
Ανάλυση κατά τη
Μεταγλώττιση για την
Υποστήριξη Εκτέλεσης

Εφαρμοφών σε Ελαττωματικές
Αρχιτεκτονικές / Compiler

Analysis for Supporting Execution
on Faulty Architectures

Konstantinos Parasyris

July 15, 2015

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

A C K N O W L E D G E M E N T S

I would like to thank my advisors Christos D. Antonopoulos, Niko-
laos Bellas and Spyros Lalis for their help and guidance throughout
this process, their ideas and feedback have been absolutely invalu
able.

This work has been supported by the EC within the 7th Frame
work Program under the FET-Open grant agreement SCoRPiO, grant
number 323872.

2

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

" Good judgement comes from experience. Experience comes from bad
judgement."

Will Rogers.

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

Π Ε Ρ Ι Λ Η Ψ Η

Οι συμβατικές σημερινές τεχνολογίες υπολογιστικών συστημάτων εγγυ-
ώνται αξιόπιστη λειτουργία. Παρόλα αυτά η αξιοπιστία αυτή απειλείται από
την εξέλιξη της τεχνολογίας. Καθώς τα συστήματα συμπυκνώνονται όλο
και περισσότερο και το μέγεθος του τρανζίστορ μειώνεται, το σύστημα
γίνεται ευάλωτο σε σφάλματα. Μικρές αλλαγές στη θερμοκρασία ή την
τάση του συστήματος μπορεί να το οδηγήσουν σε μη αξιόπιστη λειτουρ
γία. Επίσης, για να μειώσουν την κατανάλωση ενέργειας, τα συστήματα
αυτά θα θέτουν την παροχή τάσης δυναμικά σε σημεία όπου θα εμφανίζον
ται σφάλματα. Τεχνολογίες οι οποίες λειτουργούν σε τέτοιες συνθήκες
ακολουθώντας μια συντηρητική λύση, παρέχουμε επιπλέον ζώνες προστα
σίας οι οποίες στην ουσία παρέχουν επιπλέον χρόνο (time-slack) στο
κύκλωμα να υπολογίσει την έξοδά καθώς επίσης και επιπλέον τάση Αυ
τές οι τεχνικές διορθώνουν όλα τα σφάλματα στο επίπεδο του υλικού
και διαφυλάσσουν σε αυτές τις συνθήκες τη σωστή λειτουργία του κυ
κλώματος. Παρόλα αυτά στο μέλλον ίσως να μην έχουμε τα περιθώρια
να προσφέρουμε επιπλέον χρόνο και ενέργειά στο κύκλωμα Παραδοσιακοί
τρόποι ενίσχυσης της ανθεκτικότητας ενός συστήματος όπως checkpoint
ing μπορούν να διορθώσουν σφάλματά, παρόλα αυτά και αυτές οι τεχνικές
εισάγουν καθυστερήσεις

Πολλές εφαρμογές παρουσιάζουν αυξημένη ανθεκτικότητα σε σφάλμα
τα, είτε διότι περιέχουν πλεονάζων υπολογισμούς είτε λόγω της φύσης
της εφαρμογής. Στα πλαίσια της μεταπτυχιακής εργασίας εκμεταλλευόμα
στε την αυξημένη αυτή ανθεκτικότητα έτσι ώστε να μειώσουμε το υλικό
το οποίο είναι υπεύθυνο για τον εντοπισμό και τη διόρθωση σφαλμάτων.
Για την ακρίβεια, δεν είναι όλες οι εντολές ισάξιες. Στα πλαίσια της ερ
γασίας θεωρούμε ότι εντολές οι οποίες υπολογίζουν διεύθυνση μνήμης
ή διαχειρίζονται τη ροή εκτέλεσης μιας εφαρμογής είναι πιο σημαντικές
από τις υπόλοιπες. Όταν σφάλματα εμφανίζονται κατά τη διάρκεια εκτέλε
σης τέτοιων εντολών, είναι πολύ πιθανό η εφαρμογή να μην τερματίσει
κανονικά. Επομένως, στόχος της μεταπτυχιακής εργασίας είναι να ανα
γνωρίσουμε και να προστατεύουμε μόνο τις σημαντικές εντολές. Στην
περίπτωση που ένα λάθος επηρεάσει μια μη σημαντική εντολή, ελπίζουμε
ότι η εφαρμογή ή το λογισμικό σύστημα θα διορθώσει το σφάλμα. Επει
δή πλέον προστατεύουμε ένα υποσύνολο των εντολών έχουμε κέρδος σε
ενεργεία, αφού θα χρησιμοποιείται λιγότερο υλικό.

Δημιουργήσαμε μια ανάλυση στα πλαίσια ενός μεταγλωττιστή, η οπο
ία αναγνωρίζει σημαντικές εντολές. Όπως προαναφέρθηκε, θεωρούμε σαν
σημαντικές εντολές αυτές που έχουν σαν τελούμενα διεύθυνσης μνήμης ε
ίτε διαχειρίζονται τον γράφο εκτέλεσης της εφαρμογής. Χρησιμοποιώντας
την πληροφορία από αυτές τις αρχικές εντολές εντοπίζουμε αναδρομικά
άλλες εντολές οι οποίες επιδρούν πάνω στον υπολογισμό διευθύνσεων ή

4

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

πάνω στο γράφο εκτέλεσης. Κάθε εντολή πλέον έχει χαρακτηριστεί ως
σημαντική ή μη σημαντική.

Κατά τη διάρκεια της πειραματικής μελέτης χρησιμοποιούμε ένα εργαλε
ίο εισαγωγής σφαλμάτων το GemFI στο επίπεδο της προσομοίωσης. Το
εργαλείο έχει επεκταθεί και πλέον εισάγει σφάλματα μόνο σε μη σημαντι
κές εντολές. 'Ετσι, προσομοιώνουμε ένα σύστημα το οποίο προστατεύει
από σφάλματα μόνο τις σημαντικές εντολές. Τα αποτελέσματα δείχνουν
ότι προστατεύοντας μόνο σημαντικές εντολές η εφαρμογή παρουσιάζει ε
πιπλέον ανθεκτικότητα σε σφάλματα. Επίσης, χρησιμοποιώντας διάφορες
βελτιστοποιήσεις του μεταγλωττιστή καθώς και του προγραμματιστή μει
ώνεται σημαντικά ο αριθμός των σημαντικών εντολών. 'Αρα, στην ουσία,
βελτιστοποιώντας τον κωδικά μειώνεται αρκετά η προστασία που του υλι
κού κι, επομένως, το κόστος της προστασίας.

5

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

A B S T R A C T

Conventional computer systems deliver error-free operation. The
strict prerequisite of reliability is threatened, due to the continuous
efforts towards denser structures. These denser structures are vulner
able to voltage and temperature non-idealities. Next generation tech
nologies will Dynamic Voltage Scale (DVS) processors at the point of
the first failure. In such conditions errors occur due to timing viola
tions. The hardware unreliability can be handled by traditional fault
tolerance approaches, such as replication or check pointing or recent
technologies such as Razor flip flops.

Some application domains demonstrate increased error resiliency
due to the their characteristics (redundant computation, iterative al
gorithms etc.). In this MSc thesis we exploit the resiliency of such
application by removing some of the hardware error protection mech
anisms. To be more precise, not all instructions are equal in terms
of fault vulnerability. Instructions that operate on top of memory
addresses or control flow information are more vulnerable to faults
(when errors manifest during the execution of such instructions fail
ures are usually observed). The hardware protects only such instruc
tions and the remaining instructions are not protected. Therefore less
protection takes place at the hardware, hence reducing the overhead
in terms of performance, area, power.

A compile time analysis is devised, using the LLVM infrastructure,
which categorizes instructions to critical and non-critical ones. The
analysis initially categorizes as critical instructions those that explic
itly perform pointer arithmetic or compute control flow information,
for example load store instructions and branching instructions. Using
the information of the initial critical instructions it identifies instruc
tions that also influence the control flow or the pointer arithmetic.
The instruction criticality information is lowered to the executable
during the linking process. An extended linker handles the informa
tion concerning the criticality of instructions.

In the experimental evaluation we use GemFI, a fault injection tool.
GemFI is extended to recognize the criticality of each instruction.
Faults are injected only to non-critical instructions. By doing so, we
emulate a system in which the hardware corrects faults only when
the error is manifested during the execution of a critical instruction.
We quantify the increase of application resiliency when protecting
only critical instructions. In general the exploration of the criticality
information increases substantially the applications resiliency. The
less the critical instructions are the less the overhead of protecting
instructions will be. To that direction we monitor the percentage of

6

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

critical instruction for different compiler optimizations and manual
optimizations. In general optimizations greatly increase the number
of non-critical instructions.

7

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

C O N T E N T S

1 i n t r o d u c t i o n 14
2 b a c k g r o u n d 17

2.1 Introduction to compilers 17
2 .1.1 The Data-Flow Abstraction 18
2.1.2 Transfer Functions 18
2.1.3 Control Flow Constraints 18

2.2 Introduction to LLVM 19
2.2.1 LLVM Instruction Set 19
2.2.2 High-Level Design of the LLVM Compiler Frame

work 20
2.3 Gem5 Description 21
2.4 GemFI Design and Implementation 21

3 p e r f o r m a n c e m o d e l i n g 23
3.1 Simple Approach 23
3.2 Instruction Level Vunerability Aware Approach 25

4 i m p l e m e n t a t i o n 26
4.1 Compiler Critical Instruction Identification Analysis

4 .1.1 Example 29
4.1.2 Implementation 3 1
4.1.3 Object/Assembly File Creation 34

4.2 Linking 35
4.3 GemFI extension 36

4.3.1 Fault injection in x86 Architectures 36
4.3.2 GemFI Performance Enhancement 37
4.3.3 Dual ISA extensions 37
4.3.4 Fault Injection Campaings Via checkpointing

5 e x p e r i m e n t a l e v a l u a t i o n 39
5.1 Methodology 39
5.2 Case Study I: Sobel 40

5.2.1 Algorithm Description 40
5.2.2 Relation between optimizations and critical in

structions 41
5.2.3 Fault Injection Validation 43

5.3 Case Study: DCT 44
5.3.1 Algorithm Description 44
5.3.2 Relation between optimizations and critical in

structions 46
5.3.3 Fault Injection Validation 48

5.4 Case Study: Blackscholes 49
5.4.1 Algorithm Description 49

28

38

8

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

Contents

5.4.2 Relation between optimizations and critical
structions 50

5.4.3 Fault Injection Validation 53
5.5 Instruction Set Characterization 54

6 r e l a t e d w o r k 55
6.1 Program Analysis Techniques 55
6.2 Micro-Architectural Fault Tolerance 56
6.3 Low Level Fault Tolerance 56
6.4 Collaborative Approaches 57

7 c o n c l u s i o n 58
Appendices 59
a l l v m a n a l y s i s p a s s e s 60
b l i f e o f a n l l v m i n s t r u c t i o n 62
c l l v m o b j e c t f i l e g e n e r a t i o n 66

in-

9

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

L I S T OF F I G U R E S

Figure i
Figure 2

Figure 3

Figure 4

Figure 5

Figure 6
Figure 7
Figure 8
Figure 9

Figure 10

Figure i i

Figure 12

Figure 13

Figure 14

LLVM system architecture diagram [19]. 20
Modeled execution time in Cycles for different
error rates and different percentages of criti
cal instructions in the instruction mix. PCrit
denotes the probability of an instruction to be
critical. 24
The interaction of tools used to implement crit
ical instruction identification and the evalua
tion of the effect of targeted instruction protec
tion to application resilience. 27
On the left there is the CFG of MIPS assembly
of a vector add, on the right the GEN set is
produced as we move from the last instruction
up to the first. 30
The red rectangle's present instructions which
were tagged as critical. On the right side of
the figure the second iteration of the algorithm
takes place. 31
The last iteration of our algorithm 32
Instruction format of an x86 instruction [13]
Format of the metadata object file 35
Procedure of the linker to create a binary and
a metadata file. 36
Procedure of the linker to create a binary and
a metadata file. 38
Vertical and Horizontal Operator applied in
each pixel during the sobel filter. 41
Percentage of critical instructions for different
versions of sobel. 44
Application behavior when fault injecting dif
ferent architectural components, 13a- results
when no critical instruction recognition is per
formed. 13b Results after performing instruc
tion protection. 45
Percentage of critical instructions for different
versions of dct. 47

35

10

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

List of Figures

Figure 15

Figure 16

Figure 17

Figure 18

Application behavior when fault injecting dif
ferent architectural components: 15a - results
when no critical instruction recognition is per
formed. 15b - Results after performing critical
recognition and identification and protecting
only critical instructions. 49
Percentage of critical instructions for different
versions of blackscholes. 52
The percentage of statically non critical instruc
tions when the exponential function is enabled/dis-
abled. . 53
Application behavior when fault injecting dif
ferent architectural components:18a- results when
no critical instruction recognition is performed.
18b - Results after performing critical recog
nition and identification and protecting only
critical instructions. 53

1 1

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

L I S T OF T A B L E S

Table 1 Simulated X86 processor configuration for the
experimental evaluation 41

12

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

L I S T I N G S

2.1 The getelement ptr in stru ctio n 20

4.1 Vector add used a simple example.................................... 26
4.2 Vector add used a simple example.................................... 27
4.3 A C++ pseudo code demonstrating the main driver of

our algorithm.. 33
4.4 x86 Assembly corresponding to the inner block of a

vector a d d ... 34

5.1 Source code of the sobel f i lte r ... 42
5.2 Source code of a naive implementation of DCT-II . . . 46
5.3 Source code of an unrolled version of D CT-II............... 46
5.4 C-Like pseudo-code of the blackscholes formula 5 1
5.5 The CNDF function... 52

B.i This code is used as a reference code to study the vari
ous incarnations of an LLVM in stru ctio n 62

B.2 The function foo presented in the LLVM I R 63

13

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

1
I N T R O D U C T I O N

Conventionally an application execution is considered as correct when
all bits of the micro-architectural state are correct in every clock cycle.
A more relaxed definition of correctness requires that only the archi
tectural state of the CPU to be correct in every clock cycle. In all cases
though, the strict prerequisite is bit-wise correctness (in bibliography
it is referred as architectural correctness).

Recent technology trends suggest that strict adherence to bit-level
accurate execution may not only be unnecessary, but also redundant
and wasteful. Namely, the significant energy cost of guard-bands on
the operating frequency or voltage of circuits to guarantee error-free
operation even when subjected to worst-case combination of process,
voltage and temperature (PVT) non-idealities, as well as the contin
ued efforts towards even denser structures, has pushed researchers
towards relaxing strict enforcement of precise hardware functional
ity [11]. This push towards approximate computing is still in experi
mental phase, and has not yet been adopted by the industry.

While hardware unreliability can be handled via traditional fault-
tolerance approaches, such as replication or checkpointing and replay
[28], these methods have disadvantages. Running multiple replicas
of the same task on different cores requires significantly more com
puting and energy resources. On the other hand, the construction
of checkpoints and the replaying of tasks may slow down the exe
cution of the computation substantially. Also, both approaches will
not work if unreliable cores malfunction in a deterministic way, as re
cent work [26] suggests when trying to DVS (Dynamic Voltage Scale)
below nominal Vdd values.

Interestingly, there are many application domains which appear
to execute correctly from a user perspective, however the execution
is not 100% correct when using the strict aforementioned correct
ness definition. This is referred to as application-level correctness.
Such application domains include multimedia, applications with self
healing properties (e.g. iterative numerical applications), applications
based on probabilistic computations (e.g. Monte Carlo, classification),
etc. In the case of multimedia, a few bit errors in the output image or
the output stream can be negligible. Likewise the iterative solvers can
converge to the desired solution, albeit requiring additional iterations.

14

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

i n t r o d u c t i o n

Finally, in probabilistic applications the notion of error is embedded
in the code and during execution the application adapts to soft errors.

Moreover, as shown by previous work on approximate computing
[2, 27, 3 1], such applications may include computations or execution
phases with an unequal contribution to the quality of the output re
sult. In fact the output may remain the same even if some portions of
the computation produce incorrect results.

Nevertheless, all applications contain certain instructions which
should always be executed correctly, even if they are within an ap
proximate part of the application. Pointer arithmetic instructions or
instructions that may modify the control flow of the program are pri
mary candidates. Such instructions are critical to the correct execu
tion of the program, even when considering the relaxed definition of
program correctness and should be protected to guarantee normal ter
mination. Hardware mechanisms which are able to detect and correct
faults due to timing violations have been proposed in [14 ,15]. Those
mechanisms try to contain hardware faults and present an error-free
execution engine to the software.

Although these mechanisms allow operations below nominal Vdd
values and are able to correct errors, they may impose a certain de
gree of performance and area overhead.

The main contributions of my MSc thesis are :

i Introduction of a theoretical background on error detection correc
tion mechanisms and provide a simple model of estimating their
performance overheads which is decoupled from the technology
trends.

ii Not all instructions have been created equally, pointer arithmetic
and control flow instructions should always be executed correctly.
To this direction a compilation analysis technique is implemented,
which identifies and tags such instructions as critical. This work
is based on the LLVM [19] compilation infrastructure. During
execution critical defined instructions are protected by the hard
ware by a respective technology, e.g Razor Flip Flops, consequently
they are not susceptible to faults. The non-critical instructions are
susceptible to faults.

iii Executables should somehow represent the critical information of
instructions in order to protect them during execution time. We
encode the criticality of instructions as metadata. This metadata
are encoded in the executable file. Therefore the binutils linker
(ld) is extended to recognize metadata from object files, associated
with the criticality of instructions.

iv The next contribution of my thesis is the extension of GemFI [23],
a fault injection tool based on Gem5 [4] cycle accurate simulator.

15

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

i n t r o d u c t i o n

The extensions include support of fault injection on the X86 in
struction set architecture and an incremental checkpointing mech
anism that facilitates fast fault injection campaigns. Finally, GemFI
is extended to distinguish critical from non-critical instructions at
execution time.

v Evaluation of the extended ISA using the meta-data file and GemFI.
Faults were injected in a set of benchmarks while simulating an
X86 instruction set architecture. The results are compared to a
fault injection campaign conducted on the same benchmarks with
out ISA extensions, therefore all instructions can be considered as
possible fault locations.

vi Identified the influence of compiler and user-made optimizations
to the number of critical instructions. The more the critial instruc
tions are, the more error-protection takes place during execution
time. Therefore our goal was to reduce the number of critical
instructions.

The rest of this thesis is organized as follows. Chapter 2 presents
required background on the used compiler and simulator. Chapter
3 we model the impact of error correction mechanism on the system
performance. Chapter 4 presents the implementation of the compiler
analysis pass as well as extensions made on the linker and the simu
lator. In chapter 5 the experimental evaluation is presented. Chapter
6 presents related work. Finally in chapter 7 I conclude my thesis.

16

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

2
B A C K G R O U N D

This chapters reviews some basic aspects used by this Msc. thesis. It
introduces the structure of compilers and the theory behind their op
eration. LLVM the compiler which is used in this thesis is described.
Finally we present the simulator and the fault injection tool used by
this Msc. thesis.

2.1 i n t r o d u c t i o n to c o m p i l e r s

A compiler is a computer application or a set of applications which
translates a source code written in a programming language to a com
puter language, the target language usually consists of a binary form
known as object file. A compiler verifies code syntax, generates ef
ficient object code, performs run-time organization, and formats the
output according to target machine specifications and the linker op
tions. A compiler consists of:

• The front end. During the front end of a compilation procedure
the syntax and the semantics of the input source file are ver
ified. After the completion of the error checking the compiler
generates an intermediate representation (IR) of the source code
for processing by the next phase (middle-end). The front end
performs type checking by collecting type information. Gener
ates errors and warning, if any, in a useful way. Aspects of the
front end include lexical analysis, syntax analysis, and semantic
analysis.

• The middle end performs optimizations, including removal of
useless or unreachable code, discovery and propagation of con
stant values, relocation of computation to a less frequently exe
cuted place (e.g., out of a loop), or specialization of computation
based on the context. Generates another IR for the back end.

• The back end generates the assembly code or the binary file, per
forming register allocation in the process. It improves through
put and increases ALU utilization by appropriate instruction
scheduling. Usually algorithms for optimization are in NP com
plete therefore heuristic techniques are well-developed and usu
ally adopted by this phase.

17

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

2. i i n t r o d u c t i o n t o c o m p i l e r s

2.1.1 The Data-Flow Abstraction

The execution of a program can be represented as a function of the
program states transformations. A program state is the set of all avail
able variable values. Every intermediate code statement transforms
an input state to a new output state. The input/output state is corre
lated with the application state before/after executing this statement.

When analyzing the behavior of a program all possible paths through
the program graph should be considered. Depending on the purpose
of the analysis at each program state different information is taken un
der consideration. It is not possible to keep track of all the program
states for all possible paths. In data-flow analysis certain details are
abstracted out, keeping only the data needed for the purpose of the
particular analysis.

In each application of data flow analysis we associate at each pro
gram point a value that represents an abstraction of all possible pro
gram states that can be observed at that point. The choice of abstrac
tion is connected with the type of the analysis. The data flow values
before and after each statement are defined by the IN, OUT sets re
spectively. The data flow problem is defined as a solution to a set of
constraints on the IN and OUT for all program statements. There are
two kinds of constraints: i . transfer functions, which are connected
with the semantics of the statement and 2. control flow constraints.

2.1.2 Transfer Functions

The data flow values before and after a statement are constrained by
the semantics of the statement. Transfer functions come in 2 flavors,
information might propagate forward along execution paths or it may
flow backwards up the execution paths. We show below a forward
transfer function Fs which operates on the values before the statement
and produces the new data flow values after the execution of the
statement.

OUTs = f f (INs) (1)

Accordingly for a backward flow analysis the function is defined as :

IN S = fb (OUTs) (2)

2.1.3 Control Flow Constraints

The second set of constraint on data flow values is derived from the
flow of control. In a basic block consisted of the ordered elements
OUT s1, s2...sn the control flow value OUT of si is the same as the con
trol flow value IN of si+1. However control flow edges between basic
blocks create more complex constraints between the last statement of
a basic block and the first statement of the proceeding block.

18

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

2.2 INTRODUCTION TO LLVM

2.2 INTRODUCTION TO LLVM

LLVM implements a compiler framework, aiming to provide lifelong
program analysis and transformations for arbitrary programs. The
entire procedure is transparent to the programmers. The success of
the project is contributed to:

• An independent machine code representation, that serves as a
reference point for analysis, transformation and code distribu
tion.

• A design based on this representation adaptable to provide non
traditional compilation capabilities, for example user developed
optimization phases can be plugged into the LLVM tool.

LLVM's intermediate representation is based on SSA (Static State
ment Assignment) form coupled with RISC like code. However higher
level information is provided by different structures, for example con
trol flow graphs, explicit data representation and use-def chains. All
these structures increase the effectiveness of analysis and transforma
tion techniques.

2.2.1 LLVM Instruction Set

The LLVM instruction set avoids machine specific constraints of mod
ern processors, e.g pipelines, physical registers, however it captures
the key operations of such machines. LLVM provides an infinite set
of virtual values which can hold any C++ primitive type (Boolean, in
teger, floating point and pointer). These registers are in Static single
assignment (SSA) form. LLVM features a load store representation,
so data are moved from and to the memory explicitly.

The entire instruction set consists of 3 1 opcodes. Using the C++
overloading abilities most opcodes are overloaded, so the add instruc
tion can operate on any integer, floating operand without the intro
duction of a new opcode. Almost all instructions use a three/two-
operand form (they take one or two operands and produce a single re
sult). The instruction set implements an explicit φ instruction, which
corresponds directly to the standard φ function of SSA form. SSA
form provides a compact def-use graph that simplifies many data
flow optimization's and enables fast, flow insensitive algorithms to
achieve many of the benefits of flow sensitive optimization's without
expensive data flow analysis.

LLVM also makes the Control Flow Graph (CFG) of every function
explicit in the representation. A function is a set of basic blocks, and
each basic block is a sequence of LLVM instructions, ending in ex
actly one terminator instruction. Moreover the LLVM type system in
cludes source language independent types with predefined constant

19

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

2.2 INTRODUCTION TO LLVM

1 %p = getelem entptr %xty* %X, long % i, ubyte 3
2 store int 1 , i n t * %p

Listing 2.1: The getelement ptr instruction

exe &
LLVM,Libraries

LLVM LLVM.

> Profile'
& Trace

LLVM

LLVM

Offline Reoptimizerexe &
ProfileCompiler FE 1 NativeLLVM

InfoCodeGenLinker
RuntimeIPO/IPA nfo, m iu JX U 1 1 L 1 1 1 IC

LLW>(J IT Optimizer
LLVMCompiler FE N

Figure 1.: LLVM system architecture diagram [19].

sizes, (void, bool, signed/unsigned (1byte to 8 byte). There are 4 ex
tra data types, pointers, array, structures and functions. Higher level
data structures can be represented using a combination of the afore
mentioned types.

LLVM abstracts pointer arithmetic using one instruction, called
getelementptr , this instruction preserves type information and is ma
chine independent. Given a type pointer to an object of some aggre
gate type, this instruction calculates the address of a sub-element of
the object in a type-preserving manner (effectively a combined '.' and
'[]' operator for LLVM). For example the C statement:

X[i].a = 1;

can be translated into the LLVM instruction set in the 2 commands
presented in Listing 2.1 where we assume a is field number 3 within
the structure X[i], and the structure is of type %xty.

2.2.2 High-Level Design of the LLVM Compiler Framework

In Fig 1 we depict the high level flow chart of the LLVM architecture.
The front end translates the C input code to the LLVM intermediate
representation and emits the corresponding code which is combined
together by the LLVM linker. The linker performs a variety of opti
mization's applying extra effort to inter-procedural ones. The result
ing LLVM code is then translated to native code for a given target at
link time or install time. Another option is to translate the code at run
time with a just in time translator. The native code generator inserts
light-weight profiling hooks to gather information about frequently
executed code regions and these can be optimized at runtime. The
profiled data can be collected by the end user and used in an offline
optimizer to perform aggressive profile driven optimization's for the
specific target machine.

We should mention that during the link time different optimiza
tion phases can be plugged in, using the LLVM pass manager A.

20

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

2.3 g e m 5 d e s c r i p t i o n

Moreover during compilation time LLVM procedure LLVM instruc
tions are represented with different incarnations when it goes through
LLVM's multiple compilation stages. These representations are de
scribed in B. Finally in C we describe the object file generation per
formed by LLVM.

2.3 GEM5 d e s c r i p t i o n

Gem5 is a popular open-source system simulator. It provides a mod
ular platform for computer system-level architecture research, encom
passing system-level architecture as well as processor micro-architecture.

Object oriented design enhances the flexibility of Gem5. The abil
ity to construct configurations from independent objects facilitates
multicore and multi-system design. Moreover, Gem5 provides four
different CPU models, each of them representing a different point in
the speed vs simulation accuracy trade-off. Atomic Simple is a single
IPC CPU model. Timing Simple is similar but also simulates the timing
of memory references. InOrder is a pipelined in order CPU. Finally,
O3 is a pipelined out-of-order CPU model. Gem5 also supports two
memory system models: classic and ruby. The classic is fast and easily
configurable, while the ruby model provides a flexible infrastructure
capable of accurately simulating a wide variety of cache coherence
memory systems.

Gem5 operates in two modes: System Call Emulation (SE) and Full
System (FS). In SE mode applications execute on simulated "bare
metal". Whenever the program executes a system call, Gem5 traps
and emulates the call usually by passing it to the host OS. Currently
there is no thread scheduler in SE mode. Therefore, threads are stat
ically mapped to a core, hindering its use with multi-threaded ap
plications. FS mode offers an environment for running an operating
system (OS) on top of the simulator. There is support for interrupts,
exceptions and I/O devices. Applications are executed under the
control of the OS.

Gem5 supports a number of ISAs, including Alpha, MIPS, ARM,
Power, SPARC and x86. The simulator's modularity allows these dif
ferent ISAs to be easily implemented on top of the generic CPU mod
els and the memory system. Alpha is the most maturely supported
ISA, with ARM and x86 following.

2.4 g e m f i d e s i g n a n d i m p l e m e n t a t i o n

GemFI is developed using C++ and Python. It fully supports the
Alpha instruction set architecture. Supporting more instruction sets is
rather straightforward GemFI supports full system simulation mode
as well as the execution of multi-threaded applications.

GemFI provides an API consisted of two intrinsic functions.

21

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

2.4 g e m f i d e s i g n a n d i m p l e m e n t a t i o n

• void fi_activate_inst(int id) is translated to a pseudo-assembly
instruction. Its successive occurrences toggle (active/inactive)
the manifestation of faults for the specific process/thread. The
executing thread is assigned a numerical id which can be used
as an identifier of the thread in fault injection configuration.

• void fi_read_init_all() checkpoints the simulation. Upon restor
ing from the checkpoint, it resets all the internal information of
GemFI, allowing the same checkpoint to be used as a starting
point for multiple experiments with potentially different fault
injection configurations.

Faults are described in the input file provided by the user at GemFI
command line. The file is parsed at startup and each fault is inserted
to one of five internal queues. Each queue corresponds to a different
pipeline stage.

On each simulation tick, GemFI checks if fault injection has been
enabled for the running thread. In such a case, it prefetches the cor
responding ThreadEnabledFault objects. Then and for each instruction
served at a pipeline stage, GemFI updates the thread's data and scans
the corresponding queue for faults targeting the executing thread at
the specific simulation point. Queue entries are sorted according to
the timing of each fault. If such a fault is found, the value of the
targeted location is corrupted according to fault's behavior.

22

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

3
P E R F O R M A N C E M O D E L I N G

This chapter presents a simplified performance overhead model when
executing on unreliable hardware. We model an abstracted error de
tection and correction mechanism which takes place at hardware us
ing Razor Flip Flop technologies [14, 7].

3.1 s i m p l e a p p r o a c h

Our model takes into account the instruction mix of the executing
code in terms of critical/non-critical instructions. We assume that
detection of an error does not induce any performance overhead,
which is consistent with publications regarding razor flip flops [5 , 14,
15]. However the correction part does induce performance overhead,
which is highly related with the used razor technology. Our model
is abstracted from a specific technology trend, and assumes that er
ror correction induces a penalty of EC (stands for Error Correction)1
cycles.

Execution time can be modeled using Equation 3 in an error-free
platform. An extention to the aforementioned equation, is Equation
4 which does consider possible errors. ER(V) denotes the error rate,
is a function of the supply voltage, and returns the average number
of errors expected in every clock cycle. The term ER(V) * Cycles
estimates the number of errors inserted during execution. Finally
this term is multiplied by the penalty for correcting each error.

T = Cycles * Freq (3)

Tall = (1 + ER(V) * EC) * Cycles * Freq (4)

In [5] the error rate (ER) is estimated to be one error every 10 mil
lion cycles when operating on the point of first failure (PoFF)1 2 How
ever past that point the error rate increases exponentially by an order
of 10m V supply voltage decrease. When operating on the PoFF the
energy gains vary from 35% to 45% [5].

1 Different razor technologies induce different error correction penalties, therefore we
model it as a variable which is defined by the respective technology

2 The clock frequency/voltage is set in such a way, that the clock cycle is equal to the
critical path with no extra margins (guardbands)

23

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

3·1 s i m p l e a p p r o a c h

Equation 5 expresses the number of total executed instructions. We
define as p the propability of a fault to manifest during the execution
of an instruction I. We assume that all instructions have the same
probability of failure. However when we categorize the instructions
into critical and non critical the error correction overhead will take
place only when the erroneous instruction is a critical one. The prob
ability that an instruction is critical (P crit) is expressed by equation
6.

E x e c inst ExCCcritical + E x e c nonjcritical (5)

P (I, I e Critical) = = pcnt
n XCCinst

(6)

So when the application code is split into critical and non critical
instructions the execution time under the presence of faults can be
estimated using Equation 7. When comparing 7 with 4 it is obvious
that the less the critical instructions are, the less overhead is induced
by the hardware correction mechanisms, since errors are going to be
corrected only if the corrupt a critical instruction.

Tcrit = (Cycles + E R (V) * Cycles * EC * P(I, I e Critical)) * Freq (7)

Performance depends on the percentage of critical instructions and
the error rate. The more the critical instructions, the more the error
correction takes place. In a worst case scenario all instructions would
be critical and the error rate would be equal to 1. In such a case the
performance penalty would be equal to Cycles * EC * Freq. However,

Error Correction = 1 Cycle

in
e >

o>
υ

0
1.00E-006

■ Pcrit = 1.0
■ Pcrit = 0.9

Pcrit = 0.8
Pcrit = 0.7

■ Pcrit = 0.6
Pcrit = 0.5

■ Pcrit = 0.4
Pcrit = 0.3

■ Pcrit = 0.2
Pcrit = 0.1

1.00E-005 1.00E-004 1.00E-003 1.00E-002 1.00E-001 1.00E+000

Error Rate (Errors/Cycle)

Figure 2.: Modeled execution time in Cycles for different error rates
and different percentages of critical instructions in the in
struction mix. PCrit denotes the probability of an instruc
tion to be critical.

24

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

3.2 i n s t r u c t i o n l e v e l v u n e r a b i l i t y a w a r e a p p r o a c h

in a realistic scenario not all instructions are going to be critical. Fig
ure 2 presents the increase of the execution time for different error
rates. The hardware mechanism seems to withstand error rates up
to 10- 1 . From that point the execution time rapidly increases. When
assuming different instruction mixes the correction overhead lineary
drops by a factor of 1 — Pcrit. Note that these are not real data, this
is just a projection of our model.

3.2 i n s t r u c t i o n l e v e l v u n e r a b i l i t y a w a r e a p p r o a c h

When the supply voltage is scaled below the nominal value, a digital
system may suffer from timing violations. Instructions which activate
paths with timing close to the critical path tend to fail frequently. In
[26] the instructions are catergorizied into classes. We assume all
instructions can be classified in n classes. Each class of instructions
has a failure propability PFi. During an execution the number of
failures can be computed by Equation 8.

n
Errors = Σ PFi *

i

I n s t ieClasSi

T o t a l inst
(8)

Using the notion of critical instruction, Equation 8 can be rewritten
as Equation 9 to calculate the number of errors the hardware should
correct. Equation 9 corresponds to the probability of an instruction
that are classified in a class and are critical during application exe
cution. The term #CriticalInstieciassi corresponds to the number of
instructions which belong to Classi and are identified as critical for
the application execution.

P C'orrection Σ Pi
C r i t i c a l I n s t i e c ia s s i

T ° t a l inst
(9)

Tcrit = (1 + E R (V) * * E C * Pcorrection) * Freq * Cycles (10)

Equation 10 summarizes the expected execution time of an appli
cation for a classified instruction set architecture with different prob
abilities of failure for each class.

25

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4
I M P L E M E N T A T I O N

The source code of all applications consists of 3 types of instructions:
a) Those that operate on control flow information. For example in
structions which correspond to for loops or if statements. b) Those
that perform pointer arithmetic and calculate addresses to load val
ues from and store addresses to. c) Those that compute data val
ues required for the final output of the application. Basically such
instructions are any instruction not contained on the previous two
categories.

In Listing 4.2 and 4.1 we present a simple vector addittion in C
and the MIPS assembly implementation of the vector addition re
spectively. Line 6 of the assembly version corresponds an instruction
operating on top of data, this instruction does not affect explicitly
or implicitly any memory address or the control flow of the applica
tion. Lines i , 3, ^correspond to instructions operating on the control
flow and all the remaining instructions correspond to pointer arith
metic. Protecting all instructions from faults in hardware, at execu
tion time, might be unreasonable due to significant performance and
power overheads. Moreover not all instructions are created equal. Er
rors impacting pointer arithmetic instructions may result to program
failures, (application fails to terminate due to an HW/OS trap) more
frequently than faults impacting data-instructions. The same applies
for instructions controlling control flow.

1 add $ s 1 $0 $0
2 fo r
3 beq $so , $ s 1 , end
4 lw $ t 2 , ($ s 2)
5 lw $ t3 , ($ s 3)
6 add $ $ t 4 , $ t 3 , $ t 2
7 sw $ t4 , ($ s 4)
8 ad d i $ s 2 , $ s 2 , 4
9 ad d i $ s 3 , $ s 3 , 4

10 ad d i $ s 4 , $ s 4 , 4
11 ad d i $s 1 , $s 1 , 1
12 j fo r
13 end

Listing 4.1: Vector add used a simple example.

26

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

i m p l e m e n t a t i o n

2
1 fo r (k = o ; k < SIZE ; k++)

C[k] = A[k] + B [k];

Listing 4.2: Vector add used a simple example.

Should someone compare the importance of instructions in rele
vance to application resiliency, instructions operating on top of data
should be the least important. Instructions operating between data
might mask a fault, or in any case they rarely result to program fauil-
ures. Therefore, protecting such instructions in the hardware may
result to unnecessary waste of resources since errors might never
manifest at the end result. Distinguishing the instruction type in
the hardware level might result to interesting research directions. For
example, an opportunity would be to trade off the applications qual
ity of output with performance and power saving by protecting only
instructions performing pointer arithmetic and control flow informa
tion.

This chapter present a description of the LLVM compiler pass that
detects critical instructions in an application. Those instructions should
be error-free, or the program will, most probably suffer from crashes.
We also present linker extensions to merge information of the crital
and non-critical instructions Finally we present the implementation
of extensions on GemFI.

In Figure 3 we present the flow chart of tools used to implement
and validate the critical instruction identification analysis. Initially
the source and header files are passed to Clang, the front end of
LLVM. LLVM processes the output of Clang and performs optimiza-

Figure 3.: The interaction of tools used to implement critical instruc
tion identification and the evaluation of the effect of tar
geted instruction protection to application resilience.

27

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4·ΐ c o m p i l e r c r i t i c a l i n s t r u c t i o n i d e n t i f i c a t i o n a n a l y s i s

tions. During this phase our analysis takes place. LLVM outputs two
types of files, the object files and the meta data files which contain in
formation about the criticality of the instructions. Both files are fed to
an extended linker, which creates an executable and a metadata file.
Finally, these two files are used by the Gem5 simulator through an
extended version of GemFI to complete the fault injection campaign.

4.1 c o m p i l e r c r i t i c a l i n s t r u c t i o n i d e n t i f i c a t i o n a n a l -
y s i s

The analysis is similar to an upward exposed uses analysis1 . Starting
from the last basic block and traversing the instructions in reverse ex
ecution order we identify obvious critical instructions. Obvious critical
instructions should meet one of the following criteria :

ClassI: During the execution of the instruction an address calcual-
tion is performed. For example the Id instruction of the MIPS
architecture.

ClassII: The instruction has implicit or explicit impact on the control
flow of the application. For example a branch instruction has ex
plicit impact on the control flow whereas a compare instruction
has implicit impact.

These instructions operate by definition on top of critical informa
tion, e.g adresses or data flow. Therefore, in our analysis we use
the operands used by such instructions to identify other instruction
which operate also on top of critical information. In other words, the
analysis propages information from the obvious critical instructions
to all the instruction of the application.

Obvious critical instructions are tagged as critical and depending
on criteria met by each instructions some of the operands used (uses)
to compute the definition (def) of this instructions are pushed to a bit
vector, called GEN . The vector size is equal to the number of differ
ent registers supported by the architecture. If the instructions are in
ClassI, only the operands participating in the address calculation are
pushed to the GEN vector. If the instruction is in ClassII, all operands
are pushed in the GEN vector.

When traversing an instruction we check whether it defines a value
contained in the GEN vector. If this is the case, the instruction is
tagged as critical, the definition is removed from the vector and the
uses of the new critical instruction are pushed into the GEN vector.

When reaching the entry point of the basic block the GEN vector
contains all the values x which are used by a critical instruction s
inside the basic block, however, there is no definition of x between

1 Upward exposed uses: For each definition of a variable, find all uses that it reaches

28

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4·ΐ c o m p i l e r c r i t i c a l i n s t r u c t i o n i d e n t i f i c a t i o n a n a l y s i s

s and the beginning of the basic block· Equations 1 1 , 12 present the
transfer function.

GEN (Iq) = 0

IN n (I) = G EN (In) = (G EN (V i) - defs(In)) n f (In) (11)

{
uses(In), if In G ObviousCritical

uses(In), if defs(In) G G EN (In-i) (12)

0 , Otherwise

After the procedure traverses the entire block, it propagates the
information to all the predecessors of this block using the union op
erator (Equation 13)· We apply this operator to the analyzed code
iteratively until there are no changes in the GEN set·

V Bi G Predecessors\OUT(B i) = OUT(B{) U IN(B) (13)

The analysis iterates continuesly on the basic blocks of the function
until there is no change between consecutive iterations·

4 .1.1 Example

Figure 4 on the left shows the assembly of a vector addition appli
cation and on the right shows the values of the GEN vector as they
propagate for each analyzed instruction. Starting from the last block
of the code (node 12) the GEN is an empty set. The set is propagated to
the predecessor blocks (node 2). Afterwards the algorithm processes
the next block which in this case ends with node 1 1 . The instruction
is an obvious critical instructions therefore the instruction is tagged
as critical, however since the instruction has no Register operands the
GEN set remains empty.

Instructions 10-7 are not obvious critical ones and the GEN set is
empty, therefore, there is no addition of operands in the GEN set
and none of these instructions are identified as critical. Instruction
6 is a store word, therefore, it is contained in the obvious critical
instructions and the USE are pushed into the GEN set. Instruction 5
does not define any operand contained in the GEN set hence the set
remains the same.

Instructions 4,3 both load values from the memory and are consid
ered as obvious critical ones. The USE operands of this instructions
are pushed into the GEN set. Instruction 2 affects the control flow
of the application so our analysis sets as critical the instruction and
pushes all the uses of the instruction into the GEN set. At this point
the GEN set is propagated to the GEN set of blocks 1 and 3.

29

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4·ΐ c o m p i l e r c r i t i c a l i n s t r u c t i o n i d e n t i f i c a t i o n a n a l y s i s

Finally the procedure processes the last basic block· The basic block
contains only instruction 1, which is considered as critical due to the
definition of register $si which is contained in the GEN set. Note
that register $ 1 is removed from the GEN set, but register $0 is not in
cluded in the GEN set because in the MIPS instruction set architecture
register $0 is always equal to 0·

Figure 5 presents the second iteration of our algorithm. Starting
again from the bottom of the CFG, node 12 has inherited the GEN
set of their predecessors. Instruction 1 1 has already been tagged as
critical and has no operands therefore the GEN set remains the same.
Instructions 7-10 define values which are contained inside the GEN
set so the instructions are tagged as critical. Initially when processing
these instructions their definitions are removed from the GEN set.
Afterwards when processing their uses, the same registers are pushed
back into the GEN set2. Instruction 6 is already tagged as critical and
it does not define any value inside the GEN vector. Instruction 5 does
not define any value contained in the set, therefore the instruction

2 When instructions define and use the same registers. We process them in an hiear-
archical order, firstly process definitions set and afterwards we process the uses

GEN = {$s0,$ s2,$ s3,$ s4}

GEN = {$s0, $s1,$ s2, $s3, $s4}

GEN = {$s2,$ s3,$ s4}

GEN = {$s3, $s4 }

GEN = {$s4 }

GEN = {$s4 }

GEN = { }

GEN = { }

GEN = { }

GEN = { }

GEN = { }

GEN = { }

Figure 4.: On the left there is the CFG of MIPS assembly of a vector
add, on the right the GEN set is produced as we move from
the last instruction up to the first.

30

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

remains the same. For the remaining instructions the procedure is
the same as in the previous iteration.

In figure 6 we present the third and last iteration of our algorithm.
The GEN set remains unmodified, therefore our algorithm terminates.

4.1.2 Implementation

The analysis handles each function separately, therefore we register
our analysis as a Machine-Function pass, a pass that operates on top
of the internal LLVM machine dependent instruction representation.
All instructions should be analyzed and grouped into critical and
non-critical ones. To avoid loss of information due to other optimiza
tion which may modify the instruction stream, we register our anal
ysis as a pre-emmit pass hence the analysis is performed just before
emitting the instructions to their binary representation (MCInst). To
identify obvious critical instructions we use member functions of the
MachineInstr class. To be more precise, we use the following build-in
functionsi: isBranch(), isCall(), isReturn(), isCompare(), mayLoad(), may-

4·ΐ c o m p i l e r c r i t i c a l i n s t r u c t i o n i d e n t i f i c a t i o n a n a l y s i s

GEN = {$s0,$ s2,$ s3,$ s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

Figure 5.: The red rectangle's present instructions which were tagged
as critical. On the right side of the figure the second itera
tion of the algorithm takes place.

31

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4·ΐ c o m p i l e r c r i t i c a l i n s t r u c t i o n i d e n t i f i c a t i o n a n a l y s i s

Store() · Moreover, for the x86 instruction set we manually check the
opcode of the instruction against the load effective address opcodes (lea).
lea instruction computes the effective address of the second operand
(the source operand) and stores it in the first operand (destination
operand)· The source operand is a memory address (offset part) spec
ified with one of the addressing modes of the processor; the desti
nation operand is a general-purpose register· The address-size and
operand-size attributes affect the action performed by this instruc
tion, as shown in the following table. The operand-size attribute of
the instruction is determined by the chosen register; the address-size
attribute is determined by the attribute of the code segment.

In the x86 instruction set, branches or function calls do not have
any register operands. Therefore such instructions are critical how
ever, they do not further interact with our analysis. In the case of
returning from a function call (isReturn()) again the instruction is
considered as critical, however the optional use of this instruction is
not recorded in the GEN vector, because we want to protect the PC ad
dress calculation of the call instruction not the returning value. In the
case of compare instructions, all use-register operands are recorded
in the GEN vector. For load, store instructions we consider only the
operands which participate in the calculation of the source/destina-

GEN = {$s0,$ s2,$ s3,$ s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

G EN = {$s0, $s1,$ s2, $s3, $s4}

Figure 6.: The last iteration of our algorithm

32

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4 . i c o m p i l e r c r i t i c a l i n s t r u c t i o n i d e n t i f i c a t i o n a n a l y s i s

2
3

4

5

6
7

8

9

10
11
12
13

14

15

16
17

18
19

20
21
22
23

24

25

26
27

28
29

30

31

32

33

34

35

36

37

38

39

1 bool p r o t e c t i o n A n a l y s i s (Funct ion &F) {

/ / I n i t i a l i z e a l l v e c t o r s to an empty set .
/ /BB s ta n d s for B a s ic B l o c k

fo r (BB = F . e n d () ; B ! = F. s t a r t () ; BB++)
BB.GEN. i n i t (f a l s e) ;

/ / T r a v e r s e the CFG in r e v e r s e order and ap pl y the t r a n v e r s e
f u n c t i o n .
whi l e (noChanges)

noChanges = f a l s e ;
fo r (BB = F . end () ; B ! = F . s t a r t () ; BB++) {

for (I = B B . end () ; I != B B . S t a r t () ; I++) {
i f (I s O b v i o u s P r o t e c t e d (I)) {

I . P ro te c te d = t rue ;
noChanges = t r u e ;
p r o p a g a t e P r o t e c t i o n (I) ;

}
e l s e i f (I . de f s () in BB.GEN) {

noChanges=True ;
I . P r o t e c t e d = t r u e ;
p r o p a g a t e P r o t e c t i o n (I) ;

}
}

/ / Pro pa ga te the IN to the out of the p r e d e c e s s o r b l o c k s .
fo r (P = B B . p r e d e c e s s o r s () ; P !=NULL ; P++)

P . setGen (BB .GEN) ;

}
}

}

void p r o p a g a t e P r o t e c t i o n (I n s t r u c t i o n I) {
fo r (Operands in I)

i f (Operand . i s Re g () && Operand . i s D e f ())
BB.GEN[Operand . getReg ()] = f a l s e ;

}

fo r (Operands in I)
i f (Operand . i s Re g () && Operand . i sUse ())

BB.GEN[Operand . getReg ()] = t r u e ;

Listing 4.3: A C++ pseudo code demonstrating the main driver of our
algorithm.

tion address. Finally, all use/def operands are considered when pro
cessing instructions which are not contained in the obvious critical
set but need to be critical due to implicit dependencies of critical in
structions upon them. For example instructions 7, 8, 9 Figure 6 are
not contained into the obvious critical set, but are tagged as critical
due to the implicit dependency of instructions 3, 4, 6 upon them.

In Listing 4.3 we provide a pseudo-C++ like implementation of our
analysis.

33

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4·ΐ c o m p i l e r c r i t i c a l i n s t r u c t i o n i d e n t i f i c a t i o n a n a l y s i s

movslq — 32(%rbp) , % ra x # CRITICAL:i
movq — 8(%rbp), % rc x # CRITICAL: 1
movl (% r c x , % r a x , 4) , %edx# CRITICAL: 1
movslq — 32(%rbp) , % ra x # CRITICAL: 1
movq — i6(%rbp) , % rc x # CRITICAL: 1
addl (% r c x , % r a x , 4) , %edx# CRITICAL: 1
movslq — 32(%rbp) , % ra x # CRITICAL: 1
movq — 24(%rbp) , % rc x # CRITICAL: 1
movl %edx, (% r c x , % r a x , 4) #CRITICAL: 1

Listing 4.4: x86 Assembly corresponding to the inner block of a vector
add

9

4.1.3 Object/Assembly File Creation

LLVM after optimizing the source code, the binary creation takes
place. The binary creation in LLVM is supported by the MC interface.
To start the binary creation the internal represantion of instructions
is changed from the Machinelnstr class to the MCInst class. As the
transition from MachineInstr to MCInst takes place, the criticality of
each instruction is tranfered to the MCInst represantation.

From this point on the compiler either emits assembly files or cre
ates an object file. The assembly file displays the criticality of the
instructions in the form of comments. At the end of each instruction
the compiler prints the string #CRITICAL:X, as presented in Listing
4.4. Critical instructions have X equal to 1 whereas non-critical in
structions have the value of 0. This information is produced mainly
for debugging purposes and cannot be transformed back to any bi
nary representationi, since it would require modification of the as
sembler parser to recognize such information and encode it.

The x86 instruction set architecture follows the Complex instruction
set computing (CISC), in which a single instruction, in the decoding
stage, may be translated to multiple simpler micro-operations. The
x86 instructions use variable-length encoding: an instruction can be
anywhere from 1 to 15 bytes in length whereas in RISC architectures
such as ARM the instruction size is either 16 bits or 32 depending
on the CPU mode. In Figure 7 we present the instruction format as
presented in the Intel manual volume 2A.

We do not extend the x86 instruction set to encapsulate the critical
ity information, since this would require extensive modifications to
the compiler and the simulator, and would effectively result to a new
x86-like ISA. Upon object file creation we encapsulate critical informa
tion into a separate file called metadata (MD) file. The file contains
the critical identification for each compiled instruction. Again criti
cal instructions are encoded with the value of 1 whereas non-critical
instructions have the value of 0. During the object file creation, for
every byte emitted to the object file we emit a byte to the M D file. If

34

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4.2 l i n k i n g

Figure 7.: Instruction format of an x86 instruction [13]

Figure 8.: Format of the metadata object file

the emitted byte corresponds to an instruction we emit the criticality
information. If the emitted byte does not correspond to an instruction
(e.g data segment) we just emit the same value to the MD file. By do
ing so the two files are identical except of the .text segment, where
in each byte we store information on the criticality of the instruction
encoded in the respective byte of the object file. Figure 8 presents the
format of the metadata file in conjuction with the format of the object
file.

4.2 l in k in g

As the last step of the binary creation phase all the object files accom
panied with the MD files should be linked into two separate files, the
executable file and a second one containing the criticality of each in
struction. LLVM does not provide a linker, therefore we extended the
Id linker from the binutils (GNU Id (GNU Binutils) 2.24.51). The bfd li
brary is extended to support the linking of the metadata files. Again
the final MD file should contain an exact match of the executable

35

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4·3 g e m f i e x t e n s i o n

Figure 9.: Procedure of the linker to create a binary and a metadata
file·

bytes to the critical bytes. Figure 9 present the procedure followed by
the extended linker. In essence the linker combines each section of
the object files to a grouped new section. We follow the exact same
procedure and combine in the same way the metadata files.

The struct bfd, which is is the structure representing an object or ex
ecutable file was extended to store criticality information. Moreover,
the structure representing a section was extended. The section con
sist of two vectors: the first contains the information of the original
section, whereas the second vector contains the information about the
criticality of instructions. In the case there is no MD file, for example
when linking with an external library all the metadata are set to 1 . By
doing so we protect all instructions which are not compiled by our
framework.

When the writing of the final executable takes place, each object
file is processed sequentially, writing the data of each section in pre
defined file locations. We take care to write the final metadata of that
section on a secondary file. All the data contained in the metadata
file point at the exact same locations (offsets from the beginning of the
file). At the end of the linking two files with the exact same size are
created. The second one contains information about all instructions
inside the executable file.

4.3 g e m f i e x t e n sio n

4.3.1 Fault injection in x86 Architectures

The executable coupled with the MD files are executed on the Gem5
simulator using the GemFI fault injection framework. GemFI was

36

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4·3 g e m f i e x t e n s i o n

extended to support fault injection on the x86 instruction set architec
ture. To identify the executing thread at the hardware level we use
the base of the fs register. This register points to the starting address
of the structure that represents a software thread within the oprating
system. When the OS context switches applications, the fs register is
automatically set to point to that location, which is unique for all live
software threads.

The second step was to decide which structures should be cor
rupted at the execution stage. When executing load store micro-ops,
faults corrupt the address calculation of the corresponding load/s-
tore. On control flow instructions faults corrupt the calculation of
the next fetched address. The remaining instructions corrupt the re
sult of the instruction. For the remaining pipeline stages no further
enhancements were applied on the original GemFI implementation.

4.3.2 GemFI Performance Enhancement

GemFI checks, on each clock cycle whether the executing thread has
enabled fault injection. This checking is performed by searching a
thread identifier inside a map 3. To avoid checking the map on each
cycle we monitor context switches on the hardware. Writes on the
thread identifier register are monitored4. If the thread to be executed
has enabled fault injection, the running core sets a pointer to the
corresponding ThreadEnabledFault5 object. By doing so we check the
map only when this registers are written.

4.3.3 Dual ISA extensions

To limit fault injection only to non-critical instructions, from the com
mand line, the path to the MD file is specified. At the fetch stage,
the instruction bytes are read together with corresponding MD bytes.
In order to read the correct bytes from the MD file we use a func
tion which takes as an argument the current PC address and re
turns an offset from the beginning of the file. (Equation 14). The
FirstBinaryAddress is provided by the injected application using an
extended version of the GemFI function fi_readJnitjallO. The new
fi-readJnit-all(unsigned int Start, unsigned int Stop) takes two arguments,
the starting virtual address which the loader has mapped the exe
cutable and the ending address. This values can be found in any C ap
plication when reading the addresses of the variables -^executablestart,
and __etext.

O ffset(PC) = PC — FirstBinaryAddress (14)

3 A standard implementation of a hash-table in C++
4 f s base for the x86 architecture and the P C B register for the alpha
5 GemFI internal represantation of a software thread that has enabled fault injection.

37

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

4·3 g e m f i e x t e n s i o n

Simulation time

Checkpoint

Booting Time □ · Result dumping

Restart M Result dumping

Checkpoint

Booting Time « Result dumping

Restart M Result dumping

Restart Result dumping

Fault injection takes place

Figure 10.: Procedure of the linker to create a binary and a metadata
file·

At the decoding stage, the criticality information is appended to
the decoded instructions. Therefore, GemFI can decide whether to
inject faults or not using this information.

4.3.4 Fault Injection Campaings Via checkpointing

GemFI uses an external checkpointing tool, called DMTCP [1], to
create snapshots of the simulated system. We extended the GemFI
checkpointing mechanism to support incremental checkpointing. In
the top part of the Figure 10 we present the traditional mechanism
of GemFI. The user instructs the tool when to take a checkpoint. Us
ing that checkpoint the user can fast forward the simulation to that
point and inject another fault. On the lower part of the Figure 10
the increamental checkpointing mechansism is described. Just before
injecting a fault GemFI creates a snapshot of the correct simulation
state. Afterwards the simulation continues and in the end the results
are gathered. The next fault injection campaing can restore from the
checkpoint. By doing so for each experiment the user fast forwards
the simulation to the point of the prior fault injection. This option is
provided by the command line option -checkpoint-on-fault.

38

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5
E X P E R I M E N T A L E V A L U A T I O N

In this chapter we validate the compilation, linking and simulation
infrastructure and we evaluate the potential cost and benefits for re
liability by using fini-grained protection at the instruction level. We
use three benchmarks, Sobel, DCT, Blackscholes.

5.1 me t h od ol og y

Our goal is to evaluate first the extent of protected instructions in var
ious codes, and the evaluate the effect of code optimizations on the
number of protected instructions. The analysis is limited to identify
critical instructions to source code only, functionality offered by exter
nal libraries is not analyzed by LLVM. Therefore, there is no criticality
information on the instuctions contained in such libraries. To that di
rection we limit the extend of dependencies to external libraries to
reduce the number of non-analyzed instruction. We assume that pro
tecting to many instructions will be very expenive in terms of area
and power. To this direction we implement different versions of the
benchmarks. In each version we increase the extend of manual op
timizations and thus programmer effort to optimize the code. Each
version is compiled three times, with the extended version of the
LLVM: once with compiler optimizations turned off -O0, once with
the optimizations turned on -O3 and once using the -O3 -fast-math
flags.

All binaries are executed on the simulator. We count the number
of critical and non critical instructions. At the end of the simulation
these values are reported. Note that our goal is to correlate com
piler optimization, programmer's optimizations with the percentage
of non-critical instructions.

Finally the best version in terms of the number of non critical in
structions is subjected to a single fault injection simulation campaign.
We inject faults into the pipeline stages Fetch, Decode, IEW, MEM. The
number of executions of each application for every campaign varied
from 2300 to 2504 and has been calculated using the method pre
sented in [20], setting 99% as a target confidence level and 1% as the
error margin.

39

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5.2 c a s e s t u d y i : s o b e l

The outputs of the campaigns are processed at the end of the simu
lation and then we create two outcomes. One which does not employ
razor like correction for critical instructions and one with no protec
tion at all. When razor-like technology is employed and a fault is
injected in a critical instruction we consider the outcome as bitwise
correct since the razor technology would have corrected it.

The experiments are categorized in the following categories:

Program Failure: The application failed to terminate normally, for
example decoding a corrupted opcode could result to an Illegal
Instruction violation.

Program Corruption: The application succeeds to terminate, how
ever the result is not acceptable by the end user.

Correct: The application produces a result which is acceptable by
the end user however it is not exactly the same as an error-less
execution.

Bitwise exact: The execution resulted at the exact same output as an
error-less execution.

Protected: The fault corrupted a critical instruction therefore it was
corrected by the razor-like technology. The end result is the
same as an error-less execution.

During simulation, if the fault corrupts a critical instruction the
fault is injected nevertheless and a message is reported on the output
of the simulator. At the end of the simulation campaing we process
all the results. We create two outcomes: one which there is no sup
port for protecting critical instruction and one with such support. In
the second casei, with hardware protection mechanisms supported,
when a fault is injected on a critical instruction we suppose that the
hardware would correct it and therefore we categorize that experi
ment as Protected and the end result would be Bitwise exact.

In Table i we summarize the configuration settings of the simulator.
For the fault injection campaigns the simulation is performed in cycle
accurate operational mode. After the injection of the fault we simu
late for 10000 cycles and then we switch to a fast but less accurate
simulation mode. By waiting to switch to another CPU we ensure
that the faults have manifested in the architectural components.

5.2 c a s e study i : sobel

5.2.1 Algorithm Description

In this section we will study the sobel filter. Sobel is a 2D filter used
for edge detection in images. The sobel filter is based on applying a
convolution filter in horizontal and vertical direction. The filter uses

40

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5.2 c a s e s t u d y i : s o b e l

Processor Parameters
Bandwidth
Queue Size

Rename Reg

Functional unit

8 Commit
64-InstructionQ

8 Fetch 8 Issue
32-LoadQ 32-StoreQ

256-Float 256-Int
6-IntALU 2-IntMultDiv 4-FPALU
2-FP MultDiv 2-Read Write Ports

Branch Predictor Parameters
Tournament

8192-Global Predictor 13 bit Global History
2048-Local Predictor 2-bit Local History

Branch Target Buffers 4096 Entries
Size of Tag /R A S 16 tag size 16

Cache Parameters
IL1 config 32kb 64 Byte Block 2-way 2 cycle lat

D L1 config 64Mb 64 Byte Block 2-way 2 cycle lat

Table 1.: Simulated X86 processor configuration for the experimental
evaluation

two 3x3 matrices which are convoluted with the original image. The
matrices are presented in Equation 15 and the filter in Equation 16.

' - 1 0 1 1 2 1
Sobe~lhoriz - 2 0 2 Sobelvert — 0 0 0

- 1 2 1 - 1 - 2 - 1
(15)

Sobel (Sobelvert * A)2 + (Sobelhoriz * A)2 (16)

Figure 11.: Vertical and Horizontal Operator applied in each pixel
during the sobel filter.

5.2.2 Relation between optimizations and critical instructions

In Listing 5.1 we present a naive implementation of the sobel filter.
Note that for the sqrt function we use a custom one. In each simula
tion we count the number of critical and non-critical instructions.

In both compiler optimized executions, presented in Figure 12, al
most 100% of the total number of executed instructions should be
protected. This is because in each iteration there is a clamping func
tion (line 22-25). The if statement in line 22 checks the computed
value of the current iteration. In our analysis values used by branch
instructions tag as critical all instructions which explicitly or implic
itly influence the outcome of the branch instruction. Since the entire

41

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5.2 c a s e s t u d y i : s o b e l

i

2
3

4

5

6
7

8
9

10
11
12
13

14

15

16
17

18
19

20
21
22
23

24

25

26
27

28

int c o n vo lu t i o n 2D (int posy , int p o s x , const uns igned char *
i n p u t , char o p e r a t o r [] [3]) {

int i , j , r e s ;
res = 0;
for (j = - 1 ; j <= 1 ; j + +) {

fo r (i = —1; i <= 1 ; i++) {
res += input [(po s y + i)] [p o s x + j] *
o p er a to r [i + 1] [j + 1];

}
}
r e t u r n (res) ;

}

double so be l (uns igned char * i n p u t , uns igned char * o u tp u t ,
uns igned char * go lden) {

uns igned int temp;
for (j = 1 ; j <SIZE —1 ; j + = 1) {

fo r (i = 1 ; i< SIZE —1 ; i+ = 1) {
temp = convolu t ion 2 D (i , j , i n p u t , h o r i z _ o p e r a t o r) ;
p = temp* temp;
temp = convolu t ion 2 D (i , j , i n p u t , v e r L o p e r a t o r) ;
p+=temp *temp;
res = (i n t) s q r t (p) ;
i f (r e s > 255)

output [i][j] = 255 ;
e l s e

o u t p u t [i] [j] = (uns igned c h a r) r e s ;

}
}

}

Listing 5.1: Source code of the sobel filter

iteration computes a value which is used in a branch instruction al
most everything is protected. When executing with -O0 20% of the
total instructions are identified as non-critical. In the non-optimized
version the application continuesly load-store values to and from the
stack. Although the branching instruction exists, just before perform
ing the instruction the compiler loads from the stack the value of res.
Our analysis does not track critical-ness within memory locations.
Therefore the critical dependency is not tracked to the remaining in
structions.

As a second step we implement the clamping function using binary
operators, so that we remove entirely the branching instruction from
line 22. Afterwards we simulate again the application twice, once
with optimizations enabled and once with no-optimizations. When
optimizations are enabled we observe that the number of non critical
instructions dramatically increases, reaching up to 61% of the total
number of instructions, for both optimized binaries. This is because
the aforementioned control flow dependency is broken using a binary
clamping function.

4 2

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5.2 c a s e s t u d y i : s o b e l

On the other hand the execution with no compiler optimizations
has almost the same percentage of non-critical instructions. Since the
compiler does not optimize the code, it uses MEM-REG/REG-MEM 1
instructions. All these instructions are guarded by the analysis. More
over the compiler does not unroll the convolutioniD function which is
responsible for many control flow instructions, such instruction are
always protected.

As a next optimization step we declare the Sobelhoriz and Sobelvert
as constant. Again we follow the same methodology. Both execution
of the binaries produced with compiler optimizations (-O3, -O3 -fast-
math decrease the number of critical instructions to less than 19%.
This is because the compiler replaces all instructions which have taps
of the sobel filter as an operand with operations using immediates.
Again the number of critical instructions does not change for the non-
optimized case since the compiler does not exploit constant arrays.

As a final step we use the clamping function that uses masking
instead of branching instructions, perform loop unrolling of the con
volution filter by hand and we lower memory references of Sobelhoriz,
Sobelvert into constants. In other words, we enforce the non-optimized
code to use instructions operating on immediates. We also remove
possible branching inside the body of the main loop. The compiler
optimized binares demonstrate a slight decrease in the number of non
critical instructions. The produced number of assembly instructions
increases by almost 10x making it highly impractical for a human to
analyze the performed optimizations manually. On the other hand
the O0 version has a slight increase (2%) in non-critical instructions.
This is because the instructions performing the iterations of the con
volution are removed, since the code does not traverse a 3x3 matrix
but operates on an unrolled version with immediates. Moreover some
memory-related operations are completely removed due to multipli
cations with 0.

5.2.3 Fault Injection Validation

Figure 13 presents the results after a fault injection campaign which
was conducted on the best version of the sobel filter, in terms of the
number of non-critical instructions. Except from faults introduced
into the Fetch pipeline stage, the extended instruction set is always
able to terminate normally. In the case of the fetch stage, protect
ing only critical instructions is not sufficient. x86 instruction set has
variable length instructions. Should a fault corrupt the opcode of
the fetched instruction, it may result in decoding another type of in
struction, with an opcode length different than that of the correct one.
In such a case the binary alignment is corrupted, which results to a
program failure.

1 Instructions which have as an operand a memory location.

43

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5·3 c a s e s t u d y : d c t

Code Version

OO — 03 - V - Fast

Figure 12.: Percentage of critical instructions for different versions of
sobel.

Noticeably the decoding stage does not suffer from any failure
when critical instruction are protected. This partially correlates with
criticality information. If an error takes place during the decoding
stage, it may corrupt the selection of a read register used by the in
struction. In turn, if this register does not store any address the fault
will quite probably not manifest as a program failure. On the other
hand if the selection corrupts the selection of a destination register,
and the the new destination does contain a memory location, the
location will be overwritten by the faulty instruction. Therefore an
upcoming critical instruction which uses this register will fail. In re
ality though, the fault does not manifest during the execution of this
instruction. Consequently it cannot be corrected by the hardware.

5.3 c a s e s t u d y : dct

5.3.1 Algorithm Description

DCT is a module of video compression kernels, which transforms a
block of image pixels to a block of frequency coefficients. Precisely
we use the DCT-II which is more suitable for lossy comparisons since
it compacts a lot of information in the first coefficients.

Equation 17 presents the DCT-II formula. In image/video com
pression the equation is applied twice, once horizontally and once
vertically. During experimentation we perform the 2D DCT, however
we optimize the function which calculates the 1-DCT (it will be called
twice).

Xk
N—1

V2TNs(k) Σ xncos
n=0

N (n + .5) k (l7)

44

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5·3 c a s e s t u d y : d c t

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
Fetch Decode IEW LoadStore Fetch D ecode IEW LoadStore

(a) Protection Disabled (b) Protection Enabled
■ Program Failure ■ Program Corruption Correct ■ Bitwise Exact ■ Protected

Figure 13·: Application behavior when fault injecting different archi
tectural components, 13a- results when no critical instruc
tion recognition is performed· 13b Results after perform
ing instruction protection·

• X is the DCT output·

• x is the input·

• k is the index of the output coefficient being calculated, from 0
to N - 1·

• N is the number of elements being transformed·

• s is a scaling function, s(y) = 1 except s(0) = λ/ 0·5

The DCT can be viewed as a matrix multiplication (Equation 18)·
The inputs and the outputs correspond to row-vectors· For simplicity
we define the coefficients using Equations 19· The coefficients matrix
is the N xN presented in 20

X = x x M (18)

c0 = t/fi x V V N Cj = cos (n j / 1 6) x V 2 / N (19)1

"C0 Cl C2 C3 C4 C5 C6 C7
C0 C3 C6 C9 C12 C15 C18 C21
C0 C5 C10 C15 C20 C25 C30 C35

M = C0 C7 C14 C21 C28 C35 C42 C49 (20)
C0 C9 C18 C27 C36 C45 C54 C63
C0 C11 C22 C33 C44 C55 C66 C77
C0 C13 C26 C39 C52 C65 C78 C91
C0 C15 C30 C45 C60 C75 C90 C105

45

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5·3 c a s e s t u d y : d c t

1 void d c t _ i i (const double x [8] , double X [8]) {
2 int n , k ;
3 fo r (k = 0; k < N; ++k) {
4 double sum = 0 . ;
5 double s = (k == 0) ? s q r t (. 5) : 1 . ;
6 for (n = 0; n < N; ++n) {
7 sum += s * x [n] * COS[k] [n] ;
8 }
9 X [k] = sum * 0 . 5 ;

10 }

Listing 5.2: Source code of a naive implementation of DCT-II

1 void d c t_ i i (const d ouble x [8] , do ub e X [8]) {
2 X[0] = a* c0 + b* c0 + c*c0 + d* c 0 + e* c0 + f * c0 + g * c 0 + h* c 0 ;
3 X[1] = a * c 1 + b* c3 + c*c5 + d* c 7 - e* c7 - f * c5 - g * c 3 - h* c 1 ;
4 X[2] = a* c2 + b* c6 - c*c6 - d* c 2 - e* c2 - f * c6 + g* c6 + h* c 2 ;
5 X[3] = a* c3 - b* c 7 - c * c 1 - d* c 5 + e* c5 + f * c 1 + g * c 7 - h* c 3 ;
6 X[4] = a* c4 - b* c4 - c*c4 + d* c 4 + e* c4 - f * c4 - g * c 4 + h* c 4;
7 X[5] = a* c5 - b* c 1 + c*c7 + d* c 3 - e* c3 - f * c7 + g * c 1 - h* c 5 ;
8 X[6] = a* c6 - b* c2 + c*c2 - d* c 6 - e* c6 + f * c2 - g*c2 + h* c 6 ;
9 X[7] = a* c7 - b* c5 + c*c3 - d* c 1 + e * c 1 - f * c3 + g * c 5 - h* c 7;

10 }

Listing 5.3: Source code of an unrolled version of DCT-II

M

C0 C1 C2 C3 C4 C5 C6 C7
C0 C3 C6 —C7 — C4 —C1 —C2 —C5
C0 C5 — C6 —C1 — C4 C7 C2 C3
C0 C7 — C2 —C5 C4 C3 —C6 —C1
c0 —C7 —C2 C5 C4 —C3 —C6 C1
c0 -C 5 —C6 C1 —C4 — C7 C2 —C3
c0 — C3 C6 C7 —C4 C1 —C2 C5
c0 —C1 C2 —C3 C4 —C5 C6 — C7

(2l)

In 21 we exploit the circle symmetry to transform all angles to the
first quadrant. Only eight unique coefficients are needed for an eight-
point DCT.

5.3.2 Relation between optimizations and critical instructions

We use 4 implementations of the DCT-II algorithm which were ob
tained from [22].

Naive: In Listing 5.2 we present a naive implementation of the DCT-
II function. The function essentially performs a matrix multipli
cation with a constant matrix. When compiler optimizations are
enabled the inner for loop is unrolled, resulting to linear code
with multiplications and additions.

46

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5·3 c a s e s t u d y : d c t

Code Version

OO — 03 fast

Figure 14·: Percentage of critical instructions for different versions of
dct·

Unroll: In Listing 5.3 we present an implementation of the DCT-II
where the matrix multiplication is fully unrolled by the pro
grammer. Moreover, the programmer uses only 8 constants to
perform the matrix multiplications· This version basically ex
ploits the wisdom, presented in Equation 21

Factorization: In this implementation the user employs factorization
to decrease the number of multiplications· Moreover, rotation
like operations can be used to reduce the number of multiplica
tions even further· For example:

y0 = ax0 + bx1 = (b — a)x1 + a(x0 + x1) (22)

y 1 = —bx0 + ax1 = —(a + b)x0 + a(x0 + x1) (23)

This method basically increases the liveness of register which
use values frequently·

LLM This is an implementation of DCT-II called LLM [21], named
after its authors. The dct is performed with only 1 1 multiplica
tions and 49 additions.

In Figure 14 we depict the percentage of non-critical instructions
when using different compilation flags for the different versions of
the dct algorithm. In the same graph the relative speed up is pre
sented on the right y-axis. The speed up is computed in with respect
to the Naive version.

The naive implementation both compiler optimized versions, O3,
-fast-math, perform more than 50% and 65% respectively non critical
instructions. Both optimizations perform loop unrolling of the in
ner loop. The -fast-math version generates more but faster arithmetic

47

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5·3 c a s e s t u d y : d c t

operations in comparison with the O3 version. This is because the
fast-math allows to relax rounding errors.

When the programmer enforces only 8 coefficients in the COS Ma
trix (co-cj), the register allocation coupled with smart instruction
scheduling allows the execution to perform many arithmetic opera
tions. To be more precise, the dctJi function uses only 70 memory
transfers to perform 327 pure-arithmetic operations. Therefore both
the -O3 and -fast-math versions demonstrate almost 80% of non critical
instructions. On the non-optimized binary there is a small increase in
the number of non-critical instructions. However, since the compiler
does not perform smart register allocation and instruction scheduling
the overall result is almost the same.

When the programmer factorizes computations the number of non
critical instructions decrease. Basically the number of load/store op
erations remains almost the same (68 for the compiler optimized ver
sion) but the number of arithmetic operations decreases (304). How
ever, it produces 62% of non critical instructions.

Finally the LLM version tries to reduce the number of arithmetic
operations which are non-critical. This results to a decreased number
of executed non-critical instructions. On the other hand, the non-
optimized execution demonstrates a slight increase in the number of
non-critical instructions. This is due to the code LLM code structure,
which basically loads a set of variables performs operations with that
variables and in the end stores back the result. All the operation are
pure arithmetic ones, therefore the ratio between those two decreases,
resulting to an increased percentage of non-critical instructions.

5.3.3 Fault Injection Validation

In Figure 15 we illustrate the results after the fault injection campaign
performed on DCT-LLM compiled with O3 -fast-math. Similarly to So-
bel, we can clearly distinguish that during fetch stage the extra pro
tection offered by the criticality information does not offer any extra
resiliency. During the decoding stage there is a significant increase in
terms of resilience, however the protection of instructions evidently
does not guarantee lack of program failures. During execution stage
the protection mechanism is correctly applied to only critical instruc
tion leading to avoidance of Program failures. Finally all instructions
moving data to/from memory are protected, therefore all faults in
jected in the memory stage are corrected by the hardware. In the
memory stage when no protection is applied not a single experiment
resulted to program failure. However, the criticality information in
structs the hardware to protect all instructions in that state. Therefore
for this benchamrk this approach is very conservative since during
the memory stage not a single experiment lead to program failure.

48

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5 4 c a s e s t u d y : b l a c k s c h o l e s

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
Fetch Decode IEW LoadStore Fetch Decode IEW LoadStore

(a) Protection Disabled (b) Protection Enabled
■ Program Failure ■ Program Corruption Correct ■ Bitwise Exact ■ Protected

Figure 15.: Application behavior when fault injecting different archi
tectural components: 15a - results when no critical instruc
tion recognition is performed. 15b - Results after perform
ing critical recognition and identification and protecting
only critical instructions.

5.4 c a s e s t u d y : b l a c k s c h o l e s

5.4.1 Algorithm Description

The Blackscholes is a mathematical model, of the financial market. The
model estimates the price of a financial option2. The blackscholes-
formula estimates the price of an option over time [6].

The blackscholes equation for the call option as published in [6]
is presented in Equation 24. The put option can be estimated by
Equation 25

C(S, t)

d\

d.2

P(S, t) = Ke-r(T-t) - S + C(S, t)
(25)

= N (-d 2)K e-r(T-t) - N (-d i)S

The N(x) denotes the cumulative distribution function of the stan
dard normal distribution. The T - t is the the time to maturity. The
S is the spot price of the current asset, K is the strike price, r is the risk

= N(d1)S - N(d2)Ke-r(T-t)

= σ τ τ η K K) + (r + τ) (T - 1)

= σ τ τ τ > K I) + (r - 4) (T - 1)
= d1 — σ ^ Τ — t

(24)

2 In finance, an option is a contract that allow the buyer (the owner) to buy or sell an
asset at a specified price before a specific date

49

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5 4 c a s e s t u d y : b l a c k s c h o l e s

free rate and σ is the volatility of returns for the current product. The
cumulative distribution function can be calculated by Equation 26

5.4.2 Relation between optimizations and critical instructions

We use the implementation of BlackScholes from the PARSEC 2.0
benchmark suite [3] The algorithm is very sensitive to small varia
tions, therefore when compiled with the -fast-math option the pro
duced results are incorrect.

In Listing 5.4 we present the implementation of the blackscholes
formula. Listing 5.5 demonstrates an implementation of the CNDF
function. We use the implementation of the log function from [36]
which provides adjustable accuracy. In our experiments we used ac
curacy of 1 1 digits. The sqrt function is implemented using logical
shifting additions/subtractions and multiplications. Finally for the
exp function, we use the default IEEE double precision exp function.
The function is implemented in the compiled source file, and no link
ing with the libm is performed. By doing so, we do not have any
external dependencies to other functions.

To improve the non-critical instruction rate we create two more ver
sions of the blackscholes implementation. The first version optimizes
the control flow of the CNDF function. Both if statements in the
CNDF function (lines 11,19) are removed by using unions, multipli
cations and additions. The second version removes the if statements
from the BlkSchlsEqEuroNoDiv function using the same logic. The
latest version produces linear code for the BlkSchlsEqEuroNoDiv func
tion.

Using these three version we perform simulations to measure the
dynamic instruction count. We do not use the -fast-math optimiza
tion flag since it produces incorrect results. The results are depicted
in Figure 16. Both optimizations do not impact the number of critical
instructions significantly. This is due to the implementation of the exp
function. The function performs a series of bound checks to calculate
the return value. As in Sobel, the values used for branching instruc
tion result to identifying a significant percentage of instructions as
critical due to ther impact to the branching instruction.

The different versions in fact operate worse than the original ver
sion. This is because, masking the branches to linear code requires
more operations than a single branch. These operations are tagged as
critical due to their impact in branching instructions which are inside
the exp function. Since more instruction are identified as critical the
ratio of non-critical instructions to critical ones decreases.

(26)

50

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5 .4 case study: blackscholes

1
2
3

4

5

6
7

8
9

10
11
12
13

14

15

16
17

18
19

20
21
22
23

24

25

26
27

28
29

30

31

f l o a t B lkSchlsEqEuroNoDiv(
f l o a t s p t p r i c e , f l o a t s t r i k e ,
f l o a t ra te , f l o a t v o l a t i l i t y ,
f l o a t t i m e , char * o t y p e , f l o a t t imet)

{
l o g V a lu e s = log (s p t p r i c e / s t r i k e) ;
Xpower = v o l a t i l i t y * v o l a t i l i t y ;
Xpower = Xpower / 2;
XDi = ra t e + Xpower;
XDi = XDi*t ime ;
XDi = X D i + l o g V a l u e s ;

sqr tT ime = s q r t (t i m e) ;
XDen = v o l a t i l i t y * s qr tT im e;
XDi = XDi * t i m e ;
XDi = XDi/XDen;

Ndi = CDNF (XDi) ;
XD2 = XDi -XDen;
Ndi = CDNF(XD2) ;

FutureValueX = s t r i k e * (exp(- (r a t e) * (t ime))) ;
i f (o t yp e == "C ALL") {

O pt io n P r i ce = (s p t p r i c e * N d i) — (Futu reValu eX * Nd2) ;
} e l s e {

Negdi = (i . ο — N d i) ;
Negd2 = (i . ο — Nd2) ;
O pt io n P r i ce = (Futu reValu eX * Negd2) —

(s p t p r i c e * N e g d i) ;

}
}__

Listing 5.4: C-Like pseudo-code of the blackscholes formula

To remove the branches we used different approximations for the
exponential function, either using the technique introduced in [32] or
approximating exponential with a taylor series. All of the approxi
mations where rejected because the execution resulted to erroneous
results.

To remove the dependencies added by the exp function we use an
unorhtodox solution. The body of the exp function is replaced with
the single statement return(0), which is obviously incorrect. However,
we do not care about the correctness of the execution. We just need to
remove all the dependencies added by the exp function. Afterwards
in Fig i 7 we compare the percentages of the non-critical instructions
for the BlkSchlsEqEuroNoDiv function which has inlined the CNDF
function for the different versions of the code. These percentages are
obtained statically; we do not simulate the binaries.

As it can be clearly viewed by the graph, when the side-effects
of the exponent function are removed both optimizations result to
higher percentages of non-critical instructions. The remaining per
centage of critical instructions are attributed to the implementation

5i

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5 .4 case study: blackscholes

2
3

4

5

6
7

8

1

9

10
11
12
13

14

15

16
17

18

19

20
21
22

s t a t i c double CNDF(double d)

{
const double
const double
const double
const double
const double

A i = ο . 3 1 9 3 8 1 5 3 ;
A2 = — ο . 356563782 ;
a 3 = 1 .7 8 1 4 7 7 9 3 7 ;
A4 = — 1 . 8 2 1 2 5 5 9 7 8 ;
A5 = 1 . 3 3 0 2 7 4 4 2 9 ;

const double RSQRT2PI =
ο . 3 9 8 9 4 2 2 80 4 01 4 32 6 7 79 39 9 46 0 5 9 93 43 8 ;
int s i gn = 1 ;
double abs = d;
i f (d < 0.0) {

abs = —d
s i gn = —1

}

double K = 1 . 0 / (1 . 0 + 0 . 2 3 1 6 4 1 9 * a b s) ;
double cnd = RSQRT2PI * exp(— 0.5 * d * d) *

(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K *
A 5))))) ;
i f (s i g > 0)

cnd = 1 . 0 — c n d ;
re tu r n c n d ;

}

Listing 5.5: The CNDF function

of the logarithm operation. Which uses a small hash table to calcu
late the logarithm and performs reads from the stack for the input
variables.

Original Branches CNDF Branches Black

Code Version

-■-OO - * - 0 3

Figure 16.: Percentage of critical instructions for different versions of
blackscholes.

52

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5 4 c a s e s t u d y : b l a c k s c h o l e s

Original Branches CNDF Branches Black Original Branches CNDF Branches Black

Code version Code version

(a) Compiled With -Oo (b) Compiled With -O3

■ No Exponential ■ With Exponential

Figure 17.: The percentage of statically non critical instructions when
the exponential function is enabled/disabled. .

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Fetch Decode IEW LoadStore Fetch D ecode IEW LoadStore

(a) Protection Disabled (b) Protection Enabled

■ Program Failure ■ Program Corruption Correct ■ Bitwise Exact ■ Protected

Figure 18.: Application behavior when fault injecting different archi
tectural components: 18a- results when no critical instruc
tion recognition is performed. 18b - Results after perform
ing critical recognition and identification and protecting
only critical instructions.

5.4.3 Fault Injection Validation

In Figure 18 we present the results of a the fault injection campaign
performed on the blackscholes version. Blackscholes is the only ap
plication which demonstrates such a high degree of non-resiliency.
Many experiments result to corruptions (unacceptable quality of out
put) (on average 15% of the total number of experiments). The blacksc
holes formula uses functions such as exponent and logarithm. Both
these functions have regions of their definition space where they are
very steep. Small deviations in the input results to large deviations
in the output. It should be mentioned that all faults corrupted the
output since there is not a single experiment which produce bitwise
exact result.

53

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

5·5 i n s t r u c t i o n s e t c h a r a c t e r i z a t i o n

5.5 i n s t r u c t i o n set c h a r a c t e r i z a t i o n

Complex instruction set computing (CISC) are those which a single
instruction can execute several low level operations. For example a
single CISC instruction may load from the memory, perform an arith
metic operation and store back the result to the memory. The main
differentiating characteristic with RISC instruction sets is that RISC
uses a uniform instruction length for almost all instructions and em
ploys strictly separate load/store instructions. In the x86 instruction
set most instructions have one or more operands that they operate
on. The majority of instructions have as operands registers as well as
memory locations.

From the critical analysis point of view the x86 instruction set archi
tecture enforces the analysis to identify more instructions as critical.
Any instruction with operands memory values is considered by the
analysis as obvious critical. This is because, these instructions are
translatedi, during the decoding stage, to multiple micro-operations.
Some of the micro-operations load or store values to the memory,
therefore they should be protected by the hardware since they cal
culate memory addresses. Since the compiler analyzes CISC instruc
tions and not the micro-operations that the CISC instructions are
translated to. The analysis identifies the entire instruction as critical
and effectively all the micro-operations are protected by the hardware.
This restriction imposed by the instruction set may result to identify
ing more instructions as critical than a RISC implementation of the
same source code. Since the RISC instruction set is constructed by
instructions which correspond to micro-operations.

54

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

6
R E L A T E D W O R K

We classify related work in fault tolerance into program analysis tech
niques, micro-architectural fault tolerance mechanisms, and transistor-
level fault detection and correction mechanisms. Finally, we dis
cuss collaborative approaches which utilize hardware, compiler and
software-level techniques to provide reliable execution.

All these approaches focus on error coverage and error resiliency.
In our work we study the correlation of application resiliency with
compiler or hand-made code optimizations. Our goal is to activate
hardware error detection and correction mechanisms only when ap
plication failure is expected. The remaining errors are ignored and
allowed to surface to the application level. Application failure is ex
pected when errors corrupt critical instructions. Using a compiler
analysis we identify such instructions and we try to reduce their num
bers using compiler optimizations.

6.1 p r o g r a m a n a l y s i s t e c h n i q u e s

In [17] the authors categorize instructions in classes, depending on
their expected behavior under the presence of transient faults. In
structions with negative impact on the application output are dupli
cated by the compiler. A static analysis is used by [35Π33] to iden
tify instructions affecting control flow. The first, [33], studies the
application resiliency when using some sort of protection on such
instructions whereas the second, [33], one replicates instructions to
guarantee correct execution.

Although replication of instructions is considered as a fault toler
ance method [26], when operating below nominal Vdd values, replicat
ing the same code block under the same circumstances will determin
istically result to the same faulty behavior. Therefore, replicating an
instruction will not guarantee correct execution when facing timing
violations since both instructions will probably face corruptions.

Multimedia workloads, which are inherentely error tolerant in er
rors are analyzed in detail in [9]. Based on their observations the au
thors address common manufacturing defects. In [24^25] the authors
use Dynamic Dependence Graphs (DDG) to identify critical instruc
tions. During static analysis instructions affecting critical instructions

55

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

6.2 m i c r o - a r c h i t e c t u r a l f a u l t t o l e r a n c e

are also considered as critical. These methods are input dependent,
therefore these approaches do not guarantee identification of all crit
ical instructions. In [12] a profiling-guided static program analysis
technique and runtime approach is presented. On compilation in
structions are classified as static critical and non-static critical: the
static critical instructions are further classified into likely critical and
likely non-critical instructions.

6.2 m ic r o - a r c h i t e c t u r a l fault t o l e r a n c e

AR-SMT[3o] was one of the first works proposing redundant execu
tion using Simultaneous Multithreading (SMT). The authors use SMT
they avoided the extra overhead of executing application using a lock
stepped processor as done traditionally. SRT [29] also uses SMT to
provide redundant computation however, the authors also proposed
the concept of spheres of replication. Such a sphere defines the set
of components which are fault tolerant due to redundant execution
whereas components outside it should be protected by other mech
anisms, e.g ECC. In Slipstream [34] performance of the the redun
dant threads is improved by reducing the protected instructions of a
thread. The redundant thread speculatively executes a subset of the
total executed instructions.

6.3 low l e v e l fault t o l e r a n c e

Latest error detection mechanisms are based on razor flip-flops[i5].
Razor flip-flops enable dynamic voltage scaling below nominal values
to a processor, while ensuring its correct operation. The idea behind
the integration of this Error Detection Sequential (EDS) is to tune
the supply voltage of the chip while monitoring and correcting the
detected failures triggered by the increased delay at lower voltages.
As soon as a failure is detected, a correction mechanism takes place.

In [15] a simple method is based on clock gating, where, in case
of a detected error, the entire pipeline is stalled by gating the clock
during the next clock cycle. The stall period is used to recompute
the correct value. If an error is due to happen in every clock cycle
the CPU performance would drop to the half. Two correction mech
anisms are proposed in [8]. In the first, after an error is detected the
clock cycle is tuned to half the frequency and the errant instruction is
re-executed. The second mechanism flushes the pipeline to avoid cor
ruption of memory and the erroneous instruction is replicated and
issued multiple times. If the instruction is replicated enough times
the register will provide the correct value.

Finally the Bubble Razor[i8] inherits features of razor techniques
facilitating real-time detection and correction. It uses a novel bub
ble propagation algorithm applicable to any architecture. A timing

56

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

6.4 c o l l a b o r a t i v e a p p r o a c h e s

error is detected when data arriving at a latch varies after the latch
open. This is detected using an error detection latch. Upon detect
ing a timing violation, the circuit automatically recovers by stalling
the subsequent latch, giving it an additional clock cycle to process
the data. Half of the additional clock cycle is used to compensate for
the unexpectedly large delay from the previous latch and the other
half accounts for the delay from the current latch to the subsequent
one. Thus timing violations are corrected as long as the real delay of
each half clock-cycle step never exceeds one clock cycle of time. Un
like other Razor schemes, one significant weakness of Bubble Razor
is that it does not consider the impact of metastability in the error
detecting logic.

6.4 c o l l a b o r a t i v e a p p r o a c h e s

In [10] a set of jobs is outlined. The system stack should adopt such
jobs to detect and correct errors and variations. The tasks span from
the circuit level to application level in order to create a robust system
with minimal hardware improvements. In [16] ISA extensions are
proposed for approximate computing. The underlying architecture is
based on a dual voltage operation. On high voltage the system con
ducts precise operations whereas on low voltage there are margins of
error.

57

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

7
C O N C L U S I O N

In this MSc thesis we introduce a compiler analysis technique on the
x86 instruction set which identifies critical instructions. Such instruc
tions are those which perform pointer arithmetic or controlo flow.
The remaining instructions are non-critical. In case of operating on
a subthreshold voltage, critical instrucions will be protected by Ra
zor flip flops. Using an extended version of GemFI, a fault injection
tool based on the Gem5 cycle accurate simulator we simulated a non
reliable execution enviroment. In such an enviroment errors occur
at the different pipeline stages. We quantify the extra resiliency of
fered by protecting a subset of the total number of instruction in three
benchmarks, Sobel, DCT, Blackscholes is quantified.

The results indicate that protecting a subset of the instructions cer
tainly provides extra fault tolerance against program failures. We
should mention that all failures of the protected version are observed
when errors are injected during the fetch stage. The fetch stage is
vulnerable to faults regardless the context of the instructions being
processed at that point. Therefore the entire stage should be pro
tected.

Compiler optimizations in general significantly reduce the num
ber of critical instructions. Moreover, manual code optimizations
decrease even more the number of critical instructions. Although
in the context of this MSc thesis we do not study the performance
and power overhead of protecting the instructions, we qualitatively
assume that the less the protected instructions the less the overhead.

A key direction for future work is to evaluate the overhead of
protecting instructions in the hardware in terms of power and per
formance. Correcting all instructions might be costly whereas there
might be room for relaxing the subset of protected instructions. For
example control flow might be left unprotected by the compiler pass.
This would reduce the cost of the hardware error detection - correc
tion mechanism, however, the correction should take place at the soft
ware level by utilizing traditional error detection mechanisms such
as, OS traps and checkpoining.

58

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

Appendices

59

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

A
L L V M A N A L Y S I S P A S S E S

The LLVM Pass Framework is one of the most useful parts of the
LLVM system. Developers can implement their own optimizations
and call them from the compiler using the Manager or they can use
the opt tool to apply a pass on the intermediate LLVM representation.
Essentially a pass corresponds to the various transformations and
optimizations performed by the compiler.

The LLVM pass methodology is based on C++ inheritance and on
virtual functions. The base class is called Pass and implements virtual
methods for different functions that can be used by derived classes.
Any user can implement his own pass by creating a class that derives
from the following classes:

ImmutablePass:The ImmutablePass should not be used to imple
ment an optimization pass. The class should not change the
state of the compiled code but can provide information about
the compiling process to the end user. This pass can provide
information about the current target machine, or other static
information that can affect upcoming transformations.

ModulePass :This pass corresponds to the most general super class
a user can use. The pass applies optimizations to the entire
application and refers to it as a single unit. The manager is
able to execute a module pass if only the pass overrides the
runOnModule method.

CallGraphSCCPass:The CallGraphSCCPass is used by passes that
need to perform a backward directed optimization. Deriving
from CallGraphSCCPass provides some mechanisms for building
and traversing the CallGraph.

FunctionPass:The function pass is applied on the intermediate rep
resentation of a single function at a time. The transformations
performed by this pass must be local and modify only the code
of the specific function. FunctionPasses do not require to be exe
cuted on a particular order allowing the pass manager to sched
ule them efficiently. FunctionPasses may overload three virtual
methods. All of these methods should return true if they modi
fied the program, or false if they didn't.

6o

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

l l v m a n a l y s i s p a s s e s

LoopPass: A LoopPass is executed on each loop in the function, in
dependently of all of the other loops in the function. LoopPass
processes nested loops from the inner loop to the outer loop.
Such passes can efficiently implement various polyhedral trans
formations. LoopPasses may overload three virtual methods. All
these methods should return true if they modified the program,
or false if they didn't.

RegionPass : The Region pass is similar to the loop pass, however
it is performed on a single entry single exit region in a func
tion. Nested regions are analyzed in the same way as nested
loops. Programmers may overload three virtual methods of Re
gion Pass to implement your own region pass. All these meth
ods should return true if they modified the program, or false if
they did not.

BasicBlockPass :The basic block passes offer the finest granularity
and are applied on a single basic block at a time. They have
many limitations: for example they are not allowed to modify
the representative code of any other block except the one which
is optimized at the moment.

61

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

B
L I F E OF A N L L V M I N S T R U C T I O N

In this chapter we provide description of the various incarnations an
instruction takes when it goes through LLVM's multiple compilation
stages. Starting from a syntactic construct in the source language and
up to the point it is encoded as binary machine code in an output
object file.

1 int f o o (int aa , int bb, int cc) {
2 int sum = aa + bb ;
3 return sum / cc ;
4 }

Listing B.1: This code is used as a reference code to study the various
incarnations of an LLVM instruction

This exploration will start from the start of the compilation process
therefore we will use as an example the code listed in B .1

Clang serves as the front-end of LLVM, it converts C, C++ and
ObjC source into LLVM IR. Clang's main complexity comes from the
ability to correctly parse and semantically analyze C++; the flow for
a simple C-level operation is actually quite straightforward.

Clang's parser builds an Abstract Syntax Tree (AST) out of the in
put. The AST is the main "currency" in which various parts of Clang
deal. For our division operation, a BinaryOperator node is created
in the AST, carrying the BO jliv operator kind. Clang's code gener
ator emits a div LLVM IR instruction from the node, since this is a
division of signed integral types. In LLVM IR, sdiv is a binary opera
tor, which is a subclass of Instruction with the opcode SDiv. Like any
other LLVM instruction, it can be processed by the LLVM analysis
and transformation passes. Listing B.2 presents the IR representation
of function foo.

After the IR incarnation LLVM moves to the code generation. At
that point the LLVM tun time processes each function independently
as a Machine function pass. The task of this pass is to "lower" the rel
atively high-level, target-independent LLVM IR into low-level, target-
dependent machine instructions (Machinelnstr class) . During the trans
formation of the Instructions to MachineInstr an LLVM pass traverses
through the selection dag node structure.

Selection DAG nodes are created by the SelectionDAGBuilder class
when requested by the SelectionDAGISel, which is the main base class

62

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

l i f e o f a n l l v m i n s t r u c t i o n

2
3

4

5

6
7

8
9

10
11
12
13

14

15

16
17

18

1 d ef in e i 32 @foo(i 3 2 %aa , i 3 2 %bb, i32 %cc) #0 {
e n t r y :

%aa . addr = a l l o ca i 32 , al i g n 4
%bb. addr = a l l o ca i 32 , al i g n 4
% cc. addr = a l l o ca i 32 , al i g n 4
%sum = a l l oca i 32 , a l i g n 4
s to re i32 %aa , i 32 * %aa . ad d r , al gn 4
s to re i32 %bb, i 3 2 * %bb.a d d r , al gn 4
s to re i32 %cc , i 32 * %cc . ad d r , al gn 4
%0 = load i 32 * %aa . addr , a l i g n 4
%1 = load i 32 * %bb . addr , a l i g n 4
%add = adc nsw i 32 %0, %1
s to re i32 %add , i 3 2 * %sum, a l i g n 4
%2 = load i 32 * %sum, a l i g n 4
%3 = load i 32 * %cc . addr , a l i g n 4
%div = s d i v i 32 %2 , %3

re t i 3 2 % div

}

Listing B.2: The function foo presented in the LLVM IR

for instruction selection. SelectionDAGIsel goes over all the IR instruc
tions and calls the SelectionDAGBuilder::visit dispatcher on them. The
method handling a SDiv instruction is SelectionDAGBuilder::visitSDiv.
It requests a new SDNode from the DAG with the opcode ISD::SDIV,
which becomes a node in the DAG. The initial DAG is still only par
tially target dependent. In LLVM nomenclature it's called illegal -
the types it contains may not be directly supported by the target; the
same is true for the operations it contains.

Before the SelectionDAG machinery actually emits machine instruc
tions from DAG nodes, nodes undergo a few other transformations.
The most important are the type and operation legalization steps.
Such steps use target-specific hooks to convert all operations and
types into ones that the target actually supports.

The division instruction (idiv for signed operands) of x86 computes
both the quotient and the remainder of the operation, and stores them
in two separate registers. Since LLVM's instruction selection distin
guishes between such operations (called ISD::SDIVREM) and division
that only computes the quotient (ISD::SDIV), our DAG node will be
"legalized" during the DAG legalization phase.

An important interface used by the code generator to convey target-
specific information to the generally target-independent algorithms
is TargetLowering. Targets implement the interface to describe how
LLVM IR instructions should be lowered to legal SelectionDAG oper
ations. The x86 implementation of this interface is X86TargetLowering
. In the constructor operations are marked to be expanded. The legal
ization takes care of the correct translation and legalization. In our
case, the ISD::SDIV is one of them should be expanded.

63

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

l i f e o f a n l l v m i n s t r u c t i o n

The next step in the code generation process is instruction selec
tion. LLVM provides a generic table-based instruction selection mech
anism that is auto-generated with the help of TableGen. Many tar
get back-ends, however, choose to write custom code in their Selec-
tionDAGISel::Select implementations to handle some instructions man
ually. Other instructions are then send to the auto-generated selector
by calling SelectCode.

The x86 back-end handles ISD::SDIVREM manually in order to take
care of some special cases and optimizations. The DAG node created
at this step is a MachineSDNode, a subclass of SDNode which holds
the information required to construct an actual machine instruction,
but still in DAG node form. At this point the actual X86 instruction
opcode is selected - X86::IDIV32r in our case.

The code we have at this point is still represented as a DAG. But
CPUs don't execute DAGs, they execute a linear sequence of instruc
tions. The goal of the scheduling step is to linearize the DAG by
assigning an order to its operations (nodes). The simplest approach
would be to just sort the DAG topologically, but LLVM's code gener
ator employs clever heuristics (such as register pressure reduction) to
try and produce a schedule that would result in faster code. When
creating a target description the developer can assign some hints to
guide the scheduling procedure.

Finally, the scheduler emits a list of instructions into a MachineBa-
sicBlock, using InstrEmitter::EmitMachineNode to translate from SDNode.
The instructions here take the MachineInstr form (MI form), at this
point the DAG is destroyed.

Apart from some well-defined exceptions, the code generated from
the instruction selector is in SSA form. In particular, it assumes it has
an infinite set of "virtual" registers to act on. This, of course, isn't true.
Therefore, the next step of the code generator is to invoke a "register
allocator". Virtual registers are replaced by physical registers, from
the target's register bank.

Some instructions in some architectures require fixed registers. A
good example is our division instruction in x86, which requires the
inputs to be in the EDX and EAX registers. The instruction selec
tor knows about these restrictions, such assignments are done by
X86DAGToDAGISel::Select. The register allocator takes care of all the
non-fixed registers. There are a few more optimization (and pseudo
instruction expansion) steps that happen on machine instructions at
this point.

At this point our original C function translated to MI form - a
MachineFunction filled with instruction objects (MachineInstr). This is
the point at which the code generator has finished its job . In LLVM,
there are two ways to emit the binaries. One is the (legacy) JIT which
emits executable, ready-to-run code directly into memory. The other

64

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

life of an llvm instruction

is Machine Code (M C), which is an ambitious object-file-and-assembly
framework.

When LLVM is used as a static compiler (as part of clang, for in
stance), MIs are passed down to the MC layer which handles the
object-file emission (it can also emit textual assembly files). LLVM-
TargetMachine::addPassesToEmitFile is responsible for defining the se
quence of actions required to emit an object file. The actual trans
lation is done in the EmitInstruction of the AsmPrinter interface. For
x86, this method is implemented by X86AsmPrinter::EmitInstruction,
which delegates the work to the X86MCInstLower class.

The object file (or assembly code) emission is done by implement
ing the MCStreamer interface. Object files are emitted by MCObject-
Streamer, which is further sub-classed according to the actual object
file format. For example, ELF emission is implemented in MCELF-
Streamer.

65

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

C
L L V M O B J E C T F I L E G E N E R A T I O N

The LLVM machine code (MC) is a subproject of the LLVM to resolve
numerous binary creation obstacles. The binary creation layer can be
divided into two main categories, objects which operate on instruc
tions and the components which operate on other entities, for exam
ple labels, data etc. The instructions are represented by the MCInst
C++ class with operands such registers, immediate and the other en
tities are encapsulated in series of different classes such as the MCym-
bols, MCSection and MCExpr.

The MC classes are at the very end of the LLVM system and depend
on only on the support libraries. The main reason for that is to create
an independent binary and assembly creation, since an assembler
does not need an register allocator. On the following section a brief
description of the major components of the MC project.

Instruction Printer The instruction printer is a very simple target-
specific components that implements a simple API, given a sin
gle MCInstr it formats and emits a textual representation of
the instruction to a rawjowstream. Different targets can imple
ment multiple MCInstrPrinters, for example the x86 back end
includes an AT&T and an Intel syntax instruction printer. Infor
mation about section-directives are completely hidden from the
Instruction printer, so that they are independent from the object
file format.

Instruction EncoderThe instruction encoder is another target-specific
component which transforms an MCInst into a series of bytes
and a list of relocation's, implementing the MCCodeEmitter
API. The API is quite general, allowing any bytes generated
to be written to a raw_ostream. Because the X86 instruction en
coding is very complex the back-end implements this interface
with custom C++ code that is driven from data encoded in the
.td files. This is the only realistic way to handle all the prefix
bytes, REX bytes etc, and is derived from the old JIT encoder
for x86.

Assembly ParserThe assembly parser handles all the directives and
other gunk that is in an .s file that is not an instruction (which
may be generic or may be object-file specific). This is the thing

66

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

llvm object file generation

that knows what .word, .global etc are, and it uses the instruc
tion parser to handle instructions. The input to the Assembly
parser is a MemoryBuffer object (which contains the input file)
and the assembly parser invokes actions of an MCStreamer in
terface for each thing it does.

Assembler Backend The assembler back end is included as an im
plementation of the MCStreamer API, along with the MCAsm-
Streamer text assembly code emitter) which implements all the
binary creation. For example, the assembler has to do "relax
ation" which is the process that handles things like branch short
ening, situations where the size of one instruction depends on
how far apart these two labels are. It lays out fragments into
sections, resolves instructions with symbolic operands down to
immediate and passes this information off to object-file specific
code that writes out for example an ELF or Machine object file
(.o).

Compiler Integration The final piece of the assembler is integrating
all the MC objects into the compiler. In practice this meant
making the compiler talk directly to the MCStreamer API to
emit directives and instructions instead of emitting a text file.

67

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

B I B L I O G R A P H Y

[1] J. Ansel, K. Arya, and G. Cooperman. Dmtcp: Transparent check
pointing for cluster computations and the desktop. In Proceedings
of the 2009 IEEE International Symposium on Parallel&Distributed
Processing, IPDPS '09, pages 1- 12 , Washington, DC, USA, 2009.
IEEE Computer Society.

[2] W. Baek and T. M. Chilimbi. Green: A framework for supporting
energy-conscious programming using controlled approximation.
In Proceedings of the 2010 ACM SIGPLAN Conference on Program
ming Language Design and Implementation, PLDI '10, pages 198
209, New York, NY, USA, 2010. ACM.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec bench
mark suite: Characterization and architectural implications. In
Proceedings of the 17th International Conference on Parallel Architec
tures and Compilation Techniques, PACT '08, pages 72-81, New
York, NY, USA, 2008. ACM.

[4] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood. The gem3 simulator. SIGARCH Computer Architecture
News, 39(2):1-7, 2011.

[3] D. Blaauw, S. Kalaiselvan, K. Lai, W. Ma, S. Pant, C. Tokunaga,
S. Das, and D. M. Bull. Razor II: in situ error detection and cor
rection for PVT and SER tolerance. In 2008 IEEE International
Solid-State Circuits Conference, ISSCC 2008, Digest of Technical Pa
pers, San Francisco, CA, USA, February 3-7, 2008, pages 400-401,
2008.

[6] F. Black and M. Scholes. The pricing of options and corporate
liabilities. The journal of political economy, pages 637-634,1973.

[7] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilk-
erson, S. Lu, T. Karnik, and V. K. De. Energy-efficient and
metastability-immune resilient circuits for dynamic variation tol
erance. Solid-State Circuits, IEEE Journal of, 44(1)49-63, 2009.

[8] K. A. Bowman, J. W. Tschanz, S.-L. Lu, P. A. Aseron, M. M. Khel-
lah, A. Raychowdhury, B. M. Geuskens, C. Tokunaga, C. B. Wilk-
erson, T. Karnik, et al. A 43 nm resilient microprocessor core for
dynamic variation tolerance. Solid-State Circuits, IEEE Journal of,
46(1^194-208, 2011.

6 8

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

Bibliography

[9] M. A. Breuer. Multi-media applications and imprecise compu
tation. In Digital System Design, 2005. Proceedings. 8th Euromicro
Conference on, pages 2-7, Piscataway, NJ, USA, Aug. 2005. IEEE
Press.

[10] N. P. Carter, H. Naeimi, and D. S. Gardner. Design techniques
for cross-layer resilience. In Proceedings of the Conference on De
sign, Automation and Test in Europe, DATE '10, pages 1023-1028,
3001 Leuven, Belgium, Belgium, 2010. European Design and Au
tomation Association.

[11] B. Colwell. We may need a new box. Computer, 37(3)40-41, 2004.

[12] J. Cong and K. Gururaj. Assuring application-level correctness
against soft errors. In Computer-Aided Design, Proceedings of the In
ternational Conference on, ICCAD '1 1 , pages 150-157, Piscataway,
NJ, USA, 2011. IEEE Press.

[13] P. Enberg. A short introduction to the x86 instruction set encod
ing.

[14] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, et al. Razor: A low-power
pipeline based on circuit-level timing speculation. In Microar
chitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM
International Symposium on, pages 7-18, 2003.

[15] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A Low-
Power Pipeline Based on Circuit-Level Timing Speculation. In
Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 36, pages 7-, Washington, DC, USA,
2003. IEEE Computer Society.

[16] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Archi
tecture support for disciplined approximate programming. SIG-
PLAN Not., 47(4)401-312, Mar. 2012.

[17] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: Prob
abilistic soft error reliability on the cheap. SIGPLAN Not.,
45(3):385-396, Mar. 2010.

[18] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw,
and D. Sylvester. Bubble razor: An architecture-independent
approach to timing-error detection and correction. In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE
International, pages 488-490. IEEE, 2012.

[19] C. Lattner and V. Adve. Llvm: A compilation framework for life
long program analysis & transformation. In Code Generation and

69

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

Bibliography

Optimization, 2004. CGO 2004. International Symposium on, pages
75-86, 2004.

[20] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical
fault injection: quantified error and confidence. In Proc. of the
Conference & Exhibition on Design, Automation & Test in Europe
(DATE), 2009.

[21] C. Loeffler, A. Ligtenberg, and G. S. Moschytz. Practical fast i-d
dct algorithms with 1 1 multiplications. In Acoustics, Speech, and
Signal Processing, 1989. ICASSP-89., 1989 International Conference
on, pages 988-991. IEEE, 1989.

[22] E. Mikulic. Discrete cosine transform.

[23] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bel
las. Gemfi: A fault injection tool for studying the behavior of
applications on unreliable substrates. In Dependable Systems and
Networks (DSN), 2014 44th Annual IEEE/IFIP International Confer
ence on, pages 622-629. IEEE, 2014.

[24] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer. Automated
derivation of application-aware error detectors using static anal
ysis. In On-Line Testing Symposium, 2007. IOLTS 07. 13th IEEE
International, pages 2 11-2 16 , Piscataway, NJ, USA, 2007. IEEE
Press.

[25] K. Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and R. K.
Iyer. Dynamic derivation of application-specific error detectors
and their implementation in hardware. In Dependable Computing
Conference, 2006. EDCC'06. Sixth European, pages 97-108, Piscat
away, NJ, USA, 2006. IEEE Press.

[26] A. Rahimi, L. Benini, and R. K. Gupta. Analysis of instruction-
level vulnerability to dynamic voltage and temperature varia
tions. In Design, Automation & Test in Europe Conference & Exhibi
tion (DATE), 2012, pages 110 2-110 5 , Piscataway, NJ, USA, 2012.
IEEE Press.

[27] A. Rahimi, A. Marongiu, R. K. Gupta, and L. Benini. A
variability-aware openmp environment for efficient execution
of accuracy-configurable computation on shared-fpu processor
clusters. In Proceedings of the Ninth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS '13 , pages 35:1-35:10, Piscataway, NJ, USA, 2013.
IEEE Press.

[28] B. Randell, P. Lee, and P. C. Treleaven. Reliability Issues in Com
puting System Design. ACM Comput. Surv., 10(2):123-165, June
1978.

70

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

Bibliography

[29] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via
simultaneous multithreading. SIGARCH Comput. Archit. News,
28(2^25-36, May 2000.

[30] E. Rotenberg. Ar-smt: A microarchitectural approach to fault
tolerance in microprocessors. In Fault-Tolerant Computing, 1999.
Digest of Papers. Twenty-Ninth Annual International Symposium on,
pages 84-91. IEEE, IEEE, 1999.

[31] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,
and D. Grossman. Enerj: Approximate data types for safe and
general low-power computation. In Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language Design and Imple
mentation, PLDI '1 1 , pages 164-174, New York, NY, USA, 2011.
ACM.

[32] N. N. Schraudolph. A fast, compact approximation of the expo
nential function. Neural Computation, 11(4^853-862,1999.

[33] A. Sundaram, A. Aakel, D. Lockhart, D. Thaker, and D. Franklin.
Efficient fault tolerance in multi-media applications through se
lective instruction replication. In Radiation Effects and Fault Tol
erance in Nanometer Technologies, Proceedings of the 2008 Workshop
on, WREFT '08, pages 339-346, New York, NY, USA, 2008. ACM.

[34] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slipstream
processors: Improving both performance and fault tolerance.
SIGARCH Comput. Archit. News, 28(5^257-268, Nov. 2000.

[35] D. D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart,
T. Metodi, and F. T. Chong. Characterization of error-tolerant
applications when protecting control data. In Workload Charac
terization, 2006 IEEE International Symposium on, pages 142-149,
Piscataway, NJ, USA, Oct. 2006. IEEE Press.

[36] O. Vinyals, G. Friedland, and N. Mirghafori. Revisiting a basic
function on current cpus: a fast logarithm implementation with
adjustable accuracy. International Computer Science Institute, 2007.

71

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 05:18:16 EEST - 18.221.84.24

