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INTRODUCTION 

Despite improvements in medical science over the past decades, infectious 

diseases remain major cause of mortality throughout the developed and 

developing world. A large number of causative agents (61% in 313 different 

genera, of the 1,415 identified human pathogens) are zoonotic and infect 

multiple animal species (Taylor et al. 2001). Approximately 75% of all diseases, 

including zoonoses, which have emerged in the last few decades are of wildlife 

origin (Bengis et al. 2004). 

Various wild avian species are considered to have major epidemiological role 

in the introduction and establishment of various pathogens in remote areas. 

Migratory avian species travel long distances in a few days, being able to 

transport pathogens in new areas and thus there is increasing public health 

concern regarding their role in spread of diseases. Moreover, resident wild 

avian species may contribute in the local establishment and amplification of 

pathogens that cause disease in humans and livestock animals. More than 50 

pathogens for which wild birds can serve as reservoirs, mechanical vectors, or 

both, have been described in recent literature (Tsiodras et al. 2008). 

One of the most important pathogens linked to wild birds in recent years is West 

Nile virus, a mosquito-borne flavivirus that has become a major public health 

concern in the last two decades, due to the increased disease outbreaks 

worldwide. Humans and other mammals, particularly horses, are alternative 

hosts of WNV; main route of infection is through the bite of an infected 

mosquito. While most human infections remain asymptomatic, West Nile fever 

develops in ≈20% of infected persons and West Nile neuroinvasive disease in 

<1% (Mostashari et al. 2001). Nonetheless, horses and humans develop 

viremia levels of low magnitude (<105 PFU/ml) and short duration, mainly 

insufficient to infect mosquitoes and thus do not serve as amplifying hosts for 

WNV in nature (Bunning et al. 2002). On the contrary, various avian species, 

both migratory and sedentary develop viremia levels sufficient to infect feeding 

mosquitoes (Komar et al. 2003). Hence, WNV is maintained in an enzootic 

cycle with wild and domestic birds acting as the main amplifying hosts and 

ornithophilic mosquitoes, especially of the Culex species, the main vectors. 

Moreover, local movements of resident birds and long-range travel of migratory 
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birds may both contribute to the spread of WNV (Rappole et al. 2000, Komar 

et al. 2005). 

In the last decade human cases of West Nile fever were reported in several EU 

and bordering countries (Romania, Italy, Hungary, Spain, Turkey, Israel and 

Russia). Since 2010, a major WNV outbreak of human infections took place in 

Greece. From 2010 to 2014 more than 624 laboratory-confirmed cases and 73 

deaths were caused by the virus (Table 1). 

 

 

Table 1. Laboratory-confirmed case of West Nile Virus disease in Greece, 

2010-2014. 

This thesis reports several studies conducted to investigate possible implication 

of wild birds during the West Nile virus outbreak in Greece. Moreover, this 

thesis reports studies conducted to evaluate the application of novel 

technologies and tools such as Geographical Information Systems (GIS) and 

multiplex diagnostic techniques (microarrays) in wild birds surveillance 

programs, which have a potential to contribute in the future surveillance 

Year Laboratory-confirmed 
human cases Deaths % Area of Effect 

2010 262 35 17% Northern Greece (Central 
Macedonia) 

2011 100 9 12% South Dispersion to Thessaly 
and Continental Greece 

2012 161 18 17% Area of Attica and North-
eastern Greece 

2013 86 11 20% Area of Attica and North-
eastern Greece 

2014 15 0 0% Area of Attica and North-
eastern Greece 
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programmes designed to improve  the  monitoring the existing outbreaks and 

timely recognition of  new outbreaks. . 

In detail, the thesis is presented in the following chapters: 

Chapter 1: Literature review about West Nile Virus, focusing on basic principles, 

replication mechanism, immune response and important genetic determinants 

of virulence. 

Chapter 2: Investigation of wild avian samples for the presence of WNV RNA 

during the 2010 major outbreak of the disease in northern Greece. 

Chapter 3: Extended investigation of the role of wild birds in the epidemiology 

of West Nile virus in Greece combining serological and molecular findings at 

the epicentre of the outbreak. 

Chapter 4: Serological investigation of exposure of resident and migratory wild 

birds to the virus in the first years of the WNV outbreak in Greece and a first 

correlation of these results with human cases data. 

Chapter 5: Use of wild bird surveillance, human case data and GIS spatial 

analysis for predicting spatial distributions of West Nile virus in Greece. 

Chapter 6: Application of multiplex microarray technologies to wild avian tissue 

samples for screening West Nile virus and other avian viruses. Discussion on 

some technical aspects and considerations. 
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1.1 Introduction 

West Nile virus (WNV) was first isolated in Uganda (West Nile district) in 1937 

from the blood of a native Ugandan woman [1] and until the end of the 20th 

century was considered a cause of viral encephalitis limited only in Africa and 

Asia. It became a global public health concern after the virus introduction in 

North America and especially New York in 1999 [2]. Before that, Romania had 

recorded the first large outbreak of West Nile neuroinvasive disease (WNND) 

in Europe in 1996, with 393 confirmed cases [3]. Since then, major outbreaks 

of WNV fever and encephalitis took place in regions throughout the world 

including America, Europe and Middle East, causing human and animal deaths. 

In the last decade, lineage 2 strains, considered of low virulence, have been 

introduced in Central and South Eastern Europe and were incriminated as 

causative agents of major human and animal disease outbreaks. A great 

number of WNV infections in humans occurred in 2010 and 2011 in Greece, 

with 363 laboratory confirmed cases and 44 deaths [4]. WNV lineage 2 strains 

were first detected from pools of Culex mosquitoes (strain Nea Santa-Greece-

2010) [5] and a Eurasian magpie (strain magpie-Greece/10) [6] at the epicenter 

of the outbreak. 

The unexpected high virulence of lineage 2 strains creates major concerns 

regarding the pathogenic potential of evolving and mutating WNV strains. The 

basic properties of WNV function will be presented focusing especially on the 

replication cycle, the pathogenicity mechanism as well as some important 

genetic determinants of virulence that have been recognized so far and can 

pose serious public health risks when present at various WNV strains. 

1.2 Classification 

West Nile Virus (WNV) is a member of the Flaviviridae family of single-stranded 

RNA viruses with linear non-segmented genomes. More than 58 members 

belong to the Flaviviridae family, whose name comes from the word “flavi”, Latin 

for “yellow”, because one of the most famous flaviviruses is the Yellow Fever 

Virus. Flaviviridae family is further divided in 3 genera: flaviviruses, pestiviruses 

and hepaciviruses. Pestivirus genus consists of 4 viral species that cause 

important animal diseases: Bovine Viral Diarrhoea Virus type 1 and 2, Border 
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Disease Virus and Classical Swine Fever Virus. The only member of the 

Hepacivirus genus is Hepatitis C virus. The Flavivirus genus is the largest with 

at least 53 species divided into 12 serologically related groups. Of these, the 

Japanese Encephalitis Virus (JEV) group (8 species) is the one with the most 

human-associated disease viruses; Japanese Encephalitis Virus, St. Louis 

Encephalitis Virus, Murray Valley Encephalitis Virus and West Nile Virus are 

four members of the JEV group that have been associated with widespread 

human and animal disease outbreaks [7]. The International Committee of 

Taxonomy of Viruses can be consulted for the most accurate update regarding 

nomenclature and taxonomy of all viruses at the species level [8]. 

1.3 Structure and genome 

The WNV genome is a positive single stranded RNA of approximately 11000 

nucleotides surrounded by an icosahedral nucleocapsid which is contained in 

a lipid bi-layered envelope, of approximately 50 nm in diameter (Figure 1). The 

genome is transcribed as a single polyprotein that is cleaved by host and viral 

proteases into three structural (C, prM/M, and E) and seven non-structural 

(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins [9] (Figure 2). 

Recent studies also reported that a larger NS1-like (NS1') viral protein, which 

is often detected during infection, is the possible result of ribosomal 

frameshifting [10]. 

 

Figure 1. Structure of West Nile virus determined by cryo-EM. (A) A surface 

shaded view of the virion, one asymmetric unit of the icosahedron is indicated 

by the triangle. The 5-fold and 3-fold icosahedral symmetry axes are labelled. 

(B) A central cross section showing the concentric layers of density. Virion core, 

lipid bilayer and proteins E and M are indicated. Reprinted with permission from 

Science, 10 October 2003:248.DOI:10.1126/science.1089316. 
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The viral capsid is approximately 30 nm in diameter and consists of C protein 

dimers, the basic component of nucleocapsids, with the RNA binding domains 

located at the C- and N- termini separated by a hydrophobic region [11]. The 

hydrophobic regions of the C dimers form an apolar surface which binds to the 

inner side of the viral lipid membrane [12]. In immature virions, the lipid bi-

layered envelope that coats the nucleocapsid contains 180 molecules each of 

E and prM proteins organized into 60 asymmetric trimeric spikes consisting of 

prM-E heterodimers [13]. The transition from immature to mature virions starts 

with the release of the N-terminal prepeptide from the prM protein after 

cleavage by a furin-like protease in the trans-Golgi compartment of the infected 

cell [14]. 

 

Figure 2. RNA genome of West Nile virus and site sites cleaved by host 

proteases and virus-encoded NS2B/NS3 protease. 

Mature virions are characterized by the structural change, rotation and 

rearrangement of the 60 trimeric prM-E heterodimers to form 90 antiparallel 

homodimers with quasi-icosahedral symmetry that cover the lipid membrane 

[15, 16]. The E proteins are organized in 3 domains connected by flexible 

hinges [17]. Domain I (DI) is positioned at the central portion of the protein, 

linking together the other two domains. Domain II (DII) is a long domain 

containing a 13 residues long, glycine-rich, hydrophobic sequence that forms 

an internal fusion loop which is necessary for flaviviral fusion. Domain III (DIII) 

is an Ig-like fold that is thought to participate in interactions between virions and 

host factors associated with virus entry [18] (Figure 3). 
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Figure 3. Diagram showing the structural rearrangement required for immature 

particles to become mature particles. The three independent E molecules per 

icosahedral asymmetric unit are coloured green, red, and blue. The three 

domains in each E molecule are labelled I, II, and III. Reprinted with permission 

from EMBO J. 22(11):2604-13. 

The viral non-structural proteins are responsible for regulating viral 

mechanisms of transcription, translation and replication and attenuate host 

antiviral responses (Table 1). NS1 protein functions as a cofactor for viral RNA 

replication and is the only non-structural protein that is secreted in high levels 

(up to 50 μg/ml) in the serum of WNV infected patients and has been connected 

with severe disease [19]. Many theories have been proposed regarding the 

contribution of NS1 to the pathogenic mechanism of WNV: it has been 

proposed to elicit hazardous autoantibodies [20], to contribute to the formation 

of various immune complexes circulating in the host organism [21], antibodies 

against NS1 to cause endothelial cell damage [22], or to minimize immune 

response targeting of WNV by decreasing recognition of infected cells by the 

complement system [23]. 

NS2A is a hydrophobic, multifunctional membrane-associated protein which 

plays an important role in RNA replication [24] and viral particles assembly [25, 

26]. NS2A is also the major suppressor of beta interferon (IFN-β) transcription, 

thus inhibiting interferon response, one of the first lines of defence of the host 

[27]. 

NS2B is a cofactor required for NS3 proteolytic activity. NS3 is a multifunctional 

protein, with two distinct functional domains. The protease comprises the N-

terminal amino acid residues of NS3, while the carboxylated terminus contains 

a helicase, a nucleoside triphosphatase and a RNA triphosphatase [28 - 31]. 
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The NS3 trypsin-like serine protease is only active as a heterodimeric complex 

with its cofactor, NS2B. In the cytoplasm of infected host cells, this 

heterodimeric complex (NS2B-NS3pro) is responsible for post-translational 

cleavage of the viral polyprotein to release structural and non-structural viral 

proteins that are essential in viral replication mechanism and virions assembly. 

Cleavage takes place at the C-terminal side of two basic residues (e.g., RR, 

KK, and RK), a sequence motif that occurs at the junctions of NS2A/B, NS2B/3, 

NS3/4A, and NS4B/5. It also cleaves the viral polyprotein within the C-terminal 

region of protein C and protein NS4A as a necessary precursor to cleavage of 

prM and NS4B, respectively, by cell signalase in the lumen of the endoplasmic 

reticulum [28, 32]. The C-terminal of NS3 is characterized by the presence of 

motifs with homology to supergroup II RNA helicases, to a RNA-stimulated 

nucleoside triphosphatase (NTPase) and to a RNA triphosphatase (RTPase) 

[30, 33, 34]. The NTPase activity provides the chemical energy which is 

necessary to unwind RNA replication intermediates into forms that can be 

amplified by the NS5 RNA-dependent RNA polymerase [35, 36]. The RTPase 

dephosphorylates the 5’ end of viral RNA, before cap addition by the N-terminal 

methyl transferase region of NS5 [37]. RNA helicases travel along RNA in a 3’ 

to 5’ direction fuelled by ATP hydrolysis; this movement opens secondary 

structures and displaces proteins bound to RNA [38]. Thus, together with the 

NS5 polymerase, with which NS3 is in tight association and interaction, the 

NS3hel plays an important role in flavivirus replication. However, a complete 

picture of the mechanism by which NS3hel associates with RNA template is not 

yet completely known. 

NS4A, along with NS4B and NS2A, are the least known flavivirus proteins. The 

NS4A precise functional role has not been sufficiently characterized, although 

evidence suggests a role of “organizer” of the replication complex of 

flaviviruses. Its N-terminal is generated in the cytoplasm after cleavage by the 

NS2B-NS3 protease complex, whereas the C-terminal region (frequently 

designated 2K fragment) serves as a signal sequence for the translocation of 

the adjacent NS4B into the endoplasmic reticulum lumen. The 2K fragment is 

removed from the N terminus of NS4B by the host signalase, however a prior 

NS2B-NS3 protease complex activity at the NS4A/2K site is required [39]. 

Proteolytic removal of the 2K peptide also induces membrane alterations [40]. 
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Recently NS4A was proven to act as a cofactor for NS3 helicase allowing the 

helicase to sustain the unwinding rate of the viral RNA under conditions of ATP 

deficiency [41]. NS4B colocalizes with viral replication complexes and proved 

to dissociate NS3 from single-stranded RNA, thereby enabling it to bind to a 

new dsRNA duplex, consequently enhancing the helicase activity and 

modulating viral replication [42, 43]. In addition, NS4A and NS4B, along with 

NS2A, as has already been referred, and NS5 proteins appear to inhibit the 

interferon-α/β response of the host [44-46]. 

Finally, NS5 is the C-terminal protein of the viral polyprotein and is the largest 

and most conserved of flaviviruses proteins. The N-terminal region of NS5 

contains an S-adenosyl methionine methyltransferase (MTase) domain, part of 

the viral RNA capping machinery. The cap is a unique structure found at the 5’ 

end of viral and cellular eukaryotic mRNA, critical for both mRNA stability and 

binding to the ribosome during translation [47, 48]. The C-terminal region of 

NS5 contains a RNA-dependent RNA polymerase which is required for the 

synthesis of the viral RNA genome [49]. It was already mentioned that NS5 is 

in close interaction with NS3, constituting the major enzymatic components of 

the viral replication complex, which promotes efficient viral replication in close 

association with cellular host factors. 

Non-structural Protein Function 

NS1 Cofactor for viral RNA replication, 

pathogenic mechanism in early infection 

(decrease complement recognition) 

NS2A Viral RNA replication and virions assembly, 

Major suppressor of IFN-β transcription 

NS2B Cofactor for NS3pro activity, interferons 

antagonist 

NS3 Serine protease, RNA helicase, RTPase, 

NTPase 

NS4A “Organizer” of replication complex, inhibitor 

of interferon α/β host response 

NS4B Inhibitor of interferon α/β host response, 

enhancer of NS3hel activity 

NS5 Methyltransferase, RNA-dependent RNA 

polymerase, interferon antagonist 

Table 1. Functions of West Nile virus (WNV) non-structural proteins. 
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1.4 Replication cycle 

WNV has the ability to replicate in various types of cell cultures from a wide 

variety of species (mammal, avian, amphibian and insect) (Figure 4). The first 

step in the infectious cell entry involves the binding of E protein to a cellular 

molecule-receptor [50]. Several cell molecules have been proven to function as 

co-receptors for in-vitro virion attachment: WNV interacts with DC-SIGN and 

DC-SIGN-R in dendritic cells [51]. It has been documented to attach to the 

integrin αvb3, through DIII RGD/RGE sequence, which is an integrin 

recognition motif [52]. However a recent study showed that WNV entry does 

not require integrin αvb3 in certain cell types suggesting that receptor molecule 

usage is strain-specific and/or cell type-dependent [53].Rab 5 GTPase was 

found to be a requirement for WNV and Dengue Virus cellular entrance [54]. 

Laminin binding protein is also a putative receptor for the WNV, with proved 

high specificity and efficiency between LBP and DII of E protein [55, 56]. Many 

other attachment factors have been identified for flaviviruses, including CD14 

[57], GRP78/BiP [58], 37-kDa/67-kDa laminin binding protein [58], heat-shock 

proteins 90 and 70 [59], and even negatively charged lycoaminoglycans, such 

as heparan sulphate, which are expressed in various cell types, though, for the 

latter, recent studies did not reveal specific binding of WNV with heparan 

sulphate [60]. 

After the viral attachment via the cellular receptors, WNV enters the cell through 

clathrin- mediated endocytosis [61]. It is characteristic that it was possible to 

inhibit WNV infection by treating cells with chemical inhibitors like 

chloropromazine [62] that prevent the formation of clathrin-coated pits, or by 

expressing negative mutants of Eps15 in cells. Eps15 is a protein involved in 

clathrin-coated pit formation [63]. The endosome environment is characterized 

by acidic PH, which triggers conformational changes of the E glycoprotein. The 

first step involves the disruption of the E protein rafts and dissociation of the E 

homodimers to monomers. An outward projection of DII takes place, and the 

fusion loop of DII is exposed to the target membrane. The E proteins insert their 

fusion loops into the outer leaflet of the cell membrane. Three E monomers 

interact with one another via their fusion loops to form an unstable trimer which 

is stabilized through additional interactions between the DI domains of the three 
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E proteins [50, 64]. Next, DIII is believed to fold back against the trimer to form 

a hairpin-like configuration. The energy released by these conformational 

changes induces the formation of a hemifusion intermediate, in which the 

monolayers of the interacting membranes are merged. Finally, a fusion pore is 

formed and after enlargement of the pore, the nucleocapsid is released into the 

host cell. The viral RNA is released by the nucleocapsid with a yet unknown 

mechanism and is translated. The produced polyprotein is cleaved at multiple 

sites by the NS3 serine protease and the host signal peptidase within the lumen 

of the endoplasmic reticulum. At the same time, the viral RNA-dependent RNA 

polymerase copies complementary negative polarity (–) strands from the 

positive polarity genomic (+) RNA template, and these negative strands serve 

as templates for the synthesis of new positive viral RNAs. Studies showed that 

RNA replication can continue without protein synthesis, and that from a (+) 

strand RNA only one (-) strand RNA can be synthesized at a time, while from 

a (-) strand RNA multiple (+) strand RNAs can be simultaneously copied 

[65,66]. However virion assembly cannot take place if sufficient protein 

synthesis has not been performed: Each virion contains 180 copies each of E 

and prM structure proteins and only one genomic copy. 

 

Figure 4. West Nile virus replication cycle. The virion is attached to the cellular 

membrane of thee host cell via the cellular receptors, and the envelope fuses 
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with the membrane. The viral RNA is released by the nucleocapsid with a yet 

unknown mechanism and serves as mRNA for translation of all viral proteins 

and as template during RNA replication. Virion assembly and release of them 

to the extracellular milieu complete the replication cycle. Reprinted with 

permission from PNAS 2002, vol. 99 no. 18 11555-11557. Copyright 2002 

National Academy of Sciences, U.S.A. 

During West Nile virion assembly, C proteins bind to the newly replicated RNA 

and wrap around it to form an icosahedral shell. This nucleocapsid will be 

enveloped by cellular membrane derived from the endoplasmic reticulum and 

will bud into the lumen as immature virions on which E and prM proteins form 

60 heterotrimeric spikes. Immature virions are then transported to the mildly 

acidic compartments of the trans-Golgi network triggering a rearrangement of 

E proteins on the immature virion; the lower pH induces a structural transition 

such that E proteins form 90 antiparallel homodimers on the surface of the 

virion [67] (Figure 4). Under acidic conditions, prM remains associated with the 

virion and protrudes from the surface of an otherwise smooth virus particle. This 

pH-dependent conformational change increases the susceptibility of prM for a 

furin-like serine protease [68].The pr peptide dissociates from the particle upon 

release of the virion to the extracellular milieu by exocytosis, which starts 10-

12 h after cell infection. However, this furin processing of prM is rather 

inefficient and many virions still contain prM proteins even after their release to 

the extracellular milieu, which will reorganize back to prM/E heterodimers. 

This inefficient and incomplete maturation leads to the secretion of a mixture of 

mature, immature and partially mature particles from flavivirus-infected cells. A 

high number of prM-containing particles have been described for WNV. Until 

recently, fully immature virions were considered to be unable to cause infection 

as they cannot undergo the structural rearrangements required for membrane 

fusion [69]. However, newer studies proved that even fully immature virions of 

flaviviruses can cause infection by antibodies [70, 71]. Regarding partially 

immature virions, multiple studies have shown that they can also be infectious 

[17, 72]. It seems that the mature part of these virions is responsible for cell 

binding and entry after which the further processing of remaining prM may take 

place inside the cell. Further studies are needed to estimate the “cut-off” 
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regarding the number of prM proteins on viral surface that allow the viral particle 

to be infectious. 

1.5 Epidemiology 

Avian species are considered the primary hosts of West Nile virus, and in an 

endemic region, virus is maintained in an enzootic cycle between mosquitoes 

and birds [73]. Birds from more than 300 avian species have been reported 

dead from West Nile virus [74]. Disease can also be caused in humans and 

other mammals, particularly horses, considered as alternative hosts of WNV; 

main route of infection is through the bite of infected mosquitoes. However, the 

virus can also spread between individuals by blood transfusion and organ 

transplantation and few reports have also proposed the transmission from 

mother to new-born via the intrauterine route or via breast-feeding [75-77]. Most 

human infections remain asymptomatic, West Nile fever (a mild flu like fever) 

develops in approximately 20 to 30% of infected persons and West Nile 

neuroinvasive disease in <1% [78], characterized by encephalitis, meningitis, 

acute flaccid paralysis and even long-term neurological sequeale [79]. 

Nonetheless, horses and humans develop viremia levels of low magnitude 

(<105 PFU/ml) and short duration insufficient to infect mosquitoes and thus do 

not serve as amplifying hosts for WNV in nature [80]. On the contrary, various 

avian species, both migratory and sedentary, develop viremia levels sufficient 

to infect most feeding mosquitoes [81]. Hence, WNV is maintained in an 

enzootic cycle with wild and domestic birds being the main amplifying hosts 

and ornithophilic mosquitoes, especially of the Culex species, the main vectors. 

Moreover, local movements of resident birds and long- range travel of migratory 

birds may both contribute to the spread of WNV [82, 83]. Various studies have 

provided indirect evidence that WNV is transported by migratory birds, 

especially via their migration routes from breeding areas of Europe to wintering 

areas in Africa [84-87]. 

WNV strains are grouped into at least 7 genetic lineages [88] (Figure 5). 

Lineage 1 is the most widespread, containing isolates found in Europe, North 

America, Asia, Africa and Australia. This linage is further divided into at least 

two different clades: WNV-1a is found mainly in Africa, Europe, North America 

and Asia and is further divided in six evolution clusters [89]. WNV 1-b contains 
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the Australian Kunjin virus. A third clade containing Indian isolates is now 

classified as Lineage 5 [90]. Lineage 2 strains are mainly distributed in Sub-

Saharan Africa and Madagascar, but in the last decade they have been 

introduced in Europe. Lineage 3 contains a strain circulating in certain Culex 

and Aedes species mosquitoes in southern Moravia, Czech Republic, namely 

“Rabensburg virus”, not known to be pathogenic to mammals [91]. Lineage 4 

is represented by a strain isolated from Dermacentor marginatus ticks from the 

Caucasus [92]. A re-classification of Sarawak Kunjin virus as lineage 6 has 

been proposed as this strain is different to other Kunjin viruses. The African 

Koutango virus is closely related to WNV and a seventh lineage has been 

proposed for this strain. An eighth lineage has been proposed for WNV strains 

detected in Culex pipiens mosquitoes captured in Spain in 2006, which could 

not be assigned to previously described lineages of WNV [93]. 

 

Figure 5. Phylogenetic tree of a 236-nt NS5 genomic region. Phylogenetic 

analysis based on a 236-nt NS5 genomic region of 15 West Nile virus strains, 

representatives of all recognized lineages, focusing on Lineage 2 strains 

circulating in South Eastern Europe. Analysis was performed using MEGA 

version 5. GenBank accession numbers and geographic origins of strains used 

in this analysis are: NY99 (AF202541, USA); Kunjin virus (D00246, Australia); 

804994 (DQ256376, India); Nea Santa-Greece-2010 (HQ537483, Greece); 
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magpie-Greece/10 (JQ954395, Greece); goshawk-Hungary/04 (DQ116961, 

Hungary); Italy/2011/AN-2 (JN858070, Italy); SPU116/89 (EF429197, South 

Africa); B956 (AY532665, Uganda); Reb VLG 07 (FJ425721, Russia); Sarafend 

(AY688948, Israel); Kunjin virus/strain Sarawak (L49311, Malaysia); 

Rabensburg 97-103 (AY765264, Czech Republic); LEIV-Krnd88-190 

(AY277251, Russia); Koutango DakAaD 5443 (L48980, Senegal). Neighbour-

joining tree was constructed from a difference matrix employing the Kimura 2-

parameter correction. One thousand bootstrap pseudo- replicates were used 

to test the branching (shown as percentages, with a cut-off value of 50%). 

Lineage 2 was considered to be endemic in Sub-Saharan Africa and 

Madagascar, however, since 2004 strains have been observed in Hungary from 

birds of prey [94] and in 2007 in Russia from mosquito pools during a disease 

outbreak with 67 human cases [95]. In 2010 it caused outbreaks in Romania 

[96] and Greece [4] and in 2011 it was detected for the first time in Italy [97, 

98]. The Greek and Italian strains showed the highest homology to Hungarian 

and South African strains, differing from the Russian lineage 2 strains detected 

in 2007. However, in Italy no major human disease outbreak occurred; only one 

human case was reported with mild clinical expression [97]. Genetic analysis 

of the Italian strains revealed the presence of histidine at 249 aa position of 

NS3, just like the Hungarian strains, in contrast to the Greek strains that 

contained proline at that position, the presence of which has been already 

implicated with high pathogenicity of lineage 1 strains [99]. 

1.6 Pathogenesis 

Most of our knowledge regarding WNV dissemination and pathogenesis 

derives from the study in rodent models. After an infected mosquito bite, WNV 

infects keratinocytes and Langerhans cells [100,101] which migrate to lymph 

nodes resulting in a primary viremia [102]. Then the virus spreads to peripheral 

visceral organs like kidney and spleen where a new replication stage occurs, in 

epithelium cells and macrophages respectively [103]. Depending on the level 

of viremia, the peak of which comes at day 3 p.i. in mice, the virus may cross 

the blood-brain barrier (BBB) and enter the central nervous system (CNS), 

causing meningo-encephalitis. Various ways have been proposed for WNV 

entry to CNS; TNF-a mediated change in endothelial cell permeability have 
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been proposed to facilitate CNS entry [104], as well as infection of olfactory 

neurons and spread to the olfactory bulb [105]. Other ways involve direct axonal 

retrograde transport from infected peripheral neurons [106] or transport of the 

virus by infected immune cells trafficking to the CNS [107]. WNV infects 

neurons in various parts of the CNS causing loss of architecture, degeneration 

and cell death. In a later stage mononuclear cells infiltrate the infected regions 

although it is not really clear if they help stop infection or contribute to 

pathogenesis destroying infected cells and releasing cytokines [108]. Infection 

and injury of brain stem, hippocampal and spinal cord is observed in both 

humans and rodents that succumb to the disease. Persistence of WNV in mice 

was found to be tissue dependent. Infectious virus could persist as long as 4 

months p.i., especially in mice that did not exhibit disease during acute infection 

and especially in the skin and spinal cord [109]. This persistence may also 

occur in humans after mild febrile illness or subclinical infections; 3% of WNV-

positive blood donors were found to have detectable WNV RNA in blood 

between 40 and 104 days after their index donation [110]. 

In wild birds, less is known regarding pathogenesis of WNV. The virus has been 

detected by histology and RT-PCR in various tissues e.g. brain, liver, lungs, 

heart, spleen and kidneys of various avian species e.g. crows, blue jays, 

goshawks, magpies [111, 112, 94, 6]. Various avian species were found to be 

viremic for 6 days post inoculation and viremic titres high enough to transmit 

the virus to mosquitoes via their bites [113]. In wild birds, infectious WNV was 

detected for as long as 6 weeks in tissues [114,115]. However it is important to 

clarify that immune response, virulence and viral persistence is to a great 

degree species dependent, with great variations among various avian species 

in different geographical areas, as well as strain dependent, implicating various 

genetic determinants of virulence. 

1.7 Immune response 

Immune response of animals and humans to WNV infection is divided to innate 

and adaptive. 

Innate response includes interferons, complement and innate cellular immunity 
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Interferons type I (IFN-α and IFN-β), type II (IFN-γ), and type III (IFN- λ) IFNs 

play an essential protective role limiting infection of many viruses. IFN-α/β is 

produced by most of the cells following viral infection and induces an antiviral 

state to the cell, “activating” the relevant genes. It also creates a linkage 

between innate and adaptive immune responses by various mechanisms e.g. 

activation of B and T cells or dendritic-cell maturation [116, 117, 118]. IFN-γ is 

produced by γδ Τ cells, CD8+ T cells, and natural killer cells and limits early 

viral dissemination to the CNS through several mechanisms [119, 120]. WNV 

has evolved various countermeasures, at least 6 different mechanisms, against 

interferons function [121]. Hence, IFN administration cannot be considered of 

significant therapeutic importance for WNV disease control [122]. 

Several nucleic acid sensors e.g. TLR3, cytoplasmic dsRNA, RIG-I and MDA5 

bind to viral RNA and activate transcription factors like IRF3 and IRF7 as well 

as IFN-stimulated genes [123-126]. 

Complement is a system of proteins in serum and molecules on cell surface 

that recognize pathogens and induce pathogen clearance. Three pathways 

exist for complement activation the classical, the lectin and alternative 

pathways, which are initiated by binding of C1q, mannan-binding lectins or 

hydrolysis of C3 respectively. All three pathways have been found to be 

important for controlling WNV lethal infections [127- 129]. 

There is data suggesting that macrophages and dendritic cells may directly 

inhibit WNV. Macrophages can control infection through cytokine and 

chemokine secretion, enhanced antigen presentation and direct viral clearance 

[130]. γδ T cells also limit WNV infection in an early stage [131]. 

Adaptive response includes humoral and cellular response 

Humoral immunity plays a vital role in protection from WNV infection.  

Experimental studies demonstrated complete lethality of B-cell-deficient and 

IgM-/- mice infected with WNV, whereas they were protected by transfer of 

immune sera [132,133]. IgM titres at day 4 p.i. could predict the disease 

outcome at prospective experiments. IgG can also protect from infection, 

however, in primary infection their role is less vital: Being produced after days 

6-8, the disease outcome has been determined, since both viral shedding to 
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CNS and clearance from tissues have already occurred [132, 134]. The vast 

majority of neutralizing antibodies are directed against all three domains of E 

protein. However the most potent neutralizing antibodies are directed on DIII 

possibly inhibiting viral fusion at post-attachment stage [135, 136]. In humans, 

antibodies against prM have also been recognized but with limited neutralizing 

activity [70, 137, 138]. Antibody neutralization is a procedure where multiple 

antibodies, above an estimated threshold “manage” to neutralize the virion’s 

activity and render it non-infectious. This threshold was estimated to be 30 

antibodies per virion for a highly accessible epitope of DIII of E protein [139-

141]. It is important, however, to understand the following aspects: The level of 

neutralizing antibodies does not always correlate with protection against WNV. 

WNV have 180 E proteins on their surface. Steric phenomena because of the 

dense icosahedral arrangements of these proteins do not allow the equivalent 

display of all the epitopes. There are also many structurally distinct epitopes, 

not easily accessible to certain neutralizing antibodies. It is characteristic that 

studies showed a reduction of the neutralizing ability of antibodies correlated to 

the maturation state of WNV: Maturation reduces the accessibility of some of 

the epitopes on the virion [17]. Thus, these antibodies cannot efficiently 

neutralize the virus even if at high levels of concentration. This can lead to 

completely different result: Antibody dependent enhancement (ADE) of 

infection is possible in cells bearing activating Fc-γ receptors [141, 142] and 

thus a mild infection with sufficient levels of antibodies can become even life- 

threatening due to the inability of the antibodies to neutralize the virions. 

Antibodies against NS1, a protein secreted in the serum of patients during 

acute phase of disease and expressed on the surface of infected cells 

considered to be a cofactor in virus replication, have been found to be non-

neutralizing but protecting through both Fc-γ receptor-dependent and 

independent mechanisms [143]. 

T lymphocytes (part of cellular response mechanism) have been demonstrated 

to be vital for the protection against WNV infection. Recognizing an infected 

cell through the viral antigen fragments associated with MHC class I molecules 

on the infected cells’ surface, cytotoxic (CD8+) T cells secrete cytokines and 

lyse the cells directly (perforin, granzymes A and B) or indirectly via Fas-Fas 
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ligand interactions [144, 145]. Studies showed that for the protection against 

lineage I, perforin played the most important role and, in contrast, lineage II 

strain Sarafend was controlled more efficiently by granzymes [146, 147]. CD4+ 

T cells contribute through multiple mechanisms, and preliminary data suggest 

that CD4+ T cells restrict pathogenesis in vivo [148]. Except IFN–α/β, T-cell 

immune response is extremely essential regarding the control of WNV in the 

CNS, their presence being correlated with virus clearance [146, 149, 150]. 

WNV infection induces the secretion of the chemokine CXCL10 from neurons, 

recruiting effector CD8+ T cells via the chemokine receptor CXCR3 

[151].Expression of chemokine receptor CCR5 and its ligand CCL5 is up-

regulated by WNV and is associated with CNS infiltration of CD4+ and CD8+ T 

cells, NK1.1+ and macrophages expressing the receptor [152]. 

All the above data provide solid evidence that a combination of various aspects 

of both innate and adaptive immune response cooperate to control WNV 

infection in the periphery and CNS. 

1.8 Genetic determinants of virulence 

Various studies especially in the last decade have recognized a variety of 

genetic determinants of virulence for West Nile virus strains. Specific mutations 

have been found to attenuate or strengthen virus pathogenicity via various 

mechanisms. Those that have been found to be the most important will be 

reported here, focusing on the ones that seem to have major impact on the 

replication mechanisms of WNV. 

Mutations at the Envelope protein at residues 154 to 156, which abolished the 

N-linked glycosylation motif (N-Y-S/T) was proved to attenuate virus 

pathogenicity in mouse models [153]; these mutations seem to alter the protein 

such that it cannot be recognized by oligosaccharyl-transferase, thus glycan 

loss is caused [154]. This glycosylation motif has been recognized to various 

flaviviruses and spatially is located in close proximity to the centre of the fusion 

peptide of DII of E protein, and thus is considered to increase the stability of 

the protein to a fusion-active form even at high temperatures [155, 156]. This 

proved to be really important for the multiplication of the virus to avian cell and 

animal models: results showed that E glycosylated WNV variants multiplied 
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more efficiently to avian cell cultures and at high temperatures, causing at the 

same time high viremic titres and pathogenicity to chicks [157]. Most of the 

Lineage I virulent strains as well as recent virulent Lineage II strains associated 

with the Greek outbreak carry the N-glycosylation site, suggesting it a 

prerequisite for the efficient circulation and amplification of the virus in a 

mosquito-avian transmission cycle [158]. Of course it is possible that E 

glycosylation affects other aspects of the WNV replication cycle as well such 

as target cell tropism, virion assembly and release etc. 

We have already referred to the NS4B protein proven dual role of involvement 

to virus replication mechanism (enhances helicase activity) and evasion of host 

innate immune defence (inhibits IFN α/β response). Studies proved that 

substitution of cysteine (an amino acid which is often critical for the proper 

function of a protein) with serine at position 102 of NS4B, (Cys102Ser) leads to 

sensitivity to high temperatures as well as attenuation of the neuroinvasive and 

neurovirulent phenotypes in mice [159]. It was determined previously that the 

first 125 amino acids of the N-terminal of NS4B protein of flaviviruses are 

sufficient for the inhibition of IFN-α/β signalling [160]. Hence, this mutation 

which is located in this region of WNV may attenuate the viral ability to inhibit 

IFN signalling. Attenuation of the viral pathogenicity, characterized by lower 

viremia levels and no lethality to mice, was caused by a P38G mutation in the 

NS4B protein [161]; this was proven to be related to an induce of higher innate 

and adaptive immune response in mice, with higher type I IFNs and IL-1β levels 

and stronger memory and effector T cells responses. An adaptive mutation 

(E249G) in the NS4B gene resulted in reduced in-cell viral RNA synthesis, 

probably affecting the involvement of NS4B to the virus replication mechanism 

[162]. 

NS2A protein, as already stated, plays important role in RNA replication and 

viral particles assembly, and is also the major suppressor of IFN-β transcription. 

It was found that an A30P mutation of a Kunjin subtype WNV strain resulted in 

a reduced ability of the virus to inhibit IFN response, leading to increased levels 

of IFNs synthesis [27]. However this mutation implemented in North American 

Lineage 1 strains did not cause significant changes to phenotype indicating that 

in many cases the effect of mutations under study can be strain- specific. D73H 
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and M108K were mutations found to be related to poor replication and non-

mortality to mice [163]. 

NS3 protein includes the serine protease at the N-terminal and the RNA 

helicase, an NTPase and an RTPase at the C-terminal. The introduction of a 

T249P in North American Linage 1 strain was found to be sufficient to generate 

a phenotype virulent to American crows [99]. A H249P mutation is considered 

to be the main cause of increased virulence of Lineage 2 strain that caused the 

major WNV disease outbreak in 2010-2011, in Greece. Only the Greek 

sequences, detected in mosquito pools, corvids and chickens [5, 164] contains 

proline at this locus, while all other Lineage 2 strains contain histidine. The 

exact mechanism through which this mutation increases the pathogenicity of 

WNV is unknown, believed though to be related to increased replication rate 

caused by an enhancement in RNA helicase function; hence, the virus may 

surpass bird viremia thresholds required for infection of many mosquito species 

vectors (> 105 PFU/ml). However, recent studies on European Lineage 1 strains 

Morocco/2003 and Spain/2007 proved that the first was more pathogenic in a 

mouse model than the second; Morocco/2003 contains a T and Spain/2007 a 

P at 249 aa position. Hence, a proline residue in position 249 of the NS3 

position is not sufficient to enhance virulence, at least in certain cases [165, 

166]. Another study detected a potential role of a S365G mutation to enhance 

viral replication, by lowering the requirement of ATP for ATPase activity, thus 

allowing the RNA helicase to sustain the unwinding rate of viral RNA under 

conditions of ATP deficiency [167]. 

The function of the hydrophobic 2K peptide that spans the ER membrane 

between NS4A and NS4B remains largely unknown. It is believed that it acts 

as signal sequence for the translocation of NS4B into the ER lumen. It is 

removed from the N-terminus of NS4B by a host ER signalase. 2K-V9M mutant 

virus generates higher viral titres in Oas1b-expressing cells than the wild type 

virus. The exact mechanism by which the 2K-V9M substitution enables WNV 

resistance to antiviral action of Oas1bis unknown [167]. 

Theoretically, substitutions of hydrophobic to hydrophilic amino acids and vice 

versa as well as substitutions of glycine, proline and cysteine residues are 

considered to have a potential effect on the secondary structure of proteins. A 
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study performed on Lineage 2 strains of low and high virulence recognized this 

kind of substitutions at NS3 (S160A and R298G), NS4A (A79T) and NS5 

protein (T614P, M625R, M626R) that were present at high virulent strains [168]. 

1.9 Conclusions 

West Nile virus is considered a serious public health threat, especially for high 

risk groups (very young and elderly, immunocompromised). Currently there has 

not been established any antiviral treatment to WNV infections; only supportive 

care may be administered. Vaccine development is still at an early stage for 

humans. Hence, preventive measures rely still on reduction of mosquito 

populations and minimizing vector-host contact. Various diagnostic techniques 

have been developed the last decades, both molecular and serological, trying 

to minimize the difficulties arisen from other cross-reactive closely related 

flaviviruses. Data presented here prove the complexity of the host-virus 

interaction: Specific host-pathogen- vector interface, cellular tropism, viral 

structure diversity regarding maturation, immune system recognition and 

response, genetic diversity are all factors characterized by great variation 

rendering WNV control extremely difficult. Continuous studies are being 

demanded to understand the extent of this complexity to further elucidate 

biological relationships among host, vector and virus that will lead to improved 

disease control. As more is learned about the biological characteristics of WNV 

infection, one continuing objective will be to relate this knowledge to the clinical 

features of disease. An important viral-host determinant is virus attachment, 

mediated by cellular receptor and allowing subsequent infection. Host 

defensive behaviours that could affect virus acquisition and transmission 

should be also further studied. This may help in the design and implementation 

of more efficient and cost-effective control strategies since introduction of WN 

virus is an ongoing risk and reality. The ultimate challenge will be to apply the 

knowledge gained in understanding viral replication and unravelling the 

complexity leading to pathogenesis in order to prevent and control West Nile 

virus and its severe manifestations. 
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Summary 

A West Nile virus (WNV) lineage 2 strain was molecularly identified and characterised 

in a Eurasian magpie hunted in Greece in 2010, during a WNV outbreak in humans. 

Phylogenetic analysis revealed the highest sequence similarity (>99%) with other WNV 

lineage 2 strains derived from birds of prey in Austria and Hungary (2004–2009). This 

first molecular detection of WNV in sedentary wild birds in Greece, which are possible 

reservoirs of the virus, is a public health concern.   
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2.1 Introduction 

West Nile virus (WNV) is a mosquito-transmissible Flavivirus with zoonotic 

potential. The virus has been present in Europe for decades; however, only 

recently were strains of lineage 2 (L2) identified outside of Africa: in 2004 and 

2005 in goshawks in Hungary, in 2007 in Volgograd, Russia, and in 2008 and 

2009 in goshawks and a falcon in Austria [1-3]. From early July through October 

2010, 261 laboratory-confirmed cases of WNV infection in humans were 

reported in northern Greece as part of an outbreak. Of these, 191 patients 

presented with neuro-invasive symptoms, and 34 deaths were reported [4]. 

Most cases were observed in central Macedonia, in areas located between four 

major rivers (Axios, Loudias, Aliakmon and Gallikos) which converge into a 

common delta, a well-known resting and breeding ground for migratory birds. 

2.2 Methods and Results 

The objective of our study was to detect possible infection of wild birds with 

WNV during the outbreak in Greece, and to molecularly characterize and define 

the WNV strain geographical origin in positive samples. 

Our first focus was on members of the Corvidae family. Many corvid species 

are sedentary and territorial, having a wide daily dispersal range of up to 20 

km, social, roosting in large colonies and abundant in both wetlands and urban 

areas [5]. Hence, introduction of the virus in an area (i.e. via migratory birds) 

may result in its transmission, circulation and maintenance in local corvid 

populations. Samples from hunter-harvested corvids (Eurasian magpies and 

carrion crows, hunted species according to Greek law) were collected during 

the hunting season (from 20 August until 28 February the following year) of 

2009/10 and of 2010/11. Sampling was carried out in the municipalities of 

Thermi and Axios (prefecture of Thessaloniki, central Macedonia, Greece) by 

members of the Hunting Federation of Macedonia and Thrace, locating corvid 

roosting sites in nearby wetlands. Hunters were briefed on signs of encephalitis 

in birds, and were instructed to report any such observations. No findings of 

birds with signs of encephalitis or dead birds were reported from any of the 

hunters. 
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Of 96 corvids collected, 36 were tested, including 28 Eurasian magpies (Pica 

pica) and eight carrion crows (Corvus corone). A pool of selected tissues 

(kidney, heart, liver) was created from each bird. RNA was extracted from each 

pool, which constituted a single sample, using the PureLink RNA Mini Kit 

(Invitrogen). An -RT-PCR specific for Japanese encephalitis virus complex was 

performed for all extracts resulting in a 1,084-bp amplification product covering 

part of the non-structural protein 5 (NS5) gene, as described earlier [6]. A band 

of expected size was obtained from one PCR product derived from a magpie 

harvested near the village of Trilofos (40°28’25.57”N, 22°58’28.62”E) in 

September 2010 (Figure 1). A serum sample from the magpie in question was 

tested for the presence of WNV IgG antibodies by indirect immunofluorescence 

test using a commercial kit (EUROIMMUN) [7]; the serum sample was positive 

at a dilution of 1/30. 

The positive PCR product was purified using the PureLink PCR Purification Kit 

(Invitrogen) and was bidirectionally sequenced using the fluorescent BigDye 

Terminator Cycle sequencing kit v3.1 (Applied Biosystems), followed by 

fragment separation with a 3,730xl DNA Analyser (Applied Biosystems). 

Phylogenetic analysis was conducted using MEGA 3.1 [9]. Nucleotide 

sequences from other WNV strains were retrieved from Genbank (NCBI). 

Phylogenetic analysis of 797 nucleotide-long partial NS5 sequences was 

performed. A neighbour-joining phylogenetic tree using Kimura-2 parameter 

distance matrix was inferred from 26 WNV strain sequences (including that 

derived from the magpie in our study) and two sequences of the Japanese 

Encephalitis virus complex as outgroups (Figure 2). Node support was 

assessed with 1,000 bootstrap pseudo-replicates. 

The WNV sequence derived from the Greek magpie clustered with WNV L2 

strain sequences and presented highest (99.9%) sequence similarity to L2 

strain sequences derived from birds of prey in Austria obtained in 2008 and 

2009 [2]. A 99.6% similarity was also observed with the corresponding region 

of an L2 strain derived from a dead goshawk in Hungary in 2004 [1]. No amino 

acid changes were observed in the genomic region of the magpie derived WNV 

strain compared to Austrian and Hungarian strains. According to our analysis, 

all these strains as well as two strains from South Africa belong to the same 
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sub-cluster. A lower sequence similarity (96.8%) was observed with a WNV L2 

strain isolated during an outbreak in Russia in 2007. The Russian strain 

sequence groups with other African strains (including other South African 

strains) in a separate sub-cluster, suggesting a different reintroduction of WNV 

L2 in Europe [3]. The sequence from the Greek magpie isolate was deposited 

in GenBank under accession no. JF719073. 

 

Figure 1. Bird sampling area for West Nile Virus, Central Macedonia, Northern 

Greece, 2009–2011. WNV: West Nile Virus. 

The study area corresponds to the areas where most human cases occurred 

during the WNV outbreak. Black square boxes indicate where WNV was 

detected in mosquitoes [8]. A and B indicate areas, where tested corvids were 

harvested. The black circle indicates where the WNV-positive Eurasian magpie 

was hunted. 

2.3 Discussion 

From early July through October 2010, a WNV outbreak in humans occurred in 

northern Greece, as confirmed by serologic evidence. To date, no WNV 
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genomic sequences are available from the human cases during this outbreak. 

A WNV strain sequence derived from a magpie hunted during the outbreak of 

the human disease was found in this study. The sequence has highest 

sequence similarity to L2 strain sequences from birds of prey in Austria 

obtained in 2008 and 2009. WNV RNA fragments, though limited in size, (146 

nt NS5 genomic region) with 100% sequence similarity to Hungarian and 

Austrian L2 strains, were also detected in two pools of mosquitoes caught 

during the time of the Greek outbreak and in the same area [8]. The mosquito 

WNV sequence was not included in our analysis because it did not overlap with 

the magpie WNV sequence. However, the similarity of both to the Austrian L2 

strain sequences suggests that the same WNV strain is implicated in the 

magpie and mosquito infections and associated with the human outbreak. The 

evidence may implicate this corvid species in a local virus maintenance and 

generates concerns about possible overwintering and expansion of the virus in 

neighbouring areas. To test this hypothesis, research must be extended in non-

epidemic periods, by performing molecular and serologic surveillance in wild 

birds and focusing efforts on the isolation of infectious WNV from avian 

samples. 

Phylogenetic analysis of our strain revealed a high sequence similarity with 

Austrian and Hungarian WNV strains detected in previous years in birds of prey 

(2004–2009). According to these findings, it can be hypothesized that the virus 

expanded from northern Europe southwards. The area of the recent outbreak 

is a well-known resting and breeding ground for migratory birds passing on the 

way from nesting grounds in Europe to wintering areas in Africa. Re-

introduction of the virus in the future by birds migrating along the south-eastern 

migration route that leads from Europe and western Asia to Africa should also 

be considered possible and needs further investigation. 
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Figure 2. Phylogenetic tree of West Nile Virus strains based on nt sequences 

of the NS5 genomic region. 
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Summary 

Background 

A West Nile virus (WNV) disease outbreak occurred in 2010 in northern Greece 

with a total of 262 laboratory-confirmed human cases and 35 deaths. A 

serological and molecular surveillance was conducted on samples of hunter-

harvested wild birds prior to and during the outbreak. 

Findings 

Serum and tissue samples from 295 resident and migratory wild birds, hunter-

harvested during the 2009–2010 and 2010–2011 hunting seasons at the 

epicenter of the outbreak in northern Greece, were tested for the presence of 

WNV-specific antibodies by immunofluorescence assay and virus 

neutralization test. WNV neutralizing antibodies were detected in 53 avian 

samples. Fourteen positive sera were obtained from birds hunter-harvested up 

to 8 months prior to the human outbreak. Specific genetic determinants of 

virulence (His249Pro NS3 mutation, E-glycosylation motif) were recognized in 

a WNV lineage 2 strain isolated from a hunter-harvested Eurasian magpie and 

a nucleotide mismatch was revealed between this strain and a mosquito WNV 

strain isolated one month earlier in the same area. 

Conclusions 

This is the first report regarding exposure of wild birds to WNV prior to the 2010 

outbreak, in Greece. Results provide evidence of the implication of wild birds in 

a local enzootic cycle that could allow maintenance and amplification of the 

virus before and during the outbreak. Findings of past exposure of migratory 

birds to WNV upon their arrival in Greece during autumn migration, suggest 

avian species with similar migration traits as candidates for the introduction of 

WNV into Greece. The possibility that an endemic circulation of WNV could 

have caused the outbreak, after an amplification cycle due to favorable 

conditions cannot be excluded.  
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3.1 Background 

West Nile virus (WNV) is a flavivirus of major public health concern for the last 

2 decades, as associated disease outbreaks are increasing worldwide. The 

main route of infection is through the bite of infected mosquitoes; humans and 

horses develop viremia levels of low magnitude and short duration, insufficient 

to re-infect mosquitoes, and thus do not serve as amplifying hosts for WNV in 

nature [1]. On the contrary, various avian species develop viremia levels 

sufficient to infect mosquitoes and even bird to bird transmission of the virus by 

direct contact has been reported [2]. Hence, WNV is maintained in an enzootic 

cycle with birds being the amplifying hosts and ornithophilic mosquitoes, 

especially of the Culex species, the main vectors. Moreover, local movements 

of resident birds and long-range travel of migratory birds may both contribute 

to the spread of WNV [3,4]. 

In 2010, a major outbreak of WNV human infections occurred in northern 

Greece, with 262 laboratory-confirmed cases and 35 deaths [5]. Although WNV 

neutralizing antibodies had been detected in northern Greece since 2007, the 

first WNV lineage 2 (L2) strain was obtained from pools of Culex mosquitoes 

(strain Nea Santa-Greece-2010) in 2010 [6]. At the same time our team 

detected a similar L2 strain in a Eurasian magpie (strain magpie-Greece/10), 

as has been reported [7]. 

For the purposes of our participation in an FP7 EU research project 

(“WildTech”), wild bird samples that have been collected by the Hunting 

Federation of Macedonia and Thrace since 2009 were used for serological and 

molecular surveillance regarding exposure to various pathogens. The objective 

of this study was to detect possible exposure of wild birds to WNV prior to and 

during the outbreak. In addition we further investigated the detected WNV 

magpie strain for important virulence markers. These markers have been 

recognized to be a prerequisite for the development of viremia levels in wild 

birds necessary for them to be considered amplifying hosts. 

3.2 Findings 

Our team conducted a serological and molecular surveillance in serum and 

tissue samples of wild birds hunter- harvested in 2009–2010 and 2010–2011 
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official hunting seasons (from 20 August until 28 February of the following year). 

Samples were collected at the epicentre of the 2010 outbreak (Figure 1) in 

central Macedonia by members of the Hunting Federation of Macedonia and 

Thrace from species considered quarry according to Greek legislation. 

Samples from all different species were not available for both periods or from 

every sampling site. All sampling sites are in flying distance of avian species 

and no safe conclusions can be drawn regarding viral dispersion in the area 

between the hunting seasons. This area is characterized by mosquito-

abundant water-lands and four major rivers which converge into a common 

delta, a well-known resting and breeding ground for migratory birds. The study 

was focused on hunter- harvested resident and migratory avian species 

suspected to play a role in WNV local circulation, maintenance and dispersion. 

Members of the Corvidae family, like Eurasian magpies (Pica pica) and hooded 

crows (Corvus cornix) were prioritized; these corvid species are resident, with 

a wide daily dispersal range of up to 20 km, social, roosting in large colonies 

and abundant in both wetlands and urban areas [8]. Turtle doves (Streptopelia 

turtur) were also targeted; they are suspected to be a principal introductory host 

of WNV via their migration routes, as the virus has been isolated from actively 

migrating turtle doves [9]. Migratory waterfowl like the mallard ducks (Anas 

platyrhynchos) have been found to carry WNV antibodies and recent 

experimental studies have also proven that Anseriformes may be able to 

function as carriers of WNV [10]. 

Serum and tissue samples from 295 hunter-harvested birds belonging to the 

above 4 avian species were collected. 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:39:17 EEST - 18.224.73.28



65 
 

 

Figure 1 Map of the epicentre of the WNV outbreak, Greece 2010. Map of the 

epicentre of the outbreak where most of the human West Nile Virus cases 

occurred during 2010 (Central Macedonia, Northern Greece). The area is 

characterized by wetlands and is considered a well-known resting and breeding 

area for migratory birds. Sites A-E refer to bird sampling sites. 

Serological screening was performed with an indirect immunofluorescence 

assay (IFA) test kit (EUROIMMUN) with slight modifications  of manufacturers’ 

instructions, to detect avian WNV antibodies, as previously described; the 

determined cut-off value of 1:30 was used and a (FITC)-labelled goat anti-bird 

antibody was applied (Bethyl Laboratories Inc.) [11]. Positive results were 

verified by a micro-virus neutralization test (VNT), as previously described [12]. 

Serological results are summarized in Table 1 and VNT titres are presented in 

Table 2. Seventy samples (23.7%) were IFA-positive, 53 of the IFA-positive 

samples were confirmed by micro-VNT test. WNV- neutralizing antibodies were 

detected in 14 resident corvid samples hunter-harvested in the 2009/2010 

hunting season; six seropositive corvids were collected in October 2009, 

indicating an avian exposure to WNV at least 8 months prior to the human 

outbreak. Presence of WNV-neutralizing antibodies in corvids sera collected in 

both 2009/2010 and 2010/2011 hunting seasons indicates a continuous 
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maintained circulation and presence of WNV in the area for the referred period, 

as hunter- harvested corvids are mainly < 1 year old, born in February-March 

of the same year. 

Seven sera of turtle doves hunter-harvested upon the days of their arrival in 

resting areas (sites A and C, Figure 1) during autumn migration were found 

positive for WNV-neutralizing antibodies. Three of these 3 were juvenile, born 

probably in breeding areas of origin in the same year (central Europe). None of 

the 55 sera of mallard ducks hunter harvested near the artificial Lake Kerkini, 

a premier birding site (site B, Figure 1), were found to contain WNV-specific 

antibodies. 

Molecular screening from pools of selected tissue samples (liver, heart and 

kidney, known to be suitable samples for WNV detection especially in 

asymptomatic birds) was performed as described previously [7]. A positive 

WNV L2 PCR product was obtained from a magpie hunted in the area of the 

human outbreak in September 2010 that was, as reported, similar to the one 

derived from pools of mosquitoes in the same area [6] and showed the highest 

sequence similarity to strains derived from birds of prey in Austria in 2008–09 

as well as in Hungary in 2004 [13,14]. In this study, further molecular 

investigation of the magpie WNV strain was performed, regarding important 

virulence markers. RT-PCR and a subsequent sequencing analysis was 

employed for the amplification of a 270-nt Envelope (E) protein genomic region, 

using previously described primers [15]. Molecular investigation of a 401-nt 

NS3 genomic region of the magpie strain using a previously established PCR 

protocol, was also performed [16]. 

The N-linked glycosylation motif (N-Y-T/S) at residues 154–156 of the E protein 

is present in the magpie strain; E protein glycosylation is considered a 

prerequisite for the development of the necessary viremic levels in avian blood 

(> 105 PFU/ml) that allow efficient transmission of WNV Lineage 1 from avian 

hosts to mosquitoes [17]. A nucleotide mismatch was revealed at nt position 

624 of E gene (G-C transversion, synonymous SNP) by pair- wise alignment 

between the present study magpie WNV strain and the mosquitoes WNV strain 

isolated one month earlier [18]. The E genomic region sequence from the Greek 

magpie isolate was deposited in GenBank under accession no JN809470. A 
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phylogenetic tree was constructed using MEGA 5.0 [19]. Neighbour-joining 

analysis of genetic distances in the 270-nt E genomic region of WNV strains 

(Figure 2) displayed close phylogenetic relationship between the Greek WNV 

strains, a Hungarian WNV strain isolated from a goshawk in 2004 and South 

African WNV lineage 2 strains. 

Molecular investigation of a 401-nt NS3 genomic region of the magpie strain 

revealed the presence of proline at the 249 aa position of NS3 gene, a mutation 
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related to increased viremia potential and virus transmission rates in corvids for 

L1 strains [20]. This mutation was also present in the other WNV L2 strains 

isolated in Greece [18,21]. All other WNV L2 strains isolated worldwide have 

histidine at this position and have not been related with major human outbreaks 

[18]. The NS3 genomic region sequence from the magpie isolate was deposited 

in GenBank under accession no. JN809471. 

3.3 Conclusions 

This is the first report regarding extensive exposure of wild birds to WNV in 

Greece prior to the 2010 human outbreak. Findings of high virus neutralization 

titres in many samples suggests a possible recent exposure to WNV rather than 

cross reaction to other flaviviruses such as USUV. In addition, our employed 

RT-PCR designed to amplify a wide range of mosquito-borne flaviviruses did 

not give any positive result other than WNV. Resident corvids hunter-harvested 

in the epicentre of the outbreak have been exposed to WNV at least eight 

months before the first human cases were reported. Thus an active wildlife 

surveillance system for emerging infectious diseases would predict the 

mosquito-wild birds WNV circulation and the possible emergence under 

appropriate conditions that caused the major outbreak in humans. Genetic 

determinants of increased virulence were present in the WNV strain isolated 

from the magpie that further support this finding. However, different findings 

have also been reported regarding the NS3249 mutation suggesting that this 

mutation may not be sufficient to enhance virulence for any given WNV strain 

[22]. Thus, experimental infection studies and pathogenicity assessment will 

provide more solid conclusions. Furthermore, genetic variation was observed 

in the related Greek strains isolated from different hosts; this supports the 

hypothesis of the quasispecies structure and possible process of adaptation to 

local transmission of the virus [23]. Even though our study confirmed the 

presence of important genetic virulence markers in the magpie strain, clinical 

signs suggestive of encephalitis or dead birds were not reported from any of 

the hunters. The hunters had been briefed and were instructed to report any 

such observations. Wild birds in Greece do not seem to be susceptible to WNV 

even though the virus was able to cause a major human outbreak; this further 

supports the hypothesis that birds in Europe may have an innate immunity due 
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to the ancestral co evolution and long association between WNV and avian 

hosts in the Old World [8]. Findings of WNV neutralizing antibodies in migratory 

hunter-harvested turtle doves (some juvenile and with high VNT titres) upon 

their arrival in resting areas of Greece during their autumn migration from 

breeding areas of central Europe to wintering areas of Africa, indicates 

exposure probably in the areas of their origin. This finding in addition to the 

molecular similarity of WNV strains isolated in Greece with strains isolated in 

previous years in Austria and Hungary [13,14] suggests avian species with 

similar migration traits as candidates for possible introduction of WNV L2 strain 

into Greece in previous years from central Europe. The detection of a WNV L2 

infection in Italy in 2011, with the isolated strain being closer phylogenetically 

to the Hungarian and Austrian L2 strains rather than African strains supports 

this hypothesis [24], especially as Italy and Greece are stopover areas during 

autumn migration of various avian species from central Europe to Africa [25]. 

Of course, we cannot exclude the possibility of infection of migratory birds at 

the stopover areas or that an endemic circulation of WNV could have caused 

the outbreak after an amplification cycle due to favourable conditions present 

in the epicentre of the outbreak. Results of this study strengthen the need for a 

continuous active serological and molecular surveillance system regarding 

WNV and other flaviviruses, which may provide timely information regarding 

virus introduction and circulation, further dispersion or introduction of new 

strains. 
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Summary 

A major number of West Nile virus (WNV) infections in humans occurred in 2010 in 

northern Greece, with 262 laboratory confirmed cases. In 2011, fewer cases were 

reported, but the pattern was more dispersed throughout the Greek mainland. Isolated 

strains were similar to lineage 2 strains detected in previous years in Austria and 

Hungary from birds of prey. We conducted a serological surveillance study on hunter-

harvested wild birds, to determine possible exposure of avian species during the 

current outbreak. Serum samples from a total of 113 Eurasian magpies and 85 turtle 

doves (abundant resident and migratory avian species, respectively, with potential 

roles in WNV epidemiology) were tested. These birds were hunter-harvested during 

2011 from various prefectures both affected and not affected by the WNV outbreak in 

Greece. Sera were tested for the presence of WNV IgG antibodies by indirect 

immunofluorescence assay (IFA). Verification of positive results by a micro-virus 

neutralization test (VNT) was also performed. A total of 23 out of 113 (20.4%) Eurasian 

magpies and 6/85 (7.1%) turtle doves were found positive. Results showed association 

of human cases with wild birds’ exposure to the virus; no avian sera were found positive 

in prefectures not affected by the WNV outbreak. In contrast, positive avian sera were 

found in every prefecture that human WNV cases occurred in 2011. High 

seroprevalence in Eurasian magpies suggests high activity of WNV in the areas. 

Findings of past exposure of migratory birds like turtle doves to WNV upon their arrival 

in resting areas in Greece suggest various avian species with similar migration traits 

as target species for viral isolation studies, as they can be considered candidates for 

the introduction of WNV lineage 2 in Greece from Central Europe.  
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4.1 Introduction 

In 2010, a major number of West Nile virus (WNV) human infections occurred 

mostly in northern Greece, with 262 laboratory-confirmed cases, of which 191 

presented with neuroinvasive symptoms and 35 led to death (HCDCP 2010). 

WNV lineage 2 sequences were obtained from pools of Culex mosquitoes 

(strain Nea Santa-Greece-2010) (Papa et al. 2011) and a Eurasian magpie 

(strain magpie-Greece/10) (Valiakos et al. 2011). Significantly fewer cases 

were reported in 2011; from the beginning of 2011 until mid-September, only 

74 laboratory-confirmed cases of WNV infection were reported, of which 57 

presented with neuroinvasive disease and five led to death (HCDCP 2011). 

However, many of the 2011 cases were observed in areas not previously 

affected; a southwards dispersion of WNV was observed to new areas which 

are characterized by warmer climate, milder winters and still major mosquito- 

abundant wetlands. Some were adjacent to areas affected in 2010 whilst others 

were in new distant areas. A WNV lineage 2 strain was reported in 

seroconverted sentinel chickens in July 2011 and in one pool of Culex pipiens 

mosquitoes this year in Central Macedonia (Chaskopoulou et al. 2011; Danis 

et al. 2011). 

An ongoing serological surveillance study regarding exposure of wild birds to a 

number of different pathogens, including WNV, is being conducted that tests 

avian samples for the purposes of an EU research project (WildTech 2010). 

Regarding WNV, the objective of our study is to detect possible exposure of 

wild birds to the virus in prefectures affected by the outbreak and in prefectures 

that were not affected. 

4.2 Methods and results 

Our team has conducted a serological surveillance study in hunter-harvested 

migratory and resident wild birds in 2011. Eurasian magpies (Pica pica) were 

targeted, which are resident corvids, with a wide daily dispersal range of up to 

20 km and roost in large colonies in both wetlands and urban areas (Jourdain 

et al. 2008; Reiter 2010). Turtle doves (Streptopelia turtur) were also targeted 

by our study as they constitute a major representative of migratory birds in 

Greece and are suspected to be one of the principal introductory hosts of WNV 
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via their migration routes worldwide, as the virus has been isolated from actively 

migrating turtle doves (Ernek et al. 1977). 

Serum samples from a total of 113 Eurasian magpies and 85 turtle doves were 

collected during 2011 from various prefectures, some of which were affected 

by the WNV outbreak (n=6) while others were unaffected (n=3). Most birds 

were hunter-harvested in late August to early September 2011 (start of the 

2011–2012 hunting season according to the Greek law) (YPEKA 2011). Some 

sera collected in February 2011 (end of 2010–2011 hunting season) in 

prefectures of Larissa and Attica were also tested. Sera were tested for the 

presence of WNV specific antibodies by indirect immunofluorescence assay 

(IFA); commercially available slides (EUROIMMUN®; Luebeck, Germany) 

were employed, as described previously, and the determined cut-off value of 

1:30 was used (Ziegler et al.2010). Each sample was placed in a single 

substrate containing both WNV infected and non-infected cells in order to avoid 

false positive results. Verification of positive results by a micro- virus 

neutralization test (VNT) was performed, as previously described, in dilutions 

of 1/10 and 1/20; titres of 10 or higher were determined to be only detected in 

sera from WNV-infected individuals and not to different flaviviruses (Figuerola 

et al. 2007). 

Results are shown in Fig. 1. A total of 23/113 (20.4%) Eurasian magpies and 

6/85 (7.1%) turtle doves were found IFA/VNT positive. To gain further insight 

into the potential cross-reactivity of other circulating flaviviruses, namely, TBEV 

in Greece (Pavlidou et al. 2007), IFA/VNT positive samples were further tested 

using commercial TBEV IFA slides (EUROIMMUN®). No positive results were 

observed. Finally, RT-PCR was employed in pools of selected tissues (heart, 

kidney, liver) from all seropositive and 18 seronegative birds, as previously 

described (Valiakos et al. 2011; Weissenbock et al. 2002). No WNV RNA was 

detected in these samples. 

No avian sera were found positive in prefectures not affected by the human 

WNV outbreak from which samples were available in 2011 (prefectures of 

Florina, Evros and Arcadia with a total of 0/52 positive avian sera). In contrast, 

positive avian sera were found in every prefecture in which human WNV cases 

occurred in 2011 (prefectures of Serres, Thessaloniki, Trikala, Larissa and 
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Karditsa with a total of 29/127 positive avian sera) except for Attica; however 

this prefecture was not affected by the outbreak of 2010 and available avian 

sera were collected in February 2011 (first human cases in the area were 

reported in July 2011). On the other hand, in prefecture of Larissa, sera 

collected in February 2011 were found positive; human cases have been also 

reported here in August 2010 (HCDCP 2010). 

 

Figure 1. Occurrence of WNV human cases and results of serologic 

surveillance in wild magpies and turtle doves (Greece, February–September 

2011). Map of Greece showing prefectures of Greece where occurrence of 

human cases of WNV was observed until 15 September 2011, in relevance to 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:39:17 EEST - 18.224.73.28



80 
 

tested avian samples. Number of tested positive/total number of tested avian 

samples per species is shown for each prefecture for which avian sera were 

available for our study. 

4.3 Discussion 

First serological results showed association of human cases with wild birds’ 

exposure to the virus; none of the sera derived from birds hunter-harvested in 

prefectures unaffected by the WNV human outbreak was found positive. On the 

contrary, birds were found to be exposed to WNV in every prefecture that 

reported human cases and from which avian sera were available (χ2 = 12.5, df 

= 1, P < 0.001). High seroprevalence of resident wild birds (Eurasian magpies) 

suggests a high activity of WNV in the affected areas. Detection of WNV RNA 

in tissues of a Eurasian magpie hunter-harvested in September 2010 (Valiakos 

et al. 2011), in pools of mosquitoes 1 month earlier (Papa et al. 2011) as well 

as in sentinel chickens in July 2011 (Chaskopoulou et al. 2011), further 

supports this finding, indicating a recent bird–mosquito circulation rather than 

a past exposure to WNV at least in the area of northern Greece. Hence, our 

results further strengthen previous studies that suggested magpies as sensitive 

indicators of WNV enzootic activity in an area (Jourdain et al. 2008). Exposure 

of migratory wild birds like turtle doves creates concerns about the origin and/or 

further dispersion of the virus. Turtle doves are one of the species known for 

their ability to travel long distances (over 1,000 km) during their migrations with 

an average speed of 90 km/h. During their autumn migration, turtle doves from 

the Balkan countries can fly over the Mediterranean basin in just one night to 

reach their wintering sites of sub-Saharan Africa. However, turtle doves from 

Central European countries (Hungary, Austria, Poland, etc.) are not able to 

pass over the Mediterranean basin at once, but stop at several resting areas in 

Greece to replenish which has been proven by recovery of ringed birds projects 

(Akriotis and Handrinos 2004; Bankovics 2001). Even though WN viremia 

levels capable of mosquito infection last for only a few days in birds, the 

migration speed of turtle doves as well as the previous examples of isolation of 

WNV from actively migrating turtle doves (Ernek et al. 1977) allow their 

implication in WNV epidemiology. In our study, WNV-reactive antibodies were 

detected in sera of migratory turtle doves which were hunter-harvested on the 
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day of their arrival at resting areas of Greece during their autumn migration 

from Central Europe to wintering areas of Africa. This demonstrates past 

exposure to WNV probably to the areas of their origin. The high molecular 

similarity of WNV strains isolated from various species in Greece (Papa et al. 

2011; Valiakos et al. 2011; Chaskopoulou et al. 2011) Austria and Hungary 

(Wodak et al. 2011; Bakonyi et al. 2006) suggests a south- wards dispersion of 

WNV from Central Europe which may have been caused through the migration 

routes of migratory avian species with similar migration traits (turtle doves, 

quails, orioles, etc.) (Jourdain et al. 2007). Isolation of WNV strains from birds 

of these species will provide even more evidence to support this hypothesis. 

Furthermore, exposure of birds of these species to the virus while resting in 

Greece would create further concerns about virus dispersion. 

The hunters were briefed on signs of encephalitis in birds, and were instructed 

to report any such observations. However, no nervous signs in wild birds or 

findings of dead birds were reported by any of the hunters. Wild birds in Greece 

do not seem to be susceptible to the circulating WNV lineage 2 strain that 

causes major human outbreaks; this further supports the hypothesis that birds 

in Europe may have an innate immunity due to the ancestral co-evolution and 

thus long association between the virus and its avian hosts in the Old World 

(Reiter 2010). 

No sera of birds hunter-harvested in Attica on February 2011 were found 

positive. Even though the sample size is small, we may hypothesize that the 

introduction of the virus occurred later in the area near the capital of Athens, 

probably justifying the relatively small outbreak in a high population area. Attica 

is characterized by mosquito abundant wetlands known to serve as resting 

areas for migratory birds. Hence, concerns arise regarding possible 

overwintering and following extended amplification of WNV leading to a 

potential larger outbreak in the next year. 

Further serological and molecular surveillance of resident and migratory birds 

will provide further information regarding possible virus origin and further 

dispersion of the isolated WNV strains or even introduction of new strains. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:39:17 EEST - 18.224.73.28



82 
 

4.4 References 

Akriotis T, Handrinos G (2004) Bird ringing report (1985–2004). Hellenic Bird 

Ringing Centre 

Bakonyi T, Ivanics E, Erdelyi K, Ursu K, Ferenczi E, Weissenbock H, Nowotny 

N (2006) Lineage 1 and 2 strains of encephalitic West Nile virus, central 

Europe. Emerg Infect Dis 12(4):618–623 

Bankovics A (2001) The migration of wood pigeon (Columba palumbus) and 

turtle dove (Streptopelia turtur) in Hungary. In: Biología y Gestión de 

Colúmbidos silvestres. II Coloquio Internacional – Biologie et la Gestion des 

Colombins Sauvages. II Coloque Inter- national. Naturzale Cuadernos de 

Ciencias Naturales, vol 16. Eusko Ikaskuntza, pp 83–93 

Chaskopoulou A, Dovas C, Chaintoutis S, Bouzalas I, Ara G, 

Papanastassopoulou M (2011) Evidence of enzootic circulation of West Nile 

virus (Nea Santa-Greece-2010, lineage 2), Greece, May to July 2011. Euro 

Surveill 16(31):doi:19933 [pii] 

Danis K, Papa A, Papanikolaou E, Dougas G, Terzaki I, Baka A, Vrioni G, 

Kapsimali V, Tsakris A, Kansouzidou A, Tsiodras S, Vakalis N, Bonovas S, 

Kremastinou J (2011) Ongoing outbreak of West Nile virus infection in humans, 

Greece, July to August 2011. Euro Surveill 16(34):doi:19951 [pii] 

Ernek E, Kozuch O, Nosek J, Teplan J, Folk C (1977) Arboviruses in birds 

captured in Slovakia. J Hyg Epidemiol Microbiol Immunol 21(3):353–359 

Figuerola J, Jimenez-Clavero MA, Rojo G, Gomez-Tejedor C, Soriguer R 

(2007) Prevalence of West Nile virus neutralizing antibodies in colonial aquatic 

birds in southern Spain. Avian Pathol 36(3):209– 212. 

doi:10.1080/03079450701332329 

Jourdain E, Gauthier-Clerc M, Bicout DJ, Sabatier P (2007) Bird migration 

routes and risk for pathogen dispersion into western Mediterranean wetlands. 

Emerg Infect Dis 13(3):365–372 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:39:17 EEST - 18.224.73.28



83 
 

Jourdain E, Gauthier-Clerc M, Sabatier P, Grege O, Greenland T, Leblond A, 

Lafaye M, Zeller HG (2008) Magpies as hosts for West Nile virus, southern 

France. Emerg Infect Dis 14(1):158–160 

HCDCP — Hellenic Centre for Disease Control and Prevention (2010) West 

Nile virus Revised Epidemic Report 2010. http://www.keelpno. gr/en-

us/home.aspx 

HCDCP — Hellenic Centre for Disease Control and Prevention (2011) West 

Nile Virus Weakly Epidemiological Report — 15 September. 

http://www.keelpno.gr/en-us/home.aspx 

Papa A, Xanthopoulou K, Gewehr S, Mourelatos S (2011) Detection of West 

Nile virus lineage 2 in mosquitoes during a human outbreak in Greece. Clin 

Microbiol Infect 17(8):1176–1180. doi:10.1111/ j.1469-0691.2010.03438.x 

Pavlidou V, Geroy S, Diza E, Antoniadis A, Papa A (2007) Epidemiological 

study of tick-borne encephalitis virus in northern Greece. Vector Borne Zoonotic 

Dis 7(4):611–615. doi:10.1089/vbz.2007.0107 

Reiter P (2010) West Nile virus in Europe: understanding the present to gauge 

the future. Euro Surveill 15(10):19508 

Valiakos G, Touloudi A, Iacovakis C, Athanasiou L, Birtsas P, Spyrou V, Billinis 

C (2011) Molecular detection and phylogenetic analysis of West Nile virus 

lineage 2 in sedentary wild birds (Eurasian magpie), Greece, 2010. Euro 

Surveill 16(18): doi:19862 [pii] 

Weissenbock H, Kolodziejek J, Url A, Lussy H, Rebel-Bauder B, Nowotny N 

(2002) Emergence of Usutu virus, an African mosquito-borne flavivirus of the 

Japanese encephalitis virus group, central Europe. Emerg Infect Dis 8(7):652–

656 

WildTech — Novel Technologies for Surveillance of Emerging and Re-

emerging Infections of Wildlife (2010) Wild birds as a source of selected 

emerging and re-emerging pathogens: application of microarray technologies. 

Work Package 6. PhD student Project. 

http://www.wildtechproject.com/wildtech/node/24 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:39:17 EEST - 18.224.73.28



84 
 

Wodak E, Richter S, Bago Z, Revilla-Fernandez S, Weissenbock H, Nowotny 

N, Winter P (2011) Detection and molecular analysis of West Nile virus 

infections in birds of prey in the eastern part of Austria in 2008 and 2009. Vet 

Microbiol 149(3–4):358–366. doi:10.1016/j.vetmic.2010.12.012 

YPEKA — Ministry of Environment Energy and Climate Change (2011) 

Presidential degree 1762/4-8-2011 (in Greek). http:// 

www.ksellas.gr/client_files/2011-2012.pdf 

Ziegler U, Seidowski D, Globig A, Fereidouni SR, Ulrich RG, Groschup MH 

(2010) Sentinel birds in wild-bird resting sites as potential indicators for West 

Nile virus infections in Germany. Arch Virol 155(6):965–969. 

doi:10.1007/s00705-010-0618-z 

  

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:39:17 EEST - 18.224.73.28



85 
 

 

CHAPTER 5 

 

 

 

 

USE OF WILD BIRD SURVEILLANCE, HUMAN CASE DATA 

AND GIS SPATIAL ANALYSIS FOR PREDICTING SPATIAL 

DISTRIBUTIONS OF WEST NILE VIRUS IN GREECE 

 

 

 

 

 

 

Published in PLoS ONE, 2014, 9(5): e96935. doi: 10.1371/journal.pone.0096935 

  

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:39:17 EEST - 18.224.73.28



86 
 

Summary 

West Nile Virus (WNV) is the causative agent of a vector-borne, zoonotic disease with 

a worldwide distribution. Recent expansion and introduction of WNV into new areas, 

including southern Europe, has been associated with severe disease in humans and 

equids, and has increased concerns regarding the need to prevent and control future 

WNV outbreaks. Since 2010, 524 confirmed human cases of the disease have been 

reported in Greece with greater than 10% mortality. Infected mosquitoes, wild birds, 

equids, and chickens have been detected and associated with human disease. The 

aim of our study was to establish a monitoring system with wild birds and reported 

human cases data using Geographical Information System (GIS). Potential distribution 

of WNV was modelled by combining wild bird serological surveillance data with 

environmental factors (e.g. elevation, slope, land use, vegetation density, temperature, 

precipitation indices, and population density). Local factors including areas of low 

altitude and proximity to water were important predictors of appearance of both human 

and wild bird cases (Odds Ratio = 1,001 95%CI = 0,723–1,386). Using GIS analysis, 

the identified risk factors were applied across Greece identifying the northern part of 

Greece (Macedonia, Thrace) western Greece and a number of Greek islands as being 

at highest risk of future outbreaks. The results of the analysis were evaluated and 

confirmed using the 161 reported human cases of the 2012 outbreak predicting 

correctly (Odds = 130/31 = 4,194 95%CI = 2,841–6,189) and more areas were 

identified for potential dispersion in the following years. Our approach verified that 

WNV risk can be modelled in a fast cost-effective way indicating high risk areas where 

prevention measures should be implemented in order to reduce the disease incidence.  
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5.1 Introduction 

West Nile virus (WNV) is a mosquito-borne flavivirus with increasing numbers 

of reported human disease cases worldwide. In Europe, cases of WNV 

associated diseases have been reported in several countries in the European 

Union and in bordering Non- E.U. countries. The largest ongoing European 

outbreak has been observed in Greece, with more than 524 confirmed cases 

of human infection and 60 deaths reported since 2010 [1] (Figure 1). Many 

studies have associated the presence of specific environmental factors with 

areas at high-risk for WNV transmission in the USA [2–5] and Europe [6,7]. 

Tachiiri et al. (2006) developed a model using basic geographic and 

temperature data to assess WNV risk in British Columbia [8]. Ruiz et al. (2004) 

used several factors related to the physical environment such as elevation 

range, physiographic region, and percentage of vegetation cover to determine 

WNV risk during an outbreak in the Chicago area in 2002 [9]. Methods that 

have been used in WNV risk modelling include non-linear discriminant analysis 

[10], logistic [11] or multiple regression models [12] (differential and difference 
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Figure 1. Map of Greece showing WNV laboratory-confirmed human cases and 

seropositive resident wild birds, 2010–2012. Map of Greece showing the 

distribution of WNV laboratory-confirmed human cases and seropositive 

resident wild bird samples for the 2010–2012 period. Red, yellow and green 

dots indicate human cases reported in 2010, 2011 and 2012 respectively. Black 

dots indicate seropositive resident wild birds detected during the same period. 

Text boxes refer to available avian samples (resident and migratory) per each 

region. 

equation modelling [13,14] and cluster analysis [15]. Predictive modelling with 

Geographic Information System (GIS) can be used to analyse environmental 

determinants of WNV transmission and determine high risk areas. Most 

previous WNV risk analyses utilized spatial statistical techniques (mapping 

clusters, geographic distribution, spatial relationships-regression models) to 

correlate environmental, climatic and socioeconomic factors with WNV 

prevalence [2,4,5,9,11,16]. The geographical position of Greece in the 

Mediterranean peninsula makes it an important transit zone for migratory birds 

[17]. Greece hosts a wealth of biological diversity, one of the richest in Europe 

and the Mediterranean.  

The main objective of this study was to correlate serological data of exposure 

of wild birds to WNV and reported human cases data during the Greek outbreak 

with potential environmental risk factors within a GIS, in order to construct 

predictive maps identifying areas at risk from further spread. We test the 

predictive power of the models against recent outbreak data and identify high 

risk areas for the application of targeted, timely and cost-effective prevention 

measures such as surveillance, mosquitoes control and campaigns to increase 

public awareness of the disease. 

5.2 Materials and Methods 

Study Area 

The study area comprised the entire country of Greece. Greece occupies the 

south-eastern part of Europe with a total area of 131,990 km2. Eighty percent 

of Greece consists of mountains; the country is characterized by a large climatic 

diversity (29 climatic zones according to the Thorn Waite classification), by its 
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extensive coastline of about 15,000 km and many island complexes in the 

Archipelagos of Aegean Sea and the Ionian Sea. Climatic conditions of the 

country are typical Mediterranean: Summer is hot and dry while winter is usually 

mild. Rain mostly falls in autumn and winter. 

WNV Human Cases Data 

Reported human WNV cases in Greece (2010–2012) were provided by 

HCDCP. Most cases were serologically confirmed by the presence of IgM 

antibodies in the serum and/or the cerebrospinal fluid. Residential address of 

each human case was used for geocoding and mapping the cases. 

Wild Birds Surveillance 

A total of 620 avian serum samples were obtained from wild birds hunter-

harvested by members of the Greek Hunting Federation of Macedonia and 

Thrace, from species considered quarry during the 2009/2010, 2010/2011 and 

2011/2012 hunting seasons (from 20 August until 28 February the following 

year), according to the prerequisites of the Greek Legislation. All available 

samples were obtained from mainland Greece, opportunistically collected 

during regular hunting activities; samples were available from all 9 mainland 

regions of Greece (Table 1). Sampling effort was distributed in mainland 

Greece, avoiding cluster sampling biases, with the exception of the Central 

Macedonia region, the epicentre of the outbreak, during which a large number 

of samples were provided. Data on bird specimens that tested positive for WNV 

during the study were located in the field using handheld Global Positioning 

System (GPS) units or located by means of longitude and latitude information 

provided by samplers. Serological screening was performed as already 

reported [18–20]; a total of 64 resident wild birds were found positive for WNV 

antibodies, and were used in the current study (migratory wild birds were also 

found seropositive, but relevant data was excluded from the analysis, see 

Discussion). 

Environmental Variables 

Environmental variables for this study were derived from three main database 

categories: climate, elevation and land cover data. WorldClim version 1.4 

climate data [21] was obtained from the WorldClim website 
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(http://www.worldclim.org). WorldClim is a set of global climate layers (climate 

grids) with a spatial resolution of 1 square kilometre. Topographic variables 

including altitude, aspect and slope were extracted from a digital elevation 

model (DEM) with a spatial resolution of 1 square kilometre (http://srtm. 

csi.cgiar.org/Index.asp). Land uses were derived from the Corine Land Cover 

2000 database (European Environment Agency – EEA, 

http://www.eea.europa.eu/data-and-maps). 

Village and vegetation corrections were digitized from 2007 and 2009 colour 

orthophotos that were available through Web Mapping Service (WMS) 

(http://gis.ktimanet.gr). To create environmental layers (n = 37) for the analysis 

(Table 2), ArcGIS 10.1 GIS software (ESRI, Redlands, CA, USA) was used. 

GIS layers were created to represent factors like the locations of towns and 

villages, distance to the nearest village, distance from water presence etc. For 

many of the above parameters, we calculated neighbourhood statistics for radii 

of 100, 200, 500 and 1000 m to determine which spatial scale affects the 

presence of cases most strongly. These data sets were converted to a common 

projection, map extent and resolution prior to use in the modelling program. 

Statistical Analysis 

We used data on 2010 and 2011 human cases for the statistical analysis and 

model building and kept the 2012 cases for verification. A total of 363 human 

WNV cases have been reported in Greece for the years 2010 and 2011 (262 

cases in 2010 and 101 cases in 2011). The available dataset consisted of 

presence only data (presence: people infected by the virus). For this dataset, 

as well as the wild birds seroprevalence dataset a number of explanatory 

variables (n = 37) were collected and constructed, as mentioned previously 

(Table 2). 

Instead of constructing a number of pseudo-absence controls, a methodology 

which according to the literature has some significant disadvantages for the 

prediction modelling [22,23], we decided to search for within the presence data 

variation of the explanatory variables. We clustered the cases using the 

agglomerative method of Two Step Cluster Analysis, a method which allows for 

the utilization of both continuous and categorical variables and clusters the 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:39:17 EEST - 18.224.73.28



91 
 

cases by measuring the log-likelihood distance among them [24]. The Two Step 

Cluster Analysis allowed us to check for a pattern of the virus among the 

infected people in 2010, in 2011, and in total. The optimal number of clusters 

was chosen using the Silhouette coefficient, a measure proposed by Kaufman 

and Rousseeuw (1990) [25]. The coefficient ranges from 21 to 1 and when its 

value is closer to 1, the clustering is considered efficient. 

Before applying the above cluster method, we checked a number of descriptive 

statistical measures which describe our data. Although Two Step Cluster 

Analysis is robust to non-normality [24] we used Factor Analysis in order to 

reduce the number of available variables and to achieve normality and zero-

correlation among explanatory continuous variables. We used the Principal 

Component Analysis (PCA) as a method of components extraction with rotation 

method the Varimax method with Kaiser Normalization [26]. Two Step Cluster 

Analysis was iterated several times using as clustering variables either the 

components which were extracted by the Principal Component Analysis, or the 

original variables which were highly correlated with the components. The 

extracted clusters for humans and the extracted clusters for birds were 

compared in terms of the variables that are important for clustering. 
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GIS Analysis 

Two significant environmental variables were recognized from the statistical 

analysis (see Results) and were used to measure environmental conditions for 

the WNV locations of the seropositive wild birds and the human cases dataset. 

Mahalanobis distance (MD) [27] was used to develop a distance measure 
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model for wild birds and predict WNV potential distribution prior to the 

expansion/outbreak of the 2012 period. We calculated MD with ArcGIS 

software, based on the values of the two significant variables, allowing us to 

identify suitable areas for WNV potential distribution and occurrence. Model 

performance evaluation was conducted with the 2012 reported WNV human 

cases, as provided by HCDCP. 

5.3 Results 

Data analysis demonstrates differences between 2010 and 2011 in terms of 

positive cases in Greece (Table 3). Fewer cases (n = 101) occurred in 2011 

and the average case age was 5 years younger compared to 2010 (p-value = 

0.024). There was a statistically different distribution in terms of the prefecture 

of residency of the positive cases, which were found in more southern areas 

compared to 2010, indicating the pathogen’s continued spread in mainland 

Greece. 

Finally, the distribution of the infected individuals in terms of date of infection 

was different in 2011, where more positive cases were found in July and 

September, compared to 2010 where the majority of the cases were found in 

August (64%). 

Factor Analysis and Two Step Cluster Analysis revealed that altitude and 

distance from water were the two variables, among the 37 under study, which 

clustered significantly the cases. Both variables played a significant role in the 

clustering procedure. The two variables clustered in a similar way for both 

humans and birds. For the clustering of human cases, the average Silhouette 

coefficient was 0.5 which is considered a good clustering value [25]. The same 

value was achieved for the clustering of seropositive wild birds (Odds Ratio = 

1,001 95%CI = 0,723– 1,386). Three clusters were created for humans and 

birds (Figure 2), sharing the same attributes. In particular, humans’ Cluster A 

and birds’ Cluster B share the majority of the positive cases in humans and 

birds respectively (60%). There seems to be a pattern of WNV in Greece in 

places with low altitude and small distance from water. There are also two other 

clusters with lower percentages of cases which show that positive cases are 
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also found in places with low altitude and big distance from water (23–24%) 

and in places with high altitude and small distance from water (almost 17%). 

Relevant box-plots (Figure 3) show how well the two variables discriminate in 

each cluster. A clear separation of the three clusters is seen in both groups of 

cases. 

Regarding the 2010 human cases, clustering showed that low altitude and 

small distance from water were associated with the majority of the positive 

human cases as well. A total of 86.6% of the human cases were grouped in 

cluster A (Figure 2), which shares similar attributes with cluster A of human 

2011 cases and cluster B of birds. 

The potential geographic distribution of WNV, predicted by GIS and MD based 

on the attributes of the major clusters of reported human cases of 2011 and 

seropositive wild birds is displayed in Figure 4. Fragmented high-risk areas 

were recognized: Most were concentrated in the Macedonian prefecture, in 

western Greece as well as in Thessaly. Other suitable high risk areas were 

located along the coast line of the Peloponnese peninsula and Crete. Moreover, 

many Greek islands have suitable environmental characteristics such as 

Rhodes, Mytilene, Chios, Samos etc. 

In the early transmission period (June 2012) we reported the high–risk areas 

recognised throughout this study to the Ministry of Public Health and to 

HCDCP. As already reported, in 2012, a total of 161 laboratory-confirmed 

human cases were reported. Out of these 161 cases, only 31 occurred far from 

WNV high-risk areas recognised by our model (Odds = 130/31 = 4,194 95%CI 

= 2,841–6,189); four (4) human cases out of 5 were reported in recognised 

high-risk areas while only 1 out of 5 was not. New areas of potential dispersion 

of the virus are also suggested for the following years in the areas of Thrace, 

the Peloponnese peninsula and several Greek Islands (Figure 4). 
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5.4 Discussion 

Humans and other mammals, particularly horses, are alternative hosts for 

WNV; the main route of infection is through the bite of an infected mosquito. 

Most human infections remain asymptomatic with WNV fever developing in 

approximately 20% of infected people and West Nile neuroinvasive disease in 

1% [28]. Horses and humans develop low viremic loads (<105 PFU/ml) of short 

duration and thus are considered dead-end hosts for WNV [29]. In contrast, 

various migratory and resident avian species develop high viremic loads, 

sufficient to infect feeding ornithophilic mosquitoes [30]. Hence, the WNV life 

cycle is maintained with birds being the main amplifying hosts and mosquitoes 

the main vectors. Moreover, local movements of resident birds and long-range 

travel of migratory birds may contribute to pathogen dispersion [31,32]. In 

southern France, WNV was detected in late summer of 2000 and 2004. 

Migratory passerines were found with higher prevalence of WNV neutralizing 

antibodies (7.0%) than resident and short-distance migratory passerines 

(0.8%), suggesting exposure to WNV or a related flavivirus during overwintering 

in Africa [33]. Additionally in Spain it was found that Trans-Saharan migrant 

species had both higher prevalence and antibody titres than resident and short-

distance migrants [34]. 
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Figure 2. Clusters of human cases of seropositive wild birds and reported human 

cases of 2010–2011. Clusters of WNV reported human cases of 2010–2011 and 

seropositive wild birds, according to attributes of altitude and distance from water. 

Mean values of the two variables are presented under each cluster. 
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Figure 3. Box-plots of range and altitude. Box-plots displaying range of altitude 

(left) and distance from water (right) in the three clusters of humans 2011 WNV 

positive cases and seropositive wild birds. 
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Figure 4. Map of Greece showing potential geographic distribution of WNV. 

Map of Greece showing potential geographic distribution of WNV, predicted by 

GIS and MD based on the attributes of the major clusters of reported human 

cases of 2011 and seropositive wild birds (low altitude, small distance from 
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water). Black dots indicate reported human cases in 2012. Black circles indicate 

suggested high-risk areas for WNV further dispersion in following years. 

In Greece, the disease first appeared in Macedonia prefecture in 2010, with 

262 confirmed cases and 35 deaths, and it subsequently spread through 

mainland Greece in the following years. More specifically, in 2011, the outbreak 

expanded southwards to central Greece with 101 confirmed cases and 9 

deaths, while in 2012, a total of 161 confirmed cases and 18 deaths were 

reported mainly in Attica and north-eastern Greece. A strain of lineage 2 was 

detected in 2010 in pools of Culex mosquitoes [35] and in wild birds [20]. In this 

study we correlate various environmental factors with WNV maintenance, 

amplification and potential for future spread in Greece. 

Various public health studies have used Geographical Information System 

technologies as a tool for data analysis [2,9,15]. Previous studies [9,10] found 

that certain social and environmental factors were correlated with WNV 

dissemination patterns: The presence of vegetation, distance to a WNV positive 

dead bird, the intensity of mosquito abatement, demographic factors such as 

population age, race and financial status. Low precipitation and warm 

temperature were also found to associate with WNV cases. On the other hand, 

spread of WNV has shown some unique distribution patterns in different 

regions [15,30]. 

Before reaching the aforementioned results, we undertook several efforts to 

find out a pattern, or a distinguishable attribute of the WNV positive cases in 

Greece. Although we used a significant number of explanatory variables for 

describing each positive case (a mix of both continuous and categorical 

variables), there was no indication that these altogether could show the pattern 

in question. Therefore we tried to reduce this dataset by using Factor Analysis. 

We run PCA once for the temperature variables and once for the precipitation 

variables. Two components (93% of the variation was explained) for the 

temperature and two components (96% of the variation) for the precipitation 

variables were extracted, which means that the fit was very good. These four 

variables with the rest demographic and environmental variables were used in 

the Two Step Cluster method. This method was preferred compared to other 

clustering techniques because it can handle both categorical and continuous 
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variables. However, we also run hierarchical cluster analysis using only the 

continuous variables, but no pattern of the positive human cases was revealed. 

Therefore, we used the two step cluster technique in a backward selection way. 

Initially we used all the explanatory variables together, and we removed one at 

a time if the Silhouette indicator was not considered good. We used the log-

likelihood distance instead of Euclidean distance, because there were initially 

categorical variables in the dataset. However, when only the two continuous 

variables were left (‘‘altitude’’ and ‘‘distance from water’’), we checked also if 

the Euclidean distance could reveal the same pattern with the log- likelihood 

but it didn’t. We believe the fact that some of the variables were not significant 

for the clustering procedure was due to similar environmental conditions 

existing in Greece during summer. For example, there is no significant variation 

in terms of temperature or precipitation. This is why more stable variables like 

distance from water and altitude were responsible for the form of the clusters. 

After we formed the three clusters with these two variables, this pattern was 

revealed for both human cases and resident wild birds seroprevalence data. 

Distance to water and altitude have both been previously shown to be 

negatively correlated with mosquito larval presence [36]; mosquitoes are the 

main biological vectors of WNV and transmission of this arthropod-borne virus 

is highly dependent on the density of mosquitoes. Low lying areas in close 

proximity to water include wetland habitats that are used as resting and 

breeding areas for various migratory and resident birds, allowing the long-

distance introduction of the virus via migration routes as well as the rapid local 

amplification of the virus in a mosquito-bird cycle. In this study, apart from 

statistically identifying proximity to water and altitude as risk factors of spread 

of WNV in Greece, we were able to determine specific mean values for these 

habitat variables that allowed us to predict areas at high-risk for further disease 

incursion. 

WNV positive birds are considered important environmental predictors of WNV 

human risk and are used in surveillance and risk assessment [2,9,37]. Whilst 

viremic birds are likely to represent the highest risk to humans, the viremic 

phase is extremely short, restricting data richness and thus statistical power. 

Hence we focused our analysis on longer lived serological measures of 
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exposure. Moreover, the use of only the resident WNV seropositive wild birds 

from all hunter-harvested samples available, even though samples from 

migratory birds were also found positive, increased the reliability of our 

analysis, avoiding biases regarding area of exposure e.g. migratory birds travel 

long distances so the origin of exposure is hard to be determined. Hence, this 

is a good example of a case in which surveillance regarding exposure and other 

similar biological data derived from nature, regarding a zoonosis, can be used 

as an indicator for predicting high-risk areas. This fact was confirmed by the 

good fit that our model showed for the 2012 positive WNV human cases in 

Greece. 

5.5 Conclusions 

Modelling results indicated that positive resident wild bird occurrences are 

correlated with human WNV risk and can facilitate the assessment of 

environmental variables that contribute to that risk, recognizing new high-risk 

areas where the disease could further spread. Our approach allowed us to 

create a risk based mapping system to assist and guide WNV disease 

surveillance, monitoring and control. This risk based approach offers a way to 

stratify surveillance efforts and resources to improve the efficiency of 

surveillance for new outbreaks and monitoring existing outbreaks. Furthermore, 

it could proactively enhance other preventive efforts and educational 

campaigns for the general public in the not yet ‘‘affected’’ areas. Most 

importantly, early warning and identification of outbreaks is critical to limiting 

the animal and human losses to this disease. An active surveillance program 

undertaken on resident wild birds could be added to active and passive 

surveillance focused on humans, horses and mosquitoes greatly helping in 

evaluating and dealing with future outbreaks linked to flaviviruses. 
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Summary 

The use of multiplex diagnostic molecular technologies offers great advantages over 

conventional methods for the detection of presence or exposure to important 

pathogens. Simultaneous investigation of multiple pathogens renders these 

technologies attractive for diseases surveillance in avian species and especially wild 

ones, where small quantities of samples are usually available. Application of 

microarray technology for use in detecting simultaneously the exposure of wild birds to 

various viral pathogens is presented in this chapter. Tissue samples from hunter-

harvested wild birds in Greece as well as selected archived wild avian tissue samples 

collected in Spain, were used in a general screening study using microarray technology 

under development. Using this novel technology we were able to detect the presence 

of genomic material of two viruses (West Nile Virus and Usutu virus) in two samples. 

These first results are encouraging regarding the application of microarrays in 

surveillance programs established by public health authorities. Perspectives and 

difficulties of using these assays as screening tools are discussed.  
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6.1 Introduction 

The use of multiplex diagnostic molecular technologies offers great advantages 

over conventional methods for the detection of presence or exposure to 

important pathogens. Simultaneous investigation of multiple pathogens renders 

these technologies attractive for diseases surveillance in avian species and 

especially wild ones, where small quantities of samples are usually available. 

Application of microarray technology for use in detecting simultaneously the 

exposure of wild birds to various viral pathogens is presented in this chapter. 

Tissue samples from hunter-harvested wild birds in Greece as well as selected 

archived wild avian tissue samples collected in Spain, were used in a general 

screening study using microarray technology under development. Perspectives 

and difficulties of using these assays as screening tools are discussed. 

6.2 Materials and Methods 

A multiplex avian mini DNA microarray was used for the investigation of viral 

agents in wild bird samples from Greece and Spain. This microarray was 

developed by Sonal et al (1) and consists of approximately 600 probes which 

were designed on conserved genomic regions of various important avian 

viruses (Table 1). The array is printed in an 8-well strip format (Array Strip 

Format®, Alere Technologies®) so that, on each strip, 8 arrays are available and 

thus 8 samples can be simultaneously tested. 

Virus family Virus groups Probe region 
Number 

of probes 

Herpesviridae Alphaherpesvirus 
DNA 

polymerase 
6 

Astroviridae Astrovirus ORF1a 29 
Poxviridae Avipox virus P4b gene 3 

Bornaviridae Borna disease virus M gene 7 

Circoviridae 

Circovirus Rep gene 65 

Gyrovirus 
ORF1 (V1 

protein) 
3 

Coronaviridae Coronavirus N gene 57 

Togaviridae 
Eastern equine 

encephalitis virus 
E2 gene 30 

Birnaviridae 
Gumboro disease 

virus 
VP1 gene 52 

Orthomyxoviridae Influenza A virus M gene 41 

Paramyxoviridae 
Metapneumovirus F gene 14 

Paramyxovirus 1-12 M and F gene 90 
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Parvoviridae Parvovirus VP3 gene 12 

Picornaviridae 
Picornavirus 

3D gene 
44 

Duck Hepatitis A 
Virus 

7 

Polyomaviridae Polyomavirus 
VP1 and VP2 

genes 
8 

Reoviridae Reovirus S1 gene 27 
Togaviridae Sindbis virus NSP1 5 

Flaviviridae 

Flavivirus (other) 

NS5 

6 
Japanese 

encephalitis virus 
5 

Murray Valley 
encephalitis virus 

3 

St. Louis encephalitis 
virus 

5 

Usutu virus 3 
West Nile virus 15 

Tick-borne 
encephalitis virus 

20 

Louping ill virus 4 
Adenoviridae Adenovirus Hexon 7 

Hepeviridae 
Avian Hepatitis E 

Virus 
NS protein 3 

Hepadnaviridae 
Duck Hepatitis B 

Virus 
S gene 4 

Table 1. Genomic region and number of probes designed for each viral 

pathogen and printed on the avian mini DNA microarray. 

The technology was applied on a total of 120 samples from Greece and Spain: 

The 89 Samples from Greece were of unknown infectious status, hunter-

harvested during hunting seasons by members of Hunting Federations (Table 

2). Using the microarray technology, these samples were simultaneously 

screened for pathogens of interest for the purposes of three projects: various 

wild avian viruses for the WildTech FP7 Project, West Nile virus for the 

MALWEST Project and enterotropic viruses of zoonotic potential for a THALES 

Project. The 31 Spanish samples were of known infectious status and origin 

but only to the sender of the samples (blind study). 

N Bird Species 
Area of 

Collection 
Hunting Season Tissue 

1 Anas crecca Thessaloniki 2012-2013 Heart 

2 Anas crecca Thessaloniki 2012-2013 Heart 

3 Anas crecca Thessaloniki 2012-2013 Heart 

4 Anas crecca Thessaloniki 2012-2013 Heart 

5 Anas crecca Thessaloniki 2012-2013 Heart 
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6 Anas crecca Thessaloniki 2012-2013 Heart 

7 Anas crecca Thessaloniki 2012-2013 Heart 

8 
Anas 

platyrhynchos 
Aksios River 2012-2013 Heart, Liver 

9 
Anas 

platyrhynchos 
Aksios River 2012-2013 Heart, Liver, Brain 

10 
Anas 

platyrhynchos 
Aksios River 2012-2013 Heart, Liver 

11 
Anas 

platyrhynchos 
Aksios River 2012-2013 Heart, Liver 

12 
Podiceps 
cristatus 

Volvi Lake 2012-2013 Liver 

13 Aythya ferina Volvi Lake 2012-2013 Liver 

14 
Podiceps 
cristatus 

Volvi Lake 2011-2012 Liver 

15 
Anas 

platyrhynchos 
Thessaloniki 2011-2012 Liver, Pancreas 

16 Anas crecca Ksanthi 2012-2013 Heart, Liver 

17 Anas crecca Ksanthi 2012-2013 Heart, Liver 

18 
Anas 

platyrhynchos 
Ksanthi 2012-2013 Heart, Liver 

19 Anas crecca Ksanthi 2012-2013 Heart, Liver 

20 Anas crecca Ksanthi 2012-2013 Heart, Liver 

21 Anas crecca Ksanthi 2012-2013 Heart, Liver 

22 Anas crecca Ksanthi 2012-2013 Heart, Liver 

23 Anas crecca Ksanthi 2012-2013 Heart, Liver 

24 Anas crecca Ksanthi 2012-2013 Heart, Liver 

25 Anas crecca Ksanthi 2012-2013 Heart, Liver 

26 Anas crecca Ksanthi 2012-2013 Heart, Liver 

27 Anas crecca Ksanthi 2012-2013 Heart, Liver 

28 Anas crecca Ksanthi 2012-2013 Heart, Liver 

29 Anas crecca Ksanthi 2012-2013 Heart, Liver 

30 Anas crecca Ksanthi 2012-2013 Liver 

31 Anas crecca Ksanthi 2012-2013 Heart, Liver 

32 Anas crecca Ksanthi 2012-2013 Heart, Liver 

33 Anas crecca Ksanthi 2012-2013 Heart, Liver 

34 Anas crecca Ksanthi 2012-2013 Heart, Liver 

35 Anas crecca Ksanthi 2012-2013 Heart, Liver 

36 Anas crecca Ksanthi 2012-2013 Heart, Liver 

37 
Passer 

domesticus 
Karditsa 2013-2014 

Heart, Liver, 
Pancreas 

38 
Passer 

domesticus 
Athens 2013-2014 Heart, Pancreas 

39 
Carduelis 
carduelis 

Attica 2013-2014 
Heart, Liver, 

Pancreas 
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40 
Acrocephalus 

sp 
Viotia 2013-2014 

Heart, Liver, 
Pancreas 

41 
Hirundo 
rustica 

Attica 2013-2014 Heart, Pancreas 

42 
Hirundo 
rustica 

Atalanti 2013-2014 Liver 

43 
Passer 

domesticus 
Attica 2013-2014 Liver 

44 Turdus merula Attica 2013-2014 
Heart, Liver, Pacreas, 

Spleen 

45 Pica pica Farsala 2013-2014 Heart, Liver 

46 
Anas 

penelope 
Ksanthi 2012-2013 Heart, Liver 

47 
Anas 

penelope 
Ksanthi 2012-2013 Heart, Liver 

48 
Scolopax 
rusticola 

Ksanthi 2012-2013 Heart, Liver 

49 
Anas 

platyrhynchos 
Chalastra 2013-2014 Liver 

50 
Anas 

platyrhynchos 
Chalastra 2013-2014 Liver 

51 Anas crecca Chalastra 2013-2014 Liver 

52 
Anas 

platyrhynchos 
Chalastra 2013-2014 Liver 

53 Anas crecca Chalastra 2012-2013 Liver 

54 Anas crecca Chalastra 2012-2013 Liver 

55 Anas crecca Chalastra 2012-2013 Liver 

56 Anas crecca Chalastra 2012-2013 Liver 

57 Anas crecca Chalastra 2012-2013 Liver 

58 Pica pica Markopoulo 2013-2014 Liver 

59 Pica pica Markopoulo 2013-2014 Liver 

60 Pica pica Markopoulo 2013-2014 Liver 

61 Pica pica Markopoulo 2013-2014 Liver 

62 Pica pica Markopoulo 2013-2014 Liver 

63 Pica pica Spata 2013-2014 Liver 

64 Pica pica Spata 2013-2014 Liver 

65 Pica pica Spata 2013-2014 Liver 

66 
Gallinago 
gallinago 

Evros 2012-2013 Liver 

67 
Anas 

penelope 
Chalastra 2012-2013 Liver 

68 
Anas 

penelope 
Chalastra 2012-2013 Liver 

69 Anas acuta Chalastra 2012-2013 Liver 

70 
Anas 

querquedula 
Chalastra 2012-2013 Liver 
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71 Anas acuta Chalastra 2012-2013 Liver 

72 
Anas 

penelope 
Chalastra 2012-2013 Liver 

73 Anas crecca Chalastra 2011-2012 Liver 

74 Anas crecca Chalastra 2011-2012 Liver 

75 Anas crecca Chalastra 2011-2012 Liver 

76 Anas crecca Chalastra 2011-2012 Liver 

77 Anas crecca Chalastra 2011-2012 Liver 

78 Anas crecca Chalastra 2011-2012 Liver 

79 Anas crecca Chalastra 2011-2012 Liver 

80 
Scolopax 
rusticola 

Vasilika 2011-2012 Liver 

81 Columba livia Serres 2012-2013 Liver 

82 Columba livia Serres 2012-2013 Heart 

83 
Anas 

platyrhynchos 
Serres 2012-2013 Liver 

84 
Anas 

platyrhynchos 
Serres 2012-2013 Liver 

85 
Anas 

platyrhynchos 
Serres 2012-2013 Liver 

86 
Tadorna 
tadorna 

Serres 2012-2013 Liver 

87 Anas stepera Serres 2012-2013 Liver 

88 
Anas 

platyrhynchos 
Serres 2012-2013 Liver 

89 
Anas 

platyrhynchos 
Serres 2012-2013 Liver 

Table 2. Avian Samples derived from Greece. These samples were hunter-harvested 

by members of the Greek Hunting Federations during the hunting seasons. 

For the sample preparation, a quantity of 50 mg of the tissue sample is 

homogenized using 750 μl Trizol and sterilized glass beads, with continuous 

vortexing. A quantity of 250 μl chloroform is added, and after vortexing for 1 

minute, the sample is centrifuged for 15000 rpm for 15 minutes at a temperature 

of 4oC. A total of 300 μl of the top aqueous solution is removed and placed in a 

special tube used with the EZ1 Advanced XL instrument (Qiagen®) of 

automated nucleic acid extraction. Extraction is performed according to 

manufacturer instructions and quantity/quality of genomic extract is checked 

using Nanodrop (Thermoscientific®). DNA and RNA concentration is then 

adjusted to 200 μg/μl. Total quantities needed are 11 μl of DNA solution and 8 

μl RNA solution. 
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DNA is digested in the RNA solution using DNAse: 8 μl RNA solution + 1 DNAse 

I (Invitrogen®) + 1 μl 10X Dnase buffer (Invitrogen®). After incubation for 30 

minutes at 37oC, 1 μl of 25mM EDTA is added and incubated at 65oC for 10 

minutes.  

A unique combination of random amplification and specific biotin labelling is 

performed, adapting procedures used by Gurrala et al., 2009 (2). Reverse 

transcription and Polymerase Chain Reaction (PCR) is performed using 

Random primer A as follows: 

Step 1 - For the RNA solution: 1μl Random Primer A (40 μM) + 1 μl mM dNTP 

Mix + 11 μl RNA Template. Heat at 95oC for 5 minutes and immediately put on 

ice. 

Step 2 - For the RNA solution: Add 4 μl 5X RT buffer + 1 μl 0.1 DTT + 1 μl 

RNase inhibitor + 1 μl Superscript III in the previous mix. For the DNA solution: 

Add 4 μl 5X RT buffer + 1 μl 0.1 DTT + 2 μl water in the 11 μl DNA solution. 

Incubate both mixes at 25oC for 5 minutes, 42oC for 50 minutes, and 70oC for 

15 minutes. 

Step 3 - Incubate both mixes at 94oC for 2 minutes, cool at 10oC. Add 7,7 μl 

water, 2 μl 5Χ Sequenase buffer and 0,3 μl Sequenase. Heat at 37oC for 8 

minutes, at 94oC for 2 minutes and cool at 10oC. 

PCR using Primer B (complementary to first part of random Primer A) is then 

performed as follows: A PCR mix consisting of 37,5 μl water, 5 μl 10X KlenTaq 

PCR buffer (Sigma®), 1 μl 12,5 mM dNTP, 1 μl 100 μM primer B, 0,5 μl KlenTaq 

LA polymerase (5u/μl) and 5 μl dsDNA (2,5 μl cDNA and 2,5 μl DNA) is created. 

PCR conditions: 94 oC for 4 minutes, 68 oC for 5 minutes, 35 cycles of 94 oC 

for 30 seconds, 50 oC for 1 minute, 68 oC for 1 minute. Finally 68 oC for 2 

minutes and cool at 10 οC (Figure 1). 
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Figure 1. Equipment used during sample preparation and PCR. A) EZ1 

Advanced XL instrument (Qiagen®) B) Nanodrop (Thermoscientific®) C) Vortex 

D) PCR Thermocycler (Applied Biosystems®). 

Gel electrophoresis of the PCR product is performed after this step to observe 

the presence of DNA and cDNA of 300-1000 bp size (Figure 2). 
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Figure 2. Picture of gel after electrophoresis where amplicons of appropriate 

size (300-1000 bp) are detected. A DNA Ladder of 100 bp size bands is used 

(except top band which is of 1500 bp size). 

Labelling PCR is finally performed to label amplicons with biotin. 5 μl of PCR 

product of Primer B PCR + 1 μl 10X KlenTaq PCR buffer + 1 μl dNTP mix + 

2,45 μl mix of specific Primers + 0,2 μl KlenTaq LA polymerase (5 u/μl) + 0,35 

μl Biotin -16-dUTP. PCR conditions: 94 oC for 4 minutes, 68 oC for 5 minutes. 

25 cycles at 94 oC for 30 seconds, 60 oC for 1 minute, 50 oC for 1 minute, 68 

oC for 1 minute. Finally 68 oC for 2 minutes and cool at 10 οC. 

Application of the microarray technology was performed using the Identibac 

hybridization kit (Alere Technologies®) according to the manufacturer 

instructions. The protocol is as follows: 

- Preparation of samples: 10 μl of labelled sample + 90 μl of hybridization 

buffer C1. Heat at 95oC and immediately cool on ice. 

- Microarray preparation: Well washing with 200 μl PCR-water (Pipetting 4 

times in room temperature). Add of 200 μl buffer C1. Heat at 60oC for 2 

minutes at 550 rpm. 
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- Hybridization: Add 100 μl of sample. Incubate at 60oC for 60 minutes at 550 

rpm. 

- Washing: First wash with 200 μl washing buffer C2. Remove without 

incubation. Second wash with 200 μl washing buffer C2. Incubate at 60oC 

for 5 minutes at 550 rpm. Third wash with 200 μl washing buffer C2. 

Incubate at 60oC for 5 minutes at 550 rpm. 

- Addition of Conjugate: Add 100 μl C3:C4 (1X HRP-Streptavidin Conjugate 

Solution). Incubate at 30oC for 10 minutes at 550 rpm. 

- Washing: Add 200 μl washing buffer C5. Pipetting 2 times at room 

temperature. Repeat once. 

- Addition of Substrate: Add 100 μl D1 TMB substrate. Incubate 25oC for 10 

minutes. 

If a specific viral amplicon is present in the sample, the amplicon will be 

attached on the complementary probes on specific spots of the microarray. As 

the amplicon has been biotinylated, the streptavidin-HRP conjugate will be 

attached and will cause the change of the colour of the TMB substrate on the 

specific spot. Signal is produced by the change of colour of the TMB substrate, 

on the spots that labelled amplicons have been attached. The signal of the 

intensity of the colour is read at the Arraymate Platform (Alere Technologies®) 

and data is extracted in an excel spreadsheet (Figure 2).  
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Figure 2. Application of Arraystrip Microarray Technology A) ArrayMate 

Platform (Alere Technologies®) B) ArrayStrip Format (Alere Technologies®) C) 

Thermomixer (Eppendorf®) D) Example of Image of Array after procedure as 

taken by the ArrayMate. 

The raw data is being processed by an algorithm that groups the signal of spots 

per pathogens and normalizes them (reducing background noise) (Figure 3). 

When an increased signal is recognized on spots of a specific viral pathogen, 

confirmation PCR using established protocols is performed to verify the result. 
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Figure 3. Example of Signal results after data analysis. Signals of Usutu and 

Murray Valley Encephalitis Virus are considered high (maximum signal value 

of 1.0) and appropriate for application of confirmation PCR. 

6.3 Results 

During the screening of the 120 samples, a total of 13 samples were considered 

suspect for the presence of viral pathogens (Table 3). 

P robes meanD if medianD if s dE rror

Us utu Virus 3 0.602605 0.613194 80% -90%

Murray Valley E ncephalitis  Virus 3 0.5726995 0.85509 >90%

B iotin-Marke 1 0.43604425 0.43604425 NA

0,1M NaP P  S tandard pH 9 1 -0.21182525 -0.21182525 NA

S indbis  Virus 5 0.0987624 0.0021235 80% -90%

C oronavirus 57 0.089151298245614 0.0150585 <75%

P olyomavirus 8 0.0763849375 0.0057845 80% -90%

C ircovirus 52 0.0687192788461539 0.0002365 <75%

B ourna D is eas e Virus 7 -0.0664938571428571 -0.0260435 <75%

C hicken Anemia Virus 13 0.0661477307692308 0.0063085 75% -80%

R eovirus 27 -0.0620699444444444 -0.01275 <75%

TB E 20 -0.057739725 -0.01246325 80% -90%

HybC ontrol-1 1 -0.053643 -0.053643 NA

S t. Louis  E ncephalitis  Virus 5 0.0508958 -0.0131815 80% -90%

Is real Turkey 2 -0.04728525 -0.04728525 75% -80%

HepA 7 0.0465524285714286 0.017295 <75%

Wes t Nile Virus 15 0.0313575333333333 0.0073355 <75%

Alpha Herpes 6 -0.0288071666666667 -0.018128 <75%

Adenovirus 7 -0.0244227142857143 -0.0090985 <75%

C ontrol 7 0.0237566428571429 0.008451 <75%

aMP V 104 0.0174083125 0.00055425 <75%

D uckHaem_flavi 2 0.01667675 0.01667675 <75%

Tembus u 1 0.015187 0.015187 NA

J apanes e E ncephalitis  Virus 5 -0.0132202 0.0030265 <75%

Avipoxvirus 3 -0.00797633333333333 -0.0020075 <75%

LIV 4 -0.0069175 -0.0071325 <75%

F lavivirus  D uck 1 0.00336 0.00336 NA

P icornavirus 43 0.00273598837209302 -0.001617 <75%

Infectious  B urs al D is eas e 52 -0.00252404807692308 -0.001672 <75%

HepB &E 7 -0.00202871428571429 -0.0005115 <75%

D ependovirus 13 0.00177742307692308 -0.0013815 <75%

Influenz a A Neg 41 0.00157703658536585 -0.001294 <75%

Gyrovirus 3 -0.000610500000000001 -4.05e-05 <75%

Avas trovirus 29 0.000232068965517247 -0.0071265 <75%

E as tern E quine E ncephalitis  Virus 30 -0.000179866666666666 0.00044475 <75%
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Sample 

ID 
Bird Species Viral Pathogen Suspect 

1 Anas crecca Sindbis Virus 

2 Anas crecca Sindbis Virus 

9 Anas platyrhynchos Hepatitis A Virus 

10 Anas platyrhynchos West Nile Virus 

18 Anas platyrhynchos Sindbis Virus 

24 Anas crecca Flaviviruses 

32 Anas crecca Flaviviruses 

49 Anas platyrhynchos Hepatitis A Virus 

64 Pica pica West Nile virus 

86 Tadorna tadorna Avian poxvirus 

88 Anas platyrhynchos Sindbis Virus 

89 Anas platyrhynchos Sindbis Virus 

S21 Turdus philomelos Usutu Virus 

Table 3. Samples recognized as suspect for the presence of viral pathogens 

by the avian mini DNA microarray platform. 

During confirmation PCR, two samples were being confirmed: Sample no 24 

for the presence of West Nile virus RNA and sample S21 for the presence of 

Usutu Virus. For the Spanish sample, it was confirmed that it was a song thrush 

infected with Usutu virus, as was already reported (3). 

6.4 Discussion 

During this study, application of molecular microarray platform to wild avian 

samples was performed to evaluate the possibility of using this technology as 

a screening tool to samples of unknown status. Using a screening tool like this 

could allow the timely detection of viral pathogens introduced by wild birds in 

an area. Using this novel technology we were able to detect the presence of 

genomic material of two viruses (West Nile Virus and Usutu virus) in two 

samples. These first results are encouraging regarding the application of 

microarrays in surveillance programs established by public health authorities. 

Procedure is cost effective and can give fast preliminary results, focusing 

surveillance effort in specific targets detected by this first multiplex screening 

format. 
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However, this technology has also some major technical considerations. 

Development of a microarray format needs a significant amount of preliminary 

work regarding specific probes design for each pathogen: Probes must be 

harmonized regarding parameters of melting temperature, G+C content, and 

self-annealing capacity, avoiding at the same time cross-hybridizations. 

Moreover, ordering the arrays in strip format must be done in bulk by the 

producing companies, demanding a first large financial investment, something 

that can be performed only by large-sized laboratories. 

Data analysis is also demanding: It is almost impossible to define specific cut-

offs regarding the signal intensity that would allow the discrimination between 

negative and positive samples. Samples may only be defined as “suspect” 

using this technology that should be further confirmed by established molecular 

methods. In our case, 2 of the 13 suspect samples were confirmed by PCR. Of 

course, questions arise regarding the possibility that this technology has an 

increased sensitivity in comparison to the known established detection 

methods. However, this is something very difficult to be tested, and only in a 

probe-specific and pathogen-specific aspect. 

Application of microarray technologies for screening purposes on wild avian 

samples is promising. This technology can be very useful for surveillance 

programs and could also allow the early identification of the causative agent in 

an initial outbreak of a disease of unknown aetiology. For example in the case 

of the West Nile virus outbreak in Greece, screening of wild avian samples in a 

routine pattern by the public health authorities could possibly allow the 

detection of the pathogen many months earlier than the human disease 

outbreak. This would give the opportunity to the relevant authorities to apply 

prevention measures that could minimize the consequences of the outbreak 

and protect more effectively Public Health. 
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GENERAL CONCLUSIONS 
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GENERAL CONCLUSIONS 

Studies included in the current PhD thesis led to some important findings: 

- A WNV strain sequence derived from a Eurasian magpie hunted during the 

outbreak of the human disease in Greece (2010-2014) was found and 

reported. This was the first report of WNV RNA detection in wild birds in the 

country. The sequence has highest sequence similarity to Lineage 2 strain 

sequences from birds of prey in Austria obtained in 2008 and 2009. This 

finding implicates this corvid species in a local virus maintenance and 

generates concerns about possible overwintering and expansion of the 

virus in neighbouring areas. 

- First serological results of wild avian samples showed association of human 

cases with wild birds’ exposure to the virus; none of the sera derived from 

birds hunter-harvested in prefectures unaffected by the WNV human 

outbreak was found positive. On the contrary, birds were found to be 

exposed to WNV in every prefecture that reported human cases and from 

which avian sera were available (χ2 = 12.5, df = 1, P < 0.001). High 

seroprevalence of resident wild birds (Eurasian magpies) suggested a high 

activity of WNV in the affected areas. 

- WNV-reactive antibodies were detected in sera of migratory turtle doves 

which were hunter-harvested on the day of their arrival at resting areas of 

Greece during their autumn migration from Central Europe to wintering 

areas of Africa. This demonstrates past exposure to WNV probably to the 

areas of their origin. The high molecular similarity of the WNV magpie strain 

detected in Greece with strains derived from Austria and Hungary suggests 

a southwards dispersion of WNV from Central Europe which may have 

been caused through the migration routes of migratory avian species with 

similar migration traits (turtle doves, quails, orioles, etc.) 

- Resident corvids hunter-harvested in the epicentre of the outbreak have 

been exposed to WNV at least eight months before the first human cases 

were reported. Thus an active wildlife surveillance system for emerging 

infectious diseases would predict the mosquito-wild birds WNV circulation 

and the possible emergence under appropriate conditions that caused the 

major outbreak in humans. 
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- Genetic determinants of increased virulence were present in the WNV 

strain detected that further support the implication of wild birds in the 

epidemiology of the disease. 

- A monitoring system was established with wild birds and reported human 

cases data using Geographical Information System (GIS). Potential 

distribution of WNV was modelled by combining wild bird serological 

surveillance data with environmental factors (e.g. elevation, slope, land use, 

vegetation density, temperature, precipitation indices, and population 

density). Using GIS analysis, the identified risk factors were applied across 

Greece identifying new high risk-areas for further disease spread. The 

results of the analysis were evaluated and confirmed using the 161 reported 

human cases of the 2012 outbreak predicting correctly (Odds = 130/31 = 

4,194 95%CI = 2,841–6,189) and more areas were identified for potential 

dispersion in the following years. This approach verified that WNV risk can 

be modelled in a fast cost-effective way indicating high risk areas where 

prevention measures should be implemented in order to reduce the disease 

incidence. 

- Application of a molecular microarray platform to wild avian samples was 

performed to evaluate the possibility of using this technology as a screening 

tool to samples of unknown status. Using a screening tool like this could 

allow the timely detection of viral pathogens introduced by wild birds in an 

area. Using this novel technology we were able to detect the presence of 

genomic material of two viruses (West Nile Virus and Usutu virus) in two 

samples, demonstrating the potential of applying these multiplex 

techniques as screening tools in samples of unknown infectious status by 

public health authorities in a routine surveillance scheme. 

All these findings demonstrate the direct and indirect implication of wild birds in 

the recent WNV outbreak in Greece and the importance of correlating wildlife 

and human cases data in application of screening and data analysis tools. 

Results add value to the need of a One Health approach in establishing 

monitoring and prevention programs regarding zoonoses. West Nile virus is an 

excellent example of the interplay of driving forces of pathogen exchange 

between wild animals, domestic animals and humans. This thesis findings 

support the view that multidisciplinary co-operation of medical and veterinary 
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authorities and institutes is necessary for monitoring and collecting/analysing 

data needed for applying the appropriate disease control and prevention 

measures, protecting in the most successful way Public and Animal Health. 
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Summary 

Since 2010, a major West Nile virus (WNV) outbreak of human infections took place in 

Greece. From 2010 until 2014 more than 624 laboratory-confirmed cases and 73 

deaths were caused by the virus. This thesis reports several studies conducted to 

investigate possible implication of wild birds during the WNV outbreak in Greece. 

Moreover, this thesis reports studies conducted to evaluate the application of novel 

technologies and tools like Geographical Information Systems (GIS) and multiplex 

diagnostic techniques (microarrays) in wild birds surveillance programs in terms of 

stratifying surveillance efforts and resources and improving the efficiency of monitoring 

existing outbreaks and timely recognizing new ones. 

A WNV lineage 2 strain was molecularly identified and characterised in a Eurasian 

magpie hunted in Greece in 2010, during a WNV outbreak in humans. This is the first 

report of detection of WNV RNA in wild birds, and the first direct implication of wild 

birds to the outbreak. Phylogenetic analysis revealed the highest sequence similarity 

(>99%) with other WNV lineage 2 strains derived from birds of prey in Austria and 

Hungary (2004–2009). A serological and molecular surveillance was further conducted 

on samples of hunter-harvested wild birds prior to and during the outbreak, as well as 

on samples derived from various areas of mainland Greece. 
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Fourteen positive sera were obtained from birds hunter-harvested up to 8 months prior 

to the human outbreak. Specific genetic determinants of virulence (His249Pro NS3 

mutation, E-glycosylation motif) were recognized in the WNV lineage 2 magpie strain 

and a nucleotide mismatch was revealed between this strain and a mosquito WNV 

strain isolated one month earlier in the same area. This is the first report regarding 

exposure of wild birds to WNV prior to the 2010 outbreak, in Greece. Results provide 

evidence of the implication of wild birds in a local enzootic cycle that could allow 

maintenance and amplification of the virus before and during the outbreak. Findings of 

past exposure of migratory birds to WNV upon their arrival in Greece during autumn 

migration, suggest avian species with similar migration traits as candidates for the 

introduction of WNV into Greece. Results showed association of human cases with 

wild birds’ exposure to the virus; no avian sera were found positive in prefectures not 

affected by the WNV outbreak. In contrast, positive avian sera were found in every 

prefecture that human WNV cases occurred in 2011. 

Another aim of this thesis was to establish a monitoring system with wild birds and 

reported human cases data using Geographical Information System (GIS). Potential 

distribution of WNV was modelled by combining wild bird serological surveillance data 

with environmental factors (e.g. elevation, slope, land use, vegetation density, 

temperature, precipitation indices, and population density). Local factors including 

areas of low altitude and proximity to water were important predictors of appearance 

of both human and wild bird cases (Odds Ratio = 1,001 95%CI = 0,723–1,386). Using 

GIS analysis, the identified risk factors were applied across Greece identifying the 

northern part of Greece (Macedonia, Thrace) western Greece and a number of Greek 

islands as being at highest risk of future outbreaks. The results of the analysis were 

evaluated and confirmed using the 161 reported human cases of the 2012 outbreak 

predicting correctly (Odds = 130/31 = 4,194 95%CI = 2,841–6,189) and more areas 

were identified for potential dispersion in the following years. Our approach verified 

that WNV risk can be modelled in a fast cost-effective way indicating high risk areas 

where prevention measures should be implemented in order to reduce the disease 

incidence. 

Lastly, tissue samples from hunter-harvested wild birds in Greece as well as selected 

archived wild avian tissue samples collected in Spain, were used in a general 

screening study using microarray technology under development. Using this novel 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:39:17 EEST - 18.224.73.28



131 
 

technology we were able to detect the presence of genomic material of two viruses 

(West Nile Virus and Usutu virus) in two samples. These first results are encouraging 

regarding the application of microarrays in surveillance programs established by public 

health authorities. Perspectives and difficulties of using these assays as screening 

tools are discussed. 

All these findings demonstrate the direct and indirect implication of wild birds in the 

recent WNV outbreak in Greece and the importance of correlating wildlife and human 

cases data in application of screening and data analysis tools. Results add value to 

the need of a One Health approach in establishing monitoring and prevention programs 

regarding zoonoses. West Nile virus is an excellent example of the interplay of driving 

forces of pathogen exchange between wild animals, domestic animals and humans. 

This thesis findings support the view that multidisciplinary co-operation of medical and 

veterinary authorities and institutes is necessary for monitoring and 

collecting/analysing data needed for applying the appropriate disease control and 

prevention measures, protecting in the most successful way Public and Animal Health. 
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ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ 
ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ 

ΤΜΗΜΑ ΚΤΗΝΙΑΤΡΙΚΗΣ 

ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΒΙΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΣΙΤΟΛΟΓΙΑΣ 

 

 

ΤΑ ΑΓΡΙΑ ΠΤΗΝΑ ΩΣ ΦΟΡΕΙΣ ΕΠΙΛΕΓΜΕΝΩΝ 

ΑΝΑΔΥΟΜΕΝΩΝ ΚΑΙ ΕΠΑΝΑΔΥΟΜΕΝΩΝ ΠΑΘΟΓΟΝΩΝ: ΤΟ 

ΠΑΡΑΔΕΙΓΜΑ ΤΟΥ ΙΟΥ ΤΟΥ ΔΥΤΙΚΟΥ ΝΕΙΛΟΥ ΣΤΗΝ ΕΛΛΑΔΑ 

 

Διδακτορική Διατριβή του 

Γεωργίου Βαλιάκου 

 

Περίληψη 

 

Από το 2010, μία σημαντικά έξαρση ανθρώπινων κρουσμάτων της νόσου του Ιού του 

Δυτικού Νείλου (ΙΔΝ) έλαβε χώρα στην Ελλάδα. Από το 2010 μέχρι το 2014 πάνω από 

624 εργαστηριακά επιβεβαιωμένα κρούσματα και 73 θάνατοι προκλήθηκαν από τον 

ιό. Η παρούσα διατριβή αναφέρει αρκετές μελέτες που πραγματοποιήθηκαν για να 

διερευνηθεί πιθανή εμπλοκή των άγριων πτηνών κατά τη διάρκεια της επιδημίας του 

ΙΔΝ στην Ελλάδα. Επιπλέον, αυτή η διατριβή αναφέρει μελέτες που διεξήχθησαν για 

την αξιολόγηση της εφαρμογής νέων τεχνολογιών και εργαλείων όπως Γεωγραφικά 

Συστήματα Πληροφοριών (GIS) και multiplex διαγνωστικές τεχνικές (microarrays) σε 

προγράμματα επιτήρησης άγριων πτηνών με σκοπό την εξοικονόμηση των 

προσπαθειών επιτήρησης και των πόρων και τη βελτίωση της αποτελεσματικότητας 

της παρακολούθησης των υφιστάμενων εστιών και έγκαιρη αναγνώριση νέων. 

Ένα στέλεχος του ιού του τύπου 2 αναγνωρίστηκε μοριακά και χαρακτηρίστηκε σε μια 

καρακάξα η οποία και θηρεύτηκε στην Ελλάδα το 2010, κατά τη διάρκεια μιας 

επιδημίας του ΙΔΝ σε ανθρώπους. Αυτή είναι η πρώτη αναφορά ανίχνευσης RNA του 

ΙΔΝ σε άγρια πτηνά, και η πρώτη άμεση εμπλοκή των άγριων πτηνών στην έξαρση. Η 

φυλογενετική ανάλυση έδειξε την μεγαλύτερη ομοιότητα ακολουθίας (> 99%) με άλλα 
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στελέχη του ΙΔΝ που προέρχονται από αρπακτικά πουλιά της Αυστρίας και της 

Ουγγαρίας (2004-2009). Η ορολογική και μοριακή επιτήρηση επεκτάθηκε περαιτέρω 

σε δείγματα θηρευμένων αγρίων πτηνών πριν και κατά τη διάρκεια της επιδημίας, 

καθώς και σε δείγματα που προέρχονται από διάφορες περιοχές της ηπειρωτικής 

Ελλάδας. 

Δεκατέσσερις θετικοί οροί ελήφθησαν από πτηνά τα οποία και θηρεύτηκαν μέχρι και 8 

μήνες πριν από την έξαρση των ανθρώπινων κρουσμάτων. Ειδικοί γενετικοί 

παράγοντες παθογένειας (His249Pro NS3 μετάλλαξη, μοτίβο e-γλυκοσυλίωσης) 

αναγνωρίστηκαν στο στέλεχος του ιού που εντοπίστηκε στη καρακάξα και μία 

αναντιστοιχία νουκλεοτιδίων αποκαλύφθηκε μεταξύ αυτού του στελέχους και ενός 

στελέχους που απομονώθηκε από κουνούπι ένα μήνα νωρίτερα στην ίδια περιοχή. 

Αυτή είναι η πρώτη αναφορά όσον αφορά την έκθεση των αγρίων πτηνών στον ΙΔΝ 

πριν από το ξέσπασμα του 2010, στην Ελλάδα. Τα αποτελέσματα προσφέρουν 

αποδείξεις σχετικά με την εμπλοκή των αγρίων πτηνών σε ένα τοπικό ενζωοτικό κύκλο 

που θα μπορούσε να επιτρέψει τη συντήρηση και ενίσχυση του ιού πριν και κατά τη 

διάρκεια της επιδημίας. Ευρήματα έκθεσης αποδημητικών πτηνών στον ΙΔΝ κατά την 

άφιξή τους στην Ελλάδα κατά τη φθινοπωρινή μετανάστευση, προτείνουν είδη πτηνών 

με παρόμοια μεταναστευτικά χαρακτηριστικά  ως υποψήφια για την εισαγωγή του ΙΔΝ 

στην Ελλάδα. Τα αποτελέσματα έδειξαν συσχέτιση των ανθρώπινων κρουσμάτων με 

την έκθεση άγριων πτηνών στον ιό καθώς οροί πτηνών δε βρέθηκαν θετικοί σε νομούς 

που δεν επηρεάζονται από την επιδημία του ιού του ΔΝ. Αντίθετα, θετικοί οροί πτηνών 

βρέθηκαν σε κάθε νομό όπου αναφέρθηκαν ανθρώπινα κρούσματα της νόσου μέσα 

στο 2011. 

Ένας άλλος στόχος της παρούσας διατριβής ήταν η καθιέρωση ενός συστήματος 

επιτήρησης με δεδομένα άγριων πτηνών και ανθρώπινων κρουσμάτων, με τη χρήση 

του Συστήματος Γεωγραφικών Πληροφοριών (GIS). Η πιθανή κατανομή του ΙΔΝ 

εκτιμήθηκε συνδυάζοντας τα δεδομένα ορολογικής επιτήρησης των άγριων πτηνών με 

περιβαλλοντικούς παράγοντες (π.χ. υψόμετρο, κλίση, χρήση γης, την πυκνότητα της 

βλάστησης, η θερμοκρασία, δείκτες καθίζηση, και η πυκνότητα του πληθυσμού). 

Τοπικοί παράγοντες συμπεριλαμβανομένων των περιοχών με χαμηλό υψόμετρο και η 

εγγύτητα με το νερό ήταν σημαντικοί παράγοντες πρόβλεψης της εμφάνισης του ιού 

(λόγος πιθανοτήτων = 1,001 95%CI = 0,723-1,386). Χρησιμοποιώντας την ανάλυση 

GIS, οι εντοπισμένοι παράγοντες κινδύνου εφαρμόζονται σε όλη την Ελλάδα που 
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προσδιορίζουν το βόρειο τμήμα της Ελλάδα (Μακεδονία, Θράκη), τη Δυτική Ελλάδα 

και μια σειρά από ελληνικά νησιά, όπως είναι σε υψηλότερο κίνδυνο μελλοντικών 

κρουσμάτων. Τα αποτελέσματα της ανάλυσης αξιολογήθηκαν και επιβεβαιώθηκαν με 

τη χρήση των 161 ανθρώπινων κρουσμάτων της επιδημίας του 2012 προβλέποντας 

σωστά (Αποδόσεις = 130/31 = 4,194 95%CI = 2,841-6,189) και παράλληλα 

περισσότερες περιοχές εντοπίστηκαν ως υψηλού κινδύνου για τη πιθανή διασπορά 

κατά τα επόμενα έτη. Η προσέγγισή μας επαλήθευσε ότι ο κίνδυνος έκθεσης στον ΙΔΝ 

μπορεί να απεικονιστεί με ένα γρήγορο και οικονομικά αποδοτικό τρόπο, ο οποίος 

δείχνει τις περιοχές υψηλού κινδύνου, όπου θα πρέπει να εφαρμοστούν μέτρα 

πρόληψης, προκειμένου να μειωθεί η συχνότητα εμφάνισης της νόσου. 

Τέλος, δείγματα ιστού από θηρευμένα άγρια πτηνά στην Ελλάδα, καθώς και 

επιλεγμένα αρχειακά δείγματα ιστών άγριων πτηνών που συλλέχθηκαν στην Ισπανία, 

χρησιμοποιήθηκαν σε μια γενική μελέτη διαλογής χρησιμοποιώντας τεχνολογία 

μικροσυστοιχιών υπό ανάπτυξη. Χρησιμοποιώντας αυτήν την νέα τεχνολογία ήμασταν 

σε θέση να ανιχνεύσει την παρουσία του γονιδιωματικού υλικού του δύο ιών (ΙΔΝ και 

ο ιός Usutu) σε δύο δείγματα. Αυτά τα πρώτα αποτελέσματα είναι ενθαρρυντικά όσον 

αφορά την εφαρμογή των μικροσυστοιχιών σε προγράμματα επιτήρησης που έχουν 

καθοριστεί από τις αρχές δημόσιας υγείας. Οι προοπτικές και οι δυσκολίες από τη 

χρήση αυτών των τεχνικών ως εργαλεία διαλογής συζητούνται. 

Όλα αυτά τα ευρήματα καταδεικνύουν την άμεση και έμμεση επίπτωση των άγριων 

πτηνών κατά την πρόσφατη επιδημία του ιού του ΔΝ στην Ελλάδα και τη σημασία του 

συσχετισμού δεδομένων προερχόμενων από την άγρια πανίδα με προερχόμενα από 

ανθρώπινα κρούσματα κατά την εφαρμογή εργαλείων διαλογής και ανάλυσης. Τα 

αποτελέσματα προσθέτουν αξία στην ανάγκη μιας One Health προσέγγισης για τη 

θέσπιση προγραμμάτων παρακολούθησης και πρόληψης όσον αφορά τις 

ζωοανθρωπονόσους. Ο Ιός του Δυτικού Νείλου είναι ένα εξαιρετικό παράδειγμα της 

αλληλεπίδρασης των κινητήριων δυνάμεων της ανταλλαγής παθογόνων μεταξύ 

άγριων ζώων, κατοικίδιων και ανθρώπων. Τα ευρήματα της παρούσας διατριβής 

ενισχύουν την άποψη ότι η διεπιστημονική συνεργασία των ιατρικών και κτηνιατρικών 

αρχών και ιδρυμάτων είναι απαραίτητη για την παρακολούθηση και τη 

συλλογή/ανάλυση των δεδομένων που απαιτείται ώστε να μπορούν να εφαρμοστούν 

τα κατάλληλα μέτρα ελέγχου και πρόληψης της νόσου, προστατεύοντας με τον πλέον 

επιτυχημένο τρόπο τη δημόσια υγεία και την υγεία των ζώων. 
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