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Extended Summary 

Pesticides constitute a significant group of environmental pollutants. The pollution of 

natural resources by pesticides is attributed to diffuse and point sources. The 

contribution of the latter in environmental contamination is of outmost importance 

and measures to diminish their impact have been proposed. On farm improper 

activities before, during or after spraying could be a significant point source of 

pollution of natural water resources by pesticides. Biobeds constitute an established, 

cost-effective and efficient on-farm biodepuration system for the treatment of 

wastewaters produced by on-farm activities. However post-farm activities involving 

pesticides application also contribute to the point pollution of natural resources. Such 

an example are fruit packaging plants where fungicides (thiabendazole (TBZ), 

imazalil (IMZ), ortho-phenylphenol (OPP)) and antioxidants (diphenylamine (DPA), 

ethoxyquin(EQ)) are used to protect fruits from fungal infestations and physiological 

disorders during storage. This results in the formation of large volumes of 

wastewaters which contain high loads of toxic and persistent pesticides and should be 

treated on site. The environmental risk associated with the postharvest use of 

pesticides is exemplified in the registration documents of all relevant pesticides which 

specify the need for treatment of the effluents produced before their environmental 

release. However no efficient, cheap and sustainable treatment methods are available 

at the moment in Europe.   

 In the absence of effective depuration methods, these effluents are discharged 

in municipal wastewater treatment plants or spread onto agricultural land 

compromising the quality of water and soil resources. Biobeds modified to cope with 

the characteristics of these particular effluents (large volumes, seasonality in 

production, high pesticide loads, low BOD/COD etc) could be an applicable solution 

for their treatment.  Based on all the above, the main aim of this PhD thesis was to 

assess the potential use of biobeds as treatment methods for the depuration of 

wastewaters from fruit packaging plants. To achieve this main aim a gradually scalled 

up experimental approach was implemented which aimed (a) to identify, initially at 

lab scale level, biobeds packing materials based on Spent Mushroom Substrate 

(SMS), which exhibit high dissipation and sorption capacity against the pesticides 

used in the fruit packaging plants (b) to further test, at leaching columns, the capacity 

of the best performing biobed packing material to retain pesticides under conditions of 
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high hydraulic load simulating realistic conditions and (c) to finally test the 

depuration performance of biobed systems at pilot scale level. Additional points were 

explored like means to maximize the depuration performance of biobeds against 

recalcitrant pesticides via bioaugmentation with tailored-made inocula, the response 

and structure of the microbial community in biobed systems and practical aspects for 

their implementation like (i) the quality and post-treatment handling of the biobed-

treated effluent and (ii) the decontamination of the spent biobed packing material 

upon the end of the life cycle of biobeds.  

In Chapter 2 we studied the dissipation of TBZ, IMZ, OPP, DPA and EQ used 

by the fruit-packaging industry, in anaerobically digested sewage sludge and in liquid 

aerobic sewage sludge to test the dissipation capacity of sewage treatment plants. At a 

second stage we evaluated the dissipation (and the metabolism of EQ) and sorption of 

all these pesticides to various organic substrates composed of soil, straw and spend 

mushroom substrate (SMS) in various volumetric ratios to identify the best 

performing biobed packing material. TBZ and IMZ showed higher persistence 

especially in the anaerobically digested sewage sludge (DT50=32.3-257.6 d), in 

contrast to OPP and DPA which were rapidly dissipated especially in liquid aerobic 

sewage sludge (DT50=1.3-9.3d). EQ was rapidly oxidized mainly to quinone imine 

(QI), which did not persist, and dimethyl ethoxyquinoline (EQNL, minor metabolite) 

which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited 

pesticides decay verifying the microbial nature of pesticides dissipation in those 

substrates. Organic substrates rich in SMS showed the highest dissipation capacity 

with TBZ and IMZ DT50s of ca. 28 days compared to DT50s of > 50 days in the other 

substrates and the general recalcitrance of those compounds in soil (DT50 >100 d). 

TBZ and IMZ showed the highest sorption affinity, whereas OPP and DPA were 

weakly sorbed. These findings suggested that municipal wastewater treatment plants 

could not guarantee an efficient removal of the recalcitrant fungicides IMZ and TBZ, 

whereas SMS-rich biobed organic substrates show much higher dissipation capacity 

for those chemicals, and also for the less persistent OPP, DPA and EQ.   

In Chapter 3 we focused on the citrus fruit-packaging plants which produce 

large wastewater volumes with high loads of fungicides like OPP and IMZ, two 

chemicals showing contrasting persistence (OPP is non persistent while IMZ is 

persistent). In accordance with a gradual scaling up approach we employed a column 
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study to assess the capacity of SMS of Pleurotus ostreatus, either alone or in mixture 

with straw and soil plus a mixture of straw /soil to retain and dissipate IMZ and OPP. 

The role of P. ostreatus on fungicides dissipation was also investigated by parallel 

studying the performance of fresh mushroom substrate of P. ostreatus (FMS) and 

measuring lignolytic enzymatic activity in the leachates. We employed a sequentil 

treatment scheme which simulated a realistic worst case operation of a citrus fruit 

packaging plant. All substrates effectively reduced the leaching of OPP and IMZ 

which corresponded to 0.014-1.1% and 0.120-0.420% of their initial amounts 

respectively. Mass balance analysis revealed that FMS and SMS/Straw/Soil (50/25/25 

by vol) offered the most efficient removal of OPP and IMZ from wastewaters 

respectively. Regardless of the substrate, OPP was restricted in the top 0-20 cm of the 

columns and it was bioavailable (extractable with water), compared to IMZ which 

was less bioavailable (extractable with acetonitrile) but diffused deeper in the 

columns (20-50 & 50-80 cm) in the SMS- and Straw/Soil-columns. The distribution 

of the living microbial community was measured via phospholipid fatty acids analysis 

(PLFAs). Fungal abundance was significantly lower at the top layer of all substrates 

from where the highest pesticide amounts were recovered suggesting an inhibitory 

effect of fungicides on total fungi. These results suggested that biobeds packed with 

SMS-rich substrates could ensure the efficient removal of IMZ and OPP from 

wastewaters of citrus FPP even under particularly high hydraulic and pesticide loads. 

Based on the results of Chapters 2 and 3 and in accordance with the gradual 

scaling up of the experimentation, we constructed and tested pilot biobed systems 

under practical conditions of citrus and pome fruit packaging plants. Further aspects 

tested were (a) the optimization of the depuration capacity of the pilot biobeds 

through bioaugmentation with tailored-made bacterial inocula, and (b) the 

composition and functional dynamics of the microbial community in pilot biobeds 

using molecular approaches (q-PCR). Practical issues were also addressed including 

the risk associated with the direct environmental disposal of biobed-treated effluents 

and methods for the decontamination of the spent packing material. Three pilot 

biobeds of 1 m3 (non bioaugmented) and 2 pilot biobeds of 0.24 m3 (bioaugmented) 

were constructed and treated for a period of 160 days with different combinations of 

pesticides simulating practical scenarios from citrus and pome fruit packaging plants. 

Pilot biobeds showed high depuration capacity for the less persistent OPP, DPA 
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(>99.9%) but also for the more recalcitrant chemicals IMZ and TBZ (>99.5%). 

Bioaugmentation maximized the depuration capacity of pilot biobeds for the 

persistent fungicide TBZ which was fully dissipated by the end of the study. This was 

followed by a significant increase in the abundance of bacteria, fungi and of catabolic 

genes catA and pcaH. Bioaugmentation was the most potent method for the 

decontamination of the spent packing material, although composting with fresh 

organic matter and even storage at ambient temperature offer effective alternatives 

when inocula are not available. Risk assessment based on practical scenarios (pome 

and citrus fruit-packaging plants), the depuration performance of the pilot biobeds and 

the currently implemented regulatory framework for pesticides showed that the 

discharge of the biobed-treated effluents into an 0.1-ha disposal site did not entail an 

unacceptable risk for aquatic and terrestrial ecosystems, except for TBZ-containing 

effluents produced by pome fruit packaging plants where a larger disposal area (0.2 

ha) or bioaugmentation of biobeds alleviated the risk.  

Overall our study provided a comprehensive evaluation of biobeds as a 

method for the treatment of pesticide contaminated wastewaters produced by the fruit 

packaging industry. We showed that these systems could be a viable solution for the 

treatment of these agro-industrial effluents. Further studies will aim explore the 

application of biobeds for the treatment of the wastewaters produced by other agro-

industries (i.e. bulb disinfection, seed-coating).  
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Εκτεταμένη Περίληψη 

Τα γεωργικά φάρμακα αποτελούν μια σημαντική ομάδα περιβαλλοντικών ρύπων. Η 

ρύπανση των φυσικών πόρων από τα γεωργικά φάρμακα έχει αποδοθεί σε σημειακές 

και μη σημειακές πηγές. Η συμβολή των σημειακών πηγρών στη ρύπανση του 

περιβάλλοντος είναι υψίστης σημασίας και μέτρα για τη μείωση των επιπτώσεων 

τους έχουν προταθεί. Μη ορθολογικές πρακτικές στις γεωργικές εκμεταλλεύσεις πριν, 

κατά τη διάρκεια ή μετά τον ψεκασμό αποτελούν τις κύριες πηγές σημειακής 

ρύπανσης των φυσικών υδάτινων πόρων με γεωργικά φάρμακα. Οι βιοκλίνες έχουν 

πλέον καθιερωθεί ως οικονομικά, αποδοτικά και αποτελεσματικά συστήματα 

βιολογικής επεξεργασίας των υγρών αποβλήτων που παράγονται από δραστηριότητες 

στη γεωργική εκμετάλλευση. Ωστόσο, η εφαρμογή γεωργικών φαρμάκων πέραν του 

αγρού και ύστερα από την συγκομιδή συμβάλλουν επίσης στη σημειακή ρύπανση των 

φυσικών πόρων. Τέτοιο παράδειγμα αποτελούν οι βιομηχανίες συσκευασίας 

φρούτων, όπου μυκητοκτόνα (thiabendazole (ΤΒΖ), imazalil (IMZ), ortho-

phenyphenol (ΟΡΡ)) και αντιοξειδωτικά (diphenylamine (DPA), ethoxyquin (EQ)) 

χρησιμοποιούνται για την προστασία των φρούτων από μυκητιακές προσβολές και 

φυσιολογική υποβάθμιση της ποιότητας τους κατά την αποθήκευση. Η πρακτική αυτή 

οδηγεί στην παραγωγή μεγάλου όγκου υγρών αποβλήτων επιβαρυμμένων με υψηλές 

ποσότητες τοξικών και υπολειμματικών γεωργικών φαρμάκων  τα οποία χρήζουν 

άμεσης επεξεργασίας στο σημείο στο οποίο παράγονται. Ο περιβαλλοντικός κίνδυνος 

που σχετίζεται με τη μετασυλλεκτική χρήση των γεωργικών φαρμάκων επισημαίνεται 

στις εγκρίσεις όλων των γεωργικών φαρμάκων που χρησιμοποιούνται στα 

συσκευαστήρια φρούτων, όπου υπογραμμίζεται η ανάγκη για τη διαχείριση των 

αποβλήτων που παράγονται, πριν από την απελευθέρωσή τους στο περιβάλλον. 

Ωστόσο σήμερα δεν υπάρχουν αποτελεσματικές, φθηνές και βιώσιμες μέθοδοι 

διαχείρισης των συγκεκριμέων αποβλήτων στην Ευρώπη. 

Εν τη απουσία αποτελεσματικών μεθόδων επεξεργασίας τα συγκεκριμένα 

υγρά απόβλητα διοχετεύονται είτε στις εγκαταστάσεις επεξεργασίας αστικών 

λυμάτων είτε απορρίπτονται σε παρακείμενους αγρούς θέτοντας σε κίνδυνο την 

ποιότητα των υδατικών και εδαφικών πόρων. Τροποποιημένες βιοκλίνες που θα είναι 

συμβατές με τα ιδιαίτερα χαρακτηριστικά των συγκεκριμένων υγρών απόβλητων 

(υψηλοί όγκοι, εποχικότητα παραγωγής, υψηλά φορτία γεωργικών φαρμάκων, 

χαμηλό BOD / COD κλπ), θα μπορούσαν χρησιμοποιηθούν για τη διαχείρισή τους. 
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Με βάση όλα τα παραπάνω, ο κύριος στόχος της παρούσας διδακτορικής διατριβής 

ήταν η πλήρης αξιολόγηση των βιοκλινών ως μέθοδος επεξεργασίας των υγρών 

αποβλήτων από τις βιομηχανίες συσκευασίας φρούτων. Για την επίτευξη του 

συγκεκριμένου στόχου, ακολουθήθηκε μια πειραματική προσέγγιση που 

περιελάμβανε βαθμιαία αύξηση της πολυπλοκότητας (εργαστήριο/στήλες/πιλοτικά 

συστήματα), η οποία είχε ως κύριους στόχους (α) να προσδιορίσει, αρχικά σε 

εργαστηριακή κλίμακα, οργανικά βιομίγματα, με βάση το εξαντλημένο υπόστρωμα 

μανιταριών (SMS), με υψηλή ικανότητα απομάκρυνσης και προσρόφησης των 

γεωργικών φαρμάκων που χρησιμοποιούνται στα συσκευαστήρια φρούτων (β) να 

αξιολογήσει περαιτέρω την ικανότητα των αποτελεσματικότερων οργανικών 

βιομιγμάτων (όπως αυτά προέκυψαν από την εργαστηριακή αξιολόγηση), να 

κατακρατούν τα γεωργικά φάρμακα υπό συνθήκες υψηλού υδραυλικού φορτίου 

προσομοιώνοντας έτσι ρεαλιστικές συνθήκες παραγωγής από συσκευαστήρια 

φρούτων και (γ) να προσδιορήσει την απόδοση των βιοκλινών σε πιλοτικό επίπεδο. 

Στο πλαίσιο αυτό αξιολογήθηκαν επίσης η προοπτική βελτιστοποίησης της απόδοσης 

των βιοκλινών έναντι κυρίως υπολειμματικών γεωργικών φαρμάκων μέσω 

βιοεπλουτισμού (bioaugmentation) με εξειδικευμένα μικροβιακά εμβόλια, η 

ανταπόκριση της μικροβιακής κοινότητας των βιοκλινών στην συνεχή εφαρμογή 

γεωργικών φαρμάκων. Παράλληλα μελετήθηκαν και μέτρα προς την κατεύθυνση της 

πρακτικής εφαρμογής των βιοκλινών που ακόμη και σήμερα παρεμποδίζουν την 

πλήρη ανάπτυξη τους όπως (α) η ποιότητα και η μετέπειτα διαχείριση των 

επεξεργασμένων αποβλήτων που προκύπτουν από τις βιοκλίνες και (β) η 

απορρύπανση του εξαντλημένου βιομίγματος των βιοκλινών μετά το τέλος του 

κύκλου ζωής τους.  

Στο Κεφάλαιο 2 μελετήσαμε την διάσπαση των TBZ, IMZ, OPP, DPA και 

EQ, που χρησιμοποιούνται στα συσκευαστήρια φρούτων, από λυματολάσπη που έχει 

υποστεί αναερόβια χώνευση  καθώς και από αερόβια υγρή λυματολάσπη ώστε να 

εκτιμηθεί αρχικά η ικανότητα των μονάδων επεξεργασίας αστικών λυμάτων να 

απομακρύνουν τα συγκεκριμένα γεωργικά φάρμακα. Σε δεύτερο στάδιο, ελέγξαμε 

την προσρόφηση και αποδόμηση των παραπάνω γεωργικών φαρμάκων (και το 

μεταβολισμό του EQ) σε διάφορα οργανικά βιομίγματα που αποτελούνταν από 

έδαφος, άχυρο και εξαντλημένο υπόστρωμα μανιταριών (SMS) σε διάφορες 

ογκομετρικές αναλογίες, για να προσδιορίσουμε έτσι το υλικό πλήρωσης των 
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βιοκλινών με την καλύτερη απόδοση για μεταγενέστερη χρήση του σε συστήματα 

βιοκλινών πλήρους κλίμακας. Το TBZ και το IMZ έδειξαν την υψηλότερη 

υπολειμματικότητα ιδιαίτερα στην λυματολάσπη που είχε υποστεί αναερόβια 

χώνευση (DT50 = 32,3 έως 257,6 ημέρες), σε αντίθεση με τα OPP και DPA που 

αποδομήθηκαν ταχύτατα κυρίως στην αερόβια υγρή λυματολάσπη (DT50 = 1.3-9.3 

ημέρες). Το EQ οξειδώθηκε άμεσα προς quinone imine (QI), το οποίο όμως 

διασπάστηκε περαιτέρω χωρίς να εμφανίζει μεγάλη υπολειμματικότητα, και σε 

μικρές ποσότητες dimethyl ethoxyquinoline (EQNL) που εμφάνισε υψηλή 

υπολειμματικότητα σε όλα τα βιομίγματα. Αποστείρωση της αερόβιας υγρής 

λυματολάσπης ανέστειλε τη διάσπαση των γεωργικών φαρμάκων αποδεικνύοντας το 

σημαντικό ρόλο των μικροοργανισμών στην διάσπαση των γεωργικών φαρμάκων. 

Οργανικά υποστρώματα πλούσια σε SMS παρουσίασαν την υψηλότερη ικανότητα 

αποδόμησης των TBZ και IMZ εμφανίζοντας τιμές DT50s περίπου 28 ημέρων, σε 

σύγκριση με τα άλλα βιομίγματα που εμφάνισαν τιμές DT50s > 50 ημερών.  Τα TBZ 

και IMZ έδειξαν την υψηλότερη τάση προσρόφησης, ενώ τα OPP και DPA 

προσροφήθηκαν  ασθενώς. Τα παραπάνω ευρήματα υποδεικνύουν ότι οι μονάδες 

επεξεργασίας αστικών λυμάτων δεν μπορούν να εγγυηθούν αποτελεσματική 

απομάκρυνση των υπολειμματικών μυκητοκτόνων IMZ και TBZ, ενώ οργανικά 

βιομίγματα πλούσια σε SMS έδειξαν υψηλή ικανότητα απομάκρυνσης των 

συγκεκριμένων γεωργικών φαρμάκων, καθώς και των λιγότερο υπολειμματικών OPP, 

DPA και EQ.  

 Στο Κεφάλαιο 3, επικεντρωθήκαμε στα συσκευαστήρια φρούτων 

εσπεριδοειδών που παράγουν υψηλές ποσότητες υγρών αποβλήτων που περιέχουν τα 

μυκητοκτόνα ΟΡΡ και ΙΜΖ, δυο μυκητοκτόνα με διαφορετική υπολειμματικότητα 

στο περιβάλλοντ (το OPP είναι μη υπολειμματικό αντίθετα με το ΙΜΖ που είναι 

ιδιαίτερα υπολειμματικό). Έτσι στο πλαίσιο της βαθμαίας αύξησης της 

πολυπολοκότητας του πειραματισμούς μας μελετήσαμε σε συστήματα στηλών 

έκπλυσης την δυνατότητα του SMS του μύκητα Pleurotus ostreatus, είτε μόνο του 

είτε σε μείγμα με άχυρο και έδαφος καθώς και ένα μείγμα από άχυρο / έδαφος, να 

κατακρατούν και να απομακρύνουν από τα υγρά απόβλητα τα ΟΡΡ και IMZ. Ο ρόλος 

του μύκητα P. ostreatus στη απομάκρυνση των μυκητοκτόνων διερευνήθηκε 

περαιτέρω διαμέσου μέτρησης της απόδοσης φρέσκου υποστρώματος μανιταριών του 

P. ostreatus (FMS) και μέτρηση της λιγνολυτικής ενζυματικής δραστικότητας στα 
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συλλεγόμενα υγρά έκπλυσης. Το σενάριο εφαρμογής των υγρών αποβλήτων στις 

στήλες που ακολουθήθηκε προσομοιώνει υπό συνθήκες worst-case την παραγωγή 

αποβλήτων από μια μονάδα συσκευασίας εσπεριδοειδών. Όλα τα υποστρώματα 

βρέθηκε ότι περιορίζουν σημαντικά την έκπλυση των OPP (0,014-1.1% τη ποσότητας 

που εφαρμόστηκε στις στήλες) και IMZ, (0,120-0,420%). Ανάλυση ισοζυγίου μάζας 

έδειξε ότι τα FMS και SMS / Άχυρο / Έδαφο (50/25/25 κατά όγκο) οδήγησαν στην  

αποτελεσματικότερη απομάκρυνση των OPP και IMZ από τα υγρά απόβλητα 

αντίστοιχα. Ανεξάρτητα από το υπόστρωμα, τα υπολείμματα του ΟΡΡ εντοπίστηκαν 

κυρίως στα 0-20 εκ. των στηλών και ήταν διαθέσιμα (εκχύλιση με νερό), σε σύγκριση 

με τα υπολείμματα του IMZ που ήταν λιγότερο βιοδιαθέσιμα (εκχύλιση με 

ακετονιτρίλιο), αλλά εντοπίστηκαν και σε βαθύτερα στρώματα των στηλών (20-50, 

50-80 cm) που πακεταρίστηκαν με SMS και Άχυρο/Έδάφος. Η ζωντανή μικροβιακή 

κοινότητα εντός των στηλών, ποσοτικά και ποιοτικά, προσδιορίστηκε μέσω 

ανάλυσης των φωσφολιπιδίων των λιπαρών οξέων (Phospholipids Fatty Acids, 

PLFAs). Η αφθονία των μυκήτων  ήταν σημαντικά χαμηλότερη στα ανώτερα 

στρώματα των στηλών έκπλυσης, από όπου ανακτήθηκαν και τα υψηλότερα ποσοστά 

των γεωργικών φαρμάκων, υποδηλώνοντας έτσι μια ανασταλτική δράση των 

μυκητοκτόνων στους μύκητες στα υποστρώματα που δοκιμάστηκαν. 

Συμπερασματικά, τα παραπάνω αποτελέσματα υποδεικνύουν ότι η χρήση των 

βιοκλινών και η πλήρωσή τους με υποστρώματα πλούσια σε SMS, θα μπορούσαν να 

εξασφαλίσουν την αποτελεσματική απομάκρυνση των IMZ και OPP από τα υγρά 

απόβλητα των συσκευαστηρίων εσπεριδοειδών, ιδιαίτερα ακόμη και υπό υψηλά 

φορτία όγκου υγρών αποβλήτων και γεωργικών φαρμάκων.  

Με βάση τα αποτελέσματα των Κεφαλαίων 2 και 3 κατασκευάσαμε πιλοτικά 

συστήματα βιοκλινών και εξετάσαμε την αποτελεσματικότητα τους στην 

απορρύπανση υγρών αποβλήτων που παράγονται υπό πραγματικές συνθήκες από 

συσκευαστήρια μηλοειδών και εσπεριδοειδών. Άλλες πτυχές που εξετάστηκαν ήταν 

(α) η βελτιστοποίηση της απόδοσης των πιλοτικών βιοκλινών μέσω βιοεμπλουτισμού 

τους με εξειδικευμένα βακτηριακά εμβόλια και (β) η σύσταση και λειτουργία της 

μικροβιακής κοινότητας των βιοκλινών με την χρήση μοριακών προσεγγίσεων (q-

PCR). Επίσης, αξιολογήθηκαν πιθανές λύσεις σε πρακτικά ζητήματα που ακόμη 

παρεμποδίζουν την πλήρη εφαρμογή των βιοκλίνων όπως (i) η εκτίμηση του 

κινδύνου για το περιβάλλον από την άμεση εναπόθεση των επεξεργασμένων υγρών 
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αποβλήτων και (ii) μεθόδων απορρύπανσης του εξαντλημένου υλικού πλήρωσης των 

βιοκλινών. Για το λόγο αυτό κατασκευάστηκαν τρεις πιλοτικές βιοκλίνες του 1 m3 

(δεν βιοεμπλουτίστηκαν) και δυο πιλοτικές βιοκλίνες των 0,24 m3 

(βιοεμπλουτίστηκαν) και αξιολογήθηκε η απόδοση τους ύστερα από εφαρμογή για 

διάστημα 160 ημέρων  υγρών αποβλήτων που περιείχαν διαφορετικούς συνδυασμούς 

γεωργικών φαρμάκων προσομοιάζοντας πραγματικά σενάρια συσκευαστηριών 

μηλοειδών και εσπεριδοειδών. Οι πιλοτικές βιοκλίνες έδειξαν υψηλή ικανότητα 

απομάκρυνσης τόσο των λιγότερο υπολειμματικών OPP, DPA (> 99,9%) όσο και των 

πιο υπολειμματικών IMZ και TBZ (> 99,5%). Ο βιοεμπλουτισμός μεγιστοποίησε την 

απόδοση των βιοκλινών ενάντι του υπολειμματικού μυκητοκτόνου ΤΒΖ, το οποίο 

απομακρύνθηκε πλήρως. Παράλληλα παρατηρήθηκε σημαντική αύξηση της αφθονίας 

των βακτηρίων, των μυκήτων και των καταβολικών γονιδίων catA και pcaH που 

εμπλέκονται στην αποδόμηση αρωματικών οργανικών ενώσεων. Ο βιοεμπλουτισμός 

αποτέλεσε την πιο αποτελεσματική μέθοδο για την απορρύπανση του εξαντλημένου 

υλικού πλήρωσης των βιοκλινών. Περάν αυτού η κομποστοποίηση με φρέσκια 

οργανική ουσία αλλά ακόμα και η απλή αποθήκευση του υλικού σε θερμοκρασία 

περιβάλλοντος αποτελούν αποτελεσματικές εναλλακτικές λύσεις απουσία 

μικροβιακών εμβολιών για την εφαρμογή βιοεμπλουτισμού. Αξιολόγηση του 

περιβαλλοντικού κινδύνου που ενέχει η απευθείας απόρριψη των επεξεργασμένων 

αποβλήτων (με βάση σενάρια πρακτικής εφαρμογής των γεωργικών φαρμάκων, την 

απόδοση των πιλοτικών βιοκλινών και τις σχετικές Κοινοτικές Οδηγίες) έδειξαν ότι η 

απόρριψη των επεξεργασμένων αποβλήτων σε επιφάνεια αγρού 0,1 ha, δεν ενέχει μη 

αποδεκτό κίνδυνο για τα υδάτινα και χερσαία οικοσυστήματα, με εξαίρεση τα 

απόβλητα που περιέχουν ΤBZ και παράγονται από συσκευαστήρια μηλοειδών, όπου 

ο κίνδυνος ήταν αποδεκτός μόνο όταν τα απόβλητα απορρίπτονται σε μεγαλύτερη 

επιφάνεια (0,2 ha) ή εφαρμόστηκε βιοεμπλουτισμός στις βιοκλίνες που δέχτηκαν 

ΤΒΖ. 

Συνολικά η παρούσα διδακτορική διατριβή παρέχει μια ολοκληρωμένη 

αξιολόγηση των βιοκλινών ως μέθοδοι επεξεργασίας των υγρών αποβλήτων που  

παράγονται από συσκευαστήρια φρούτων. Τα ευρύματα της παρούσας διατριβής 

αποδεικνύουν ότι τα συγκεκριμένα συστήματα θα μπορούσαν να είναι μια βιώσιμη 

λύση για την επεξεργασία των συγκεκριμένων αγρο-βιομηχανικών υγρών 

αποβλήτων. Περαιτέρω  μελέτες θα διερευνήσουν την εφαρμογή των βιοκλινών για 
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την επεξεργασία υγρών αποβλήτων επιβαρυμμένων με γεωργικά φάρμακα που 

παράγονται και από άλλες αγροτικές βιομηχανίες (π.χ. απολύμανσης βολβών, 

επικάλυψης σπόρων). 
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university of Cattolica del Sacro Cuore, Piacenza, Italy. 

(Sourse: 

http://lineeguida.iambientale.it/GuideLines_Appendix_2.aspx) 
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Figure 1.16. Phytobac from France: (a) diagram and (b) pilot phytobac at a 

college farm (Sourse: http://www.biobeds.org/5th-workshop-

2016 , http://www.bayercropscience.co.uk/news-and-

opinion/articles/2014/04/new-phytobac-biobed-system-

unveiled/ ) 
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Figure 1.17. The EU map of biobeds distribution (adapted by 72 
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www.biobeds.org ) 

Figure 1.18. The distribution of biobed systems in countries outside 

Europe. 
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Figure 2.1. The chemical structures of the parent compount ethoxyquin 

(a) and its metabolites dimethyl ethoxyquinoline (b) and 

quinine imine (c). 
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Figure 2.2. Dissipation of ortho-phenylphenol (OPP) and diphenylamine 

(DPA) (a), thiabendazole (TBZ) and imazalil (IMZ) (b) and 

ethoxyquin (EQ) (c) in anaerobically digested sewage sludge. 

Each value is the mean of three replicates with error bars 

representing the standard deviation of the mean 

106 

Figure 2.3. Dissipation of ortho-phenylphenol (OPP) and diphenylamine 

(DPA) (a), thiabendazole (TBZ) and imazalil (IMZ) (b) and 

dissipation and metabolism of ethoxyquin (EQ) and its 

metabolites QI and EQNL by non-sterilized (c) or sterilized 

liquid aerobic sewage sludge (d). Each value is the mean of 

three replicates with error bars representing the standard 

deviation of the mean 
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Figure 2.4. Dissipation patterns of ortho-phenylphenol (OPP) (a & b) 

diphenylamine (DPA) (c & d) within 70 days or 72 hours after 

their application in different organic substrates. The 

dissipation patterns of thiabendazole (TBZ) (e) and imazalil 

(IMZ) (f) in the same organic substrates are also shown. Each 

value is the mean of three replicates with error bars 

representing the standard deviation of the mean 
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Figure 2.5. Dissipation and metabolism of ethoxyquin (EQ) at different 

time frames, 70 days (left) and 24 hours (right), after their 

laboratory application into soil (a) and into various organic 

substrates like SMS/Soil (50:50) (b), SMS/Straw/Soil 

(50:25:25) (c), Straw/Soil (50:50) (d) and Straw/SMS/Soil 
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(50:25:25) (e) (all ratios are by volume) . Each value is the 

mean of three replicates with error bars representing the 

standard deviation of the mean 

Figure 2.6. Sorption isotherms of ortho-phenylphenol (OPP) (a), 

diphenylamine (DPA) (b), thiabendazole (TBZ) (c) and 

imazalil (IMZ) (d) in soil and in various organic substrates. 

Each value is the mean of three replicates. 

 

116 

Figure 3.1. The temporal patterns of OPP (a) and IMZ (b) amounts (mg) 

detected in the leachates of the SMS (), SMS/Straw/Soil 

(50/25/25 by volume) (), Straw/Soil (75/25 by volume) () 

and FMS () columns. Each value is the mean of three 

replicate columns + the standard deviation. 
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Figure 3.2. The distribution of the residues of OPP (a) and IMZ (b) in the 

three layers (0-20, 20-50 and 50-80 cm) of the Straw/Soil 

(75/25 by volume), FMS, SMS and SMS/Straw/Soil (50/25/25 

by volume) columns. Data are presented as % of the amount 

of pesticide retained in the columns and extracted by water 

and acetonitrile (sum is presented). Each value is the mean of 

three replicate columns + standard deviation. Different letters 

indicate significant differences (p<0.05) in the amount of 

pesticide leached, dissipated or retained in the different 

biomixtures. The absence of letters in column layers indicates 

that no significant difference were found 
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Figure 3.3. Laccase activity detected in the leachates of the columns 

packed with FMS and SMS. Results are presented until day 

48 (OPP-treatment period) since no activity of laccase was 

detected from this day onwards. Each value is the mean of 

three replicates + the standard deviation. No laccase activity 

was detected in the leachates of the columns packed with 

Straw/Soil and SMS/Straw/Soil. 
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Figure 3.4. The changes in the total concentration of (a) fatty acid methyl 

esters (FAME) and (b) the relative abundance of the 

actinobacteria, fungi, GP bacteria and GN bacteria, and of the 

general microbial indicator 16:0 in the different layers of the 

substrates tested at the end of the study. Each value is the 

mean of three replicates + the standard deviation. Bars 

designated by the same letters in graph (a) indicate non-

significant differences (p>0.05) in the total PLFA yield 

measured in the same column layer in the different substrates, 

whereas stacked bars designated by the same letters in graph 

(b) indicate non significant differences (p>0.05) within each 

substrate in the relative abundance of the different microbial 

in the different column layers. Absence of letters indicates 

non significant differences. 
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Figure 4.1. A schematic diagram of the experimental setup of the pilot 

biobeds. 
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Figure 4.2. Leaching patterns of OPP (a), DPA (b), IMZ (c) and TBZ (d) 

from the pilot biobeds. 
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Figure 4.3. Mass balance analysis of OPP (a), DPA (b), IMZ (c) and TBZ 

(d) in the pilot biobeds. Pesticides amounts retained by the 

biobeds matrix were estimated by successive extractions with 

water and acetonitrile (as described in Chapter 3). Stacked bar 

parts designated by different letters indicate significant 

differences (p<0.05) between biobeds. 

177 

Figure 4.4. The distribution of OPP (a), IMZ (b) and TBZ (c) residues in  

the three layers of the pilot biobeds at the end of the study. 

Stacked bar parts designated by different capital letters 

indicate significant differences (p<0.05) between biobeds in 

the amount of pesticide retained in a layer, while different 

lower case letters indicate significant differences in the 
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amounts of pesticides retained in the different layers within a 

biobed. 

   

Figure 4.5. The dissipation of IMZ (a & b) and TBZ (c) in the spent 

packing material from biobeds 1 (a), 2 (b) and 3 (c) subjected 

to bioaugmentation, bioaugmentation and composting, 

composting or stored at ambient temperature (control). Within 

each time, bars followed by the same letter are not 

significantly different (p<0.05) 
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Figure 4.6. The temperature profile during the process of composting of 

the spent biobed substrate (bioaugmented/not bioaugmented). 
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Figure 4.7. The abundance of different bacterial taxa, total bacteria and 

total fungi (a), and of the catabolic genes catA and pcaH (b) in 

the biobed packing material prior to pesticide application 

(before) and at the end of the study (B1, B2, B3, B2bioaug, 

B3bioaug). Within each microbial group and gene, bars 

designated by the same letter are not significantly different 

(p>0.05) 
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1.1. PESTICIDES: DEFINITION, USES AND HISTORY   

Into the environment are discharged a large number of pollutants and wastes and thus 

is as a result of human activities. Worldwide, more than one billion pounds of toxins 

are released into the air and water. In addition, approximately 6x106 chemical 

compounds have been produced and as a result of this, annually 1,000 new products 

are synthetized and between 60,000 and 95,000 chemicals are commercially used 

(Shukla et al. 2010).  Moreover, intensive industrialisation and large-scale use of 

synthetic xenobiotic compounds have generated hazardous contaminants including 

organics, inorganics and heavy metals. These contaminants create numerous 

environmental problems including harmful effects on biogeochemical cycling, 

environmental health and toxic effects onto non-target organisms including humans 

(Singh 2009). Among these, synthetic pesticides constitute a major group of 

chemicals which are used extensively in agricultural regions to minimize pest 

infestations, protect crops yields and prevent any reductions in the quality of the 

agricultural products (Shukla et al. 2010). 

 Pesticides are by no means a new invention. In fact, the history of intentional 

pesticide use goes back thousand years when Sumerians, Greeks and Romans were 

killing pests using sulphur, mercury, arsenic, copper or plant extracts. However, the 

effectiveness of the pesticide use was frequently underestimated because of the 

primitive chemistry and the insufficient application methods. A rapid emergence in 

pesticide use began mainly after World War II with the introduction of DDT, BHC 

(benzene hexachloride), aldrin, dieldrin, endrin, and 2,4-D (2,4-

dichlorophenoxyacetic acid). These chemicals were effective, easy to use, 

inexpensive, and thus enormously popular. However, under constant chemical usage, 

some pests became genetically resistant to pesticides, non-target organisms were 

harmed, and pesticide residues often appeared in unexpected places. With the 

publication of Carson’s book ‘Silent Spring’ in 1962, public confidence in pesticide 

use was shaken.  

 In order to minimize the adverse effects of pesticides on the environment and 

human health EU implemented Directive 91/414/EC which described all the 

procedures that should be followed for a pesticide to be granted authorization for use 

at EU level. This Directive was recently replaced by Regulation 1107/2009 and 

defines PPPs (also referred to as 'pesticides') as ''products in the form in which they 
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are supplied to the user, consisting of active substances, safeners or synergists, and 

intended for one of the following uses: 

(a) protecting plants or plant products against all harmful organisms or preventing 

the action of such organisms, unless the main purpose of these products is considered 

to be for reasons of hygiene rather than for the protection of plants or plant products 

(e.g. fungicides, insecticides); 

(b) influencing the life processes of plants, such as substances influencing their 

growth, other than as a nutrient (e.g. plant growth regulators, rooting hormones); 

(c) preserving plant products, in so far as such substances or products are not subject 

to special Community provisions on preservatives (e.g. extending the life of cut 

flowers); 

(d) destroying undesired plants or parts of plants, except algae unless the products 

are applied on soil or water to protect plants (e.g. herbicides/weedkillers to kill 

actively growing weeds); 

(e) checking or preventing undesired growth of plants, except algae unless the 

products are applied on soil or water to protect plants (e.g. herbicides/weedkillers 

preventing the growth of weeds).  

 PPPs contain at least one approved pesticide active substance; these could be 

not only synthetic chemicals but micro-organisms, pheromones and botanical extracts. 

Before any pesticide and the associated PPP which contain this pesticide active 

substance can be placed on the market or used, it must be authorised firstly by the 

European Commission (upon consultation of the European Food Safety Authority 

(EFSA)) and secondly by the Member State(s) concerned (Storck et al., 2016). 

 

1.2. PESTICIDES SALES AND CONSUMPTION IN EU  

In modern conventional agriculture increased production depends largely on the 

application of pesticides which protect plants from damage by fungi, bacteria, 

nematodes and insects. The most well-defined and populated categories of pesticides 

are the insecticides, herbicides and fungicides (Tortella and Diez 2005; Ζιώγας 2007). 

 In 2014, the total quantity of pesticide sales in the EU-28 amounted to 

approximately 400.000 tonnes. Spain (19.9 %), France (19.0 %), Italy (16.2 %), 

Germany (11.6 %) and Poland (5.9 %) were the Member States in which the highest 
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quantities of pesticides were sold, and together they made up 72.7 % of the EU-28’s 

pesticide sales (Table 1.1) (Eurostat, 2016) 

 

Table 1.1: Pesticide sales (in tonnes) by major pesticides groups in 2014 (Eurostats, 

2016) 

 
 The first synthetic pesticides became availab 

''Fungicides and bactericides'' were the most sold group of pesticides with a 

44% share of the market, followed by ''herbicides, haulm destructors and moss killers'' 

with a 33% share of the market. Together with the group “other plant protection 

products” (14 %), these three groups added up to 91 % of the pesticides sold in the 

EU-28 in 2014. Of the other three groups of pesticides, “insecticides and acaricides” 

had a 5% share, plant growth regulators 3% and molluscicides held the smallest share 

with less than 1% (Fig. 1.1). The quantities of pesticides that are put on the market 

yearly can be associated with other statistics directly related to the use of the 

pesticides (Eurostats, 2015 and 2016). 
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Figure 1.1. Pesticide sales by major groups in EU-28, 2014, (%). (Eurostats, 2016) 

 

1.3. BENEFITS AND RISKS BY PESTICIDES USE  

1.3.1. Benefits  

The ideally definition of a pesticide must be lethal to the target pests and at the same 

time have no effects on non-target organisms including especially humans. 

Unfortunately, this is not always the case, so the controversy of use and abuse of 

pesticides has been growing. The rampant use of these chemicals, under the adage, “if 

little is good, a lot more will be better” has played havoc with human and other life 

forms (Aktar et al. 2009). Pesticides are widely used in most sectors of the 

agricultural production. The main reason of their use is to prevent or reduce losses by 

pests and thus can improve yield as well as the quality of the produce. Although 

sometimes quality is even in terms of cosmetic appeal, which is often important to 

consumers (Oerke et al. 2004: Cooper and Dobson, 2007). Pesticides can also 

improve the nutritional value of food and sometimes its safety (Boxall, 2001: 

Narayanasamy, 2006). There are also many other benefits that may be attributed to 

pesticides, but these benefits often go unnoticed and there are not so obviously by the 

general public (Cooper and Dobson, 2007: Dalamas, 2009). Thus, from this point of 

view, pesticides can be considered as an economic, labor-saving, and efficient tool of 

pest management with great popularity in most sectors of the agricultural production. 
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Worldwide approximately 9.000 species of insects and mites, 50.000 species 

of plant pathogens, and 8.000 species of weeds damage crops. Different pests such as 

insects and weeds cause yield losses estimated to approximately 14% and 13% 

respectively. Pesticides are an indispensable part of agricultural production. Without 

pesticide application the loss of fruits, vegetables and cereals from pest injury would 

reach 78%, 54% and 32% respectively. Crop loss from pests declines to 35% - 42% 

when pesticides are used (Ortiz-Hernandez et al. 2013).  
The primary benefits are the consequences of the pesticides effects, the direct 

gains expected from their use. The secondary benefits are the less immediate or less 

obvious benefits that result from the primary benefits. They may be subtle, less 

intuitively obvious, or of longer term. For example, improving productivity is one of 

the tremendous benefits that have been derived from the use of pesticides in forestry, 

public health and the domestic sphere and, of course, in agriculture (Aktar et al. 

2009).  In certain instances pesticides could safeguard public health. Such a case is the 

application of pesticides to control mosquitoes, which act as vectors of malaria (Ross, 

2005). In addition, the consumption of high quality fresh fruits and vegetables ensured 

by pesticide use (but remaining free of pesticides residues) could reduce the risk of 

cancer, high blood pressure, heart disease, diabetes, stroke, and other chronic diseases 

(Dietary guidelines, 2005).  

 

1.3.2. Risks  

The use of pesticides, despite their popularity and extensive use, has raised serious 

concerns about health risks. Some of the most important risks are the exposure of 

farmers on pesticides when mixing and applying pesticides or working in treated 

fields and for the general population from residues on food and in drinking water 

(Damalas and Eleftherohorinos, 2011).  On the other hand, food is the basic necessity 

of life and the use of pesticides can increase the quality of the food, but contaminated 

food with toxic pesticides is associated with severe effects on the human health. 

Obviously, exposure to pesticides poses a continuous health hazard, especially in the 

agricultural working environment. By their very nature and their definition most 

pesticides show a high degree of toxicity because they are designed to kill certain 

organisms and thus create some risk of harm. Within this context, pesticide use has 

raised serious concerns and questions not only of potential effects on human health, 
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but also about impacts on wildlife and sensitive ecosystems and microorganisms 

(Stoate et al. 2001: Power 2010).  
The pesticide impact on human health is not an easy and particularly accurate 

process because of differences in the periods and the levels of application, type of 

pesticides (regarding toxicity), mixtures or cocktails of commercial pesticide used in 

the field, and the geographic and meteorological characteristics of the agricultural 

areas where pesticides are applied. In addition, such multivariate differences are 

refered mainly to the farmers who prepare the mixtures in the field, the pesticide 

sprayers, and also the population that lives near the sprayed areas, pesticide storage 

facilities, greenhouses, or open fields (Bolognesi, 2003: Pastor et al. 2003: Magkos et 

al. 2006).  

Regardless of the difficulties in assessing risks of pesticide use on human 

health, in the authorization dossier for a pesticide placement in the market at EU level 

currently requires data of potential negative effects of the pesticide active substances 

on human health. There are several tests that is used to obtaine those e.g., metabolism 

patterns, acute toxicity, sub-chronic or sub-acute toxicity, chronic toxicity, 

carcinogenicity, genotoxicity, teratogenicity, generation study, and also irritancy trials 

using rat as a model mammal or in some cases dogs and rabbits (Damalas and 

Eleftherohorinos, 2011). 

The US EPA (2009) adopted several toxicity tests for human and animals 

health risk assessments, in which are: (1) the acute toxicity test, which assesses the 

effects of short-term exposure to a single dose of pesticide, (2) the sub-chronic 

toxicity test, which assesses the effects of intermediate repeated exposure over a 

longer period of time (30–90 days), (3) the chronic toxicity test, which assesses the 

effects of long-term repeated exposure lasting for most of the test animal’s life span 

and intended to determine the effects of a pesticide product after prolonged and 

repeated exposures (e.g., chronic non-cancer and cancer effects), (4) the 

developmental and reproductive tests, which assess any potential effects in the fetus 

of an exposed pregnant female (i.e., birth defects) and how pesticide exposure may 

influence the ability of a test animal to reproduce successfully, (5) the mutagenicity 

test which assesses the potential of a pesticide to affect the genetic components of the 

cell, and (6) the hormone disruption test, which measures the pesticide potential to 

disrupt the endocrine system (consists of a set of glands and the hormones they 

produce that regulate the development, growth, reproduction, and behavior of animals 
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including humans). The acute toxicity experiments are required for the calculation of 

the lethal dose (LD50), which is the pesticide dose that is required to kill half of the 

tested animals when entering the body by a particular route. These endpoints are used 

for US EPA toxicity classifications of pesticides shown in Table 1.2. (US EPA, 2009). 

 

Table 1.2. Acute toxicity of pesticides according to the US EPA classification (US EPA, 

2009) 

Class Signal Words Acute toxicity to rats 

Oral LD50 

(mg/kg) 

Dermal LD50 

(mg/kg) 

Inhalation 

LC50 (mg/L) 

I DANGER <50 <200 0.2 

II WARNING 50-500 200-2000 0.2-2.0 

III CAUTION 500-5000 2000-20000 2.0-20 

IV CAUTION (optional) >5000 >20000 >20 

 

Pesticides, despite to their potential negative effects on human, pose 

unpropitious effects also to the environment (water, soil and air contamination, toxic 

effects on non-target organisms) (Rayu et al., 2012). In particular, inappropriate and 

extensive use of pesticides has been linked with: (1) adverse effects on non-target 

organisms (e.g., reduction of beneficial species populations), (2) water contamination 

from mobile pesticides or from pesticide drift, (3) air pollution from volatile 

pesticides, (4) injury on non-target plants from herbicide drift, (5) injury to rotational 

crops from herbicide residues remained in the field, (6) crop injury due to high 

application rates, wrong application timing or unfavorable environmental conditions 

at and after pesticide application (Damalas and Eleftherohorinos, 2011: Palma et al., 

2014). 
 

1.4. ENVIRONMENTAL FATE OF PESTICIDES 

Upon their application in the environment pesticides are subject to various 

environmental processes which determine their long or short range transporation to 

other environmental compartments (Fig. 1.2.). The main processes that determine the 

environmental fate of pesticides in soil are (a) sorption, (b) degradation (biotic and 

abiotic), (c) transportation to surface water (runoff, erosion, spray drift) or 

groundwater (leaching) and air (Andreu and Pico, 2004).      
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Figure 1.2. A schematic representation of the processes controling the fate of 

pesticides upon their release in the environment 

 

1.4.1. Pesticides sorption processes 

Sorption of pesticides onto soil particules is achieved either through weak or strong 

chemical bonds or through diffusion of the pesticide molecule in the soil structure. 

Diffusion of pesticides into the capillaries of soil structure is a physical process, 

where the compound is still in the liquid phase, but “hanging” in capillaries. Because 

of the sorption and the diffusion, the measurements of the pesticide concentration in 

the aqueous phase will be without the contribution from the fraction of the pesticide 

that is trapped in the soil structure. Diffusion is reversible and the compound will 

contribute to the equilibration in a desorption study. However, reversible sorption by 
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chemical bonding is due to the ionic properties of the pesticide compound. For 

example, phenols and organic acids will be sorbed to positively charged microsites of 

the soil colloids, while in contrary positively charged compounds, like quaternary 

amines, will be sorbed onto negatively charged surfaces of soil colloids. Hydrogen 

bonds are weakly capable to sorb pesticides, in contrast, pesticide sorption through 

covalent bonding will be performed by irreversible sorption where the chemical is 

bonded into the humic acid structure of the soil (Duus Børgensen et al., 2015). 

The extent of pesticide sorption onto soil influences the mobility and risk for 

contamination of the soil and water environment. Compounds showing weak sorption 

will conservatively follow the water movement while a strongly sorbed compound 

will be retained depending on the mechanism of sorption. The degree of sorption 

depends on the properties of the compound and the soil properties (de Wilde et al, 

2008). Pesticide sorption in soil is currently determined following international 

guidelines developed and mutually recognized by OECD (OECD, 2000). This allows 

the proper comparison of the sorption affinity of different pesticide compounds with 

safety. 

 

1.4.2. Pesticides transportation processes   

Depending on their mobility and persistence, pesticides can migrate within and 

outside the soil and contaminate water resources and air. The main pesticide transfer 

processes are a) atmospheric: spray drift, volatilisation, and atmospheric 

transportation followed by re-deposition, or b) water-driven: drainage, leaching, and 

surface and sub-surface runoff. The relative importance of each of the processes 

depends on the pesticide application conditions, the pesticide properties, the climatic 

conditions, and the soil properties partly governed by agricultural practices (Alletto et 

al., 2010; Reichenberger, 2007). Most pesticide transfer processes have a diffuse-

source nature, but point sources in the form of farmyard runoff, accidental spills, or 

sewer outflows can cause significant contamination of water bodies with pesticides.  

 Volatilisation is an important pathway for the loss of pesticides and occurs 

when pesticide surface residues change from a solid or liquid to a gas or vapor after a 

pesticide application The extent of volatilization of a pesticide compound is governed 

by pesticide properties (such as vapour pressure, Henry's law constant, KOC), soil 

properties (water content, organic carbon content), farming practices (mode of 
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pesticides application, presence of a mulch) and the climatic conditions (wind, solar 

radiation, temperature). (Bedos et al., 2002). 

  Leaching is the vertical movement of pesticides through soil due to water 

percolation to rivers, lakes and streams, wells, storm sewers, or into groundwater. 

Pesticide leaching depends on soil physical-chemical properties such as the hydraulic 

conductivity and the water solubility of the pesticides. Pesticides with high water 

solubility are vulnerable to leaching, while important role plays the climatic 

conditions like the intensity and timing of rainfall events after pesticide application 

facilitating leaching of pesticides (Alletto et al., 2010).  

 Runoff is the primary mechanism contributing to pesticide contamination of 

surface waters. The most important parameter to control a runoff event and pesticide 

losses is the rainfall. Thus, depending of the rainfall, for example its occurence after 

pesticide application, its intensity and the interval between two rainfall events, 

precipitation of the compound can lead to very contradictory results for the same 

study site, the same molecule or even the same practice (Schulz and Matthies, 2007). 

 

1.4.3. Pesticides degradation processes 

Degradation of pesticides refers to the breakdown of pesticides within the 

environment. The degradation may be occurred by two pathways a) through abiotic 

processes i.e. photodegradation or photolysis and chemical degradation or b) through 

biotic processes i.e. biodegradation (Fig 1.3.) (Topp et al., 1997). In both pathways, in 

some cases there is a complete mineralization of the pesticides, whereas in other cases 

only a partial degradation occurs. This may potentially lead to an accumulation of 

metabolites, which sometimes are more toxic, i.e. more hazardous, than the parent 

compound (Giacomazzi and Cochet, 2004). In some cases the pesticides are not 

degraded even though they have proven to be biodegradable and this is may be due to 

different environmental factors that can cause the effectiveness of the activity of the 

degrading organisms; essential nutrients may be missing, environmental conditions 

may be unsuitable, or the concentration of the pesticide may be too high or too low 

(Amellal et al., 2001; Iranzo et al., 2001). All chemicals are susceptible to 

photodegradation to some extent. The degree of photodegradation of a chemical 

compound depends on the intensity of the sunlight and the time of exposure. However 

many pesticides are more mobile into the soil and are thus no longer exposed to 

sunlight and therefore not susceptible to photodegradation (Gavrilescu 2005).  
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Figure 1.3. Degradation of pesticides within the environment 

 

Chemical degradation is due to reactions of the pollutant with e.g. water, 

oxygen or other chemicals in addition to the biodegradation witch refers to the 

degradation of pesticides by organisms, most often microorganisms like bacteria and 

fungi, but also in some cases plants may be involved as well (Topp et al., 1997). The 

degradation rates of the pesticides are affected mostly by soil properties and 

environmental conditions e.g. pH, organic matter content, temperature and moisture. 

The optimum environmental conditions for the degradation of pesticides are reported 

in Table 1.3. The effect of pH on soil degradation will depend on the compound being 

degraded and the organisms responsible for the degradation. Studies by Walker et al. 

(2001) showed a more rapid degradation of isoproturon, a phenylurea herbicide, in 

soils with higher pH. Similarly Simon et al., (1992) and Singh et al. (2003) found a 

positive correlation between the degradation of fenamiphos and chlorpyrifos, both 

organophosphorus insecticides, and soil pH. The temperature of the soil also 

influences degradation rates; the rate of most reactions catalyzed by enzymes tends to 

double for every 10°C increase in temperature (between 10 and 45°C). An increase in 

soil temperature will thus lead to an increase in degradation rates (MacRae and 
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Alexander, 1965). Soil moisture constitutes another important factor affecting the 

dissipation of pesticides in soil. Increasing soil moisture up to a level which ensures 

optimum conditions for pesticide solubility and the activity of soil microorganisms is 

expected to have a positive effect on pesticide degradation. For example Walker 

(1978) reported an increase in methazole DT50s from 3.5 to 5 and 9.6 days when the 

soil moisture content was adjusted to 100%, 50% and 25% of field capacity.  

 

Table 1.3. Optimum environmental conditions for the degradation of pesticides 
 

Parameters Condition required for microbial 
activity 

Optimum value for an oil 
degradation 

Soil moisture 25–28% of water holding capacity 30–90% 

Soil pH 5.5–8.8 6.5–8.0 

Oxygen content Aerobic, minimum air-filled pore space of 
10% 

10–40% 

Nutrient content N and P for microbial growth C:N:P = 100:10:1 

Temperature (°C) 15–45 20–30 

Contaminants Not too 
toxic 

Hydrocarbon 5–10% of dw of soil 

Heavy metals Total content 2000 ppm 700 ppm 

Type of soil Low clay or silt content  

 

 

1.5. REMEDIATION OF PESTICIDE POLLUTED SITES      

In the recent decades, a gradual increase in environmental pollution from several 

xenobiotic compounds, such as pesticides, polycyclic aromatic compounds, 

chlorinated biphenyls, polychlorinated dibenzo-dioxins has been observed (Singh and 

Chen, 2008). The frequent detection of high concentrations of organic pollutants, 

including pesticides, in the environment has created global concern because of the 

increased likelihood of health problems in humans and animals. These problems 

stimulated the development of technologies that guarantee pesticides elimination in a 

safe, efficient, and economical way. Different methods have been developed and 

implemented to remediate contaminated sites and remove pesticide residues and/or 

obsolete pesticides. Existing technologies could be categorized to those that utilize 

physical processes, such as sorption, those that are based on chemical processes, such 

as advanced oxidation and those which are characterized as “green technologies” such 

as bioremediation (Ortiz-Hernandez et al., 2013).  
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1.5.1 Physical and Chemical remediation techniques 

The conventional physicochemical approaches are generally expensive and often 

incomplete due to the conversion of the parent compound to metabolites which are 

more persistent and equally or more toxic than the parent compound. The 

conventional techniques used for remediation include (a) diging up of contaminated 

soil, removal and landfilling or (b) to cap and contain the contaminated areas of a site. 

These methods have some drawbacks. The first method simply moves the 

contamination elsewhere and may create significant risks during excavation, handling, 

and transportation of the hazardous material. Additionally, it is very difficult and 

increasingly expensive to find new landfill sites for the final disposal of the material. 

The 'cap and contain' method is only an interim solution since the contamination 

remains on site, requiring monitoring and maintenance of the isolation barriers long 

into the future, with all the associated costs and potential liability (Vidali, 2001). 

The physical and chemical remedition approaches can be categorized into: 

Solidification/Stabilization (S/S): It is one of the top five source control treatment 

technologies. “Solidification” refers to a process in which materials are added to the 

waste to produce an immobile mass. This may or may not involve a chemical bonding 

between the toxic contaminant and the additive. “Stabilization” refers to converting a 

waste to a more chemically stable form. This conversion may include solidification, 

but it almost always includes use of physicochemical reactions to transform the 

contaminants to a less toxic form (Dadrasnia et al., 2013).  

Soil vapour extraction: In cases where the contaminants are volatile, a venting and ex-

situ gas treatment system can be applied. Soil vapour extraction is a technology that 

has been proven effective in reducing concentrations of volatile organic compounds 

(VOC) and certain semi-volatile organic compounds (SVOC). Principally, a vacuum 

is applied to the soil matrix to create a negative pressure gradient that causes 

movement of vapors toward extraction wells. Volatile contaminants are readily 

removed from the subsurface through the extraction wells. The collected vapors are 

then treated and discharged to the atmosphere or where permitted, re-injected to the 

subsurface (Dadrasnia et al., 2013). 

Soil washing: It uses liquids (usually water, occasionally combined with solvents) and 

mechanical processes to scrub soils. Solvents are selected on the basis of their ability 

to solubilize specific contaminants, and on their environmental and health effects. The 
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soil washing process separates fine soil (clay and silt) from coarse soil (sand and 

gravel). Since hydrocarbon contaminants tend to bind and sorb to smaller soil 

particles (primarily clay and silt), separating the smaller soil particles from the larger 

ones reduces the volume of contaminated soil (Khan et al., 2004). 

Air sparging: It is an in situ technology in which air is injected through a 

contaminated aquifer. Air-sparing stimulates aerobic biodegradation of contaminated 

groundwater by delivery of oxygen to the subsurface. This is accomplished by 

injecting air below the water table. This technology is designed primarily to treat 

groundwater contamination by fuels, non-halogenated VOCs, SVOCs, pesticides, 

organics, and herbicides. Air sparing has also been demonstrated to be an innovative 

groundwater remediation technology capable of restoring aquifers that have been 

polluted by volatile and (or) biodegradable contaminants, such as petroleum 

hydrocarbons. The process may be applied to halogenated organics, but is less 

effective (Johnson et al., 2007). 

Thermal Desorption: It is an innovative treatment technology where contaminated soil 

is excavated, screened, and heated to release petroleum from the soil (US EPA, 1995). 

It involves heating soils to temperatures of 100–600°C so that those contaminants 

with boiling points in this range will vaporize and separate from the soil. The 

vaporized contaminants are then collected and treated by other means. There is some 

confusion about the difference between thermal desorption and incineration: thermal 

desorption does not aim to destroy the organic but rather to change their form to a 

more treatable one, while incineration aims to destroy the contaminant. The actual 

process of thermal desorption involves heating the soil in a chamber where organic 

contaminants and certain metals can be vaporized. From there, a gas or vacuum 

system transports the vaporized contaminants to an off-site treatment system (Khan et 

al., 2004).  

  

1.5.2. Bioremediation techniques 

Usually the contaminated sites are treated with traditional physical, chemical and 

thermal processes. Using these methods, the cost of removal of 1 m3 of soil from 1-

acre contaminated site is estimated to be 0.6–2.5 million US $. Billions of dollars are 

expected to be used to clean up all sites polluted with polycyclic aromatic 

hydrocarbon (PAHs) (McIntyre, 2003). Bioremediation is defined as the process 

whereby organic wastes are biologically degraded under controlled conditions to an 
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innocuous state, or to levels below concentration limits established by regulatory 

authorities (Rayu et al. 2012: Vidali, 2001). By definition, bioremediation is the use 

of living organisms, primarily microorganisms, to degrade the environmental 

contaminants into less toxic forms. It uses naturally occurring bacteria and fungi or 

plants to degrade or detoxify substances hazardous to human health and/or the 

environment (Vidali, 2001).  

 There are several studies and researchers that have developed and modelled 

different bioremediation techniques. However, due to the nature and/or the type of 

pollutant, there is no single bioremediation technique that serves as a ‘silver bullet’ to 

restore polluted environments. Indigenous microorganisms present in the polluted 

environments hold the key to solving most of the challenges associated with 

biodegradation and bioremediation of pollutants provided that environmental 

conditions are suitable for their growth and metabolism (Azubuike et al., 2016). The 

use of the indigenous soil microbial community to remediate a polluted site (achieved 

through optimization of their growth conditions) is called biostimulation and it is the 

most commonly utilized bioremediation approach. Alternatively bioremediation 

frequently involves the addition of microorganisms indigenous or exogenous to the 

contaminated sites in a process called bioaugmentation. Two factors often limit the 

use of bioaugmentation in land treatment: (1) non-indigenous microbial inocula rarely 

compete well enough with an indigenous population to develop and sustain useful 

population levels and 2) most soils with long-term exposure to biodegradable waste 

have indigenous microorganisms that are effective degrades if the land treatment unit 

is well managed (Vidali, 2001). 
Most important parameters for bioremediation are the i) nature of the 

pollutants, ii) soil structure, pH, moisture contents and hydrogeology, iii) nutritional 

status, iv) microbial diversity and v) temperature and oxidation-reduction conditions 

in the site (redox- potential). In bioremediation processes, microorganisms use the 

contaminants as nutrient or energy sources. Bioremediation activity is stimulated by 

supplementation of nutrients (nitrogen and phosphorus), electron acceptors (oxygen), 

and substrates (methane, phenol, and toluene), or by introducing microorganisms with 

the desired catalytic capabilities (Shukla et al., 2010).  

Bioremediation approaches can be broadly classified to ex situ or in situ 

(Hatzinger et al. 2002). In situ techniques are defined as those applied to soil and 

groundwater at the contaminated site with minimal disturbance. Ex situ techniques 
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involve excavation or pumping in case of soil and water, respectively, of the 

contaminated substrate and placement in a contained area where bioremediation is 

employed. 

 

1.5.2.1. In situ bioremediation  

These techniques are generally the most desirable options due to their lower cost and 

less disturbance, since they provide the treatment in place avoiding excavation and 

transport of the contaminated matrix. In situ treatment is limited by the depth of the 

soil that can be effectively treated. In many soils effective oxygen diffusion for 

desirable rates of bioremediation extend to a range of only a few centimeters to about 

30 cm into the soil, although depths of 60 cm and greater have been effectively treated 

in some cases (Azubuike et al., 2016). The most important in situ bioremediation 

treatments used are: 

Bioventing: It involves controlled stimulation of airflow by delivering oxygen to the 

unsaturated (vadose) zone to increase biodegradation, by increasing the activity of 

indigenous microbes. In bioventing, amendments are made by adding nutrients and 

water (to adjust moisture content) to enhance biodegradation with the ultimate goal 

being to achieve microbial transformation of pollutants to a harmless state (Philp and 

Atlas, 2005). 

Biosparging: It is very similar to bioventing in that air is injected into the soil 

subsurface to stimulate microbial activities to promote pollutant removal from 

polluted sites. However, unlike bioventing, air is injected at the saturated zone, which 

can cause upward movement of volatile organic compounds to the unsaturated zone to 

promote biodegradation. The effectiveness of biosparging depends on two major 

factors namely: soil permeability, which determines pollutant bioavailability to 

microorganisms, and pollutant biodegradability (Philp and Atlas, 2005).  
Bioslurping: It combines vacuum-enhanced pumping, soil vapour extraction and 

bioventing to achieve soil and groundwater remediation by indirect provision of 

oxygen and stimulation of contaminant biodegradation (Gidarakos and Aivalioti, 

2007). The technique is designed for free products recovery such as light non-aqueous 

phase liquids, thus remediating capillary, unsaturated and saturated zones. It can also 

be used to remediate soils contaminated with volatile and semi-volatile organic 

compounds. 
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Phytoremediation: It relies on the use of plant interactions (physical, biochemical, 

biological, chemical and microbiological) in polluted sites to mitigate the toxic effects 

of pollutants. Depending on the pollutant type (elemental or organic), there are several 

mechanisms (accumulation or extraction, degradation, filtration, stabilization and 

volatilization) through which plants achieve removal of the soil pollutants. Elemental 

pollutants (toxic heavy metals and radionuclides) are mostly removed by extraction, 

transformation and sequesteration. On the other hand, organic pollutants 

(hydrocarbons and chlorinated compounds) are predominantly removed by 

degradation, rhizoremediation, stabilization and volatilization, with mineralization 

being possible when some plants such as willow and alfalfa are used (Azubuike et al., 

2016). 

 

1.5.2.2. Ex situ bioremediation 

These techniques involve excavation of the polluted matrix and subsequen 

transportation to another site for treatment. Ex situ bioremediation techniques are 

usually considered based on: the cost of treatment, depth of pollution, type of 

pollutant, degree of pollution, geographical location and geology of the polluted site. 

Performance criteria, which also determine the choice of ex situ bioremediation 

techniques, have been described (Philp and Atlas, 2005). The most common ex situ 

bioremediation methods are: 

Biopiling: It involves above-ground piling of excavated polluted soil, followed by 

nutrient amendment, and sometimes aeration to enhance biodegadation by basically 

increasing microbial activities. The components of this technique are: aeration, 

irrigation, nutrient and leachate collection systems, and a treatment bed. The populrity 

of of this particular ex situ technique has increased in recent years due to its 

constructive features including cost effectiveness, which enables effective 

biodegradation on the condition that nutrient, temperature and aeration are adequately 

controlled (Whelan et al., 2015). 

Windrows: Reilies on the periodic turning of pilled polluted soil to enhance 

biodegradation by increasing the degradation activities of indigenous and/or transient 

hydrocarbonoclastic bacteria present in the polluted soil. The periodic turning of 

polluted soil, together with addition of water speeds up the biodegradation of the 

target pollutants (Barr 2002). 
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Bioreactor: It is a vessel in which raw materials are converted to specific product(s) 

following a series of biological reactions. There are different operating modes of 

bioreactor, which include: batch, fed-batch, sequencing batch, continuous and 

multistage. The choice of operating mode depends mostly on market economy and 

capital expenditure. Conditions in a bioreactor support natural process of cells by 

mimicking and maintaining their natural environment to provide optimum growth 

conditions. Polluted samples can be fed into a bioreactor either as dry matter or slurry; 

in either case, the use of bioreactor in treating polluted soil has several advantages 

compared to other ex situ bioremediation techniques (Azubuike et al., 2016). 

Land farming is the simplest bioremediation technique characterized by low cost and 

low equipment requirement for implementation. In most cases, it is regarded as ex situ 

bioremediation, while in some cases, it is regarded as in situ bioremediation 

technique. Pollutant depth plays an important role as to whether land farming can be 

carried out ex situ or in situ. In land farming, polluted soils are excavated and/or tilled, 

but the site of treatment apparently determines the type of bioremediation employed. 

When excavated polluted soil is treated on-site, it can be regarded as in situ land 

farming, whereas in all other cases (transportation and treatment off site) it is 

considered as ex situ bioremediation (Vidali, 2001). 

Composting is a biological process which uses naturally occurring microorganisms to 

convert biodegradable organic matter into a humus-like product. Composting of 

agricultural waste and municipal solid waste has a long history and is commonly 

employed to recycle organic matter back into the soil to maintain soil fertility 

(Sharma et al., 1997). The process destroys pathogens, converts N from unstable 

ammonia to stable organic forms, reduces the volume of waste and improves the 

stability of the waste. The effectiveness of the composting process is influenced by 

factors such as temperature, oxygen supply (i.e. aeration), moisture content (optimum 

60-70%), pH, C:N ratio (optimum 25-40:1), particle size and degree of compaction 

(Imbeah, 1998). 

The organic substrates, bulking agents and amendments used in composting 

are mostly derived from plant material. The main components of the organic matter 

are carbohydrates (e.g. cellulose), proteins, lipids and lignin. The capacity of 

microorganisms to assimilate organic matter depends on their ability to produce the 

enzymes needed for degradation of the substrate. The more complex the substrate, the 

more extensive and comprehensive is the enzyme system required. Under optimal 
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conditions, composting proceeds through three phases: (1) the mesophilic phase, (2) 

the thermophilic phase, which can last from a few days to several months, and (3) the 

cooling and maturation phase which lasts for several months (Fig. 1.4). The length of 

the composting phases depends on the nature of the organic matter being composted 

and the efficiency of the process, which is determined by the degree of aeration and 

agitation (Tuomela et al., 2000).  

 

 
Figure 1.4. Temperature and pH variation during composting. The figure is redrawn 

from Tuomela et al., (2000) 

 

Composting is a dynamic process carried out by a rapid succession of mixed 

microbial populations. The main groups of microorganism involved are bacteria, 

including actinobacteria, and fungi. Although the total number of microorganisms 

does not significantly change during composting, the microbial diversity can vary 

during the different phases of composting. The precise nature of succession and the 

number of microorganims at each composting phase is dependent on the substrate and 

on the preceding microorganisms in the succession. At the beginning of composting 

mesophilic bacteria predominate, but after the temperature increases to over 40°C, 

thermophilic bacteria take over and thermophilic fungi also appear in the compost. 

When the temperature exceeds 60°C, microbial activity decreases dramatically, but 

after the compost has cooled mesophilic bacteria and actinomycetes again dominates 

(Tuomela et al., 2000).       
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1.6. ENVIRONMENTAL POLLUTION BY PESTICIDES  

The indiscriminate use of pesticides before and after harvest can cause pollution of 

water resources, including surface and groundwater. This result in possible 

contamination of drinking water and risk for human health. Several monitoring 

studies have detected herbicides (i.e. diuron), and insecticides (i.e. chlorpyrifos) used 

at pre-harvest in surface water and groundwater  (Echols et al., 2008: Hu et al., 2009). 

In addition several studies have reported the presence of fungicides used at post-

harvest level, in fruit and vegetable packing plants, like imazalil (IMZ), thiabendazole 

(TBZ) and ortho-phenylphenol (OPP) in surface water systems crossing through fruit 

producing regions (Belenguer et al. 2014; Castillo et al. 2006; Masia et al. 2013; 

Ccanccapa et al. 2016)  

Pesticides can pollute natural water resources through point and non - point 

sources (Fig. 1.5.). Non-point source pollution is the diffusion of pesticides to water 

ecosystems after their agricultural use through transportation processes including 

runoff, erosion, spray drift and leaching. In contrast, point source pollution originates 

from non orthodox agricultural practices at on-farm level such as improper activities 

during filling or emptying the sprayers, washing of spraying equipment or at post-

farm level by disposal of pesticide-contaminated effluents produced by agricultural 

industries (Reichenberger et al., 2007: de Wilde et al., 2007: Candela et al., 2008: 

Bourton et al., 2009). The contribution of point sources in the contamination of 

natural water resources is considerable and could range from 40-90% depending on 

several factors (Torstensson and Castillo, 1997; Ramwell et al. 2004). (Fig 1.6). 

Pollution of surface water and groundwater aquifers by pesticides is a major problem 

in Europe. For this reason the European Commission has established and defined the 

maximum permitted pesticide residue limits in water intended for drinking, to 0.1 μg 

L-1 for a single pesticide compound and 0.5 μg L-1 for all the pesticide compounds 

contained in a water sample (de Wilde et al., 2007: Bourton et al., 2009). 
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Figure 1.5. Schematic representation of pesticides pollution of water resources 

through point and non - point sources (http://www.the-

macc.org/watershed/newsletters/winter-2015/) 
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Figure 1.6. A flow chart illustrating the contribution of point and non point sources 

on the contamination of water resources by pesticides. The individual on-farm 

activities that contribute to point source contamination are also presented with 
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mishandling of the spraying liquids and remnants being the most important point 

source (65%). 

 

1.7. PESTICIDE-CONTAMINATED WASTEWATERS FROM THE FRUIT-

PACKAGING INDUSTRY 

The post-harvest treatment of fruit such as apples, pears, citrus and bananas involves 

the use of fungicides to prevent fungal infestations during storage (Ortelli et al., 

2005). In addition, fruit packaging plants handling apples and pears utilize 

antioxidants to prevent the establishment of the physiological disorder apple scald 

(Junk and Watkins 2008). Fungicides and antioxidants are applied onto the fruits 

using variable ways including: 1) spraying of pesticide concentrates at high or low 

volumes, 2) immersion of fruits in concentrated solutions of fungicides (drenching) 

and 3) spray misting techniques. The recommended dose rates of the pesticides used 

in fruit packaging plants range from 600 mg L-1 in the aqueous solutions applied onto 

the fruits to 2000 mg L-1 when pesticides application is accompanied by simultaneous 

fruit waxing (Ritenour et al., 2003: Mari et al., 2003). Consequently, the wastewaters 

produced from the post-harvest treatment of fruit are contaminated with high 

concentrations of fungicides and antioxidants and their direct environmental release 

will have devastating effects for the chemical quality and ecological integrity of 

natural water resources (Castillo et al., 2000). Thus those wastewaters should be 

treated and detoxified prior to their release in the environment (Rushing et al., 1995). 

This need was identified by the European Commission which has provided 

authorization to the pesticides used in the fruit packaging industry only under the 

clause that appropriate waste management practices to handle the waste solution 

remaining after application, including for instance the cleaning water of the 

drenching system and the discharge of the processing waste are put in place (EC 

2009; EC 2010).  

 

1.8. PESTICIDES USED IN FRUIT-PACKAGING PLANTS  

In Europe the main fungicides used to prevent postharvest diseases of fruits are TBZ, 

IMZ, and OPP. Regarding apple scald the only currently registered pesticide for its 

control is the fumigant 1-methyl cyclopropene (MCP) (EC, 2006), although 

exemption authorizations for 120 days have been given for diphenylamine (DPA) by 
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certain member-states in Europe considering that there are no equally effective 

alternatives in the market for the control of apple scald. Another antioxidant that was 

heavily used until recently is ethoxyquin (EQ). The physicochemical characteristics of 

the pesticides used in the fruit packaging industry are described in Table 1.4. 

 

Table 1.4. The physicochemical characteristics of the pesticides used in the present 

study 

Pesticides 

Molecular 

Mass  

(g mol-1) 

Water 

Solubility 

(mg L-1) 

Vapour 

Pressure 

(Pa) 

Henry’s 

Law 

Constrant 
(Pa m3 mol-1) 

logPow 

 

ΤΒΖ 201.26 
28-30  

(25oC, pH 7) 

5.3 x 10-7  

(25°C) 
3.7 x 10-6  

2.39  

(pH 7, 20°C) 

OPP 170.20 
700  

( 25oC) 

0.474 

(20°C) 
0.14 3.18 

IMZ 297.20 
184  

(20°C, pH 7.6) 

1.58 x 10-4 

(25°C) 
1.08 x 10-4 

3.82  

(pH 9.2, 25°C) 

DPA 169.23 
40  

(25oC) 

0.033  

(20°C) 
0.321 

3.82  

(20°C) 

EQ 217.31 
170 

(25oC) 

3.46 x 10-2 

(25°C) 
- 

2.45 

(25°C) 

 

 

 

1.8.1. Thiabendazole  

TBZ (2- (4-thiazolyl) -1H-benz-imidazole, Figure 1.7), belongs to the benzimidazole 

group of fungicides and it is used at postharvest level to control infestations of fruits 

by Penicillium sp. Also, TBZ is applied pre-emergence in potato seeds, cereals etc. 

and fruits and vegetables (bananas, citrus fruits, etc.) to combat fungal infestations by 

Verticillium sp., Penicillium sp. and Botrytis sp. (Hu et al., 2008: Nunes et al., 2001). 

Typical application rates of TBZ at postharvest level range from 1.2 g L-1 (pome 

fruits) to 2 g L-1 (citrus fruits) (EC 2013c). 
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Figure 1.7. The chemical structure of thiabendazole (TBZ) 

 

TBZ acts on target fungi by inhibiting the formation and function of cell 

spindle microtubules during mitosis (Danaher et al., 2007). In particular it binds to β-

tubulin and prevents cytoskeleton-dependent cellular transport processes, including 

chromosome transport and cell division (Watanabe-Akanuma et al., 2005). It has also 

been demonstrated that the TBZ inhibits the reductase of fumaric acid which controls 

the formation of succinic acid and glucose absorption (Bennett and Bryant, 1984).  

TBZ shows high toxicity to mammals at doses up to 20 times the 

recommended (Danaher et al., 2007). It shows low acute and short-term dietary 

toxicity to rats and birds (LC50 rats = 3100 mg kg-1 bw; LC50 birds acute >2250 mg 

kg-1 bw; LC50 short-term birds >5620 mg kg-1 diet). It is suspected as carcinogenic at 

very high concentrations but it is not mutagenic, teratogenic, neurotoxic, genotoxic, 

and it does not induce reproductive toxicity. It is characterized by high toxicity to 

aquatic organisms including invertebrates (EC50 Daphnia magna = 0.81 mg/l, NOEC 

21 days D. magna = 0.084 mg L-1) fishes (LC50 rainbow trout = 0.55 mg L-1) and 

algae (EC50 algae (96h) 9.0 mg L-1) (Cannavan et al., 1998: EC, 2001).  

 TBZ is characterized by low water solubility and vapour pressure suggesting 

that volatilization is a minor process in its environmental dissipation (Table 1.4). TBZ 

is persistent in the soil environment. Extrapolated DT50 values ranged from 833- 1100 

days in cropped plots and from 1093-1444 days in fallow plots (US EPA, 2002). 

Laboratory regulatory studies at EU level reported soil DT50 > 1 year at 20°C under 

both aerobic and anaerobic conditions. More recent studies by Omirou et al (2012) 

reported DT50s = 77.8 days but still TBZ was the most persistent of the pesticides 

studied (all used in fruit-packaging industries). TBZ is strongly adsorbed onto soil 

particles as it is suggested by its Koc values ranging from 1104-22467 ml g-1 (EC 

2001). As expected TBZ is not particularly mobile in the soil environment (Omirou et 

al., 2012). Little is known regarding the metabolic pathway of TBZ in the 
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environmental. Previous studies identified 5-hydroxythiabendazole (5-OH-TBZ) 

produced after hydroxylation of the 5 'end of the benzimidazole ring as its main 

metabolic product (Cannavan et al., 1998). Recent studies by Sirtori et al. (2014) 

showed that TBZ could be degraded in water by the Fenton-oxidation process to 

various intermediates with thiazole-4-carboxamidine being the major product. In 

contrast the biodegradation of TBZ is still a black-box. Only recently Perruchon et al. 

(2016b) reported the isolation of a proteobacteria consortium which was able to 

rapidly degrade TBZ leading to the production of thiazole-4-carboxamidine, while the 

benzyl part of the benzimidazole ring was consumed by the bacterial consortium as 

shown by Stable Isotope Probing analysis.  

Evaluation of the use of TBZ at EU level by the Scientific Committee on 

Plants of the European Union (Scientific Committee on Plants, SCP) concluded that 

''the placement of liquid waste generated from the use of the post-harvest fruit 

treatment, into surface water or the biological cleaning of municipal waste can cause 

major problems in the operation of these systems and problems of toxicity to non-

target organisms'' (EC, 2001). Thus TBZ has been granted authorization for use until 

31.12.2021 under the clause that the wastewaters produced by its use should be 

treated on site before their environmental release. 

 

1.8.2 Imazalil 

IMZ (1- [2- (2,4-dichlorophenyl) -2- (2-propenyloxy) ethyl] -1H-imidazole, (Figure 

1.8), is an imidazole fungicide which acts by inhibiting ergosterol biosynthesis in 

fungi. It has a broad spectrum activity and is effective against Ascomycetes infesting 

fruits and vegetables in storage. Its post-harvest use in fruits targets infestations by 

fungi of the genus Penicillium, Gloeosporium, Fusarium etc. (Chu et al., 2007; 

Kodama et al., 2003; Maruyama et al., 2007; Nunes et al., 2001). EC renewed the 

authorization  of IMZ for post-harvest use in fruits, vegetables and potatoes in 

Member States until 31.7.2021 only on the condition that appropriate 

decontamination system for the treatment of wastewaters produced by its use would 

be implemented on site (EC, 2009b).  Its recommended dose rates vary with the mode 

of application onto fruits: the lower dose rates (1 g L-1) are used when applied via 

drenching and the highest dose rates (2 g L-1) when IMZ is used with spraying or 

waxing (EC 2009b).  
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Figure 1.8. The chemical structure of imazalil (IMZ) 

 

IMZ imposes toxic effects to humans and mammals. It has been reported that 

IMZ showed cytotoxic activity in isolated rat liver cells and it was found to affect the 

activity of cytochrome P450 (Muto et al., 1997). Other studies showed that IMZ has 

inhibitory activity against aromatase CYP19, which catalyzes the conversion of 

androgens to estrogens (Vinggaard et al., 2000). IMZ is classified as “a likely 

carcinogen to humans” according to EPA’s July 1999 Draft Guidelines for 

Carcinogen Assessment. Carcinogenicity studies in rodents indicated that IMZ is 

carcinogenic to male Swiss albino mice and Wistar rats. In addition, IMZ is placed in 

Category II, II, and IV for oral, dermal, and inhalation toxicity respectively. It is 

highly irritating to the eyes (Category I), but it is not a skin irritant (Category IV) or a 

dermal sensitizer (US EPA, 2003).  

Regarding its ecotoxicity, IMZ is considered very toxic to aquatics including 

fishes (LC50 acute Onchorynchus mykiss = 1.48 mg/l; NOEC chronic = 0.043 mg/l), 

invertebrates (EC50 D. magna 3.5 mg/l), and algae (Pseudokirch subcapitata EbC50 = 

0.87 mg/l and ErC50 = 1.20 mg/l). Regarding its toxicity to other non-target 

organisms, IMZ is moderately toxic to birds (LD50 acute 510 mg/kg, LD50 short term 

dietary > 5620 mg/kg feed) and moderately to highly toxic to mammals (LD50 acute 

rats = 227 mg/kg and NOEL short term dietary = 2.5 mg/kg diet) (EC 2009b). 

IMZ is a racemic mixture of two enantiomers (the R isomer showing higher 

activity) which do not show any enantiomer-specific degradation activity (Chu et al. 

2007).  It is stable in pure state, moderately soluble in water and has low vapour 

pressure suggesting the limited contribution of volatilization in its dissipation in soil 

(Table 1.4). IMZ degrades slowly in soil under aerobic conditions with DT50s ranging 

from 44 to 128 days (US EPA, 2003). The long persistence of IMZ was also verified 
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by similar regulatory studies at EU level with DT50s mean values of 137 d (aerobic 

soil laboratory study at 20°C) (EC, 2009). More recent studies by Omirou et al. 

(2012) and Kreuzig et al. (2010) showed contrasting behaviour of IMZ with DT50 

values in soil of 29 and 83 days respectively. IMZ showed Koc values > 4000 ml g-1 

suggesting rather strong sorption and limited mobility in soil (EC 2009, Kreuzig et al. 

2010). Biodegradation of IMZ is still a largely unexplored topic. To date no 

microorganisms able to degrade IMZ have been isolated. The only report on this is by 

Karas et al. (2011) which showed that the white rot fungi Trametes versicolor, 

Phanerochaete chrysosporium and Pleurotus ostreatus effectively degraded 10 mg L-

1 of IMZ in liquid culture but failed to degrade higher concentrations (50 mg L-1). 

IMZ-ethanol constitutes the main metabolite of IMZ in soil. IMZ-ethanol is 

characterized by lower soil persistence (DT50 = 5.1-10.4 days) and medium affinity 

for soil sorption (Koc = 757-1663 ml g-1) suggesting limited risk for contamination of 

water resources. Even then IMZ-ethanol is less toxic to aquatics compared to the 

parent compound (LC50 acute fish = 21.26 mg L-1; LC50 D. magna = 13.6 mg L-1) 

(EC, 2009). 

 

 

1.8.3. Ortho-phenylphenol 

OPP (Figure 1.10), belongs to the chemical group of aromatic hydrocarbons. It is used 

as a fungicide to treat postharvest rots (Penicillium digitatum, P. italicum, Botritys 

cinerea, etc.), especially on citrus fruit and seed packing. It is also used in the form of 

fungistatic wax for coating of vegetables to avoid microbial spoilage during storage 

and transportation. OPP is applied via drenching in citrus fruits at maximum dose 

rates of 0.6 g L-1 (EC 2008). OPP is also used as a general purpose disinfectant in 

hospital and health care in cleaning and disinfecting machinery (Cnubben et al., 2002; 

Zamora et al., 2004; Ziogas 2007). Its registration as a pesticide for postharvest use in 

fruit packaging plants was renewed until 2019 under the clause that all member-states 

''should pay particular attention to put in place appropriate waste management 

practices to handle the waste solution remaining after application, including the 

cleaning water of the drenching system. Member States permitting the release of those 

wastewaters into the sewage system shall ensure that a local risk assessment is 

carried out'' (EC, 2010c). 
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Figure 1.9. The chemical structure of ortho-phenylphenol (OPP) 

 

Many studies have been implemented to clarify the mode of action of OPP and 

many theories have been formulated. However none of these theories adequately 

explain the primary activity of the fungicide. The prevailing theory suggests that OPP 

causes lipid peroxidation in the inner mitochondrial and nuclear membrane and 

endoplasmic reticulum of sensitive fungi exposing the chromosomes to the action of 

free radicals and lytic enzymes (Ζιώγας 2007). 

According to US EPA (2006) OPP showed toxicity to laboratory mice and 

rabbits only at high concentration levels (ca. 1650 mg kg-1). OPP is possibly 

carcinogenic to humans, but at very high concentrations. Experiments in rats and mice 

fed with 200 mg/kg/ day of OPP showed tumors in the bladder and the liver 

respectively. Finally, there are reports showing that the OPP has no mutagenic activity 

(Tani et al., 2007). Regarding its ecotoxicity, OPP seems to be particularly toxic to 

aquatic organisms including fishes (LC50 Onchorynchus mykiss = 4 mg L-1; NOEC 

21d = 0.036 mg L-1), invertebrates (Daphnia magna EC50 = 2.7 mg L-1) and algae 

(Pseudokirch subcapitatus EC50 biomass and EC50 growth rate 1.35 and 3.57 mg L-1 

respectively) but shows limited toxicity to birds and mammals (EFSA, 2008). 

OPP is generaly stable in abiotic hydrolysis at pH 5-9, it is moderately soluble 

in water and is characterized by moderate vapour which might suggest some losses 

via volatilization (EFSA 2008) (Table 1.4.).  OPP in soil showed variable persistence, 

with DT50s of <1 day (EFSA 2008) to 43.3 d (Omirou et al. 2012). OPP shows 

variable sorption affinity with Koc values ranging from 252-393 (EFSA 2008) to 894-

1793 (Zheng et al. 2011) suggesting a moderate mobility in the soil profile. In recent 

column studies Omirou et al (2012) pointed to OPP as the most mobile chemical 

amongst the ones used by the citrus fruit packaging industry. Although OPP was 

characterized as 'non readily biodegradable' (EFSA 2008) previous studies have 
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showed that OPP is readily degraded by microorganisms isolated from soil. Kohler et 

al. (1988) first isolated a Pseudomonas azelaica strain which was able to utilize OPP 

as a carbon source and rapidly tranform it through intermediate production of 

benzoate. Recently, Perruchon et al. (2016a) isolated a Sphingomonas 

haloaromaticamans strain which rapidly metabolized OPP following a pathway 

similar to the P. azelaica strain. Karas et al. (2011) also showed that white rot fungi P. 

chrysosporium, T. versicolor and P. ostreatus were able to rapidlly metabolize OPP 

by activating their ligninolytic enzymes.  

 

1.8.4. Diphenylamine 

DPA (chemical structure in Fig. 1.10) is predominantly used as stabilizer for single- 

or multi-base propellants and nitrocellulose-containing explosives (Drzyzga, 2003).  

DPA is also used at postharvest level to prevent the appearance of apple scald in 

pome fruits (Ζιώγας 2007: Drzyzga and Blotevogel, 1997). It is applied via dipping, 

drenching, and spraying or fogging to apples and pears at concentration levels ranging 

from 0.4 to 2 g/l (EFSA, 2012). To date DPA is not authorized for use in fruit 

packaging plants in Europe (EFSA 2012). The decision was based on the lack of 

information related to the presence, formation and toxicity of metabolites (i.e. 

nitrosamines) produced in the fruit or in the formulation during processing or storage 

respectively (EFSA 2012). Despite that several members states like Spain, Italy, 

Greece and Portugal excemption authorization for 120 days to DPA, while DPA is 

still heavily used for the treatment of fruits in non EU countries like USA, Canada and 

Latin American countries  

 

 
Figure 1.10. The chemical structure of Diphenylamine (DPA) 
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The mode of action of DPA is not fully known yet, but it is believed that it 

acts by preventing the oxidation of naturally occuring terpenes like a-farnesene which 

when oxidized to trienes induce damages and cell death on the surface of fruits (EC 

2007). DPA has been shown to cause skin diseases in the hands of workers who use 

the formulations and nephrotoxicity in male laboratory rats (Drzyzga et al., 1995). 

However it is not particularly toxic, acutely and in the short-term to birds and 

mammals (EFSA 2008). On the contrary DPA is particularly toxic to aquatic 

organisms like fishes (EC50 Oncorhynchus mykiss 2.2 mg L-1), algae (Selenastrum 

capricornutum biomass and growth rate EC50 0.18 and 0.30 mg L-1 respectively), and 

invertebrates (Daphnia magna EC50 1.2 mg L-1) (Drzyzga, 2003; EFSA, 2012)   

DPA shows high reactivity, due to its imine H, and it has low to moderate 

water solubility. Its Henry's law constant values suggests that losses through 

volatilization from water are expected (EFSA 2012).  Little is known about its 

persistence and metabolism in the soil environment. However regulatory studies 

conducted in USA suggested that the molecule is not persistent in soil with DT50s of 

<1 day. DPA shows relatively high adsorption onto soils (Koc = 1212-6593 ml g-1) 

which suggests a limited mobility and low leaching potential (US EPA, 1998).  

A ready biodegradability study suggested that DPA should be classified as 

''not readily biodegradable'' (EC, 2007b). Experiments with 12 months incubation in 

aerobic conditions with 14C DPA showed that only 18% was mineralized. On the 

other hand Drzyzga and Blotevogel, (1997) observed that DPA (50 μM) was co-

metabolized by cultures of sulphate-reducing bacteria. After incubating the cultures 

for 6 weeks a reduction of 60% of the initial amount of DPA with simultaneous 

detection of the corresponding aniline as its main metabolite. Shin and Spain (2009) 

first reported the isolation of a Burkholderia sp. and a Ralstonia sp., which were able 

to utilize DPA as a C and N source. More recently Perruchon et al. (2015) reported 

the isolation of Pseudomonas putida strain from a soil from a wastewater disposal site 

which was able to rapidly degrade DPA and use it as a C and N source.  

 

1.8.5. Ethoxyquin 

EQ (1,2-dihydro-6-ethoxy-2,2,4-trimethyl-quinoline) (Fig. 1.11) is a quinolinic 

antioxidant which is used to treat pome fruits to prevent the appearance of apple scald 

in pome fruits. EQ is applied by soaking, spraying or by winding in enriched with EQ 
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paper. It acts as a sacrificial antioxidant preventing oxidation of alpha farnesene to 

trienes which cause necrosis of epidermal cells in apples (Blaszczyk et al. 2013). 

Since 2012 EQ is not authorized for use in fruit packaging plants. The decision on not 

granting authorization to EQ by the European Commision was based on several 

scientific gaps in its dossier which were related (a) to the lack of toxicity risk 

assessment for EQ, its metabolites and one potentially genotoxic impurity found in 

the active ingredient, (b) the absence of consumer, operator and worker risk 

assessment (c) the lack of exposure assessment of the environmental compartments 

via aerial deposition of potentially volatile metabolites and a genotoxic impurity 

(EFSA 2010)  

 
Figure 1.11. The chemical structure of ethoxyquin 

 

 EQ is still used as a preservative and antioxidant in fish meal and fish feed (De 

Koning and Mol. 1989; De Koning 1998). It is applied at levels of 150 mg/kg in 

complete feed in the EU with the benefit of this use being two fold: i) It preserves fish 

meal and fish oil from the oxidation of highly unsaturated fatty acids including EPA 

(eicosapentaenoic acid) and DHA (docosahexaenoic acid), better known as omega-3 

fatty acids, which are known to promote health in both animals and humans; ii) It 

prevents the spontaneous combustion of fish meal during transport and storage 

(EFSA, 2010). 

Due to its heavy use in animal food an Acceptable Daily Intake of EQ for 

human consumption in the range 0-0.005 mg kg-1 was established based on tests on 

dogs (Drewhurst 1998). Regarding its ecotoxicity, EQ is not considered toxic to 

mammals (LD50 rats 1726) and birds (Colinus virginianus LC50>2417 mg kg-1 bw). 

However EQ is toxic to aquatics including fishes (Oncorhynchus mykiss LC50 = 18 

mg L-1), algae (Pseudokirchneriella subcapitata EbC50 = 6.1 mg L-1) and 

invertebrates (Daphnia magna EC50 = 2 mg L-1) (EFSA 2010).  
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On the basis of its physicochemical properties EQ may be considered as 

moderately volatile and it has a moderate solubility in water (Table 1.4.). The 

estimated photo-chemical half-life in the atmosphere was shorter than 2 days,  

therefore long- range transport through the atmosphere is not expected for EQ.  In a 

hydrolysis study, under sterile conditions (25°C), at pH 5, 7 and 9 in the dark, EQ was 

unstable and underwent  relatively  rapid hydrolytic degradation, forming four major 

(> 10% of the applied radioactivity) unidentified transformation products (EC, 2010: 

EFSA, 2010).  

Little is known about the environmental fate of EQ. This is due to its indoor 

use. Recent studies by Papadopoulou et al., (2016) showed that it is rapidly 

transformed to quinone imine and dimethyl-ethoxyquinoline. The first constituted the 

major metabolite and it was rapidly transformed thereafter whereas the latter was 

formed in small amounts which persisted for long. Overall EQ and its metabolites 

showed limited persistence in soil but exhibited unacceptable toxicity to ammonia-

oxidizing microorganisms, a key microbial group in N cycling.  

 

1.9. TREATMENT OF THE WASTEWATERS FROM THE FRUIT-

PACKAGING INDUSTRY 

The long persistence of TBZ and IMZ and the high aquatic toxicity of all pesticides 

used in fruit packaging plants (TBZ, IMZ, DPA, OPP and EQ) led the EC, as 

mentioned above, to allow their use only under the condition that the wastewaters 

produced will be treatment on site.  Despite that no simple, efficient and cost-effective 

methods are available for the treatment and detoxification of those effluents. The only 

full scale system currently available for the treatment of those wastewaters is called 

ControlTec-Eco® (Photograph 1.1), constructed and patented by the Spanish 

company Technidex (Garcia-Portillo et al. 2004). The system is based on the filtration 

of effluents through activated carbon and when tested with TBZ-contaminated 

effluents it achieved a 7000-times reduction in the concentration of TBZ (EC 2000). 

Despite its high depuration performance ControlTec-Eco® was not widely adopted by 

the fruit packaging plants in the Mediterannean  region due to its high cost and its 

high engineering needs for operation and maintenance.  
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Photograph 1.1. The Control-Tec Eco® system used for the treatment of effluents 

from fruit packaging plants 

  

 Other physicochemical methods have been tested, so far at lab scale level, for 

the depuration of those effluents with encouraging results.  Khodja et al. (2000) first 

showed that photocatalytic treatment rapidly removed OPP from wastewaters.  

Subsequent tests with the more persistent fungicides TBZ and IMZ using 

photocatalysis with TiO2 showed high removal efficiency although the dissipation of 

TBZ was affected by the type of water used in the tests (Jimenez et al. 2015). 

Santiago et al. (2011) evaluated the efficiency of different oxidation methods 

including TiO2 catalysis, TiO2 catalysis combined with activated carbon filtration, 

Fenton and Photo-Fenton oxidation for the depuration of TBZ and IMZ from agro-

industrial effluents. They showed that Photo-Fenton was the most efficient method 

while TiO2 catalysis was the least efficient. Subsequent tests by Carra et al., (2014) in 

a raceway pond reactor using photo-Fenton oxidation showed high removal efficiency 

of TBZ from wastewaters from the fruit packaging plants. Semi-pilot studies showed 

that the combination of membrane bioreactor and Fenton oxidation processes could 

effectively remove TBZ from wastewaters (Sanchez Perez et al., 2014). However 

there are certain limitations regarding all the above studies: (a) they were performed 

at concentration levels (0.1 mg L−1) which are multi-fold lower than the levels found 

in the effluents from fruit-packaging plants treating and storing fruits (b) they were all 

performed at lab or semi-pilot scale level thus their full-scale implementation and 

efficiency is still pending and (c) all oxidation methods lead to the production of 

oxidation intermediates which are of unknown toxicity.  
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 In the absence of implemented treatment systems for these agro-industrial 

effluents fruit-packaging plants handle those effluents in various, acceptable or 

unacceptable ways: 

• They dispose of the effluents in municipal wastewater treatment plants. These 

generic wastewater treatment systems have been shown to be efficient in the 

removal of OPP (Korner et al., 2000) but failed to remove the recalcitrant 

fungicides IMZ and TBZ from the wastewater (Campo et al. 2013). Such 

practices have resulted into point source contamination of surface water 

systems receiving effluents from municipal wastewater treatment plants with 

TBZ and IMZ 

• They discharge the effluents in nearby fields which results in the build up of 

particularly high levels of recalcitrant chemicals like TBZ in soil. Recent 

monitoring in such disposal site showed a gradient of TBZ concentrations in 

soil ranging from 12 to 12000 mg kg-1 (Papadopoulou et al., 2015). 

• They deliver their effluents to certified companies for ex situ treatment. The 

particularly high cost of this option (0.7-3 € per litre of waste) constitutes a big 

economic burden for the viability of fruit packaging plants in the 

Mediterannean region. 

Thus there is an urgent need for an efficient, cost-effective and simple-to-

operate method for the depuration of those agro-industrial effluents. The 

implementation of biological treatment systems was so far prohibited by the general 

limited biodegradability of the relevant pesticides. However recent studies showed 

that TBZ, IMZ, OPP and DPA could be biodegraded by specialized soil bacteria and 

'generalists' fungi (Perruchon et al. 2015, 2016a, 2016b; Karas et al., 2011). Thus, 

biological treatment methods could be a viable alternative and biobeds, described in 

the following section, might be a potential solution for the treatment of these agro-

industrial effluents.  

 

1.10.  BIOBEDS 

Biobeds are simple and cheap constructions intended to collect and degrade spills of 

pesticides occuring at on farm level (Torstensson, 2000; Torstensson and Castilio, 

1997). The original Swedish-type system was a 60 cm deep pit in the ground and 

consisted of of three major components (Figure 1.12): (i) a clay layer at the bottom 

(10 cm) to prevent percolation of the wastewater to deeper soil layers; (ii) a packing 
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material or else called ''biomixture'' composed of straw, peat, and soil (50:25:25 

vol %) which was used to pack the remaining of the pit; and (iii) a grass layer on the 

surface which regulates the moisture content of the upper parts of the biobeds through 

evapotranspiration and accelerates the degradation of pesticides through 

rhizodeposition, known to promote microbial degradation of pesticides (Campos et 

al., 2016). These original direct type biobed systems were also equipped with a ramp 

to allow the sprayer to be driven and parked over the biobed and collect all spillages 

occurring during preparation of the spraying mixture (Castillo et al., 2008). 
 

 
 

Figure 1.12. A schematic representation of the original Swedish-type biobed system.  

 

Biobed systems were initially categorized according to the insulation of their 

bottom as unlined or lined systems. Unlined Biobeds have no impermeable synthetic 

layer that isolates them from the soil. The original Swedish-designed biobed belongs 

to this group. In many cases, a natural clay layer is present at the bottom of the biobed 

pit. If this is not the case, a clay layer is added. There is no collection of drainage 

water in this system and they were only used to collect spillages and not water rinsates 

or washates (Figure 1.13a,b).  Lined Biobeds resemble the original Swedish biobed 

but they are lined by a synthetic impermeable layer (plastic, concrete, tarpaulin, etc.) 

that isolates them from soil. This design allows the collection of drainage water in 

special wells that are built at the side of the biobed (Figure 1.13c). Drainage layers 

(gravel, macadam, or sand) are usually placed below the clay. This design was 

introduced in the United Kingdom (Castillio et al., 2008). 
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Figure 1.13: Unlined biobeds with (a) an added or (b) a natural clay layer and (c) the 

lined biobed is isolated with an impermeable layer that allows collection of drainage 

water in a well. 

 

1.10.1. Application and Uses of Biobeds  

1.10.1.1 On farm applications in different countries 

Since their initial introduction in Sweden, biobeds generated interest in other 

countries (e.g., UK, Belgium, Italy, France, Peru and Guatemala), and their 

implementation led to modifications of the original biobed design to accomodate local 

needs and practices. These modified systems were given alternative names like  

Biofilters, Biomassbed, Phytobac / Biobac, and BiomassBed.  

 Biobeds in UK: The adaptation of biobeds in UK led to two major 

modifications: (i) insulation of the biobed system by using an impermeable synthetic 

liner, that is, use of lined biobeds and (ii) modification of the depth of the biobed from 

0.6 m in the Swedish design to 1-1.5 m in the UK version to increase the retention 

time of the pesticides in the bed and allow biobeds to receive larger amounts of water. 

(c) 
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Two systems were outlined, (i) an offset or indirect system where the handling area of 

the pesticides is separated from the biobed area (requires two collection tanks, one 

before and one after the biobed) (Fig. 1.14b) and (ii) a drive-over system where the 

handling area is directly over the biobed area (requires a collection tank after the 

biobed) (Fig. 1.14a). The liquids collected from the biobeds are drip-irrigated in 

designated disposal areas. The biobed mixture in use in the UK consists of straw 

(wheat or barley), soil, and peat-free compost in the proportions 50:25:25 vol %, and 

the bed is covered with grass to ensure rooting activity and assist moisture 

management (Castillio et al., 2008: Fogg et al. 2004). 

 

  
Figure 1.14. Biobeds in the United Kingdom: direct system (a)  and offset system (b) 

(sourse: http://slideplayer.com/slide/8161925/) 

 

 Biobeds in Italy (BiomassBed). The Italian biobed system was called 

BiomassBed (Figure 1.15a,b),. It is used for the treatment of large volumes of 

pesticide-contaminated water produced from the filling and washing of spraying 

equipment. The BiomasBed is packed with a mixture of local organic materials. 

Because peat is not easily found in Italy and is expensive, other organic materials are 

being tested as replacements, such as urban and garden composts, peach stones, vine 

branches, and citrus peels (Coppola et al., 2007: Vischetti et al., 2004). 

 

(a) (b) 
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Figure 1.15. Biomassbed in Italy: (a) schematic diagram and (b) pilot plant installed 

in  Universita Cattolica del Sacro Cuore, Piacenza, Italy. (Sourse: 

http://lineeguida.iambientale.it/GuideLines_Appendix_2.aspx) 

 

 Biobeds in Belgium (Biofilter): In Belgium the biobed takes the form of a 

Biofilter (Phot 1.2.). The main interest in Belgium was to modify the biobed concept 

into a more flexible, small system able to treat large volumes of effluents, to recycle 

them with a pump, and to use different kinds of packing materials. Biofilters consist 

of two or three units of 1 m3 plastic containers stacked in a vertical pile and connected 

with plastic valves and pipes (de Wilde et al., 2007). 

 

 

(a) 
(b) 
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Photograph 1.2. Typical biofilters installed in Belgium (sourse: 

http://biobeds.net/en/modified-biobed-systems/ , 

http://wrootwater.com/index.php/water-treatment-2/bio-beds-bio-filters/ ) 

 

Biobeds in France (Phytobac & Biobac): Phytobac®, developed by Bayer Crop-

Science, was inspired by the Swedish biobed concept. It consists of a 60 cm deep 

basin made of watertight materials to ensure complete retention of contaminants and 

effluents (Figure 1.16a,b). The sides of the basin are 30 cm above soil level to avoid 

flooding from runoff. The substrate consists of topsoil from the farm (70%) and 

chopped straw (30%). No grass layer is placed on the top and a cover protects the bed 

from rainfall. The Phytobac is intended to treat all of the contaminated volumes of 

water coming from tank waste and spillages during mixing/loading, rinsing, and 

cleaning of sprayers (Guyot and Chenivesse, 2006). 
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Figure 1.16. Phytobac from France: (a) a schematic diagram and (b) pilot phytobac 

installed at a college farm (Sourse: http://www.biobeds.org/5th-workshop-2016 , 

http://www.bayercropscience.co.uk/news-and-opinion/articles/2014/04/new-

phytobac-biobed-system-unveiled/ ) 

  

The Biobac (Photograph 1.3), developed by researchers at INRA, France, is a 

system derived from Phytobac. It consists of a tank insulated from the subsoil and 

filled with a mixture of organic and mineral materials, mainly soil from the farm and 

chopped straw. The concept behind this system is that farm soil contains 

microorganisms, which over successive treatments have been adapted to high 

biodegradation rates for the pesticides used at the farm.  This natural detoxifying 

ability of the soil microflora can be maintained and encouraged in the biobac by the 

input of a supplementary source of carbon and energy, such as straw. One of the 

differences in relation to the Phytobac system is that the moisture and aeration levels 

are controlled (Castillo et al., 2008). 

 

(a) (b) 
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Photograph 1.3. A typical Biobac system (sourse: 

http://lineeguida.iambientale.it/GuideLines_Appendix_2.aspx ) 

 

Today biobeds are used worldwide to minimize pesticides point source 

contamination of natural water resources at on farm level. Biobeds have been 

officially approved in UK, Sweden, Denmark, the Netherlands and France where 

Phytobac dominates the market (Fig. 1.18).  However biobed-type biodepuration 

systems have been also implemented in other EU countries (Cyprus, Spain, Portugal, 

Italy, Switzerland, Germany, Belgium, Finland and others) although their 

implementation is still at pilot-scale level. 

 
Figure 1.17. The EU map of biobeds distribution (adapted by www.biobeds.org ) 
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 The implementation of biobed systems has spread also to countries in North 

America (Canada, USA), Latin America (Guatemala, Cost Rica, Columbia, Ecuador, 

Peru, Chile, Argentina, Uruguay and Brazil), Africa (Maroco, Senegal and Ivory 

Coast) and Asia (China and Japan) although they are officially approvided only  in  

Guatemala and Ecuador (Jens Husby 5th EU Biobeds Meeting 2016) (Fig. 1.18).  

 
Figure 1.18. The distribution of biobed systems in countries ouside Europe (adapted 

by www.biobeds.org) 

 

1.10.1.2. Other applications of biobed systems.  

Several other agricultural and related industries produce wastewaters with high 

pesticides loads. The development of systems for the treatment of those agro-

industrial pesticide contaminated effluents is still pending and biobeds could be a 

valuable solution in those cases. Examples of agro-industries which produce effluents 

destined for treatment by biobeds are (a) seed production (i.e. cotton) industries which 

perform seed-coating with pesticides and produce ca. 2-3 m3 of effluents per year, (b) 

ornamental buld dipping treatments with pesticides and (c) fruit and vegetable 

packaging plants, which depending on the type of fruits treated could produce 

variable volumes and types of wastewaters. Thus citrus fruit-packaging plants which 

operate from November to May produce usually two type of effluents: (a) a daily-

produced diluted effluent containing low concentrations of OPP (< 5 mg L-1) and (b) a 

less frequently produced (2-3 times a year) but more dense effluent containing high 
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concentrations of OPP or IMZ/TBZ. The volumes of the different effluents vary 

according to the size of the fruit packaging plant. On the other pome fruits packaging 

plants which operate from August to October produce effluents containing mainly 

antioxidants and occassionaly fungicides like IMZ. Again the volume of the final 

effluent is based on the size of the enterprise.  

 Omirou et al., (2012) evaluated for the first time the use of biobeds for the 

treatment of wastewaters produced along the citrus fruit production, at pre- and post-

harvest level. Their results showed that biobeds adjusted to the local agricultural 

practices and conditions were able to remove pesticides from the wastewaters but 

significant amounts of TBZ and IMZ appear to be retained by the biobed packing 

material and not degraded.  Thus several issues remain uresolved (a) the efficacy of 

biobeds against pesticides used in pome-fruit packaging plants like DPA and EQ, (b) 

optimization of biobeds to degrade rather than retain pesticides in its packing 

material, (c) handling and decontamination of the spent biobed packing material.  

 

1.10.2. The composition of the biobeds packing material (biomixture) 

The efficiency of biobed systems relies on the capacity of their organic packing 

material to retain and degrade the high pesticide amounts discharged on biobeds.  The 

biobeds packing material should ensure primarily high biodegradation and secondly 

high sorption capacity (Karanasios et al., 2012). Both of these characteristics are a 

function of the composition, homogeneity, age, moisture, and temperature of the 

biomixture. Biobeds packing material is commonly composed of a lignocellulosic 

material (i.e. straw), soil and a humified material (i.e. peat or composts) in various 

proportions. Each of these components serve a specific purpose.   

 Straw is the most commonly used lignocellulosic material in biobed packing 

materials. It offers nutrients, particularly C which is needed for linginolytic white rot 

fungi to produce phenoloxidases (peroxidases and laccases) and degrade pesticides 

(Castillo et al., 2008: Karas et al., 2011). The high availability of alternative 

lignocellulosic materials in different regions, at a reduced or no cost, have led to the 

replacement of straw by other materials. A list of lignocellulosic materials used as 

components in biomixtures are shown in Table 1.5 (adapted by Karanasios et al., 

2012).  
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Table 1.5. Lignocellulosic materials which have been used as components of BPS 

matrix (adapted by Karanasios et al., 2012). 

Substrates Pesticides Reference 
Straw; leek residues Atrazine, carbofuran, simazine, 

 diuron, lenacil, bifenthrin, metalaxyl 
 

Spanoghe et al. (2004) 

Bagasse Glyphosate, malathion, lamda-cyhalothrin de Roffignac et al. (2008) 

Coco chips; straw; 
willow chopping; 
straw 

 

Linuron, metalaxyl, isoproturon, bentazone De Wilde et al. (2009b, c) 
 

Coco chips; straw Linuron, metalaxyl, isoproturon, bentazone, 

metamitron 

De Wilde et al. (2010c, d) 

Straw Azoxystrobin, bentazone, bromoxynil, ioxynil, 
dimethoate, diuron, fenpropimorph, fluazifop- p-
butyl, glyphosate, kresoxim methyl, MCPA, 
mecoprop-P, pirimicarb, propiconazole, 
propyzamide, prosulfocarb, metamitron, chloridazon, 
metribuzin, methabenzthiazuron, isoproturon, 
terbuthylazine, linuron, metalaxyl, isoproturon, 
pendimethalin, chlorothalonil, epoxiconazole, 
chloryprifos, deltamethrin, cypermethrin, ortho-
phenylphenol, thiabendazole, imazalil 

 

von Wirén-Lehr et al. (2001), 
Fogg et al. (2003, 2004a, b), 
Spliid et al. (2006), Castillo and 
Torstensson (2007), De Wilde et 
al. (2010a), Karanasios et al. 
(2010b), Kravariti et al. (2010), 
Karanasios et al. (2012a), 
Omirou et al. (2012), Tortella et 
al. (2012) 

 

Vine branches, citrus 

peels 
Chloryrifos, metalaxyl, imazamox, bentazone, 

isoproturon 
 

Vischetti et al. (2004), 
Coppola et al. (2007), 
Coppola et al. (2011a) 

 

Corn stovers; corn 

cobs 

Alachlor, acetochlor Lamar (2001) 

Vine braches Chlorpyrifos, metalaxyl Vischetti et al. (2008) 

Straw; corn cobs; 
citrus peels; 
sunflower 
residues; grape 
stalks; olive leaves 

Chlorpyrifos, indoxacarb, buprofezin, terbuthylazine, 

metalaxyl, metribuzin, azoxystrobin, iprodione 

Karanasios et al. (2010a) 

Straw; grape stalks; 

corn cobs 
Chlorpyrifos, terbuthylazine, metribuzin, metalaxyl, 

iprodione 
Karanasios et al. (2012b) 

 

Soil is an important source of pesticide-degrading microorganisms, especially 

bacteria with the ability to degrade such chemicals (Torstensson, 1996: Bergstrom and 

Stenstrom, 1997).  The enhanced capacity of agricultural soils to degrade specific 

pesticide groups has been exploited as an indirect bioaugmentation strategy to 

optimize the biodegradation capacity of biobeds. Sniegowski and Springael (2014) 

proposed the use of pesticide primed soil (showing enhanced biodegradation capacity 
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for certain pesticide groups) in biomixture to accelerate the degradation of pesticides 

in biobed systems.   

Peat was the initial humified material that was used in the preparation of 

biomixtures. It contributes to the sorption capacity of the biomixture, regulates 

moisture, and favours the degradation of pesticides by decreasing the pH of the 

biomixture and thus favouring the growth and activity of white rot fungi (Castillo and 

Torstensson  2007). In southern European countries, peat is not easily available and it 

is costly. Studies showed that agricultural composts could be used instead of peat. 

Compost-based substrates are known to host several microorganisms with different 

pesticide-degrading activities, and they have also been demonstrated to have good 

sorption capacity for a wide variety of pesticides (Monaci et al., 2009: Vischetti et al., 

2004). One of the materials which was tested as replacement of peat in biomixtures 

used in South Europe was the spent mushroom substrate (SMS) of the edible fungus 

P. ostreatus (Karanasios et al., 2010). The SMS-biomixture was highly efficient in 

degrading a pesticide mixture with degradation rates being correlated with the 

proportion of SMS in the biomixture. Composts and peat differ substantially in 

physicochemical characteristics, nutrient availability and biological activity (Niklasch 

and Joergensen 2001). Although the properties of individual composts largely depend 

on composting practices, they are generally characterized by lower C content, higher 

levels of macronutrients (N, P, K), neutral to basic pH (Zmora- Nahum et al. 2007) 

and support a metabolically active microbial community. Peat typically has higher 

waterholding capacity, significantly lower density, acidic pH and it does not generally 

support a highly active microbial community. These differences can reflect variability 

in the overall depuration capacity of the biomixtures.  

 

1.11 AIMS OF THE THESIS 

Fruit production constitutes a major agricultural activity at EU level. The production 

of apples in EU covers the 20% of the global production with all countries of the EU-

28 contributing to this. Citrus fruit production is mainly concentrated in the 

Mediterranean basin covering over 60% of the global exports on edible citrus fruits 

(USDA 2015). However the high reliance of this agro-industry on pesticides results in 

the production of high volumes of pesticide-contaminated wastewaters which should 

be detoxified on site (EC Reg. 1109/EC/2009).  
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 Although detoxification methods for these effluents have been developed 

(Control Tec Eco®) and others have been tested (photoxidation, Fenton etc) none of 

them was implemented for reasons explained above. This has forced industries to 

dispose their effluents directly in municipal wastewater treatment systems which have 

evidently limited removal capacity (Campo et al. 2013), disharge them in 

unauthorized soil disposal sites with unacceptable repricautions for soil and 

environmental quality (Papadopoulou et al., 2015; 2016) or pass them to companies 

handling toxic wastes at a particularly high cost (0.7-3 € per L). All the above 

highlight the urgent need for implementation of an economic, efficient and easy-to-

operate method for the depuration of these effluents. Biobeds could be a solution for 

reduction of the environmental footprint of this agro-industrial sector. However 

further research is required to adjust biobeds configuration to the particular 

characteristics of the wastewaters produced by the fruit packaging plants (a) high 

wastewater volumes and (b) high concentrations of persistent and toxic fungicides and 

antioxidants. Within this frame the main aim of the current thesis is to evaluate the 

use of biobeds for the depuration of wastewaters from the fruit-packaging 

plants. This main aim would be achieved through a series of research objectives 

following a gradual experimental scaling up plan: 

1. to evaluate, in lab dissipation and sorption tests with the relevant pesticide 

compounds, different organic materials available by the local agricultural 

production (i.e. SMS of P. ostreatus) as components of an optimized biobed 

packing material 

2. to explore, in a leaching column study, the capacity of the optimized biobed 

packing material to retain pesticides (a persistent like IMZ and a less persistent 

but more mobile like OPP) contained in the effluents under high hydraulic 

loads relevant to the wastewater production scheme commonly found in fruit 

packaging plants 

3. to assess, at pilot scale level, the overall performance of biobeds for the 

depuration of wastewaters from pome and citrus fruit packaging plants and 

evaluate methods for the optimization of their performance (i.e. 

bioaugmentation). The main characteristics of wastewaters from the fruit 

packaging industry (low BOD/COD (ca. 20-500 mg L-1), relatively low 

concentrations of suspended solids (120-128 mg L-1),  low N, sulfates and 

chlorides and high pesticide levels (Santiago et al., 2011) suggest that 
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pesticide loads constitute the main environmental concern prohibiting their 

environmental release. Thus the quality of the biobed-treated effluent will be 

determined via risk assessment and potential unacceptable risk for the 

environment by their disharge will be assessed. 

4. to explore methods for the decontamination of the spent biobed packing 

material in light of the recalcitrance of some of the chemicals contained in the 

effluents 

It is expected that this thesis will provide a comprehensive assessment of the capacity 

of biobeds to treat wastewaters from the fruit packaging industry, offering a solution 

for the reduction of the environmental footprint of this important agro-industrial 

sector.    
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sewage sludge and biobeds packing materials - 
Lab studies 

 

 

 

 

 

 

 

 

 

The work presented in Chapter 2 is included in the following article: 

Karas P.A., Metsoviti A., Zisis V., Ehaliotis C., Omirou M., Papadopoulou ES., 
Menksissoglu-Spiroudi U., Manta S., Komioti D., Karpouzas D.G., (2015) 
Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: 
Towards an optimized depuration of their pesticide-contaminated agro-industrial 
effluents. Science of the Total Environment 530-531: 129-139 
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2.1. INTRODUCTION 

Upon their harvest fruits are transported to fruit-packaging plants where they are 

treated with fungicides (thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol 

(OPP) or antioxidants (diphenylamine (DPA), ethoxyquin (EQ)) to minimize losses 

due to fungal infestations or physiological disorders during storage (Smilanick et al. 

2008; Jung and Watkins 2008). Postharvest treatments of fruits result in the 

production of large wastewater volumes which are characterized by low BOD/COD 

values but high concentrations of pesticides which should be detoxified prior to 

environmental release (Santiago et al. 2011). This need has been laid down on the 

registration documents of all relevant pesticides. For example authorization was 

granted to IMZ only under the clause that appropriate waste management practices to 

handle the waste solution remaining after application, including for instance the 

cleaning water of the drenching system and the discharge of the processing waste are 

put in place (EC 2010). The only full-scale treatment system currently in place is 

based on pesticide sorption onto granular activated carbon (Garcia Portillo et al., 

2004). Although this system is particularly efficient in the removal of TBZ from 

wastewaters (EC, 2000) its cost is prohibitive for small to medium enterprises which 

constitute the majority of fruit-packaging plants in the Mediterranean region.  Recent 

semi-pilot studies showed that combination of membrane bioreactor and advanced 

oxidation processes could effectively remove TBZ from wastewaters (Sachez-Perez et 

al. 2014). Similarly, TiO2 solar photocatalysis showed high depuration efficiency for 

the removal of IMZ, TBZ (Jimenez et al. 2015) and OPP (Khodja et al. 2001) from 

wastewaters. However those methods produce several oxidized metabolites which are 

of unknown toxicity compared to the parent compound plus their full scale 

implementation is still pending.  

 In the absence of appropriate and established treatment methods, fruit-

packaging plants tend to discharge their wastewater into municipal wastewater 

treatment plants, abandoned fields or evaporation ponds. Previous studies have 

provided indirect evidence for the limited removal capacity of municipal wastewater 

treatment plants for IMZ, TBZ (Campo et al. 2013) and OPP (Jonkers et al. 2010). 

This combined with the inappropriate disposal methods currently in place for these 

wastewaters have resulted in the frequent detection of these pesticides in receiving 

water bodies (Castillo et al. 2000, 2006). Thus an efficient, cost-effective and 
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sustainable treatment system for the depuration of those effluents is needed. Omirou 

et al. (2012) provided first evidence for the potential use of modified biobed systems 

for the depuration of wastewaters from the fruit-packaging industry. Such modified 

systems should be packed with organic materials which ensure effective dissipation of 

the particularly persistent (TBZ (EC 2013) and IMZ (Kreuzig et al. 2010)) and toxic 

pesticides (OPP (EFSA 2008), EQ (EFSA 2010b) and DPA (EFSA 2012)) contained 

in those agro-industrial effluents. The optimum composition of biobed packing 

material includes a lignocellulosic material like straw, soil and a humified substrate 

like peat or compost (Castillo et al. 2008). Spent mushroom substrate (SMS) of the 

fungus Pleurotus ostreatus has been found to accelerate the biodegradation potential 

of on-farm biobed systems (Karanasios et al. 2010a). SMS is produced in large 

quantities in several areas of the Mediterranean basin and the mushroom production 

sector is seeking sustainable and environmental-friendly uses for this material 

(Herrero-Hernandez et al. 2011).   

 To date little is known regarding the basic processes controlling the 

dissipation of pesticides contained in the wastewaters from the fruit packaging plants. 

Only a few studies have investigated the dissipation of IMZ, TBZ and OPP in soil 

(Kreuzig et al. 2010; Kesavan et al. 1976), municipal wastewater treatment plants 

(Campo et al. 2013; Korner et al. 2000) and organic substrates (Omirou et al. 2012), 

while even less are known for DPA. In sewage sludge Gardner et al. (1992) reported 

the metabolism of DPA to aniline, 4-hydroxy-DPA and indole. More recently Shin 

and Spain (2009) isolated a soil bacterium that metabolized to Krebs cycle 

intermediates via formation of aniline. No information are available regarding the 

dissipation and metabolism of EQ in the environment. Metabolic studies for EQ are 

only available on fish feed, fish meals and fruits which identified the formation of 

several metabolites like a dimer of EQ and quinone imine (QI) (He and Ackman 

2000).  

The main aims of this work were (a) to assess the capacity of sewage sludge, 

anaerobically digested or liquid aerobic, to degrade the pesticides contained in the 

wastewaters from the fruit-packaging industry; providing a measure of the removal 

capacity of municipal wastewater treatment plants (b) to identify the most potent 

organic biomixture, with SMS as a key component, regarding its dissipation capacity 

for the pesticides contained in the effluents from fruit packaging plants. Apart from 
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pesticide dissipation, the sorption of these pesticides on the organic substrates was 

also assessed to evaluate the contribution of the different processes in the removal of 

pesticides from those wastewaters. In addition, the metabolism of EQ in all materials 

was determined considering that most of the metabolic products of this antioxidant 

compound are equally active and toxic as the parent compound (Blaszczyk et al. 

2013). These data will provide (a) information on the depuration potential of the 

currently followed strategies for treatment of those effluents and (b) a first lab-scale 

assessment of the optimum organic biomixture which could be used as packing 

material in full-scale biobed systems used for the biodepuration of wastewaters from 

the fruit packaging industry (tested in Chapter 4). 

 

2.2. MATERIALS AND METHODS 

2.2.1. Pesticides 

Analytical standards of IMZ (99.8% Pestanal®), TBZ (99% Pestanal®), OPP (99.9% 

Pestanal®), DPA (99.9% Pestanal®) and EQ (99% Pestanal®) were purchased from 

Fluka, Sigma-Aldrich. For residue analysis, pesticides stock solutions in methanol 

were initially prepared (1000 mg L-1) and used for obtaining a series of dilutions at 

the range of 0.1–50 mg L-1 which were used for the construction of calibration curves 

for quantification of pesticides concentrations by HPLC. Particularly for EQ, 

preliminary studies indicated a rapid oxidation of EQ (m/z 218 [Μ+Η]+, 202 [M+-

CH3], 174 [202-C2H4] and retention time (Rt) 9.9 min) in the substrates tested to two 

metabolites which were tentatively identified via LC-MS/MS analysis as (1) 2,6-

dihydro-2,2,4-trimethyl-6-quinone imine (QI) (m/z 188 [M+1]+, 172 [M+- CH3], 159 

[M+- CO], 144 [159-CH3] , Rt 9.2) and (2) 2,4-dimethyl-6-ethoxyquinoline (EQNL) 

(m/z 202 [M+1]+, 173 [M+- C2H4], 144 [173-CHO], Rt 10.1 min) (Fig. 

2.1).Therefore, their concentration along with this of the parent compound were 

determined in all studies as is described below and will be referred as ‘total residues 

of EQ’. In the absence of commercial analytical standards, the two EQ metabolites 

were synthesized in the Laboratory of Organic Chemistry, University of Thessaly, 

Department of Biochemistry and Biotechnology according to the procedure described 

by Thorisson et al (1992). Their structure was verified by NMR analysis: (a) 1H NMR 

spectrum of EQNL: 1.38 (3H,  t,  J 7.5 Hz, CH2CH3),  2.39 (3H, s, CH3),  2.60 ( 3H, 
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s, CH3),  4.00 (2H, q, J  7.5 Hz, -CH2-),  6.97 (1H, s, C(3) H),  7.02 ( 1H, d, J  3 Hz, 

C(5) H),  7.35  (1H, dd, J 3 and 11 Hz, C(7)H) and 8.01 ppm (1 H, d, J 11 Hz, C(8)H)  

and (b) 1H NMR spectrum of QI:1.40(6H, s, (CH3)2), 1.98 (3H,  d, J  2Hz, CH3),   

6.32( 1H, m, C(3)H),  6.45 (1H , m,  C(5) H),  6.62 ( 1H, dd, J  2.5 and 12.5 Hz, C(7) 

H ) and 7.17 ppm (1H, d ,  J  12.5 Hz, C(8)H).  

  Commercial formulation of the pesticides were used in all fortification 

experiments described below including TECTO® 50 SC (TBZ), FUNGAZIL® 50 EC 

(IMZ), FRUITGARD® 20 SL (OPP), NO SCALD® 31.8 EC (DPA) and 

XEDAQUINE® 50 EC (EQ).  

Ethoxyquin

Dimethyl
Ethoxyquinoline

Quinone
Imine

 

Figure 2.1 The chemical structures of the parent compount ethoxyquin (ΕQ) (a) and 

its metabolites dimethyl ethoxyquinoline (EQNL) (b) and quinine imine (QI) (c). 

 

2.2.2. Organic substrates 

Anaerobically digested sewage sludge (10 kg) was obtained from the municipal 

wastewater treatment facility of the city of Larissa, Greece. It is produced after 

(a) 

(b) (c) 
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anaerobic digestion at mesophilic temperatures (35°C) in anaerobic digesters of 

continuous flow, allowing complete mixing, and operated at high load rates. The 

sludge which was digested was collected from the primary settling and mixed with 

small amounts of sludge from the secondary settling. The sludge produced had a 

water content of 70% and its properties are shown in Table 2.1. Upon its production it 

was stored at aerobic conditions in the municipal wastewater treatment plant prior to 

its collection. Anaerobically digested sewage sludge was partially dried (to 50% of its 

water holding capacity) and it was sieved to pass through a 3 mm mesh. Liquid 

aerobic sewage sludge was collected from the secondary settlers of the municipal 

wastewater treatment facility of the city of Larissa, Greece. The liquid aerobic sewage 

sludge was used immediately after its collection to avoid prolonged storage which 

might suppress the elevated metabolic activities of the microbial biomass. 

 

Table 2.1. Physicochemical properties of the substrates used to assess the dissipation 

and sorption of the pesticides studied.  

Substrates pH Organic Carbon 

(%) 

Total N  

(%) 

C/N  

Soila 7.55 1.05 0.13 8.1 

Straw 7.15 79.2 0.80 97.8 

SMS 6.83 71.0 1.20 59.2 

SMS/Soil (50:50) 7.20 16.9 0.33 51.2 

SMS/Straw/Soil (50:25:25) 7.10 29.3 0.30 97.7 

Straw/Soil  (50:50) 7.40 6.6 0.13 50.8 

Straw/SMS/Soil (50:25:25) 7.20 23.5 0.20 117.5 

Anaerobically Digested 

Sewage Sludge 

6.95 10.2 2.1 4.8 

a Soil texture: sand 37%, Clay 31%, Silt 32% (clay loam) 
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SMS, soil and straw were mixed in different volumetric ratios to prepare the 

various organic materials.  A soil collected from a farm of the National Agricultural 

Research Foundation of Greece in Larissa, Greece was used for the preparation of the 

different organic biomixtures. It was sieved to homogenize (2 mm) and stored at 4oC 

prior to use. Straw was chopped into small pieces (1-3 cm) and passed through a 4.75 

mm sieve. SMS was obtained from a P. ostreatus edible mushroom production unit 

(Mpoulogeorgos-Meteora, Trikala, Greece). It was chopped into small pieces and 

stored at 4°C until further use. The physicochemical properties of the raw materials 

(soil, straw and SMS), and of their biomixtures produced, are given in Table 2.1. 

Total organic C and N content were determined by the wet digestion (Walkley and 

Black 1934) and the Kjeldahl digestion method (McKenzie 1994) respectively. pH 

was determined in a mixture of 1:2.5-5 air dried solid substrate:water (w:v). Soil 

texture was determined with the Bouyoucos hydrometer method (Sheldrick and Wang 

1993). 

 

2.2.3. Dissipation of pesticides in anaerobically digested sewage sludge 

Anaerobically digested sewage sludge was divided into 5 bulk samples (600 g). These 

were treated with appropriate amounts of aqueous solutions of the pesticides DPA, 

OPP, IMZ, TBZ and EQ (2000 mg L-1), prepared by their commercial formulations, 

aiming to a final concentration of 35 mg kg-1 for DPA, IMZ, TBZ, EQ and 45 mg kg-1 

for OPP. The application of OPP generates much higher wastewater volumes and 

their disposal is expected to result in higher concentrations in the receiving matrices. 

Upon treatment with pesticides, the moisture content of the anaerobically digested 

sewage sludge was adjusted to 60% of its water holding capacity with addition of 

ddH2O. Subsequently the bulk samples were mixed by hand to ensure uniform 

distribution of pesticides and were divided into 27 subsamples of 20 g which were 

placed in airtight plastic bags. All subsamples were incubated in the dark at 25°C. 

Immediately after pesticide application, and at regular intervals thereafter, triplicate 

sub-samples from each treatment were removed from the incubator and stored at -

20°C until analyzed by HPLC-UV. 
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2.2.4. Dissipation of pesticides in liquid aerobic sewage sludge 

Thirty 200-ml samples of liquid aerobic sewage sludge were transferred in 500 ml 

stoppered glass bottles. Half of the samples were autoclaved at 121°C for 30 min.  

Triplicate sterilized and non sterilized liquid aerobic sewage sludge samples were 

treated with TBZ, IMZ, EQ, OPP and DPA to give concentrations of 15 mg L-1. 

Pesticides were added in the form of aqueous pesticide solutions (2000 mg L-1) 

prepared by their commercial formulations. Upon pesticide treatments, all sewage 

sludge samples were briefly agitated to ensure uniform dissolution of the pesticides 

and were placed in an orbital shaking platform incubator at 100 rpm and 25ºC. 

Immediately after pesticide application and at regular intervals thereafter subsamples 

(2 ml) were removed aseptically, extracted with an organic solvent as described 

below, and analyzed in HPLC-UV.  

 

2.2.5. Dissipation of pesticides in organic substrates  

The dissipation of pesticides in different organic biomixtures prepared by mixing of 

soil, straw and SMS in variable ratios was assessed. For each of the five materials; 

Soil, Soil+SMS (50:50), SMS+Straw+Soil (50:25:25), Straw+Soil (50:50) and 

Straw+SMS+Soil (50:25:25) (all volumetric ratios) one bulk sample (1000 g d.w.) 

was prepared and separated into 27 sub-samples (30 g). These were individually 

treated with aliquots of aqueous solutions of the pesticides TBZ, IMZ, DPA, EQ and 

OPP aiming to a final concentration of 35 mg a.i. kg-1d.w for the first four compounds 

and 45 mg a.i. kg-1d.w for OPP. Those doses were calculated to represent a realistic 

loading scenario for a biobed system of 30 m3 which receives in total 22 m3 of 

wastewaters containing 10-15 mg L-1 of the pesticides studied. Such concentrations 

have been reported in recycled wastewaters from citrus fruit-packaging plants in 

Spain (Santiago et al. 2011). Pesticides were evenly mixed into the organic substrates 

and the moisture content was adjusted to 50% of their water holding capacity. All 

treatments were incubated in the dark at 25oC for a period of 70 days. Moisture 

content was maintained by regular additions of deionized water. Immediately after 

pesticide application and at fixed intervals thereafter sub-samples from each treatment 

were removed and stored at -20oC until analyzed for pesticide residues.  
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2.2.6. Pesticides sorption in organic biomixtures 

The sorption of TBZ, IMZ, DPA and OPP in the different organic substrates selected 

as organic biomixtures was determined using the standard batch equilibrium method 

according to the OECD guideline 106 (OECD, 2000). Preliminary kinetic studies 

were employed to determine the most appropriate substrate:solution ratios and 

equilibration times for all pesticides. Thus, the most appropriate solid 

substrate:solution ratios to achieve 20-80% sorption of TBZ, IMZ, OPP and DPA 

were 1:50, 1:100, 1:25 and 1:25 respectively. Equilibrium was achieved at 24 h for 

TBZ, IMZ and at 8 h for OPP and DPA. The shorter equilibration time for OPP and 

DPA was selected to avoid losses of those two non-persistent pesticides during the 

equilibration period. All materials tested were prepared, air-dried and stored at room 

temperature. Individual stock solutions of each pesticide in acetone (10000 μg ml-1) 

were prepared. Appropriate amounts of the stock pesticide solutions were dissolved in 

0.01M CaCl2 solution leading to the preparation of four pesticide solutions at 

concentrations of 10, 20, 40 and 80 μg ml-1. The only exception was OPP for which 

the concentration levels of the four solutions were 20, 40, 80 and 100 μg ml-1 

considering the higher exposure expected in biobed systems for this molecule. 

Triplicate samples (1 to 2 g) were mixed with 50 or 100 ml of each of the above 

solutions in screw-cupped vials and shaken overnight on an orbital shaker (200 rpm) 

at room temperature. When equilibrium was reached, samples were centrifuged at 

4500 rpm for 10 min and the supernatant was collected, extracted and analyzed by 

HPLC-UV as is described below. 

 

2.2.7. Pesticides residue analysis 

2.2.7.1. Pesticides extraction from liquid substrates  

Extraction of TBZ, IMZ, EQ and its metabolites QI and EQNL was performed by 

mixing 2 ml from liquid aerobic sewage sludge with 8 ml of methanol in 20-ml screw 

glass vials. The mixture was shaken vigorously by vortex for a minute and the extract 

was passed through a 0.45μm syringe filter (PTFE Syringe Filter). The filtrate was 

collected in a glass tube and stored at -20°C until analyzed. Regarding extraction of 

OPP and DPA the same extraction procedure as above was followed with the only 

exception that acetonitrile instead of methanol was used.  
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2.2.7.2. Pesticides extraction from solid substrates 

Regarding TBZ extraction, 10 ml of methanol were mixed with 5 g of solid substrate 

in a conical flask. The mixture was shaken for an hour in an orbital shaker (200 rpm), 

centrifuged for 5 min at 11000 rpm and the clear supernatant was recovered. The 

remaining soil was re-extracted with further 10 ml of methanol and the clear 

supernatant from the two extraction cycles were combined. The extract was passed 

through a 0.45μm syringe filter (PTFE Syringe Filter) and kept at -20°C until 

analyzed. For the extraction of IMZ from the organic substrates, 5 g of substrate were 

mixed with 1 ml of NaOH 1N and 10 ml of methanol. Samples were shaken for 30 

min and centrifuged at 11000 rpm for 5 min, the supernatant was collected in a glass 

bottle, and the soil was re-extracted with another 10 ml of methanol. After 30 min 

shaking and centrifugation, the clear supernatant from the two extraction cycles were 

combined and stored at -20°C. For the extraction of OPP and DPA, 10 g of soil were 

mixed with 25 ml of acetonitrile. The mixture was agitated for 1.5 hours in an orbital 

shaker at 200 rpm and then centrifuged at 11000 rpm for 5 minutes. The supernatant 

was collected and stored at -20°C.  

 The extraction of EQ and its metabolites was performed according to the 

original buffered QuΕChERS method, slightly modified (Anastassiades et al., 2003). 

Due to the general instability of EQ, special care was taken during the extraction to 

minimize transformation of EQ to its oxidation derivatives. Thus, all extractions were 

conducted into a dark cold-room at 4⁰C. Briefly, 5 g of solid substrate were mixed in 

a teflon tube with 5 ml of cold ddH2O and were agitated manually for a minute. 

Subsequently, 10 ml of acetonitrile were added and the mixture was vortexed for 1 

min. The samples were subsequently amended with a mixture of salts (4g MgSO4, 1g 

NaCl and 1.5g C6H5Na3O7 • 2 H2O), vortexed for 1 min and centrifuged for 5 min at 

7500 rpm. Then 1 ml of the clear supernatant was mixed with 150 mg MgSO4 and 25 

mg PSA and the mixture was vortexed for 30sec and centrifuged for 1 min at 3000 

rpm. The final extracts for all pesticides were filtered through a syringe filter 0.45μm 

(PTFE Syringe Filter) and analyzed by HPLC.  
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2.2.7.3 HPLC analysis 

Pesticide residues were analyzed in a Marathon III (LabAlliance, USA) HPLC - UV 

system equipped with a Grace Smart RP C18 (150 mm x 4.6 mm). TBZ and OPP 

residues were detected at 254 nm using a mobile phase of acetonitrile/water/25% NH3 

solution (by volume) with different elution strength (39/60.5/0.5 and 55:44.5:0.5 

respectively). Under these conditions, the retention time (Rt) of TBZ and OPP were 

3.3 and 3.4 min respectively. IMZ residues were detected at 204 nm using a mobile 

phase of 80:20 methanol: NH3 solution 0.25% (by volume). Under those conditions 

the Rt of  IMZ was 5 min. DPA residues were determined at 210 nm using a mobile 

phase of 60:30:10 acetonitrile:water:methanol (by volume) with a Rt of 3.5 min. 

Residues of EQ and its metabolites were determine at 254 nm using a mobile phase of 

69:30:1 acetonitrile:water:NH3 (by volume). Under these chromatographic conditions 

EQ, QI and EQNL were eluted at Rt of 5.7, 4.1 and 5.4 min respectively. In all cases a 

flow rate of 1 ml min-1 was used.  

 

2.2.7.4. Analytical methods validation 

Analysis of fortified samples was conducted to verify the extraction efficiency of the 

methods described above. Recovery tests were performed in soil and organic 

substrates (1, 5 and 50 mg Kg-1 dw), anaerobically digested sewage sludge (0.5. 5 and 

20 mg kg-1 dw) and liquid substrates (0.1, 1 and 10 mg L-1) at three concentration 

levels. Triplicates for each concentration level were processed. The mean percentage 

recovery of TBZ, IMZ and OPP in soil and organic substrates were 80.8%, 94.0% and 

82.7%, respectively, (CV ≤ 5.0%), while the recoveries of DPA, EQ, QI, and EQNL 

were 83.2%, 84.7%, 101.5 and 92.8%, respectively (CV ≤ 6.3%). Similarly average 

recoveries of TBZ, IMZ, OPP, DPA, EQ, QI and EQNL in anaerobically digested 

sewage sludge and liquid aerobic sewage sludge ranged from 83.6% to 102.0% and 

81.9% to 94.2% respectively. The limit of detection ranged from 0.001 μg mL-1 for 

IMZ to 0.007 for EQNL, while the limit of quantification was ≥ 0.05 mg Kg-1 

substrate dw for all pesticides in the solid media tested and ≥ 0.05 mg L-1 for all 

pesticides in the liquid media. 
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2.2.8. Pesticides dissipation kinetics  

The four kinetic models proposed by the FOCUS workgroup on pesticide degradation 

kinetics (FOCUS 2006) were used for fitting the dissipation data. The single first 

order (SFO) kinetic model and three biphasic models: hockey-stick (HS), first order 

multi-compartment model (FOMC) and the double first order in parallel (DFOP) 

model were used. SFO is based on the assumption that the change in a given pesticide 

concentration with time (dC/dt) is directly proportional to the actual concentration of 

the pesticide at this time. HS involves two sequential first-order degradation phases 

with different rates (k1 and k2) and having a break point between them (tb). DFOP 

describes degradation by a sum of  two normal first-order degradation phases each in 

a different part of the soil compartment, while FOMC is based on the division of soil 

into a number of subcompartments each with a different first-order degradation rate. 

The mathematical equations describing the kinetics models used are shown in Table 

2.2. The χ2 test as well as visual inspection and the distribution of the residuals were 

used as criteria to assess the agreement between calculated and observed data for a 

given fit. The χ2 was calculated with the following equation:  

𝑥𝑥2 = �
(𝐶𝐶 − 𝑂𝑂)2

(𝑒𝑒𝑒𝑒𝑒𝑒
100

∙ Ō)2
 

where C is the calculated value, O is the observed value, Õ the mean of observed 

values and err the measurement error. Parameters of the kinetic models and their 

standard errors were obtained by least square non-linear regression analysis using the 

statistical program R. 
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Table 2.2. The mathematical equations of the kinetic models used to describe the dissipation of the pesticides in the different treatments 

Kinetic Model  Mathematic equation  DT50  DT90  

Single first order (SFO)  C = C0e-kt  DT50 = ln2/K  DT90 = ln10/K  

Hockey Stick (HS)  

   

C = C0e-K1t  for t≤tb  DT50 = ln2/K1  DT90 = ln10/K1  

C = C0e-k1te-k2(t-tb)  for t>tb  DT50 = tb + (ln2 – k1tb)/k2  DT90 = tb + (ln10 – k1tb)/k2  

First order multi-compartment (FOMC)  C = C0/(t/β + 1)α  DT50 = β(21/α – 1)  DT90 = β(101/α – 1) 

Double first order in parallel (DFOP)  C = C0(ge-k
1

t + (1-g)e-k
2

t)  Iterative method  Iterative method  
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2.3. RESULTS 

2.3.1. The dissipation of pesticides in anaerobically digested sewage sludge 

The dissipation patterns of OPP, DPA, TBZ, IMZ and of the total residues of EQ are 

shown in Fig 2.2. A rapid dissipation of OPP and DPA was evident in anaerobically 

digested sewage sludge with DT50s of 9.3 and 3.6 days respectively (Fig 2a, Table 

2.3). Similarly, a rapid dissipation of the total residues of EQ was observed with DT50 

of < 1 day. From the two EQ metabolites, EQNL was formed in low amounts but 

constituted the only detectable residue from 7 days onwards, while only trace amounts 

of QI were detected (Fig. 2.2c). In contrast, TBZ and IMZ showed moderately to high 

persistence with DT50s of 32.3 and 108.3 days respectively (Fig. 2.2b, Table 2.3). 
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Figure 2.2. Dissipation of ortho-phenylphenol (OPP) and diphenylamine (DPA) (a), 

thiabendazole (TBZ) and imazalil (IMZ) (b) and ethoxyquin (EQ) (c) in anaerobically 

digested sewage sludge. Each value is the mean of three replicates with error bars 

representing the standard deviation of the mean 
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Table 2.3. The half-life values (DT50s) of ortho-phenylphenol (OPP), diphenylamine (DPA), imazalil (IMZ), thiabendazole (TBZ) and total 
residues of ethoxyquin (EQ) in anaerobically digested sewage sludge and in liquid aerobic sewage sludge.  

Pesticides Anaerobically digested sewage sludge Liquid aerobic sewage sludge 

Non Sterilized Sterilized 

DT50 

(d) 

χ2 

(%) 

Modela DT50 

(d) 

χ2 

(%) 

Model DT50 

(d) 

χ2 

(%) 

Model 

OPP 9.3 16.0 HS 1.3 38.8 SFO 36.0 3.3 SFO 

DPA 3.6 9.5 SFO 1.5 5.13 SFO 28.7 5.3 SFO 

IMZ 108.3 13.4 SFO 257.6 2.81 SFO 942.0 3.3 SFO 

TBZ 32.3 3.6 FOMC 76.9 10.8 SFO 208.7 5.8 SFO 

EQ+QI+EQNLb 0.46 8.0 SFO 0.18 0.001 SFO 4.7 5.6 SFO 

a SFO: Single First Order; HS: Hockey-Stick; FOMC: First Order Multi-Compartment 
b Calculations were made with the sum of residues of ethoxyquin (EQ), quinone imine (QI) and dimethyl ethoxyquinoline (EQNL) 
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2.3.2. The dissipation of pesticides in liquid aerobic sewage sludge 

The dissipation patterns of the five pesticides in sterilized and non-sterilized liquid 

aerobic sewage sludge are shown in Figure 3. A rapid dissipation of OPP, DPA and 

total residues of EQ was evident with DT50s of 1.3, 1.5 and <1 d respectively (Table 

2.3, Fig. 2.3a and 2.3c). Regarding the metabolism of EQ, no residues of the parent 

compound were detected from 3 days onwards with QI being the major component of 

the total residues at day 1, whereas EQNL became the major component from day 3 

onwards (Fig. 2.3c). In contrast, a slow dissipation of TBZ and IMZ was observed 

with DT50s of 76.9 and 257.6 d (extrapolated with the single first order kinetic model) 

respectively (Fig. 2.3b). Sterilization of liquid aerobic sewage sludge significantly 

inhibited the dissipation of all pesticides. This is clearly illustrated with EQ which 

remained the main component of the total residues of EQ for the first 7 days of the 

incubation. The two metabolites, QI and EQNL, became the major components of the 

total residues from day 14 onwards (Fig. 2.3d).   
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Figure 2.3. Dissipation of ortho-phenylphenol (OPP) and diphenylamine (DPA) (a), thiabendazole (TBZ) and imazalil (IMZ) (b) and dissipation 

and metabolism of ethoxyquin (EQ) and its metabolites QI and EQNL by non-sterilized (c) or sterilized liquid aerobic sewage sludge (d). Each 

value is the mean of three replicates with error bars representing the standard deviation of the mean
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2.3.3. The dissipation of pesticides in biobeds packing materials  

The dissipation of OPP and DPA in the different substrates was very rapid within the 

first 7 days precluding the calculation of realistic DT50 values (Fig. 2.4a and 2.4c). 

Thus their dissipation was re-determined in an identical follow up experiment with 

focus on the first 72 h after application. The results indicated differences in the 

dissipation rates of the two compounds in the different substrates tested (Fig. 2.4b and 

2.4d). For both compounds the higher dissipation efficiency was evident in 

SMS/Straw/Soil (50:25:25) with DT50s of 0.34 and 1 d for OPP and DPA 

respectively. On the other hand, the slowest dissipation rates for those two compounds 

were observed in soil with DT50s > 4 d (Table 2.4).  

 In accordance with the dissipation studies in sewage sludge, TBZ and IMZ 

were again the most persistent chemicals (Fig. 2.4e and 2.4f). For both pesticides the 

most rapid dissipation was evident in the substrates where SMS was the major 

component (SMS/Soil and SMS/Straw/Soil) (50% by volume) with DT50s of 20-29 d 

for IMZ and 22.4 - 28.3 d for TBZ (Table 2.4). In contrast, the slowest dissipation for 

those compounds was observed in soil and Straw/Soil (50:50) for IMZ (DT50 = 79.3 d 

and 58.3 d) and in Straw/Soil (50:50) for TBZ (DT50 = 236 days).  

 The dissipation of EQ and its metabolites was very rapid within the first 7 

days after its application with QI being the major component of the total residues of 

EQ even at 0 days (Fig. 2.5). This could be attributed to the very rapid transformation 

of EQ to its metabolites during the 4-h interval between pesticide application and 

collection and storage of T0 samples. To get a more focused view of the dissipation 

and metabolism kinetics of EQ, a follow up study was undertaken to measure the 

dissipation of EQ and its metabolites during the first 24 h after application.  The 

slowest dissipation of EQ and its metabolites was evident in soil (DT50 = 2.7 d), 

where the parent compound was immediately transformed to QI which constituted the 

major component of the total residues at 24 h (Fig. 2.5a). In contrast in the other 

substrates tested, EQ was more gradually transformed to QI (Fig. 2.5b to 2.5e) with 

DT50s of less than 0.6 days.  
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Figure 2.4. Dissipation patterns of ortho-phenylphenol (OPP) (a & b) diphenylamine (DPA) (c & d) 
within 70 days or 72 hours after their application in different organic substrates. The dissipation patterns 
of thiabendazole (TBZ) (e) and imazalil (IMZ) (f) in the same organic substrates are also shown. Each 
value is the mean of three replicates with error bars representing the standard deviation of the mean. 
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Table 2.4. The half-life values (DT50s) of ortho-phenylphenol (OPP), diphenylamine (DPA), imazalil (IMZ), thiabendazole (TBZ) and total residues of 

ethoxyquin (EQ) in soil and other organic substrates as they were estimated by fitting the best - fitted kinetic model.  

Pesticides Soil SMS/Soil 

(50:50) 

SMS/Straw/Soil 

(50:25:25) 

Straw/Soil 

(50:50) 

Straw/SMS/Soil 

(50:25:25) 

DT50 

(d) 

χ2 

(%) 

Modela DT50 

(d) 

χ2 

(%) 

Model DT50 

(d) 

χ2 

(%) 

Model DT50 

(d) 

χ2 

(%) 

Model DT50 

(d) 

χ2 

(%) 

Model 

OPP 4.65 4.98 HS 0.57 9.48 SFO 0.34 3.16 SFO 2.5 3.46 FOMC 0.56 5.17 FOMC 

DPA 4.08 8.11 SFO 3.16 4.52 FOMC 1.01 8.43 FOMC 1.04 8.92 FOMC 1.46 5.57 FOMC 

IMZ 79.3 2.02 SFO 19.9 12.26 HS 28.6 8.89 HS 58.3 1.97 HS 46.0 4.32 SFO 

TBZ 31.7 4.49 FOMC 22.4 7.81 FOMC 28.3 6.14 SFO 236.5 7.61 FOMC 54.8 6.04 HS 

EQ+QI+EQNLb 2.7 7.4 SFO 0.6 10.7 SFO 0.2 4.4 DFOP 0.1 6.9 HS 0.1 12.6 HS 

a SFO: Single First Order; HS: Hockey-Stick; FOMC: First Order Multi-Compartment 
b Calculations were made with the sum of residues of ethoxyquin, quinone imine (QI) and dimethyl ethoxyquinoline (EQNL) 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 10:51:04 EEST - 3.145.162.204



 

114 
 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 

Co
nc

en
tr

at
io

n 
(m

gK
g-1

) 

Time (Days) Time (hours) 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 10:51:04 EEST - 3.145.162.204



 

115 
 

 

 

 

Figure 2.5. Dissipation and metabolism of ethoxyquin (EQ) at different time frames, 

70 days (left) and 24 hours (right), after their laboratory application into soil (a) and 

into various organic substrates like SMS/Soil (50:50) (b), SMS/Straw/Soil (50:25:25) 

(c), Straw/Soil (50:50) (d) and Straw/SMS/Soil (50:25:25) (e) (all ratios are by 

volume). Each value is the mean of three replicates with error bars representing the 

standard deviation of the mean 
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2.3.4. Pesticides sorption onto biobeds packing materials 

The pesticide sorption isotherms are shown in Fig 2.6. Pesticides sorption in all cases 

was well described by the Freundlich equation which was used for calculation of the 

sorption parameters (Kf, N) (Table 2.4). The Freundlich equation is given by the 

following formula: 

Cs = KfCw
N 

where Kf  is the Freundlich sorption coefficient and N is the Freundlich exponent.    

 

 

Figure 2.6. Sorption isotherms of ortho-phenylphenol (OPP) (a), diphenylamine 

(DPA) (b), thiabendazole (TBZ) (c) and imazalil (IMZ) (d) in soil and in various 

organic substrates. Each value is the mean of three replicates. 
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 OPP and DPA showed weak sorption with the lowest Kf values observed in 

soil (2.47 and 5.57 g ml-1) and the highest in Straw/SMS/Soil (50:25:25) (30.3 and 

12.02 g ml-1) respectively. IMZ and TBZ showed higher sorption affinity in the 

organic substrates which were characterized by higher organic matter content 

compared to soil where, again the lowest Kf values for both pesticides were measured 

(47.2 and 83.4 g ml-1 respectively). In agreement with OPP and DPA, the highest 

sorption of IMZ was seen in Straw/SMS/Soil (50:25:25) (Table 2.5).  When Kf was 

normalized for the organic carbon content of each substrate Kfoc values increased in 

the order OPP<DPA<TBZ<IMZ (Table 2.5.) 
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Table 2.5. Sorption parameters Kf  (g ml-1), Kfoc (g ml-1) and N for the pesticides ortho-phenylphenol (OPP), diphenylamine (DPA), imazalil (IMZ) and 

thiabendazole (TBZ) in soil and organic substrates used in the study 

Pesticides Soil SMS/Soil 

(50:50) 

SMS/Straw/Soil 

(50:25:25) 

Straw/Soil 

(50:50) 

Straw/SMS/Soil 

(50:25:25) 

Kf Kfoc
a N Kf Kfoc N Kf Kfoc N Kf Kfoc N Kf Kfoc N 

OPP 2.47 235.2 
 

1.065 5.01 29.6 1.195 11.67 39.8 1.374 8.01 120.0 1.273 30.3 128.9 1.573 

DPA 5.57 530.5 1.574 11.57 68.5 1.245 6.37 21.7 1.456 7.82 117.9 1.353 12.02 51.1 1.245 

TBZ 47.2 4965.7 1.141 217.2 1285.2 0.755 226.8 774.1 0.800 128.4 1936.7 0.926 120.3 511.9 1.091 

IMZ 83.4 7942.9 1.013 222.3 1315.4 0.976 186.2 635.5 1.100 183.6 2769.2 1.005 412.4 1754.9 0.798 

a Kfoc was calculated by the following equation Kfoc = Kf / foc, where Kf is the Freundlich sorption coefficient and foc is the fraction of organic carbon
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2.4. DISCUSSION 

2.4.1. Pesticides dissipation in sewage sludge 

We initially investigated the dissipation of the pesticides contained in the wastewaters 

from the fruit-packaging industry (a) in anaerobically digested sewage sludge, a by-

product of municipal wastewater treatment systems which is increasingly used as soil 

amendment in agriculture (del la Herras et al. 2005) and (b) in liquid aerobic sewage 

sludge, which constitutes the metabolically active biomass found in the biological 

treatment systems of municipal wastewater treatment plants. Both substrates were 

efficient in rapidly dissipating OPP, DPA, EQ and its metabolites (QI and EQNL) 

with consistently faster dissipation observed in the liquid aerobic sewage sludge. It 

should be noted that the liquid aerobic sewage sludge used in the current study was 

not acclimated with the tested substances in contrast to several previous studies which 

found that an acclimation period was essential to achieve effective removal of other 

pesticides (Gonzalez et al. 2006). Our findings are in agreement with previous studies 

which reported a DT50 of 1.4 days for DPA in a bioreactor (Christodoulatos et al. 

1997) and a rapid metabolism of DPA in sewage sludge with formation of aniline, 

imine and 4-hydroxy-DPA (Gardner et al 1992). Similarly previous studies in a 

municipal wastewater treatment plant in Germany reported the complete removal of 

OPP, although the metabolic pathway of OPP was not shown (Korner et al. 2000). 

Regarding EQ the only other study that have explored its behavior in biological 

wastewater treatment systems showed that it is largely recalcitrant at both anaerobic 

and aerobic conditions and can induce inhibitory effects on the methanotrophic 

microbial community at 300 mg L-1(Shah et al. 2005), which are well above the levels 

tested in our study.  

 EQ showed a slightly different transformation patterns in the anaerobically 

digested sewage sludge compared to the liquid aerobic sewage sludge. This might 

reflect the different microbial communities in the two substrates: Liquid aerobic 

sewage sludge is expected to be dominated by microorganisms accustomed to high 

metabolic activities and oxidative degradation of organic matter like proteobateria and 

firmicutes (Yang et al. 2011) compared to anaerobically digested sewage sludge 

where anaerobic digestion has drastically altered the microbial community (Pascual et 

al. 2008).  Considering that the main use of EQ is as preservative of fish meal and 

fruits (indoor uses) the vast majority of studies have looked into its metabolism in 

animal and plant tissues and a range of metabolites detected including QI, dimeric 
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EQ, methyl-EQ, EQNL, dihydro-EQ and demethyl-EQ (Gupta and Buddis 2005; 

JMPR 2005). On the other hand there is lack of knowledge regarding its metabolism 

in municipal wastewater treatment plants and environmental compartments. Although 

QI and EQNL were detected in our study, no residues of the other metabolites 

reported above were observed. Our study provides first evidence for the metabolism 

of EQ and its oxidation products in liquid aerobic sewage sludge.  

Both types of sewage sludge showed a limited capacity to dissipate TBZ and 

IMZ.  This is in agreement with previous findings which showed that municipal 

wastewater treatment plants acted as point sources for the contamination of surface 

water bodies (Campo et al. 2013; Masia et al. 2013).  However, the possibility that 

higher dissipation efficiency for TBZ and IMZ could be achieved through acclimation 

of the liquid aerobic sewage sludge cannot be ruled out and should be tested in future 

studies. During our study no metabolites of TBZ and IMZ were measured. The 

metabolism of these two fungicides in sewage sludge is largely unknown. Recent 

studies showed that TBZ could be transformed via oxidation (Fenton/ PhotoFenton 

process) to OH-TBZ, thiazole-4-carboxamidine and other derivatives produced upon 

fusion of the benzyl ring (Sanchez Perez et al. 2014; Sirtori et al. 2014).  

Sterilization of liquid aerobic sewage sludge resulted in drastic inhibition of 

pesticides dissipation stressing the microbial nature of the decay observed. It should 

be noted that EQ oxidation to QI and EQNL was also hampered in the sterilized liquid 

aerobic sewage sludge suggesting that these transformation steps are mostly 

biologically-driven, an information which was largely unknown. Overall our data 

suggest that the direct discharge of wastewaters from fruit-packaging industry onto 

municipal wastewater treatment plants are expected to effectively remove DPA, OPP, 

EQ and its derivatives but not the persistent fungicides TBZ and IMZ which entail a 

risk for the ecological integrity of receiving ecosystems.  

 

2.4.2. Pesticides dissipation in biobeds packing materials 

The recalcitrance of TBZ and IMZ in sewage sludge suggests that other treatment 

methods should be applied to effectively eliminate those fungicides from those agro-

industrial effluents. Previous studies by Omirou et al. (2012) showed that biobeds 

could be an efficient method for the depuration of wastewaters from the citrus fruit-

packaging plants. To further exploit this, we investigated not only the dissipation of 
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TBZ, IMZ, OPP, previously studied by Omirou et al. (2012), but also of preservatives 

like DPA and EQ which are used in packaging plants of pears and apples. In addition 

we introduced SMS as a potentially effective organic substrate to ameliorate the 

depuration efficiency of biobed systems receiving wastewaters from the fruit 

packaging industry.  

 Overall, the persistence of pesticides in soil and in the different organic 

biomixtures increased in the following order EQ<DPA<OPP<TBZ=IMZ in 

accordance with the sewage sludge dissipation patterns. The long persistence of IMZ 

(US EPA 2003; Kreuzig et al. 2010) and TBZ (Kesavan et al 1976; EC 2013) in soil is 

well documented. Regarding organic biomixtures, our results are in agreement with 

Omirou et al (2012) who identified OPP and IMZ as the least and most persistent 

chemicals respectively, in different organic biomixtures derived from by-products of 

the winery and olive oil agro-industries compared to our SMS-rich biomixtures. No 

possible metabolites of TBZ, IMZ, OPP and DPA were found in the substrates tested 

although a more sensitive and high-resolution analytical approach is needed to verify 

this. Little is known regarding the metabolism of those fungicides in soil and they are 

mostly coming from regulatory documents. TBZ dissipation in soil was followed by 

formation of negligible amounts of benzimidazole and 5-OH-TBZ (EC 2013), while 

for IMZ its main metabolite was IMZ-ethanol which was detected at low amounts 

(EFSA 2010a). 

Organic biomixtures showed a higher dissipation capacity compared to soil for 

all pesticides tested. Substrates with the highest % of SMS such as SMS/Straw/Soil 

(50:25:25) and SMS/Soil (50:50) showed the highest dissipation potential for all 

pesticides tested. In particular, the DT50s obtained for TBZ and IMZ in those organic 

biomixtures were amongst the lowest ever reported verifying the enhanced dissipation 

efficiency of those organic materials (Kesavan et al. 1976; Kreuzig et al. 2010; 

Omirou et al. 2012). Our findings are in accordance with the positive correlation 

between % of SMS in biobed substrates and pesticide biodegradation observed by 

Karanasios et al (2010a). This substrate is generally rich in complex and partly 

degraded organic C macromolecules (cellulose, hemicellulose, lignin) and N 

substrates which could support the growth of a particularly active microbial 

community able to degrade pesticides (Marin-Benito et al. 2009). The contribution of 

P. ostreatus by the SMS on the higher dissipation capacity of the SMS-augmented 

materials is not clear. Previous studies have shown that the role of this fungus on the 
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degradation of pesticides in similar organic biomixtures is negligible (Karanasios et 

al. 2010b) and its mycelium is progressively surpassed by other fast-growing 

microorganisms when mixed with soil (Tuomela et al. 2002). The significant role of 

white rot fungi like P. ostreatus on the degradation of pesticides is mostly 

documented in peat-based organic biomixtures where their survival and activity is 

favored by the acidic pH of those materials (Castillo et al. 2008). In contrast the 

neutral to alkaline pH of the organic biomixture used in our study are not expected to 

favor their survival. The indirect role of P. ostreatus in partly degrading and 

modifying the properties of the raw mushroom substrate leading to an optimized co-

substrate for pesticide degradation may be critical for the observed SMS performance. 

Overall, the beneficial effect of SMS on the dissipation efficiency of biobeds packing 

material provides an option to the mushroom units in the Mediterranean basin for the 

sustainable, environmental-friendly and effective exploitation of this waste. 

The inclusion of high proportions of straw (50%) in the organic substrates 

substantially increased the persistence of most pesticides with TBZ showing the most 

prominent increase. Despite the well documented beneficial effect of straw on 

pesticides dissipation in biobed systems (Castillo et al. 2008), its high organic C 

content could enhance the sorption affinity of lipophilic substances like TBZ and IMZ 

resulting in higher persistence due to reduced bioavailability. The higher Kf values 

reported for straw-rich packaging materials in our sorption isotherm results are in line 

with this. 

EQ showed similar metabolic patterns in soil and organic substrates with rapid 

conversion to QI, which constituted the major component of the total residues of EQ 

24 h after application. On the other hand EQNL was a minor metabolite, which was 

formed at low amounts but persisted until 70 days post application. This metabolic 

pattern deviates from the metabolic pattern observed in anaerobically digested sewage 

sludge. This could be attributed to the different composition of those materials which 

are expected to support microbial communities with different metabolic capacities: 

anaerobically digested sewage sludge is mostly composed of hydrocarbons, amino 

acids and lipids compared to biobed materials which are mostly composed of 

cellulose, hemicellulose and lignin (Rodriguez - Cruz et al. 2012) and may favor 

aerobic oxidation processes. This is the first study providing data for the fate and the 

transformation of EQ in soil and biobed packing material.  
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2.4.3. Pesticides sorption onto biobeds packing materials 

Sorption of pesticides in soil and organic biomixtures provided explanations for the 

dissipation patterns observed. In particular, OPP and DPA showed a weak sorption 

affinity in agreement with previous studies which also showed moderate sorption for 

those pesticides with soil Kfoc values of 894-1793 ml g-1 (Zheng et al., 2011) and 

1212-6593 ml g-1 (US EPA 1998) respectively. On the other hand, TBZ and IMZ 

were strongly sorbed onto soil and organic biomixtures which is in accordance with 

previous soil sorption studies with Kfoc values of 4059 (Kreuzig et al. 2010) to 4357 

ml g-1for IMZ (EFSA 2010a) and of 1104 to 22467 ml g-1 for TBZ (EC 2001). The 

strong sorption of IMZ and TBZ combined with their limited biodegradability explain 

the general recalcitrance of those chemicals. Omirou et al. (2012) also showed in 

column and full-scale biobeds that OPP was mobile but dissipated rapidly compared 

to TBZ and IMZ which remained in the top layers of the biobed (an indication of high 

sorption affinity) and dissipated at low rates.  

 Regarding the impact of substrate on the sorption behavior of pesticides, soil 

showed a substantially lower sorption affinity compared to the organic substrates 

tested. This is in agreement with previous studies which have attributed this to the 

higher organic C content of the latter providing more sorption sites for non-polar 

pesticides (De Wilde et al. 2009). Amongst the organic biomixtures tested, 

Straw/SMS/Soil (50:25:25) showed the highest sorption capacity for OPP, DPA and 

IMZ and SMS/Straw/Soil (50:25:25) for TBZ. This is in accordance with the higher 

organic C content of those two substrates compared to the rest of the substrates tested 

(Table 2.1). Pesticides desorption was not measured in the current study. Previous 

studies have suggested a limited reversibility of pesticides sorption in soil amended 

with SMS (Marin-Benito et al. 2009) and various biobeds packing materials 

(Karanasios et al. 2010b) compared to soil. On the one hand, this might favor the 

efficient removal of pesticides from the agro-industrial effluents but on the other hand 

it might result in limited bioavailability and retardation of the degradation of the 

retained pesticide residues.  

 

2.5. CONCLUSIONS 

Wastewaters from the fruit packaging industry constitute a serious point source 

contamination of natural water resources with pesticides. Our findings suggest that 
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municipal wastewater treatment plants are expected to effectively remove OPP, DPA, 

EQ and its oxidation products but not TBZ and IMZ stressing the need for the 

implementation of more efficient but still simple and low-cost depuration methods 

like biobeds. SMS-rich organic biomixtures accelerated the dissipation of all 

pesticides particularly of the recalcitrant TBZ and IMZ suggesting that biobeds 

packed with such organic biomixtures could effectively depurate the wastewaters 

from the fruit-packaging industry. Further tests will focus on the assessment of the 

depuration of the most efficient organic substrates in semi-field (leaching column 

studies) and full scale conditions described in Chapters 3 and 4 respectively. 
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Chapter 3  
 
 

The potential of organic substrates based on 
mushroom substrate and straw to dissipate 
fungicides contained in effluents from the fruit-
packaging industry – Leaching column studies  

 

 

 

 

 

 

 

The work presented in Chapter 3 is included in the following article: 

Karas P.A., Makri S., Papadopoulou E.S, Ehaliotis C., Menkissoglu-Spiroudi U., 

Karpouzas D.G., (2016). The potential of organic substrates based on mushroom 

substrate and straw to dissipate fungicides contained in effluents from the fruit-

packaging industry – Is there a role for Pleurotus ostreatus?. Ecotoxicology and 

Environmental Safety 124: 447-454 
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3.1. INTRODUCTION 

Fruit packaging plants constitute a serious point-source contamination of natural 

water resources with pesticides like imazalil (IMZ) and ortho-phenylphenol (OPP). 

These are used mostly in citrus fruit packaging plants for the control of fungal 

infestations during storage (Kinay et al. 2007). IMZ is toxic to aquatics, persistent in 

soil with DT50s of 44 - 137 days (US EPA 2003; EC 2009) and of limited mobility in 

soil (Kreuzig et al. 2010). On the other hand, OPP is non persistent with DT50soil < 1 d 

(EFSA 2008), relatively mobile in soil (Zheng et al. 2011), non-toxic to mammals and 

birds but highly toxic to aquatics (EFSA 2008).  Monitoring studies in water bodies 

adjacent to areas where fruit packaging plants operate reported the presence of high 

concentrations of IMZ and OPP (Castillo et al. 2006; Jonkers et al. 2010). 

Considering the environmental risk imposed by the mishandling of pesticides used in 

the fruit packaging plants, the European Commission (EC) granted authorization for 

use until 2021 and 2019 for OPP and IMZ respectively, under the clause that member 

states should pay particular attention to  ensure that appropriate waste management 

practices to handle the waste solution remaining after application, including for 

instance the cleaning water of the drenching system and the discharge of the 

processing waste are put in place (EC 2009; EC 2010). Although several studies have 

addressed this issue using physicochemical approaches like photocatalysis (Khodja et 

al. 2010) or sorption (Garcia Portillo et al. 2004), their full implementation was 

hampered by their high cost, high engineering needs for operation and maintenance 

and the risk for production of toxic intermediates which require further treatment.  

 Biological treatment of those effluents could be a possible solution either in 

the form of bioreactors inoculated with tailored-made pesticide-degrading inocula 

(Perruchon et al. 2015) or through biobeds. These are simple on-farm systems packed 

with organic materials like soil/straw/peat (Castillo et al. 2008) or compost (Omirou 

et al. 2012) or spent mushroom substrate (SMS) (Karanasios et al. 2010). SMS has 

been proposed as a key component of biobed packing material (biomixtures) that 

could promote their biodepuration capacity (Gao et al. 2015) and at the same time 

facilitate the sustainable recycling of this waste produced by mushroom units 

(Herrero-Hernandez et al. 2011; Phan and Sabaratnam 2012). Results presented in 

Chapter 2 showed that SMS-rich substrates were the most efficient in dissipating 

persistent fungicides like thiabendazole and IMZ used in fruit packaging plants. The 

exact mechanism through which SMS accelerates the dissipation of pesticides in 
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biomixtures is not yet known and the contribution of the white rot fungi (i.e. 

Pleurotus ostreatus or Agaricus bisporus) present in the SMS in the degradation of 

pesticides is not clear. For example, Garcia-Delgado et al. (2015) showed that soil 

incorporation of sterilized SMS of A. bisporus accelerated the degradation of 3-ring 

PAHs via stimulation of heterotrophic bacteria, while incorporation of non sterilized 

SMS enhanced the removal of 5, 6-ring PAHs stressing the involvement A. bisporus 

in the removal high molecular weight PAHs. Knowledge of the key microbial 

component of the SMS and of their role in the dissipation of pesticides would allow 

the directed optimization of SMS application in biobed systems.  

Full scale biobeds packed with a compost-based biomixture and modified to 

cope with the high wastewater volumes produced by the citrus fruit packaging plants 

were successfully tested by Omirou et al. (2012). However little is known regarding 

the processes controlling the dissipation of the pesticides contained in these effluents 

and their interactions with the microbial community of biomixtures.  Knowledge of 

the processes which dominate the depuration of those effluents is essential. Biological 

systems where degradation predominates over sorption are preferable (Karanasios et 

al. 2012) since the opposite might result in the accumulation of high pesticide loads in 

the biomixture which when replaced will require detoxification, increasing the overall 

implementation cost of biobeds (De Wilde et al. 2010). In turn information on the 

interactions of pesticides with the microbiota colonizing biobeds will facilitate the 

optimized operation of those systems through prevention of toxicity effects and 

maximization of the microbial catabolic activity. Previous studies have reported a 

clear correlation between phenoloxidase activity and pesticide degradation in low pH 

biomixtures which favor fungal activity (Castillo and Torstensson 2007), whereas 

others did not observe any correlation between microbial indicators and pesticide 

degradation (Karanasios et al. 2010).  

 The main aim of this study was to further evaluate the performance of SMS, 

identified by studies in Chapter 2 as a main component of the best performing biobed 

packing material, to depurate pesticides contained in effluents from the fruit 

packaging industry. The study focused on IMZ and OPP as (a) they constitute the 

most representative pesticides used in citrus fruit-packaging plants in Europe and (b) 

they represent chemicals with contrasting physicochemical properties and 

environmental behaviour (IMZ persistent vs OPP non persistent). Within this frame a 

leaching column study was employed (a) to evaluate the capacity of different 
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biomixtures composed of SMS, straw and soil mixed at various combinations to 

depurate effluents containing IMZ and OPP; (b) to explore the contribution of P. 

ostreatus from SMS on pesticides dissipation by comparison with the depuration 

capacity of fresh mushroom substrate (FMS) of P. ostreatus and (c) to investigate the 

interaction of those pesticides with the microbial community in biobed systems.  

 

3.2. MATERIALS AND METHODS 

3.2.1. Pesticides 

Analytical standards of IMZ (99.8%, Pestanal®) and OPP (99.9%, Pestanal®) were 

purchased from Fluka. Pesticides stock solutions in methanol were prepared (1000 mg 

L-1) from analytical standards and used for analytical purposes. Commercial 

pesticides formulation like FUNGAZIL® 50EC (IMZ) and FOAMER®20EC (OPP) 

were used for the preparation of the aqueous pesticides solutions discharged on the 

leaching columns. The main physicochemical properties of the two pesticides studied 

are shown in Table 1.4. 

 

3.2.2. Organic substrates  

SMS, soil and straw were mixed in different volumetric ratios to prepare two of the 

four substrates tested in the leaching column study: SMS/Straw/Soil (50/25/25 by 

volume) and Straw/Soil (75/25 by volume). The former was amongst the best 

performing substrates regarding the dissipation of the pesticides contained in the 

effluents of fruit packaging plants (see Chapter 2). The soil used was collected from a 

farm of the National Agricultural Research Foundation of Greece in Larissa, Greece. 

It was sieved (2 mm) and stored at 4oC prior to use. Wheat straw was chopped into 

small pieces (1-3 cm). SMS was obtained from a P. ostreatus edible mushroom unit 

(Mpoulogeorgos-Meteora, Trikala, Thessaly) after two harvest cycles, while fresh 

mushroom substrate of P. ostreatus (FMS) was obtained from the company DIRFYS, 

Euvoia, Greece. Mushroom substrates were chopped into small pieces (1-2 cm long) 

with a blender and stored at 4°C for a maximum of 10 days until further use. The 

physicochemical properties of all materials were determined as described in Chapter 2 

and they are given in Table 3.1. FMS was more acidic than SMS. The latter was 

characterized by lower C/N ratio which is attributed to the gradual decomposition of 
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the more easily degradable fractions of its organic matter (mostly hemicellulose and 

cellulose) (Koutrotsios et al. 2014).  

 

Table 3.1. Physicochemical properties of the substrates used to assess the dissipation 

of the pesticides studied.  

Substrates pH Organic Carbon 

(%) 

Total N  

(%) 

C/N  

Soila 7.55 1.05 0.13 8.1 

Straw 7.15 38.9 0.80 48.6 

SMS 6.83 35.5 1.20  29.6 

FMS 5.50 42.0 0.72 58.3 

SMS/Straw/Soil (50:25:25) 7.10 8.82 0.54 16.3 

Straw/Soil  (75:25) 7.35 3.26 0.26 12.5 

a Soil texture: Sand 37%, Clay 31%, Silt 32% (clay loam) 

 

3.2.3. Leaching column study  

In total 12 PVC columns of 12.5 cm i.d. and 90 cm long were used (Photographs 

3.1.). Triplicate columns for each substrate were prepared: SMS, Straw/Soil, 

SMS/Straw/Soil and FMS. A metal sieve was installed at the bottom of all columns to 

prevent passage of the packing material in the drainage of the columns. The columns 

were packed with the following materials from the bottom to the top: a) a 7-cm layer 

of thoroughly washed gravel (2-3 cm i.d); b) an 80-cm layer of biomixture and c) a 3-

cm layer of well washed gravel (2-3 cm i.d.) to ensure uniform wetting and 

distribution of the pesticide solution into the biomixture. Pesticide solutions applied to 

the columns were loaded in 2 L separatory funnels with their outlet linked to a plastic 

tube through which pesticides solutions were discharged at the top of the columns. A 

flow controller was installed on the plastic tube to adjust solution flow rate and the 

flow on each column was individually calibrated (flow rates are given below) to 

ensure uniform delivery of pesticides solution on all columns. A plastic funnel was 

placed at the bottom of each column to collect the leachates in amber 2.5-L bottles. 
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Right before pesticides application the columns were saturated with water and were 

left to drain for 4 days. 

 

 

Photograph 3.1: The installation and the experimental set up of the leaching 

columns. 
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Columns were treated in a sequential mode with aqueous solutions of OPP 

(first) and IMZ (secondly). The sequential treatment scheme employed simulated a 

realistic wastewater production scenario from a citrus fruit packaging plant (treating 

annually approximately 15000 tones of citrus fruits) treating oranges with the 

fungicide OPP for a period of 3 months (January to March) followed by the 

application of IMZ to tangerines (April). During the application of OPP two types of 

wastewater are produced:  (i) a dense OPP aqueous solution (5 g L-1) produced three 

times per season (approximate total volume 14 m3) which is expected to be 

discharged on the biobeds and (ii) a diluted wastewater containing 5 mg L-1 of OPP 

(fruits rinsates) which is produced daily at volumes of 25 m3 and is currently land-

filled in nearby field sites. Regarding IMZ, its application later in the season results in 

the production of approximately 10 m3 of dense effluent (1.2 g L-1). Based on the 

above industrial scenario, the dense OPP- and IMZ-containing wastewaters are 

discharged in a 45 m2  biobed system of 1 m depth.  

In the experiment employed, columns were initially treated for a period of 60 

days (day 1 to day 60) with aqueous solutions of OPP (2.6 g L-1). These values are 

much higher than the maximum recommended dose of OPP (0.6 g L-1) but they were 

used based upon consultation of citrus fruit packaging plants which have probably 

concentrated OPP in the final effluent upon accumulation of several treatment cycles. 

During this period, OPP solutions were delivered continuously (24 h d-1) onto the 

columns at a flow rate of 12 ml h-1 resulting in a total wastewater volume and OPP 

amount discharged in each column of 17.25 L and 44.85 g respectively (4062.5 g of 

OPP per m3 of substrate). At the end of the 60-day OPP treatment period, the columns 

were left to drain for 5 days (days 61 to 65) followed by application of aqueous 

solutions of IMZ (0.275 g L-1) for a further period of 46 days (days 66 to 112). IMZ 

aqueous solutions were delivered to the columns every other day at a flow rate of 17 

ml/h (24 h/d) resulting in a total wastewater volume and IMZ amount discharged in 

each column of 9.4 L and 2.6 g respectively (235.5 g of IMZ per m3 of substrate). 

Regular analysis of the OPP and IMZ aqueous solutions loaded on the separatory 

funnel showed that both pesticides were stable with less than 10% losses observed 

during the storage period. Leachates were collected from the bottom of the columns 

on 3-day intervals. At each sampling day, the volume of the leachate collected was 

measured and a 100-ml sub-sample was transferred into plastic bottles which were 

stored at -20ºC until analyzed. A 10-ml fraction from each leachate sample was 
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removed before storage and used for the measurement of enzymatic activities as 

described below.  

 Upon completion of the treatment period, the amounts of OPP and IMZ 

retained in the packing materials of the columns were determined to perform a mass 

balance analysis. Leaching columns were dismantled and their content was divided 

into three layers (0-20, 20-50 and 50-80 cm) (Photograph 3.2). The amounts of 

pesticides retained in the different layers of the leaching columns were extracted by 

sequential extractions with water and acetonitrile as described below. The total 

amount of pesticide recovered by the substrate at the end of the study, plus the amount 

of pesticide leached were deducted from the total pesticide amount applied on the 

columns and this amount was considered as 'dissipated'. This was a lump process 

including degradation and non extractable residues formation (bound residues).      

 

Photograph 3.2: The packing material of the leaching columns after completion of 

the treatment period.   
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3.2.4. Pesticides residue analysis 

Extraction of IMZ and OPP from water samples was performed by mixing 2 ml of 

leachate with 8 ml of methanol or acetonitrile respectively. The mixture was vortexed 

for 1-2 minute and the extract was passed through a 0.45μm syringe filter (PTFE 

Syringe Filter, Whatman) prior to analysis. In all cases tests at three fortification 

levels (0.1, 1 and 10 mg L-1) showed recoveries > 80%. 

 Extraction of pesticides from the packing material of the columns was 

achieved by sequential extractions performed initially with water and subsequently 

with organic solvents. The water-extracted pesticide residues represented the fraction 

which is readily available, whereas the fraction extracted with the organic solvent 

constitutes the less available fraction. Based on this, 4 g of biomixture were mixed 

with 40 ml of ddH2O and extracted via agitation in an orbital shaker at 200 rpm for 30 

min. The extract was centrifuged for 5 min at 7000 rpm and the clear supernatant was 

collected. Aqueous extraction was repeated two more times and the supernatants from 

each extraction step were combined (120 ml water extract) and subsequently extracted 

as described above for aqueous samples. Upon the third aqueous extraction cycle the 

solid substrate remaining in the flasks were extracted with 10 ml of acetonitrile via 

agitation for 90 min in an orbital shaker as described above. The extract was 

subsequently centrifuged as above and the clear supernatant was collected, filtered 

through a syringe filter (0.45 μm PTFE, Whatman) and stored at -20°C for subsequent 

HPLC analysis. Tests at three fortification levels (0.2, 2 and 20 mg kg-1) for the 

different substrates tested showed recoveries >80% in all cases.  

 Pesticide residues were analyzed in an HPLC-UV Marathon III system 

equipped with a Grace Smart RP C18 (150 mm x 4.6 mm) column. OPP residues 

were detected at 254 nm using a mobile phase of 55:44.5:0.5 of 

acetonitrile:water:25%NH3 solution (by volume), while IMZ was detected at 204 nm 

using a mobile phase of 80:20 methanol: 0.25% NH3 solution (by volume). The flow 

rate was always 1ml min-1 and the retention times of OPP and IMZ were 3.4 and 5 

min respectively. The limit of quantification (LOQ) for the two pesticides in solid 

substrates and water samples were 0.08 mg kg-1 and 0.05 mg L-1 respectively. 
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3.2.5. Microbial measurements 

3.2.5.1. Enzymatic activity measurements in the leachates 

The activity of laccase and manganese peroxidase, commonly produced by P. 

ostreatus, were determined in the leachates of all columns throughout the 

experimental period.  Laccase activity was determined spectrophotometrically at 425 

nm by oxidation of 2,2-azinobis-3-ethylbenzothiazoline-6-sulphonic acid 

(Bourbonnais and Paice 1990). The activity of manganese peroxidase was determined 

spectrophotometrically at 590 nm by oxidative coupling of 3-methyl-2-

benzothiazoline hydrazone and 3-dimethylaminobenzoic acid (Ngo and Lenhoff 

1980).  

 

3.2.5.2. Phospholipid Fatty Acid Analysis (PLFAs) 

Samples from all the substrates used in the column study were collected prior to the 

initiation of the study and upon completion of the leaching study and they were 

analyzed for their content in microbial Fatty Acids Methyl Esters (FAME) as 

described by Papadopoulou et al. (2011). For analysis of the data obtained by the 

PLFA analysis, FAMEs 15:0, a15:0, i15:0, i16:0, 17:0, i17:0 were used as indicators 

of Gram positive (GP) bacteria; 18:1ω9cis/trans, 16:1ω7, cy17:0, cy19:0 were used as 

indicators of Gram negative (GN) bacteria; 16:0 was considered as a general 

microbial indicator; 18:2ω6,9cis/trans were considered as indicators of fungi and 

10Me16:0, 10Me17:0, and 10Me18:0 were considered as indicators of actinobacteria 

(Frostegård and Bååth 1996, Findlay 2004).  

 

3.2.6. Statistical analysis 

The data obtained from mass balance analysis, pesticides distribution in the column 

layers and total PLFA yields were subjected to two-way-ANOVA followed by 

Tukey's posthoc test to identify significant differences between the substrates studied. 

Relative abundance data of FAME indicators of GP and GN bacteria, actinobacteria 

and fungi were subjected to one way ANOVA to identify significant differences in the 

abundance of those microbial groups in the different column layers for each substrate 

tested.  
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3.3. RESULTS 

3.3.1. Leaching of OPP and IMZ  

In all columns the first leaching event of OPP occurred on day 6 with a peak amount 

observed in the leachate of SMS and SMS/Straw/Soil columns (Fig. 3.1a). Thereafter 

significant amounts of OPP (80, 32, 19 35 and 32 mg) were found mostly in the 

leachate of SMS-columns at days 8, 11, 14, 43 and 57 days respectively. In general, 

the total amount of OPP found in the leachates of FMS, Straw/Soil and 

SMS/Straw/Soil columns did not significantly differ (p>0.05) (0.014, 0.017 and 

0.120% of the total OPP amount applied respectively) compared to the SMS-columns 

where significantly higher % leaching (p<0.05) was observed (1.1%) (Table 3.2).  

 Regarding the temporal pattern of IMZ leaching, an early peak of IMZ (1.8  

and 1 mg) was observed in the leachate of the SMS- and the SMS/Straw/Soil-columns 

on day 70 (Fig. 3.1b). Thereafter, IMZ was detected at considerable amounts (1.5-2.5 

mg) in the leachates of the SMS columns at 79, 83, 96 and 106 days. Leaching from 

all the other packing materials peaked between days 87-90 (2.1 mg in Straw/Soil on 

day 87 and 2.3 mg in FMS on day 90). With the exception of the SMS-columns, the 

residues of IMZ dropped to levels below the LOQ in the leachates from day 104 

onwards. Overall, a tendency for higher % leaching of IMZ was observed in the SMS 

columns (0.420% of total IMZ amount discharged on each column) followed by FMS 

(0.322%), Straw/Soil (0.220%) and SMS/Straw/Soil (0.120%) although the 

differences observed were not statistically significant (p>0.05) (Table 3.2). 
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Figure 3.1. The temporal patterns of OPP (a) and IMZ (b) amounts (mg) detected in 

the leachates of the SMS (), SMS/Straw/Soil (50/25/25 by volume) (), Straw/Soil 

(75/25 by volume) () and FMS () columns. Each value is the mean of three 

replicate columns + the standard deviation. 

 

3.3.2. Mass Balance Analysis  

3.3.2.1. Ortho-phenylphenol 

More than 65% of the total amount of OPP applied to the columns was recovered by 

the packing materials of the columns at the end of the study (Table 3.2). The only 

exception was the FMS-columns where ca. 57% of OPP was recovered although this 

difference was not statistically significant (p>0.05). Furthermore, over 74% of the 

recovered amount was extracted with water.  When the distribution of OPP residues in 

the different horizons of the columns was examined no significant differences 

between biomixtures (p<0.05) were observed with 99-100% of OPP recovered at the 

top 0-20 cm (Fig. 3.2a).  No significant differences (p>0.05) between substrates in the 

amounts of OPP dissipated were observed with the highest values, 43%, observed in 

the SMS/Straw/Soil-columns and the lowest, 30% in the SMS-columns (Table 3.2).  

Time (Days) 

(b) IMZ 
Pe

st
ic

id
e 

am
ou

nt
 in

 th
e 

le
ac

ha
te

 (m
g)

 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 10:51:04 EEST - 3.145.162.204



 

142 
 

 

 

Figure 3.2.  The distribution of the residues of OPP (a) and IMZ (b) in the three 

layers (0-20, 20-50 and 50-80 cm) of the Straw/Soil (75/25 by volume), FMS, SMS 

and SMS/Straw/Soil (50/25/25 by volume) columns. Data are presented as % of the 

amount of pesticide retained in the columns and extracted by water and acetonitrile 

(sum is presented). Each value is the mean of three replicate columns + standard 

deviation. Different letters indicate significant differences (p<0.05) in the amount of 

pesticide leached, dissipated or retained in the different biomixtures. The absence of 

letters in column layers indicates that no significant difference were found. 
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Table 3.2. The mass balance analysis for ortho-phenylphenol (OPP) and imazalil (IMZ) in the columns packed with the different substrates. Within each 

row, different letters indicate significant differences (p<0.05) in the amount of pesticide leached, dissipated or retained in the different biomixtures.  

Absence of letters in pesticide fractions indicate that no significant differences (p>0.05) were found.   

Pesticides Fraction (% of initially applied) Substrates 

Straw/Soil FMS SMS SMS/Straw/Soil 

Ortho-phenylphenol Leached 0.014b 0.017b 1.100a 0.120b 

 Retained-extracted with water 50.4 48.2 51.8 47.8 

 Retained-extracted with acetonitrile 17.4 8.8 17.0 17.0 

 Dissipated 32.2 42.9 30.1 35.1 

Imazalil Leached 0.220 0.322 0.420 0.120 

 Retained-extracted with water 8.1 10.9 19.7 12.5 

 Retained-extracted with acetonitrile 45.9 46.4 31.0 29.8 

 Dissipated 45.8 42.5 48.9 57.6 
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3.3.2.2. Imazalil 

No significant differences in the amount of IMZ recovered by the different 

biomixtures were observed (p>0.05). Approximately 57, 54 and 51% of the applied 

IMZ were recovered from the FMS-, Straw/Soil- and SMS-columns respectively 

compared to 42% recovered from the SMS/Straw/Soil-columns respectively (Table 

3.2). In contrast to OPP, 72% (SMS/Straw/Soil) to 85% (Straw/Soil) of IMZ 

recovered by the columns at the end of the study was extractable with acetonitrile. No 

significant differences (p>0.05) between substrates in the amounts of IMZ considered 

as dissipated were observed with the highest values 57.6%, observed in the 

SMS/Straw/Soil-columns and the lowest, 48.9% in the SMS-columns (Table 3.2).  

 Significant differences (p<0.05) in the distribution of IMZ residues in the 

column profiles of the different substrates were observed (Fig. 3.2b). Thus, in the 

columns packed with SMS/Straw/Soil and SMS nearly all IMZ was recovered from 

the top 0-20 cm, whereas significantly lower (p<0.05) amounts (88 and 79%) were 

detected in the top layer of the Straw/Soil- and FMS-columns. In turn, significantly 

higher (p<0.05) amounts of IMZ (10 and 25% respectively) were recovered from the 

20-50 cm of the Straw/Soil and FMS-columns, while in the latter significant amounts 

of IMZ (3.6%) were even found at the 50-80 cm layer (Fig. 3.2b).  

 

3.3.3. Microbial activity and dynamics in the leaching columns 

3.3.3.1. Peroxidases activity 

No manganese peroxidase activity was detected in the leachates of the columns 

throughout the study. Laccase activity was detected only in the leachates of the 

columns packed with FMS and SMS, with significantly higher values (p<0.05) 

observed in the former (Fig. 3.3). Laccase activity showed a similar temporal pattern 

in the leachates of both substrates with a peak observed at the first leaching event of 

OPP (day 6). Thereafter laccase activity decreased to negligible levels in the leachate 

of both substrates from day 10 onwards.   
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Figure 3.3. Laccase activity detected in the leachates of the columns packed with 

FMS and SMS. Results are presented until day 48 (OPP-treatment period) since no 

activity of laccase was detected from this day onwards. Each value is the mean of 

three replicates + the standard deviation. No laccase activity was detected in the 

leachates of the columns packed with Straw/Soil and SMS/Straw/Soil. 

 

3.3.3.2. PLFAs  

No significant main effects (p>0.05) of column layer and organic substrate on total 

PLFA yields were observed, whereas significant interactions between these two 

factors were observed (p<0.05). Post-hoc tests showed that the total PLFA yields did 

not significantly differ in the different layers for each of the substrates tested (Fig. 

3.4a). However, significantly higher PLFA yields (p<0.05) were observed at the 50-

80 cm layer of FMS compared to the PLFAs yields measured at the same layer in 

SMS/Straw/Soil and SMS (Fig. 3.4a). Regarding the microbial community structure, 

GN bacteria were dominant in all substrates, especially in the top layer, whereas fungi 

showed significantly lower values (p<0.05) in the same layer (Fig. 3.4b). Apart from 

the universal reduction in the abundance of fungi in the surface layer of all substrates, 

GP bacteria and actinobacteria also showed a significantly lower relative abundance 

(p<0.05) in the surface layer of FMS and SMS/Straw/Soil respectively (Fig. 3.4b).   
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Figure 3.4. (a) The total concentration of fatty acid methyl esters (FAME) and (b) in 

the relative abundance of the actinobacteria, fungi, GP bacteria and GN bacteria, and 

16:0 (general microbial indicator) in the different layers of the biomixtures tested at 

the end of the study. Each value is the mean of three replicates + the standard 

deviation. Bars designated by the same letters in graph (a) indicate non-significant 

differences (p>0.05) in the total PLFA yield measured in the same column layer in the 

different substrates, whereas stacked bars designated by the same letters in graph (b) 

indicate non significant differences (p>0.05) within each substrate in the relative 

abundance of the different microbial in the different column layers. Absence of letters 

indicates non significant differences. 

 

3.4. DISCUSSION 

3.4.1 Pesticides mass balance analysis 

Pesticide leaching was generally low from all columns with OPP showing equal or 

lower leaching compared to IMZ. This is in contrast to the generally lower sorption 

affinity of OPP (Kf  = 5.01 -30.3 g ml-1) compared to IMZ (Kf  = 183.6 -  412.4 g ml-

1)  in similar organic substrates as shown in Chapter 2. In a column study Omirou et 

al., (2012) observed a higher mobility of OPP over IMZ, however different organic 

substrates, lower hydraulic and pesticide loadings and a different overall application 

scheme were employed in their study. The higher % leaching of IMZ compared to 

OPP observed in our study could be attributed to the disposal scenario employed in 

our study which took into account the temporal pattern of wastewater production and 

their pesticide content in a running citrus fruit packaging plant.  Thus the preceding 

application of large volumes of OPP-contaminated wastewater might have saturated 

the substrates, limiting their capacity to retain the following application of IMZ 

despite its higher lipophilicity and thus higher sorption affinity.  

 Regarding the processes that contribute to the capacity of the different 

substrates to retain OPP, more than half of the amount of the fungicide applied on the 

columns was recovered from the substrates at the end of the study suggesting a 

predominance of sorption over dissipation processes. This is in contrast to the limited 

persistence of OPP in similar organic biomixtures and soil (Chapter 2). This 
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discrepancy could be attributed to the particularly high amounts of OPP disposed of in 

the columns in our study compared to our data in Chapter 2 and previous studies 

(Omirou et al. 2012). This combined with the high retention capacity of the tested 

substrates resulted in the accumulation of high OPP concentrations in the biomixtures 

and sub-optimal conditions for its degradation. Although more than 70% of the 

amount of OPP recovered by the columns was extractable with water, in agreement 

with its generally weak sorption (Zheng et al. 2011) and high water solubility (EFSA 

2008), 99% of it remained in the top layer (0-20 cm) of the columns. These results 

suggest that the mobility of OPP in biobeds packed with those substrates is expected 

to be limited.  

 Similarly to OPP, more than 51% of the total IMZ applied was recovered by 

the different substrates at the end of the study. The only exception was 

SMS/Straw/Soil in which less than 50% of the totally applied IMZ was recovered 

suggesting higher contribution of dissipation processes. This is particularly important 

considering the general recalcitrance of IMZ (US EPA 2003; Kreuzig et al. 2010). 

The more important role of dissipation over sorption in SMS/Straw/Soil is in line with 

our data in Chapter 2, which showed a lower persistence of IMZ in SMS/Straw/Soil 

(DT50 = 26 d) compared to other biomixtures used in this study like Straw/Soil 

(50/50) (DT50 = 58 d). In contrast, IMZ residues retained in the columns were mostly 

extractable with acetonitrile, in line with its low water solubility and stronger sorption 

affinity (Kreuzig et al. 2010; EFSA 2008). Another point which should be noted is the 

variable distribution of IMZ residues in the different columns at the end of the study. 

More than 99% of its residues in the SMS/Straw/Soil and SMS columns were retained 

in the 0-20 cm layer, suggesting a limited potential for further leaching, in contrast to 

Straw/Soil or FMS where significant levels of IMZ were found below 20 cm. Overall, 

these results suggest that SMS/Straw/Soil appears as the most desirable substrate for 

the removal of IMZ from the effluents of citrus fruit packaging plants.  

 It should be noted that our experimental set-up does not allow a distinction 

between the different dissipation processes contributing to OPP and IMZ loss. 

However, the overall high degradation rate (Chapter 2), high water solubility (Table 

1) and low sorption affinity of OPP (Zheng et al. 2011) indicate that degradation 

could be the dominant dissipation process in the substrates studied. Regarding IMZ, 

its longer persistence (Kreuzing et al. 2010; Chapter 2), lower water solubility (Table 
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1) and higher sorption affinity (EFSA, 2010) imply that the formation of non-

extractable residues might have contributed to the pool of pesticide amount 

considered as dissipated. However, the short period of IMZ application (46 days) 

which is not known to simultaneously form non extractable residues (EC 2009) and 

its reported accelerated degradation in substrates like SMS/Straw/Soil (DT50 = 26 d), 

as shown in Chapter 2, are in support of a significant contribution of degradation in 

the dissipation of IMZ in the substrates tested.     

 

3.4.2. The role of P. ostreatus 

Contrasting results for the two pesticides regarding the removal efficiency of  FMS vs 

SMS were observed. The increasing removal efficiency of FMS over SMS for OPP, 

was opposed to the generally equal removal efficiency of the two substrates for IMZ. 

This result might indicate that P. ostreatus actively growing on a fresh substrate 

(FMS) is more efficient in the degradation of phenolic molecules (OPP) compared to 

the fungal mycelium still present in the SMS which is though depleted of nutrients 

and energy sources. The higher acidity of FMS over SMS and other substrates tested 

might have also contributed to the higher enzymatic activity of P. ostreatus in the 

former at the initial phase of the experiment (Castillo et al. 2008). In line with this is 

the significantly higher activity of laccase in the leachates of the FMS columns 

compared to SMS in the first 8 days of the experiment and during the application 

period of OPP (1-60 days). Karas et al. (2011) showed that P. ostreatus actively 

degraded OPP via its lignolytic enzymatic system, whereas it only partially degraded 

IMZ. Apart from the limited capacity of the fungus to degrade IMZ, the preceding 

application of OPP might have resulted in the gradual elimination of P. ostreatus 

efficiency which was not enzymatically active in the substrate when the application of 

IMZ-containing effluents commenced. In line with this is the negligible activity of 

laccases in the leachates of FMS- and SMS-columns during the IMZ application 

period.  Previous studies have verified the limited capacity of white rot fungi such as 

P. ostreatus to survive competition under wastewater treatment conditions (Libra et 

al. 2003; Gao et al., 2008). In addition, Cordova Juarez et al. (2011) showed that 

storage of the mushroom substrate leads to a drastic reduction of the enzymatic 

activity of Pleurotus pulmonarious with consequences on its degrading activity 
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against chlorothalonil. However based on the mode of action of IMZ and OPP on 

fungal cells and the high application rates tested in our study, inhibitory effects on 

non-target fungi like P. ostreatus present in the  substrates tested cannot be ruled out, 

thus limiting its role in the depuration efficiency of biobed systems. 

 

3.4.3. Interactions of pesticides with the microbial community 

Despite that the performance of biobeds relies mostly on their high biodegradation 

capacity, little is known regarding the interactions of pesticides with the microbial 

community in those systems. Using PLFA analysis, we observed a rather uniform 

distribution of the total microbial biomass in the different layers of the substrates 

tested at the end of the study. In contrast the relative abundance of the different 

microbial groups in the column layers of the different substrates tested varied and the 

differences observed were in agreement with the distribution of pesticides residues in 

the columns. The significantly lower abundance of fungi at the surface layer of all 

substrates, and of actinobacteria and GP bacteria at the surface layer of 

SMS/Straw/Soil- and FMS-columns, is in accordance with the accumulation of the 

studied fungicides in the surface layer of those substrates. So far no studies have 

investigated the impact of those fungicides on the microbial community and 

especially on fungi. IMZ acts by inhibiting the biosynthesis of ergosterol, the main 

sterol of the cellular membranes not only of Ascomycetes, which constitute the main 

target of IMZ (Guan et al. 1992), but also of Basidiomycetes and Zygomycetes 

(Weete et al. 2010). Similarly OPP acts by generating active oxygen radicals which 

destroy components of the fungal membranes in a non-selective mode (Dekker 1999). 

Based on their mode of action and their high application rates in the current study, 

adverse effects on off-target fungi should be expected.  Previous studies by Marinozzi 

et al. (2013) in similar organic substrates showed different responses of fungi upon 

exposure to fungicides with penconazole inducing higher reductions in the abundance 

of total fungi compared to cyprodynil and axosystrobin. The differences observed 

were attributed to differences in the inherent toxicity of the three pesticides to 

microorganisms.  
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3.5. CONCLUSIONS 

The data presented in Chapter 3 reinforce our initial observations from laboratory 

studies (Chapter 2) that SMS-rich substrates may enhance the depuration capacity of 

biobeds receiving effluents from citrus fruit packaging plants containing OPP and 

IMZ. Despite its known capacity to degrade organic pollutants, P. ostreatus present in 

the SMS did not seem to actively contribute to the degradation of those fungicides.  

Overall the high depuration capacity of the SMS-rich substrates coupled with the 

associated benefit of recycling an organic waste of agricultural origin, further stress 

their potential for application in full-scale systems. Further studies, described in 

Chapter 4, will explore the capacity of pilot-scale biobed systems packed with SMS-

based biomixtures to dissipate the pesticides contained in the effluents of the fruit 

packaging plants.  
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Chapter 4  
 
 

Integrated biodepuration of pesticide-
contaminated wastewaters from the fruit-
packaging industry in pilot-scale biobed 
systems: Bioaugmentation, risk assessment and 
optimized management 
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Karas P.A. Perruchon C., Karanasios E., Papadopoulou E.S, Manthou E., Sitra., S., 
Ehaliotis C., Karpouzas D.G., (2016) Integrated biodepuration of pesticide-
contaminated wastewaters from the fruit-packaging industry: Bioaugmentation, risk 
assessment and optimized management. Journal of Hazardous Materials 320: 635-
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4.1. INTRODUCTION 

Postharvest treatment of fruits with pesticides guarantees their protection from fungal 

infestations and physiological disorders during storage. However, it leads to the 

production of large volumes of pesticide-contaminated effluents whose discharge 

without prior treatment entails serious environmental risks (Castillo et al. 2006). This 

is exemplified by the high aquatic toxicity of the pesticides used in this industrial 

sector like thiabendazole (TBZ) (EC. 2001) imazalil (IMZ) (EC. 2009), ortho-

phenylphenol (OPP) (EFSA, 2008) and diphenylamine (DPA) (EFSA, 2012).  

 The need for the treatment of those effluents is stressed in the relevant 

pesticide regulatory documents which state that member-states should ensure that 

appropriate waste management practices to handle the waste solution remaining after 

application are put in place (EC, 2012). Several methods have been tested for the 

treatment of those effluents but integrated full scale implementation has not been 

achieved yet. Garcia-Portilo et al. (2004) patented a treatment system based on 

activated carbon which showed high removal efficiency for TBZ. However its high 

construction cost have prevented its wide implementation in fruit-packaging plants. 

Recent studies by Sanchez Perez et al. (2014) proposed a combined membrane 

biological reactor/Fenton- Photo Fenton process for the dissipation of TBZ. However 

this study was performed at pesticide levels (0.1 mg L-1) which are multifold lower 

than the pesticides concentrations found in the effluents. In addition, those treatments 

lead to the formation of oxidation products of unknown toxicity (Sirtory et al. 2014). 

In the absence of treatment systems industries dispose their effluents in municipal 

sewage treatment plants which are not effective in the removal of those pesticides 

transferring the contamination to receiving water systems (Campo et al. 2013). 

Biological treatment systems like biobeds could be a possible solution for the 

treatment of those effluents. They are simple to construct, economic and efficient 

systems used up to now for the depuration of pesticide-contaminated effluents at on 

farm level (Castillio et. al. 2008). In their simplest form they are composed of a pit or 

a container filled with a mixture of bioorganic material (De Wilde et al. 2007).  

Omirou et al. (2012) first tested biobeds for the depuration of wastewater produced by 

the citrus fruit production chain (from on-farm and post-farm activities), thus 

pesticides like DPA used in pome fruit-packaging plants were not considered. Our 
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previous lab and column studies presented in Chapters 2 and 3 respectively 

demonstrated the capacity of SMS-rich biobeds packing materials to degrade and 

retain pesticides. Though their performance at full-scale biobeds for the depuration of 

those effluents is still pending.  

In the study of Omirou et al. (2012), TBZ and ΙΜΖ were retained by the 

biobed packing material leading to a potential build-up of high pesticide residues 

stressing the need for decontamination of the spent packing material. This is still a 

key regulatory issue withholding the wider adoption of biobeds (Karanasios et al. 

2012). Despite that only a few studies have addressed this problem (Terstensson 

2000: De Wilde et al. 2010). Little attention has been given also to the post-treatment 

handling of biobeds-treated effluents. Despite the high depuration performance of 

biobeds (De Wilde et al. 2007), pesticide residues are still present in their effluents 

and their environmental release should be allowed pending risk assessment. This is 

feasible for biobeds receiving wastewaters from the fruit-packaging industry where a 

limited number of pesticides is used, in contrast to on-farm systems which receive a 

much wider pesticide range and thus complex risk assessment approaches are 

required.  

 Biodegradation has been identified as the key process controlling the 

depuration efficiency of biobeds (Castillio et al. 2008). Despite that little is known 

about the composition of the microbial community in biobeds and the microbial 

dynamics driving the biodegradation process. Good knowledge of the microbiology of 

biobed systems will facilitate their optimization.  Bioaugmentation has been explored 

as a strategy for optimization of biobeds performance. Karanasios et al. (2010) 

showed that the use of spent mushroom substrate (SMS) from the edible fungus 

Pleurotus ostreatus in biobeds accelerated pesticide dissipation. Sniegowski and 

Springael (2014) showed that the use of soil adapted to the rapid biodegradation of 

these pesticides as a component of the packing material could ameliorate the 

depuration capacity of biobeds. This strategy or bioaugmentation with tailored-made 

microbial inocula could be ideal in cases where biobeds receive effluents containing a 

limited number of known pesticides like in fruit packaging plants.  

 The main aim of this study was to evaluate the depuration performance of 

biobeds against pesticides used in fruit-packaging plants at pilot scale level. Pilot 
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biobeds were constructed based on the data obtained from the lab and column studies 

presented in Chapters 2 and 3. Beyond this central aim, futher research and practical 

objectives were the a) assessment of bioaugmentation as an optimization strategy for 

biobeds depuration performance against recalcitrant chemicals,  b) identification of 

the key microbial groups, phylogeneticaly and functionally relevant for biobed 

systems, c) estimation of the risk associated with the environmental disposal of the 

biobed-treated effluents and d) assessment of optimum methods for the 

decontamination of the spent biobed packing material. 

 

4.2. MATERIALS AND METHODS 

4.2.1. Pesticides 

Analytical standards of IMZ (99.8%), TBZ (99%) OPP (99.9%) and DPA (99.9%) 

(Pestanal®, Sigma-Aldrich) were used for residue analysis. Commercial pesticides 

formulation like TECTO® 50%SC (TBZ), FUNGAZIL® 50% EC (IMZ) 

FRUITGARD® 20%SL (OPP) and NO SCALD® 31.8%EC (DPA) were utilized for 

the preparation of the aqueous solutions which were applied on biobeds. 

 

4.2.2. Biobed packing material 

Following the results of the laboratory and column studies presented in Chapters 2 

and 3 a mixture of SMS, soil and straw (50:25:25 by volume) was used for the 

packing of the pilot biobeds.  The soil used was collected from a field site in Larissa, 

Greece. It was sieved to homogenize (4 mm) prior to mixing with organic materials. 

Wheat straw was chopped into small pieces (1-3 cm) and passed through a 4.75 mm 

sieve. SMS was obtained from a P. ostreatus mushroom production unit 

(Mpoulogeorgos-Meteora, Trikala, Greece) and it was chopped into small pieces. 

Appropriate volumes of soil, straw and SMS were mixed thoroughly and they were 

left to mature for a month (Photograph 4.1). The properties of the raw materials and 

of the final mixture were determined as described in Chapter 2 (section 2.2.2) and are 

listed in Table 4.1 
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Photograph 4.1: The homogenised biomixture of SMS, soil and straw (50:25:25 by 

volume) before being used for the packing of the pilot biobeds.  

 

Table 4.1. Physicochemical properties of the individual organic substrates and of the 

biobed packing materials used in the pilot biobed systems.  

Substrates pHb Organic Carbon 

(%) 

Total N 

(%) 

C/N  

Soila 7.55 1.05 0.13 8.1 

Straw 7.15 38.9 0.80 48.6 

SMS 6.83 35.5 1.20  29.6 

SMS/Straw/Soil (50:25:25) 7.10 8.82 0.54 16.3 

a Soil texture: Sand 37%, Clay 31%, Silt 32% (clay loam) 
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4.2.3. Set up of pilot biobeds 

Five pilot biobeds composed of plastic containers of 1.1 m3 (3 biobeds) or 0.24 m3 (2 

biobeds) volume were set up. The bottom of the biobeds was covered with a metal 

wire mesh and on top of this a 5-cm layer of well-washed gravel (2-3 cm diameter) 

was placed (Photograph 4.2a and 4.2b). The remaining volume was filled with the 

packing material described above (Photograph 4.2c). A 10-cm diameter hole was 

made at the bottom of the biobeds to allow collection of the draining effluent. A 

plastic funnel was positioned under the outer side of the hole and it was connected to 

a plastic tube (15 mm i.d.) leading to a 2.5-L amber glass bottle where effluents were 

collected (Photograph 4.2d).  

  

  

(a) (b) 

(c) (d) 
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Photograph 4.2: Photographs of the preparation and set up of the pilot biobed 

systems used in this study.   

 

The pesticide solutions applied on the biobeds were prepared in three 100-L 

tanks each containing an aqueous solution of two pesticides: IMZ+DPA (Tank 1), 

OPP+IMZ (Tank 2) and TBZ+OPP (Tank 3) (Photograph 4.2e). The concentration of 

all pesticides in the aqueous solutions was 100 mg L-1 assuming a 10-fold 

dilution/reduction of their concentration in the water during the fruits treatment 

process and considering the pesticides recommended dose rates (0.6 g L-1 for OPP, 

1.2 g L-1 for TBZ, 1 g L-1 for IMZ and 2 g L-1 for DPA). Pesticides combinations were 

established according to their use patterns: (a) IMZ + DPA are used in pome fruit 

packaging plants (b) OPP + IMZ or TBZ are used in citrus fruit-packaging plants. In 

total 1080 and 252 L of pesticide solutions were discharged into the large and the 

small pilot biobeds respectively within a total period of 160-d corresponding to the 

average operation period of a fruit-packaging plant (Valero and Serano 2010). 

Pesticide solutions were pumped (max capacity 10 L h-1) into the biobeds daily (three 

10-min application periods times per day) (pumps, timers and tubing for each biobed 

(e) (f) 

timer 

pump 

(g) 
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are shown in Photograph 4.2f). This resulted in a daily discharge of 7.5 and 2.0 L in 

the large and the small pilot biobeds respectively.  Pesticide solutions were applied at 

the top of the pilot biobeds via a drip irrigation system ensuring their uniform 

application onto the surface of the biobeds (Photograph 4.2g). Prior to pesticides 

application, all biobeds were irrigated with clean water for three days and were left to 

drain for a week to allow for equilibration. Upon commencement of wastewater 

application biobeds leachates were collected on a regular basis. Each time, the volume 

of the leachate collected was recorded and a subsample (0.5 L) was stored at -20°C 

for analysis.  

At the end of the 160-d period three cores were collected from each pilot 

biobed using a 90-cm long PVC plastic tube (8 cm i.d.). The packing material cores 

were sectioned into three layers: 0-20, 20-50 and 50-80 cm and stored at -20ºC until 

analyzed. Pesticides amounts retained in the different layers of the biobeds were 

determined by sequential extractions with water and acetonitrile as described 

previously in Chapter 3. The total amount of pesticides recovered by the substrate at 

the end of the study, plus the amount of pesticide leached were deducted from the 

total pesticide amount applied and it was considered as 'dissipated'. This was a lump 

process including degradation and non extractable residues formation. 

 

4.2.4. Bioaugmentation of pilot biobeds 

We evaluated bioaugmentation with OPP- (Sphingomonas haloaromaticamans) 

(Perruchon et al. 2016a), DPA- (Pseudomonas putida) (Perruchon et al. 2015) and 

TBZ-degrading bacteria (consortium comprised of proteobacteria where a 

Sphingomonas phylotype was the key degrader of TBZ) (Perruchon et al. 2016b) as a 

strategy for ameliorating the depuration performance of biobeds. The pesticide-

degrading bacteria were grown in mineral salts media where the pesticide constituted 

the sole C (OPP, TBZ) or the sole C and N source (DPA) (Perruchon et al. 2015). 

Bacterial inocula were harvested at the mid-logarithmic phase, cells were washed 

three times with sterile ddH2O and they were re-suspended to ddH2O which was 

applied to the packing material of the two small pilot biobeds (biobed 2bioaug and 

biobed 3bioaug) aiming to a final inoculum density of 106 cells g-1 of packing material 
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(on a dry weight basis). The density of the bacterial inocula was determined by serial 

dilution plating in LB. Bacterial cells were sprayed with a hand sprayer and the 

treated packing material was thoroughly mixed with a spade prior to biobeds’ packing 

(Photograph 4.3). Biobed 2bioaug, treated with IMZ and DPA, was inoculated with 

the DPA-degrading bacterium (no IMZ-degrading bacteria were available), while 

biobed 3bioaug, treated with TBZ and OPP, was amended with the TBZ- and the 

OPP-degrading bacterial inocula. A photograph of the final pilot biobeds and a 

schematic diagram of the experimental setup and the organization of the pilot biobeds 

are shown in Photograph 4.4 and Figure 4.1 respectively. 

  

Photograph 4.3. The application of tailored-made bacterial inocula in the biobed 

packing material of pilot biobeds ''biobed 2bioaug'' and ''biobed 3bioaug''. 

Biobed 2
DPA + IMZ Biobed 1

OPP+IMZ

Biobed 3
OPP+TBZ

Biobed 2 bio
DPA+IMZ

Biobed3 bio
OPP+TBZ

 

Photograph 4.4.  The 5 pilot biobeds and the treatment employed in each of them.
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TBZ-OPPIMZ-DPA OPP-IMZ

Biobed 3
Biobed 1

Biobed 2

Tank1 Tank2 Tank3

pump

Leachate
collection bottle

Biobed 2 
bioaug

Biobed 3
bioaug

bioaugmentation

Timer 
switch

 

Figure 4.1: A schematic diagram of the experimental setup of the pilot biobeds. 
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4.2.5. Risk assessment analysis for the management of biobeds effluents 

An assessment of the risk associated with the environmental release of the biobed-depurated 

wastewater was employed. Two scenarios of practical value simulating the handling of 

wastewaters produced by a pome (Scenario I) or a citrus (Scenario II) fruit packaging plant 

were designated. A total volume of 25 m3 of wastewaters containing DPA, TBZ or IMZ 

(Scenario I), or a volume of 42 m3 of OPP- plus 11 m3 of IMZ- or TBZ-containing 

wastewaters (Scenario II) were considered to be produced during one operational season. In 

both scenarios the concentration of pesticides in the wastewaters was 100 mg L-1 to align 

with the pesticide loading scheme in pilot biobeds. The depuration efficiency of our biobeds 

was used to estimate the total amount of pesticides contained in the treated effluents. Upon 

treatment the effluents were considered to be uniformely dispersed over a 0.1-ha disposal site 

(average size of a disposal site). Based on the above scenarios the rates of pesticides reaching 

the soil of the disposal site were calculated (Table 4.2). Subsequently the exposure levels of 

the soil in the disposal site (maximum Predicted Environmental Concentration, max PECsoil) 

and in adjacent surface water systems and sediment (max PECsw and PECsed) were 

calculated using the PECsoil calculator and the STEP 1-2 calculation tool respectively (Focus, 

2001). For the calculation of  max PECsw and PECsed run-off, erosion or drainage were 

considered as relevant processes while drift  was not. The input data in STEP 1-2 calculation 

tool and the PECsoil calculator were derived from pesticide regulatory documents (Table 4.3). 

The PECs obtained were used as exposure inputs in risk assessment (Table 4.4). 

 The risk assessment for aquatic and terrestrial indicator organisms was carried out 

according to the currently implemented regulatory guidelines (EC, 2002: EFSA, 2013). 

Regarding aquatic ecotoxicity, the Regulatory Acceptable Concentrations (RACs) were 

calculated using acute and chronic toxicity data obtained from the pesticides registration 

documents (Table 4.5). An unacceptable risk was identified when PECs/RACs>1. Regarding 

terrestrial ecotoxicity, Toxicity Exposure Ratio (TER) or Hazard Quotients (HQ) were 

calculated using the calculated PECs (Table 4.4) and toxicity data obtained from registration 

documents (Table 4.5). An unacceptable risk was identified when TER < 10 or HQ > 2 for 

acute toxicity risk to earthworms and soil-dwelling arthropods respectively. In cases where 

an unacceptable risk was identified mitigation measures were considered as (a) an increase 

of the surface of the soil disposal site from 0.1 to 0.2 ha or (b) the use of bioaugmented 

biobeds for the calculation of PECs (i.e. higher dissipation efficiency for TBZ). 

(d) (e) 
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Table 4.2. Predicted rates of the pesticides in the soil of the disposal site calculated according to Scenario I or II 

Scenario 

 

Pesticide in the 
leachate of 
biobeds (%) 

Pesticide 
dissipated & 
retained by 
biobeds (%) 

Pesticide amount 
in waste before 
depuration per 

season (g) 

Pesticide amount 
in waste after 
depuration per 

season (g) 

Disposal 
area 
(ha) 

Predicted 
Pesticide 

Rate in soil  
(g/ha) 

Scenario I  Diphenylamine 0.05 99.95 2500 1.25 0.1 12.5 

Imazalil 0.19 99.81 2500 4.75 0.1 47.5 

Thiabendazole - Non Bioauga 

                         - Bioaugb 

                         - Disp. Areac 

0.26  99.74 2500 

2500 

2500 

6.5 0.1 

0.1 

65.0  

<0.001 99.99 0.025 0.25 

0.26b 99.74b 6.5b 0.2 32.5b 

Scenario II Ortho-phenylphenol 0.04 99.96 4200 0.44 0.1 4.4 

Imazalil 0.19 99.81 1100 2.09 0.1 20.9 

Thiabendazole - Non Bioauga 

                         - Bioaugb 

                         - Disp. Areac 

0.26 99.74 1100 2.86 0.1 28.6 

<0.001a 99.99a 1100 0.011 0.1 0.11a 

0.26b 99.74b 1100 2.86b 0.2 14.3b 

a  Rates for TBZ calculated based on non bioaugmented biobed 3 
b  Rates for TBZ calculated based on bioaugmented biobed 3  
c  Rates for TBZ calculated assuming disposal of depurated effluents on a 0.2 ha disposal site instead of the standard 0.1 ha  
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Table 4.3. Endpoints used as input data in STEP 1-2 calculation tool and the PECsoil calculator 
 
Pesticides Water 

solubility 

(mg/L) 

DT50 in 

sediment/water 

system (days) 

DT50 in 

water (days) 

DT50 in 

sediment (days) 

DT50 in soil (days) 

(used in PECsw 

calculation) 

Koc 

(L/kg) 

DT50 soil (days) (used in 

PECsoil calculation) 

Ortho-phenylphenola 450 1000e 1000e 1000e 11.1f 347g 11.1f 

Diphenylamineb 25.8 1000e 1000e 1000e 1000e 4104j 1000e 

Imazalilc 184 117 1000 1000 474f 4753 86.7h 

Thiabendazoled 30 1000 1000 1000 91.3i 2090 1000f 

a EFSA, Peer review of the pesticide risk assessment of the active substance  2-phenylphenol. EFSA Sci. Rep. 217 (2008) 1-67 
b EFSA, Conclusion on the peer review of the pesticide risk assessment of the active substance diphenylamine. EFSA J. 10(2012) 2486 
c EFSA, Conclusion on the peer review of the pesticide risk assessment of the active substance imazalil. EFSA J. 8 (2010) 1526 and  EFSA, Outcome of 
the consultation with Member States, the applicant and EFSA on the pesticide risk assessment of confirmatory data for the active substance imazalil, 
Supporting Publication EN-674 (2014) 
d EFSA, Peer review of the pesticide risk assessment of the active substance thiabendazole. EFSA J. 12 (2014) 3880 
e Endpoint not available; 1000 days used as worst case assumption 
f Worst-case from field studies 
i Geometric mean from laboratory studies 
g Mean Kfoc 
h Maximum laboratory (non-normalized) 
j Source: Pesticide Properties DataBase (http://sitem.herts.ac.uk)
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Table 4.4 Predicted environmental concentrations (PECs) in soil, surface water and sediment calculated by the PECsoil calculator and the STEP 1-2 

calculation tool respectively following Scenarios I and II 

Scenario Pesticides STEP 1 PECsw 

(max; μg/L) 

STEP 2 PECsw 

(max; μg/L) 

STEP 1 PECsed 

(max; μg/kg) 

STEP 2 PECsed 

(max; μg/kg) 

PECsoil  

(max; mg/kg) 

Scenario I Diphenylamine 0.64 - 26.42 - 0.073 

Imazalil 2.16 - 102.57 - 0.067 

Thiabendazole  5.06 (0.44)a 1.96 (0.17)a   105.79 (9.2)  41.05 (3.57)a 0.335 

2.53b - 52.9b -  

Scenario II Ortho-phenylphenol 1.0 - 3.48 - 0.006 

Imazalil 3.11 - 149.9 - 0.029 

Thiabendazole 2.23 (0.19)a 0.86 46.55 (4.05) 18.06 0.151 

a PECs calculated using data obtained from bioaugmented biobed (biobed 3bioaug) 
b PECs calculated based on a mitigation plan considering disposal of biobeds effluents to a 0.2 ha disposal site 
c not determined 
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Table 4.5. Toxicological endpoints used for the calculation of Regulatory Acceptable Concentrations (RACs), PECs/RACs, Toxicity Exposure Ratios 

(TERs) and Hazard Quotients (HQ) for all pesticides.  

Pesticides Acute effects Chronic 

Invertebrates Fish Earthworms Soil-dwelling 

arthropods 

Algae Fish Sediment-dwelling 

invertebrates 

D. magna  

EC50 48h 

(μg L-1) 

O. mykiss 

LC5096h 

(μg L-1) 

LC50 

(mg kg-1) 

LR50 

(g a.s. ha-1) 

P. subcapitata 

ErC50 72h 

(μg L-1) 

O. mykiss or other 

species NOEC 

(μg L-1) 

Chironomus spp. 

NOEC 20-28 d 

(μg L-1) 

Ortho-phenylphenola 2420 4000 99.1 n.a. 3570 36.0 1850 

Diphenylamineb 1200 2200 n.a. n.a. 300 710 n.a.e 

Imazalilc 1580 885 271 88 (NOEC) 200 43.0 181 (27.5 mg kg-1) 

Thiabendazoled 340 550  >224.5 >180 2300 12.0 2000 (3.0 mg kg-1) 

a  EFSA, Peer review of the pesticide risk assessment of the active substance  2-phenylphenol. EFSA Sci. Rep. 217 (2008) 1-67 
b EFSA, Conclusion on the peer review of the pesticide risk assessment of the active substance diphenylamine. EFSA J. 10 (2012) 2486 
c EFSA, Conclusion on the peer review of the pesticide risk assessment of the active substance imazalil EFSA J. 8 (2010) 1526 & EFSA, Outcome of the consultation 
with Member States, the applicant and EFSA on the pesticide risk assessment of confirmatory data for the active substance imazalil. Supporting Information EN-674 
(2014) 
d  EFSA, Peer review of the pesticide risk assessment of the active substance thiabendazole. EFSA J. 12 (2014) 3880 
e  n.a.: not available 
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4.2.6. Decontamination of the spent biobed substrate 

At the end of the biobeds’ operation period, the packing material of the non bioaugmented 

biobeds (1, 2 and 3) was removed and it was mixed (50% by volume) with appropriate 

volumes of fresh organic matter (straw 25% and 25% cotton crop residues) (Photograph 

4.5a, b and c). Its C/N ratio was optimized (target value of 25) with addition of NH4NO3-N 

(4.5 kg of a fertilizer, 34.4% N by weight). The material was thoroughly mixed and it was 

divided into two sub-samples of 8.5 kg and two sub-samples of 154.5 kg. The first set of 8.5- 

and 154.5 kg samples were treated with a suspension of bacteria degrading TBZ, OPP and 

DPA (described in Section 4.2.4) resulting in an inoculation density of 106 cells g-1 packing 

material dry weight. The 8.5 kg sample was then placed in a plastic bag and incubated at 

ambient temperature ('bioaugmentation' treatment), and the 154.5-kg sample was placed in a 

compost bucket (85 cm x 85 cm x 75 cm) and was allowed to compost for 160 days 

('bioaugmentation & composting' treatment) (Photograph 4.5d). The remaining samples, one 

of 8.5-kg and one of 154.5-kg, received the same amount of water without bacteria, and they 

were handled in the same way as the corresponding bioaugmented samples ('control' and 

'composting' treatments respectively). Immediately prior to the treatment and 24 (first mixing 

of the compost) (Photograph 4.5e), 40 (completion of 2nd thermophilic phase) and 160 days 

later (completion of maturation) triplicates (20 g) were removed and analyzed for pesticide 

residues. 
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Photograph 4.5: Photographs from the cotton residues (a) and the straw (b) that they were 

used for the preparation of the new mixture which was composed (c), placed in the compost 

buckets (d) and mixed after the first thermophilic phase (e).     

(a) (b) 

(c) (d) 

(e) 
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4.2.7. Pesticides residue analysis 

Extraction of pesticides from the leachates and the biobeds packing material was performed 

as described in Chapters 2 and 3. Pesticides residues remaining in the packing material were 

extracted initially with water and subsequently with acetonitrile. Pesticides residues 

extracted with water constitute the fraction which was retained by the biobed packing 

material, but was still available for further vertical movement and leaching. Whereas 

pesticides residues extracted by the organic solvent constitutes the fraction retained by the 

biobed that was less available for leaching. Pesticides residues were analyzed by HPLC-UV 

as described in Chapters 2 and 3. 

 

4.2.8. Abundance of microbial taxa and catabolic genes 

The abundance of total bacteria, total fungi and of different bacterial taxa (α-, β-, γ-

proteobacteria, firmicutes and actinobacteria) was determined in the biobed packing material 

prior to pesticide application and at the end of the treatment period via q-PCR. In addition 

the abundance of catA and pcaH genes, encoding catechol 1,2-dioxygenase and 

protocatechuate dioxygenase respectively, involved in the metabolism of aromatic 

compounds (Harwood et al. 1986), was determined via q-PCR. Samples collected from the 

three different layers of the pilot biobeds were homogenized and four subsamples were 

processed for DNA extraction using the Power Soil DNA Isolation Kit (MoBio Laboratories, 

Inc.). All q-PCR reactions were performed in a Strategene MX3000P real-time PCR system. 

Q-PCR conditions and the primers used are shown in Table 4.6. Q-PCRs were carried out in 

10μl reaction volume containing 1X KAPA SYBR® FAST qPCR Master Mix (2X) 

Universal, 1  μΜ of each primer, 50 nM ROX Low,  400 ng μL-1 BSA, and ca. 0.2-10 ng 

DNA. The copy numbers of the target gene in the environmental samples were determined 

via external standard curves as described by Rousidou et al. (2013). Briefly, the target gene 

amplified by a given soil sample or target microorganisms was purified, ligated into pGEM-

T Easy vector (Promega, Madison, USA) and transformed to competent Escherichia coli 

cells according to manufacturers’ instructions. Plasmid DNA was extracted (NucleoSpin 

Plasmid, MachereyeNagel) and its concentration was determined with Qubit fluorometer. 

The copy numbers of the target gene was calculated directly from the concentration of the 

extracted plasmid DNA. Serial ten-fold dilutions of the recombinant plasmid ranging from 
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101 to 107 copies μl-1 were subjected in triplicate to q-PCR to construct the standard curves 

for each target taxa. For all microbial taxa q-PCR efficiencies ranged from 85 to 105% with 

r2 values ranging from 0.985 to 0.999. 

 

4.2.9. Statistical Analysis 

Mass balance analysis data were subjected to one-way-ANOVA to identify significant 

differences per pesticide between biobeds in the different fractions accounted (dissipated / 

leached /retained and extracted with water or acetonitrile). Data regarding the distribution of 

pesticides in the biobeds horizons were subjected to two-way-ANOVA. In cases where 

significant interactions between the main factors were observed significant differences were 

identified by Tukey's post-hoc tests within each factor. Q-PCR data for each taxon were 

subjected to one-way ANOVA to identify significant differences between biobeds before and 

after pesticide application. All statistical analysis were performed with the SPSS statistical 

package. 
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Table 4.6. Q-PCR conditions and primers used for the estimation of the abundance of key microbial taxa and functional genes (catA, pcaH) relevant to 
the degradation of aromatics  

Microbial Group 

or Target Gene 

Primers Amplicon size  

(bp) 

Annealing Temperature  

(°C) 

Reference 

Total Bacteria 341F/534R 194 60 Lopez-Gutierrez et al., (2004) 

Total Fungi ITS1F-ITS5.8S 300 53 Fierer et al. (2005) 

Actinobacteria Actino235/Eub518 300 60 Fierer et al. (2005) 

Firmicutes Lgc353/Eub518 181 55 Fierer et al. (2005) 

α-proteobacteria Eub338/Alf685 342 60 Fierer et al. (2005) 

β-proteobacteria Eub338/Bet680 360 55 Fierer et al. (2005) 

γ-proteobacteria Gamma395f/Gamma 871r 497 56 Muhling et al. (2008) 

catA CatAf-CatAr 470 58 El Azhari et al. (2010) 

pcaH PcaHf-PcaHr 395 57 El Azhari et al. (2008) 
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4.3. RESULTS 

4.3.1. Pesticides leaching from pilot biobeds 

The temporal pattern of pesticides in the leachate of the pilot biobeds are shown in Figure 

4.2. OPP residues were detected in the leachates of all three treated biobeds, although peak 

amounts were consistently detected in biobed 1 exceeding 20 mg on three occasions (Fig. 

4.2a). On the contrary biobed 3bioaug showed the lowest amounts of the fungicide in the 

leachate with only four positive detections and max amount of 2.4 mg. DPA was detected in 

the leachate of the two biobeds on a regular basis, but its amount never exceeded 10 mg (Fig. 

4.2b). 

 IMZ was rarely detected in the leachates of the biobeds. High amounts of IMZ were, 

however, detected on two occasions (90 and 94 d) in the leachates of biobed 1 (Fig. 4.2c). 

TBZ showed a substantially different leaching pattern in the two biobeds tested. A peak in 

TBZ leaching appeared early (31 d, 520 mg) in biobed 3 followed by the detection of lower 

TBZ amounts (<7 mg) from 100 days onwards (Fig. 4.2d). In contrast, residues of TBZ were 

detected in the leachates of biobed 3bioaug in only three occasions at levels below 1 mg.  
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 Figure 4.2. Leaching patterns of OPP (a), DPA (b), IMZ (c) and TBZ (d) from the pilot biobeds. 
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4.3.2. Mass balance analysis of pesticides in the pilot biobeds 

Mass balance analysis was performed upon measurement of pesticide residues in the cores 

obtained from the pilot biobeds at the end of the operation period (Fig. 4.3). The dissipation 

of OPP did not significantly differ between biobeds and ranged from 96.8% in biobed 

3bioaug to 98.6 and 99.5% in biobeds 1 and 3 respectively (Fig. 4.3a). The amount of OPP in 

leachate was negligible ranging from 0.1% (biobed 1) to 0.01% (biobed 3 and biobed 

3bioaug). The amount of OPP retained by the biobeds was mostly extractable with water, 

suggesting its availability for biodegradation or further mobility.  OPP residues were present 

in the whole vertical profile of the biobed, however over 80% was found at the top 50 cm 

(Fig. 4.4a). DPA was nearly fully dissipated in both biobeds (99.9%), regardless of 

bioaugmentation (Fig. 4.3b).  

 IMZ showed different behaviour in the three biobeds (Fig. 4.3c). A significantly 

lower dissipation of IMZ (p<0.05) was observed in biobed 1 (72%) compared to biobed 2 

and biobed 2bioaug (91 and 95.7% respectively). This was mirrored into the significantly 

higher amounts (p<0.05) of IMZ retained (27.5%) and leached (0.52%) from biobed 1 

compared to biobed 2 (8.8 and 0.02% respectively) and biobed 2bioaug (4.25 and 0.03% 

respectively). Regarding the amount of IMZ retained by biobed 1, no significant differences 

(p>0.05) were observed between the fractions extracted by acetonitrile (15.4%) or water 

(12.2%). When the distribution of IMZ residues along the profile of the biobeds was 

investigated over 95% of the fungicide was found in the top layer (0-20 cm) (Fig. 4.4b).  

A nearly complete dissipation of TBZ was evident in biobed 3bioaug (Fig. 4.3d) 

compared to a significantly lower dissipation (86.7%, p<0.05) in the corresponding non-

bioaugmented biobed 3. The rest of TBZ applied in biobed 3 was retained and it was mostly 

extractable with water (8.5%) rather than with acetonitrile (4.6%). The significant difference 

in the dissipation between bioaugmented and non-bioaugmented biobeds was reflected in the 

overall amount of TBZ leached which ranged from <0.001% in the former to 0.26% in the 

latter. Regarding the distribution of TBZ residues in the profile of the biobeds, nearly 85% of 

TBZ was retained in the top layer (0-20 cm) while lower amounts, 14 and 1%, were detected 

at the 20-50-cm and 50-80-cm layers respectively (Fig. 4.4c).  
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Figure 4.3. Mass balance analysis of OPP (a), DPA (b), IMZ (c) and TBZ (d) in the pilot 

biobeds. Pesticides amounts retained by the biobeds matrix were estimated by successive 

extractions with water and acetonitrile (as described in Chapter 3). Stacked bar parts 

designated by different letters indicate significant differences (p<0.05) between biobeds. 
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Figure 4.4. The distribution of OPP (a), IMZ (b) and TBZ (c) residues in  the three layers of 

the pilot biobeds at the end of the study. Stacked bar parts designated by different capital 

letters indicate significant differences (p<0.05) between biobeds in the amount of pesticide 
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retained in a layer, while different lower case letters indicate significant differences in the 

amounts of pesticides retained in the different layers within a biobed.   

 

4.3.3. Risk assessment regarding biobed-treated effluents 

Risk assessment analysis based on scenario I (pome fruit packaging plant) suggested no risk 

for aquatic (inverterbrate, fish, algae, sediment-dwelling invertebrates) and terrestrial 

(earthworms, terrestrial arthropods) non-target organisms by the use of IMZ and DPA 

(Tables 4.7 and 4.8). Whereas an unacceptable risk for chronic exposure to fishes were 

identified for TBZ (PEC/RAC = 1.633>1). This risk was alleviated only after the 

implementation of mitigation measures such as an increase of the surface of the disposal site 

area from 0.1 to 0.2 ha (PEC/RAC = 0.817<1) (Table 4.7) or when the depuration 

performance of the bioaugmented biobed 3 was considered for the calculation of PECs in the 

risk assessment (PEC/RAC = 0.366<1). Regarding Scenario II, no unacceptable risk for 

aquatic and terrestrial organisms was observed for all pesticides involved (i.e. OPP, TBZ and 

IMZ) (Tables 4.7 and 4.8).  
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Table 4.7. Risk assessment for biobed-treated effluents according to Scenarios I and II for aquatic organisms. Ratios of max PECsw/RAC >1 indicate  

unacceptable risk for aquatic organisms (in bold).   

Pesticides Acute Toxicity Chronic Toxicity 

Invertebrates Fish Algae Fish Sediment-Dwelling 
Invertebrates 

Daphnia 
magna 

Oncorhynchus 
mykiss 

Pseudokirchneriella 
subcapitata 

Oncorhynchus 
mykiss 

Chironomus sp. 

Ortho-phenylphenol Scenario II 0.041 0.025 0.003 0.278 0.005 

Diphenylamine Scenario I 0.053 0.029 0.021 0.009 n.d.d 

Imazalil Scenario I 0.138 0.244 0.108 0.502 0.119 

Scenario II 0.197 0.351 0.156 0.723 0.172 

Thiabendazole Scenario I - Step1 

Scenario I - Step2 

Mitigation/Refinement 

1.490 

0.576 

- 

0.920 

- a 

- 

0.022 

- 
 
- 

4.217 

1.633 

0.817b (0.366)c 

0.025 

- 

- 

Scenario II - Step1 

Scenario II - Step2 

0.656 

- 

0.405 

- 

0.010 

- 

1.858 

0.717 

0.011 

- 
a  not calculated since no unacceptable risk was evident at Step1 
b calculated based on disposal of biobeds effluents to a 0.2 ha disposal site (mitigation) 
c calculated based on the depuration efficiency of the bioaugmented biobed (biobed 3bioaug) (refinement) 
d n.d.: not determined since no toxicity endpoint values were available (see Table 4.5)
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Table 4.8. Risk assessment for biobed-treated effluents according to Scenarios I and II for terrestrial organisms. TER >10 and HQ < 2 indicate low acute 

risk for earthworms and soil dwelling arthropods respectively.  

Pesticides TER - Earthworms HQ - Soil-dwelling arthropods 

Ortho-phenylphenol Scenario II 16517 n.d.a 

Diphenylamine Scenario I n.d.a n.d.a 

Imazalil Scenario I 4045 0.540 

Scenario II 9310 0.238 

Thiabendazole Scenario I >335 <0.639 

Scenario II >743.5 <0.281 

an.d.: not determined because no toxicity endpoint values were available (Table 4.5).
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4.3.4. Decontamination of spent biobed packing material 

Measurements of pesticide levels in the spent packing material (the biobed packing material 

at the end of the experimental period) showed that residues of TBZ (29 μg g-1) and IMZ (23 

to 26 μg g-1) were still present (Fig. 4.5). Bioaugmentation was the most successful 

decontamination approach for both IMZ and TBZ resulting in a significantly higher 

dissipation (83-97%, p<0.05) of the former (Fig. 4.5a and 4.5b) and a complete dissipation 

of the latter (Fig. 4.5c). The spent packing material was successfully composted with the 

evolution of two thermophilic phases: the first and main one lasting 10 days (days 4 to 14) 

with a peak temperature of 50°C, and the second milder one which reached a max 

temperature of 35°C (days 23 to 28) (Figure 4.6). During the active phase (0-40 days) 

composting significantly accelerated the dissipation of IMZ relatively to the control (Fig. 

4.5a and 4.5b), whereas for TBZ a significant acceleration in its dissipation was achieved 

only when composting was combined with bioaugmentation (Fig. 4.5c).  
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Figure 4.5. The dissipation of IMZ (a & b) and TBZ (c) in the spent packing material from 
biobeds 1 (a), 2 (b) and 3 (c) subjected to bioaugmentation, bioaugmentation and 
composting, composting or stored at ambient temperature (control). Within each time, bars 
followed by the same letter are not significantly different (p<0.05) 
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Figure 4.6: The temperature profile during the process of composting of the spent biobed 

substrate (bioaugmented/not bioaugmented). 

 

4.3.5. Abundance of microbial taxa and catabolic genes  

The abundance of total bacteria, total fungi and α-proteobacteria were significantly higher 

(p<0.05) in the biobeds at the end of the study compared to their abundance in the packing 

Time (days) 

(c) TBZ  ab a 

b 

a 

a 

b 

a 

a a 

b 

ab 

ab 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 10:51:04 EEST - 3.145.162.204



 

184 
 

material prior to pesticides application (Fig. 4.7a). Actinobacteria were the most abundant 

bacterial taxa, followed by α-proteobacteria, firmicutes and γ-proteobacteria, while β-

proteobacteria showed low abundance.  Significantly higher copy numbers of the pcaH and 

catA genes were detected in the biobeds at the end of the experimental period compared to 

their corresponding copy numbers in the packing material prior to the initiation of the 

pesticide application (Fig. 4.7b). On the other hand, no significant difference (p<0.05) in the 

abundance of pcaH and catA were found between non bioaugmented and their corresponding 

bioaugmented counterparts.  
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Figure 4.7. The abundance of different bacterial taxa, total bacteria and total fungi (a), and 

of the catabolic genes catA and pcaH (b) in the biobed packing material prior to pesticide 

application (before) and at the end of the study (B1, B2, B3, B2bioaug, B3bioaug). Within 
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each microbial group and gene, bars designated by the same letter are not significantly 

different (p>0.05) 

 

4.4. DISCUSSION 

Pilot biobeds showed a high depuration efficiency which varied amongst pesticides but 

exceeded 99.5% in all cases. The higher depuration efficiency against OPP and DPA was 

attributed to their rapid dissipation in line with the limited persistence of those chemicals in 

packing materials similar to the one used in the current study (OPP DT50s of 0.34 - 4.7 days; 

DPA DT50s 1-4.1 days) (see Chapter 2). Regarding TBZ and IMZ although high dissipation 

levels were achieved, significant amounts were recovered by the biobeds packing material at 

the end of the study. This is in agreement with the well documented persistence of TBZ and 

IMZ in soil (Kreuzig et al. 2010: EC,2013) and biobed packing materials demonstrated in 

Chapter 2 and by Omirou et al. (2012). Residues of TBZ and IMZ retained by the biobed 

packing material were mostly concentrated at the top biobed layers, in contrast to OPP 

whose residues were distributed to the whole biobed profile. Similarly Omirou et al. (2012) 

reported a deeper vertical distribution of OPP residues in the profile of a full-scale biobed 

compared to IMZ and TBZ which were mostly retained in the top layer (0-20 cm).  

 The wide acceptance of biobeds relies mainly on their high biodegradation capacity 

against a broad range of chemical structures found in the different pesticide groups (Castillo 

et al. 2008).  However in cases where biobeds are challenged with mobile (Verhagen et al. 

2013) and/or recalcitrant chemicals, like TBZ or IMZ, bioaugmentation could be a useful 

optimization strategy. A high depuration efficiency of biobeds against OPP and DPA was 

evident even in the absence of bioaugmentation, in contrast to TBZ for which 

bioaugmentation significantly advanced their depuration performance. These results suggest 

that the indigenous microbial community of biobeds has, or develops rapidly, the catabolic 

capacity to degrade the generally biodegradable OPP and DPA (Karas et al. 2011), whereas 

it showed a lower capacity to transform the less biodegradable TBZ for which 

bioaugmentation with a specialized microbial inocula was necessary to maximize depuration. 

Bioaugmentation of biobeds has been tested in lab-scale experiments via different 

approaches: the amendment of soil primed for the rapid degradation of one or multiple 

pesticides (Sniegowski et al. 2014) and inoculation with specific pesticide-degrading bacteria 

(Verhagen and De Gelder 2013) or white rot fungi (Wiren-Lehr et al. 2001).  Our study 
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offers the first successful example of bioaugmentation of pilot-scale biobeds with tailored-

made bacterial inocula. 

 Although several studies have verified the high depuration performance of biobeds 

(De Wilde et al. 2007), the risk associated with the direct environmental disposal of their 

treated effluents has not been explored. Based on our risk assessment analysis for pome and 

citrus-fruit packaging plants schemes the disposal of the biobed-treated effluents on an 0.1-

ha land area does not entail an unacceptable risk for non-target terrestrial and aquatic 

organisms. The only exception was shown for TBZ-contaminated effluents produced by 

pome fruit-packaging plants (Scenario I) where either mitigation measures or 

bioaugmentation were necessary to alleviate the high risk to fishes which are very sensitive 

to chronic TBZ exposure (EC, 2013).   

 One of the main problems hampering the wider implementation of biobeds is the lack 

of established methods for the decontamination of the spent packing material. These are 

generally contaminated with considerable pesticide loads and should be depurated prior to 

their final environmental disposal. TBZ and IMZ residues were recovered in the spent biobed 

substrate and based on their recalcitrance and their high ecotoxicity (EC, 2009: EC, 2013), 

decontamination of the spent packing material is essential. We tested different strategies for 

the decontamination of the spent biobed packing material removed from the pilot biobeds 

after one operating season. Bioaugmentation was the most effective method for the removal 

of TBZ and IMZ. It should be noted that no IMZ-degrading bacterial inocula was available 

and the IMZ-containing spent packing material from biobeds 1 and 2 was inoculated with 

OPP- and DPA-degrading bacteria since those biobeds had been also treated with OPP and 

DPA during the study. Our previous studies showed that the OPP and DPA-degrading strains 

used were not able to degrade IMZ (Perruchon et al. 2015: Perruchon et al. 2016a) so the 

enhanced dissipation of IMZ in the 'bioaugmentation' treatment cannot be attributed to the 

inocula used. However bioaugmentation of contaminated soil could induce a general 

perturbation favoring r-strategists and higher microbial activity (Wenderoth et al. 2003). This 

in turn might have resulted in a more active co-metabolic biodegradation of IMZ by the non-

specialized soil microflora in the bioaugmented composts. Bioaugmentation has not been 

tested in the past for the decontamination of the spent packing material. This is probably due 

to the complex pesticides mixture contained in the packing material of on-farm systems, 

compared to the limited number of chemicals expected to be present in biobeds receiving 

effluents from fruit packaging plants, making targeted bioaugmentation a feasible approach. 
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 Composting applied either alone or in combination with bioaugmentation accelerated 

the dissipation of IMZ and TBZ respectively during the active composting phase. Previous 

studies by De Wilde et al. (2010) showed that composting resulted in 70% dissipation of 

bentazon and linuron by a spent biobed substrate. Composting contributes to the dissipation 

of pesticides via a range of processes with biodegradation being dominant in most cases 

(Büyüksönmez et al. 2000). Our composting did not lead to the establishment of long 

thermophilic phases characterized by high temperatures which could have further accelerated 

pesticides dissipation (Büyüksönmez et al. 1999).  

 Little is known regarding the composition and the dynamics of the microbial 

community in biobed systems. An increase in the abundance of total bacteria, α-

proteobacteria and fungi  was observed at the end of the 160-d operation period suggesting 

that despite the copious amounts of pesticides applied those systems could support a rich 

microbial community dominated by actinobacteria, firmicutes and α-proteobacteria. These 

bacterial taxa are known to be involved in processes relevant to biobed systems such as the 

decomposition of organic matter coming from plant debris and the degradation of organic 

pollutants (de Menezes et al. 2015; Wegner and Liesack 2016). Apart from a 

phylogenetically-rich microbiota, biobeds constitute an artificial ecosystem which support 

the rapid emergence of novel catabolic traits by the microbial community (Dunon et al., 

2013). In line with this we measured a significant increase in the abundance of catA and 

pcaH genes at the end of the 160-day period. These genes encode enzymes involved in the 

transformation of key intermediates produced by the microbial metabolism of natural 

aromatics and organic pollutants (D'Argenio 1999; Hussain et al. 2011). They have been 

found in elevated numbers in polluted sites and are considered as indicators of the 

biodegradation potential of polluted environments (El Azhari et al. 2008). However, 

bioagumentation did not result in higher copy numbers of these genes at the end of the 160-

day period, indicating that the microbial inocula are not key factors for the spread of these 

genes in the biobed matrix. 

  

4.5. CONCLUSIONS 

We explored the biodepuration potential of pilot-scale biobed against effluents from the 

fruit-packaging industry and addressed practical issues holding back their implementation. 

Pilot biobeds achieved effective depuration of the relevant agro-industrial wastewater 

producing treated effluents whose environmental disposal into a pre-defined soil disposal 
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area entails no unacceptable environmental risk. The lower depuration efficiency of pilot 

biobeds for TBZ was alleviated by bioaugmentation with TBZ-degrading bacteria, a method 

feasible for biobed systems receiving effluents from fruit packaging plants which contain a 

limited number of specific pesticides. Bioaugmentation was also the most potent method for 

the decontamination of spent packing material with composting or even long-term storage at 

ambient temperature being a valuable alternative in the absence of pesticide-degrading 

inocula.  
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5.1. FINAL CONCLUSIONS 

Postharvest treatment of fruits with pesticides guarantees their protection from fungal 

infestations and physiological disorders during storage. However, it leads to the production 

of large volumes of pesticide-contaminated effluents whose direct environmental release 

would compromise the integrity of natural resources (Castillo et al. 2006). This is 

exemplified by the high aquatic toxicity of the pesticides used in this industrial sector like 

TBZ (EFSA 2014) IMZ (EFSA 2010a), OPP (EFSA 2008), EQ (EFSA 2010b) and DPA 

(EFSA 2012. The need for the treatment of those effluents is stressed in the relevant 

pesticide regulatory documents which state that member-states should ensure that 

appropriate waste management practices to handle the waste solution remaining after 

application are put in place (EC 2010). In accordance with the regulatory framework 

implemented by the EC, the present thesis presented a gradually scaled up approach to assess 

the potential of biobeds for the treatment of effluents from the fruit packaging plants.  

Initial laboratory dissipation studies with anaerobically digested sewage sludge and 

liquid aerobic sewage sludge showed that municipal wastewater treatment plants are 

expected to effectively remove OPP, DPA, EQ and its oxidation products but not TBZ and 

IMZ. These first results stressed the need for the implementation of more efficient but still 

simple and low-cost depuration methods to effectively remove all pesticides contained in 

those effluents. A first step towards the optimization of the dissipation potential of biobed 

systems was the selection of a biobed packing material characterised by high dissipation and 

sorption capacity against the relevant pesticides. SMS was a key component of the packing 

materials tested, as a by product of mushroom units which is available at large amounts and 

no cost. Laboratory studies showed that a biobed packing material composed of 

SMS:Straw:Soil in volumetric rations of 50:25:25 showed the highest dissipation potential 

and high retention capacity for the pesticides tested, particularly of the recalcitrant TBZ and 

IMZ, suggesting that biobeds packed with such organic biomixtures could effectively 

depurate the wastewaters from the fruit-packaging industry.  

Based on the results of Chapter 2, a leaching column study was undertaken to 

evaluate the capacity of the best performing biomixture (in Chapter 2) to retain and dissipate 

OPP and IMZ under a high hydraulic loading scheme which represents a realistic wastewater 

production pattern of a citrus fruit packaging plant. OPP and IMZ were selected as pesticides 

with contrasting characteristics regarding their persistence and mobility. In addition the role 

of P. ostreatus contained in SMS on the depuration capacity of biobeds was assessed by 
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incorporating in the leaching study FMS. Our findings suggested that the optimized SMS-

rich packing material could effectively retain OPP and IMZ  under realistic high hydraulic 

loadings. Despite its known capacity to degrade organic pollutants, P. ostreatus present in 

the SMS did not seem to actively contribute to the degradation of those fungicides.   

Based on the results of the optimization laboratory and column studies described in 

Chapters 2 and 3, pilot biobeds were constructed and their depuration performance against 

the pesticides contained in the effluents from fruit packaging plants was evaluated in Chapter 

4. Their performance was evaluated under pesticide treatment scenarios relevant to pome and 

citrus fruit packaging plants, while optimization of their depuration performance was 

employed with bioaugmentation with tailored made bacterial inocula for OPP, DPA and 

TBZ. Biobeds showed high depuration performance for all pesticides tested which reached  

>99.5% for the most persistent chemicals IMZ, TBZ and >99.9% for the less persistent OPP 

and DPA. The depuration performance of biobeds against TBZ was maximized (>99.9%) 

upon bioaugmentation with a TBZ-degrading proteobacterial consortium. In the absence of 

IMZ-degrading inocula, bioaugmentation of biobed systems with tailored-made inocula 

destined to rapidly degrade recalcitrant pesticides like TBZ is a valuable optimization 

strategy and feasible in view of the limited number of pesticides contained in those agro-

industrial effluents.   

To provide a holistic assessment of the implementation potential of biobed systems in 

fruit packaging plants we seeked in Chapter 4 to address issues which hold back the 

implementation even of on-farm biobed systems: (a) Is the quality of biobeds-treated 

effluents high enough to allow their direct environmental release without imposing 

unacceptable risks for receiving ecosystems? and (b) how could we decontaminate the spent 

biobed packing material removed from the biobeds at the end of the life span of biobed 

systems?. Risk assessment analysis based on the depuration performance of our pilot biobeds 

provided an answer to the first question. Thus risk assessment based on the current 

regulatory framework showed that the treatment of wastewaters from citrus (scenario I)  and 

pome (scenario II) packaging plants by biobeds lead to high quality effluents whose  direct 

environmental disposal into a pre-defined soil disposal area entails no environmental risk. 

The only exception was TBZ-contaminated effluents produced by pome fruit packaging 

plants where risk mitigation by bioaugmentation or disposal of the effluents in a larger 

disposal area is required.  Spent biobed packing material from the pilot biobeds contained 

high concentrations of IMZ and TBZ. Different strategies including storage at ambient 

temperature composting, bioaugmentation and the combination of the last two were tested 
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for the decontamination of the spent biobed packing material. Bioaugmentation was the most 

potent method with composting or storage at ambient temperature for nearly 5 months were 

valuable alternative in the absence of pesticide-degrading inocula. 

Finally the thesis provided pioneering data for the composition of the microbial 

community in biobeds systems for which still little is known.  Molecular analysis revealed 

that despite the heavy load of pesticides discharged biobeds could support a rich microbial 

community dominated by actinobacteria, firmicutes, a-proteobacteria and enriched in genes 

associated with the catabolism of aromatic compounds (catA and pcaH).  

Overall this thesis provides a comprehensive lab-to-pilot scale assessment of the 

potential of biobeds to depurate pesticide-contaminated effluents from fruit-packaging 

plants. Our results verified our initial hypothesis that biobeds could be used for the treatment 

of those wastewaters and provide a viable, effective, cheap and sustainable alternative to the 

currently followed practices which constitute a significant environmental and economic 

burden for this agro-industrial sector.  

 

5.2. FUTURE PERSPECTIVES   

The current thesis provided compeling evidence for the depuration efficiency of biobeds 

against wastewaters from the fruit packaging industry. Biobeds is a ready to be implemented 

solution in fruit packaging plants and the next step towards their market uptake is (a) their 

certification by relevant authorities as an acceptable wastewater treatment method and (b) the 

establishment and operation of the first full-scale biobed systems in a fruit packaging plant in 

Greece. However new research challenges remain to be explored:  

a) the further expansion of the uses of biobeds to treat (a) wastewaters from peach and 

kiwi fruit packaging where alternative fungicides like iprodione and fludioxonil are 

used and (ii) from other agro-industries dealing with seed-coating and bulb 

dissinfection where  a range of fungicides (metalaxyl-M, fludioxonil, chlorothalonil) 

and insecticides (cypermethrin, deltamethrin, fluxapyroxad) are utilized.  

b) the optimization of bioaugmentation strategies with the inclusion of novel tailored - 

made inocula targeting persistent molecules like IMZ which is heavily used by most 

fruit packaging plants in Europe. It should be noted that the current inventory of the 

Laboratory of the Plant and Environmental Biotechnology, Department of 
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Biochemistry and Biotechnology, University of Thessaly, includes bacteria able to 

degrade TBZ, OPP, DPA and iprodione, all used in fruit packaging plants in Europe. 

c) the in-depth investigation of the functional and structural characteristics of the 

microbial community of biobed systems which drive the high biodegradation 

capacity of these systems for a range of different pesticide compounds. Within this 

frame biobeds will be explored as a valuable source of new pesticide catabolic 

enzymes using functional metagenomic tools. 
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a b s t r a c t

Citrus fruit-packaging plants (FPP) produce large wastewater volumes with high loads of fungicides like
ortho-phenylphenol (OPP) and imazalil (IMZ). No methods are in place for the treatment of those ef-
fluents and biobeds appear as a viable alternative. We employed a column study to investigate the po-
tential of spent mushroom substrate (SMS) of Pleurotus ostreatus, either alone or in mixture with straw
and soil plus a mixture of straw /soil to retain and dissipate IMZ and OPP. The role of P. ostreatus on
fungicides dissipation was also investigated by studying in parallel the performance of fresh mushroom
substrate of P. ostreatus (FMS) and measuring lignolytic enzymatic activity in the leachates. All substrates
effectively reduced the leaching of OPP and IMZ which corresponded to 0.014–1.1% and 0.120–0.420% of
their initial amounts respectively. Mass balance analysis revealed that FMS and SMS/Straw/Soil (50/25/25
by vol) offered the most efficient removal of OPP and IMZ from wastewaters respectively. Regardless of
the substrate, OPP was restricted in the top 0–20 cm of the columns and was bioavailable (extractable
with water), compared to IMZ which was less bioavailable (extractable with acetonitrile) but diffused at
deeper layers (20–50, 50–80 cm) in the SMS- and Straw/Soil-columns. PLFAs showed that fungal abun-
dance was significantly lower in the top layer of all substrates from where the highest pesticide amounts
were recovered suggesting an inhibitory effect of fungicides on total fungi in the substrates tested. Our
data suggest that biobeds packed with SMS-rich substrates could ensure the efficient removal of IMZ and
OPP from wastewaters of citrus FPP.

& 2015 Elsevier Inc. All rights reserved.
1. Introduction

Fruit-packaging plants (FPP) constitute a serious point-source
contamination of natural water resources with pesticides like
imazalil (IMZ) and ortho-phenylphenol (OPP). These are used
mostly in citrus FPP for the control of fungal infestations during
storage (Kinay et al., 2007). IMZ is toxic to aquatics, persistent in
soil with DT50s of 44-137 days (Environmental Protection Agency
(EPA) USA, 2003; European Commission (EC), 2009) and of limited
mobility in soil (Kreuzig et al., 2010). On the other hand, OPP is
non persistent with DT50soilo1 d (European Food Safe Authority
(EFSA), 2008), relatively mobile in soil (Zheng et al., 2011), non-
ouzas).

Centre - University of Thes
toxic to mammals and birds but highly toxic to aquatics (European
Food Safe Authority (EFSA), 2008). Monitoring studies in water
bodies adjacent to areas where FPP operate reported the presence
of high concentrations of IMZ and OPP (Castillo et al., 2006; Jon-
kers et al., 2010). Considering the environmental risk imposed by
the mishandling of pesticides used in FPP, the European Com-
mission (EC) granted authorization for use until 2021 and 2019 for
OPP and IMZ respectively under the clause that member states
should pay particular attention to ensure that appropriate waste
management practices to handle the waste solution remaining after
application, including for instance the cleaning water of the drench-
ing system and the discharge of the processing waste are put in place
(European Commission (EC), 2009; European Commission (EC),
2010). Although several studies have addressed this issue using
physicochemical approaches like photocatalysis (Khodja et al.,
2001) or adsorption (Garcia-Portillo et al., 2004), their full
saly
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implementation was hampered by their high cost, high engineer-
ing needs for operation and maintenance and the risk for pro-
duction of toxic intermediates which require further treatment.

Biological treatment of those effluents could be a possible so-
lution either in the form of bioreactors inoculated with tailored-
made pesticide-degrading inocula (Perruchon et al. 2015) or
through biobeds. The latter are simple on-farm systems packed
with organic materials like soil/straw/peat (Castillo et al., 2008) or
compost (Omirou et al., 2012) or spent mushroom substrate (SMS)
(Karanasios et al., 2010). The latter has been proposed as a key
component of biobed packing material (biomixtures) that could
promote their biodepuration capacity (Gao et al., 2015) and at the
same time facilitate the sustainable recycling of this waste pro-
duced by mushroom units (Herrero-Hernandez et al., 2011; Phan
and Sabaratnam, 2012). Recent studies by our group showed that
SMS-rich substrates were the most efficient in dissipating persis-
tent fungicides like thiabendazole and IMZ used in FPP (Karas
et al., 2015). The exact mechanism through which SMS accelerates
the dissipation of pesticides in biomixtures is not yet known and
the direct involvement of the white rot fungi (i.e. Pleurotus os-
treatus or Agaricus bisporus) present in the SMS is not clear. For
example, Garcia-Delgado et al. (2015) showed that soil in-
corporation of sterilized SMS of A. bisporus accelerated the de-
gradation of 3-ring PAHs via stimulation of heterotrophic bacteria
while incorporation of non sterilized SMS enhanced the removal of
5,6-ring PAHs stressing the involvement of A. bisporus in the re-
moval high molecular weight PAHs. Knowledge of the key mi-
crobial component of the SMS and of their role in the dissipation
of pesticides would allow the directed optimization of SMS ap-
plication in biobed systems.

Full scale biobeds packed with a compost-based biomixture
and modified to cope with the high wastewater volumes produced
by citrus FPP were successfully tested by Omirou et al. (2012).
However little is known regarding the processes controlling the
dissipation of the pesticides contained in these effluents and their
interactions with the microbial community of biomixtures.
Knowledge of the processes which dominate the depuration of
those effluents is essential. Biological systems where degradation
predominates over adsorption are preferable (Karanasios et al.,
2012) since the opposite might result in the accumulation of high
pesticide loads in the biomixture which when replaced will re-
quire detoxification increasing the overall implementation cost of
Table 1
The chemical structure, physicochemical properties and environmental fate parameters

Pesticides Chemical structure Water solubility (mg L�1)

Imazalila 184

Ortho-phenylphenolc 560

a European Food Safe Authority (EFSA) 2010 Conclusion on the peer review of the p
b o10% degradation in 5 days.
c European Food Safe Authority (EFSA) 2008 Peer review of the pesticide risk asses
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biobeds (De Wilde et al., 2010). In turn information on the inter-
actions of pesticides with the microbiota colonizing biobeds will
facilitate the optimized operation of those systems through pre-
vention of toxicity effects and maximization of the microbial
catabolic activity. Previous studies have reported a clear correla-
tion between phenoloxidase activity and pesticide degradation in
low pH biomixtures which favor fungal activity (Castillo and Tor-
stensson, 2007), whereas others did not observe any correlation
between microbial indicators and pesticide degradation (Kar-
anasios et al., 2010).

We employed a leaching column study aiming to (a) evaluate
the capacity of different biomixtures composed of SMS, straw and
soil mixed at different various combinations to depurate effluents
containing IMZ and OPP; (b) explore the contribution of P. os-
treatus from SMS on pesticides dissipation by comparison with the
depuration capacity of fresh mushroom substrate (FMS) of P. os-
treatus; comparison between FMS and SMS depuration efficiencies
is essential, as it allows for comparisons at different physiological
colonization states of P. ostreatus and (c) investigate the interaction
of those pesticides with the microbial community in biobed
systems.
2. Materials and methods

2.1. Pesticides

Analytical standards of IMZ (99.8%, Pestanals) and OPP (99.9%,
Pestanals) were purchased from Fluka. Pesticides stock solutions
in methanol were prepared (1000 mg L�1) from analytical stan-
dards and used for analytical purposes. Commercial pesticides
formulation like FUNGAZILs 50EC (IMZ) and FOAMERs20EC (OPP)
were used for the preparation of the aqueous pesticides solutions
discharged on the leaching columns. The main physicochemical
and environmental properties of the two pesticides studied are
shown in Table 1.

2.2. Organic substrates

SMS, soil and straw were mixed in different volumetric ratios to
prepare two of the four substrates tested in the leaching column
study: SMS/Straw/Soil (50/25/25 by volume) and Straw/Soil (75/25
of imazalil (IMZ) and ortho-phenylphenol (OPP).

Vapour pressure (Pa) at 25 °C DT50water (d) DT50soil (d) Kfoc (ml g�1)

1.58�10-4 Stable at pH 5-9b 41–135 2080–8150

0.906 Stable at pH 4-9b 0.11 252–393

esticide risk assessment of the active substance imazalil. EFSA Journal 8(3):1526.

sment of the active substance 2-phenylphenol. EFSA Sci. Rep. 217: 1–67.
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Table 2
Physicochemical properties of the substrates used to assess the dissipation and
sorption of the pesticides studied.

Substrates pH Organic matter (%) Total N (%) C/N

Soila 7.55 1.05 0.13 8.1
Straw 7.15 38.9 0.80 48.6
SMS 6.83 35.5 1.20 29.6
FMS 5.50 42.0 0.72 58.3
SMS/Straw/Soil (50:25:25) 7.10 8.82 0.54 16.3
Straw/Soil (75:25) 7.35 3.26 0.26 12.5

a Soil texture: Sand 37%, Clay 31%, Silt 32% (clay loam).
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by volume). The soil used was collected from a farm of the Na-
tional Agricultural Research Foundation of Greece in Larissa,
Greece. It was sieved (2 mm) and stored at 4 °C prior to use. Wheat
straw was chopped into small pieces (1–3 cm). SMS was obtained
from a P. ostreatus edible mushroom unit (Mpoulogeorgos-Me-
teora, Trikala, Thessaly) after two harvest cycles, while fresh
mushroom substrate of P. ostreatus (FMS) was obtained from the
company DIRFYS, Euvoia, Greece. Mushroom substrates were
chopped into small pieces (1–2 cm long) with a blender and stored
at 4 °C for a maximum period of 10 days until further use. The
physicochemical properties of all materials used are given in Ta-
ble 2. FMS was more acidic than SMS. The latter was characterized
by lower C/N ratio which is attributed to the gradual decomposi-
tion of the more easily degradable fractions of its organic matter,
mostly hemicellulose and cellulose (Koutrotsios et al., 2014), and
straw colonization byprotein-rich fungal biomass

2.3. Leaching column study

The capacity of different organic substrates to remove OPP and
IMZ from wastewaters was evaluated in a leaching column study.
In total 12 PVC columns of 12.5 cm i.d. and 90 cm long were used.
Triplicate columns for each substrate were prepared: SMS, Straw/
Soil, SMS/Straw/Soil and FMS. A metal sieve was installed at the
bottom of all columns to prevent passage of the packing material
in the drainage of the columns. The columns were packed with the
following materials from the bottom to the top: a) a 7-cm layer of
thoroughly washed gravel (2–3 cm i.d); b) an 80 cm layer of bio-
mixture and c) a 3-cm layer of well washed gravel (2–3 cm i.d.) to
ensure uniform wetting and distribution of the pesticide solution
into the biomixture. Pesticide solutions applied to the columns
were loaded in 2 L separatory funnels with their outlet linked to a
plastic tube through which pesticides solutions were discharged at
the top of the columns. A flow controller was installed on the
plastic tube to adjust solution flow rate and the flow on each
column was individually calibrated (flow rates are given below) to
ensure uniform delivery of pesticides solution on all columns. A
plastic funnel was placed at the bottom of each column to collect
the leachates in amber 2.5-L bottles. Right before pesticides ap-
plication the columns were saturated with water and were left to
drain for 4 days.

Columns were treated in a sequential mode with aqueous so-
lutions of OPP (first) and IMZ (secondly). The sequential treatment
scheme employed simulated a realistic wastewater production
scenario from a citrus FPP (treating annually approximately 15000
tones of citrus fruits) treating oranges with the fungicide OPP for a
period of 3 months (January to March) followed by the application
of IMZ to tangerines (April). During the application of OPP two
types of wastewater are produced: i) a dense OPP aqueous solution
(5 g L�1) produced three times per season (approximate total vo-
lume 14 m3) which is expected to be discharged on the biobeds
and ii) a diluted wastewater containing 5 mg L�1 of OPP (fruits
rinsates) which is produced daily at volumes of 25 m3 and is
tional Repository - Library & Information Centre - University of Thes
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currently land-filled in nearby field sites. Regarding IMZ, its ap-
plication later in the season results in the production of approxi-
mately 10 m3 of dense effluent (1.2 g L�1). Based on the above
industrial scenario, the dense OPP- and IMZ-containing waste-
waters are discharged in a 45 m2 biobed system of 1 m depth.

In the column experiment employed, columns were initially
treated for a period of 60 days (day 1 to day 60) with aqueous
solutions of OPP (2.6 g L�1). During this period, OPP solutions
were delivered continuously (24 h d�1) onto the columns at a flow
rate of 12 ml h�1 resulting in a total wastewater and OPP dis-
charge per column of 17.25 L and 44.85 g respectively (4062.5 g of
OPP per m3 of substrate). At the end of the 60-day OPP treatment
period, the columns were left to drain for 5 days (days 61 to 65)
followed by application of aqueous solutions of IMZ (0.275 g L�1)
for a further period of 46 days (days 66 to 112). IMZ aqueous so-
lutions were delivered to the columns every other day at a flow
rate of 17 ml/h (24 h/d) resulting in a total wastewater and IMZ
discharge per column of 9.4 L and 2.6 g respectively (235.5 g of
IMZ per m3 of substrate). It should be noted that fresh OPP solu-
tions were loaded on the separatory funnels every 4 days, analysis
of samples from those solutions at day 1 and at day 4 showed that
OPP was stable under the experimental conditions tested (less
than 10% losses observed during the storage period). Leachates
were collected from the bottom of the columns on 3-day intervals.
At each sampling day, the volume of the leachate collected was
measured and a 100-ml sub-sample was transferred into plastic
bottles which were stored at �20°C until analyzed. A 10-ml
fraction from each leachate sample was removed before storage
and used for the measurement of enzymatic activities.

Upon completion of the treatment period, the amounts of OPP
and IMZ retained in the packing materials of the columns were
determined in order to perform a mass balance analysis. Leaching
columns were dismantled and their content was divided into three
layers (0–20, 20–50 and 50–80 cm). The amounts of pesticides
retained in the different layers of the leaching columns were ex-
tracted by sequential extractions with water and acetonitrile as
described below. The total amount of pesticide recovered by the
substrate at the end of the study, plus the amount of pesticide
leached were deducted from the total pesticide amount applied on
the columns and this amount was considered as ‘dissipated’. This
was a lump process including degradation and non extractable
residues formation (bound residues).

2.4. Pesticide residue analysis

Extraction of IMZ and OPP from water samples was performed
by mixing 2 ml of leachate with 8 ml of methanol or acetonitrile
respectively. The mixture was vortexed for 1–2 minute and the
extract was passed through a 0.45 μm syringe filter (PTFE Syringe
Filter, Whatman) prior to analysis. In all cases tests at three for-
tification levels (0.2, 2 and 20 mg L�1) showed recoveries 480%.

Extraction of pesticides from the packing material of the col-
umns were sequentially performed initially with water and sub-
sequently with an organic solvent. The water extracted pesticide
residues represented the fraction which is readily available,
whereas the fraction extracted with the organic solvent con-
stitutes the less available fraction. Based on this, 4 g of biomixture
were mixed with 40 ml of ddH2O and extracted via agitation in an
orbital shaker at 200 rpm for 30 min. The extract was centrifuged
for 5 min at 7000 rpm and the clear supernatant was collected.
Aqueous extraction was repeated two more times and the super-
natants from each extraction step were combined (120 ml water
extract) and subsequently extracted as described above for aqu-
eous samples. Upon the third aqueous extraction cycle the solid
substrate remaining in the flasks were extracted with 10 ml of
acetonitrile via agitation for 90 min in an orbital shaker as
saly



Fig. 1. The temporal pattern of OPP (a) and IMZ (b) amounts (mg) detected in the
leachates of the SMS (∎), SMS/Straw/Soil (50/25/25 by volume) (●), Straw/Soil (75/
25 by volume) (▲) and FMS (◆) columns. Each value is the mean of three replicate
columns7the standard deviation.
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described above. The extract was subsequently centrifuged as
above and the clear supernatant was collected, filtered through a
syringe filter (0.45 μm PTFE, Whatman) and stored at �20 °C for
subsequent HPLC analysis. Tests at three fortification levels (0.2,
2 and 20 mg kg�1) for the different substrates showed recoveries
480% in all cases.

Pesticide residues were analyzed in an HPLC-UV Marathon III
system equipped with a Grace Smart RP C18 (150 mm�4.6 mm)
column. OPP residues were detected at 254 nm using a mobile
phase of 55:44.5:0.5 of acetonitrile:water:25%NH3 solution (by
volume) while IMZ was detected at 204 nm using a mobile phase
of 80:20 methanol: 0.25% NH3 solution (by volume). The flow rate
was always 1 ml min�1 and the retention times of OPP and IMZ
were 3.4 and 5 min respectively. The limit of quantification (LOQ)
for the two pesticides in solid substrates and water samples were
0.08 mg kg�1 and 0.04 mg L�1 respectively.

2.5. Microbial measurements

2.5.1. Enzymatic activity measurements in the leachates
The activity of laccase and manganese peroxidase, commonly

produced by P. ostreatus, were determined in the leachates of all
columns throughout the experimental period. Laccase activity was
determined spectrophotometrically at 425 nm by oxidation of 2,2-
azinobis-3-ethylbenzothiazoline-6-sulphonic acid (Bourbonnais
and Paice, 1990). The activity of manganese peroxidase was de-
termined spectrophotometrically at 590 nm by oxidative coupling
of 3-methyl-2-benzothiazoline hydrazone and 3-dimethylamino-
benzoic acid (Ngo and Lenhoff, 1980).

2.5.2. Phospholipid Fatty Acid Analysis (PLFAs)
Samples leaching study were analyzed for their content in

microbial Fatty Acids Methyl Esters (FAME) as described by Pa-
padopoulou et al., (2011). For analysis of the data obtained by the
PLFA analysis, FAMEs 15:0, a15:0, i15:0, i16:0, 17:0, i17:0 were used
as indicators of Gram positive (GP) bacteria, 18:1ω9cis/trans,
16:1ω7, cy17:0, cy19:0 were used as indicators of Gram negative
(GN) bacteria, 16:0 was considered as a general microbial indicator,
18:2ω6,9cis/trans were considered as indicators of fungi and
10Me16:0, 10Me17:0, and 10Me18:0 were considered as indicators
of actinobacteria (Frostegård and Bååth, 1996; Findlay, 2004).

2.6. Statistical analysis

The data obtained from mass balance analysis, pesticides dis-
tribution in the column layers and total PLFA yields were subjected
to two way ANOVA followed by Tukey’s posthoc test to identify
significant differences between the substrates studied. Relative
abundance data of FAME indicators of GP and GN bacteria, acti-
nobacteria and fungi were subjected to one way ANOVA to identify
significant differences in the abundance of those microbial groups
in the different column layers for each substrate tested.
3. Results

3.1. Leaching of OPP and IMZ

In all columns the first leaching event of OPP occurred on day
6 with a peak amount observed in the leachate of SMS and SMS/
Straw/Soil columns (Fig. 1a). Thereafter significant amounts of OPP
(80, 32, 19 35 and 32 mg) were found mostly in the leachate of
SMS-columns at days 8, 11, 14, 43 and 57 days respectively. In
general, the total amount of OPP found in the leachates of FMS,
Straw/Soil and SMS/Straw/Soil columns did not significantly differ
(p40.05) (0.014, 0.017 and 0.120% of the total OPP amount applied
titutional Repository - Library & Information Centre - University of Th
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respectively) compared to the SMS-columns where significantly
higher % leaching (po0.05) was observed (1.1%).

Regarding the temporal pattern of IMZ leaching, an early peak
of IMZ (1.8 and 1 mg) was observed in the leachate of the SMS-
and the SMS/Straw/Soil-columns on day 70 (Fig. 1b). Thereafter,
IMZ was detected at considerable amounts (1.5-2.5 mg) in the
leachates of the SMS columns at 79, 83, 96 and 106 days. Leaching
from all the other packing materials peaked between days 87–90
(2.1 mg in Straw/Soil on day 87 and 2.3 mg in FMS on day 90).
With the exception of the SMS-columns, the residues of IMZ
dropped to levels below the LOQ in the leachates from day 104
onwards. Overall, a tendency for higher % leaching of IMZ was
observed in the SMS columns (0.42% of total IMZ amount) fol-
lowed by FMS (0.322%), Straw/Soil (0.22%) and SMS/Straw/Soil
(0.12%) although the differences observed were not significant
(p40.05).
3.2. Mass balance analysis

3.2.1. Ortho-phenylphenol
More than 65% of the total amount of OPP applied to the col-

umns was recovered by the packing materials of the columns at
the end of the study (Table 3). The only exception was the FMS-
columns where ca. 57% of OPP was recovered although this dif-
ference was not statistically significant (p40.05). Furthermore,
over 74% of the recovered amount was extracted with water. When
the distribution of OPP residues in the different horizons of the
columns was examined no significant differences between sub-
strates (p40.05) were observed with 99-100% of OPP recovered
by the top 0–20 cm (Fig. 2a). No significant differences (p40.05)
between substrates in the amounts of OPP considered as dis-
sipated were observed with the highest values, 43%, observed in
the SMS/Straw/Soil-columns and the lowest, 30% in the SMS-col-
umns (Table 3).
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Table 3
The mass balance analysis for ortho-phenylphenol (OPP) and imazalil (IMZ) in the columns packed with the different substrates. Within each row, different letters indicate
significant differences (po0.05) in the amount of pesticide leached, dissipated or retained in the different biomixtures. Absence of letters in pesticide fractions indicate that
no significant differences (p40.05) were found.

Pesticides Fraction (% of initially applied) Substrates

Straw/Soil FMS SMS SMS/Straw/Soil

Ortho-phenylphenol Leached 0.014b 0.017b 1.100a 0.120b
Retained-extracted with water 50.4 48.2 51.8 47.8
Retained-extracted with acetonitrile 17.4 8.8 17.0 17.0
Dissipated 32.2 42.9 30.1 35.1

Imazalil Leached 0.220 0.322 0.420 0.120
Retained-extracted with water 8.1 10.9 19.7 12.5
Retained-extracted with acetonitrile 45.9 46.4 31.0 29.8
Dissipated 45.8 42.5 48.9 57.6

Fig. 2. The distribution of the residues of OPP (a) and IMZ (b) in the three layers (0–
20, 20–50 and 50–80 cm) of the Straw/Soil (75/25 by volume), FMS, SMS and SMS/
Straw/Soil (50/25/25 by volume) columns. Data are presented as % of the amount of
pesticide retained in the columns and extracted by water and acetonitrile (sum is
presented). Each value is the mean of three replicate columns7standard deviation.
Different letters indicate significant differences (po0.05) in the amount of pesti-
cide leached, dissipated or retained in the different biomixtures. The absence of
letters in column layers indicates that no significant differences were found.

Fig. 3. Laccase activity detected in the leachates of the columns packed with FMS
and SMS. Results are presented until day 48 (OPP-treatment period) since no ac-
tivity of laccase was detected from this day onwards. Each value is the mean of
three replicates7the standard deviation. No laccase activity was detected in the
leachates of the columns packed with Straw/Soil and SMS/Straw/Soil.
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3.2.2. Imazalil
No significant differences in the amount of IMZ recovered by

the different biomixtures were observed (p40.05). Approximately
57, 54 and 51% of the applied IMZ were recovered from the FMS-,
Straw/Soil- and SMS-columns respectively compared to 42% re-
covered from the SMS/Straw/Soil-columns respectively (Table 3).
In contrast to OPP, 72% (SMS/Straw/Soil) to 85% (Straw/Soil) of IMZ
recovered by the columns at the end of the study was extractable
with acetonitrile. No significant differences (p40.05) between
substrates in the amounts of IMZ considered as dissipated were
observed with the highest values 57.6%, observed in the SMS/
Straw/Soil-columns and the lowest, 48.9% in the SMS-columns
(Table 3).

Significant differences (po0.05) in the distribution of IMZ re-
sidues in the column profiles of the different substrates were ob-
served (Fig. 2b). Thus, in the columns packed with SMS/Straw/Soil
and SMS nearly all IMZ was recovered from the top 0–20 cm,
tional Repository - Library & Information Centre - University of Thes
/2024 10:51:04 EEST - 3.145.162.204
whereas significantly lower (po0.05) amounts (88 and 79%) were
detected in the top layer of the Straw/Soil- and FMS-columns re-
spectively. In turn, significantly higher (po0.05) amounts of IMZ
(10 and 25% respectively) were recovered from the 20–50 cm of
the Straw/Soil and FMS-columns, while in the latter significant
amounts of IMZ (3.6%) were even found at the 50–80 cm layer
(Fig. 2b).

3.3. Microbial activity and dynamics in the leaching columns

3.3.1. Peroxidases activity
No manganese peroxidase activity was detected in the lea-

chates of the columns throughout the study. Laccase activity was
detected only in the leachates of the columns packed with FMS
and SMS, with significantly higher values (po0.05) observed in
the former (Fig. 3). Laccase activity showed a similar temporal
pattern in the leachates of both substrates with a peak observed at
the first leaching event of OPP (day 6). Thereafter laccase activity
decreased to negligible levels in the leachate of both substrates
from day 10 onwards.

3.3.2. PLFAs
No significant main effects (p40.05) of column layer and or-

ganic substrate on total PLFA yields were observed, whereas sig-
nificant interactions between these two factors were observed
(po0.05). Post-hoc tests showed that the total PLFA yields did not
significantly differ in the different layers of each of the substrates
saly



Fig. 4. The changes in the total concentration of (a) fatty acid methyl esters (FAME)
and (b) the relative abundance of actinobacteria, fungi, GP bacteria and GN bacteria,
and of the general microbial indicator16:0 in the different layers of the substrates
tested at the end of the study. Each value is the mean of three replicates7the
standard deviation. Bars designated by the same letters in graph (a) indicate non-
significant differences (p40.05) in the total PLFA yield measured in the same
column layer in the different substrates, whereas stacked bars designated by the
same letters in graph (b) indicate non significant differences (p40.05) within each
substrate in the relative abundance of the different microbial in the different col-
umn layers. Absence of letters indicates non significant differences.
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tested (Fig. 4a). However, significantly higher PLFA yields
(po0.05) were observed at the 50–80 cm layer of FMS compared
to the PLFAs yields measured at the same layer in SMS/Straw/Soil
and SMS (Fig. 4a). Regarding the microbial community structure,
GN bacteria were dominant in all substrates, especially in the top
layer, whereas fungi showed significantly lower values (po0.05)
in the same layer (Fig. 4b). Apart from the universal reduction in
the abundance of fungi in the surface layer of all substrates, GP
bacteria and actinobacteria also showed a significantly lower re-
lative abundance (po0.05) in the surface layer of FMS and SMS/
Straw/Soil respectively.
4. Discussion

4.1. Pesticides mass balance analysis

Pesticide leaching was generally low from all columns with OPP
showing equal or lower leaching compared to IMZ. This is in
contrast to the generally lower adsorption affinity of OPP (Kf 5.01–
30.3 g ml�1) compared to IMZ (Kf 183.6–412.4 g ml�1) in similar
organic substrates (Karas et al., 2015). In a column study Omirou
et al. (2012) observed a higher mobility of OPP over IMZ, however
different organic substrates, lower hydraulic and pesticide load-
ings and a different overall application scheme was employed in
their study. The higher % leaching of IMZ compared to OPP ob-
served in our study could be attributed to the realistic disposal
scenario employed which took into account the temporal pattern
of wastewater production and their pesticide content in a running
citrus FFP. Thus the preceding application of large volumes of OPP-
contaminated wastewater might have saturated the substrates,
limiting their capacity to retain the following application of IMZ
despite its higher adsorption affinity.

Regarding the processes that contribute to the capacity of the
different substrates to retain OPP, more than half of the amount of
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the fungicide applied on the columns was recovered from the
substrates at the end of the study suggesting a predominance of
adsorption over dissipation processes. This is in contrast to the
limited persistence of OPP in similar organic biomixtures and soil
(Karas et al., 2015). This discrepancy could be attributed to the
particularly high amounts of OPP disposed of in the columns in our
study compared to previous studies (Karas et al., 2015; Omirou
et al., 2012). This combined with the high retention capacity of the
tested substrates resulted to the accumulation of high OPP con-
centrations in the biomixtures and sub-optimal conditions for its
degradation. Although more than 70% of the amount of OPP re-
covered by the columns was extractable with water, in agreement
with its generally weak adsorption (Zheng et al. 2011) and high
water solubility (European Food Safe Authority (EFSA), 2008), 99%
of it remained in the top layer (0–20 cm) of the columns. These
results suggest that the mobility of OPP in biobeds packed with
those substrates is expected to be limited.

Similarly to OPP, more than 51% of the total IMZ applied was
recovered by the different substrates at the end of the study. The
only exception was SMS/Straw/Soil in which less than 50% of the
totally applied IMZ was recovered suggesting higher contribution
of dissipation processes. This is particularly important considering
the general recalcitrance of IMZ (Environmental Protection Agency
(EPA) USA, 2003; Kreuzig et al., 2010). The more important role of
dissipation over adsorption in SMS/Straw/Soil is in line with Karas
et al. (2015) who showed a lower persistence of IMZ in SMS/Straw/
Soil (DT50¼26 d) compared to other biomixtures used in our
study like Straw/Soil (50/50) (DT50¼58 d). In contrast to OPP, IMZ
residues retained in the columns were mostly extractable with
acetonitrile, in line with its low water solubility and stronger ad-
sorption affinity (Kreuzig et al., 2010; European Food Safe Au-
thority (EFSA), 2008). Another point which should be noted is the
variable distribution of IMZ residues in the different columns at
the end of the study. More than 99% of its residues in the SMS/
Straw/Soil and SMS columns were retained in the 0–20 cm layer,
suggesting a limited potential for further leaching, in contrast to
Straw/Soil or FMS where significant levels of IMZ were found be-
low 20 cm. Overall, these results suggest that SMS/Straw/Soil ap-
pears as the most desirable substrate for the removal of IMZ from
citrus FPP effluents.

It should be noted that our experimental set-up does not allow
a distinction between the different dissipation processes con-
tributing to OPP and IMZ loss. However, the overall high de-
gradation rate (Karas et al., 2015), high water solubility (Table 1)
and low adsorption affinity of OPP (Zheng et al., 2011) indicate that
degradation could be the dominant dissipation process in the
substrates studied. Regarding IMZ, its longer persistence (Kreuzing
et al. 2010; Karas et al., 2015), lower water solubility (Table 1) and
higher adsorption affinity (European Food Safe Authority (EFSA),
2010) imply that the formation of non-extractable residues might
have contributed to the pool of pesticide amount considered as
dissipated. However, the short period of IMZ application (46 days)
which is not known to simultaneously form non extractable re-
sidues (European Commission (EC), 2009) and its reported ac-
celerated degradation in substrates like SMS/Straw/Soil (DT50¼26
d) in previous studies (Karas et al., 2015) are in support of a sig-
nificant contribution of degradation in the dissipation of IMZ in
the substrates tested.

4.2. The Role of P. ostreatus

Contrasting results for the removal efficiency of FMS vs SMS for
the two fungicides were observed. The increasing removal effi-
ciency of FMS over SMS for OPP, was opposed to the generally
equal removal efficiency of the two substrates for IMZ. This result
provides a first indication that P. ostreatus actively growing on a
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fresh substrate (FMS) is more efficient in the degradation of phe-
nolic molecules (OPP) compared to the fungal mycelium still
present in the SMS which is depleted of nutrients and energy
sources. The higher acidity of FMS over SMS and other substrates
tested might have also contributed to the higher enzymatic ac-
tivity of P. ostreatus in the former at the initial phase of the ex-
periment (Castillo et al., 2008). In line with this is the significantly
higher activity of laccase in the leachates of the FMS columns
compared to SMS in the first 8 days of the experiment and during
the application period of OPP (1-60 days). In support of this Karas
et al. (2011) showed that P. ostreatus actively degraded OPP via its
lignolytic enzymatic system whereas it only partially degraded
IMZ. Apart from the limited capacity of the fungus to degrade IMZ,
the preceding application of OPP might have resulted in the gra-
dual elimination of P. ostreatus efficiency which was not en-
zymatically active in the substrate when the application of IMZ-
containing effluents was initiated. In agreement with this is the
negligible activity of laccases in the leachates of FMS- and SMS-
columns during the IMZ application period (data not shown).
Previous studies have verified the limited capacity of white rot
fungi such as P. ostreatus to survive competition under wastewater
treatment conditions (Libra et al., 2003; Gao et al., 2008). In ad-
dition, Cordova Juarez et al. (2011) showed that storage of the
mushroom substrate leads to a drastic reduction of the enzymatic
activity of Pleurotus pulmonarious with consequences on its de-
grading activity against chlorothalonil. However based on the
mode of action of IMZ and OPP on fungal cells and the high ap-
plication rates tested in our study, inhibitory effects on non-target
fungi like P. ostreatus present in the substrates tested cannot be
ruled out, thus limiting its role in the depuration efficiency of
biobed systems.

4.3. Interactions of pesticides with the microbial community

Despite that the performance of biobeds relies mostly on their
high biodegradation capacity, little is known regarding the inter-
actions of pesticides with the microbial community in those sys-
tems. Using PLFA analysis, we observed a rather uniform dis-
tribution of the total microbial biomass in the different layers of
the substrates tested at the end of the study. In contrast the re-
lative abundance of the different microbial groups in the column
layers of the different substrates tested varied and the differences
observed were in agreement with the distribution of pesticides
residues in the columns. The significantly lower abundance of
fungi at the surface layer of all substrates, and of actinobacteria
and GP bacteria at the surface layer of SMS/Straw/Soil- and FMS-
columns, is in accordance with the accumulation of the studied
fungicides in the surface layer of those substrates. So far no studies
have investigated the impact of those fungicides on the microbial
community and especially on fungi. IMZ acts by inhibiting the
biosynthesis of ergosterol, the main sterol of the cellular mem-
branes not only of Ascomycetes, which constitute the main target
of IMZ (Guan et al., 1992), but also of Basidiomycetes and Zygo-
mycetes (Wette et al., 2010). Similarly OPP acts by generating ac-
tive oxygen radicals which destroy components of the fungal
membranes in a non-selective mode (Dekker, 1999). Based on their
mode of action and their high application rates in the current
study, adverse effects on off-target fungi should be expected.
Previous studies by Marinozzi et al. (2013) in similar organic
substrates showed different responses of fungi upon exposure to
fungicides with penconazole inducing higher reductions in the
abundance of total fungi compared to cyprodynil and ax-
osystrobin. The differences observed were attributed to differences
in the inherent toxicity of the three pesticides to microorganisms.
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5. Conclusions

Our study provides evidence that SMS-rich substrates may
enhance the depuration capacity of biobeds receiving effluents
from citrus FPP containing OPP and IMZ. Despite its known ca-
pacity to degrade organic pollutants, P. ostreatus present in the
SMS did not seem to actively contribute to the degradation of
those fungicides. Overall the high depuration capacity of the SMS-
rich substrates coupled with the associated benefit of recycling an
organic waste of agricultural origin, further stress their potential
for application in full-scale systems.
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• Fruit-packaging effluents are a seri-
ous point source contamination with
pesticides.

• Pesticide dissipation was determined
in sewage-derived substrates and
biomixtures.

• Ortho-phenylphenol, diphenylamine,
ethoxyquin did not persist in substrates
tested.

• First evidence for the metabolism of
ethoxyquin in soil and other substrates
is shown.

• Thiabendazole and imazalil were per-
sistent but dissipated faster in SMS-
rich substrates.
Abbreviations: TBZ, thiabendazole; IMZ, imazalil; OPP
mushroom substrate.
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Wastewaters from the fruit-packaging industry constitute a serious point source contamination with pesticides.
In the absence of effective depurationmethods, they are discharged inmunicipalwastewater treatment plants or
spread to land.Modifiedbiobeds could be an applicable solution for their treatment.We studied the dissipation of
thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA) and ethoxyquin (EQ),
used by the fruit-packaging industry, in anaerobically digested sewage sludge, liquid aerobic sewage sludge
and in various organic substrates (biobeds packing materials) composed of soil, straw and spend mushroom
substrate (SMS) in various volumetric ratios. Pesticide sorptionwas also determined. TBZ and IMZ showedhigher
persistence especially in the anaerobically digested sewage sludge (DT50= 32.3–257.6 d), in contrast to OPP and
DPAwhichwere rapidly dissipated especially in liquid aerobic sewage sludge (DT50= 1.3–9.3 d). EQwas rapidly
oxidizedmainly to quinone imine (QI)which did not persist and dimethyl ethoxyquinoline (EQNL,minormetab-
olite) which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited pesticide decay verifying
the microbial nature of pesticide dissipation. Organic substrates rich in SMS showed the highest dissipation ca-
pacitywith TBZ and IMZDT50s of ca. 28 d compared to DT50s of N50 d in the other substrates. TBZ and IMZ showed
, ortho-phenylphenol; DPA, diphenylamine; EQ, ethoxyquin; QI, quinone imine; EQNL, dimethyl ethoxyquinoline; SMS, spent
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the highest sorption affinity, whereas OPP and DPA were weakly sorbed. Our findings suggest that current dis-
posal practices could not guarantee an efficient depuration of effluents from the fruit-packaging industry, where-
as SMS-rich biobed organic substrates show efficient depuration of effluents from the fruit-packaging industry
via accelerated dissipation even of recalcitrant fungicides.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Upon their harvest, fruits are transported to fruit-packaging plants
where they are treated with fungicides (thiabendazole (TBZ), imazalil
(IMZ), ortho-phenylphenol (OPP)) or antioxidants (diphenylamine
(DPA), ethoxyquin (EQ)) to minimize losses due to fungal infestations
or physiological disorders during storage (Smilanick et al., 2008; Jung
and Watkins, 2008). Postharvest treatments of fruits result in the
production of large wastewater volumes which are characterized by
low BOD/COD values but high concentrations of pesticides which
should be detoxified prior to environmental release (Santiago et al.,
2011). This need has been laid down on the registration documents of
all relevant pesticides. For example authorization was granted to IMZ
only under the clause that appropriate waste management practices
to handle the waste solution remaining after application, including for
instance the cleaning water of the drenching system and the discharge
of the processing waste are put in place (EC, 2010). The only full-scale
treatment system currently in place is based on pesticide sorption
onto granular activated carbon (Garcia-Portillo et al., 2004). Although
this system is particularly efficient in the removal of TBZ fromwastewa-
ters (EC, 2000) its cost is prohibitive for small to medium enterprises
which constitute the majority of fruit-packaging plants in the Mediter-
ranean region. Recent semi-pilot studies showed that the combination
of membrane bioreactor and advanced oxidation processes could effec-
tively remove TBZ from wastewaters (Sanchez Perez et al., 2014).
Similarly, TiO2 solar photocatalysis showed high depuration efficiency
for the removal of IMZ, TBZ (Jimenez et al., 2015) and OPP (Khodja
et al., 2001) from wastewaters. However those methods produce
several oxidized metabolites which are of unknown toxicity compared
to the parent compound plus their full scale implementation is still
pending.

In the absence of appropriate and established treatment methods,
fruit-packaging plants tend to discharge their wastewater into munici-
pal wastewater treatment plants, abandoned fields or evaporation
ponds. Previous studies have provided indirect evidence for the limited
removal capacity of municipal wastewater treatment plants for IMZ,
TBZ (Campo et al., 2013) and OPP (Jonkers et al., 2010). This, combined
with the inappropriate disposal methods currently in place for these
wastewaters, has resulted in the frequent detection of these pesticides
in receiving water bodies (Castillo et al., 2000, 2006). Thus an efficient,
cost-effective and sustainable treatment system for the depuration of
those effluents is needed. Omirou et al. (2012) provided first evidence
for the potential use of modified biobed systems for the depuration of
wastewaters from the fruit-packaging industry. Such modified sys-
tems should be packed with organic materials which ensure effec-
tive dissipation of the particularly persistent (TBZ (EC, 2013) and
IMZ (Kreuzig et al., 2010)) and toxic pesticides (OPP (EFSA,
2008), EQ (EFSA, 2010b) and DPA (EFSA, 2012)) contained in
those agro-industrial effluents. The optimum composition of
biobed packing material includes a lignocellulosic material like
straw, soil and a humified substrate like peat or compost
(Castillo et al., 2008). Spent mushroom substrate (SMS) of the
fungi Pleurotus ostreatus has been found to accelerate the biodeg-
radation potential of on-farm biobed systems (Karanasios et al.,
2010a). SMS is produced in large quantities in several areas of
the Mediterranean basin and themushroomproduction sector is seeking
sustainable and environmental-friendly uses for this material (Herrero-
Hernandez et al., 2011).
n Centre - University of Th
Up to date, little is known regarding the basic processes controlling
the dissipation of pesticides contained in the wastewaters from the
fruit packaging plants. Only a few studies have investigated the dissipa-
tion of IMZ, TBZ and OPP in soil (Kreuzig et al., 2010; Kesavan et al.,
1976), municipal wastewater treatment plants (Campo et al., 2013;
Korner et al., 2000) and organic substrates (Omirou et al., 2012), while
even less are known regarding DPA. In sewage sludge Gardner et al.
(1982) reported the metabolism of DPA to aniline, 4-hydroxy-DPA
and indole. More recently Shin and Spain (2009) isolated a soil bacteri-
um that metabolized to Krebs cycle intermediates via formation of ani-
line. In contrast, no information are available regarding the dissipation
and metabolism of EQ in the environment. Metabolic studies for EQ
are only available on fish feed, fish meals and fruits which identified
the formation of several metabolites like a dimer of EQ and quinone
imine (QI) (He and Ackman, 2000).

Our study aimed to examine the dissipation of pesticides contained
in thewastewaters from the fruit-packaging industry a) in liquid aerobic
sewage sludge or anaerobically digested sewage sludge from a munici-
pal wastewater treatment plant where those effluents are discharged
and b) in various organic substrates with potential use as packingmate-
rials for modified biobeds (with SMS as a key component). Apart from
pesticide dissipation, the sorption of these pesticides on the organic sub-
strates was also assessed to evaluate the contribution of the different
processes in the removal of pesticides from the wastewaters derived
from the fruit-packaging industry. In addition, the metabolism of EQ in
allmaterialswas also determined considering thatmost of themetabolic
products of this antioxidant compound are equally active and toxic with
the parent compound (Baszczyk et al., 2013).
2. Materials and methods

2.1. Pesticides

Analytical standards of IMZ (99.8% Pestanal®), TBZ (99% Pestanal®),
OPP (99.9% Pestanal®), DPA (99.9% Pestanal®) and EQ (99% Pestanal®)
were purchased from Fluka, Sigma-Aldrich. For pesticide residue analy-
sis, pesticide stock solutions in methanol were initially prepared
(1000 mg l−1) and used for obtaining a series of dilutions at the range
of 0.1–50 mg l−1 which were used for the construction of calibration
curves for quantification of pesticide concentrations by HPLC. Partic-
ularly for EQ, preliminary studies indicated a rapid oxidation of EQ
(m/z 218 [Μ + Η]+, 202 [M+-CH3], 174 [202-C2H4] and retention
time (Rt) 9.9 min) in the substrates tested to two metabolites which
were tentatively identified via LC–MS/MS analysis as (1) 2,6-dihydro-
2,2,4-trimethyl-6-quinone imine (QI) (m/z 188 [M + 1]+, 172 [M+-CH3],
159 [M+-CO], 144 [159-CH3], Rt 9.2) and (2) 2,4-dimethyl-6-
ethoxyquinoline (EQNL) (m/z 202 [M + 1]+, 173 [M+-C2H4], 144
[173-CHO], Rt 10.1 min) (Fig. 1). Therefore, their concentration
along with this of the parent compound were determined in all studies
as is described below andwill be referred as ‘total residues of EQ’. In the
absence of commercial analytical standards, the two EQ metabolites
were synthesized according to the procedure described by Thorisson
et al. (1992) and their structure was verified by NMR analysis (see
Supplementary materials). Commercial formulations of the pesticides
were used in all fortification experiments described below including
TECTO® 50 SC (TBZ), FUNGAZIL® 50 EC (IMZ), FRUITGARD® 20 SL
(OPP), NO SCALD® 31.8 EC (DPA) and XEDAQUINE® 50 EC (EQ).
essaly
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Fig. 1. The chemical structures of the pesticides and their metabolites used in the current study.
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2.2. Organic substrates

Anaerobically digested sewage sludge (10 kg) was obtained from
the municipal wastewater treatment facility of the city of Larissa,
Greece. Anaerobically digested sewage sludge is produced after anaero-
bic digestion at mesophilic temperatures (35 °C) in anaerobic digesters
of continuous flow, allowing complete mixing, and operated at high
load rates. The sludge which was digested was collected from the
primary settling and mixed with small amounts of sludge from the
secondary settling. The sludge produced had a water content of 70%
and its properties are shown in Table 1. Upon its production it was
stored at aerobic conditions in the municipal wastewater treatment
plant prior to its collection. Anaerobically digested sewage sludge was
partially dried (to 50% of its water holding capacity) and it was sieved
to pass through a 3 mm mesh. LASS was collected from the secondary
settlers of the municipal wastewater treatment facility of the city of
Larissa, Greece. The liquid aerobic sewage sludge collected was used
immediately after its collection to avoid prolonged storage which might
suppress the elevated metabolic activities of the microbial biomass.

SMS, soil and strawweremixed in different volumetric ratios to pre-
pare the various organic materials. A soil collected from a farm of the
National Agricultural Research Foundation of Greece in Larissa, Greece
was used for the preparation of the different organic biomixtures. It
was sieved to homogenize (2 mm) and stored at 4 °C prior to use.
Straw was chopped into small pieces (1–3 cm) and passed through a
Table 1
Physicochemical properties of the substrates used to assess the dissipation and sorption of
the pesticides studied.

Substrates pH Organic carbon (%) Total N (%) C/N

Soila 7.55 1.05 0.13 8.1
Straw 7.15 79.2 0.80 97.8
SMS 6.83 71.0 1.20 59.2
SMS/soil (50:50) 7.20 16.9 0.33 51.2
SMS/straw/soil (50:25:25) 7.10 29.3 0.30 97.7
Straw/soil (50:50) 7.40 6.6 0.13 50.8
Straw/SMS/soil (50:25:25) 7.20 23.5 0.20 117.5
ADSS 6.95 10.2 2.1 4.8

a Soil texture: sand 37%, clay 31%, silt 32% (clay loam).

tional Repository - Library & Information Centre - University of Thes
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4.75 mm sieve. SMS was obtained from a P. ostreatus edible mushroom
production unit (Mpoulogeorgos–Meteora, Trikala, Greece). It was
chopped into small pieces and stored at 4 °C until further use. The phys-
icochemical properties of the raw materials (soil, straw and SMS), and
of their biomixtures produced, are given in Table 1. Total organic C
and N contents were determined by wet digestion with concentrated
sulfuric acid and the Kjeldahl digestion method respectively. pH was
determined in amixture of 1:2.5–5 air dried solid substrate:water (w:v).

2.3. Dissipation of pesticides in anaerobically digested sewage sludge

Anaerobically digested sewage sludge was divided into 5 bulk sam-
ples (600 g). These were treated with appropriate amounts of aqueous
solutions of the pesticides DPA, OPP, IMZ, TBZ and EQ (2000 mg l−1),
prepared by their commercial formulations, aiming to a final concentra-
tion of 35 mg kg−1 for DPA, IMZ, TBZ, EQ and 45 mg kg−1 for OPP. The
application of OPP generates much higher wastewater volumes and
their disposal is expected to result in higher concentrations in the re-
ceiving matrices. Upon treatment with pesticides, the moisture content
of the anaerobically digested sewage sludge was adjusted to 60% of its
water holding capacity with addition of ddH2O. Subsequently the bulk
samples were mixed by hand to ensure uniform distribution of pesti-
cides and were divided into 27 subsamples of 20 g which were placed
in airtight plastic bags. All subsamples were incubated in the dark at
25 °C. Immediately after pesticide application, and at regular intervals
thereafter, triplicate sub-samples from each treatment were removed
from the incubator and stored at−20 °C until analyzed by HPLC-UV.

2.4. Dissipation of pesticides in liquid aerobic sewage sludge

Fifteen 200-ml samples of liquid aerobic sewage sludge were trans-
ferred in 500ml stoppered glass bottles. Triplicate liquid aerobic sewage
sludge samples were treated with TBZ, IMZ, EQ, OPP and DPA to give
concentrations of 15mg l−1. Pesticides were added in the form of aque-
ous pesticide solutions (2000 mg l−1) prepared by their commercial
formulations. Upon pesticide treatments, sewage sludge samples were
briefly agitated to ensure uniform dissolution of the pesticides and
were placed in an orbital shaking platform incubator at 100 rpm and
25 °C. Immediately after pesticide application and at regular intervals
saly
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thereafter subsamples (2 ml) were removed aseptically, extracted with
an organic solvent as described below, and analyzed in HPLC-UV.

2.5. Dissipation of pesticides in organic substrates

The dissipation of pesticides in different organic biomixtures was
assessed. For each of the five materials; soil, soil + SMS (50:50),
SMS + straw + soil (50:25:25), straw + soil (50:50) and straw +
SMS + soil (50:25:25) (all volumetric ratios) one bulk sample
(1000 gd.w.) was prepared and separated into 27 sub-samples
(30 g). These were individually treated with aliquots of aqueous so-
lutions of the pesticides TBZ, IMZ, DPA, EQ and OPP aiming to a final
concentration of 35mg a.i. kg−1 d.w for the first four compounds and
45mg a.i. kg−1 d.w for OPP. Those doses were calculated to represent
a realistic loading scenario for a biobed system of 30 m3 which receives
in total 22m3 ofwastewaters containing 10–15mg l−1 of the pesticides
studied. Such concentrations have been reported in recycled wastewa-
ters from citrus fruit-packaging plants in Spain (Santiago et al., 2011).
Pesticides were evenly mixed into the organic substrates and the mois-
ture content was adjusted to 50% of their water holding capacity. All
treatments were incubated in the dark at 25 °C for a period of 70 d.
Moisture content was maintained by regular additions of deionized
water. Immediately after pesticide application and at fixed intervals
thereafter sub-samples from each treatment were removed and stored
at−20 °C until analyzed for pesticide residues.

2.6. Pesticide sorption in organic biomixtures

The sorption of TBZ, IMZ, DPA and OPP in the different organic
substrates selected as organic biomixtures was determined using the
standard batch equilibrium method according to the OECD guideline
106 (OECD, 2000). Preliminary kinetic studies were employed to
determine the most appropriate substrate:solution ratios and equil-
ibration times for all pesticides. Thus, the most appropriate solid
substrate:solution ratios to achieve 20–80% sorption of TBZ, IMZ,
OPP and DPA were 1:50, 1:100, 1:25 and 1:25 respectively. Equilibrium
was achieved at 24 h for TBZ, IMZ and at 8 h for OPP and DPA. The
shorter equilibration time for OPP and DPAwas selected to avoid losses
of those two non-persistent pesticides during the equilibration period.
All materials tested were prepared, air-dried and stored at room
temperature. Individual stock solutions of each pesticide in acetone
(10,000 μg ml−1) were prepared. Appropriate amounts of the stock
pesticide solutions were dissolved in 0.01 M CaCl2 solution leading to
the preparation of four pesticide solutions at concentrations of 10, 20,
40 and 80 μg ml−1. The only exception was OPP for which the concen-
tration levels of the four solutionswere 20, 40, 80 and 100 μgml−1 con-
sidering the higher exposure expected in biobed systems for this
molecule. Triplicate samples (1 to 2 g) were mixed with 50 or 100 ml
of each of the above solutions in screw-cupped vials and shaken
overnight on an orbital shaker (200 rpm) at room temperature. When
equilibrium was reached samples were centrifuged at 4500 rpm for
10 min and the supernatant was collected, extracted and analyzed by
HPLC-UV as is described below.

2.7. Pesticide residue analysis

2.7.1. Pesticide extraction from liquid substrates
Extraction of TBZ, IMZ, EQ and its metabolites QI and EQNL was

performed by mixing 2 ml from liquid aerobic sewage sludge with
8 ml of methanol in 20-ml screw glass vials. The mixture was shaken
vigorously by vortex for a minute and the extract was passed through
a 0.45 μm syringe filter (PTFE Syringe Filter). The filtrate was collected
in a glass tube and stored at−20 °Cuntil analyzed. Regarding extraction
of OPP and DPA the same extraction procedure as above was followed
with the only exception that acetonitrile instead of methanol was used.
titutional Repository - Library & Information Centre - University of Th
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2.7.2. Pesticide extraction from solid substrates
Regarding TBZ extraction, 10 ml of methanol was mixed with 5 g of

solid substrate in a conical flask. The mixture was shaken for an hour in
an orbital shaker (200 rpm), centrifuged for 5 min at 11,000 rpm and
the clear supernatant was recovered. The remaining soil was re-
extracted with further 10 ml of methanol and the clear supernatant
from the two extraction cycles were combined. The extract was passed
through a 0.45 μmsyringe filter (PTFE Syringe Filter) and kept at−20 °C
until analyzed. For the extraction of IMZ from the organic substrates, 5 g
of substrate were mixed with 1 ml of NaOH 1 N and 10 ml of methanol.
Samples were shaken for 30 min and centrifuged at 11,000 rpm for
5 min., the supernatant was collected in a glass bottle, and the soil
was re-extracted with another 10 ml of methanol. After 30 min shaking
and centrifugation, the clear supernatant from the two extraction cycles
were combined and stored at −20 °C. For the extraction of OPP and
DPA, 10 g of soil was mixed with 25 ml of acetonitrile. The mixture
was agitated for 1.5 h in an orbital shaker at 200 rpm and then centri-
fuged at 11,000 rpm for 5min. The supernatantwas collected and stored
at−20 °C.

The extraction of EQ and its metabolites was performed accord-
ing to the original buffered QuΕChERS method, slightly modified
(Anastassiades et al., 2003). Due to the general instability of EQ, spe-
cial care was taken during the extraction to minimize transformation
of EQ to its oxidation derivatives. Thus, all extractions were conducted
into a dark cold-room at 4 °C. Briefly, 5 g of solid substrate were
mixed in a teflon tube with 5 ml of cold ddH2O and were agitated
manually for a minute. Subsequently, 10 ml of acetonitrile were added
and themixturewas vortexed for 1min. The sampleswere subsequent-
ly amended with a mixture of salts (4 g MgSO4, 1 g NaCl and 1.5 g
C6H5Na3O7·2H2O), vortexed for 1 min and centrifuged for 5 min at
7500 rpm. Then 1 ml of the clear supernatant was mixed with 150 mg
MgSO4 and 25 mg PSA and the mixture was vortexed for 30 s and
centrifuged for 1 min at 3000 rpm. The final extracts for all pesticides
were filtered through a syringe filter 0.45 μm (PTFE Syringe Filter)
and analyzed by HPLC.
2.7.3. HPLC analysis
Pesticide residues were analyzed in an HPLC-UV system equipped

with a Grace Smart RP C18 (150 mm × 4.6 mm). TBZ and OPP residues
were detected at 254 nmusing amobile phase of acetonitrile/water/25%
NH3 solution (by volume) with different strengths (39/60.5/0.5 and
55:44.5:0.5 respectively). Under these conditions, the retention time
(Rt) of TBZ and OPP were 3.3 and 3.4 min respectively. IMZ residues
were detected at 204 nm using a mobile phase of 80:20 methanol:NH3

solution 0.25% (by volume). Under those conditions the Rt of IMZ was
5 min. DPA residues were determined at 210 nm using a mobile phase
of 60:30:10 acetonitrile:water:methanol (by volume) with a Rt of
3.5 min. Residues of EQ and its metabolites were determine at 254 nm
using a mobile phase of 69:30:1 acetonitrile:water:NH3 (by volume).
Under these chromatographic conditions EQ, QI and EQNL were eluted
at Rt of 5.7, 4.1 and 5.4 min respectively. In all cases a flow rate of
1 ml min−1 was used. Methods validation procedures are described in
the supplementary material.
2.8. Pesticide dissipation kinetics

The four kinetic models proposed by the FOCUS workgroup on
pesticide degradation kinetics (FOCUS, 2006) were used for fitting the
dissipation data. The single first order kinetic model and three biphasic
models: hockey-stick, first order multi-compartment model and the
double first order in parallel model were used. The χ2 test as well as
visual inspection and the distribution of the residuals were used as
criteria to assess the agreement between calculated and observed data
for a given fit.
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3. Results

3.1. The dissipation of pesticides in anaerobically digested sewage sludge

The dissipation patterns of OPP, DPA, TBZ, IMZ and of the total resi-
dues of EQ are shown in Fig. 2. A rapid dissipation of OPP and DPA
was evident in anaerobically digested sewage sludge with DT50s of
9.3 and 3.6 d respectively (Fig. 2a, Table 2). Similarly, a rapid dissipation
of the total residues of EQ was observed with DT50 of b1 d. From the
two EQ metabolites, EQNL was formed in low amounts but constituted
the only detectable residue from7 d onwards, while only trace amounts
of QI were detected (Fig. 2c). In contrast, TBZ and IMZ showed moder-
ately to high persistence with DT50s of 32.3 and 108.3 d respectively
(Fig. 2b, Table 2).

3.2. The dissipation of pesticides in liquid aerobic sewage sludge

The dissipation patterns of the five pesticides in sterilized and non-
sterilized liquid aerobic sewage sludge are shown in Fig. 3. A rapid
dissipation of OPP, DPA and total residues of EQ was evident with
Table 2
Thehalf-life values of ortho-phenylphenol (OPP), diphenylamine (DPA), imazalil (IMZ), thiabend
and in liquid aerobic sewage sludge.

Pesticides Anaerobically digested sewage sludge Liquid ae

Non Steri

DT50 (d) χ2 (%) Modela DT50 (d)

OPP 9.3 16.0 HS 1.3
DPA 3.6 9.5 SFO 1.5
IMZ 108.3 13.4 SFO 257.6
TBZ 32.3 3.6 FOMC 76.9
EQ + QI + EQNLb 0.46 8.0 SFO 0.18

a SFO: single first order; HS: hockey-stick; FOMC: first order multi-compartment.
b Calculations were made with the sum of residues of ethoxyquin (EQ), quinone imine (QI)
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DT50s of 1.3, 1.5 and b1 d respectively (Table 2, Fig. 3a and c). Regarding
themetabolismof EQ, no residues of the parent compoundwere detect-
ed from 3 d onwards with QI being the major component of the total
residues at day 1, whereas EQNL became the major component from
day 3 onwards (Fig. 3c). In contrast, a slow dissipation of TBZ and IMZ
was observed with DT50s of 76.9 and 257.6 (extrapolated with the
single first order kinetic model) respectively (Fig. 3b). Sterilization of
liquid aerobic sewage sludge significantly inhibited the dissipation of
all pesticides. This is clearly illustrated with EQ which remained the
main component of the total residues of EQ for the first 7 d of the incu-
bation, with the two metabolites, QI and EQNL, becoming the major
components of the total residues from day 14 onwards (Fig. 3d).

3.3. The dissipation of pesticides in organic materials

The dissipation of OPP and DPA in the different substrates was very
rapid within the first 7 d precluding the calculation of realistic DT50
values (Fig. 4a and c). Thus their dissipation was re-determined in an
identical follow up experimentwith focus on the first 72 h after applica-
tion. The results indicated differences in the dissipation rates of the two
azole (TBZ) and total residues of ethoxyquin (EQ) in anaerobically digested sewage sludge

robic sewage sludge

lized Sterilized

χ2 (%) Model DT50 (d) χ2 (%) Model

38.8 SFO 36.0 3.3 SFO
5.13 SFO 28.7 5.3 SFO
2.81 SFO 942.0 3.3 SFO

10.8 SFO 208.7 5.8 SFO
0.001 SFO 4.7 5.6 SFO

and dimethyl ethoxyquinoline (EQNL).
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compounds in the different substrates tested (Fig. 4b and d). For both
compounds the higher dissipation efficiency was evident in SMS/
straw/soil (50:25:25) with DT50s of 0.34 and 1 d for OPP and DPA
respectively. On the other hand, the slowest dissipation rates for those
two compounds were observed in soil with DT50s N 4 d (Table 3).

In accordancewith the dissipation studies in sewage sludge, TBZ and
IMZ were again the most persistent chemicals tested (Fig. 4e and f). For
both pesticides themost rapid dissipation was evident in the substrates
where SMS was the major component (SMS/soil and SMS/straw/soil)
(50% by volume) with DT50s of 20–29 d for IMZ and 22.4–28.3 d for
TBZ (Table 3). In contrast, the slowest dissipation for those compounds
was observed in soil and straw/soil (50:50) for IMZ (DT50= 79.3 d and
58.3 d) and in straw/soil (50:50) for TBZ (DT50 = 236 d).

The dissipation of EQ and its metabolites was very rapid within the
first 7 d after its application with QI being the major component of the
total residues of EQ even at 0 d (Fig. 5). This could be attributed to the
very rapid transformation of EQ to itsmetabolites during the 4 h interval
between pesticide application and collection and storage of T0 samples.
To get amore focused viewof thedissipation andmetabolismkinetics of
EQ, a follow-up study was undertaken to measure the dissipation of EQ
and its metabolites during the first 24 h after application. The slowest
dissipation of EQ and its metabolites was evident in soil (DT50 =
2.7 d) where the parent compound was immediately transformed to
QI which constituted the major component of total residues at 24 h
(Fig. 5a). In contrast in the other substrates tested, EQ was more
gradually transformed to QI (Fig. 5b to e) with DT50s of less than 0.6 d.

3.4. Pesticide sorption onto organic substrates

The pesticide sorption isotherms are shown in Fig. 6. Pesticide sorp-
tion in all cases was well described by the Freundlich equation which
was used for calculation of the sorption parameters (Kf, N) (Table 4).
OPP and DPA showedweak sorptionwith the lowest Kf values observed
in soil (2.47 and 5.57 g ml−1) and the highest in straw/SMS/soil
(50:25:25) (30.3 and 12.02 g ml−1) respectively. IMZ and TBZ showed
higher sorption affinity in the organic substrates which were
titutional Repository - Library & Information Centre - University of Th
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characterized by higher organic matter content compared to soil
where, again the lowest Kf values for both pesticides were measured
(47.2 and 83.4 gml−1 respectively). In agreement with OPP and DPA,
the highest sorption of IMZ was seen in straw/SMS/soil (50:25:25)
(Table 4).

4. Discussion

4.1. Pesticide dissipation in sewage sludge

We initially investigated the dissipation of the pesticides contained
in the wastewaters from the fruit-packaging industry on anaerobically
digested sewage sludge, a by-product of municipal wastewater treat-
ment systems which is increasingly used as soil amendment in agricul-
ture (del la Herras et al., 2005), and in liquid aerobic sewage sludge,
which constitutes themetabolically active biomass found in the biolog-
ical treatment systems of municipal wastewater treatment plants. Both
substrates were efficient in rapidly dissipating OPP, DPA, EQ and its
metabolites (QI and EQNL)with consistently faster dissipation observed
in the latter substrate. It should be noted that the liquid aerobic sewage
sludge used in the current study was not acclimated with the tested
substances in contrast to several previous studies which found that an
acclimation period was essential to achieve effective removal of other
pesticides (Gonzalez et al., 2006). Our findings are in agreement with
previous studies which reported a DT50 of 1.4 d for DPA in a bioreactor
(Christodoulatos et al., 1997) and a rapid metabolism of DPA in sewage
sludge with formation of aniline, imine and 4-hydroxy-DPA (Gardner
et al., 1982). Similarly previous studies in amunicipal wastewater treat-
ment plant in Germany reported the complete removal of OPP although
the metabolic pathway of OPP is not reported (Korner et al., 2000).
Regarding EQ the only other study that have looked into its behavior
in biological wastewater treatment systems showed that it is largely
recalcitrant at both anaerobic and aerobic conditions and can induce
inhibitory effects on the methanotrophic microbial community at
300 mg l−1 (Shah et al., 2005), which are well above the levels tested
in our study.
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Fig. 4.Dissipation patterns of ortho-phenylphenol (OPP) (a & b) diphenylamine (DPA) (c & d)within 70 d orwithin 72 h after their application in different organic substrates respectively.
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EQ showed a slightly different transformation pattern in anaerobically
digested sewage sludge compared to liquid aerobic sewage sludge. This
might reflect the different microbial communities in the two substrates:
The latter substrate is expected to be dominated by microorganisms
accustomed to high metabolic activities and oxidative degradation of
Table 3
The half-life values of ortho-phenylphenol (OPP), diphenylamine (DPA), imazalil (IMZ), thiaben
they were estimated by fitting the best-fitted kinetic model.

Pesticides Soil SMS/soil
(50:50)

SMS
(50:

DT50
(d)

χ2

(%)
Modela DT50

(d)
χ2

(%)
Model DT5

(d)

OPP 4.65 4.98 HS 0.57 9.48 SFO 0.3
DPA 4.08 8.11 SFO 3.16 4.52 FOMC 1.0
IMZ 79.3 2.02 SFO 19.9 12.26 HS 28.6
TBZ 31.7 4.49 FOMC 22.4 7.81 FOMC 28.3
EQ + QI + EQNLb 2.7 7.4 SFO 0.6 10.7 SFO 0.2

a SFO: Single First Order; HS: Hockey-Stick; FOMC: First Order Multi-Compartment.
b Calculations were made with the sum of residues of ethoxyquin, quinone imine (QI) and d
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organic matter like proteobateria and firmicutes (Yang et al., 2011) com-
pared to the former where anaerobic digestion has drastically altered the
microbial community (Pascual et al., 2008). Considering that the main
use of EQ is as preservative of fish meal and fruits (indoor uses) the
vast majority of studies have looked into its metabolism in animal and
dazole (TBZ) and total residues of ethoxyquin (EQ) in soil and other organic substrates as

/straw/soil
25:25)

Straw/soil
(50:50)

Straw/SMS/soil
(50:25:25)

0 χ2

(%)
Model DT50

(d)
χ2

(%)
Model DT50

(d)
χ2

(%)
Model

4 3.16 SFO 2.5 3.46 FOMC 0.56 5.17 FOMC
1 8.43 FOMC 1.04 8.92 FOMC 1.46 5.57 FOMC

8.89 HS 58.3 1.97 HS 46.0 4.32 SFO
6.14 SFO 236.5 7.61 FOMC 54.8 6.04 HS
4.4 DFOP 0.1 6.9 HS 0.1 12.6 HS

imethyl ethoxyquinoline (EQNL).
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plant tissues and a range of metabolites detected including QI, di-
meric EQ, methyl-EQ, EQNL, dihydro-EQ and demethyl-EQ (Gupta
and Boobis, 2005; JMPR, 2005). On the other hand there is lack of
knowledge regarding its metabolism in municipal wastewater treat-
ment plants and environmental compartments. Although QI and EQNL
were detected in our study, no residues of the othermetabolites report-
ed above were observed. Our study provides first evidence for the me-
tabolism of EQ and its oxidation products in liquid aerobic sewage
sludge.

Both types of sewage sludge showed a limited capacity to dissipate
TBZ and IMZ. This is in agreementwith previous findingswhich showed
that municipal wastewater treatment plants acted as point sources for
the contamination of surface water bodies (Campo et al., 2013; Masia
et al., 2013). However, the possibility that higher dissipation efficiency
for TBZ and IMZ could be achieved through acclimation of the liquid
aerobic sewage sludge cannot be ruled out and should be tested in
future studies. During our study no metabolites of TBZ and IMZ were
measured. The metabolism of these two fungicides in sewage sludge is
largely unknown. Recent studies showed that TBZ could be transformed
via oxidation (Fenton/ PhotoFenton process) to OH-TBZ, thiazole-4-
carboxamidine and other derivatives produced upon fusion of the
benzyl ring (Sanchez Perez et al., 2014; Sirtori et al., 2014).
titutional Repository - Library & Information Centre - University of Th
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Sterilization of liquid aerobic sewage sludge resulted in drastic inhi-
bition of pesticide dissipation stressing the microbial nature of the
decay observed. It should be noted that EQ oxidation to QI and EQNL
was also hampered in the sterilized LASS suggesting that those transfor-
mation steps are mostly biologically-driven, an information which was
largely unknown. Overall our data suggest that the direct discharge of
wastewaters from fruit-packaging industry onto municipal wastewater
treatment plants are expected to effectively remove DPA, OPP, EQ and
its derivatives but not the persistent fungicides TBZ and IMZ which
entail a risk for the ecological integrity of receiving ecosystems.

4.2. Pesticide dissipation in organic biomixtures

The recalcitrance of TBZ and IMZ in sewage sludge suggests that
other treatment methods should be applied to effectively eliminate
those fungicides from those agro-industrial effluents. Previous studies
by Omirou et al. (2012) showed that biobeds could be an efficientmeth-
od for the depuration of wastewaters from the citrus fruit-packaging
plants. To further exploit this, we investigated not only the dissipation
of TBZ, IMZ, OPP, previously studied by Omirou et al. (2012) but also
of preservatives like DPA and EQ which are heavily used in packaging
plants of pears and apples. In addition we introduced SMS as a
essaly
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potentially effective organic substrate to ameliorate the depuration
efficiency of biobed systems receiving wastewaters from the fruit pack-
aging industry.

Overall, the persistence of pesticides in soil and in the different organ-
ic biomixtures increased in the following order EQ b DPA b OPP b TBZ=
IMZ in accordance with the sewage sludge dissipation patterns. The long
persistence of both IMZ (US EPA, 2003; Kreuzig et al., 2010) and TBZ
(Kesavan et al., 1976; EC, 2013) in soil is well documented. Regarding or-
ganic biomixtures, our results are in agreementwithOmirou et al. (2012)
who identified OPP and IMZ as the least persistent and the most persis-
tent chemicals respectively, in different organic biomixtures derived
from by-products of the winery and olive oil agro-industries compared
to our SMS-rich biomixtures. No possible metabolites of TBZ, IMZ, OPP
and DPA were found in the substrates tested although a more sensitive
and high-resolution analytical approach is needed to verify this. Little is
known regarding the metabolism of those fungicides in soil and they
are mostly coming from regulatory documents. TBZ dissipation in
soil was followed by formation of negligible amounts of benzimidazole
and 5-OH-TBZ (EC, 2013), while for IMZ its main metabolite was
IMZ-ethanol which was detected at low amounts (EFSA, 2010a).

Organic biomixtures showed a higher dissipation capacity compared
to soil for all pesticides tested. Substrateswith the highest % of SMS such
as SMS/straw/soil (50:25:25) and SMS/soil (50:50) showed the highest
Table 4
Sorption parameters Kf (gml−1), Kfoc (gml−1) and N for the pesticides ortho-phenylphenol (OP
strates used in the study.

Pesticides Soil SMS/soil (50:50) SMS/straw

Kf Kfoc N Kf Kfoc N Kf

OPP 2.47 235.2 1.065 5.01 29.6 1.195 11.67
DPA 5.57 530.5 1.574 11.57 68.5 1.245 6.37
TBZ 47.2 4965.7 1.141 217.2 1285.2 0.755 226.8
IMZ 83.4 7942.9 1.013 222.3 1315.4 0.976 186.2
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dissipation potential for all pesticides tested. In particular, the DT50s
obtained for TBZ and IMZ in those organic biomixtures were amongst
the lowest ever reported verifying their enhanced dissipation efficiency
(Kesavan et al., 1976; Kreuzig et al., 2010;Omirou et al., 2012). Ourfind-
ings are in accordancewith the positive correlation between % of SMS in
biobed substrates and pesticide biodegradation observed by Karanasios
et al. (2010a). This substrate is generally rich in complex and partly
degraded organic C macromolecules (cellulose, hemicellulose, lignin)
andN substrateswhich could support the growth of a particularly active
microbial community able to degrade pesticides (Marin-Benito et al.,
2009). The contribution of P. ostreatus by the SMS on the higher dissipa-
tion capacity of the SMS-augmented materials is not clear. Previous
studies have shown that the role of this fungus on the degradation of
pesticides in similar organic biomixtures is negligible (Karanasios
et al., 2010b) and its mycelium is progressively surpassed by other
fast-growing microorganisms when mixed with soil (Tuomela et al.,
2002). The significant role of white rot fungi like P. ostreatus on the
degradation of pesticides is mostly documented in peat-based organic
biomixtures where their survival and activity is favored by the acidic
pH of those materials (Castillo et al., 2008), whereas the neutral to alka-
line pH of the organic biomixture used in our study are not expected to
favor their survival. However, the indirect role of P. ostreatus in partly
degrading and modifying the properties of the rawMSmaterial leading
P), diphenylamine (DPA), imazalil (IMZ) and thiabendazole (TBZ) in soil and organic sub-

/soil (50:25:25) Straw/soil (50:50) Straw/SMS/soil (50:25:25)

Kfoc N Kf Kfoc N Kf Kfoc N

39.8 1.374 8.01 120.0 1.273 30.3 128.9 1.573
21.7 1.456 7.82 117.9 1.353 12.02 51.1 1.245

774.1 0.800 128.4 1936.7 0.926 120.3 511.9 1.091
635.5 1.100 183.6 2769.2 1.005 412.4 1754.9 0.798
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to an optimized co-substrate for pesticide degradation may be critical
for the observed SMS performance. Overall, the beneficial effect of
SMS on the dissipation efficiency of biobeds packing material provides
an option to the mushroom units in the Mediterranean basin for the
sustainable, environmental-friendly and effective exploitation of this
waste.

The inclusion of high proportions of straw (50%) in the organic
substrates substantially increased the persistence of most pesticides
with TBZ showing the most prominent increase. Despite the well
documented beneficial effect of straw on pesticides dissipation in
biobed systems (Castillo et al., 2008), its high organic C content could
enhance the sorption affinity of lipophilic substances like TBZ and IMZ
resulting in higher persistence due to reduced bioavailability. The
higher Kf values reported for straw-rich packaging materials in our
sorption isotherm results are in line with this.

EQ showed similar metabolic patterns in soil and organic substrates
with rapid conversion to QI which constituted the major component of
the total residues of EQ 24 h after application. On the other hand EQNL
was a minor metabolite which was formed at low amounts but
persisted until 70 d post-application. This metabolic pattern deviates
from the metabolic pattern observed in anaerobically digested sewage
sludge. This could be attributed to the different compositions of those
materials which are expected to support microbial communities with
different metabolic capacities: anaerobically digested sewage sludge is
mostly composed of hydrocarbons, amino acids and lipids compared
to biobedmaterials which are mostly composed of cellulose, hemicellu-
lose and lignin (Rodriguez-Cruz et al., 2012) and may favor aerobic
oxidation processes. This is the first study providing data for the fate
and the transformation of EQ in soil and biobed packing material.

4.3. Pesticide sorption onto organic biomixtures

Sorption of pesticides in soil and organic biomixtures provided
explanations for the dissipation patterns observed. In particular, OPP
and DPA showed a weak sorption in agreement with previous studies
which also showed moderate sorption for those pesticides with
soil Kfoc values of 894–1793 ml g−1 (Zheng et al., 2011) and
1212–6593 ml g−1 (US EPA, 1998) respectively. On the other hand,
TBZ and IMZ were strongly sorbed onto soil and organic biomixtures
which is in accordance with previous soil sorption studies with Kfoc

values of 4059 (Kreuzig et al., 2010) to 4357 ml g−1 for IMZ (EFSA,
2010a) and of 1104 to 22,467 ml g−1 for TBZ (EC, 2001). The strong
sorption of IMZ and TBZ combined with their limited biodegradability
explain the general recalcitrance of those chemicals. Omirou et al.
(2012) also showed in column and full-scale biobeds that OPP wasmo-
bile but dissipated rapidly compared to TBZ and IMZwhich remained in
the top layers of the biobed (an indication of high sorption affinity) and
dissipated at low rates.

Regarding the impact of substrate on the sorption behavior of
pesticides, soil showed a substantially lower sorption affinity compared
to the organic substrates tested. This is in agreement with previous
studies which have attributed this to the higher organic C content of
the latter providing more sorption sites for non-polar pesticides (De
Wilde et al., 2009). Amongst the organic biomixtures tested, straw/
SMS/soil (50:25:25) showed the highest sorption capacity for OPP,
DPA and IMZ and SMS/straw/soil (50:25:25) for TBZ. This is in accor-
dance with the higher organic C content of those two substrates
compared to the rest of the substrates tested (Table 1). Pesticides
desorption was not measured in the current study. Previous studies
have suggested a limited reversibility of pesticides adsorption in soil
amended with SMS (Marin-Benito et al., 2009) and various biobeds
packing materials (Karanasios et al., 2010b) compared to soil. On the
one hand, this might favor the efficient removal of pesticides from the
agro-industrial effluents but on the other hand it might result in limited
bioavailability and retardation of the degradation of the retained pesti-
cide residues.
titutional Repository - Library & Information Centre - University of Th
04/2024 10:51:04 EEST - 3.145.162.204
5. Conclusions

Wastewaters from the fruit packaging industry constitute a serious
point source contamination of natural water resources with pesticides.
Our findings suggest that municipal wastewater treatment plants are
expected to effectively remove OPP, DPA, EQ and its oxidation products
but not TBZ and IMZ stressing the need for the implementation of more
efficient but still simple and low-cost depuration methods. SMS-rich
organic biomixtures accelerated the dissipation of all pesticides, partic-
ularly of the recalcitrant TBZ and IMZ, suggesting that biobeds packed
with such organic biomixtures could effectively depurate the wastewa-
ters from the fruit-packaging industry.

Acknowledgements

This work was partially funded by the Research Promotion Founda-
tion of the Republic of Cyprus (0308) through the project: Evaluation of
biobeds for the decontamination of wastewaters of agricultural origin —
BIOBEDS. Further funding was provided by the Research Committee of
the University of Thessaly through the research project BIOBEDS: Mini-
mizing point source contamination of the natural resources of Thessaly by
wastewaters from the fruit — packaging industry and through the Post-
graduate Program “Biotechnology-Quality assessment in Nutrition and
the Environment”, Department of Biochemistry andBiotechnology, Uni-
versity of Thessaly. The authors would like to thank Alfa Agricultural
Supplies S.A, and FOMESA Hellas for providing formulations of IMZ,
DPA and OPP.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2015.05.086.

References

Anastassiades, M., Lehotay, S.J., Stajnbaher, D., Schenck, F.J., 2003. Fast and easy
multiresidue method employing acetonitrile extraction/partitioning and “dispersive
solid-phase extraction” for the determination of pesticide residues in produce.
J. AOAC Int. 86, 412–431.

Baszczyk, A.B., Augustyniak, A., Skolimowski, J., 2013. Ethoxyquin: an antioxidant used in
animal feed. Int. J. Food Sci. http://dx.doi.org/10.1155/2013/585931 (Article ID
585931).

Campo, J., Masia, A., Blasco, C., Pico, Y., 2013. Occurrence and removal efficiency of pesti-
cides in sewage treatment plants of fourMediterranean River Basins. J. Hazard.Mater.
263P, 146–157.

Castillo, L.E., Ruepert, C., Solis, F., 2000. Pesticide residues in the aquatic environment of
banana plantation areas in the North Atlantic Zone of Costa Rica. Environ. Toxicol.
Chem. 19, 1942–1950.

Castillo, L.E., Martinez, E., Ruepert, C., Savage, C., Gilek, M., Pinnock, M., Solis, E., 2006.
Water quality andmacroinvertebrate community response following pesticide appli-
cations in a banana plantation, Limon, Costa Rica. Sci. Total Environ. 367, 418–432.

Castillo, M.d.P., Torstensson, L., Stenstrom, J., 2008. Biobeds for environmental protection
from pesticides use — a review. J. Agric. Food Chem. 56, 6206–6219.

Christodoulatos, C., Koutsospyros, A.B., Brodman, B.W., Korfiatis, G.P., 1997. Biodegrada-
tion of diphenylamine by selected microbial cultures. J. Environ. Sci. Health A32,
15–30.

DeWilde, T., Spanoghe, P., Ryckeboer, J., Jaeken, P., Springael, D., 2009. Sorption character-
istics of pesticides onmatrix substrates used in biopurification systems. Chemosphere
75, 100–108.

del la Herras, J., Manas, P., Labrador, J., 2005. Effects of several applications of digested
sewage sludge on soil and plants. J. Environ. Sci. Health A40, 437–451.

Environmental Protection Agency (EPA) USA, 1998. R.E.D. Facts—Diphenylamine. EPA-
738-F-97-010.

Environmental Protection Agency (EPA) USA, 2003. Reregistration Eligibility Decision for
Imazalil Case No. 2325. p. 74.

European Commission (EC), 2000. Opinion of the scientific committee on plants regard-
ing the evaluation of thiabendazole in the context of council directive 91/414/EEC
concerning the placing of plant protection products on the market — The Scientific
Committee on Plants. SCP/THIABEN/002—Final, p. 7.

European Commission (EC), 2001. Review report for the active substance thiabendazole
finalised in the Standing Committee on Plant Health at its meeting on 12 December
2000 in view of the inclusion of thiabendazole in Annex I of Directive 91/414/EEC.
7603/VI/97—Final.

European commission (EC), 2010. Draft Assessment Report, Initial Risk Assessment
Provided by the RapporteurMember State the Netherlands for the Existing Substance
Imazalil volume 1, pp. 1–151.
essaly

http://dx.doi.org/10.1016/j.scitotenv.2015.05.086
http://dx.doi.org/10.1016/j.scitotenv.2015.05.086
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0180
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0180
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0180
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0180
http://dx.doi.org/10.1155/2013/585931
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0005
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0005
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0005
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0010
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0010
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0010
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0015
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0015
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0190
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0190
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0025
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0025
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0025
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0030
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0030
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0030
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0195
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0195
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0200
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0200
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0205
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0205
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0210
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0210
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0210
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0210
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0215
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0215
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0215
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0215
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0220
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0220
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0220


139P. Karas et al. / Science of the Total Environment 530–531 (2015) 129–139

Institu
20/04
European Commission (EC), 2013. Draft renewal assessment report prepared according
to the commission regulation (EU) N.1141/2010. Second Programme for the Renewal
of the Inclusion of the Following Active Substance under Regulation (EC) 1107/2009.
Thiabendazole vol. 1 (Report and proposed decision).

European Food Safe Authority (EFSA), 2008. Conclusion on pesticide peer review. Peer
review of the pesticide risk assessment of the active substance 2-phenylphenol.
EFSA Sci. Rep. 217, 1–67.

European Food Safety Authority (EFSA), 2010a. Conclusion on the peer review of the
pesticide risk assessment of the active substance imazalil. EFSA J. 8 (3), 1526.

European Food Safety Authority (EFSA), 2010b. Conclusion on the peer review of the
pesticide risk assessment of the active substance ethoxyquin. EFSA J. 8 (9), 1710.

European Food Safety Authority (EFSA), 2012. Conclusion on the peer review of the
pesticide risk assessment of the active substance diphenylamine. EFSA J. 10 (1),
2486–2545.

FOCUS, 2006. Guidance document on estimating persistence and degradation kinetics
from environmental fate studies on pesticides in EU registration. Report of the
FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/
2005 version, 2.0, 2006 (434 pp.).

Garcia-Portillo, M., Avino, E.S., Vicente, J.O., De Andres, R.L., Jimenez, M.d.l.A.S., Blanco
J.P.L., 2004. Purification system for wastewater coming from fruit and vegetable
processing plants and phytosanitary treatments in the field. United States Patent,
US 6,709,585 B1, pp. 9.

Gardner, A.M., Alvarez, G.H., Ku, Y., 1982. Microbial degradation of 14C-diphenylamine in
a laboratory model sewage sludge system. Bull. Environ. Contam. Toxicol. 28, 91–96.

Gonzalez, S., Muller, J., Petrovic, M., Barcelo, D., Knepper, T.D., 2006. Biodegradation
studies of selected priority acidic pesticides and diclofenac in different bioreactors.
Sci. Total Environ. 144, 926–932.

Gupta, P.K., Boobis, A., 2005. Ethoxyquin (addendum). http://www.inchem.org/documents/
jmpr/jmpmono/v2005pr-10.pdf.

He, P., Ackman, R.G., 2000. HPLC determination of ethoxyquin and its major oxida-
tion products in fresh and stored fish meals and fish feeds. J. Sci. Food Agric. 80,
10–16.

Herrero-Hernandez, E., Andrades, M.S., Marın-Benito, M.S., Sanchez-Martın, M.J., Rodrıguez-
Cruz,M.S., 2011. Field-scale dissipation of tebuconazole in a vineyard soil amendedwith
spentmushroom substrate and its potential environmental impact. Ecotoxicol. Environ.
Saf. 74, 1480–1488.

Jimenez, M., Maldonado, M.I., Rodriguez, E.M., Hernandez-Ramirez, A., Saggioro, E.,
Carrae, I., Sanchez, J.A., 2015. Supported TiO2 solar photocatalysis at semi-pilot
scale: degradation of pesticides found in citrus processing industry wastewater,
reactivity and influence of photogenerated species. J. Chem. Technol. Biotechnol. 90,
149–157.

JMPR, 2005. Pesticide residues in food—2005. Report of the joint meeting of the FAO panel
of experts on pesticide residues in food and the environment and the WHO core as-
sessment group on pesticide residues. JMPR Report, Ethoxyquin 035 (http://www.
fao.org/ag/AGP/AGPP/Pesticid/JMPR/Download/99eva/14Ethoxyquin.pdf).

Jonkers, N., Sousa, A., Galante-Oliveira, S., Barroso, C.M., Kohler, H.P.E., Giger, W., 2010.
Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro,
Portugal. Environ. Sci. Pollut. Res. 17, 834–843.

Jung, S.-K., Watkins, C.B., 2008. Superficial scald control after delayed treatment of apple
fruit with diphenylamine (DPA) and 1-methylcyclopropene (1-MCP). Postharvest
Biol. Technol. 50, 45–52.

Karanasios, E., Tsiropoulos, N., Karpouzas, D.G., Menkissoglu-Spiroudi, U., 2010a. Novel
biomixtures based on local Mediterranean ligninocellulosic materials: evaluation
for use in biobeds. Chemosphere 80, 914–921.

Karanasios, E., Tsiropoulos, N., Karpouzas, D.G., Ehaliotis, C., 2010b. Degradation and
adsorption of pesticides in compost-based biomixtures as potential substrates for
biobeds in south Europe. J. Agric. Food Chem. 58, 9147–9156.
tional Repository - Library & Information Centre - University of Thes
/2024 10:51:04 EEST - 3.145.162.204
Kesavan, R., Van Wambeke, E., Van Assche, C., 1976. The effects of certain factors on the
persistence of thiabendazole, 2-(4-thiazolyl) benzimidazole in the soil environment.
Meded. Fak. Landbouwwet. R. U. Gent 41 (2), II.

Khodja, A.A., Sehili, T., Pilichowski, J.-F., Boule, P., 2001. Photocatalytic degradation of
2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A
Chem. 141, 231–239.

Korner, W., Bolz, U., Submuth, W., Hiller, G., Schuller, W., Hanf, V., Hagenmaier, H., 2000.
Input/output balance of estrogenic active compounds in a major municipal sewage
plant in Germany. Chemosphere 40, 1141–1142.

Kreuzig, R., Hartmann, C., Teigeler, J., Höltge, S., Cvetkovic, B., Schlag, P., 2010. Develop-
ment of a novel concept for fate monitoring of biocides in liquid manure and
manured soil taking 14C-imazalil as an example. Chemosphere 79, 1089–1094.

Marin-Benito, J.M., Sanchez-Martin, M.J., Andrades, M.S., Periz-Clavijo, M., Rodriguez-
Cruz, 2009. Effect of spent mushroom substrate amendment of vineyard soils on
the behavior of fungicides: 1. Adsorption–desorption of penconazole and metalaxyl
by soils and subsoils. J. Agric. Food Chem. 57, 9634–9642.

Masia, A., Campo, J., Vazquez-Roig, P., Blasco, C., Pico, Y., 2013. Screening of currently used
pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain).
J. Hazard. Mater. 263P, 95–104.

OECD 106, 2000. OECD Guideline for the Testing of Chemicals: Adsorption–desorption
using a Batch Equilibrium Method.

Omirou, M., Dalias, P., Costa, C., Papastefanou, C., Dados, A., Ehaliotis, C., Karpouzas, D.G.,
2012. Exploring the potential of biobeds for the depuration of pesticide-contaminated
wastewaters from the citrus production chain: laboratory, column and field studies.
Environ. Pollut. 166, 31–39.

Pascual, I., Aviles, M., Aguirreola, J., Sanchez-Diaz, M., 2008. Effect of sanitized and non-
sanitized sewage sludge on soil microbial community and the physiology of pepper
plants. Plant Soil 310, 41–53.

Rodriguez-Cruz, M.S., Herrero-Hernandez, E., Ordaz, J.M., Marin-Benito, J.M., Draoui, K.,
Sanchez-Martin, M.J., 2012. Adsorption of pesticides by sewage sludge, grape marc,
spent mushroom substrate and by amended soils. Int. J. Environ. Anal. Chem. 92,
933–948.

Sanchez Perez, J.A., Carra, A., Sirtori, C., Aguera, A., Esteban, B., 2014. Fate of thiabendazole
through the treatment of a simulated agro-food industrial effluent by combined
MBR/Fenton processes at mg/L scale. Water Res. 51, 55–63.

Santiago, D.E., Melian, E.P., Rodriguez, C.F., Mendez, J.A.O., Perez-Baez, S.O., Dona-
Rodriguez, J.M., 2011. Degradation and detoxification of banana postharvest treat-
ment water using advanced oxidation techniques. Green Sustain. Chem. 1, 39–46.

Shah, A.G., Pierson, J.A., Pavlostathis, S.G., 2005. Fate and effect of the antioxidant
ethoxyquin on a mixed methanogenic culture. Water Res. 39, 4251–4263.

Shin, K.A., Spain, J.C., 2009. Pathway and evolutionary implications of diphenylamine bio-
degradation by Burkholderia sp. strain JS667. Appl. Environ.Microbiol. 75, 2694–2704.

Sirtori, C., Aguera, A., Carra, I., Sanchez Perez, J.A., 2014. Identification and monitoring of
thiabendazole transformation products in water during Fenton degradation by
LC-QTOF-MS. Anal. Bioanal. Chem. 406, 5323–5337.

Smilanick, J.L.,Mansour,M.F., Gabler, F.M., Sorenson, D., 2008. Control of citrus postharvest
green mold and sour rot by potassium sorbate combined with heat and fungicides.
Postharvest Biol. Technol. 47, 226–238.

Thorisson, S., Gunstone, F.D., Hardy, R., 1992. Some oxidation products of ethoxyquin
including those found in autoxidising systems. Chem. Phys. Lipids 60, 263–271.

Tuomela, M., Oivanen, P., Hatakka, A., 2002. Degradation of synthetic 14C-lignin by various
white-rot fungi in soil. Soil Biol. Biochem. 34, 1613–1620.

Yang, C., Zhang,W., Liu, R., Li, Q., Li, B.,Wang, S., Song, C., Qiao, C.,Mulchandani, A., 2011. Phy-
logenetic diversity andmetabolic potential of activated sludgemicrobial communities in
full-scale wastewater treatment plants. Environ. Sci. Technol. Lett. 4, 7408–7415.

Zheng, C., Focks, A., Ellebrake, K., Eggers, T., Fries, E., 2011. Sorption of ortho-phenylphenol
to soils. Clean Soil Air Water 39, 116–120.
saly

http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0225
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0225
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0225
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0225
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0230
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0230
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0230
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0235
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0235
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0240
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0240
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0245
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0245
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0245
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0250
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0250
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0250
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0250
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0050
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0050
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0050
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0055
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0055
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0055
http://www.inchem.org/documents/jmpr/jmpmono/v2005pr-10.pdf
http://www.inchem.org/documents/jmpr/jmpmono/v2005pr-10.pdf
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0060
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0060
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0060
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0070
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0070
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0070
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0075
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0075
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0075
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0075
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0075
http://www.fao.org/ag/AGP/AGPP/Pesticid/JMPR/Download/99eva/14Ethoxyquin.pdf
http://www.fao.org/ag/AGP/AGPP/Pesticid/JMPR/Download/99eva/14Ethoxyquin.pdf
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0080
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0080
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0085
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0085
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0085
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0090
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0090
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0090
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0265
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0265
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0265
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0270
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0270
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0270
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0100
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0100
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0100
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0100
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0095
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0095
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0105
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0105
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0105
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0105
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0275
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0275
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0275
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0110
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0110
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0110
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0280
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0280
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0115
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0115
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0115
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0120
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0120
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0120
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0125
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0125
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0125
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0130
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0130
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0130
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0135
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0135
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0140
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0140
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0145
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0145
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0150
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0150
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0150
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0155
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0155
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0155
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0160
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0160
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0165
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0165
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0165
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0170
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0170
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0170
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0175
http://refhub.elsevier.com/S0048-9697(15)30144-3/rf0175


I
f
r

P
E
D
a

b

c

I

h

•
•
•
•
•

a

A
R
R
A
A

K
B
F
P
B
T

D
c
t
C

(
h
0

Institutional Repo
20/04/2024 10:5
Journal of Hazardous Materials 320 (2016) 635–644

Contents lists available at ScienceDirect

Journal  of  Hazardous  Materials

j o ur nal ho me pa ge: www.elsev ier .com/ locate / jhazmat
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 i g  h  l  i g  h  t  s

Fruit-packaging  plants  wastewaters  constitute  a  serious  point  source  contamination.
Biodepuration  with  pilot biobeds  achieved  >99.5%  removal  of the  pesticides  tested.
Bioaugmentation  with  tailored-made  inocula  maximized  depuration  for  thiabendazole.
Risk  assessment  suggested  no  unacceptable  risk  by  the  release  of  biobed  effluents.
Bioaugmentation  or  composting  could  decontaminate  the  spent  biobed  packing  material.
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a  b  s  t  r  a  c  t

Wastewaters  from  fruit-packaging  plants  contain  high  loads  of toxic  and  persistent  pesticides  and  should
be  treated  on site.  We  evaluated  the  depuration  performance  of  five  pilot biobeds  against  those  effluents.
In  addition  we  tested  bioaugmentation  with  bacterial  inocula  as a  strategy  for  optimization  of  their
depuration  capacity.  Finally  we  determined  the  composition  and  functional  dynamics  of  the  microbial
community  via  q-PCR.  Practical  issues  were  also  addressed  including  the  risk  associated  with  the direct
environmental  disposal  of  biobed-treated  effluents  and  decontamination  methods  for  the spent  packing
material.  Biobeds  showed  high  depuration  capacity  (>99.5%)  against  all pesticides  with  bioaugmentation
maximizing  their  depuration  performance  against  the persistent  fungicide  thiabendazole  (TBZ).  This  was
followed  by  a  significant  increase  in  the  abundance  of  bacteria,  fungi  and  of  catabolic  genes  of  aromatic
compounds  catA and  pcaH. Bioaugmentation  was  the  most  potent  decontamination  method  for  spent
hiabendazole packing  material  with  composting  being  an effective  alternative.  Risk  assessment  based  on  practical  sce-
narios  (pome  and  citrus  fruit-packaging  plants)  and  the  depuration  performance  of the  pilot  biobeds
showed  that  discharge  of the  treated  effluents  into  an  0.1-ha  disposal  site  did  not  entail  an  environ-
mental  risk,  except  for TBZ-containing  effluents  where  a larger  disposal  area  (0.2  ha)  or bioaugmentation
alleviated  the  risk.

©  2016  Elsevier  B.V.  All  rights  reserved.

Abbreviations: TBZ, thiabendazole; IMZ, imazalil; OPP, ortho-phenylphenol;
PA,  diphenylamine; SMS, spent mushroom substrate; RACs, regulatory acceptable
oncentrations;  TER, toxicity exposure ratio; PECs, predicted environmental concen-
rations; HQ, hazard quotient; EFSA, European food safety authority; EC, European
ommission.
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1. Introduction

Postharvest treatment of fruits with pesticides guarantees their
protection from fungal infestations and physiological disorders

during storage. However, it leads to the production of large volumes
of pesticide-contaminated effluents whose discharge without prior
treatment entails serious environmental risks [1]. This is exempli-
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ed by the high aquatic toxicity of the pesticides used in this sector
ike thiabendazole (TBZ) [2] imazalil (IMZ) [3], ortho-phenylphenol
OPP) [4] and diphenylamine (DPA) [5].

The need for treatment of those effluents is stressed in the
elevant pesticide regulatory documents which state that member-
tates should ensure that appropriate waste management practices to
andle the waste solution remaining after application are put in place
6]. Several methods have been tested for the treatment of those
ffluents but integrated full scale implementation has not been
chieved yet. Garcia-Portilo et al. [7] patented a treatment system
ased on activated carbon which showed high removal efficiency
or TBZ. However its high cost have prevented its wide implementa-
ion in fruit-packaging plants. Recent studies by Sanchez Perez et al.
8] proposed a combined membrane biological reactor/Fenton-
hoto Fenton process for the dissipation of TBZ. However this study
as performed at pesticide levels (0.1 mg  L−1) which are multi-

old lower than the levels found in the effluents. In addition, those
ethods lead to the formation of oxidation products of unknown

oxicity [9]. In the absence of treatment systems industries dis-
ose their effluents in municipal sewage treatment plants which
re not effective in the removal of those pesticides transferring the
ontamination to receiving water systems [10].

Biological treatment systems like biobeds could be a possible
olution for the treatment of those effluents. They are simple and
fficient systems used up to now for the depuration of pesticide-
ontaminated effluents at on farm level [11]. In their simplest form
hey are composed of a pit packed with a mixture of bioorganic

aterial [12]. Omirou et al. [13] first tested biobeds for the depura-
ion of wastewater produced by the citrus fruit production chain,
hus pesticides like DPA used in pome fruit-packaging plants were
ot considered. In their study, TBZ and IMZ were retained by the
iobed packing material leading to a potential build-up of high pes-
icide residues stressing the need for decontamination of the spent
acking material. This constitutes a key regulatory issue withhold-

ng the wider adoption of biobeds [14]. However only a few studies
ave addressed it [15,16].

Little  attention has been given also to the post-treatment han-
ling of biobeds-treated effluents. Despite the high depuration
erformance of biobeds [12], pesticide residues are still present in
heir effluents and their environmental release should be allowed
ending risk assessment. This is feasible for biobeds receiving
astewaters from the fruit-packaging industry where a limited
umber of pesticides is used, in contrast to on-farm systems which
eceive a much wider pesticide range and thus complex risk assess-
ent approaches are required.
Biodegradation  has been identified as the key process con-

rolling biobeds performance [11]. Despite that little is known
bout the composition of the microbial community in biobeds and
he microbial dynamics driving the biodegradation process. Good
nowledge of the microbiology of biobeds will facilitate their opti-
ization. Bioaugmentation has been explored as a strategy for

ptimization of biobeds performance. Karanasios et al. [17] showed
hat the use of spent mushroom substrate (SMS) from the edible
ungus Pleurotus ostreatus in biobeds accelerated pesticide dissi-
ation. Sniegowski and Springael [18] showed that the use of soil
arrying a microbial community adapted to the rapid degradation
f specific pesticides as a component of the packing material could
meliorate the depuration capacity of biobeds. This strategy or
ioaugmentation with tailored-made microbial inocula could be

deal in cases where biobeds receive effluents containing a few
nown pesticides like in fruit-packaging plants.

The main aims of this study were to a) evaluate the depu-

ation performance of pilot biobeds against pesticides used in
ruit-packaging plants, and assess bioaugmentation as an optimiza-
ion strategy, b) identify the key microbial groups, phylogenetically
nd functionally relevant to biobed systems, c) estimate the risk
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associated  with the environmental disposal of the biobed-treated
effluents and d) assess methods for the decontamination of the
spent biobed packing material.

2. Materials and methods

2.1.  Pesticides

Analytical standards of IMZ  (99.8%), TBZ (99%) OPP (99.9%)
and DPA (99.9%) (Pestanal®, Sigma-Aldrich) were used for residue
analysis. Commercial formulations of TBZ (TECTO® 50% SC), IMZ
(FUNGAZIL® 50% EC), OPP (FRUITGARD® 20%SL) and DPA (NO
SCALD® 31.8%EC) were utilized for the preparation of the aqueous
solutions applied on biobeds.

2.2. Biobed packing material

Following  earlier optimization studies [19,20], a mixture of SMS,
soil and straw (50:25:25 by volume) was  used for the packing of
the pilot biobeds. The soil used was collected from a field site in
Larissa, Greece. It was  sieved to homogenize (4 mm)  prior to mix-
ing with organic materials. Wheat straw was chopped into small
pieces (1–3 cm)  and passed through a 4.75 mm sieve. SMS  was
obtained from a P. ostreatus mushroom production unit (Mpoulo-
georgos, Trikala, Greece) and it was  chopped into small pieces. Soil,
straw and SMS  were mixed thoroughly and were left to mature
for a month. Properties of the materials used are listed in Supple-
mentary Table 1. Total organic C and N content were determined
by the wet  digestion [21] and the Kjeldahl digestion method [22]
respectively. pH was determined in a mixture of 1:2.5-5 air dried
solid substrate:water (w:v). Soil texture was  determined with the
Bouyoucos hydrometer method [23].

2.3. Set up of pilot biobeds

Five  pilot biobeds composed of plastic containers of 1.1 m3 (3
biobeds) or 0.24 m3 (2 biobeds) volume were set up. The bottom
of the biobeds was  covered with a metal wire mesh and on top
of this a 5-cm layer of well-washed gravel (2–3 cm diameter) was
placed. The remaining volume was  filled with the packing material
described above. A 10-cm diameter hole was  made at the bottom
of the biobeds to allow collection of the draining effluent. A plastic
funnel was  positioned under the outer side of the hole and it was
connected to a plastic tube (15 mm i.d.) leading to a 2.5-L amber
glass bottle where effluents were collected.

The pesticide solutions applied on the biobeds were prepared in
three 100-L tanks each containing an aqueous solution of two  pes-
ticides: IMZ  + DPA (Tank 1), OPP + IMZ  (Tank 2) and TBZ + OPP (Tank
3). The concentration of all pesticides in the aqueous solutions was
100 mg  L−1 assuming a 10-fold dilution of their concentration in the
water during the treatment process and considering the pesticides
recommended dose rates (0.6 g L−1 for OPP, 1.2 g L−1 for TBZ, 1 g L−1

for IMZ  and 2 g L−1 for DPA) [5,24–26]. Pesticides combinations
were established according to their use patterns: IMZ  + DPA  and
OPP + IMZ  or TBZ are used in pome and citrus fruit-packaging plants
respectively. In total 1080 and 252 L of pesticide solutions were
discharged into the large and the small pilot biobeds respectively
within a period of 160-d corresponding to the average operation
period of a fruit-packaging plant [27]. Pesticide solutions were
pumped (max capacity 10 L h−1) into the biobeds daily (Three 10-
min application periods per day). This resulted in a daily discharge

of 7.5 and 2.0 L in the large and the small pilot biobeds respectively.
Pesticide solutions were pumped at the top of the pilot biobeds via
a drip irrigation system ensuring their uniform dispersion onto the
biobeds surface. A schematic diagram of the experimental setup is
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Fig. 1. A schematic diagram of the setup of the pilot bi

hown in Fig. 1. Prior to pesticides application, biobeds were irri-
ated for three days with clean water and were left to drain for a
eek to allow for equilibration. Biobeds leachates were collected

very two days. Each time, the volume of the leachate collected was
ecorded and a subsample (0.5 L) was stored at −20 ◦C for analysis.

At the end of the 160-d period three cores were collected from
ach pilot biobed using a 90-cm long PVC plastic tube (8 cm i.d.).
he packing material cores were sectioned into three layers: 0–20,
0–50 and 50–80 cm and stored at −20 ◦C until analyzed. Pesti-
ides amounts retained in the different layers of the biobeds were
etermined by sequential extractions with water and acetonitrile
s described below. The total amount of pesticides recovered by
he substrate at the end of the study, plus the amount of pesticide
eached were deducted from the total pesticide amount applied and
t was considered as ‘dissipated’. This was a lump process including
egradation and non-extractable residues formation.

.4. Bioaugmentation of pilot biobeds

We evaluated bioaugmentation with OPP- (Sphingomonas
aloaromaticamans) [28], DPA- (Pseudomonas putida) [29] and
BZ-degrading bacteria (consortium comprised of different pro-
eobacteria) [30] as a strategy for ameliorating the depuration

erformance of biobeds. Briefly, the pesticide-degrading bacteria
ere grown in mineral salts media where the pesticide constituted

he sole C (OPP) or the sole C and N source (TBZ, DPA) [29]. Bac-
erial inocula were harvested at the mid-logarithmic phase, cells

sitory - Library & Information Centre - University of Thessaly
1:04 EEST - 3.145.162.204
. Arrows indicate the direction of the wastewater flow.

were  washed three times with sterile ddH2O and they were re-
suspended to ddH2O which was  applied to the packing material of
the two  small pilot biobeds (biobed 2bioaug and biobed 3bioaug)
aiming to a final inoculum density of 106 cells g−1 of packing mate-
rial (on a dry weight basis). The density of the bacterial inocula
was determined by serial dilution plating in LB. Bacterial cells were
sprayed with a hand sprayer and the treated packing material was
thoroughly mixed with a spade prior to biobeds’ packing. Biobed
2bioaug, treated with IMZ  and DPA, was inoculated with the DPA-
degrading bacterium (no IMZ-degrading bacteria were available),
while biobed 3bioaug, treated with TBZ and OPP, was  amended
with the TBZ- and the OPP-degrading bacterial inocula.

2.5.  Risk assessment analysis for the management of biobeds
effluents

An  assessment of the risk associated with the environmental
release of the biobed-depurated wastewater was  employed. Two
scenarios simulating the handling of wastewaters produced by a
pome (Scenario I) or a citrus (Scenario II) fruit-packaging plant were
designated. A total volume of 25 m3 of wastewaters containing DPA,
TBZ or IMZ  (Scenario I), or a volume of 42 m3 of OPP-plus 11 m3 of
IMZ- or TBZ-containing wastewaters (Scenario II) were considered

to be produced during one operational season. In both scenarios
the concentration of pesticides in the wastewaters was 100 mg L−1

to align with the pesticide loading scheme in pilot biobeds. The
depuration efficiency of our pilot biobeds was  used to estimate the
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otal amount of pesticides contained in the treated effluents. Upon
reatment the effluents were considered to be uniformely dispersed
ver a 0.1 ha disposal site (approximate size of fields next to fruit-
ackaging plants potentially used as disposal sites). Based on these
cenarios the rates of pesticides reaching the soil of the disposal
ite were calculated (Supplementary data Table 2). Subsequently
he exposure levels of the soil in the disposal site (maximum Pre-
icted Environmental Concentration, max  PECsoil) and in adjacent
urface water systems and sediment (max PECsw and PECsed) were
alculated using the PECsoil calculator and the STEP1-2 calculation
ool respectively [31]. For the calculation of max  PECsw and PECsed
un-off, erosion or drainage were considered as relevant processes
hile drift was not. The input data in STEP 1–2 calculation tool and

he PECsoil calculator were derived from pesticide regulatory docu-
ents (Supplementary data Table 3). The PECs obtained were used

s exposure inputs in risk assessment (Supplementary data Table
).

The risk assessment for aquatic and terrestrial indicator organ-
sms was carried out according to the currently implemented
egulatory guidelines [32,33]. Regarding aquatic ecotoxicity, the
egulatory Acceptable Concentrations (RACs) were calculated
sing acute and chronic toxicity data obtained from the pesti-
ides registration documents (Supplementary data Table 5). An
nacceptable risk was identified when PECs/RACs > 1. Regarding
errestrial ecotoxicity, Toxicity Exposure Ratio (TER) or Hazard
uotients (HQ) were calculated using the calculated PECs (Supple-
entary data Table 4) and toxicity data obtained from registration

ocuments (Supplementary data Table 5). An unacceptable risk was
dentified when TER < 10 or HQ > 2 for acute toxicity risk to earth-

orms and soil-dwelling arthropods respectively. In cases where
n unacceptable risk was identified mitigation measures were con-
idered including an increase of the surface of the soil disposal
ite from 0.1 to 0.2 ha or refinement via the use of the depuration
fficiency of bioaugmented biobeds for the calculation of PECs.

.6.  Decontamination of the spent biobed substrate

At the end of the biobeds’ operation period, the packing mate-
ial of the non bioaugmented biobeds (1–3) was  removed and
horoughly mixed (50% by volume) with appropriate volumes of
resh organic matter (straw 25% and 25% cotton crop residues).
ts C/N ratio was optimized (target value of 25) with addition of
H4NO3-N (4.5 kg of a fertilizer, 34.4% N by weight). The mixture
as then divided into two sub-samples of 8.5 kg and two sub-

amples of 154.5 kg. The first set of 8.5- and 154.5-kg samples were
reated with a suspension of bacteria degrading TBZ, OPP and DPA
described above) resulting in an inoculation density of 106 cells
−1packing material dry weight. The 8.5-kg sample was then placed
n a plastic bag and incubated at ambient temperature (’bioaug-

entation’ treatment), and the 154.5-kg sample was  placed in a
ompost bucket (85 cm x 85 cm x 75 cm)  and was allowed to com-
ost for 160 days (‘bioaugmentation & composting’ treatment). The
emaining samples, one of 8.5-kg and one of 154.5-kg, received the
ame amount of water without bacteria, and they were handled in
he same way as the corresponding bioaugmented samples (’con-
rol’ and ‘composting’ treatments respectively). Immediately prior
o the treatment and 24 (first mixing of the compost), 40 (comple-
ion of second thermophilic phase) and 160 days later (completion
f maturation) triplicates (20 g) were removed and analyzed for
esticide residues.

.7.  Pesticides residue analysis
Extraction of pesticides from leachates and biobeds packing
aterial was performed according to Karas et al. [20]. Pesticides

esidues in the packing material were extracted initially with water
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and  subsequently with acetonitrile. Pesticides residues extracted
with water constitute the fraction which was retained by the pack-
ing material, but was still available for leaching. Whereas pesticides
residues extracted by the organic solvent constitutes the fraction
retained by the biobed that was less available for leaching. Pesti-
cides residues were analyzed by HPLC-UV as described by Karas
et al. [19].

2.8.  Abundance of microbial taxa and catabolic genes

The abundance of total bacteria, total fungi and different bac-
terial taxa (�-, �-, �-proteobacteria, firmicutes and actinobacteria)
was determined prior to pesticide application and at the end of
the treatment period via q-PCR. In addition the abundance of catA
and pcaH genes, encoding catechol 1,2-dioxygenase and protocat-
echuate dioxygenase respectively, involved in the metabolism of
aromatic compounds [34], was  determined via q-PCR. Samples col-
lected from the three different layers of the pilot biobeds were
homogenized and four subsamples were processed for DNA extrac-
tion using the Power Soil DNA Isolation Kit (MoBio Laboratories,
Inc.). Q-PCR conditions and the primers used are shown in Supple-
mentary data Table 6. Q-PCRs were carried out in 10 �L reaction
volume containing 1X KAPA SYBR® FAST qPCR Master Mix  (2X)
Universal, 1 �M of each primer, 50 nM ROX Low, 400 ng �L−1 BSA,
and ca. 0.2–10 ng DNA. The copy numbers of the target gene were
determined via external standard curves [35] and q-PCR efficiencies
ranged from 85 to 105%.

2.9.  Statistical analysis

Mass  balance analysis data were subjected to one-way-ANOVA
to identify significant differences per pesticide between biobeds
in the different fractions accounted (dissipated/leached/retained
and  extracted with water or acetonitrile). Data regarding the dis-
tribution of pesticides in the biobeds horizons were subjected to
two-way-ANOVA. In cases where significant interactions between
the main factors were observed significant differences were identi-
fied by Tukey’s post-hoc tests within each factor. Q-PCR data were
subjected to one-way ANOVA to identify significant differences
between biobeds before and after pesticide application. All statis-
tical analysis were performed with the SPSS statistical package.

3.  Results

3.1. Pesticides leaching from pilot biobeds

The temporal patterns of pesticides in the leachate of the pilot
biobeds are shown in Fig. 2. OPP residues were detected in the
leachates of all three treated biobeds, and peak amounts were
consistently detected in biobed1 exceeding 20 mg  on three occa-
sions (Fig. 2a). On the contrary biobed 3bioaug showed the lowest
amounts of the fungicide in the leachate with only four positive
detections and max  amount of 2.4 mg.  DPA was  detected in the
leachate of the two  biobeds on a regular basis, but its amount never
exceeded 10 mg  (Fig. 2b).

IMZ was  rarely detected in the leachates of the biobeds. High
amounts of IMZ  were, however, detected on two  occasions (90 and
94 d) in the leachates of biobed 1 (Fig. 2c). TBZ showed a substan-
tially different leaching pattern in the two biobeds tested. A peak in

TBZ leaching appeared early (31 d, 520 mg)  in biobed 3 followed by
the detection of lower TBZ amounts (<7 mg)  from 100 days onwards
(Fig. 2d). In contrast, residues of TBZ were detected in the leachates
of biobed 3bioaug in only three occasions at levels below 1 mg.
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Fig. 2. Leaching patterns of OPP (a), DPA (b), IMZ  (c) and TBZ (d) from the pilot biobeds.

Fig. 3. Mass balance analysis of OPP (a), DPA (b), IMZ  (c) and TBZ (d) in the pilot biobeds. Pesticides amounts retained by the biobeds matrix were estimated by successive
extractions with water and acetonitrile. Letters following each stacked bar fraction indicate statistical differences between biobeds. Within each pesticide fraction (dissipated,
retained—acetonitrile or water extracted, leached) stacked bar fractions followed by different capital letters significantly differ (p < 0.05) between biobeds.
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Fig. 4. The distribution of OPP (a), IMZ  (b) and TBZ (c) residues in the three layers (0–20, 20–50 and 50–80 cm)  of the pilot biobeds at the end of the study. Letters following
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iffer (p < 0.05) in the amount of pesticides retained in the different biobeds.

.2. Mass balance analysis of pesticides in the pilot biobeds

Mass  balance analysis of pesticide residues in the individual
iobeds was performed (Fig. 3). The dissipation of OPP did not sig-
ificantly differ between biobeds and ranged from 96.8% in biobed
bioaug to 98.6 and 99.5% in biobeds 1 and 3 respectively (Fig. 3a).
he amount of OPP in leachate was negligible ranging from 0.1%
biobed 1) to 0.01% (biobed 3 and biobed 3bioaug). The amount of
PP retained by the biobeds was mostly extractable with water,

uggesting its availability for biodegradation or further mobility.
PP residues were distributed in the whole vertical profile of the
iobeds with the higher fractions (39.9–72.4%) found at the 20–50-
m layer (Fig. 4a). DPA was nearly fully dissipated in both biobeds
99.9%), regardless of bioaugmentation (Fig. 3b).

IMZ  showed different allocation patterns in the three biobeds
Fig. 3c). A significantly lower dissipation of IMZ  (p < 0.05) was
bserved in biobed 1(72%) compared to biobed 2 and biobed
bioaug (91 and 95.7% respectively). This was mirrored into the
ignificantly higher amounts (p < 0.05) of IMZ  retained (27.5%) and
eached (0.52%) from biobed 1 compared to biobed 2 (8.8 and
.02% respectively) and biobed 2bioaug (4.25 and 0.03% respec-
ively). Regarding the amount of IMZ  retained by biobed 1, no
ignificant differences (p > 0.05) were observed between the frac-
ions extracted by acetonitrile (15.4%) or water (12.2%). When the
istribution of IMZ  residues along the profile of the biobeds was

nvestigated over 95% of the fungicide was found in the top layer
0–20 cm)  (Fig. 4b).
A nearly complete dissipation of TBZ was evident in biobed
bioaug (Fig. 3d) compared to a significantly lower dissipation
86.7%, p < 0.05) in the corresponding non-bioaugmented biobed
. The rest of TBZ applied in biobed 3 was retained and it was

epository - Library & Information Centre - University of Thessaly
:51:04 EEST - 3.145.162.204
iobed stacked bar fractions designated by different lower case letters significantly
ach layer stacked bar fractions designated by different capital letters significantly

mostly  extractable with water (8.5%) rather than with acetonitrile
(4.6%). The significant difference in the dissipation between bioaug-
mented and non-bioaugmented biobeds was  reflected in the overall
amount of TBZ leached which ranged from <0.001% in the former
to 0.26% in the latter. Regarding the distribution of TBZ residues in
the profile of the biobeds, nearly 85% of TBZ was  retained in the top
layer (0–20 cm)  while lower amounts, 14 and 1%, were detected at
the 20–50-cm and 50–80-cm layers respectively (Fig. 4c).

3.3.  Risk assessment regarding biobed-treated effluents

Risk assessment analysis based on scenario I (pome fruit-
packaging plant) suggested no risk for non-target organisms for
IMZ  and DPA. Whereas an unacceptable risk for chronic exposure
to fishes was identified for TBZ (PEC/RAC = 1.633). This risk was alle-
viated only after the implementation of mitigation measures such
as an increase of the surface of the disposal site from 0.1 to 0.2 ha
(PEC/RAC = 0.817) (Table 1) or the use of the depuration perfor-
mance of the bioaugmented biobed 3 for the calculation of PECs
(PEC/RAC = 0.366). Regarding Scenario II, no unacceptable risk for
aquatic and terrestrial organisms was observed for all pesticides
(Tables 1 and 2).

3.4.  Decontamination of spent biobed packing material

TBZ (29 �g g−1) and IMZ  (23–26 �g g−1) residues persisted in
the biobed packing material (Fig. 5). Bioaugmentation was  the most

successful decontamination approach for both IMZ  and TBZ result-
ing in a significantly higher dissipation (83–97%, p < 0.05) of the
former (Fig. 5a and b) and a complete dissipation of the latter. The
spent packing material was  successfully composted with the evo-
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Table  1
Risk  assessment for biobed-treated effluents according to Scenarios I and II for aquatic organisms. Ratios of max  PECsw/RAC > 1 indicate unacceptable risk (in bold).

Pesticides Acute Toxicity Chronic Toxicity

Invertebrates Fish Algae Fish Sediment-Dwelling
Invertebrates

Daphnia
magna

Oncorhynchus
mykiss

Pseudokirchneriella
subcapitata

Oncorhynchus
mykiss

Chironomus  sp.

Ortho-phenylphenol Scenario II 0.041 0.025 0.003 0.278 0.005
Diphenylamine Scenario I 0.053 0.029 0.021 0.009 n.d.d

Imazalil Scenario I 0.138 0.244 0.108 0.502 0.119
Scenario  II 0.197 0.351 0.156 0.723 0.172

Thiabendazole Scenario  I–Step1 Scenario
I–Step2  Mitigation/Refinement

1.490 0.576 – 0.920 –a – 0.022 – – 4.217 1.633 0.817b (0.366)c 0.025 – –

Scenario  II–Step1 Scenario
II–Step2

0.656  – 0.405 – 0.010 – 1.858 0.717 0.011  –

a Not calculated since no unacceptable risk was evident at Step1.
b Calculated based on disposal of biobeds effluents to a 0.2 ha disposal site (mitigation).
c Calculated based on the depuration efficiency of the bioaugmented biobed (biobed 3bioaug) (refinement).
d n.d.: not determined since no toxicity endpoint values were available (see Supplementary data Table 5).
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ution of two  thermophilic phases: the first and main one lasting
0 days (days 4–14) with a peak temperature of 50 ◦C, and the sec-
nd milder one which reached a max  temperature of 35 ◦C (days
3–28) (Supplementary data Fig. 1). During the active phase (0–40
ays) composting significantly accelerated the dissipation of IMZ
elatively to the control (Fig. 5a and b), whereas for TBZ a significant

cceleration in its dissipation was achieved only when composting
as combined with bioaugmentation (Fig. 5c).
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ndicate statistical differences between treatments at each time point. In each time

3.5. Abundance of microbial taxa and catabolic genes

The abundance of total bacteria, fungi and �-proteobacteria
were significantly higher (p < 0.05) in the biobeds at the end of
the study compared to their abundance in the packing material
prior to pesticides application (Fig. 6a). Actinobacteria were the

most abundant bacterial taxa, followed by �-proteobacteria, fir-
micutes and �-proteobacteria, while �-proteobacteria showed low
abundance. Significantly higher copy numbers of the pcaH and catA
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Table 2
Risk  assessment for biobed-treated effluents according to Scenarios I and II for ter-
restrial organisms. TER > 10 and HQ < 2 indicate low acute risk for earthworms and
soil dwelling arthropods respectively.

Pesticides TER–Earthworms HQ–Soil-dwelling
arthropods

Ortho-phenylphenol Scenario II 16517 n.d.a

Diphenylamine Scenario I n.d.a n.d.a

Imazalil Scenario I 4045 0.540
Scenario II 9310 0.238

Thiabendazole Scenario I >335 <0.639
Scenario II >743.5 <0.281

S
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Institutional R
20/04/2024 10
a n.d.: not determined because no toxicity endpoint values were available (see
upplementary  data Table 5).

enes were detected in the biobeds at the end of the experiment
ompared to their copy numbers in the packing material before
esticide application (Fig. 6b). On the other hand, no significant
ifference in the abundance of pcaH and catA were found between
on bioaugmented and their corresponding bioaugmented coun-
erparts.

. Discussion
Biobeds showed a high depuration efficiency which varied
mongst pesticides but exceeded 99.5% in all cases. The higher
epuration efficiency against OPP and DPA was attributed to their
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atabolic genes catA and pcaH (b) in the biobed packing material prior to pesticide
 above bars indicate statistically significant differences between biobeds for each

etters are not significantly different (p > 0.05).

rapid  dissipation, in line with their limited persistence in the biobed
packing materials similar to the one used in the current study
(OPP DT50s of 0.34–4.7 days; DPA DT50s 1–4.1 days) [19]. Regarding
TBZ and IMZ  although high dissipation was achieved, significant
amounts were recovered by the biobeds packing material at the
end of the study. This is in agreement with the high persistence of
TBZ and IMZ  in soil [36,37] and biobed packing materials [13,19].
Residues of TBZ and IMZ  retained by the biobed packing material
were mostly concentrated at the top biobed layers, in contrast to
OPP whose residues were distributed to the whole biobed profile.
Omirou et al. [13] reported a deeper vertical distribution of OPP
residues in the profile of a full-scale biobed compared to IMZ  and
TBZ which were mostly retained in the top layer (0–20 cm). The
higher mobility of OPP is in accordance with its weak adsorption
in the biobed packing material (Kf = 11.67 g ml−1) which facili-
tates its vertical translocation in the biobed, compared to IMZ
(Kf = 186.2 g ml−1) and TBZ (Kf = 226.8 g ml−1) which are strongly
adsorbed [19].

The  wide acceptance of biobeds relies mainly on their high
biodegradation capacity against a broad range of chemical struc-
tures found in the different pesticide groups [11]. However in cases
where biobeds are challenged with mobile [38] and/or recalcitrant

chemicals, like TBZ or IMZ, bioaugmentation could be a useful opti-
mization strategy. A high depuration efficiency of biobeds against
OPP and DPA was evident even in the absence of bioaugmenta-
tion, in contrast to TBZ for which bioaugmentation significantly
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dvanced the depuration performance. These results suggest that
he indigenous microbial community of biobeds has, or develops
apidly, the capacity to degrade the generally biodegradable OPP
nd DPA [39], whereas it showed a lower capacity to transform
he less biodegradable TBZ for which bioaugmentation with a spe-
ialized microbial inocula was necessary to maximize depuration.
ioaugmentation of biobeds has been tested at lab scale via dif-

erent approaches: the amendment of soil primed for the rapid
egradation of one or multiple pesticides [18] and inoculation with
acteria [38] or white rot fungi [40].

Although several studies have verified the high depuration
erformance of biobeds [12], the risk associated with the direct
nvironmental disposal of the biobed-treated effluents has not
een explored. Based on our risk assessment analysis for pome
nd citrus-fruit packaging plants the disposal of the biobed-treated
ffluents on an 0.1-ha land area does not entail an unacceptable
isk for terrestrial and aquatic organisms. The only exception was
ssociated with TBZ-contaminated effluents produced by pome
ruit-packaging plants where either mitigation measures or bioaug-

entation were necessary to alleviate the high risk for fishes.
One  of the main problems hampering the wider implementa-

ion of biobeds is the lack of established decontamination methods
or the spent packing material. This is usually contaminated with
igh pesticide loads and should be depurated prior to their final
nvironmental disposal. TBZ and IMZ  residues were recovered in
he spent biobed substrate and based on their recalcitrance and
heir high ecotoxicity [3,37], decontamination of the spent pack-
ng material is essential. Different decontamination strategies were
valuated with bioaugmentation being the most effective for the
emoval of TBZ and IMZ  residues. It should be noted that no IMZ-
egrading bacterial inocula was available and the IMZ-containing
pent packing material from biobeds 1 and 2 were inoculated with
PP- and DPA-degrading bacteria since those biobeds had been
lso treated with OPP and DPA during the study. The OPP and
PA-degrading strains used in our study were not able to degrade

MZ [28,29]. Previous studies have shown that bioaugmentation of
ontaminated soil could induce a general perturbation favoring r-
trategists and higher microbial activity [41]. This in turn might
ave resulted in a more active co-metabolic biodegradation of IMZ
y the non-specialized soil microflora in the bioaugmented com-
osts. Bioaugmentation has not been tested in the past for the
econtamination of the spent packing material. This is possibly
ue to the complex pesticides mixture contained in the packing
aterial of on-farm systems, compared to the limited number of

esticides expected to be present in biobeds receiving effluents
rom fruit-packaging plants.

Composting  applied either alone or in combination with bioaug-
entation accelerated the dissipation of IMZ  and TBZ respectively

uring the active composting phase. Previous studies by De Wilde
t al. [16] showed that composting resulted in 70% dissipation of
entazon and linuron by a spent biobed substrate. Composting con-
ributes to the dissipation of pesticides via a range of processes with
iodegradation being dominant [42]. In our study composting did
ot lead to the establishment of long thermophilic phases charac-
erized by high temperatures which could have further accelerated
esticides dissipation [43].

Little is known regarding the composition and the dynamics
f the microbial community in biobed systems. An increase in
he abundance of total bacteria, �-proteobacteria and fungi was
bserved at the end of the 160-d operation period suggesting that
espite the copious amounts of pesticides applied those systems
ould support a rich microbial community dominated by acti-

obacteria, firmicutes and �-proteobacteria. These bacterial taxa
re known to be involved in processes relevant to biobed systems
uch as the decomposition of organic matter coming from plant
ebris and the degradation of organic pollutants [44,45]. Apart from
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a phylogenetically-rich microbiota, biobeds constitute an artificial
ecosystem which support the rapid emergence of novel catabolic
traits by the microbial community [46]. In line with this we mea-
sured a significant increase in the abundance of catA and pcaH genes
at the end of the 160-day period. These genes encode enzymes
involved in the transformation of key intermediates produced by
the microbial metabolism of natural aromatics and organic pol-
lutants [47,48] have been found in elevated numbers in polluted
sites and have been considered as indicators of the biodegradation
potential of polluted environments [49]. However, bioagumenta-
tion did not result in higher copy numbers of these genes at the
end of the 160-day period, indicating that the microbial inocula are
not key factors for the spread of these genes in the biobed matrix.

5.  Conclusions

Our study explored the application of biobeds for the depura-
tion of effluents from the fruit-packaging industry and addressed
practical issues hampering their wider implementation. Biobeds
showed high depuration efficiency and produced treated efflu-
ents whose environmental disposal into a pre-defined soil disposal
area entails no environmental risk. The lower depuration effi-
ciency of pilot biobeds for TBZ was alleviated by bioaugmentation
with tailored-made inoculum. Bioaugmentation was  also the most
potent method for the decontamination of spent packing material
with composting being a valuable alternative when no microbial
inocula are available.
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