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Abstract

This work is focused in non-equilibrium thermally induced flows in cavities. Such
configurations have lately received considerable attention due to their implementation in the
cooling process of vacuum packed micro-electromechanical systems. The low pressure and
small characteristic dimensions of these systems, lead to conditions that are beyond the range
of application of the usual Navier-Stokes formulation, as the gas cannot be considered a
continuous medium and a kinetic approach is required.

The problem is described by the integro-differential Boltzmann equation, which in contrast
to the Navier-Stokes, considers the gas as a number of discrete particles. The solution of the
Boltzmann equation though, is a demanding and computationally expensive task because of
the complicated collision term. One of the methods to overcome this is using kinetic models
that provide a relaxation to this term, reducing the computational cost. In the present work the
Shakhov kinetic model equation has been numerically solved for the simulation of the flow.

In every point of the flow domain there are particles that have arrived after an arbitrary
number of collisions since they were emitted from the boundary, and particles that have
arrived without colliding. Whether the number of the former or latter kind of particles is
bigger, has a great impact on the flow field, and leads to very interesting phenomena. Here a
procedure is introduced for the deterministic calculation of the impact either of these kinds of
particles has on the flow field.

It is believed that the present work has both scientific and technological interest and it may

support the design and optimization of microdevices with respect to heat transfer mechanisms.
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Hepitnyn

H mapodoa epyacio emkevipdvetor oe poég eKTds Oeppodvvapikng ooppomiog oe
KOWOTNTEG AOY® Oeppokpactakdv Pabuidwv. Tétoeg dwtdéelg éxovv AGfet evdiapépov to
tedevtaior ypovia Adym NG €QAPUOYAS TOLG oTNV WOEN WIKPONAEKTPOUNYOVOLOYIKMDV
e€opTNUATOV, 68 Kotactdoelg kevov. H youniés méoeig kabbg ko ot pikpée diactdoelg oe
TG TOL GLOTAHATA, 00NYOVV GE GLVOTKEG OV BpickovTat ekTOG TOV €HPOVE EQPAPLOYAS TOV
eglowoemv Navier-Stokes, kabng Katappéet 1 vrdHeon Tov cVVEXOVE HEGOV, KOl OTOLTOVVTOL
KIWWNTIKEG TPOOEYYIoELS Yot TV LoVTEAOTOMNON).

H povtehonoinon pmopet va yivel pe paon v ohokAnpodiapopikn e&icwon Boltzmann, 1
omoia og avtifeon pe g e§lomoeilg Navier-Stokes dev Oewpel 10 aéplo o¢ £va cuveyés péco,
aAd g éva apBud copatidiov. H enilvon g e&icwong Boltzmann eivor pio amortmtin
KOl VTOAOYIOTIKA  akpiPr] dwdikacio, Ady® TOL TOAVTAOKOL OPOL TOV  HOPLIKDV
oVYKpOVoE®V Ge avth. Mio and Tig nebddovg mov YPNGYLOTOOVVIAL Yo TNV GTOPVYT| TOV
VITOAOYIGLOD aVTOV TOL OpoL £ivat 1 xPoN TV KNTIKOV HovTEh®y. To KivnTiké Lovtéha
TAPEYOLV uia YUAGP®OGT 0VTOL TOV OPOV, UELDVOVTIAG GTHOVTIKG TO VIOAOYIGTIKO QOpPTiO.
2y mapovoa epyacia To KvnTiko povtéro tov Shakhov €xet ypnoomomOei.

Xe kabe onueiov tov poikov medio vdpyovy copatidia Tov ETAvovy amevdeiog 0PV
OVOKAQGTOOV Ot TO. TOLMLLOTE, KOl COUATIIN TOV QTAVOLY apOD GLYKPOVGTOVY LE AR
To av vreptepel og kamowo onueio o apOPdS TOV TPHOTOL 1| devTEPOL £idOVE cOUATISIMY ExEl
HeyAn onuacio ot doun Tov poikov mediov kot 0dnyel o€ EVEEEPOVTO PAIVOUEVH. TTNV
mapovca epyocia avomtoocetor pio pEBOSOG YO TOV VIETEPUIVIOTIKO TPOGSIOPIGUO TNG

emidpaong mov £xel To Kabe €100¢ 670 POk TESIO.
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Chapter 1 Introduction

1.1 The origin of kinetic theory

The nature of matter itself has been a topic of debate among philosophers and scientist
since the ancient times. They were divided into two schools, the one believing that matter is a
continuum, much like time, and the other believing that all things were composed by tiny bits
of matter and between them there was empty space. As time and science advanced these two
ideas generated some interesting paradoxes, but the most interesting thing was that in many
cases both of those methods were to produce very similar results. One of the main paradoxes
was that, if all things are composed of tiny bits of matter, then all interaction between them
could be time-reversed (assuming elastic collisions between them), as their motion could be
modeled by the classical mechanics. If it is so, then why are macroscopic processes
irreversible?

Such questions were answered by kinetic theory. Kinetic theory first originated in 1738
when Daniel Bernoulli stated in his book Hydrodynamica [1] that gasses consist of large
amounts of molecules travelling in all directions, that pressure is the force excreted by those
molecules to a surface during a collision, and that heat is just the kinetic energy of the
molecules. Great advances in Kinetic Theory were to come much later, when in 1878
Clausius [2] introduced the mean free path and Maxwell in 1860 [3] who laid the road for a
statistical description of gasses, introducing the concept of the velocity distribution function, a
tool that could be used to compute the probability of finding a molecule in a certain range of
its microscopic velocity. Although Maxwell came very close to extracting the expression for
the calculation of this function (the Boltzmann equation), it was Boltzmann in 1872 [4] that

made the final steps to its derivation and so this expression is accorded to him.
1.2 The Knudsen number and flow regimes

Kinetic theory using the velocity distribution function and the Boltzmann equation can be
used to provide interesting theoretical results, such as the transport coefficients, for all dilute
gasses. The solution of the Boltzmann equation though is a very demanding process, and is
used for the simulation of practical problems only when absolutely necessary. The main

advantage it has against other methods of gas modeling is that the only assumption that needs



to be made is the specification of the intermolecular interaction model, so it is has a greater
range of applications than most continuum methods. The dimensionless parameter that gives
us the information of whether the solution of the Boltzmann equation is needed, or that other
approaches are valid is the Knudsen number.

The Knudsen number is defined as the ratio of the mean free path of the molecules over a

characteristic length of the problem [5]
A
Kn=— 1.1
I (1.1)
The mean free path for the Hard Sphere model for a single gas can be expressed as [5]

m
g=__ (12)
27d’ p

where m is the molecular mass, d is the diameter of the molecule and p is the gas density. It

is seen that for a specific gas the mean free path is a function only of density, and is inversely
proportional to it. The Knudsen number is a measure of the gas rarefaction, and a measure of
the departure from thermodynamic equilibrium.

The Knudsen number is related to other important dimensionless parameters, such as the

rarefaction parameter

soPL _Ar

=— 1.3
uu, 2Kn (13

and the Mach and Reynolds numbers [5]

Kn:%‘/ﬁ (1.4)
Re \ 2

where Pis the gas pressure, x is the dynamic viscosity, u, =,/2—2T is the most probable
m

molecular thermal velocity, k, is the Boltzmann constant and y is the ratio of the specific

heats of the gas.

According to the Knudsen number the flow regimes can be defined, as shown below in
Table 2. The Boltzmann equation, although valid in the whole range of the Knudsen number,
1s utilized only in the transition and free molecular regimes because of the high computational

cost that it requires.



Table 1: The cross and direct effects

Heat flux Momentum flux Mass flux
v7 | Heat conduction Thermal creep Thermal diffusion
vp | Mechanocaloric effect | Poiseuille flow Baroeffect
vC | Duffour effect Diffusion baroeffect | Diffusion flow

When the Knudsen number is small and the flow is in the continuum regime, the
macroscopic approach of the Euler and Navier Stokes equations can be used with very good
accuracy. As the Knudsen number is increased and we move to the Slip regime, the no slip
boundary conditions associated with the Navier Stokes equations start to collapse. This can be
treated with velocity slip and temperature jump boundary conditions [6], and the range of
their application is extended. In those regimes the flow is near thermodynamic equilibrium.

As the Knudsen number is increased and the flow further departs from thermodynamic
equilibrium, the Newton, Fourier and Fick laws do not hold and the continuum approach
collapses. It is in those regimes, the transition and free molecular, that very interesting non-
equilibrium phenomena start to appear, and the flow can only be simulated using kinetic
approaches [7],[8].

If we consider the three driving forces acted on gases being temperature gradient, pressure
gradient and concentration gradient, then the result of those forces according to continuum
approaches will be heat flux, momentum flux and mass flux respectively. Those are called
direct effects. In flows far from thermodynamic equilibrium six more effects are present, the
cross effects. They are shown in Table 1. Those effects are beyond the range of the continuum
models, and can be modeled by kinetic approaches.

The direct solution of the Boltzmann equation is a very hard and computationally
demanding process. To overcome this, certain methods are used in order to obtain kinetic
solutions without solving the exact Boltzmann equation (BE). One of them is the use of
kinetic models. Kinetic models provide a relaxation to the collisional term of the BE, making
the solution faster. The most well-known kinetic models are the BGK [9], the Shakhov [10]
and Ellipsoidal [11] models for monatomic single gas flows, the Rykov [12] and Holway [13]

models for polyatomic single gas flows and the McCormak [14] model for gas mixtures.



Table 2: Knudsen regimes

Range of Kn Regime Governing Equations Numerical approach
Kn—0 Continuum Euler
(inviscid)
Kn<10> Continuum Navier Stokes
{(viseons]) Typical CFD schemes
102 < Kn<10"' Slip Navier Stokes with
(viscous) slip boundary conditions,
Generalized equations.
10" < Kn<10 Transition Boltzmann Analytical methods,
(Knudsen) Kinetic models Variational methods,
Discrete velocity
method
Integro-moment method
DSMC
10< Kn Free molecular | Boltzmann and kinetic Method of
models without collisions characteristics

Test particle Monte
Carlo

In order for a model to be accepted it must: satisfy the collision invariants, satisfy the H-

theorem and provide the correct expressions for the transport coefficients.

Another very widely used method for the simulation of such flows is the Direct Simulation

Monte Carlo method (DSMC) [7]. This is a stochastic method, in contrast to the direct

solution of the BE or model equations. For the solution the flow domain is discretized and a

big number of fictional particles (simulators) are distributed on the field, each of them

corresponding to a large number of real particles. Then the real motion of the particles is




divided into two parts, the free motion according to a distance proportional to their velocities
and the time step, and a collision part, where the collisions are simulated in a stochastic
manner. The macroscopic quantities are sampled for a large number of time steps, and are
calculated using the simulator particles microscopic quantities.

A number of methods have been proposed, using high-order equations [15] derived from
the BE. Those methods are able to simulate flows in the slip and early transition regimes,
capturing effects that are beyond the NSF (Navier-Stockes-Fourier) analysis. The most know
of them are the Burnett equations. Those methods have some known problems, like stability

issues, and can be misleading when used in the whole transition regime.
1.3 Temperature driven flows and related applications

The literature survey on rarefied gas flows driven by temperature differences on the basis
of kinetic theory is very extensive. A thorough description of various types of thermal flows
may be found on a recent book by Sone [6]. A brief description of thermal creep,
thermophoresis and thermal-stress slip flow is given here.

Thermal creep is one of the six cross effects mentioned. It is momentum transfer due to
temperature gradient. When a temperature gradient is imposed to a wall, momentum is
transferred in a direction opposing that of the temperature gradient, leading to a flow from
cold-to-hot. This phenomenon is not prevailing in the continuum regime, as the natural
convection is the dominant effect. In the absence of gravity, or in cases where gravitational

forces are negligible, such as rarefied flows, thermal creep is very important.

VT
L P
» !
¢ .- ‘ Pl
f thermal
v L AL T
- S
ds Hot Side

0 wa
Figure 1: Thermal creep flow

An explanation to thermal creep, shown in Figure 1 is the following. Particles in the hot

side of the wall travel with large thermal velocities and as they collide with the wall in a



differential area dS their velocity is decreased. Particles from the cold side of the wall have
small thermal velocities. As they collide with the wall at a differential area dS their velocity is
increased. In both cases the velocity is increased when moving from cold to hot, and
decreased when moving in the other way. This leads to momentum transfer, opposite to the
temperature gradient.

Thermophoresis [16] is a phenomenon of temperature induced flows around particles
submerged in a gas with temperature gradient, when the dimension of the particles is of the
order of a mean free path. This flow exerts a force on the particle, called thermal force. If the
particle is free, it drifts because of the thermal force. This whole phenomenon is called
thermophoresis. This flow has long been of interest, especially in the field of aerosol sciences.

Thermal stress [17] is exerted on any surface element in a gas with a nonuniform
temperature gradient, as a result of the different thermal velocities the incident to the surface
molecules have. If we consider a differential volume element in such a gas, then the
contribution of the thermal stress on the volume of the gas surrounded by this volume element
vanishes when integrated over the element, if the linear theory is applicable. In the special
case where a surface of this volume element is part of the boundaries of the flow, the situation
is different. Since the molecules emitted from the boundary have no tangential contribution
(in the case of the diffuse boundary conditions), the thermal stress on this surface is reduced.
Thus the balance of the thermal stress on the volume element is violated and a flow is
induced, the thermal-stress slip flow. The difference between this kind of flow and the
thermal creep flow, is that in the latter the temperature gradient is imposed on the boundary,
whereas in the former case the boundaries can be isothermal.

One of the first instances where these kinds of flows were observed was in 1873, the
Crookes’ radiometer shown in Figure 2. It consists of an airtight bulb kept in partial vacuum
and four rectangular vanes suspended by an axis, in a vertical orientation. One side of each
vane is colored black, while the other is white, leading to different thermal radiation
absorption coefficients. When the radiometer is exposed to thermal radiation, the vanes start
rotating with the black colored side trailing. While it is clear now that the flow is induced due
to thermal creep because of the temperature gradient, it became a topic of scientific debate

when first observed as there was not an apparent driving force to set the vanes in motion.



Figure 2: The Crookes’ radiometer

In the recent years, due to advances in the fields of nano/micro-electromechanical systems
and a need for pumping in vacuum setups, these forces have begun to find applications in
those areas. In the field of pumping the Knudsen pump, or Knudsen compressor has been

developed. It consists of arrays of tube elements connecting the upstream and downstream

vessels, their diameter being in the range of 10°m. The ends of those tube elements in the
vicinity of the upstream vessel are kept at low temperature and the ends at the vicinity of the
downstream are at a larger temperature. Thermal creep predicts a flow from cold-to-hot in
those tubes. The pumping ability of this pump is regulated by the length of the tubes and their
length, while the ultimate pressure difference that can be achieved is regulated by the
Poisseuille flow, in the direction opposing thermal creep flow, expected due to the pressure
difference of the vessels.

Temperature driven flows in nano/micro-electromechanical systems have been used in a
number of setups in the recent years, mainly in sensor apparatuses. They offer considerable
advantages compared to devices used different operating principals, as they usually have no
moving parts, are of small size and often provide high resolution. Mass flows sensors have
been developed, utilizing two temperature sensors (one upstream and one downstream of the
flows) and a heat source between them. Through the different temperature readings, the mass
flow rate can be extracted. Accelerometers have been constructed consisting of highly
accurate temperature sensors inside of a sealed cavity containing a rarefied gas and a heat
source. When external forces are acted upon the gas, the temperature profile is altered. This
deviation from the temperature profile when no external forces are acted is linked to the force,

and the acceleration is calculated.



1.4 Thesis objectives and structure

Thermally driven flows in microenclosures have lately received considerable attention. At
some extend this is due to the potential implementation of such flows in the emerging field of
microfluidics [18] and more specifically in vacuum packed MEMS [19],[20] as well as in
micropumps [21],[22] and microactuators/microsensors [23],[24]. In addition to that, over the
years, temperature driven flows in cavities have been commonly applied in rarefied gas
dynamics as prototype problems in order to investigate theoretically interesting physical
phenomena [25[29] as well as to benchmark and validate novel numerical schemes
[30],[31],[32].

In the present work, thermally induced flows in two-dimensional rectangular enclosures
with several boundary condition configurations are investigated in a wide range of the
Knudsen number covering the slip and transition regimes. Modeling is based on the numerical
solution of the Shakhov kinetic model. The influence of the Knudsen number, the temperature
ratio and the cavity aspect ratio on the bulk quantities is examined. Depending on the flow in
addition to the well-known thermal creep flow, the recently reported flow pattern from hot-to-
cold in the vicinity of the boundaries is observed. Furthermore, a deterministic procedure
equivalent to the stochastic decomposition introduced in [33] is developed in order to
separately calculate the streaming and collision parts of the distribution function and help
explain the mentioned hot-to-cold flow.

The thesis is outlined as follows:

e A literature review is presented in Chapter 2. The basic concepts, equations and

expressions used in this work are presented.

e The mathematical formulation of the problem is presented in Chapter 3. The system of
equations along with the moments and the appropriate boundary conditions are derived
and their discretized form is presented.

e The deduction of the mentioned deterministic decomposition in done in Chapter 4.

e The results are presented and discussed in Chapter 5. In section 5.2 the half heated
cavity problem, which is used as a benchmark problem, is discussed. In section 5.3 the
bottom wall heated cavity flow with given temperature or heat flux is provided. In
section 5.4 the non-isothermal lateral walls cavity flow is presented.

e Closing the thesis some concluding remarks are made in Chapter 6.



Chapter 2 Literature review
2.1 The Boltzmann equation

The velocity distribution function f (g‘,;,t), where E is the molecular velocity vector, 7 is
the position vector and ¢ is time, is defined so that f (3,;,t)d5d; is the average number of

particles in the differential phase space element dgd;, and is a fundamental quantity in

kinetic theory [5]. It contains the whole information of the gas microstate and all macroscopic
quantities can be derived as moments of the distribution function. For the kinetic
determination of the distribution function the Boltzmann equation (BE) is used. The
derivation of the BE for monatomic single gases is presented in Appendix A. Following the

procedure of Appendix A we obtain the BE in the following form

4

o . ~= =9 —of T - _
S fdn + =+ Fa—5 =:|;O(flf—f1f)crade§1=J(f) (2.1)

—_—
rate of change of the average ~ rate of change due ;¢ of change due
number of particles to free motion to field forces

rate of change due to collisions

It is seen that the only quantities in the BE that need to be specified are the differential
cross section o and the differential solid angle 4Q that are given by the molecular
interaction model, some of them are [5] the Hard Sphere model (HS), the Inverse Power Law
model (IPL), the Maxwell model which is a special case of the IPL model, the Variable Hard
Sphere model (VHS), the Variable Soft Sphere model (VSS), the Generalized Hard Sphere
model (GHS) and the Generalized Soft Sphere model (GSS). Apart from those quantities each
model provides expressions for transport coefficients used in the macroscopic approach.

In the derivation of the BE two main assumptions were made. BE is only applicable in
dilute gasses (when the distance between molecules is much larger than the molecular
diameter) as only binary collisions were assumed. It is noted that gases in atmospheric

pressure are in dilute conditions. The other assumption is the molecular chaos or



Stosszahlansatz. It was introduced by Boltzmann and states that the velocities of colliding
molecules are uncorrelated.

During each collision there are some quantities that are conserved. If y is such a quantity
then during a collision of the form (2,5 - 5*,51*) the conservation equation can be written

w(&)+w(8)=vw()+v(&) 22)

It can be shown that the average rate of change of a quantity y due to collisions is [5]

[%—‘fj = [ () (2)az

—00
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where N is the number density. If we interchange the two velocity integration variables,
substitute them with their post collision velocities, interchange the latter and sum the four
expressions we get
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and using Eq. (2.2)
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Substituting w with m,mé andEmgb' in the previous expression and performing the

integration using the integral expressions for the macroscopic quantities as presented in the

next section we get the macroscopic conservation equations

1 i s P

—(a—erU-ij =-V.U mass conservation

p\ ot
T = ==) = == |

Yo, E+U-VU =pF-V.P momentum conservation (2.5)
Oe — = == - .

Yo, 5+U-Ve =-V-Q+pF-U-P:VU energy conservation
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where p is the density, U is the macroscopic velocity, F is the force field, P is the stress

tensor, e is the energy and @ is the heat flux vector. The previous equations are valid in the

whole range of the Knudsen number. One of the reasons that the macroscopic approach fails
to model rarefied flows is that the constitutive laws (e.q. Fourier’s, Newton’s and Fick’s for

the Navier-Stokes model) are not valid in those regimes.

A particular solution of the BE when no external forces are present (F =O) and for an

equilibrium state (—86{—{ =0, % = Oj is the global Maxwellian distribution defined as [5]
t r
- —\2
E-U
f”’=—ivﬁe><p —( 7 ) (2.6)
(27r Ky T j 22T
m m

where N,T ,f/: are constants. The distribution of the same form when N,T ,5 are depended

on ¢ andr is the local Maxwellian distribution and does not satisfy the above mentioned

special case of the BE in principal.

2.2 Macroscopic quantities

Macroscopic quantities of practical interest can be obtained as moments of the distribution

function using the following expressions [5],[6]:

Number density N(?,z) = f(?,é,z)d% (2.7)
Velocity U(7.1) :F(l_,) [&r (721 2.8)
Stress tensor B (rt)=m[(&-U)(&-U,) f(r.& )& (2.9)
Temperature 7(r.1)= W [(2-0) r(r.2.1}é (2.10)
Heat flux 0(r.r)=2[(2-0) (2-0)s(r.2. )2 2.11)

!



H quantity H(?,z) = jf(;,é,t)ln dé (2.12)

f

where k,is the Boltzmann constant and ¢, is a constant to make — dimensionless. The H
Co

quantity may be related to entropy S and the so-called H-theorem to the second law of

thermodynamics.
2.3 The BGK and Shakhov kinetic models

As mentioned the solution of the BE is a very demanding task that requires a lot of
computational cost, mainly due to the fivefold integral on the right hand side. One way to
overcome this difficulty is the substitution of the collision integral with expressions given by
kinetic models.

The most basic and well know kinetic model is the BGK model [9]. It assumes that each
molecule will be in the state of local equilibrium after only one collision. The mathematical

expression of the BGK model is:
P ou
J(f)=;(f - f) (2.13)

It has been extensively used to model isothermal single gas flows, with considerable success.
It cannot model non isothermal flows though as it cannot provide the correct expressions for
the viscosity and thermal conductivity coefficients simultaneously, as it yields for the Prandtl
number Pr=1 instead of 2/3.

An extension of the BGK model, able to handle non isothermal flows is the Shakhov model

[10], which has been used extensively in the present work. The mathematical expression is:

J(f)=§(]if,'—f) (2.14)
where

5= ) 2m(1-Pr g-(2-0) ,,,(5—_(7)2_2 (2.15)
"”’_ 5 N(k,TY 2kgT 2 |
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This model provides the correct value of the Prandtl number Pr=2/3, but is limited to single

monatomic gas flows.
2.4 Boundary conditions

The boundary conditions for flows simulated using the BE are part of the solution. Their
main objective is the correlation the distribution of the molecules departing from the boundary
with that of the incoming molecules. The most widely used type of boundary condition is the
Maxwell diffuse-specular. In the case of purely diffuse boundary conditions the distribution of
molecules departing from the boundary is the local Maxwellian distribution characterized by
the wall temperature and velocity. Specular reflection assumes that molecules arriving to the

boundary collide with it in an elastic way, and are reflected without exchanging energy with

the boundary. Taking n as a unit vector normal to the boundary with direction towards the

flow field, we can denote the incoming distribution as [~ (cf) when E-Z<O and the

outgoing as [~ &) when E n>0.A general expression for the boundary conditions is [34
g

2.,;4)?;7 W(E—»E)f‘(?)dg (2.16)

where W(E - E) is the scattering kernel and is the probability that a molecule arriving at the

boundary with Velocityg will depart with velocity E .

In the case of specular reflection we expect that only the velocity component normal to the

boundary will change, and will become the opposite, that is [5]

f+(5)=f’(5—2(5-5);z) 2.17)
leading to the scattering kernel

VI{.(E—@):&[E—EM(E%)Z} (2.18)

where o is the Dirac function according to J‘5(; —Zz)(p(;)d; = (p(&).

In the case of purely diffuse boundary conditions, the outgoing distribution is the local

Maxwellian characterized by the wall conditions,
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jm exp —M (2.19)

Wi m
4 (§>_NW[2/€B7Z'TW 2k,T,

where 7}, 1s the wall temperature Fwis the wall velocity and N is a parameter ensuring the

impermeability condition. The above expression gives the scattering kernel

3/2 " E_U—'
o exp —(—W) (2.20)
2k, T,

In practice the boundary interaction is not purely specular neither purely diffusive. It is

more accurate to assume that a portion a of the molecules is reflected diffusively and the
remaining (l—a) undergoes specular reflection, leading to the diffuse-specular scattering

kernel
W(E%E):aWd(g—>§)+(1—a)WS(E—>§> 2.21)

where a is the accommodation coefficient.

One drawback of the diffuse-specular scattering kernel is that the probability of a molecule
reflecting according to specular or diffusive reflection is independent of the velocity
magnitude and direction. The Epstein scattering kernel overcomes this drawback, but was

criticized as the coefficients used in it are chosen empirically [35].
2.5 Deterministic solution of model kinetic equations

Several methods have been developed for the solution of the Boltzmann and model
equations. In this work the discrete velocity method has been used. In the discrete velocity
method the continuous spectrum of molecular velocities is replaced by a discrete set of
velocities, accordingly chosen in order to achieve good accuracy. Since the molecular velocity
takes discrete values it is possible to replace the Boltzmann or model equation with a set of
partial integrodifferential equations with the physical space coordinates being the free
variables.

This method has been extensively used over the years to solve the kinetic model equations.
It was initially applied to simple, one dimensional geometries for linearized equations

[36],[37]. The Poiseuille and Couette flows for parallel plates where simulated for small
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pressure gradients and wall velocities respectively, as well as the Poiseuille flow between
concentrical cylinders. It was also applied to linear heat transfer problems between plates and
cylinders. Later two dimensional geometries were simulated, for linear cases [38-[45], such as
the driven cavity flow and flows through ducts of different cross sections . Moreover, non-
linear flows have been successfully simulated using the discrete velocity method, in one-
dimensional cases such as the heat transfer between coaxial cylinders [46]. Two dimensional
nonlinear flows where this method was successfully applied include pressure driven flows
through slits, orifices and tubes [47],[48].

Considerable effort has been made over the years in order to make this method more
efficient. One approach is to implement a conservative scheme as described in [49]. In such a
numerical scheme the macroscopic quantities calculated at the end of each time step are
corrected so that they satisfy the conservation equations. When a trivial numerical scheme is
implemented, dense computational grids have to be used in order to ensure that the
conservation principals are not violated. Using the conservative scheme requires more
computational effort per iteration than a trivial scheme, but since coarse grids can be used
without lack in accuracy, the overall CPU time requirement is decreased.

Another approach is to use the so-called accelerated form of the equations, as described in
[50]. In this delicate approach the kinetic equation is substituted by a system of equations, its
size depending on the number of moments to be calculated, and this system is iteratively
solved. One of the equations is in non-accelerated form, meaning that the computational effort
for this equation alone is comparable to the computational effort for the trivial scheme. It 1s
apparent that since the whole system of equations has to be solved, the computational effort
per iteration is increased, but the number of iterations required for convergence is
dramatically decreased. An interesting point is that the greatest improvements were noticed in
near hydrodynamic cases, a regime where the trivial scheme has a very slow convergence

rate.
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Chapter 3 Problem description and formulation

3.1 Flow configuration

The present work is focused in the simulation of temperature driven cavity flows through
kinetic theory. The Shakhov model equation [10] was used, as it provides the correct viscosity
and thermal conductivity coefficients, in contrast with the BGK. The Shakhov model has been
proven to be a reliable model for non-isothermal flows [51-[55]. The parameters
characterizing the flow are the Knudsen number, the temperature ratio of the cold over the hot

walls, the aspect ratio H /W of the cavity and the IPL parameter. The macroscopic quantities

of interest are the temperature 7'(x',y') and density N(x',p') distributions, the velocity

U(x',y') and heat flux @(x',y') vectors and the stress tensor P, (x', ").

It is convenient here to introduce the following non-dimentionlization:

o 'y T N | veH L .
X=—,y="=, t=—, B=—, Ny=—— I IN(x,y)dxdy

w w T N, W 2wt

. B} ~ 3.1)
= - = P.
u:gjgzijuoz Zk—BZB,q:L,pﬁzé,hzi

U, u, i NoksTyu, Nok,T, N,

where N, is the average density and u,is the most probable molecular velocity.

The cross section of the cavity along with the geometric parameters, the origin of the
coordinate system and the flow structure are shown in Figure 3. Four different cavity

configurations were simulated. In the first configuration, Figure 4a, the right half of the
boundaries (x >0) is kept at a high temperature 7, while the rest is at a lower temperature
T.. This case has already been investigated in [25] and the results were used to benchmark

the code. Two types of vortices were observed, type-I rotating so that the velocity in the

vicinity of the horizontal walls is from cold to hot, and type-II counter-rotating to type-I

16
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Figure 3: View of the cavity and the axes origin.
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Figure 4: The four different cavity configurations simulated.
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vortices. In the second case, Figure 4b, the bottom wall of the cavity is kept at a high

temperature 7),, while the other three walls are at a lower temperature 7. The third case,

Figure 4c¢, is similar to the second, except that the bottom wall temperature is unknown and the
heat flux is known. In both of those cases two types of vortices appear, type-I vortices having
velocity in the vicinity of the bottom walls directed from cold to hot, and type-II counter-

rotating to them. In the fourth case, Figure 4d, the bottom wall is at a high temperature 7}, , the
top wall is at lower temperature 7., while the lateral walls have a linear temperature
distribution between 7, and T, according to Ty =7, —(7,, — 1)y H . Again, two types of

vortices are present, types I and II, with velocities in the vicinity of the lateral walls heading

from cold-to-hot and from hot-to-cold respectively.
3.2 Governing equations

The nonlinear steady-state two dimensional Shakhov model equation 1s
& _F

T ve =2(r'~7) (32)

fxg oy

where P is the local pressure, = (7)) is the viscosity at local temperature 7 and

S _ M 2 m Az 77 m(E—L—])z 5

fS=f 1+EWQ-(§—U) e (3.3)

with

e N n(&-0)

f —Wexp ——2—1631— (3.4)
ﬂm

being the local Maxwellian. Introducing the dimensionless distribution function g = fis, / N,

along with the non-dimensional variables of Eq. (3.1) the reference Knudsen number as

Kn, = Ny (3.5)
2 PW
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. o TY
and the IPL molecular interaction model [7] that yields a viscosity of the form u = 4, [T—] :
0

with w e [0.5,1] where w=0.5 and @ =1 correspond to the limiting cases of Hard Sphere and

Maxwell molecules respectively, we get the non-dimensional form of the Shakhov model

equation:

'+ a—g+c % ——l—ﬁnrl"“( f— )

— 3.6
" % Kn 2 g —E (3.6)
- —-\2
s _ M 4 ~(F_ = (g_Ll) 5
g =g 1+EFQ'(C—U) - —5 (37)
— -2
¢ —u
g =—"—exp —u (3.8)
) T

To close the problem the above integrodifferential equation must accompanied by the
boundary conditions and the expressions for the macroscopic quantities. The integral
expressions for the macroscopic properties are derived through Eqgs. (2.7)-(2.12) and are given

by:

Number density n=|gd¢ (3.9)

Velocity U= %IngZ (3.10)
Stress tensor v, (7-t)=2[(¢;-u)(¢, ~u,) gd (3.11)
Temperature r= % [(S-u) gd (3.12)
Heat flux q=[(Z-a) (Z-u)gdC (3.13)
H quantity h(r.t)=[gin[g]ds (3.14)

In (3.14) ¢, has been constituted by N, /u, .

Here the Maxwell diffuse specular boundary conditions were used, in the dimensionless

form [§]
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g+ (xay’é’x’;v’é/z):agM +(l—a)g~ ('x’y’;\' _2;2'2.”;\' _2’;'2)"41) (3'15)

where g is the outgoing distribution, g~ is the incoming distribution and n is the unit vector

perpendicular to the wall. For each of the four walls, and assuming pure diffuse reflection the

above boundary condition becomes

A 2
nbollom (é/ —Uu ﬁ?ﬁom )
* _ w _
gbon‘om <x’ O’ gx s g)" gz ) - b 3/2 exp bottom
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L 3
nrop (g — Z/l(fp )
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(ﬂrw‘ ) 2"
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1 n' (§ —H )
+ . w _
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* - w —_— %
g/‘ight [E’y7 é’x’é’_y’gzj - rioht 3/2 exp right
(72'2' “ ) Ty
w

The parameter »n,_is computed in terms of the incoming distribution, in order to satisfy the

impermeability condition:

un=0=[¢ngdi=0= [ ng di+ [ ng dZ=0 (3.17)

>0 £n<0

In the case of known heat flux at a boundary the temperature 7, of the boundary is not

known and has to be calculated along with the », parameter using the following expressions:

Z:~;z=0:>ﬁj Cong' dZ+_j Cong dE=0

£n>0 Z-n<0
o e e . T P L (3.18)
qg=q, :>~J. ({—u) (;’—u)g+ dc+ﬁj (c_,“—u) (é’—u) g di=gq,

&-n>0 ¢ -n<0

The above equations are coupled as both 7 andn, appear in the outgoing distribution term.
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3.3 Projection procedure

Although the problem is two-dimensional in the physical space Eq. (3.6) is five

dimensional as g = g(x, y,cx,cy,cz). To reduce the computational cost it is possible to

eliminate the ¢, component of the molecular velocity using the projection procedure. During

this procedure the Shakhov equation, the boundary conditions and the integral expressions for
the macroscopic quantities are integrated all over ¢, resulting in a system for two reduced
distribution functions. This procedure is irreversible as information is lost during the

integration, but due to the symmetry in the z-direction the lost information is of no practical

interest. The two reduced distribution functions are:

o(x.¢.¢,)= | 2dg. (3.19)

R

w(x.¢.¢,)=[¢lede. (3.20)
R

Applying the projection procedure to Egs. (3.6)-(3.14) the following expressions are deduced:

L 00, 00 1

5 T9% "k 2 nt' (o' -9) (3.21)

oy _ 1Nz

a S
Cxa—f%). s (v -v) (3.22)
where
G- )l
4 o —u
0’ =" 1+Gn—7q-(§—u) - =2 (3.23)
v =y 1+ = —q-(¢-u) Z_;)2~1 (3.24)
15 nr? T '
with
—_— —-\2
[_
" =exp ) (3.25)
T T
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p' =L exp| -——L (3.26)

Number density n=|{pd¢ (3.27)
Velocity "= %ngde (3.28)
Shear Stress Py (r:t)=2[ (¢ ~1)(¢, —u, ) pdd (3.29)
Temperature r:% ((¢2 +;f)¢+y/)d2—§(uf +u’) (3.30)
Heat flux &:j((?—;)z gow)(Z—Z,)dZ (3.31)
H quantity h(r.t)= jgoln{\/‘%}dZ—%n (3.32)

In order to express the # quantity in terms of the reduced distribution function, we assume

that due to the equilibrium in the z direction the distribution function can be expressed as

1 ¢?
[29] g=g, g,, where g =—=exp| —=2
o N r

}. Using Eq. (3.19) for the reduced distribution

function we get

1

T

@= T gde. = ¢= T £:,8:9%, S 9=8,, T ew{—%ﬂdé’z S P=8yy-

1

2
Substituting g = 4 {—C—} into Eq. (3.14) we get Eq. (3.32) after some routine
T

—ICX
Ny bl

manipulation.

The expressions for the boundary conditions become:
+ M

— —\2
0 =" = exp _—(g—uw)
T T

w w

(3.33)
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vi=y :n—exp ——— (3.34)

In the case of known heat flux

un=0= [ Cng' dZ+__j no dl=0

=7, :ﬂ(z_;)z o ;T}(g_;) dz:ki(z_;)z 7 W}(g_;) ic=3,

This boundary condition is applied to the bottom wall of the cavity to get

u,=0= j C, o dc + I ¢, o dé =0
<0

0,4, ;, [ o v ](e-u) a2 [ [(E-a o v (¢, -n) a2 =,

Substituting the expressions for the outgoing distribution, setting the wall velocity to 0 and

performing the integrations, we get

g o l[—B — o —u:] and n'""" =-24 bL (3.35)
2 A W()l[(l/ﬂ

where

A= 'T Tcy o dc'\_a'c_‘_ and B= j)- ]2[(2_;,)2 o +l//}(é’}, —u}_)d{i\,dé} (3.36)

—00 —00 —00 —00

3.4 Discretization

For the molecular velocity space discretization the discrete velocity method has been used.

It is computationally efficient to present the velocity vector in polar coordinates according to

¢, =ccos(0) and &, =csin(#). The continuum spectrum of molecular velocities (c,6) is
replaced by a set of discrete velocities (c,,6,) where ¢, €(0,00), m=1,2,..,M and
o0, e(O,Z;r), n=12,..,N. The magnitudes ¢, are taken to be the roots of the Legendre

polynomial of order M accordingly mapped form (—1,1) to (0,00) , while the polar angles
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are 0, = 7z(2n—1)/ N . The implemented deterministic algorithm has been repeatedly applied

to solve nonlinear flows and heat transfer problems with considerable success [48],[56], [57].

For the physical space discretization a second order finite volume scheme is used [57]. The

flow domain is divided into /x.J rectangular elements. Upon the molecular velocity space

discretization the deduced equations are integrated over each space element defined by

[X_125%.,2] and |: Viams Y /2] . After this procedure the discretized equations are:

(x+1/2)

(x+1/2) (x+1/2)
(/’1+1/2 ,+1/2 mald1 1+ (Pm/z amald10+ (0,

1/2, /+1/2 m,n

/\+l/2 K+1/2 (x+1/2)

WI+]/2 /+1/2 m, anl 1 + V/HI/Z j-1/2,m, anlO + l//l 1/2 j+1/2 m, anOl +

TdOl+¢" ), Td00=RHS¢

K+l/2

1 1/2,j-1/2,m, anOO RHSW

405}
i-1/2,j-1/2,m,n

“yt
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(1 N7 o s LNz s
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i+1/2,j+1/2,m,n i+1/2,j-1/2,m,n
+L£ gt | [T
Kn, Kn, 2
i-1/2,j+1/2,m,n
RHSy = l 1 - UWS f: Lﬁ
4 K Kn, 2
i+1/2,j+1/2,m,n
1 1 \/Z
KnO Kn, 2
i-1/2,j+1/2,m,n

where k is the iteration index.
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The macroscopic quantities are calculated through expressions (3.27 —3.32). The integrals

are estimated using the Gauss-Legendre quadrature for the velocity magnitude integration and

the trapezoidal rule for the polar angle integration. The discrete expressions derived are:

Number density n* ZZ@ D, A (3.42)
m=1 n=1
§ k+1 1 U X (k+1/2)
Velocity = n_ ZZ cos0,¢, ., w,A0 (3.43)
m=1 n=1
uy) = —ZZcm sin€,p. 2w, A0 (3.44)
1/ m=1 n=1
Shear stress \ftlj 222(0," cos®, —u, ., )(cm sinf, —u, ”)(/>l’j+;/i)wmA9 (3.45)
m=1 n=l|
l +1/2) 4 2
Temperamre I = z Z( m l k[ 1117/11 l(/; Vil/i) ) W’?TAB - 3—( X I_] + u} I_| ) (3 '46)
,/ m=1 n=1
Heat flux

M N
k+1 2 . 2| (k+1/2) (k+1/2)
\ i ZZH:(CM cos 6)1 - Z’l.rci,j ) + (Cm Sin 9}1 - Z'Iyi./' ) j]goi,j.m.n + l//i,/'.m.n (cm COS 9}7 - uxi,/’ ) M)mAg

m=] n=l

(3.47)

A+1 L 2 2| (k+172) (k+172) :
yI Jj ZZH:(CWI Cos 0}1 _uxi._/') T (C Sln9 _u\l j ) Jwi,j.m n W: j.mn :l(cm sin Hn —u_,\'[.F/)anAe

=1 n=1
(3.48)
N ¢)v(k'+l/‘2) 1
H quantity B ZZ @) | L W, A0 ==, (3.49)
’ m=1 n=1 T

5J
In the above expressions w, and A& are the weights associated with the velocity magnitude
and polar angle integrations respectively.

The simulation stops when a convergence criteria given by

£® =max{ n

i,j

k k-1 k
®) _ 4G +‘u() _

yi,j yt/

i \f[j X 4y

(k) _ (/\ 1)
5l

— 7D ’} <error (3.50)

where "error" is chosen empirically, is fulfilled.
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A known issue with the boundary conditions used is that they are always discontinuous at

the corners of the flow domain. This is because the », parameters calculated for the same

bottom left

corner node but for a different wall, e.g. » and n;

for the bottom left corner, are

w, 1
different. In order to overcome this difficulty we do not calculate the n, parameters of the
corners directly using the integral expressions derived, but they are estimated using an

extrapolation for each wall, and the two different parameters estimated this way are averaged

as show bellow:

bottom + bottom b
bottom _ Aw, 1 nw, 3 — bofom 2 bottom ____bottom
w,2 2 P, 1 - nu‘, 2 w, 3
left .
G left
Ay, 1t+n left ;
left ’ w, 3 _ left  _ left
nw. 2= 2 = Aw, 1= 2nn‘. 2 nu‘. 3
bottom left bottom left bottom left
bottom _ _left _ Ny, 1 + My, 1 2’ (nw, 2 W+ nw. ol n\\‘, 3 & nw, 3
w1 T Tl T -
2 2

the same procedure is done for the density and temperature as well.

In closed domain flows the total mass of the gas has to remain constant throughout the
simulation. A problem that came up with this configuration is that since the boundary
conditions are part of the solution, the initial estimation can be far from the final solution and
during the first few iterations of the code the velocity normal to the walls is not necessarily
zero. This causes an artificial mass flow rate through the boundaries and the final mass in the
cavity is not the same as the initial. To overcome this, in the first few iterations we calculate

the average dimensionless number density in the cavity and normalize the number density of

each node with this average. Another possible solution is to obtain the », parameters
analytically for the free molecular limit and use those values of 7, as an initial guess. This

way the mass is conserved at high reference Knudsen numbers, but as the Knudsen number is

decreased the final values of »n, become much different from the initial guess and the same

problem arises. A final solution is to start from an initial guess, iterate for a few iterations and

initialize the problem using the calculated values of », as the new initial guess. Repeating
this procedure several times the initial values of the n, converges and the code is allowed to

carry on with the simulation of the flow. This procedure however comes with a considerable

computational cost.
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Chapter 4 Decomposition of the distribution function

4.1 Introduction

In general the distribution at each point of the flow domain consists of particles arriving
from the domain boundaries without any collisions with other particles and particles arriving
after an arbitrary number of collisions with other particles. The former part of the distribution
function is named ballistic part and the latter collision part. In this chapter a method is
introduced for the decomposition of the distribution function into these two parts. The two
parts of the solution are named this way to distinguish this from other decompositions
proposed, such as the splitting in the free molecular and collisional parts. These
decompositions are used because they offer either less computational effort, or improved
accuracy in certain formulations, especially in formulations with strong boundary induced
discontinuities [41],[58],[59]. The proposed decomposition does not offer any computational
advantages, but is a tool that can be used to explain certain phenomena that are observed in
rarefied gas flows.

Such flows are characterized by relatively large Knudsen numbers, meaning that the mean
free path is comparable to a characteristic length of the problem. In those regimes a particle
can travel a significant distance after being emitted from the wall before colliding with other
particles. This particle will carry the boundary information, such as temperature, to a location
far from the boundary, and this leads to very interesting non equilibrium phenomena, such as
the thermal creep flow. As most of the non-equilibrium phenomena depend on this
mechanism, it is of great scientific importance to develop a method that is able to give a

quantitative measure of the contribution of the ballistic and collisional parts.
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4.2 Decomposition using the DSMC method

This decomposition has been achieved modifying the traditional DSMC algorithm in [33]

by S. Stefanov. This was achieved by adding an index /, for each simulator particle

j=1,2,..., Number of particles . Particles whose index value is 0 are part of the ballistic

distribution and those with value 1 are part of the collision distribution. When a particle is
emitted from the boundary its index value is set to 0, and when a pair of particles collides
both their index values are set to 1, while no change is made during the free motion of

particles. The distribution function is decomposed as
g(%2.8)=2"(%2.¢)+ (x2.9) (4.1)

where g and g denote the ballistic and collision parts of the distribution function

respectively. During the simulation the particles’ indexes change their values all the time.
During the sampling procedure, where the macroscopic quantities are calculated, the two
kinds of particles are sampled separately, to deduce the ballistic and collisional parts of the
macroscopic quantities.

Based on the above description it is deduced that for the ballistic part of the distribution the
boundaries act as a source, while the bulk flow acts as a sink. The situation is reversed for the
collision part of the particle distribution, where the bulk flow acts as a distributed source and
the walls as a sink. The equivalent deterministic procedure is not trivial, an attempt is made in

the next section while some results are presented in Section 5.4.3.
4.3 Kinetic decomposition

The equivalent procedure was achieved using the kinetic model equations and the results
are generally in agreement with the ones obtained using the DSMC method. In order to

distinguish between the two methods, the term streaming instead of ballistic is used here. In

Figure 5 ¢ is the magnitude of the molecular velocity, € is the polar angle, s, is the distance

from the point (x, y) to the boundary along the characteristic and g~ is the outgoing

distribution.
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Figure 5: View of the cavity with the outgoing distribution and the distance s

Taking the non-dimensional Shakhov model equation we have:

ccosé’é—g+csin0-a—g+—1——£m‘*‘0g:Lﬁm.l—wgs:>
Ox 6)/ Kn(] 2 Kno 2
c| cos@ g+51 Ha—g +L£ o :_1_ ﬂn l—wgS:>
X oy ) Kny, 2 Kn,
_ca_g +L£n7’-1’“’g = _l_ﬁnz_l—wgé‘ (42)
os K}’ZO 2 Kno 2

/ 5o , - ,
g(x,y,¢,0)=g" exp{———l NT e S—°:| + L NmH g’ epr:—KL—zznr““ S—:] ds (4.3)
c

Kn, 2 e| 1 Kn, 2 ¢

-
Streaming part Collision part

S 1,
Overall distribution

In the above expression the term in the left hand side is the overall distribution g, the first

term in the right hand side is the streaming part ¢ and the second term of the right hand side
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is the collision part g'”. The above procedure can be used for the reduced distribution

functions, yielding:

(o(x,y,c,H) =@ exp

%—/
Overall distribution

So l-@
_Lﬁmlws_o + Lﬁm @5 exp _L*/_;_n e \ds (4.4)
Kn, 2 ¢ Kn, 2

b
Sreaming part Collision part

and

t//(x,y,c,@) =y exp

%—J
Overall distribution

So l-w
_Lﬁnz‘]_ws_o + Lﬁnr WS exp _L\/_;_nz'l_(os_ dS (45)
Kn, 2 c| 3Km 2 ¢ Kn, 2 c

-
Streaming part Collision part

Using the discrete velocity method described in the previous chapter we solve the problem to
obtain ¢, w and the correspond expressions for the boundary conditions ¢ and . The

direct calculation of the collision part using the expressions

’ 1 N7z nr™ 1 Jx »
¢”=£K—— . (/)Sexp{——K———n‘ C}a’s (4.6)

4.7

ﬁnlw }ds
c

is complicated due to the path integral that needs to be calculated. This can be avoided

calculating the streaming parts and then, knowing the overall distributions, the collision parts
can be calculated through the expressions @ =@ +¢' and y =y +y

The calculation of the ballistic part is performed in the following manner. The expressions

1 Jx s 1 \/_ S :
© = p exp| ————nr'™? 22 | and =y exp| —————nr"® -2 | are used in each
=9 P Kn, 2 c v =y exp Kn, 2 c

physical space element, where the quantities » and 7 are mean values of those quantities at
the four nodes of the element. This way the assumption made is overcome. The solution
method will be described for one case, as depending on the polar angle we solve for a

different node and the outgoing distribution is emitted from a different side of the element.
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We calculate the distance s, = of the characteristic as shown in Figure 6, and the

cosd

point along the vertical side where the distribution is emitted is y, =y, —s,sinf. The

outgoing distribution is estimated as a weighted average of the distribution in the adjusting

nOdeS, as ¢+ = 1/quoi(j)l,/'—l.m.n A W2¢i(j)l,j,m.n and !f//+ = w]lr//i(i)l,j—l,m,n +W2l//i(j)1,j,m,n s Where Wl = %

' \y
and w, = yl—;h . Substituting those in the above expressions we get

y
1 \/; S
®  —ptexp|l ———XL e 20 4.8
P jmn =@ EXP K 2 . (4.8)
and
1 7 S
®  —wtrexp| - N2 e 2o 4.9
V ki =V OXP\ “ e Py (4.9)
v
. . )\
(-1.)) e (L)
/
So //
//
//
\ el L
Al g-|.
Ay
(1-1.j-1)

Ax

Figure 6: View of a grid element with the outgoing distribution and the distance s, .
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It is noted that the outgoing distributions denoted by the plus superscript are not necessarily
the boundary conditions on the domain boundaries, but the distributions coming into the

physical space elements.

The expressions for the macroscopic quantities become
n=[gpdc=[(p"+¢)dc=[p dc+ [¢“de=n" +n® (4.10)

for the number density and
1 - 1 A o~ 1 | -

= —Ic[(pdc =— Ici (0% +¢)dc=— J-c,.gp(”dc + —'fcigo(s)dc =u® +n® (4.11)
n n n n

for the velocity vector.

Having solved the overall problem, the overall macroscopic quantities are calculated, and
calculating the streaming part of the distribution function, we integrate it to get the streaming
part of the macroscopic quantities and through the above expressions, the collisional parts are

calculated.
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Chapter 5 Results and discussion

5.1 Computational parameters

The flow is characterized by the reference Knudsen number, in all of the cases checked, the
temperature ratio in all but the known heat flux cases, where the value of the heat flux is
known and the aspect ratio of the cavity / /W for the non-isothermal lateral walls case. The
computational grid used was different in each case, and its parameters are summarized in the

following table.

Table 3: The computational parameters for each case.

Case I J Magnitudes Angles Error
Half heated cavity 200 200 40 200 107"
Bottom wall heated 400 400 80 400 10"
cavity with given
temperature
Bottom wall heated 200 200 40 200 107"
cavity with given
heat flux
Cavity with lateral 400 400*H/W 80 400 10"

walls having linear

temperature variation

It is noted that for the known bottom wall temperature and the linear temperature
distribution along the vertical walls problems the temperature of the hot wall was used for the

non-dimensionalization, while on the other two cases the temperature of the cold walls was

33



used. Therefore, the dimensionless quantities of these cases cannot be directly compared with
each other and a transformation is required. Also, the reference Knudsen number used in
section 5.2 for the half heated cavity is not the one defined at (3.5), but has been multiplied by
the factor /4 to match the definition of [25]. Finally, it is noted that upon convergence, all

conservation principals are fulfilled.
5.2 Half heated cavity

In the half heated cavity problem, the boundaries at x <0 have a constant temperature 7.

and the boundaries at x >0 have a constant temperature 7,,, with 7,, > 7,.. Simulations were

performed for one temperature ratio (7, /7. =2) and Kn, =0.05, 0.5 and 5. The problem has

been previously solved in [25] and the solution was repeated in this work for benchmarking
purposes.

Since the boundary conditions are symmetric with the axis of symmetry at y=0.5, all

results in this section are shown for the half of the flow domain. The effect of gas rarefaction
in the flow field pattern can be seen in Figure 7. For small Knudsen numbers the biggest part
of the bottom half of the flow domain is covered by a vortex (vortex Type-I) rotating so that
the velocity in the vicinity of the bottom wall is from cold towards hot regions, due to thermal
creep. Of course a second vortex of this kind exists in the upper part of the cavity, due to
symmetry, and is counter rotating to the ones shown in Figure 7. In the bottom corners of the
cavity two more vortices appear, counter rotating to the Type-I vortex (vortex Type-II),
having a velocity in the vicinity of the bottom wall heading for hot towards cold regions.
These vortices are created due to the viscous forces acted on them and in those regions are
greater than the thermal creep forces. As the gas rarefaction is increased the Type-II vortices
start to occupy a greater part of the cavity, squeezing the Type-I vortex towards the top part of

the cavity.

In Figure 8 we can see the distribution of «_ along various horizontal planes of the cavity
for various Knudsen numbers. Focusing to the distribution of u_ along the bottom wall
(y= 0) we see that for Kn, =0.05 the biggest part of the bottom wall has a positive #_ and

only in small regions near the corners u_becomes negative. As the Knudsen number increases
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those regions become bigger, and in Kn, =5 the biggest part of the bottom wall has a
negative u_, contrary to the velocity expected due to thermal creep.

The terms vortex Type-I and II are used here instead of the trivial terminology primary and
secondary, as both kinds of vortices can be important in the description of the flow field,
depending on the gas rarefaction. It is seen that as the Knudsen number increases the Type-II
vortices start to occupy a considerable part of the flow domain. Moreover it can be seen at

Figure 8 that the magnitude of u_ in the vicinity of the Type-II vortices can be greater than

the magnitude in the vicinity of Type-I vortex. This flow, directed form hot to cold regions, is
unexpected and of great interest as it is opposed to the normal thermal creep flow expected. It
is also seen in Figure 8 and Figure 9 that as the gas rarefaction is increased, the magnitude of
the velocities is decreased, and in the free molecular regime no motion is present as expected.

This problem was solved mainly for benchmarking purposes as mentioned above. It can be
seen through Figures 8-13 that the comparison between the two results is very good. Of
course there are small deviations but they are expected as in the present work the Shakhov
kinetic model was used, while in [25] the BGK kinetic model was applied, and the BGK
model cannot provide the correct viscosity and thermal conductivity simultaneously.

The boundary conditions in this configuration are discontinuous and a known issue of the
DVM is the propagation of boundary induced discontinuities, known as ray effects. Those ray
effects can be seen in Figure 8 and Figure 9 as small oscillations of the curves in the results of
the present work. In the results of [25] they are not apparent as a sophisticated numerical
procedure was used to cope with the discontinuities. Those discontinuities can also be seen at
Figure 12 and Figure 13 at the distributions along the bottom wall. Because of the numerical
procedure used in [25] they are much more visible compared to the results of the current work
where they are smoothed. The discontinuity of the density distribution is much stronger in
large Knudsen numbers, as expected, and is becoming weaker as the Knudsen number is
decreased.

On the other hand the temperature discontinuity is strong even at small Knudsen numbers.
Finally, we can see that the distributions of density and temperature at y=0.01 are
continuous even at high Knudsen numbers, as the discontinuities are rapidly diminished by

viscous forces.
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Figure 7: Streamlines for various Knudsen numbers
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various Knudsen numbers: present results (left) and results of [25] (right).
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various Knudsen numbers: present results (left) and results of [25] (right).

38



0.5 ~
! i 3 }
| = / J, o
! N W= / 8 i
> -\ \'g \ B\" - / / / /
025k 3\ \ /
S \ X \ & d
), \\ \\ \ / /Q' ok //
i . b N \\\\7\ §/ g
0 [ 7, |\ \T\Ao‘?‘\\ [P e ”
0.5 0.25 O 0.25 05
(a) Kn=5
g \ \\\ \ 1 / %o > 1\.2\ 1.0
> \ \
025 f Voo \ \ 8 m/ / } / /
R RNV TS/ \ |/
> | y \
a % ; \\ N\ \ / / /<
i \ |/ LY =0.85
00 I 7? | l\\k 1 ‘,\\\l‘/_y d oy o i 0 t / / p
5 025 0 . 0.25 05 —05 0, 0.5
(c) Kn=0.5 (d) Kn=0.5
05 3 | % 0.5 I
- | ‘ - g \ !
- \ \ \ \ | \ \ /
s ; >a
L LA / \ \
"o25 T \\ i\ / \ \ \ \ A
FoN RO\ ) J \\ \ \ \ \\\ i
¥ \_} / pa 14\ . \\ 1 0/ / p =08
= S & 4 N
o?\ N SN\ 7 /‘/l | ’ | ’ o \\\\\gr/ /
0.5 0.25 0 0.25 05 —05 0 0.5
X . X .
(e) Kn = 0.05 (f) Kn =0.05

Figure 10: Density contours for various Knudsen numbers: present results (left) and results of

[25] (right)

39



05~ t
{ |
\ e L h ,/
= >
. oy y ‘
025F "\ \_ 2/ /
| \ \ / J
\\\ \\ / «/ ,\,\/
g \ \\‘ | / /‘/ /,
i \\ \\ \L "/ // a ///"/
0 M| \1 9.\\ */\/,@‘ 1 ‘/ L L L
-0.5 -0.25 0 0.25 0.5
X
(a) Kn=5
0.5 1 ‘ = f
I \ & 1 J .
| \ \ * ’/' -
L\ L 4
0.25 : \13 \ \ l // / //
\\ \'\ - / Vi //'
; N \\ \ / '?' y,
_)”\\ \\\ {?\ \ A o /'/
ol T A\ e e ; ;
-0.5 -0.25 0 0.25 0.5
X
(c) Kn=10.5
05 .
R
| i | i
SRR | N
- I \ \ VT / / /
o5 |\ L ‘ [ /
L\ \ @ R [ 2 /
| \ \ \ \\ \\ ,i A ,r‘/ /
> NN\ @ 5/
) o N NI E ) y
I ’\\\ "-é\\ \ . \\l / y, / //, ,\9
0 L a1 7 ,\x\\r\ 3 -"‘/;;/,/ l/l/l L . L
-0.5 -0.25 0 0.25 05
X
(e) Kn = 0.05 (f) Kn =0.05

Figure 11: Temperature contours for various Knudsen numbers: present results (left) and

results of [25] (right)

40




0.co
X

(e) Kn = 0.05

11F g .
- 0.01
0.1 N\ 0.05
1k 0.25 3 i
v=0.5
09+ J
-0.5 0 x 0.5
(b) Kn =5
1.2F 0 B
0.01
0.1 0.05
1+ 0.25 i
v=0.5
0.8
-0.5 0 x 0.5
(d) Kn=10.5

(f) Kn =0.05

Figure 12: Distribution of density along horizontal planes for various Knudsen numbers:

present results (left) and results of [25] (right).

41



- T T v T T T T
-0.50 -0.25 0.00 0.25 0.50 -0.5 0 x 0.5

—&—y=0 | (b) Kn=5

—@—y=0.01|
—A—y=005\2v--v-vvvv
—{Fy=0.1 |
—O—y=0.25
—\—y=05

1.0+ T T T T
-0.50 -0.25 0.00 0.25 0.50
X
——y=0
—@—y=0.01
2.0 y [ —A—y=0.05
—{Fy=0.1
1.8 - —O—y=0.25
—A—y=0.5
1.6-
T 14 T
1.2 4
o —= , :
-0.50 -0.25 0.00 0.25 0.50
X

(e) Kn = 0.05

Figure 13: Distribution of temperature along horizontal planes for various Knudsen numbers:

present results (left) and results of [25] (right).

42



5.3 Bottom wall heated cavity

In this formulation the bottom wall of the cavity is hot while the other three walls are kept

at a constant lower temperature 7,.. Two cases of this formulation where checked, in the first
the bottom wall is kept at a constant given temperature 7,,, while on the second the heat flux

departing from the bottom wall is given and the wall temperature is part of the solution. In
order to check the coherency of the results, the distribution of heat flux along the bottom wall
that was taken from the solution of the given bottom wall temperature problem was used as a
boundary condition for the given heat flux problem and the distribution of the wall

temperature was the same as the one used as a boundary condition for the initial problem.
5.3.1 Dirichlet boundary conditions (given wall temperature)

This configuration, a cavity with one hot and three cold walls, is very commonly found in
micro-electromechanical systems. During their design either the temperature ratio is assumed
and the geometry and flow characteristics are chosen so that it is sufficient for the cooling, or
the heat flux is assumed. In this section the given temperature case is investigated.

The flow was simulated for 0.1< Kn,, three temperature ratios 7./7, =0.1, 1, 10 and

only hard sphere molecules (a):O.S) where assumed. In Figure 14 we see temperature

contours and streamlines. At small Knudsen numbers the largest part of the cavity is occupied
by vortices rotating so that the vertical velocity in the vicinity of the lateral walls is negative
(Type-I), leading to a mass flow from cold towards hot regions. Two more vortices exist
(Type-11), even in small Knudsen numbers, counter-rotating the Type-I vortices. The Type-II
vortices are restricted to small regions near top of the lateral walls at small Knudsen numbers.
As the Knudsen number is increased the Type-II vortices start to expand squeezing the Type-I
vortices towards to the bottom part of the cavity. As can be seen in Figure 15 the greatest part
of the lateral wall has a velocity from hot towards cold regions and in some cases the

magnitude of u, in the vicinity of the lateral walls is greater for the Type-II vortices, than for

the Type-I. So it 1s clear that this unexpected flow from hot to cold regions exists in this

formulation too.
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Since these kinds of configurations are used mainly for the cooling of MEMS, it is of great
practical interest to calculate the heat flux departing from the bottom plate. Figure 16 shows
the dimensionless heat flux departing from the bottom plate in terms of the reference Knudsen
number for various temperature ratios. The dimensionless heat flux increases, as the Knudsen

number increases and tends to an asymptotic value as Kn, — o . A very interesting finding 1s

that the dimensionless heat flux does not necessarily increase as the temperature difference

increases, but is seen to have a maximum around 7./7, =0.5. The comparison shown in

Figure 16 between the results of the current work (DVM) and the results of [60] (DSMC)
have a good agreement, validating this interesting finding. Some dimensional results for the
heat flux departing from the bottom plate per unit length in the z-direction are provided in
Figure 17.

A well-known issue of the Discrete Velocity Method is the propagation of boundary
induced discontinuities, especially at high Knudsen numbers, known as ray effects. A simple
procedure was used to cope with the discontinuous boundary conditions at the two corners of
the bottom wall. Along a small length at the two ends of the bottom wall, equal to 5% of the
total side length of the square cavity, the temperature is taken to have a linear variation

between 7. and 7, . Although the ray effects were diminished this way, the boundary

conditions are still strongly discontinuous. Figure 18 shows the boundary conditions for

Kn, =1, T. /T, =0.1 and for three values of the molecular velocity magnitude. It is seen that

at the two corners of the bottom wall the boundary conditions are strongly discontinuous,
despite the mentioned procedure. Another observation is that the value of the boundary

conditions quickly tends to zero as the molecular velocity magnitude increases.
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Figure 14: Streamlines and temperature contours for various Knudsen numbers with

1./T,; =0.1 (left) and T.. /T, = 0.9 right
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Figure 15: Distribution of the tangential velocity along the lateral walls for various

temperature ratios and Knudsen numbers.
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Figure 16: Average dimensionless heat flux departing from the bottom plate of a square

enclosure in terms of the Knudsen number and for various temperature ratios.
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Figure 17: Dimensional heat flux in terms of the reference pressure for a square cavity of side

W =50um and for 7, =7,, =1000K .
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Figure 18: The boundary conditions for Kn, =1, 7./7, =0.1and for three values of the

molecular velocity magnitude.
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5.3.2 Neumann boundary conditions (given heat flux)

In this configuration the heat flux departing from the bottom plate is given and the wall
temperature is part of the solution. Figure 19 shows temperature contours and streamlines for

Kn,=0.1and 1 with g =0.5 and 1. The flow pattern is the same as in the given bottom wall

temperature, as this is essentially the same set-up. Both Vortex-type I and II are present, in
both reference Knudsen numbers shown in Figure 19. The type-II vortices are restricted close

to the lateral walls for Kn, =0.1, but still cover the biggest part of the wall, while for
Kn, =1 they are well developed covering the biggest part of the cavity.

Using the given heat flux boundary condition we can determine the operating temperatures
for given geometry and flow conditions of the device, so that it is able to cope with the design
load. The average dimensionless bottom wall temperature is given in Table 4 in terms of the
dimensionless heat flux and the Knudsen number. This average dimensionless bottom wall
temperature can in some cases be far from the actual values of the dimensionless bottom wall

temperature distribution. This can be observed in Figure 20 where the distribution of the

dimensionless bottom wall temperature is plotted for ¢, =land Kn, =0.01, 0.1, 1and 10.

While for large reference Knudsen numbers the distribution is almost flat, for small values of
the reference Knudsen number the distribution can have a large curvature, and the average
value can be far from the actual.

Some dimensional results for the average bottom wall temperature are presented in Figure
21 in terms of the heat flux departing from the bottom plate for various values of the reference

pressure for a square cavity of side W =50um and 7, =7. =100K .

Table 4: Average wall temperature for various reference Knudsen numbers and heat fluxes.

Kn, 9w
0.01 0.05 0.1 0.5 1 5
0.01 1.15 1.67 2.24 5.71 9.02 ---
0.1 1.03 1.17 1.33 2.5 3.81 12.21
1 1.02 1.10 1.20 1.92 2,77 8.70
10 1.02 1.09 1.18 1.37 2.63 8.46
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(a) Kng=0.1 quw=0.5 (b) Kng=0.1 qw=1

(c) Kno=1 quw=0.5 (d) Knp=1 qw~=1

Figure 19: Streamlines and temperature contours for g, =0.5 (right), 1 (left) and Kn, =0.1

(top), 1 (bottom).
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Figure 20: Distribution of bottom wall temperature for ¢, =1and Kn, =0.01, 0.1, 1 and 10
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Figure 21: Dimensional heat flux departing from the bottom plate for a square cavity of side

W =50um and 7, =7. =100K in terms of the average bottom wall temperature for various

values of the reference pressure.
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5.4 Non-Isothermal lateral wall cavity

In this formulation the bottom wall is kept at a constant temperature 7, , the top wall is
kept at a lower temperature 7. and the lateral walls have a linear temperature distribution

between the cold and hot temperatures. Simulations were conducted for three temperature

ratios 7../7,=0.1, 1,10 , 0.01<Kn<10 covering parts of the slip and free molecular
regimes and the whole transition regime, three aspect ratios of the cavity H/W =0.5, 1, 2
and two values of the IPL parameter w=0.5, 1 corresponding to the two limiting cases of

hard sphere and Maxwell molecules respectively.
5.4.1 Flow domain

The effect of gas rarefaction on the flow structure is shown in Figure 23. For Kn, =0.01

only two vortices (Type-I) are present rotating so that the vertical velocity in the vicinity of
the lateral walls is from cold towards hot regions, as expected due to thermal creep flow. As
the Knudsen number is increased two additional vortices appear (Type-II) counter-rotating to

the Type-I vortices. At Kn, =0.1the Type-II vortices are restricted to regions near the bottom

corners of the cavity but as the Knudsen numbers is further increased they expand covering
larger regions of the flow domain, and the Type-I vortices are squeezed towards the upper
part of the cavity. Those Type-II vortices rotate so that the vertical component of the velocity
in the vicinity of the lateral walls is from hot towards the cold regions, that is in the opposite
direction of the expected thermal creep flow. Of course as the Knudsen numbers tends to

infinity all motion in the cavity vanishes.

Figure 24 shows the streamlines and temperature contours for 7./7, =0.5,0.9 and the

typical values of Kn, =0.1, 1, 10. Comparing the flow pattern of this figure and Figure 23 the

effect of the temperature ratio to the flow structure can be derived. As the temperature ratio
and in effect the temperature gradient along the lateral walls are decreased the Type-II
vortices become thinner, covering small parts of the flow domain, yet they can cover even the
whole length of the lateral walls.

A quantitative description of the flow field is given in Figure 22, where the x and y
components of the macroscopic velocity on vertical and horizontal planes, respectively,

crossing the centers of the Type-I vortices are plotted. The results are for a square enclosure
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with 7,./7,=0.1 and Kn,=0.01, 0.1, 1. Along with the results of the present work
(Shakhov), results of [33] have been included (DSMC) for comparison purposes. The
distributions of », are symmetric about x=0 and the points where u, changes sign
correspond to the x coordinate of the center of the two eddies of Type-I. The sign of
u_changes only once for Kn, =0.01 and 0. meaning that only the two Vortex-type I are
present (actually for Kn,=0.1 the Type-II vortices have been created but are restricted to the
bottom corners). For Kn,=1 the sign changes several times meaning that the Type-II vortices

are present. These observations are in accordance to the flow patterns shown in Figure 23.

Another observation is that for all the cases the magnitude of the velocity is in the order of
10~ or less (the local Mach is about 10% higher than the dimensionless velocity), which is
typical of rarefied temperature driven flows. The maximum values of the Mach number were
observed around K7,=0.1. Also as the Knudsen number is increased the magnitude of u, in

the vicinity of the Type-II vortices is increased and can become larger than the u in the

vicinity of the Type-I vortices. These latter remarks are confirmed by the dimensionless flow
rates of the Vortex-type I and II presented in Tables 5 and 6 respectively for various
temperature ratios and reference Knudsen numbers. The former ones are computed integrating

the dimensionless flux nu_ in the y direction from the center of the Vortex-type I to the top
wall and the latter ones by integrating the flux »u, in the x direction from the center of the

Vortex-type II to the side wall. It is seen in Table 5 that that starting from K#,=0.01as the

Knudsen number is increased and for the same temperature ratio, the flow rate of Vortex-type

I is increased obtaining a maximum value around K#,=0.07 and then is constantly decreased

as the Knudsen number keeps increasing, for all temperature ratios. The corresponding flow

rates of Vortex-type II in Table 6 indicate a maximum around K#,=1.2. The exact physical

reasoning for these maximum flow rates with regards to the reference Knudsen number is
contributed to the number of collisions between particles and between particles and

boundaries as the gas rarefaction is changing. In addition, while for K#, <0.1 the flow rate of

the Vortex-type II is several orders of magnitude smaller compared to the corresponding ones
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Table 5: Dimensionless flow rate of Vortex-type I in a square enclosure for various Knjand 7. /T,

Kn,
To/ T 0.01 0.06 0.07 0.08 0.1 1 10

0.1 634(-4)  1.70(-3)  1.72(-3)  1L71(-3)  1.67(-3) 2.89(-4)  2.76(-5)

0.5 287(-4)  751(-4)  7.53(-4)  7.44(-4)  7.08(-4) B8.60(-5)  6.38(-6)

0.9 5.07(-5)  131(-4)  131(-4)  130(-4) 1.23(-4) 121(-5)  6.99(-7)

Table 6: Dimensionless flow rate of Vortex-type I in a square enclosure for various Kn,and 7. / T},

Kn,

fe/ T 0.1 1 1.1 1.2 1.3 10
0.1 255(-6)  1.18(-4) 1.198(-4) 1.204(-4) 1202(-4)  3.99(-5)
0.5 6.98(-7)  246(-5) 2.504(-5) 2.513(-5) 2.512(-5)  8.70(-6)
0.9 B41(-8)  2.85(-6) 2.902(-6) 2.936(-6) 2.942(-6)  1.08(-6)

of vortex Type-I, as the Knudsen number is increased the two flow rates become of the same
order and in some cases the former ones are even larger. Also, for the same Knudsen number
as the temperature difference is increased the flow rate is also increased.

The effect of the lateral walls in the flow pattern may be seen in Figure 25, where
streamlines and temperature contours for two rectangular enclosures, namely,

H /W =0.5and 2 for the specific case of 7./7, =0.1and Kn, =1 are plotted. Comparing

the flow fields of Figure 25 with the equivalent for a square cavity of Figure 23, it is seen that
as the aspect ratio is increased the presence of the Vortex-type II becomes more dominant
covering a larger part of the flow domain. Obviously, as the aspect ratio is increased the
importance of the non-isothermal side walls compared to the bottom and top walls is also

increased.
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Since this is a thermally induced flow it is reasonable to investigate the effect of the
intermolecular collision model and this is done by including in Figure 26 some results for

Maxwell molecules for the specific cases of 7./7,, =0.1and Kn, =0.1and 1. Comparing the

plotted streamlines and temperature contours with the corresponding ones for hard spheres in

Figure 23 it is observed that for Kn, =0.1there is actually no effect, while for Kn, =1 there

are differences.
5.4.2 Lateral walls

Here, a more thorough description of the macroscopic quantities in the vicinity of the
boundaries of the enclosure is provided. This includes the y components of the velocity and
heat flux as well as the shear stress along the lateral walls and the average heat flux from the
bottom wall.

In Figure 27 the tangential velocity u, along the lateral walls of a square enclosure for

small, moderate and large temperature differences in a wide range of the reference Knudsen

number are provided. When u <0, the flow is from the top to bottom and corresponds to the
expected thermal type flow as described by the Vortex-type I pattern, while when u >0 the

flow is the other way around and corresponds to the unexpected flow pattern as described by

Vortex-type L It is observed that when Kn, =0.01 the values of u, are negative and only very

close to y=0 and 1 very small positive values appear. The Vortex-type I flow covers the whole

flow domain. When Kn; =0.1 both positive and negative values of u, are observed. The

positive values are close to the two ends and the negative values in the middle part of the wall.
That implies that although the Vortex-type I flow still covers most of the whole flow field,
counter rotating vortices at the bottom and top corners have been created, which, as the
Knudsen number is increased, grow and merge into a Vortex-type II along the whole length of
the side wall. These observations qualitatively hold for all three temperature ratios

According to the R13 approach in [31], the formation of the Vortex-type II is explained by
the opposite contribution of the two different terms of the tangential velocity at the wall,

which in the present notation, is written as

RI3 _ 1 (\/E 1 J
U, =- q,

g (m+0.5pw) g P» 5

5 (5.1)
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The superscript R13 has been added here, in order to distinguish in our discussion the
tangential velocity obtained by Eq. (5.1) from the one obtained through the kinetic solution.
The first term in the parenthesis is the viscous part of the tangential wall velocity and the
second one to the transpiration part, caused by the shear stress and the tangential heat flux,
respectively. The respective magnitude of these terms determines the sign of the tangential

velocity and the local direction of the flow along the side walls. In order to examine the

validity of this theory, the kinetic results of p  and g, are introduced to compute, according

to Eq. (5.1), the viscous and transpirational parts of the wall tangential velocity and the whole
velocity as well.

The shear stress p,, and the tangential heat flux ¢, along the lateral wall at x=-1/2 of a

square enclosure for various Knudsen number and temperature ratios are provided in Fig. 28.

It is seen that always p <Oand ¢, >0 so they have an opposite contribution to the

tangential velocity. Since, however, as the Knudsen number is increased, both the values of
the heat flux and the absolute values of the shear stresses are increased, it is necessary to
further compute the contribution of each part separately.

In Figure 29, the tangential velocities obtained by kinetic theory and according to Eq. (5.1),

3

denoted by u, and u_f' respectively for Kn, =0.01, 0.1, 1 and 2, are plotted. When the

velocity distributions are negative the transpirational part of the solution dominates and the
flow along the lateral walls is from cold-to-hot (Vortex-type I), while when they are positive
the viscous part dominates and the flow is from hot-to-cold (Vortex-type II). The agreement
between the kinetic and R13 theory in small Knudsen numbers is very good and then, as the
flow becomes more rarefied, the discrepancies, as expected, are increased. In general, the

good qualitative agreement for Kn, <0.1 indicates that the theory developed in [31] in order

to explain the formation of the hot-to-cold flow in the vicinity of the walls is valid in the slip
regime and fails as the Knudsen number is increased.

It has been pointed in the previous section that the aspect ratio of the enclosure effects
significantly the flow configuration and quantities. To further demonstrate the effect of the
lateral walls, the tangential velocity and heat flux along the lateral walls of enclosures with

H/W =05, 1and 2 for 7./7,, =0.1 and Kn, =1 are plotted in Figure 30. For the specific

Knudsen number and temperature ratio the velocities are positive for all thre aspect ratios and

approximately of the same magnitude resulting to stiffer velocity gradients as H/W 1is
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decreased. The tangential heat flux is significantly increased as H /W is decreased, i.e., as
the effect of the side walls is decreased.

In Figure 31 the average dimensionless heat flux departing from the bottom plate

0.5
G, = I q,(x,0)dx is plotted in terms of the reference Knudsen number Kn, for
-0.5

T./T,=0.1, 0.5and 0.9. The corresponding results for the large temperature difference
obtained by the DSMC method in [33] are included for comparison purposes. It is seen that
the agreement between the corresponding Shakhov and the DSMC results is excellent. The

dependency of ¢, versus Kn, is qualitatively similar to the pure heat conduction problem

between parallel plates, which corresponds to the limiting case of H /W =0. However,
quantitatively there are major differences and as H /W is increased the average heat flux is
decreased, e.g. the computed values of ¢, for H /W =0.5, 1 and 2 are 0.35, 0.14 and 0.057
respectively. Concerning the effect of the collision parameter @ on ¢ it turns out that it is
small since the values of the computed average heat fluxes for hard sphere and Maxwell
molecules are close. Finally, it is seen that in this case as the temperature difference between
the top and bottom plates is increased the average heat flux for the same Kn, is also

increased. Some dimensional results of the average heat flux departing from the bottom plate

in terms of the reference pressure are seen in Figure 32.

In Figure 33 and Figure 34 the reduced distribution function is plotted in terms of the
molecular velocity in various points of the cavity. Subfigures a,c,g and i correspond to the
four cavity corners, subfigures b,d,f and h correspond to the middle of the stated wall and
subfigure e corresponds to the center of the cavity. Figure 33 the distribution function for
1. /T, =0.1and Kn,=0.05 is shown. We observe that along the top wall the majority of
particles are concentrated in a small region of the molecular velocity space near ¢ =0 and the
number of particles outside of this region is very small, while in the other cases the
distribution still has a maximum for ¢=0 but is more evenly distributed. In some of the
subfigures some weak discontinuities can be seen. The situation is much different in Figure

34 for Kn,=2, where for all the cases the majority of particles is consecrated in small

regions, and in the general case these regions are not symmetric with respect to the polar
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angle of the molecular velocity. In all of the cases there are very strong discontinuities of the
distribution function.

One of the main assumptions behind continuum models is that the flow is near equilibrium
and the distribution function is either the local Maxwellian (Stokes analysis) or near the local
Maxwellian (NSF analysis). When the reference Knudsen number is small this assumption is
in the general case correct, whereas in large reference Knudsen numbers it fails. This can be
seen in Figure 35, where the distribution function and the corresponding Maxwellian are

plotted for 7../7,, =0.1 and Kn,=0.05and 2 at the center of the cavity. It is observed that

for the small Knudsen number the distribution is indeed close to the local Maxwellian,
whereas for the large Knudsen number the two distributions are very different.
Finally in Figure 36 a comparison is made between the distribution function at the middle

of the top wall for 7./7,=0.1and Kn,=0.05 and the corresponding Maxwellian

distribution function. Although the reference Knudsen number is small, and the flow is
expected to be near thermodynamic equilibrium we see that the distribution is far from the
local Maxwellian. This is because the local Knuden number can be very different from the
reference Knudsen number in non-linear flows, causing such issues. The existence of such
regions, especially near and on the boundaries can further decrease the range of validity of the

continuum approach.
5.4.3 Streaming and collision contributions

The decomposition procedure described in Chapter 4, is applied in a square enclosure for

Kn, =0.05 and 2, with 7. /T,, =0.1. The two values of the reference Knudsen number have

been chosen as representatives to demonstrate the contribution of the streaming and collision
parts to the overall solution in the slip and transition regimes. In addition, the corresponding
results are typical for analyzing the thermal effects on the flow configuration in small and
large Knudsen numbers. There is a good qualitative agreement for large reference Knudsen
numbers with the results using the DSMC decomposition introduced in [33], but as the
reference Knudsen decreases deviations between the two results appear.

The streamlines and the contours of the vertical velocities of the streaming and collision

arts of the solutions, denoted by #" and u'® respectively, as well as the overall solutions are
p yu ) P y

given for Kn, =0.05 and 2 in Figure 37. More specifically, Figure 37a,b show the streaming
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parts and Figure 37c,d the collision parts, while the overall solutions which are the summation
of the two corresponding parts are shown in Figure 37e.f. It is seen that the streamlines of the
streaming parts are directed from the boundaries toward the interior of the bulk flow while the
streamlines of the collision parts are directed from the interior of the bulk flow toward the
walls. These qualitative observations are well expected from the physical point of view since
in the streaming part the walls act as source and the bulk flow as sink, while it is the other
way around in the collision part. The streamlines along with the vertical velocities contours
clearly indicate when the flow is in the positive or negative direction corresponding to hot-to-
cold and cold-to-hot flow respectively. The summation of these flow fields deduce the overall

solutions shown in Figure 37e,f.

The streamlines in Figure 37 may be further analyzed. Staring with Kn, =2, where the

flow patterns are simpler, the streamlines of the streaming and collision parts are directed to
and originated from single points, with total velocity equals to zero. The slight displacement
between the two focal points and the small differences in the velocity magnitudes of the
collision and ballistic parts, lead to the creation of Vortex-type II. Continuing with
Kn, =0.05it is seen that the streamlines patterns of the streaming and collision parts are quite
different. The streaming part has some resemblance with the corresponding one for Kn, =2,
showing one single point towards which the streamlines are directed. The collision part
however is different indicating two curves from which the streamlines are originated. This 1s a
major difference with the DSMC decomposition, which shows two single points from which
the streamlines are originated, and those two points are also the centers of two symmetric

spiral swirls, that is also not the case here. The slope of the streamlines with respect to the

vertical walls is another important element in the present analysis. It is seen that at

Kn, = 0.05the negative slope of the streamlines of the collision part is larger than the positive

slope of the streamlines of the streaming part and this is a clear sign for a cold-to-hot gas
motion along the vertical walls. At Kn, =2the two slopes are about the same with the
streaming one appearing to be larger, which is an indication for a hot-to-cold gas motion.

A more detailed view of the flow along the later walls is presented in Figure 38, where the
tangential velocities and number densities are presented. In Figure 38a the tangential
velocities of the streaming and collision parts are plotted along the lateral walls for

Kn, =0.05and 2, while the corresponding overall tangential velocities are given in Figure
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38b. It is seen in Figure 38a that for Kn,=0.05, the tangential velocities !’ and u'”are

positive and negative respectively along most almost the whole length of the side walls and
only very close to the top corners their signs are interchanged. In parallel, the overall

tangential velocity in Fig. 37b is negative.

In the case of Kn, =2, the tangential velocities # and #'” in Figure 38a, are positive and
0 g y y g p

negative respectively up to about y=0.7 and then their signs are interchanged. The overall
velocity in Figure 38b, is positive up to about y=0.7 and then its value becomes negative
taking very small values close to zero. From the above it is deduced that the negative or

positive values of u, corresponding to cold-to-hot or hot-to-cold flow along the walls

depends on which part of the solution, either the streaming or the collision part prevails with

respect to the other. At Kn, = 0.05 the contribution of the collision part is more significant and
only the Vortex-type I flow is observed, while at Kn, = 2 the magnitude of the streaming part

has been increased and becomes respectively more significant and therefore the Vortex-type
IT flow shows up.

These arguments are also supported by the streaming and collision number density profiles

denoted by »® and»n', in Figure 38c. It is seen that along the walls for Kn, =0.05,

)

n® <n“and for Kn,=2,n" >n", which also indicates that in the overall solution the

contribution of the collision part dominates at small Knudsen numbers, while at large
Knudsen numbers the contribution of the streaming part becomes more significant. In Figure
38d the overall density profiles computed as the summations of the two parts are provided for

Kn, =0.05and 2.

Based on both Figure 37 and Figure 38 and the previous discussion some more general
comments on the streaming and collision contributions in the overall solution may be stated.
In the free molecular limit, the flow is perfectly balanced by pressure and temperature
distributions and both collision and streaming velocities are equal to zero. Increasing the gas
density and respectively decreasing the Knudsen number, collisions between molecules
destroy this balance and from thermodynamic viewpoint, the gas reaction is a weak motion in
the enclosure with streamline patterns depending on the Knudsen number, the wall
temperature distribution and the enclosure geometry. At very large Knudsen numbers, the

streaming part is dominating. At moderate values there is interplay between the streaming and
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collision parts and the behavior of the overall solution is very subtle particularly in the
transition regime. Finally, at very small Knudsen numbers the collision part is dominating. In
this latter case, the classic thermal creep theory works and predicts correctly the cold-to-hot
direction of the streamlines along the vertical walls. As the Knudsen number increases the
impact of the streaming part also increases and the convective vortices start to rotate in the

hot-to-cold direction along the lateral walls.
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Figure 22: Distribution of the (a) y and (b) x components of the macroscopic velocity on
vertical and horizontal planes respectively, passing through the centers of the Vortex-type I

for a square enclosure with 7;./7,, =0.1 and various Knudsen numbers.
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Figure 23: Streamlines and temperature contours for 7./7, =0.1 and various Knudsen

numbers.
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Figure 24: Streamlines and temperature contours for 7../7,, =0.5, 0.9 and various Knudsen

numbers.
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Figure 25: Streamlines and temperature contours in rectangular enclosures of (a) H /W =0.5

and (b) H/W =2 ,for T. /T, =0.1 and Kn, =1

Figure 26: Streamlines and temperature contours in a square enclosure with (a) Kn, =0.1 and

(b) Kn, =1 for Maxwell molecules (@ =1).
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Figure 27: Distributions of the tangential velocity along the lateral walls of a square enclosure

for various Knudsen numbers and temperature ratios.
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Figure 28: Distributions of the shear stress and tangential heat flux along the lateral wall at

x =—0.5of a square enclosure for various Knudsen numbers and temperature ratios.
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Figure 29: Tangential velocity distribution u, along the lateral walls of a square enclosure for

1. /T, =0.1 and various Kn, computed directly by the present kinetic approach and by Eq.

(5.1) based on the R13 approach
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Figure 30: Distributions of the tangential (a) velocity and (b) heat flux along the lateral walls

of rectangular enclosures with various aspect ratios for 7,./7,, =1 and Kn, =1 .
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Figure 31: Average heat flux departing from the bottom plate of a square enclosure in terms

of the reference Knudsen number for various temperature ratios.
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Figure 32: Dimensional heat flux in terms of the reference pressure for a square cavity of side

W =50um and for 7, =7, =1000K .
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Figure 33: The distribution function at various points of the cavity for 7../7,, =0.1 and

Kn, =0.05.
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Figure 34: The distribution function at various points of the cavity for7./7,, =0.1and

Kn,=2.
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Figure 35: The distribution function (left) and the local Maxwellian distribution (right) for

Kn, =0.05 (top) and Kn, =2 (bottom) at the center of the cavity.
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Figure 36: The distribution function at the middle of the top plate for 7./7, =0.1 and

Kn, =0.05 (left) and the corresponding local Maxwellian (right).
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Figure 37: Streamlines and vertical velocity contours for the ballistic and collision parts as

well as of the overall solution in a square enclosure for K, =0.05 and 2, with 7. /T, =0.1.
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Figure 38: Tangential velocity and density of the ballistic and collision parts as well as of the

overall solution in the vicinity of the lateral walls of a square enclosure for Kn, =0.05 and 2,

with 7. /T, =0.1.

74



Concluding remarks

Three flow/heat transfer configurations are investigated. The half heated cavity flow is
investigated in terms of the reference Knudsen number for benchmarking purposes and the
comparison with the results of [25] is excellent. After validating the results of the code, the
bottom wall heated cavity configuration was simulated in terms of the reference Knudsen
number and the temperature ratio or the heat flux departing from the bottom plate. Finally the
non-isothermal lateral walls cavity configuration was investigated in terms of the reference
Knudsen number, the temperature ratio of the top over the bottom plates and the aspect ratio
of the enclosure. The Shakhov kinetic equation was solved numerically and results were
obtained in the whole range of the Knudsen number.

The first configuration helped check the validity of the results provided by the code
developed. The second configuration is of great technological importance as such flows are
very common in vacuum packed micro/nano-electromechanical systems. A flow in the
vicinity of the lateral walls going from hot-to-cold is observed even for small temperature
differences and small reference Knudsen numbers. Another interesting finding was that the
average heat flux departing from the bottom plate does not necessarily increase as the
temperature difference increases. For relatively large Knudsen numbers, there is a maximum

near 7../7, =0.5. The latter case helped confirm previous results in similar non-isothermal

set-ups, it has been found that in the vicinity of the lateral walls the gas is not necessarily
going from hot-to-cold. Actually, even for relatively small Knudsen numbers in the slip or
early transition regime a hot-to-cold flow along the non-isothermal walls is observed, which is
enhanced as the Knudsen number and the temperature difference are increased. The cavity
aspect ratio is also an important factor and the hot-to-cold flow is becoming more dominant as
the depth compared to the width of the cavity is increased. The effect of these parameters on
the flow configuration and bulk quantities has been thoroughly examined. Furthermore a
procedure was introduced, equivalent to the DSMC decomposition introduced in [33] by S.

Stefanov, for the decomposition of the solution into the ballistic and collision parts helping
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understand the complex flow structures. It has been found that at small Knudsen numbers the
collision part dominates and the classic thermal creep theory works, while at large Knudsen
numbers the ballistic part prevails and then the gas along the wall flows from hot-to-cold.

It is believed that the present work has both scientific interest and technological impact and
it is hoped to support the design and optimization of devices operating far from local
equilibrium. Future extension to this work could be the simulation of thermally driven flows
using polyatomic gasses, the simulation of the exact 3D configuration and a more extensive
investigation of the decomposition procedure based on the deterministic solution of the model

equations.
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Appendix A

If we consider a phase space element a’g‘d; then the number of molecules in this element

isf(;, E,t)dfd;. The rate of change of the number of molecules is %f(;, E,t)d;éd;. This

change can occur by molecules crossing the boundaries of the physical space element dr due

to their free motion, by molecules crossing the boundaries of the molecular velocity space
element dg" due to field forces acting on them and by molecules entering or leaving the
velocity space element dg; due to their collisions.
For the calculation of the rate of change due to the free motion of molecules let’s consider
a cubic physical space element dr = dxdydz . The number of particles crossing the boundary at
x through a surface of area dydz perpendicular to the x-axis during df is
fAE & didydz .

The number of particles crossing the boundaries at x+dx crossing a surface of area

dydz perpendicular to the x-axis during df is
[gx ok @ de dédidyds .
X

It follows that the net gain of molecules crossing the two sides perpendicular to the x-axis is

_e,/) dxd Edidyds .
ox
In proportion to this the net gain of molecules through the other sides is
0 -
- ©,f) dyd &dtdxdz
oy
and
—%zf) dzd Editdxdy .
/4

Summing these three quantities we have
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g _(aEfN) &S aEN) e
(at]ﬁ-ee es E B ¥ 2 i 5 jdédtdxaydz_ fa;drdfdt (4.1)

motion

In order to calculate the rate of change of molecules due to field forces, we have to assume
a square element d% =d¢& d& dE of the molecular velocity space. The force field acted on the
molecules is F and is in force per unit of mass. The velocity of the particles linearly alters
their position, and moves them through the boundaries of the physical space element
d;=dxa§/dz. This is equivalent to the force acted on molecules that linearly alters their
velocity and moves them through the boundaries of the velocity space element

dé = d&.d& dS. . So according to the previous result, we have

(@j dt = —( oES)  OBT) | OE.S) } drdidE dE dE. = —fa—jjd;d;‘dt (42)
ot ) peia oL, o¢, oL, : &

forces

The rate of change of molecules in the phase space element is more complicated. Let us
consider two types of molecules, those with velocity E (type 1) and those with Velocitya

(type 2). When a collision occurs between a molecule of type 1 and a molecule of type 2, their
respective post collision velocities are E and g Considering a single molecule of type 1
traveling through molecules of type 2, with a relative velocity cr =§ —51 , the volume swept

by the molecule in time dt is ¢,odQdt , where o is the differential cross section and d<Q is

the differential element of the solid angle in which the molecule will scatter after the collision.

The number of molecules with velocities about a 1s flda, which gives for the number of
collisions of a molecule with velocity 5 and molecules with velocity E, in dt the expression
cr fladﬂdadt. In the phase space element dga’; there are fdéd; molecules with velocities
about £ , so the number of collisions between molecules with velocities & and E, becomes

¢ f, fdcdrodQde,d .

This is the number of collisions of type (2,21 —>?,§T*) that take molecules out of the

velocity space elementd%. The inverse collisions (é‘*,él* —)E,E) that move molecules into
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d ;5 have also to be considered. Taking into account the symmetry and analogy of the direct

and inverse collisions, the number of such collisions is

e f £ dédrodQdEd .

The net gain of molecules with velocities about 5 due to collisions with molecules with

velocities about E] is

(/1 = £if)eroddEdEdrdt .

The net gain of molecules with velocities about .»E due to all collisions in df can be found

integrating the previous expression

-0 0

Summing the previous expressions we get

6 oz (F) (& j [af j
— f(r,&,0dédr =| L= Y| 5 -
at f(}" é: ) é: F [a[ jﬁ'ee (81 ;W/d ot collisions

motion

o 4x

g f(r.&,0dédr = —E%d;dé —Fg—gd;df +[ [ [(#f = 1S)eoddg

-0 0

© 41

 ,~=2 .. =8 =0f . 5 o
DR T o= J [(5 1 =11)eodadd =5(r)

-0 0

which is the Boltzmann equation.
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]d;fd? =N

(43)

(4.4)
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