tc / TH = 0.1 and Kn0= 0.05 and the corresponding Maxwellian

distribution function. Although the reference Knudsen number is small, and the flow is 

expected to be near thermodynamic equilibrium we see that the distribution is far from the 

local Maxwellian. This is because the local Knuden number can be very different from the 

reference Knudsen number in non-linear flows, causing such issues. The existence of such 

regions, especially near and on the boundaries can further decrease the range of validity of the 

continuum approach.

5.4.3 Streaming and collision contributions

The decomposition procedure described in Chapter 4, is applied in a square enclosure for 

Kn0 -  0.05 and 2, with Tc / TH =0.1. The two values of the reference Knudsen number have

been chosen as representatives to demonstrate the contribution of the streaming and collision 

parts to the overall solution in the slip and transition regimes. In addition, the corresponding 

results are typical for analyzing the thermal effects on the flow configuration in small and 

large Knudsen numbers. There is a good qualitative agreement for large reference Knudsen 

numbers with the results using the DSMC decomposition introduced in [33], but as the 

reference Knudsen decreases deviations between the two results appear.

The streamlines and the contours of the vertical velocities of the streaming and collision 

parts of the solutions, denoted by u\s) and u(yc) respectively, as well as the overall solutions are

given for Kn0 =0.05 and 2 in Figure 37. More specifically, Figure 37a,b show the streaming
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parts and Figure 37c,d the collision parts, while the overall solutions which are the summation 

of the two corresponding parts are shown in Figure 37e,f. It is seen that the streamlines of the 

streaming parts are directed from the boundaries toward the interior of the bulk flow while the 

streamlines of the collision parts are directed from the interior of the bulk flow toward the 

walls. These qualitative observations are well expected from the physical point of view since 

in the streaming part the walls act as source and the bulk flow as sink, while it is the other 

way around in the collision part. The streamlines along with the vertical velocities contours 

clearly indicate when the flow is in the positive or negative direction corresponding to hot-to- 

cold and cold-to-hot flow respectively. The summation of these flow fields deduce the overall 

solutions shown in Figure 37e,f.

The streamlines in Figure 37 may be further analyzed. Staring with Kn0 = 2, where the 

flow patterns are simpler, the streamlines of the streaming and collision parts are directed to 

and originated from single points, with total velocity equals to zero. The slight displacement 

between the two focal points and the small differences in the velocity magnitudes of the 

collision and ballistic parts, lead to the creation of Vortex-type II. Continuing with 

Kn0 = 0.05 it is seen that the streamlines patterns of the streaming and collision parts are quite

different. The streaming part has some resemblance with the corresponding one for Kn0 = 2, 

showing one single point towards which the streamlines are directed. The collision part 

however is different indicating two curves from which the streamlines are originated. This is a 

major difference with the DSMC decomposition, which shows two single points from which 

the streamlines are originated, and those two points are also the centers of two symmetric 

spiral swirls, that is also not the case here. The slope of the streamlines with respect to the 

vertical walls is another important element in the present analysis. It is seen that at 

KnQ =0.05 the negative slope of the streamlines of the collision part is larger than the positive 

slope of the streamlines of the streaming part and this is a clear sign for a cold-to-hot gas 

motion along the vertical walls. At Kn0 = 2 the two slopes are about the same with the

streaming one appearing to be larger, which is an indication for a hot-to-cold gas motion.

A more detailed view of the flow along the later walls is presented in Figure 38, where the 

tangential velocities and number densities are presented. In Figure 38a the tangential 

velocities of the streaming and collision parts are plotted along the lateral walls for 

Kj10 =0.05 and 2, while the corresponding overall tangential velocities are given in Figure
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38b. It is seen in Figure 38a that for Kn0 =0.05, the tangential velocities u® andw^c)are

positive and negative respectively along most almost the whole length of the side walls and 

only very close to the top comers their signs are interchanged. In parallel, the overall 

tangential velocity in Fig. 37b is negative.

In the case of Kn0 = 2, the tangential velocities u f  and w(vc) in Figure 38a, are positive and

negative respectively up to about y=0.7 and then their signs are interchanged. The overall 

velocity in Figure 38b, is positive up to about y=0.7 and then its value becomes negative 

taking very small values close to zero. From the above it is deduced that the negative or 

positive values of uy, corresponding to cold-to-hot or hot-to-cold flow along the walls

depends on which part of the solution, either the streaming or the collision part prevails with 

respect to the other. At Kn0 = 0.05 the contribution of the collision part is more significant and

only the Vortex-type I flow is observed, while at Kn0 = 2 the magnitude of the streaming part 

has been increased and becomes respectively more significant and therefore the Vortex-type 

II flow shows up.

These arguments are also supported by the streaming and collision number density profiles 

denoted by nis) and «<c), in Figure 38c. It is seen that along the walls for Kn0 = 0.05, 

n(s) < nic) and for Kn0 -  2 , n(s) > n(c), which also indicates that in the overall solution the

contribution of the collision part dominates at small Knudsen numbers, while at large 

Knudsen numbers the contribution of the streaming part becomes more significant. In Figure 

38d the overall density profiles computed as the summations of the two parts are provided for 

Kn0 = 0.05 and 2.

Based on both Figure 37 and Figure 38 and the previous discussion some more general 

comments on the streaming and collision contributions in the overall solution may be stated. 

In the free molecular limit, the flow is perfectly balanced by pressure and temperature 

distributions and both collision and streaming velocities are equal to zero. Increasing the gas 

density and respectively decreasing the Knudsen number, collisions between molecules 

destroy this balance and from thermodynamic viewpoint, the gas reaction is a weak motion in 

the enclosure with streamline patterns depending on the Knudsen number, the wall 

temperature distribution and the enclosure geometry. At very large Knudsen numbers, the 

streaming part is dominating. At moderate values there is interplay between the streaming and
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collision parts and the behavior of the overall solution is very subtle particularly in the 

transition regime. Finally, at very small Knudsen numbers the collision part is dominating. In 

this latter case, the classic thermal creep theory works and predicts correctly the cold-to-hot 

direction of the streamlines along the vertical walls. As the Knudsen number increases the 

impact of the streaming part also increases and the convective vortices start to rotate in the 

hot-to-cold direction along the lateral walls.
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Figure 22: Distribution of the (a) y and (b) x components of the macroscopic velocity on 

vertical and horizontal planes respectively, passing through the centers of the Vortex-type I 

for a square enclosure with Tc / TH =0.1 and various Knudsen numbers.
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Figure 23: Streamlines and temperature contours for Tc / TH = 0.1 and various Knudsen 

numbers.
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Figure 24: Streamlines and temperature contours for TC/TH =0.5, 0.9 and various Knudsen 

numbers.
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Figure 25: Streamlines and temperature contours in rectangular enclosures of (a) H / W  = 0.5 

and (b) H / W  = 2 , for TC/TH= 0.1 and Kn0= 1

Kn0=l

Figure 26: Streamlines and temperature contours in a square enclosure with (a) Kn0 =0.1 and 

(b) KnQ = 1 for Maxwell molecules [ω - 1).
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Figure 27: Distributions of the tangential velocity along the lateral walls of a square enclosure 

for various Knudsen numbers and temperature ratios.
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Figure 28: Distributions of the shear stress and tangential heat flux along the lateral wall at 

x = -0.5 of a square enclosure for various Knudsen numbers and temperature ratios.
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Figure 29: Tangential velocity distribution u along the lateral walls of a square enclosure for 

TC/TH =0.1 and various Kn0 computed directly by the present kinetic approach and by Eq. 

(5.1) based on the R13 approach

y y

Figure 30: Distributions of the tangential (a) velocity and (b) heat flux along the lateral walls 

of rectangular enclosures with various aspect ratios for Tc / TH = 1 and Kn0 -1  .
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K n 0

Figure 31: Average heat flux departing from the bottom plate of a square enclosure in terms 

of the reference Knudsen number for various temperature ratios.

Figure 32: Dimensional heat flux in terms of the reference pressure for a square cavity of side 

W = 50pm and for T0 = TH = 1000K .
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Figure 33: The distribution function at various points of the cavity for TC/TH= 0.1 and 

Kn0 = 0.05.
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Figure 34: The distribution function at various points of the cavity forTc / TH = 0.1 and 

Kn0 = 2.
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Figure 35: The distribution function (left) and the local Maxwellian distribution (right) for 
Kn0 = 0.05 (top) and Kn0 = 2 (bottom) at the center of the cavity.

Figure 36: The distribution function at the middle of the top plate for TC/TH =0.1 and 

Kn0 = 0.05 (left) and the corresponding local Maxwellian (right).
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(a) Κηο=0.05,streaming solution (b) Kn0=2,streaming solution
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(c) Kno=0.05,collision solution (d) Kn0=2, collision solution
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Figure 37: Streamlines and vertical velocity contours for the ballistic and collision parts as

well as of the overall solution in a square enclosure for Kn0 = 0.05 and 2 , with Tc / TH = 0.1.
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Figure 38: Tangential velocity and density of the ballistic and collision parts as well as of the 

overall solution in the vicinity of the lateral walls of a square enclosure for Α>?0 = 0.05 and 2,

with Tc / TH =0.1.
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Concluding remarks

Three flow/heat transfer configurations are investigated. The half heated cavity flow is 

investigated in terms of the reference Knudsen number for benchmarking purposes and the 

comparison with the results of [25] is excellent. After validating the results of the code, the 

bottom wall heated cavity configuration was simulated in terms of the reference Knudsen 

number and the temperature ratio or the heat flux departing from the bottom plate. Finally the 

non-isothermal lateral walls cavity configuration was investigated in terms of the reference 

Knudsen number, the temperature ratio of the top over the bottom plates and the aspect ratio 

of the enclosure. The Shakhov kinetic equation was solved numerically and results were 

obtained in the whole range of the Knudsen number.

The first configuration helped check the validity of the results provided by the code 

developed. The second configuration is of great technological importance as such flows are 

very common in vacuum packed micro/nano-electromechanical systems. A flow in the 

vicinity of the lateral walls going from hot-to-cold is observed even for small temperature 

differences and small reference Knudsen numbers. Another interesting finding was that the 

average heat flux departing from the bottom plate does not necessarily increase as the 

temperature difference increases. For relatively large Knudsen numbers, there is a maximum 

near Tc ITH =0.5. The latter case helped confirm previous results in similar non-isothermal

set-ups, it has been found that in the vicinity of the lateral walls the gas is not necessarily 

going from hot-to-cold. Actually, even for relatively small Knudsen numbers in the slip or 

early transition regime a hot-to-cold flow along the non-isothermal walls is observed, which is 

enhanced as the Knudsen number and the temperature difference are increased. The cavity 

aspect ratio is also an important factor and the hot-to-cold flow is becoming more dominant as 

the depth compared to the width of the cavity is increased. The effect of these parameters on 

the flow configuration and bulk quantities has been thoroughly examined. Furthermore a 

procedure was introduced, equivalent to the DSMC decomposition introduced in [33] by S. 

Stefanov, for the decomposition of the solution into the ballistic and collision parts helping
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understand the complex flow structures. It has been found that at small Knudsen numbers the 

collision part dominates and the classic thermal creep theory works, while at large Knudsen 

numbers the ballistic part prevails and then the gas along the wall flows from hot-to-cold.

It is believed that the present work has both scientific interest and technological impact and 

it is hoped to support the design and optimization of devices operating far from local 

equilibrium. Future extension to this work could be the simulation of thermally driven flows 

using polyatomic gasses, the simulation of the exact 3D configuration and a more extensive 

investigation of the decomposition procedure based on the deterministic solution of the model 

equations.
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Appendix A

If we consider a phase space element άξάν then the number of molecules in this element

is f(r ,l;,t^d l;dr. The rate of change of the number of molecules is — f ( r , ξ,ί)άξάτ . This

change can occur by molecules crossing the boundaries of the physical space element dr due 

to their free motion, by molecules crossing the boundaries of the molecular velocity space

element άξ  due to field forces acting on them and by molecules entering or leaving the

velocity space element άξ  due to their collisions.

For the calculation of the rate of change due to the free motion of molecules let’s consider 

a cubic physical space element dr = dxctydz. The number of particles crossing the boundary at 

x through a surface of area dydz perpendicular to the x-axis during dt is

fdl; d,xdtdydz.

The number of particles crossing the boundaries at x+dx crossing a surface of area 

dydz perpendicular to the x-axis during dt is

£ / + d (& /)
dx

dx d gdldydz.

It follows that the net gain of molecules crossing the two sides perpendicular to the x-axis is

<?(£/)
dx

dxd gdldydz.

In proportion to this the net gain of molecules through the other sides is

δ ( ξ ί )
dydgdtdxdz

and

<KM1
dz

dzdξdtdxdy.

Summing these three quantities we have
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(< £
8t y free

dt = - 'Β(ξ,ί)  ( SJfr f)  ] 3 ( 4 / )

V δχ δζ

Λ /*

d ddtdxdydz = - ξ  —  drd ξάΐ 
dr

μι)

In order to calculate the rate of change of molecules due to field forces, we have to assume 

a square element άξ  = άξχάξνάξ_ of the molecular velocity space. The force field acted on the

molecules is F and is in force per unit of mass. The velocity of the particles linearly alters 

their position, and moves them through the boundaries of the physical space element 

dr = dxdydz. This is equivalent to the force acted on molecules that linearly alters their 

velocity and moves them through the boundaries of the velocity space element 

άξ  = άξχάξγάξζ . So according to the previous result, we have

V "
 ̂dt )  field 

forces

dt = ■
d{Fxf )  , d(Fyf )  , d(Fzf )

5ξχ K
drdtdξxdξydξ, = -F  -L· d rd ξάί 

8ξ
(A.2)

The rate of change of molecules in the phase space element is more complicated. Let us 

consider two types of molecules, those with velocity ξ (type 1) and those with velocity 

(type 2). When a collision occurs between a molecule of type 1 and a molecule of type 2, their 

respective post collision velocities are ξ* and ξ* . Considering a single molecule of type 1 

traveling through molecules of type 2, with a relative velocity c, =ξ — ξ λ, the volume swept

by the molecule in time dt is c, adFkit, where σ  is the differential cross section and dQ is 

the differential element of the solid angle in which the molecule will scatter after the collision.

The number of molecules with velocities about ξλ is f d f x, which gives for the number of

collisions of a molecule with velocity ξ and molecules with velocity in dt the expression

εν/^σάζΐάξ^άί. In the phase space element d^dr there are fd ^d r  molecules with velocities

about ξ , so the number of collisions between molecules with velocities ξ and becomes

cr ffdcdradO dcxd t .

This is the number of collisions of type [ξ,ξχ that take molecules out of the

velocity space elem ental. The inverse collisions [ξ*,ξ* ~^>ξ,ξΛ that move molecules into
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άξ  have also to be considered. Taking into account the symmetry and analogy of the direct 

and inverse collisions, the number of such collisions is

crf l f* d  ~ξά radQ d^dt.

The net gain of molecules with velocities about ξ due to collisions with molecules with 

velocities about ξι is

(.f i f  - f j ) c radOd^d%drdt.

The net gain of molecules with velocities about ξ due to all collisions in dt can be found 

integrating the previous expression

V d t  )  collisions

oo 4π

dt = \ \  \  [fx f*  -  f xf ) c radΩάξ,
y  —co  0

dξdrdt (A3)

Summing the previous expressions we get

d -  -  -  -  (  d P— f ( r , l , t ) d l d r  = 
dt St _/ free 

motion

' d f λ
Vdt ) fie ld  

forces

+

d_
dt

f{r,4,t)d4dr = ̂ ^ d r d ^ - F % r d r d 1  +1 f  f  (/* /*  - / ι/ ) ο Γσ ά Ω ά ξ ι d ^d r  dr dξ i j j v /
1? V

' d £
V ^  J collisions 

oo 4π

v —co 0
C) csj' ο / ' 00 4/r

dt dr δξ

which is the Boltzmann equation.

(AA)
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