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Περίληψη

Η σχεδιαστική πολυπλοκότητα των Integrated Circuit (IC) (ολοκληρωμένων κυκλωμάτων) έχει αυ-
ξηθεί ραγδαία σε σχέση με τα πρώτα κυκλώματα στα τέλη της δεκαετίας του 50, όπου ο αριθμός των
τρανζίστορ ήταν πού μικρότερος. Στις μέρες μας, τα System on Chip (SoC) κυκλώματα περιέχουν εκα-
τομμύρια ή δισεκατομμύρια τρανζίστορ και όχι μόνο η εμπειρία του σχεδιαστή αλλά και η μεθοδολογία
σχεδίασης με εργαλέια Electronic Design Automation (EDA) χρειάζεται για να καταλήξουμε στην κα-
τασκευή ενός ολοκληρωμένου κυκλώματος.

Ο στόχος αυτής της διπλωματικής είναι η σχεδίαση και υλοποίηση σε τεχνολογία 350nm Austria
Microsystems (AMS) ενόςAdvancedRISCMachines (ARM)AdvancedMicrocontroller BusArchitecture
(AMBA) Advanced High-performance Bus (AHB)-lite slave με την χρήση εργαλείων CAD των τριών
μεγαλύτερων κατασκευαστών (Cadence, Synopsys, Mentor Graphics) ακολουθώντας την τυπική βιομη-
χανική ροή σχεδίασης. Κατά τα διάφορα βήματα της σχεδιαστικής ροής Very Large Scale Integration
(VLSI) (συμπεριφορά και επαλήθευση των προδιαγραφών του κυκλώματος, σύνθεση και εξαγωγή του
τελικού layout), θα δείξουμε πως αντιμετωπίσαμε τα προβλήματα που προέκυψαν (Εισαγωγή Design
For Testability (DFT), Κάλυψη λαθών, σύνθεση δέντρου ρολογιού, κτλ.)

Ξεκινώντας απο τον κώδικαRegister Transfer Level (RTL) τον οποίο βρήκαμε στοwebsite opencores,
το τελικό αποτέλεσμα θα είναι ένα πλήρως λειτουργικό κύκλωμα Advanced RISC Machines (ARM)
AdvancedMicrocontroller BusArchitecture (AMBA)AdvancedHigh-performanceBus (AHB)-lite slave
που θα σταλεί για κατασκευή στις 27th Ιουλίου σύμφωνα με Europractice 2015 MPW run schedule. Τέ-
λος, η περίοδος του ρολογιού θα είναι στα 80,64 MHz (12.4ns), το τελικό μέγεθος 6, 76mm2 και η τάση
που θα λειτουργεί το κύκλωμα θα είναι 3,3 Volts.

xiii
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Abstract

Integrated Circuit (IC) design complexity has increased radically since the first designs
in the late 50s, with a few transistors. Nowadays, System on Chip (SoC) designs contain mil-
lion or even billion transistors and not only the experience of the designer, but also Electronic
Design Automation (EDA) tools and a design methodology is needed in order to reach at the
fabrication of a chip.

The goal of this thesis is the design and implementation in 350nm Austria Microsystems
(AMS) technology of an Advanced RISC Machines (ARM) Advanced Microcontroller Bus Archi-
tecture (AMBA) Advanced High-performance Bus (AHB)-lite slave using Electronic Design Au-
tomation (EDA) tools from all three big vendors(Cadence, Synopsys, Mentor Graphics)following
a typical industrial tool flow. During the different steps of the Very Large Scale Integration
(VLSI) design flow (behavioral specification and verification, synthesis and layout generation),
it will be shown how to deal with the design issues that arise: (Design For Testability (DFT)
insertion, test coverage, Clock Tree Synthesis (CTS), etc.)

Starting from the Register Transfer Level (RTL) code originating from opencores website,
the final result is a fully functional and tested Advanced RISC Machines (ARM) Advanced
Microcontroller Bus Architecture (AMBA) Advanced High-performance Bus (AHB)-lite slave
circuit with no violations of any kind that will be sent for fabrication at 27th of July according
to Europractice 2015 MPW run schedule. Finally, the clock frequency of the circuit will be at
83.3 MHz, the final area will be 7mm2 and the voltage that will operate will be at 5 Volts.

http://opencores.org/
http://www.europractice-ic.com/
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CHAPTER 1. INTRODUCTION

In the past people used technology as a tool for making survival an easier endeavor. Nowa-
days we are witnessing a shift in the role technology is playing in our society and may continue
to play for generations to come. Every human out there in this age simply cannot imagine his
life without technology and an internet connection. Some applications of technology evolution
are helpful for humanity such as bio medical implants, others main concern is the improvement
of living such as home applications while others are purely for entertainment such as smart
phones, personal computers, tablets, smart TVs. As mentioned before there are many different
electronic systems out there (Figure 1.1). In the scheme of continuous development, electronic
devices becoming more and more complex (which sometimes means difficult to use), rather than
the first Integrated Circuit (IC) developed in the late 50s with a few transistors design all by
hand to current Integrated Circuit (IC) [4] and System on Chip (SoC) [6] with billions of tran-
sistors. The key point to that evolution was the development of Electronic Design Automation
(EDA) tools. Another challenge that we have to face nowadays is the ”shrinking” of the tran-
sistors. This ”shrinking” is necessary because we want to place billions of transistors to a small
area at the size of the head of a nail. The field of this thesis is to examine the parts(synthesis,
Clock Tree Synthesis (CTS), Design For Testability (DFT), power distribution,...) of a puzzle
that we have to solve in order to fabricate a chip.

(a) Smartphones (b) Home automation

(c) Motor sports application (d) Bio medical application

Figure 1.1: Electronic systems example
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Nowadays, many new companies started to develop their own Intellectual Property (IP) such as
ARM [7] and provide them to other companies that needed to integrate them to their electronic
devices. These IPs are developed with the help of Electronic Design Automation (EDA) tools
in order to achieve the desired performance, power and area requirements. The EDA tools run
algorithms developed from the experience of designers in the field of VLSI and they automate
many parts of the design process that could take years if SoCs designed by hand. So, the need
for people who know to handle these tools as well as having the relevant VLSI background is
necessary to help the technology and our living become better.

1.2 Thesis Goals

The main goal of this thesis is to complete a VLSI design flow at the 350nm technology node
with the latest versions of EDA tools which legally provided for academic use from Europractice
agreement my department has, in order to set up a design environment for more complex designs.
My secondary goals are :

• Ensure that after the modifications done, the circuit works perfectly and it has the same
functionality as the one that is integrated in ARM [7] SoCs.

• Send the circuit after the design flow for fabrication to a foundry that cooperate with
Europractice.

1.3 Thesis Sructure

This thesis is divided in six main Chapters which include:

• Chapter 2 provides the necessary background information in order the reader fully under-
stands the development and the final results of this project. First of all, it gives the basic
knowledge about methodology and tools used in the design, as well a sort description of
the design library that is used.

• Chapter 3 presents the ARM [7] AMBA AHB protocol, explaining the functionality of the
signals that compose the specific circuit this thesis is about.

• Chapter 4 is about the front end flow of the design. This includes at the beginning
RTL coding and modifications needed to be done in order the circuit will be functional
during simulations. Afterwards, is described the logic synthesis part of the flow and the
constraints applied to the circuit. Finally, is described the scan chain insertion and test
vectors extraction and the final tape-out checks.

• Chapter 5 presents the back end flow of the design starting from importing the design to
the back end tool and finishing with the GDSII extraction which was sent for fabrication
to the foundry.

• Chapter 6 and 7, summarizes the work done, the problems faced and the results generated
and points to possible future work.
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CHAPTER 2. LITERATURE REVIEW

2.1 Brief ICs History

Opinions diverge on who inverted the first IC: Jack Kilby of Texas Instruments or Robert
Noyce of Fairchild Semiconductor. The matter is that both of them contributed to achieve the
birth of IC in 1958 and initiate a revolution in the circuit design field. Starting with Small
Scale Integration (SSI) devices, with tens of transistors in the early 1960s, and Medium Scale
Integration (MSI) devices, with hundreds of transistors in the late 1960s, were relatively simple
to test. However, in the 1970s, Large Scale Integration (LSI) devices, with thousands and tens of
thousands of transistors, created a number of challenges when testing these devices. In the early
1980s, Very Large Scale Integration (VLSI) devices with hundreds of thousands of transistors
were introduced. Steady advances in VLSI technology have resulted in devices with hundreds
of millions of transistors and many new challenges for developers and designers.

Following the so-called Moore’s law [Moore 1965] (Figure 2.1), the scale of ICs has doubled
every 18 months. A simple example of this trend is the progression from SSI to VLSI devices.
In the 1980s, the term “VLSI” was used for chips having more than 100,000 transistors and has
continued to be used over time to refer to chips with millions and now hundreds of millions of
transistors. The first designs were designed by hand with the aid of microscopes and based only
on the experience of the designer, but the more the transistors inside the circuits increase the
more impracticable was the design without any help. This help is known as Electronic Design
Automation (EDA) tools and was an essential part of the next evolution step in IC, the Very
Large Scale Integration (VLSI) age, which was initiated at the early 80s with circuits including
hundreds of thousands of transistors.

Nowadays, this number increased beyond several billion transistors and we reached to System
on Chip (SoC) age, what makes clear the need of EDA tools and the methodology or design flow
that allows managing huge designs like that. This is a direct result of the steadily decreasing
dimensions, referred to as feature size, of the transistors and interconnecting wires from tens of
microns to tens of nanometers, with current submicron technologies based on a feature size of
less than 100 nanometers (14 nm). The reduction in feature size has also resulted in increased
operating frequencies and clock speeds; for example, in 1971, the first microprocessor ran at a
clock frequency of 108 KHz, while current commercially available microprocessors commonly
run at several gigahertz. [19]

Figure 2.1: Moore’s Law
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CHAPTER 2. LITERATURE REVIEW

2.2 VLSI Design Flow

As described in the previous section, the need for a methodology was needed in order to create
a full design flow that would allow us to handle big designs. In this section, we will present this
methodology as was developed through the years from many industries to get a final error-free
chip. The diverse steps of the full design flow are shown in Figure 2.2

Figure 2.2: Design Flow

2.2.1 Design Specification

Design Specifications are the first step of the Design flow. They describe the functionality,
interface and the architecture of the digital IC circuit to be designed. They also contain block
diagrams of the circuit, signal description and some examples of waveforms in order to un-
derstand the functionality of the circuit. Finally in some design specification we may find a
pseudo-code description of some functionality of the circuit. In this project the design specifi-
cations taken from ARM [7] website.
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CHAPTER 2. LITERATURE REVIEW

2.2.2 RTL Description

Register Transfer Level (RTL) of a models the design in terms of the flow of digital signals
between registers and logical operations performed on those signals. Register Transfer Level
(RTL) abstraction is used in Hardware Description Language (HDL) like verilog to create a high-
level representation of the circuit, from which lower-level representations are ultimately actual
wiring can be derived. A synchronous circuit consists of two kinds of elements: registers and
combinational logic. Registers (usually implemented as D flip-flops) synchronize the circuit’s
operation to the edges of the clock signal, and are the only elements in the circuit that have
memory properties. Combinational logic performs all the logical functions in the circuit and it
typically consists of logic gates. [5]

2.2.3 Front End Flow

Front End Flow of the design consists of RTL simulation and Logic synthesis of the circuit.

2.2.3.1 RTL simulation

After the RTL description of the design we have to check its functionality and if the code we
composed works fine and gives us the behavior of the circuit according to the specifications.
To achieve that we create test benches. Test bench is a specification written in verilog that
plays the role of a complete simulation environment for the analyzed system (Unit Under Test
(UUT)). A test bench contains both the UUT as well as stimuli for the simulation. The UUT
is instantiated as a component of the test bench and the architecture of the test bench specifies
stimuli for the UUT’s ports, usually as waveform assigned to all output and bidirectional ports
of the UUT. The entity of a test bench does not have any ports as this serves as an environment
for the UUT. All the simulation results are reported using the assert and report statements.
The correctness of the behavior is checked by a simulation program (Modelsim from Mentor
Graphics, Simvision from Cadence or VCS from Synopsys) using test benches.

2.2.3.2 Synthesis

After checking the correctness of the RTL, the next step is synthesis. Synthesis is the process in
which the circuit is converted from a high-level description of design into an optimized gate-level
representation. Synthesis includes the following parts:

• RTL Synthesis, Library Mapping: The code written in verilog HDL format is trans-
lated to a netlist representation of interconnected gates such as AND, OR, NOT, macro
cells such as MUXes, adders and registers which mapped to the gates defined in the target
library.

• Design Constraints: The designer after importing the design in the EDA synthesis tool
has to set constraints such as timing, area and power that the design should meet in order
to agree with the specifications given at the beginning.

2.2.3.3 Post-synthesis verification

This step has to do with the post synthesis verification of the design. After getting the verilog
netlist exported from EDA synthesis tool, we have to check the correctness of the circuit and if
the synthesized netlist is the same in terms of logic with the initial RTL code we wrote. This
can be done with running again testbenches that have been used before and checking the design
with logic equivalence checking EDA tools.

7



CHAPTER 2. LITERATURE REVIEW

2.2.3.4 Static Timing Analysis

After we check the design for its behavioral and structural correctness, we have to do some
final timing tests. A Static Timing Analysis (STA) can be run to check if the circuit meets the
constraints we set in the section 2.2.3.2. If not, we should return to synthesis part of the flow
to set new constraints that can reach the design requirements.

2.2.4 Back End Flow

Back end flow is the flow that produces the final files which will sent to the foundry in order
to fabricate a System on Chip (SoC). We take the netlist exported from the front end flow and
we generate the final Graphic Data System (GDS)II file.

2.2.4.1 Layout generation

In the next steps is briefly described the main back end flow:

• Floorplaning: The first thing to do is to import the design and configure the floorplan
of the design. The design is imported in hierarchical modules and we have to customize
the area that is given from the EDA tool to perform the placement of these modules in
this area.

• Placement: At this stage, modules are decomposed into standard cells and they placed
inside the area we defined before. The EDA tool performs iterations with the aid of
integrated algorithms which places the standard cells in a way to minimize the wire length
of the design, the area the design should take and to decrease as much as possible the
delay on the critical paths and achieve the best possible results in timing.

• Routing: Moving on, the placed cells need to be interconnected. There are two types of
routing, global routing and detailed routing. Global routing allocates routing resources
that are used for connections. Detailed routing assigns routes to specific metal layers and
routing tracks within the global routing resources.

• Clock Tree Synthesis and Timing Analysis: After place and routing the design the
static timing analysis reports will show us if the timing requirements of our design is
accomplished or not. If not, Clock Tree Synthesis (CTS) may save the day. The goal
of Clock Tree Synthesis (CTS) is to minimize skew and insertion delay. Clock is not
propagated before CTS. After CTS hold slack should improve. The clock signal has to
reach to all sequential elements of the circuit at the same time in order to achieve a correct
functionality and avoid clock inaccuracy problems: clock skew and clock jitter.

• Power Analysis and finishing:During this step we check our final design in terms of
power distribution before we proceed to tape-out.

8



CHAPTER 2. LITERATURE REVIEW

2.2.4.2 Physical Verification

Physical verification checks the correctness of the generated layout design. This includes veri-
fying that the layout:

• Complies with all technology requirements – Design Rule Check (DRC)

• Is consistent with the original netlist – Layout vs. Schematic (LVS)

• Has no antenna effects – Antenna Rule Checking

• This also includes density verification at the full chip level.Cleaning density is a very
critical step in the lower technology nodes

• Complies with all electrical requirements – Electrical Rule Checking (ERC)

Some of these physical verification steps may offered by the foundry while others needed to be
done from the designer.

2.3 Design for Test

Design For Testability (DFT) stands for IC design techniques that add certain testability fea-
tures to a hardware product design. The premise of the added features is that they make it
easier to develop and apply manufacturing tests for the designed hardware. The purpose of
manufacturing tests is to validate that the product hardware contains no manufacturing defects
that could, otherwise, adversely affect the product correct functioning. The tests generally are
driven by test programs that execute in Automatic Test Equipment (ATE). In addition to find-
ing and indicating the presence of defects (i.e., the test fails), tests may be able to log diagnostic
information about the nature of the encountered test fails. The diagnostic information can be
used to locate the source of the failure. In other words, the response of vectors(patterns) from
a good circuit is compared with the response of vectors(using same patterns) from a Device
Under Test (DUT). If the response is the same or matches, the circuit is good. Otherwise, the
circuit is not manufactured as it is intended to do so.

DFT has two main parts:

• Controllability: It is the ability to control the nodes in a circuit by a set of inputs.
For a given set of input and output pins, when we give the system a set of input test
vectors, we should be able to control each node we want to test. The higher the degree of
controllability, the better.

• Observability: It is the ease with which we can observe the changes in the nodes (gates).
Like in the previous case the higher the observability, the better. What I mean by saying
higher is that, we can see the desired state of the gates at the output in lesser number of
cycles.

The most common method for delivering test data from chip inputs to internal Circuit Under
Test (CUT)s, and observing their outputs, is called scan-design. In scan-design, registers (flip-
flops or latches) in the design are connected in one or more scan chains, which are used to gain
access to internal nodes of the chip. Test patterns are shifted in via the scan chain(s), functional
clock signals are pulsed to test the circuit during the ”capture cycle(s)”, and the results are then
shifted out to chip output pins and compared against the expected ”good machine” results. [2]
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CHAPTER 2. LITERATURE REVIEW

2.3.1 Scan Chain insertion - Multiplexed Flip-Flop Style

The most common method for delivering test data from chip inputs to internal Circuit Under
Test (CUT)s, and observing their outputs, is called scan-design. There are two methodologies:

• Partial Scan: Only some Flip-Flops are changed to Scan-FF.

• Full Scan: Entire Flip Flops in the circuit are changed to these special Scan FF. This
does mean that we can test the circuit 100%.

If a design contains sequential components (like flip/flops), the design compiler can be used to
replace these components with what is known as ‘scan-cells.’ A common example is replacing
a d-flop-flop with a multiplexed flip-flop (a flip flop with a MUX in front of it). A multiplexed
input allows us to load test data into a flip/flop as opposed the regular data, simply by using
the ‘select line’ of the mux. When the select is low, the normal data that was meant to go into
the flip-flop passes through to Q, but when the select is high, test data propagates through the
flip-flop to the Q output(Figure 2.3).

(a) Normal Flip-Flop (b) Multiplexed Flip-Flop

Figure 2.3: Non scan vs. Multiplexed Flip-Flop Style

By replacing all of the flip-flops in a large design (assuming there are flip-flops throughout the
design) with multiplexed flip-flops (scan-cells), we can increase the observability/controllability
of all the non-sequential logic throughout the chip. The ‘test data-input’ and the ‘select’ lines
of the scan-cells are wired to input pins; this creates what is known as a scan-chain. Now the
user can put the chip into ‘scan-mode’ and load data into all the scan-cells. One can think of all
the flip-flops in the design as having been stitched together into a giant ‘shiftregister’ allowing
data to be inputted in at 1 pin (serially) and being able to move test data all over the chip,
making the non-sequential portions of the design more observable/controllable then they were
before (Figure 2.4).

(a) Non-scan (b) Scan

Figure 2.4: Non-scan vs. Scan mode
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Straightforward application of scan techniques can result in large vector sets with corre-
sponding long tester time and memory requirements. Test compression techniques address this
problem, by decompressing the scan input on chip and compressing the test output. The output
of a scan design may be provided in forms such as Serial Vector Format (SVF), to be executed
by test equipment.

2.4 Standard Cell Design

As mentioned in the section 2.2 the goal of fabricating a chip is to produce the final layout of
the design. There are two ways to do that, so IC physical design is categorized into:

• Full Custom: Designer has full flexibility on the layout design, no predefined cells are
used. That means that the designer has to generate the layout of each standard cell
specifications he will afterwards use at his design. This approach allows maximizing the
performance of the circuit, but it is a time-consuming process if we want to apply it to
big designs.

• Semi Custom: Pre-designed library cells are used. These pre-designed library cells or
standard cells, created by using a full custom technique from foundries and developers,
can be seen by the designer in abstract logic representation (logic gates, buffers, flip-flops,
etc.) In this case the designer has flexibility in placement of the cells and routing focusing
on the high-level aspect of the design.

In this thesis, the second way is used, so a library containing the standard cells should be
provided. The library that has been used in this design is explained at the next section.

2.4.1 AMS 350nm Standard Cell Library

The AMS C35B4C3 [9] (Key specification: C35B4C3 2P/4M 3.3V CMOS 4 Metal, Mixed
Signal, PIP, high-res poly, 5V periphery) library from Austria micro systems used in this thesis
is a 350nm standard cell library. AMS 350nm CMOS process family is fully compatible to the
350nm mixed signal base process licensed from Taiwan Semiconductor Manufacturing Company
(TSMC). The high density CMOS standard cell library optimized for synthesis and 3 and 4 layer
routing guarantees highest gate densities. Peripheral cell libraries are available for 3.3 V and 5
V with high driving capabilities and excellent ESD performance. Qualified digital macro blocks
(RAM, diffusion programmable ROM and DPRAM) are available on request. A variety of high
performance analog-to-digital and digital-to-analog converters can be provided for integration
on the same Application Specific Integrated Circuit (ASIC). Digital, Analog and Mixed Signal
Systems. The features of the library are:

• 350nm CMOS polycide-gate process

• Four unrestricted layers of metal

• Second layer of poly for linear capacitors and linear resistors

• Peripheral cells with high driving capability

• High performance digital and mixed signal capabilities

11
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and some general characteristics are:

• p substrate

• Pseudo twin-well CMOS

• stacked contact,via, via2, via3

• Minimum Feature Size: 350nm gates

• Supply Voltage: CMOS 3.3 V; periphery up to 5.5 V

• Gate Delay: 0.10 ns (NAND2 typical)

The library contained all the necessary files for all the tools described in the section below.

2.5 EDA Tools

In this section we give a brief presentation of EDA tools that have been used during the VLSI
design flow:

• Simulation: Questasim(version 10.4) from Mentor Graphics, VCSMX (version 2014.12)
from Synopsys and Simvision (Incisive suite version 14.10) from Cadence. These three
tools provides the designer the ability to verify the functionality of the circuit at logic
level. They also include timing information through Standard Delay Format (SDF) file,
they support multi-language simulation (VHDL, Verilog, System Verilog) as well as Tool
Command Language (TCL) scripting, among other features.

• Synthesis: Design Compiler (version 2014.09-SP2) from Synopsys. It is the most com-
monly used EDA tool for that purpose. Design Compiler transform the RTL code given
from an abstract description to logic gate circuit mapped with the standard cell library
that the designer decides to provide. It offers a robust environment that faces successfully
design challenges such as: timing, area, power, scan chain insertion.

• Automatic Test Pattern Generation (ATPG): TetraMax (version 2014.09-SP2) from
Synopsys. The tool provides accurate measurements for test coverage of the design and it
exports the test vectors that will be used to test the design after the fabrication process.

• Logic Equivalence Checking: Conformal (version 14.10) from Cadence. After synthe-
sis and after layout generation, the netlists exported needed to be tested for their logic
equivalence with the initial RTL code. An error in this stage means that the final netlist
has not the same functionality as the initial RTL code, so we need to fix these errors or
rerun synthesis and back-end flow from scratch.

• Static Timing Analysis: Tempus (version 14.10) from Cadence and PrimeTime (version
2014.12) from Synopsys. For more accurate results in terms of timing after syntheis and
after layout generation these two tools were used in order to ensure that the final design
has no timing violation and it is ready to send to the foundry for fabrication.

• Layout generation: System on Chip (SoC) Encounter (version 14.13) from Cadence
completes the VLSI design flow. It performs floorplanning, power planning, placement,
routing, clock tree synthesis, power analysis, DRC checks, in order to produce the final
Graphic Data System (GDS)II file for the final tape-out of the circuit. The GDSII file is
afterwards send to the foundry in order to begin the fabrication process of the System on
Chip (SoC)

12
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2.5.1 Deal With Problems

All these tools described before are delivered with their huge documentation and manuals but
they just describe each command of each tool with no direction for the design flow at least
the minimum one that has to be followed. This problem applies to all EDA tools from three
biggest vendors used in this thesis (Synopsys, Cadence and Mentor graphics) because they are
expensive programs, mostly used in companies, and therefore, it is difficult to get information
about how to solve specific problems. The first help came from the department because of the
agreement it has with Europractice which legally provides the latest versions of EDA tools for
academic use, as well as official tutorials, labs sessions and lectures from Cadence and Synopsys.
After spending many hours of training sessions, there were still some issues i faced that many
google searches helped me to solve. Summarizing the main help provided by:

• Synopsys tools: After checking the manuals, Solvenet can be used. It is the online
resource for Synopsys tool support and downloads, that offers access to the Synopsys
knowledge data base containing up-to-date product manual, webinars and labs.

• Cadence tools: Cadence provides lab and lecture sessions to universities that have an
agreement through Europractice. iLs provides lab sessions that covers pretty much the
whole design flow with Cadence EDA tools.

• For Mentor Graphics Modelsim some tutorials and scripts from google search were very
useful and helped me understand in short time the tool.

• The rest of the problems solved from google search some other websites/forums that can be
really helpful for clarifying some concepts. A small sample of them are: www.edacafe.com,
www.edaboard.com, www.deepchip.com.
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3.1 General on ARM AMBA

The ARM [7] Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-chip
interconnect specification for the connection and management of functional blocks in System
on Chip (SoC) designs. It facilitates development of multi-processor designs with large num-
bers of controllers and peripherals. Since its inception, the scope of AMBA has, despite its
name, gone far beyond micro controller devices. Today, AMBA is widely used on a range of
ASIC and SoC parts including applications processors used in modern portable mobile devices
like smartphones. AMBA is a registered trademark of ARM Ltd. AMBA was introduced
by ARM in 1996. The first AMBA buses were Advanced System Bus (ASB) and Advanced
Peripheral Bus (APB). In its second version, AMBA 2, ARM added AMBA Advanced High-
performance Bus (AHB) that is a single clock-edge protocol. In 2003, ARM introduced the
third generation, AMBA 3, including AXI to reach even higher performance interconnect and
the Advanced Trace Bus (ATB) as part of the CoreSight on-chip debug and trace solution. In
2010 the AMBA 4 specifications were introduced starting with AMBA 4 AXI4, then in 2011
extending system wide coherency with AMBA 4 ACE. In 2013 the AMBA 5 Coherent Hub
Interface (CHI) specification was introduced, with a re-designed high-speed transport layer and
features designed to reduce congestion [1].

3.1.1 Design Principles

The important aspect of a SoC is not only which components or blocks it houses, but also how
they interconnect. AMBA is a solution for the blocks to interface with each other [?]. The
objective of the AMBA specification is to:

• facilitate right-first-time development of embedded microcontroller products with one or
more CPUs, GPUs or signal processors

• be technology independent, to allow reuse of IP cores, peripheral and system macrocells
across diverse IC processes

• encourage modular system design to improve processor independence, and the develop-
ment of reusable peripheral and system IP libraries

• minimize silicon infrastructure while supporting high performance and low power on-chip
communication.

3.1.2 AMBA Protocol Specifications

The AMBA specification defines an on-chip communications standard for designing high-performance
embedded micro-controllers. It is supported by ARM Limited with wide cross-industry partic-
ipation. A simple transaction on the AHB consists of an address phase and a subsequent
data phase (without wait states: only two bus-cycles). Access to the target device is con-
trolled through a MUX (non-tristate), thereby admitting bus-access to one bus-master at a
time. AHB-lite protocol is a subset of AHB formally defined in the AMBA 3 specifcation. This
design simplifies the design with a single master [1].
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3.2 ARM AMBA AHB-Lite

AHB-Lite [7] is a subset of the full AHB specification and is intended for use in designs where
only a single bus master is used. This can either be a simple single master system, as show in
Figure 3.1, or a multi-layer AHBsystem where there is only one AHB master per layer.

Figure 3.1: AHB-lite single master system

AHB-Lite simplifies the AHB specification by removing the protocol required for multiple
bus masters, and includes:

• request and grant protocol to the arbiter

• SPLIT and RETRY responses from slaves.

Masters designed to the AHB-Lite interface specification can be significantly simpler in
terms of interface design, compared to a full AHB master. AHB-Lite enables faster design and
verification of these masters and the addition of a standard off-the-shelf bus mastering wrapper
can be used to convert an AHB-Lite master for use in a full AHB system.

Any master that is already designed to the full AHB specification can be used in an AHB-
Lite system with no modification. The majority of AHB slaves can be used interchangeably
in either an AHB or AHB-Lite system. This is because AHB slaves that do not use either
the SPLIT or RETRY response are automatically compatible with both the full AHB and the
AHB-Lite specification. It is only existing AHB slaves that do use SPLIT and RETRY responses
that require an additional standard off-the-shelf wrapper to be used in an AHB-Lite system.
Any slave designed for use in an AHB-Lite system works in both a full AHB and an AHB-Lite
design.
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The AHB-Lite specification differs from the full AHB specification in the following ways:

• It is a single-master system. There is only one source of address, control, and write data,
so no master-to-slave multiplexor is required.

• There is no arbitration. The AHB-Lite master always has control of the bus.

• There is no master HBUSREQ output. If such an output exists on a master, it is left
unconnected.

• There is no master HGRANT input. If such an input exists on a master, it is tied HIGH.

• There is no SPLIT or RETRY slave responses. The AHB-Lite master deals only with a
slave ERROR response.

• The AHB-Lite lock signal HMASTLOCK, compared with HLOCK for full AHB, and it
has the same timing as the address bus and other control signals. If a master has an
HLOCK output, it can be retimed to generate HMASTLOCK.

• The AHB-Lite lock signal, HMASTLOCK, must remain stable throughout a burst of
transfers, in the same way that other control signals must remain constant throughout a
burst.

Using the AHB-Lite interface makes the bus transfers generated by the AHB-Lite file reader
easier to understand and easier to debug. Because the AHB-Lite is a single master protocol, an
AHB-Lite master always has control of the bus. Unlike AHB, AHB-Lite has no request phase.
Consequently, the AHB-Lite bus might be subject to wait states during the request phase of
the AHB bus.

An AHB-Lite master has the same signal interface as a full AHB bus master, except
that it does not support HBUSREQx and HGRANTx. The Lock functionality is still required
because the master might be performing a transfer to a multi-port slave. The slave must be
given an indication that no other transfer should occur to the slave when the master requires
locked access. An AHB-Lite master is not required to support either the SPLIT or RETRY
response and only the OKAY and ERROR responses are required, so the AHB-Lite master
interface does not require the HRESP input.

The advantage of using the AHB-Lite protocol is that the bus master does not have to
support the following cases:

• Losing ownership of the bus. The clock enable for the master can simply be derived from
the HREADY signal on the bus.

• Early terminated bursts. There is no requirement for the master to rebuild a burst due
to early termination, because the master always has access to the bus.

• SPLIT or RETRY transfer responses. There is no requirement for the master to retain
the address of the last transfer to be able to restart a previous transfer.
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A standard wrapper is available to convert an AHB-Lite master to make it a full AHB
master. This wrapper adds support for the features described in AHB-Lite advantages. Because
the AHB-Lite master has no bus request signal available, the wrapper generates this directly
from the HTRANS signals.

AHB slaves that do not use either the SPLIT or RETRY response can be used in either a
full AHB or AHB-Lite system. Any slave that does use SPLIT or RETRY responses can be
used in an AHB-Lite system by adding a standard wrapper. This wrapper provides the ability
to store the previous transfer in the case of a SPLIT and RETRY response and restart the
transfer when appropriate. This wrapper is very similar to that required to convert an AHB-
Lite master for use in a full AHB system. For compatibility with Multi-layer AHB, it is required
that all AHB-Lite slaves still retain support for early terminated bursts. Figure 3.2 shows a
more detailed block diagram, including Decoder and slave-to-master multiplexor connections.

Figure 3.2: AHB-Lite components
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3.2.1 Introduction to AHB-Lite slave

3.2.1.1 About the protocol

AMBA AHB [1]-Lite addresses the requirements of high-performance synthesizable designs. It
is a bus interface that supports a single bus master and provides high-bandwidth operation.

AHB-Lite implements the features required for high-performance, high clock frequency sys-
tems including:

• burst transfers

• single-clock edge operation

• non-tristate implementation

• wide data bus configurations, 64, 128, 256, 512, and 1024 bits.

The most common AHB-Lite slaves are internal memory devices, external memory inter-
faces, and high bandwidth peripherals. Although low-bandwidth peripherals can be included
as AHB-Lite slaves, for system performance reasons they typically reside on the AMBA Ad-
vanced Peripheral Bus (APB). Bridging between this higher level of bus and APB is done using
a AHB-Lite slave, known as an APB bridge.

Figure 3.3 shows a single master AHB-Lite system design with one AHB-Lite master and
three AHB-Lite slaves. The bus interconnect logic consists of one address decoder and a slave-to-
master multiplexor. The decoder monitors the address from the master so that the appropriate
slave is selected and the multiplexor routes the corresponding slave output data back to the
master.

Figure 3.3: AHB-Lite block diagram
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3.2.1.2 Master

An AHB-Lite master provides address and control information to initiate read and write oper-
ations. Figure 3.4 shows an AHB-Lite master interface.

Figure 3.4: Master interface

3.2.1.3 Slave

An AHB-Lite slave responds to transfers initiated by masters in the system. The slave uses the
HSELx select signal from the decoder to control when it responds to a bus transfer. The slave
signals back to the master:

• the success

• failure

• or waiting of the data transfer.

Figure 3.5: Slave interface
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3.2.1.4 Decoder

This component decodes the address of each transfer and provides a select signal for the slave
that is involved in the transfer. It also provides a control signal to the multiplexor. A single
centralized decoder is required in all AHB-Lite implementations that use two or more slaves.

3.2.1.5 Mutiplexor

A slave-to-master multiplexor is required to multiplex the read data bus and response signals
from the slaves to the master. The decoder provides control for the multiplexor. A single
centralized multiplexor is required in all AHB-Lite implementations that use two or more slaves.

3.2.1.6 Operation

The master starts a transfer by driving the address and control signals. These signals provide
information about the address, direction, width of the transfer, and indicate if the transfer
forms part of a burst. Transfers can be:

• single

• incrementing bursts that do not wrap at address boundaries

• wrapping bursts that wrap at particular address boundaries.

The write data bus moves data from the master to a slave, and the read data bus moves
data from a slave to the master. Every transfer consists of:

Address phase one address and control cycle
Data phase one or more cycles for the data

A slave cannot request that the address phase is extended and therefore all slaves must be
capable of sampling the address during this time. However, a slave can request that the master
extends the data phase by using HREADY. This signal, when LOW, causes wait states to be
inserted into the transfer and enables the slave to have extra time to provide or sample data.
The slave uses HRESP to indicate the success or failure of a transfer
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3.2.2 Signal Description

In this section will analyze the signals that this circuit use and where their source as well as
their destination is (master, multiplexor, decoder). As you will notice, they are the modified
signals are used at the circuit according to some corrections were made for reducing the die size
area. This was necessary because the funds for the fabrication process were limited. Finally,
regardless of the modifications, as you can see at next chapters the final modified protocol is
fully functional according to its bus modified width.

3.2.2.1 General Signals

Name Source Destination

clk Clock source The bus clock times all bus transfers. All signal timings are
related to the rising edge of CLK

rst Reset The bus reset signal is active LOW and resets the system
and the bus. This is the only active LOW AHB-Lite signal

Table 3.1: Global Signals
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3.2.2.2 Master Signals

Name Destination Description

HADDR[7:0] Slave and de-
coder

The 8-bit system address bus

HBURST[2:0] Slave The burst type indicates if the transfer is a single transfer
or forms part of a burst. Fixed length bursts of 4, 8, and
16 beats are supported. The burst can be incrementing or
wrapping. Incrementing bursts of undefined length are also
supported.

HMASTLOCK
(clk)

Slave When HIGH, this signal indicates that the current transfer
is part of a locked sequence. It has the same timing as the
address and control signals.

HPROT[3:0] Slave The protection control signals provide additional informa-
tion about a bus access and are primarily intended for use
by any module that wants to implement some level of protec-
tion. The signals indicate if the transfer is an opcode fetch or
data access, and if the transfer is a privileged mode access or
user mode access. For masters with a memory management
unit these signals also indicate whether the current access
is cacheable or bufferable. The specific signal is not used at
this design.

HSIZE[2:0] Slave Indicates the size of the transfer, that is typically byte, half-
word, or word. The protocol allows for larger transfer sizes
up to a maximum of 1024 bits.

HTRANS[1:0] Slave Indicates the transfer type of the current transfer. This can
be:

• IDLE

• BUSY

• NONSEQUENTIAL

• SEQUENTIAL

HWDATA[7:0] Slave The write data bus transfers data from the master to the
slaves during write operations. A minimum data bus width
of 8 bits is recommended. However, this can be extended to
enable higher bandwidth operation.

HWRITE Slave Indicates the transfer direction. When HIGH this signal
indicates a write transfer and when LOW a read transfer. It
has the same timing as the address signals, however, it must
remain constant throughout a burst transfer

Table 3.2: Master Signals
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3.2.2.3 Slave Signals

Name Destination Description

HRDATA[7:0] Multiplexor During read operations, the read data bus transfers data
from the selected slave to the multiplexor. The multiplexor
then transfers the data to the master. A minimum data
bus width of 32 bits is recommended. However, this can
be extended to enable higher bandwidth operation. In this
design a bus width of 8 bits is used.

HREADY Multiplexor When HIGH, the HREADY signal indicates that a transfer
has finished on the bus. This signal can be driven LOW to
extend a transfer.

HMASTCLOCK
(clk)

Slave When HIGH, this signal indicates that the current transfer
is part of a locked sequence. It has the same timing as the
address and control signals.

HRESP Multiplexor The transfer response, after passing through the multiplexor,
provides the master with additional information on the sta-
tus of a transfer. When LOW, the HRESP signal indi-
cates that the transfer status is OKAY. When HIGH, the
HRESP signal indicates that the transfer status is ERROR.
In this design were made some modifications considering the
HRESP signal. See the subsection 4.2.1 at page 35 for more
information.

Table 3.3: Slave Signals

3.2.2.4 Decoder Signals

Name Destination Description

HSELx Slave Each AHB-Lite slave has its own slave select signal HSELx
and this signal indicates that the current transfer is intended
for the selected slave. When the slave is initially selected, it
must also monitor the status of HREADY to ensure that the
previous bus transfer has completed, before it responds to
the current transfer. The HSELx signal is a combinational
decode of the address bus.1

Table 3.4: Decoder Signals

1The letter x used in HSELx must be changed to a unique identifier for each AHB-Lite slave in a system
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3.2.2.5 Multiplexor Signals

Name Destination Description

HRDATA[7:0] Master Read data bus, selected by the decoder.2

HREADY Master and
Slave

When HIGH, the HREADY signal indicates to the master
and all slaves, that the previous transfer is complete.

HRESP Master Transfer response, selected by the decoder.2

Table 3.5: Multiplexor Signals

3.2.3 AHB-Lite Slave Transfers

In this section is described the basic transfers of AHB-Lite protocol.

3.2.3.1 Basic Transfers

An AHB-Lite transfer consists of two phases:
Address Lasts for a single HCLK cycle unless its extended by the

previous bus transfer.
Data That might require several HCLK cycles. Use the

HREADY signal to control the number of clock cycles re-
quired to complete the transfer.

HWRITE controls the direction of data transfer to or from the master. Therefore, when:

• HWRITE is HIGH, it indicates a write transfer and the master broadcasts data on the
write data bus, HWDATA[7:0]

• HWRITE is LOW, a read transfer is performed and the slave must generate the data
on the read data bus, HRDATA[7:0]

The simplest transfer is one with no wait states, so the transfer consists of one address cycle
and one data cycle. Figure 3.6 shows a simple read transfer and Figure 3.7 shows a simple write
transfer.

Figure 3.6: Read transfer

2Because the HRDATA[7:0] and HRESP signals pass through the multiplexor and retain the same signal
naming, the full signal description for these two signals are provided in 3.3 on page 24.
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Figure 3.7: Write transfer

In a simple transfer with no wait states:

1. The master drives the address and control signals onto the bus after the rising edge of
clk.

2. The slave then samples the address and control information on the next rising edge of
clk.

3. After the slave has sampled the address and control it can start to drive the appropriate
HREADY response. This response is sampled by the master on the third rising edge of
clk.

This simple example demonstrates how the address and data phases of the transfer occur
during different clock cycles. The address phase of any transfer occurs during the data phase
of the previous transfer. This overlapping of address and data is fundamental to the pipelined
nature of the bus and enables high performance operation while still providing adequate time
for a slave to provide the response to a transfer.

A slave can insert wait states into any transfer to enable additional time for completion.
Figure 3.8 shows a read transfer with two wait states and Figure 3.9 shows a write transfer with
one wait state.

Figure 3.8: Read transfer with two wait states
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Figure 3.9: Write transfer with one wait state

Note: For write operations the master holds the data stable throughout the extended cycles.
For read transfers the slave does not have to provide valid data until the transfer is about to
complete.

When a transfer is extended in this way it has the side-effect of extending the address phase
of the next transfer. Figure 3.10 shows three transfers to unrelated addresses, A, B, and C with
an extended address phase for address C.

Figure 3.10: Multiple transfers

In Figure 3.10:

• the transfers to addresses A and C are zero wait state

• the transfer to address B is one wait state

• extending the data phase of the transfer to address B has the effect of extending the
address phase of the transfer to address C

3.2.3.2 Transfer Types

Transfers can be classified into one of four types, as controlled by HTRANS[1:0]. Table 3.6 lists
these.
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HTRANS[1:0] Type Description

b00 IDLE Indicates that no data transfer is required. A master uses
an IDLE transfer when it does not want to perform a data
transfer. It is recommended that the master terminates a
locked transfer with an IDLE transfer. Slaves must always
provide a zero wait state OKAY response to IDLE transfers
and the transfer must be ignored by the slave.

b01 BUSY The BUSY transfer type enables masters to insert idle cycles
in the middle of a burst. This transfer type indicates that
the master is continuing with a burst but the next transfer
cannot take place immediately. When a master uses the
BUSY transfer type the address and control signals must
reflect the next transfer in the burst. Only undefined length
bursts can have a BUSY transfer as the last cycle of a burst.
Slaves must always provide a zero wait state OKAY response
to BUSY transfers and the transfer must be ignored by the
slave.

b10 NONSEQ Indicates a single transfer or the first transfer of a burst.
The address and control signals are unrelated to the pre-
vious transfer. Single transfers on the bus are treated as
bursts of length one and therefore the transfer type is NON-
SEQUENTIAL.

b11 SEQ The remaining transfers in a burst are SEQUENTIAL and
the address is related to the previous transfer. The control
information is identical to the previous transfer. The ad-
dress is equal to the address of the previous transfer plus the
transfer size, in bytes, with the transfer size being signaled
by the HSIZE[2:0] signals. In the case of a wrapping burst
the address of the transfer wraps at the address boundary.

Table 3.6: Transfer type encoding

3.2.3.3 Transfer Size

HSIZE[2:0] indicates the size of a data transfer. Table 3.7 lists the possible transfer sizes.

HSIZE[2:0] Size (bits) Description

b000 8 Byte

b001 16 Halfword

b010 32 Word

b011 64 Doubleword

b100 128 4-word line

b101 256 8-word line

b110 512 -

b111 1024 -

Table 3.7: Transfer size encoding
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Note: The transfer size set by HSIZE must be less than or equal to the width of the data
bus. For example, with a 32-bit data bus, HSIZE must only use the values b000, b001, or b010.

The HSIZE signals have exactly the same timing as the address bus. However, they must
remain constant throughout a burst transfer.

3.2.3.4 Burst Operation

Bursts of 4, 8, and 16-beats, undefined length bursts, and single transfers are defined in this
protocol. It supports incrementing and wrapping bursts:

• Incrementing bursts access sequential locations and the address of each transfer in the
burst is an increment of the previous address.

• Wrapping bursts wrap when they cross an address boundary. The address boundary is
calculated as the product of the number of beats in a burst and the size of the transfer.
The number of beats are controlled by HBURST and the transfer size is controlled by
textbfHSIZE. For example, a four-beat wrapping burst of word (4-byte) accesses wraps at
16-byte boundaries. Therefore, if the start address of the transfer is 0x34, then it consists
of four transfers to addresses 0x34, 0x38, 0x3C, and 0x30.

HBURST[2:0] controls the burst type. Table 3.8 lists the possible burst types.

HBURST[2:0] Type Description

b000 SINGLE Single burst

b001 INCR Incrementing burst of undefined length

b010 WRAP4 4-beat wrapping burst

b011 INCR4 4-beat incrementing burst

b100 WRAP8 8-beat wrapping burst

b101 INCR8 8-beat incrementing burst

b110 WRAP16 16-beat wrapping burst

b111 INCR16 16-beat incrementing burst

Table 3.8: Burst signal encoding

Masters must not attempt to start an incrementing burst that crosses a 1KB address bound-
ary. Masters can perform single transfers using either:

• SINGLE burst

• undefined length burst that has a burst of length one.

Note:The burst size indicates the number of beats in the burst and not the number of
bytes transferred. Calculate the total amount of data transferred in a burst by multiplying the
number of beats by the amount of data in each beat, as indicated by HSIZE[2:0].

All transfers in a burst must be aligned to the address boundary equal to the size of the trans-
fer. For example, you must align word transfers to word address boundaries (HADDR[1:0] =
b00), and halfword transfers to halfword address boundaries (HADDR[0] = 0). The address
for IDLE transfers must also be aligned, otherwise during simulation it is likely that bus moni-
tors could report spurious warnings.

Burst termination after a BUSY transfer
After a burst has started, the master uses BUSY transfers if it requires more time before

continuing with the next transfer in the burst. During an undefined length burst, INCR, the
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master might insert BUSY transfers and then decide that no more data transfers are required.
Under these circumstances, it is acceptable for the master to then perform a NONSEQ or IDLE
transfer that then effectively terminates the undefined length burst. The protocol does not
permit a master to end a burst with a BUSY transfer for fixed length bursts of type:

• incrementing INCR4, INCR8, and INCR16

• or wrapping WRAP4, WRAP8, and WRAP16.

These fixed length burst types must terminate with a SEQ transfer. The master is not permitted
to perform a BUSY transfer immediately after a SINGLE burst. SINGLE bursts must be
followed by an IDLE transfer or a NONSEQ transfer.

Early burst termination
Bursts can be terminated by either:

• Slave error response

• Multi-layer interconnect termination

Slave error response
If a slave provides an ERROR response then the master can cancel the remaining transfers

in the burst. However, this is not a strict requirement and it is also acceptable for the master
to continue the remaining transfers in the burst.

If the master does not complete that burst then there is no requirement for it to rebuild the
burst when it next accesses that slave. For example, if a master only completes three beats of
an eight-beat burst then it does not have to complete the remaining five transfers when it next
accesses that slave.

Multi-layer interconnect termination
Although masters are not permitted to terminate a burst request early, slaves must be

designed to work correctly if the burst is not completed. When a multi-layer interconnect
component is used in a multi-master system then it can terminate a burst so that another
master can gain access to the slave. The slave must terminate the burst from the original
master and then respond appropriately to the new master if this occurs.

3.2.3.5 Waited Transfers

Slaves use HREADY to insert wait states if they require more time to provide or sample the
data. During a waited transfer, the master is restricted to what changes it can make to the
transfer type and address. These restrictions are described in the following sections:

• Transfer type changes during wait states

• Address changes during wait states

Transfer type changes during wait states When the slave is requesting wait states, the
master must not change the transfer type, except as described in:

• IDLE transfer

• BUSY transfer, fixed length burst

• BUSY transfer, undefined length burst
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IDLE transfer During a waited transfer, the master is permitted to change the transfer
type from IDLE to NONSEQ. When the HTRANS transfer type changes to NONSEQ the
master must keep HTRANS constant, until HREADY is HIGH.

BUSY transfer, fixed length burst During a waited transfer for a fixed length burst,
the master is permitted to change the transfer type from BUSY to SEQ. When the HTRANS
transfer type changes to SEQ the master must keep HTRANS constant, until HREADY is
HIGH.

BUSY transfer, undefined length burst During a waited transfer for an undefined
length burst, INCR, the master is permitted to change from BUSY to any other transfer type,
when HREADY is LOW. The burst continues if a SEQ transfer is performed but terminates
if an IDLE or NONSEQ transfer is performed.

Address changes during wait states When the slave is requesting wait states, the
master can only change the address once, except as described in:

• During an IDLE transfer

• After an ERROR response

During an IDLE transfer During a waited transfer, the master is permitted to change
the address for IDLE transfers. When the HTRANS transfer type changes to NONSEQ the
master must keep the address constant, until HREADY is HIGH.

After an ERROR response During a waited transfer, if the slave responds with an
ERROR response then the master is permitted to change the address when HREADY is LOW.

3.2.4 Slave Response Signaling

This section describes the slave response signaling.

3.2.4.1 Slave Transfer Responses

After a master has started a transfer, the slave controls how the transfer progresses. A master
cannot cancel a transfer after it has commenced. A slave must provide a response that indicates
the status of the transfer when it is accessed. The transfer status is provided by the HRESP
signal. Table 3.9 lists the HRESP states.

HRESP Response Description

0 OKAY The transfer has either completed successfully or additional
cycles are required for the slave to complete the request. The
HREADY signal indicates whether the transfer is pending
or complete.

1 ERROR An error has occurred during the transfer. The error con-
dition must be signaled to the master so that it is aware
the transfer has been unsuccessful. A two-cycle response is
required for an error condition with HREADY being as-
serted in the second cycle.

Table 3.9: HRESP signal

Table 3.9 shows that the complete transfer response is a combination of the HRESP and
HREADY signals. Table 3.10 lists the complete transfer response based on the status of these
two signals

This means the slave can complete the transfer in the following three ways:
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HREADY

HRESP 0 1

0 Transfer pending Successful transfer completed

1 ERROR response, first cycle ERROR response, second cycle

Table 3.10: Transfer response

• immediately complete the transfer

• insert one or more wait states to enable time to complete the transfer

• signal an error to indicate that the transfer has failed.

Transfer done A successful completed transfer is signaled when HREADY is HIGH and
HRESP is OKAY.

Transfer pending A typical slave uses HREADY to insert the appropriate number of
wait states into the data phase of the transfer. The transfer then completes with HREADY
HIGH and an OKAY response to indicate the successful completion of the transfer. When a
slave inserts a number of wait states prior to completing the response, it must drive HRESP
to OKAY.
Note: In general, every slave must have a predetermined maximum number of wait states that
it inserts before it backs off the bus. This enables you to calculate the latency for accessing the
bus. It is recommended that slaves do not insert more than 16 wait states, to prevent any single
access locking the bus for a large number of clock cycles. However, this recommendation is not
applicable to some devices, for example, a serial boot ROM. This type of device is usually only
accessed during system startup and the impact on system performance is negligible if greater
than 16 wait states are used.

ERROR response
A slave uses the ERROR response to indicate some form of error condition with the associ-

ated transfer. Usually this denotes a protection error such as an attempt to write to a read-only
memory location.

Although an OKAY response can be given in a single cycle, the ERROR response requires
two cycles. To start the ERROR response, the slave drives HRESP HIGH to indicate ERROR
while driving HREADY LOW to extend the transfer for one extra cycle. In the next cycle
HREADY is driven HIGH to end the transfer and HRESP remains driven HIGH to indicate
ERROR.

The two-cycle response is required because of the pipelined nature of the bus. By the time a
slave starts to issue an ERROR response then the address for the following transfer has already
been broadcast onto the bus. The two-cycle response provides sufficient time for the master to
cancel this next access and drive HTRANS[1:0] to IDLE before the start of the next transfer.

If the slave requires more than two cycles to provide the ERROR response then additional
wait states can be inserted at the start of the transfer. During this time HREADY is LOW
and the response must be set to OKAY.

If a slave provides an ERROR response then the master can cancel the remaining transfers
in the burst. However, this is not a strict requirement and it is also acceptable for the master
to continue the remaining transfers in the burst.

3.2.5 Data Buses

This section describes the AHB-Lite data buses. It contains the following sections:
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3.2.5.1 Data Buses

Separate read and write data buses are required to implement an AHB-Lite system without
using tristate drivers. Although the recommended minimum data bus width is specified as 32
bits, you can change this (8 bits at the specific design). The data buses are described in:

• HWDATA

• HRDATA

• Endianness

HWDATA
The master drives the write data bus during write transfers. If the transfer is extended then
the master must hold the data valid until the transfer completes, as indicated by HREADY
HIGH. For transfers that are narrower than the width of the bus, for example a 4-bit transfer
on a 8-bit bus, the master only has to drive the appropriate byte lanes. The slave selects the
write data from the correct byte lanes.

HRDATA
The appropriate slave drives the read data bus during read transfers. If the slave extends the

read transfer by holding HREADY LOW then the slave only has to provide valid data in the
final cycle of the transfer, as indicated by HREADY HIGH. For transfers that are narrower
than the width of the bus, the slave only requires to provide valid data on the active byte lanes.
The master selects the data from the correct byte lanes. A slave only has to provide valid data
when a transfer completes with an OKAY response. ERROR responses do not require valid
read data.

Endianness
It is essential that all modules are of the same endianness and also that any data routing

or bridges are of the same endianness for the system to function correctly. Dynamic endianness
is not supported, because in the majority of embedded systems, this leads to a significant
redundant silicon overhead. It is recommended that only modules designed for use in a wide
variety of applications are made bi-endian, with either a configuration pin or internal control
bit to select the endianness. For more application-specific blocks, fixing the endianness to either
little-endian or big-endian results in a smaller, lower power, higher performance interface.

3.2.6 Clock and Reset

This section describes the AHB-Lite data buses. It contains the following sections:

3.2.6.1 Clock

Each AHB-Lite component uses a single clock signal, clk. All input signals are sampled on the
rising edge of clk. All output signal changes must occur after the rising edge of clk.

3.2.6.2 Reset

The reset signal, rst, is the only active LOW signal in the AHB-Lite protocol and is the
primary reset for all bus elements. The reset can be asserted asynchronously, but is asserted
synchronously after the rising edge of clk. During reset all masters must ensure the address
and control signals are at valid levels and that HTRANS[1:0] indicates IDLE. During reset
all slaves must ensure that HREADYOUT is HIGH.
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4.1 ARM Specifications, Circuit Description/Architecture

At the previous chapters (chapter 3 and chapter 2) we describe extensively the ARM AHB-lite
slave specifications and the functionality as well as the values of each signal separately. The final
result for this thesis would be a single ARM AHB-lite slave SoC circuit that would operate as a
single module. After the circuit fabrication, the SoC will have the ability to read and write data
to its memory module and export the output of this operation according to the specifications
from ARM [7].

4.2 RTL Coding

As mentioned before, the initial RTL code was originated from opencores website. At first
some modifications needed to be done which are described at section 4.2.1 because the circuit
was at beta form and after a quick simulation it did not applied the ARM AHB-lite slave
specifications. Finally, in this thesis, because the main purpose was the fabrication of the
circuit, it was necessary to create a top level module that would include the pads of the signal
pins of the circuit. A figure is shown below (figure 4.1):

Figure 4.1: From pins to pads

4.2.1 Modifications

In this section we will describe the modifications needed to be done to the initial circuit as well
as the modifications made to implement the error response of the slave according to ARM spec-
ification files. Concerning the modifications from the initial circuit the following modifications
needed to be done:

• Read and write functionality. After simulating the initial RTL code we realized that
the pipeline functionality concerning the write transfer was not implemented in the right

35

http://opencores.org/


CHAPTER 4. FRONT END FLOW

way. So, first of all we added the pipeline write functionality (one cycle would refer to
the address and the next one to the data itself of the data that we want to write to the
memory) to the circuit.

• Implement the memory as a register file and modifications in order to have a capacity of
256 stored data of 256 different addresses of 8 bits of width each.

Furthermore, concerning the error response of the slave, we modified the initial implementation
that referred to an error response of a single address of hexadecimal value of ’FF’ to a wider
range of values. The implementation of error signal for this thesis after a discussion and a final
agreement with my advisor was as follows: The error signal sould contain three different cases:

• Error response with five wait cycles: HRESP would be high after five clock cycles
of an error address read from slave.

• Error response with three wait cycles: HRESP would be high after three clock cycles
of an error address read from slave.

• Error response with no wait cycles: HRESP would be high immediate after an error
address read from slave.

To achieve this we had to divide the HADDR signal (which refers to the address that a master
wants to access to read or write) with the binary number 100 in order to take the modulo result
of this operation. The modulo result operation of HADDR signal with 100 would give us the
wait cycles we had to wait in order to observe an error response from slave. So, we had the
three different cases mentioned above and the modulo result signal values which was a signal
to help us to distinguish these cases more clear. These cases are (referred to binary values):

• five wait cycles: modulo result equals to 011

• three wait cycles: modulo result equals to 010

• no wait cycles: modulo result equals to 001

During the wait cycles the next address that should a master send have to remain steady till
the HREADY signal becomes high.

Finally, a modify to the signal width needed to be done in order to achieve the desired
minimum area of the circuit without any consequence to the functionality of the circuit. These
modifications included the downsize from 32 to 8 bits to the signals referred to the address
and the data of the circuit. These signals were: HADDR, HWDATAand HRDATA. The only
consequence, was that it would operate to a smaller range of address and data transfers.

4.2.2 Code Fragments

In this section we will quote some code fragments and will explain what these code fragments
implement in our design.

Listing 4.1: ahb slave mem.v

module ahb slave mem ( clk , r e s e t ,WR,RD,ADDR WR,ADDR RD, DIN,DOUT) ;

parameter MEMWORDS = 256 ;
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input c l k ;
input r e s e t ;
input WR;
input RD;
input [ 7 : 0 ] ADDRWR;
input [ 7 : 0 ] ADDR RD;
input [ 7 : 0 ] DIN ;
output [ 7 : 0 ] DOUT;

reg [ 7 : 0 ] DOUT;
reg [ 7 : 0 ] Mem[MEMWORDS−1 : 0 ] ;

always @( posedge c l k )
i f (WR)

Mem[ADDRWR] <= DIN ;

always @( posedge c l k or posedge r e s e t )
i f ( r e s e t )

DOUT <= {8{1 ’ b0 }} ;
e l s e i f (RD)

DOUT <= Mem[ADDR RD] ;

endmodule

As we can see at the code segment 4.1, the memory of our circuit is modeled as a register file
with 256 memory addresses and width of 8 each to store data of width 8 as well.

The segment 4.2 describes the read transfer in our design. As we mentioned at section
3.2.3.1, during the read operation of our circuit, we have the address phase and the data phase.
That means that at the first clock cycle of the transfer the slave gets the address that the master
wants to read data and at the immediate next cycle the slave returns the data to the master of
the given address.

Listing 4.2: ahb slave ram read

//ARM pro toco l read segment implementation
always @( posedge c l k or posedge r e s e t )

i f ( r e s e t )
begin

RD pre d <= 1 ’ b0 ;
ADDR RD <= {8{1 ’ b0 }} ;

end
e l s e i f (HREADY | HRESP)

begin
RD pre d <= RD pre ;
ADDR RD <= ADDR RD pre ;

end

The segment 4.3 describes the write transfer in our design. As we mentioned at section
3.2.3.1, during the write operation of our circuit, we have the address phase and the data phase.
That means that at the first clock cycle of the transfer the slave gets the address that the master
wants to write data and at the immediate next cycle the slave gets the data from the master of
the given address in order to store the data to the address given in its memory.
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Listing 4.3: ahb slave ram write

//ARM pro toco l wr i t e segment implementation
always @( posedge c l k or posedge r e s e t )

i f ( r e s e t )
begin
WR pre d <= 1 ’ b0 ;
ADDRWR <= {8{1 ’ b0 }} ;

end
e l s e i f (HREADY | HRESP)

begin
WR pre d <= WR pre ;
ADDRWR <= ADDR WR pre ;

end

The segment 4.4 describes the write transfer in our design. As we mentioned at section
3.2.4.1, when we have an address send from master to slave that will cause an error signal
response we have two signals that involved in this situation, HRESP and HREADY. The
implementation below, is our implementation that was a result of discussions of the way we
would model the logic behind the error signal response in our circuit. First of all we set three
counters for each case of error response, which described at section 4.2.1. After the cycle that
the address read from slave, master can send another address, but, that address will be read
when HREADY becomes 1, i.e. after the second cycle of HRESP is 1. The two cycles of
HRESP at 1 and HREADY being 0 at the first cycle of HRESP is 1 and 1 at the second cycle
that HRESP is 1 is the error response of our AHB-lite slave. So, with the verilog code segment
below we counter after how many clock cycles this interaction of HRESP and HREADY has
to begin. If the counter does not reach to the desired number it continues to counter till the
number of wait cycles that it has to wait. When it reaches the desired number of wait cycles,
first we reset the counters to zero, afterwards the HRESP signal becomes 1 and the error signal
that is a flag for the HREADY signal remains 0. At the next cycle that the HRESP signal
is high we set error signal to 1, so the HREADY becomes high again.

Listing 4.4: ahb slave ram.v

always @( posedge c l k or posedge r e s e t )
i f ( r e s e t )
begin

HRESP = 1 ’ b0 ;
counter = 3 ’ b000 ;
counter1 = 1 ’ b0 ;
counter5 = 1 ’ b0 ;
counter3 = 1 ’ b0 ;
e r r o r = 1 ’ b0 ;

end
e l s e i f ( ( |HTRANS) & ( modu l o r e su l t e r r o r == HRESP addr n w c ) & (HRESP == 1 ’ b0 ) )

begin // counter f o r the wait c y c l e s o f each po s s i b l y
counter1 = 1 ’ b1 ; // e r r o r address t r an sa c t i on
counter1 = 1 ’ b0 ;
counter = 3 ’ b000 ;
HRESP = 1 ’ b1 ;
e r r o r = 1 ’ b0 ;

end

e l s e i f ( ( |HTRANS) & ( modu l o r e su l t e r r o r == HRESP addr w c 3 ) & (HRESP == 1 ’ b0 ) )
begin

counter3 = 1 ’ b1 ;
i f ( ( counter == 3 ’ b011 ) & ( counter3 == 1 ’ b1 ) )

begin
counter3 = 1 ’ b0 ;
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counter = 3 ’ b000 ;
HRESP = 1 ’ b1 ;
e r r o r = 1 ’ b0 ;

end
e l s e i f ( ( counter3 == 1 ’ b1 ) & (HRESP == 1 ’ b0 ) )

begin
e r r o r = 1 ’ b0 ;
HRESP = 1 ’ b0 ;
counter = counter + 1 ’ b1 ;

end
end

e l s e i f ( ( |HTRANS) & ( modu l o r e su l t e r r o r == HRESP addr w c 5 ) & (HRESP == 1 ’ b0 ) )
begin

counter5 = 1 ’ b1 ;
i f ( ( counter == 3 ’ b101 ) & ( counter5 == 1 ’ b1 ) )

begin
counter5 = 1 ’ b0 ;
counter = 3 ’ b000 ;
HRESP = 1 ’ b1 ;
e r r o r = 1 ’ b0 ;

end
e l s e i f ( ( counter5 == 1 ’ b1 ) & (HRESP == 1 ’ b0 ) )
begin

e r r o r = 1 ’ b0 ;
HRESP = 1 ’ b0 ;
counter = counter + 1 ’ b1 ;

end
end

e l s e i f ( (HREADY) & (HRESP == 1 ’ b1 ) )
begin

HRESP = 1 ’ b0 ;
e r r o r = 1 ’ b1 ;

end

e l s e
e r r o r = 1 ’ b1 ;

For further understanding of how the signals operate and how the interact at the segment
4.5 we present the signal interaction. The code for stall signal is for manual wait cycles in our
design. We first define the address response constants for each case of error response in our
circuit. Afterwards we define the constants for the transfer type of slave. Moving on, we define
the STALL signal for controlling the HREADY signal (as we can see from the HREADY
assignment). Finally, we define the signals and how they interact with other signals. For
example, WR pre which is the indicator of a write transfer, is high when we have SEQ or
NSEQ transfer and HWRITE is high, which indicates that we want to write to the memory
of slave.

Listing 4.5: ahb slave ram signals

parameter HRESP addr n e = 2 ’ b00 ; // address f o r re sponse no e r r o r
parameter HRESP addr n w c = 2 ’ b01 ; // address f o r re sponse e r r o r no wait c y c l e
parameter HRESP addr w c 3 = 2 ’ b10 ; // address f o r re sponse e r r o r 3 wait c y c l e
parameter HRESP addr w c 5 = 2 ’ b11 ; // address f o r re sponse e r r o r 5 wait c y c l e

parameter TRANS IDLE = 2 ’ b00 ; //IDLE
parameter TRANS STALL = 2 ’ b01 ; //BUSY
parameter TRANS NONSEQ = 2 ’ b10 ; //NON SEQ
parameter TRANS SEQ = 2 ’ b11 ; //SEQ

// s t a l l code f o r manual wait c y c l e
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always @( posedge c l k or posedge r e s e t )
i f ( r e s e t )
STALL <= 1 ’ b0 ;

e l s e
STALL <= STALL pre ;

// important i n t e r n a l s i g n a l s
a s s i g n HREADY = ˜ e r r o r ? 1 ’ b0 : STALL;
a s s i g n HRDATA = HREADY & data phase & ˜HRESP ? DOUT : ’ d0 ;
// i n t e r n a l s i g n a l s
a s s i g n WR pre = HWRITE & ( (HTRANS == TRANS NONSEQ) | (HTRANS == TRANS SEQ) ) ;
a s s i g n WR = WR pre d & HREADY & HSEL;
a s s i g n RD pre = (˜HWRITE) & ( (HTRANS == TRANS NONSEQ) | (HTRANS == TRANS SEQ) ) ;
a s s i g n RD = RD pre d & HREADY & HSEL;
a s s i g n ADDR WR pre = {8{WR pre}} & HADDR;
a s s i g n ADDR RD pre = {8{RD pre}} & HADDR;
// e r r o r a s s i g n f o r three o c c a s i o n s o f wait c y c l e s
a s s i g n modu lo re su l t = HADDR % 3 ’ b100 ;

Moving on, a small example of the top level with pad definition is described at code fragment
4.6.

Listing 4.6: ahb slaveuniquify

// scan pads
ITP V5 PAD scan in ( .Y( Scan in ) , .PAD( PI Scan In ) ) ;
ITP V5 PAD scan enable ( .Y( Scan enable ) , .PAD( PI Scan enable ) ) ;
BU16P V5 PAD scan out ( .PAD( PO Scan Out ) , .A( Scan out ) ) ;

// Input pads
// clk , r e s e t pads North s i d e pads

ITCK4P V5 PAD clk ( .Y( c l k ) , .PAD( PI c l k ) ) ;

ITP V5 PAD reset ( .Y( r e s e t ) , .PAD( P I r e s e t ) ) ;

ITP V5 PAD HSEL ( .Y(HSEL) , .PAD(PI HSEL ) ) ;

ITP V5 PAD HADDR7 ( .Y(HADDR[ 7 ] ) , .PAD(PI HADDR [ 7 ] ) ) ;
ITP V5 PAD HADDR6 ( .Y(HADDR[ 6 ] ) , .PAD(PI HADDR [ 6 ] ) ) ;
ITP V5 PAD HADDR5 ( .Y(HADDR[ 5 ] ) , .PAD(PI HADDR [ 5 ] ) ) ;

ITP V5 PAD HADDR4 ( .Y(HADDR[ 4 ] ) , .PAD(PI HADDR [ 4 ] ) ) ;

ITP V5 PAD HADDR3 ( .Y(HADDR[ 3 ] ) , .PAD(PI HADDR [ 3 ] ) ) ;
ITP V5 PAD HADDR2 ( .Y(HADDR[ 2 ] ) , .PAD(PI HADDR [ 2 ] ) ) ;
ITP V5 PAD HADDR1 ( .Y(HADDR[ 1 ] ) , .PAD(PI HADDR [ 1 ] ) ) ;

//Output pads
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BU16P V5 PAD HRESP ( .PAD(PO HRESP) , .A(HRESP) ) ;

BU16P V5 PAD HREADY ( .PAD(PO HREADY) , .A(HREADY) ) ;

BU16P V5 PAD HRDATA0 ( .PAD(PO HRDATA[ 0 ] ) , .A(HRDATA[ 0 ] ) ) ;
BU16P V5 PAD HRDATA1 ( .PAD(PO HRDATA[ 1 ] ) , .A(HRDATA[ 1 ] ) ) ;
BU16P V5 PAD HRDATA2 ( .PAD(PO HRDATA[ 2 ] ) , .A(HRDATA[ 2 ] ) ) ;
BU16P V5 PAD HRDATA3 ( .PAD(PO HRDATA[ 3 ] ) , .A(HRDATA[ 3 ] ) ) ;
BU16P V5 PAD HRDATA4 ( .PAD(PO HRDATA[ 4 ] ) , .A(HRDATA[ 4 ] ) ) ;
BU16P V5 PAD HRDATA5 ( .PAD(PO HRDATA[ 5 ] ) , .A(HRDATA[ 5 ] ) ) ;
BU16P V5 PAD HRDATA6 ( .PAD(PO HRDATA[ 6 ] ) , .A(HRDATA[ 6 ] ) ) ;
BU16P V5 PAD HRDATA7 ( .PAD(PO HRDATA[ 7 ] ) , .A(HRDATA[ 7 ] ) ) ;

4.3 Functional Simulation

As it was mentioned in section 2.5, Questasim, Simvision and VCSMX is used to verify the
correct behavior of the design RTL Description: At this early stage, the above EDA tools is
used to check that the design from RTL code accomplishes with the specifications and product
requirements. To achieve that it was necessary to create a testbench file that was able to
test every possible case of any transaction that could happen to the slave according to the
specifications from ARM. To create that big testbench file that included as many possible cases
as studying the ARM AMBA AHB-lite slave specifications and according to the figures that
explained the signals that had to trigger in each case and their respective values.

At this point it is worth mentioning that mostly for simulations was used VCSMX from
Synopsys. The tool was robust and reliable and very easy to use. There is an option of changing
the signals names and the values that we would like to see at the waveform and we could see
more easily the mapping of the signals and the attribute that the specification file describes. At
the following sections you will see some figures from these simulations and some comparisons
between the EDA simulation tools. Finally, the testbenches that have been employed are the
same in every phase and are explained in section 4.3.1.

4.3.1 Test Bench

A testbench is a verilog code that is used to verify the functional correctness of a HDL model.
It can be seen as wrapper where the top entity of the Device Under Test (DUT) is instantiated
in order to apply stimulus to the DUT and verify the corresponding outputs. As we will see to
the figures that follows, the initial values of the addresses we use during the testbench written
from the circuit itself at the early stage of the simulation. As all other EDA tools we use in this
thesis, simulation tools also have a Tcl/Tk scripting option which allows us to save a significant
amount of time when using the tool more than once. In general, a simulation cannot be correct
from the first run, so a large number of rerunning the tools and simulate the results, till we reach
the desired waveforms, is needed. For instance, for running VCSMX we will need to obtain the
commands:

vcs -full64 ahb slave.v ahb slave ram fin.v ahb slave mem.v error tb arm.v -debug all -2005
./simv -gui
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The first command compiles the necessary source files (testbench and RTL) and produces an
executable simv file that we run afterwards to visualize the waveforms. After the graphical
environment starts we can navigate, add the desired signals to waveform viewer and start the
simulation process. Then we can also save our session of waveforms to reuse it with the order
we want and the modifications we made considering the radix for example of the signals at
waveforms. These commands can merge to a single script file with the name ahb slave lite.tcl
for example. the command to run this script and not type them down again and again is:

source ahb slave lite.tcl

Bellow this point some figures and the explanation of what each figure shows us will be given.
Furthermore, some figures of three simulation tools results comparison will be shown.

Figure 4.2: Synopsys VCSMX initial waveform

In figure 4.2 we see the initial screen of VCSMX from Synopsys, where the signal group
and the waveforms are shown. In figure 4.3 we see the initial screen of VCSMX from Synopsys
versus the initial waveform screen from Simvision of Cadence, where the signal group and the
waveforms are shown. As we can see, the two tools have identical waveforms.

In figure 4.4 we see the initial screen of VCSMX from Synopsys versus the initial waveform
screen from Mentor Graphics Questasim, where the signal group and the waveforms are shown.
As we can see, the two tools have identical waveforms.. In figure 4.5 we see the initial screen of
Simvision from Cadence versus the initial waveform screen from Mentor Graphics Questasim,
where the signal group and the waveforms are shown. As we can see, the two tools have identical
waveforms.
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(a) Synopsys VCSMX

(b) Cadence Simvision

Figure 4.3: Synopsys VCSMX vs Cadence Simvision initial waveform
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(a) Synopsys VCSMX

(b) Mentor Graphics Questasim

Figure 4.4: Synopsys VCSMX vs Cadence Simvision initial waveform
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(a) Cadence Simvision

(b) Mentor Graphics Questasim

Figure 4.5: Cadence Simvision vs Mentor Graphics Questasim initial waveform
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Figure 4.6: Undefined length bursts, INCR

Figure 4.6 shows:

• The first burst is a write consisting of two word transfers starting at address 0x20. These
transfer addresses increment by four.

• The second burst is a read consisting of three word transfers starting at address 0x5C.
These transfer addresses increment by four.

Figure 4.7 shows an error response of the address binary:11111111. It means that with the
implementation of the logic behind error response (section 4.2.1), after the modulo calculation
we have a result of modulo result equals to 011. So, after five cycles (as we can see with the
help of counter signal) we have the error response for this address. We have to note here that
the immediate address after the address hex(ff) is stable (master has to keep it stable) for the
time that HREADY is low and we can change that after HREADY is again high(after the slave
reads the address).

Moving on to figure 4.8 we can see a four beat wrapping burst. Because the burst is a
four-beat burst of word transfers, the address wraps at 16-byte boundaries, and the transfer to
address 0x3C is followed by a transfer to address 0x30. After the transaction done, we read the
address to examine that the slave successfully write the addresses and the date we gave and we
can read them with no problem.
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Figure 4.7: Error response with five wait cycles

Figure 4.8: Four-beat wrapping burst
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Figure 4.9 shows an error response of the address binary:00001010. It means that with the
implementation of the logic behind error response (section 4.2.1), after the modulo calculation
we have a result of modulo result equals to 010. So, after three cycles (as we can see with the
help of counter signal) we have the error response for this address. We have to note here that
the immediate address after the address hex(ff) is stable (master has to keep it stable) for the
time that HREADY is low and we can change that after HREADY is again high(after the slave
reads the address).

Figure 4.9: Error response with three wait cycles

Figure 4.10 shows the use of the NONSEQ, BUSY, and SEQ transfer types. More specific
we have:

• 1st clock cycle: The 4-beat read starts with a NONSEQ transfer.

• 2nd clock cycle: The master is unable to perform the second beat and inserts a BUSY
transfer to delay the start of the second beat. The slave provides the read data for the
first beat.

• 3rd clock cycle: The master is now ready to start the second beat, so a SEQ transfer is
signaled. The master ignores any data that the slave provides on the read data bus.

• 4th clock cycle: The master performs the third beat. The slave provides the read data
for the second beat.

• 5th clock cycle: The master performs the last beat. The slave is unable to complete the
transfer and uses HREADY to insert a single wait state.

• 6th clock cycle: The slave provides the read data for the third beat.
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• 7th clock cycle: The slave provides the read data for the last beat.

Figure 4.10: NONSEQ, BUSY, and SEQ transfer types

Afterwards, in figure 4.11 shows an error response of the address binary:11001001. It means
that with the implementation of the logic behind error response (section 4.2.1), after the modulo
calculation we have a result of modulo result equals to 001. So, after zero cycles (immediate
error response as we can see with the help of counter signal) we have the error response for this
address. We have to note here that the immediate address after the address hex(ff) is stable
(master has to keep it stable) for the time that HREADY is low and we can change that after
HREADY is again high(after the slave reads the address).
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Figure 4.11: Error response with no wait cycles

In figure 4.12 shows a read after write with a write of 2 addresses and after immediate read
them. The figure 4.13 shows an immediate read after write of a single address-single data.

The last figure (Figure 4.14) shows what happens if the HSEL signal becomes zero (the slave
is not chosen to operate). The slave then does not produce any output signals e.g. HRDATA
even if he gets address and data.
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Figure 4.12: Read after write with two addresses

Figure 4.13: Read after write single address
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Figure 4.14: HSEL = 0

4.4 Logic Synthesis

In this chapter will be discussed some issues related with performing the design synthesis step
using Design Compiler. A nice definition of synthesis can be found on [8]:

”Synthesis is the process of taking a design written in a hardware description language, such
as VHDL, and compiling it into a netlist of interconnected gates which are selected from a

user-provided library of various gates.”

A figure of the initial screen of Synopsys Design Compiler is shown in the figure 4.15

4.4.1 Libraries Specification

The Synopsys synthesis tool when invoked, through Design compiler command, reads a startup
file, which must be present in the current working directory. This startup file is synop-
sys dc.setup file. In this thesis this file is integrated to the Tcl script that specifies all the
constraints and specifications for the design to run. There should be two startup files present,
one in the current working directory and other in the root directory in which Synopsys is
installed. The local startup file in the current working directory should be used to specify in-
dividual design specifications. This file does not contain design dependent data. Its function is
to load the Synopsys technology independent libraries and other parameters. The user in the
startup files specifies the design dependent data. The settings provided in the current working
directory override the ones specified in the root directory.

This step presents setup of basic library information. Design Compiler uses technology,
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Figure 4.15: Synopsys Design Compiler

symbol, and synthetic or Design Ware libraries to implement synthesis and to display synthe-
sis results graphically. We should specify the link, target, symbol, and synthetic libraries for
Design Compiler by using the link library, target library, symbol library, and synthetic library
commands. There are four important parameters that should be setup before one can start
using the tool.

Search path: This parameter is used to specify the synthesis tool all the paths that it
should search when looking for a synthesis technology library for reference during synthesis or
for the initial RTL files.

Link Library: Design Compiler uses the link library to resolve references. For a design
to be complete, it must connect to all the library components and designs it references. This
process is called linking the design or resolving references. The link library variable specifies a
list of libraries and design files that Design Compiler can use to resolve references. When you
load a design into memory, Design Compiler also loads all libraries specified in the link library
variable.

Target Library: This library is used mainly for mapping all the logic gates from the target
library. It also calculates the timing of the circuit, using the vendor-supplied timing data for
these gates. The target library specification should only contain those standard cell libraries
that you want Design Compiler to use when mapping design standard cells. Standard cells
are cells such as combinational logic and registers. The target library specification should not
include any DesignWare libraries or macro libraries such as I/O pads or memories. The tar-
get library is a subset of the link library and listed first in your list of link libraries.

Symbol Library: It is the library that contains all the definitions of the graphic symbols
that represent library cells in the design schematics, when you generate the design schematic,
Design Compiler performs a one-to-one mapping of cells in the netlist to cells in the symbol
library.

Synthetic Library: The user does not need to specify the standard synthetic library
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(standard.sldb), which implements the built-in HDL operators. These operators include +, -,
*, etc. and the operations defined by if and case statements. The Design Compiler software
automatically uses this library without even loading in the setup file (.synopsys dc.setup). If
you are using additional DesignWare libraries, you must specify these libraries by using the
synthetic library variable (for optimization purposes) and the link library variable (for cell res-
olution purposes).

Table 4.1 shows the default variables of library types at Synopsys Design Compiler.

Library type Variable Default File extension

Target Library target library {”your library.db”} .db

Link Library link library {””, ”your library.db”} .db

Symbol Library symbol library {”your library.sdb”} .sdb

DesignWare Library synthetic library {} .sldb

Table 4.1: Library variables

All of the different libraries that we talked about previously should be located in a special
format in a file under a specific name (.synopsys dc.setup) which must be located in the working
directory of the user so it can be invoked by the tool. In fragment 4.7 is a sample of the
(.synopsys dc.setup) file that is integrated into the script of Design Compiler:

Listing 4.7: .synopsys dc.setup

######################################################
#/∗ Al l v e r i l o g f i l e s , s eparated by spaces ∗/#
######################################################
s e t m y v e r i l o g f i l e s ” ahb s lave . v ahb slave mem . v a hb s l av e r a m f i n . v s l a v e u n i q u i f y . v”

##########################
#/∗ Top−l e v e l Module ∗/##
##########################
s e t my top leve l s l a v e u n i q u i f y
s e t r e p o r t d e f a u l t s i g n i f i c a n t d i g i t s 4

s e t l i b r o o t ”˜/AMS/C35B4C3”
s e t p r o j e c t r o o t ”˜/ km fab pro j ec t ”
s e t t o o l r o o t ”/home1/eda/ Synopsys 2015 / synopsys /2014−15/RHELx86/SYN 2014.09−SP2”

#/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
#/∗ No m o d i f i c a t i o n s needed below ∗/
#/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
s e t search path ” . $ l i b r o o t / synopsys / c35v5 5 . 0V

$ p r o j e c t r o o t /ahb
$ t o o l r o o t / l i b r a r i e s / syn”

s e t t a r g e t l i b r a r y ”c35 CORELIB V5 WC . db”
s e t t a r g e t l i b r a r y [ concat $ t a r g e t l i b r a r y c35 CORELIB V5 BC . db ]
s e t t a r g e t l i b r a r y [ concat $ t a r g e t l i b r a r y c35 IOLIBV5 WC . db ]
s e t t a r g e t l i b r a r y [ concat $ t a r g e t l i b r a r y c35 IOLIBV5 BC . db ]
s e t s y n t h e t i c l i b r a r y ” standard . s ldb dw foundation . s ldb ”
s e t l i n k l i b r a r y ”∗ $ t a r g e t l i b r a r y $ s y n t h e t i c l i b r a r y ”

We had two sets of libraries, the ones with the D (c35 CORELIBD) that were we had all
kind of cells/gates (AND, OR, NOR, NAND, as well as storing elements like flip-flops etc.)
and the ones with the no D (c35 CORELIB) that were consists of the ones with 5 Voltage on
their cells and with the same set of cells/gates and the ones with Voltage below 5 Volts (1.8-3.3
Voltage) that contained only the cells negative unate (NAND, NOR, etc.) and not the positive
unate cells (AND, OR, etc.). Because gates like NAND, NOR has an integrated inverter they
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have smaller delay (which is our main constraint for the design) rather that gates like AND that
the tool has to place an inverter right after the gate and it in general cause bigger delay than
before in our circuit. Below we will present a comparison between the three different libraries
on a single NAND gate with 2 inputs and 1 output. Figure 4.16 shows us the different libraries
that our design library set contains (C35B4C3). The other 3 figures shows us the delays as well
as the power consumption of NAND gates.

Figure 4.16: Libraries different flavors
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Figure 4.17: Corelib 2x1 Nand Gate
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Figure 4.18: Corelibd 2x1 Nand Gate
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Figure 4.19: Corelib Nand 5Volts 2x1
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4.4.2 Read Design

After setting the startup file for Design Compiler and specifying all the required libraries and
RTL files that needed for the design we have to proceed in reading the design and create the
WORK folders for our design.

4.4.2.1 Analyze and Elaborate

Executing analyze command does the following:

• Reads an HDL source file

• Checks it for errors (without building generic logic for the design)

• Creates HDL library objects in an HDL-independent intermediate format

• Stores the intermediate files in a location you define

If the analyze command reports errors, fix them in the HDL source file and run analyze
again. After a design is analyzed, you must reanalyze it only when you change it. Executing
elaborate command does the following:

• Translates the design into a technology-independent design (GTECH) from the interme-
diate files produced during analysis.

• Allows changing of parameter values defined in the source code.

• Allows verilog architecture selection.

• Replaces the HDL arithmetic operators in the code with DesignWare components.

• Automatically executes the link command, which resolves design references.

After the elaboration the design is like the figure shown below (Figure 4.20):

4.4.2.2 Read File

Executing read file command does the following:

• Reads several different formats (.ddc, .vhd, .v, .db).

• Performs the same operations as analyze and elaborate in a single step

• Creates .mr and .st intermediate files for VHDL

• Does not execute the link command automatically.

• Does not create any intermediate files for Verilog (However, you can have the read file
command create intermediate files by setting the hdlin auto save templates variable to
true.
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Figure 4.20: Top level module after elaboration

4.4.3 Define Design Environment

After reading the design files, and before doing any optimization we have to define the design
environment of our design. Design environment is the operating environment where the design
is expected to operate in should be defined. The design environment defines the environment in
which the design is expected to operate. Design environment includes parameters such as oper-
ating conditions (specify variations in temperature, voltage, and manufacturing process), wire
load models (WLM; used to specify the effect of the interconnects on the timing and area), and
system interface characteristics (input drives, I/O loads, and fanout loads). The environment
model directly affects design synthesis results. In Design Compiler, the model is defined by a set
of attributes and constraints that you assign to the design, using specific dc shell commands.
Operating conditions

Most technology libraries used has different and predefined operating conditions. We have
to report the library using command report lib to list the operating conditions defined in the
library. The library should be loaded first in memory before running the command report lib.
In order to see the list of libraries loaded in memory, use command list libs. Operating condition
describes the Voltage, Temperature, Interconnect model and process of the design. Each op-
erating condition predefined with its specific temperature, voltage, interconnect model. There
are mostly common in most technology libraries WORST, BEST and TYPICAL but the names
are library dependent. Users should ask the vendor which is the best operating condition to be
used.

By changing the value of the operating condition command, full ranges of process variations
are covered. The WORST case operating condition is generally used during pre-layout synthe-
sis phase, thereby optimizing the design for maximum setup-time. The BEST case condition
is commonly used to fix the hold-time violations. The TYPICAL case is mostly ignored, since
analysis at WORST and BEST case also covers the TYPICAL case. The next figure describes
the relationship between the different operating conditions in our design and their affect on the

60



CHAPTER 4. FRONT END FLOW

design itself (Figure 4.21)

Figure 4.21: Operating conditions comparison

Wire-Load
Wire load modeling allows the user to estimate the effect of wire length and fanout on the

resistance, capacitance, and area of nets. Design Compiler uses these physical values to calculate
wire delays and circuit speeds. The vendors usually develop wire load model, depending on some
statistical information. The models include values for area, capacitance, and resistance per unit
length.

Design Compiler supports three modes for determining which wire load model to use for
nets that cross hierarchical boundaries:

• TOP: This wire load model is used as if there is no hierarchy, in which the compiler models
all the nets in the top level or in the sub-designs using the wire load model specified for
the top level model.

• ENCLOSED: Design Compiler uses the wire load model of the smallest design in the
hierarchy. If the design enclosing the net has no wire load model specified, the tool keep
tracing in upward direction until it finds a wire load model. ENCLOSED wire load model
is more accurate than top model when cells in the same design are placed near to each
other during layout.

• SEGMENTED: Design Compiler determines the wire load model of each segment of a
net by the design encompassing the segment. Nets crossing boundaries are divided into
segments. For each net segment, Design Compiler uses the wire load model of the design
containing the segment.

If the design has a net that has no wire load model specified, the tool keep tracing in upward
direction until it finds a wire load model. Below is show an image of the wire-load models (figure
4.22)

In our design, the wire-load model that each module uses, is automatically chosen from the
area of the design has after compilation. For the top module the tool chooses to use the 30K
wire-load model while in the sub modules of the design the tool chooses to use the 10K wire
load model.

Table 4.2 shows the different results considering Power, Area, Slack with different available
wire load models from the c35 CORELIB WC design lib. We run the same script and we change
the wire load model on each run. The clock period was at 12 ns at all runs, so the slack (positive
or negative) is with this touchstone. The results are the following:

Drive-Load
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Figure 4.22: Wire load models

Wire load model 10k 30k 100k pad wire laod

Internal Power (mW) 44.391083 44.110794 44.436543 44.249599

Switching Power (mW) 24.530565 27.468857 33.805050 55.361717

Leakage Power (pW) 2.404035e+07 2.403981e+07 2.466101e+07

Worst negative slack (ns) 0.40160 0.550897 0.276166 0.011813

Area (umˆ2) 2594710.012337 2627976.697029 2705388.421537 2954650.821393

Table 4.2: Wire load models comparison

• Load: Each output can specify the drive capability that determines how many loads
can be driven within a particular time. Each input can have a load value specified that
determines how much it will slow a particular driver. Signals that are arriving later than
the clock can have an attribute that specifies this fact. The load attribute specifies how
much capacitance load exists on a particular output signal. The load value is specified in
the units of the technology library in terms of picofarads or standard loads, etc.

• Drive: The drive specifies the drive strength at the input port. It is specified as a
resistance value. This value controls how much current a particular driver can source.
The larger a driver is, i.e 0 resistance, the faster a particular path will be, but a larger
driver will take more area, so the designer needs to trade off speed and area for the best
performance

Below is shown an image of what Drive-Load (4.23)

4.4.4 Set Design Constraints

When Design Compiler comes to optimize the design, it uses two types of constraints:

• Design rule constraints: These are implicit constraints; the technology library defines
them. These constraints are requirements for a design to function correctly, and they
apply to any design using the library. You can make these constraints more restrictive
than optimization constraints.
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Figure 4.23: Driving characteristics

• Optimization constraints: These are explicit constraints; you define them. Optimiza-
tion constraints apply to the design on which you are working for meeting the design
goals. They must be realistic. Design Compiler tries to meet both design rule constraints
and optimization constraints, but design rule constraints take precedence.

4.4.5 Design Rule Constraints

Design rule constraints reflect technology-specific restrictions the design must meet in order to
function as intended. The design rule constraints include:

• Maximum transition time

• Maximum fanout

• Minimum and maximum capacitance

• Cell degradation

DRCs are applied to the nets of the design in association to the pins of the cells from the
technology library. Design compiler cannot violate the DRCs, even if it means to violate the
optimization constraints (area or speed). User can apply design rule constraints more restrictive
than the default constraints set by the technology library, but these constraints cannot be less
restrictive.

4.4.6 Design Optimization Constraints

These types of constraints are being set to meet the design goals or requirements in terms of
area, power and speed. It is recommended that designers specify realistic constraints, since
unrealistic specification results in excess area, increased power and/or degradation in timing.
The optimization constraints include

• Timing constraints (performance and speed)

• Input and output delays (synchronous paths)

• Minimum and maximum delay (asynchronous paths)
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• Maximum area (number of gates)

The most important design constraint for a synchronous design is the system clock. The con-
straints to model the behavior of the system clock and the clock network are clock period, clock
uncertainty, clock latency, and clock transition time.

• Period: The time at which the clock pulse repeats itself.

• Uncertainty: Clock uncertainty can be used to model the variation of the clock propagation
times in the different branches of the clock tree. This variation is due to different lengths
of these branches (clock skew) but uncertainty can also be used to model clock jitter
(variation in clock period length).

• Latency: Clock latency models the time it takes the clock signal to propagate from the
clock source to the clock capture point (register clock pins).

• Transition time: Clock transition time can be used to model the time it takes a clock
signal to change state.

create clock: This command is used to define the clock that will be used in the design. This
command does not imply that the synthesizer will create a circuit to implement the waveform.
It tells the synthesizer that the specified periodic waveform will be input at a clock port and it
needs to make a circuit that will work with it.

set clock latency: This is used to specify that there will be a delay of unit time delays
through buffers that are not modeled in the design. It is very useful in hierarchical designs,
when constraining sub-modules. This is primarily used during the pre-layout synthesis and
timing analysis. The estimated delay number is an approximation of the delay produced by the
clock tree network insertion (done during the layout phase).

set clock uncertainty: This command is used for setting a margin for setup and hold time
of the clock. When clock arrives simultaneously to every register, the arrival time won’t be the
same at every register. There will be skew. During the pre-layout phase one can add more time
margin as compared to the post-layout phase. This is to specify the worst case sum of clock
skew and jitter.

set input delay: This command is used to specify the arrival of the signal coming from
outside that will not arrive at the beginning of the clock period. The compiler should know
this. It is used at the input ports to specify the time it takes for the data to be stable after the
clock edge. It is the delay provided at the input port by the external logic. (Input delay = FF
delay + external Combinational delay)

set output delay: This command is used to specify the time taken by the signal to be
available before the clock edge. It is used at the output ports to specify the time it takes for the
data to be stable before the clock edge. It is the delay at the output port that has been caused
by the external logic delay. (Maximum Output delay = Setup time of FF + max. external logic
delay) (Minimum Output delay = min. external logic delay – hold time of FF)

set false path: Design Compiler does not report false paths in the timing report or con-
sider them during timing optimization. Use the set false path command to specify a false path.
Use this command to ignore paths that are not timing-critical, that can mask other paths that
must be considered during optimization, or that never occur in normal operation.

set fix multiple port nets -all: Design Compiler by default makes single clock cycle tim-
ing a requirement for all the paths. Design Compiler automatically infers single-cycle timing
from clock waveforms and from input delay and output delay information. Single-cycle timing
means that data should reach from start point to end point in a single clock cycle. You can
change the default behavior for multi-cycle paths. A multi-cycle path is a timing path that is
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not expected to propagate a signal in one cycle. Multi-cycle paths are exceptions to the default
single-cycle timing. You can set multi-cycle paths to direct Design Compiler to allow multiple
clock cycles for data to propagate along a path. You can always reset paths to single-cycle
timing.

set max delay: This command defines the maximum delay required in terms of time units
for a particular path. In general, it is used for the blocks that contain combinational logic only.
However, it may also be used to constrain a block that is driven by multiple clocks, each with
a different frequency.

set min delay: This command is the opposite of the set max delay command, and is used
to define the minimum delay required in terms of time units for a particular path.

set max area: This command specifies the maximum allowable area for the current design.
Design Compiler computes the area of a design by adding the areas of each component on the
lowest level of the design hierarchy (and the area of the nets). Maximum area represents the
number of gates in the design, not the physical area the design occupies.

4.4.7 Compile strategy

Synopsys recommends the following compilation strategies that depend entirely on how your
design is structured and defined. It is up to user discretion to choose the most suitable com-
pilation strategy for a design. There are mainly two ways for compiling the design: compile
and compile ultra. Because after running many tests we observed that using compile ultra
caused the design having in the end of synthesis Design Rule Costs problems (The design rule
cost is a indication of how many cells violate one of the standard cell library design rules con-
straints. ), we decided to use the simple compile command with the high optimization on map,
area, power. The compile cost function consists of design rule costs and optimization costs. By
default, Design Compiler prioritizes costs in the following order:

1. Design rule costs

(a) Connection class

(b) Multiple port nets

(c) Maximum transition time

(d) Maximum fanout

(e) Maximum capacitance

(f) Cell degradation

2. Optimization costs

(a) Maximum delay

(b) Minimum delay

(c) Maximum power

(d) Maximum area

(e) Minimum porosity

The compile cost function considers only those components that are active on your design.
Design Compiler evaluates each cost function component independently, in order of importance.
When evaluating cost function components, Design Compiler considers only violators (positive
difference between actual value and constraint) and works to reduce the cost function to 0.
Design Compiler tries to meet all constraints but, by default, gives emphasis to design rule
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constraints because design rule constraints are requirements for functional designs. Using the
default priority, Design Compiler fixes design rule violations even at the cost of violating your
delay or area constraints

4.4.7.1 Top-Down Hierarchical compile method

Top-Down hierarchical compile method was generally used to synthesize very small designs (less
than 10K gates). Using this method, the source is compiled by reading the entire design. Based
on the design specifications, the constraints and attributes are applied, only at the top level.
Although, this method provides an easy push-button approach to synthesis, it was extremely
memory intensive and viable only for very small designs. The advantages of this method are:

• Only top level constraints are needed.

• Better results due to optimization across entire design.

While the drawbacks are:

• Long compile times.

• Incremental changes to the sub-blocks require complete re-synthesis. design.

• Does not perform well, if design contains multiple clocks or generated clocks.

4.4.7.2 Bottom-Up Hierarchical compile method

The designer manually specifies the timing requirements for each block of the design, thereby
producing multiple synthesis scripts for individual blocks. The synthesis is usually performed
bottom-up i.e., starting at the lowest level and ascending to the topmost level of the design. This
method targets medium to very large designs and does not require large amounts of memory.
The advantages of this method are:

• Easier to manage the design because of individual scripts.

• Incremental changes to the sub-blocks do not require complete re-synthesis of the entire
design.

• Does not suffer from design style e.g., multiple and generated clocks are easily managed

• Good quality results in general because of flexibility in targeting and optimizing individual
blocks.

While the drawbacks are:

• Tedious to update and maintain multiple scripts

• Critical paths seen at the top-level may not be critical at lower level.

• The design may need to be incrementally compiled in order to fix the DRCs.
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4.4.8 Optimizing the Design

Optimization is the Design Compiler synthesis step that maps the design to an optimal combi-
nation of specific target library cells, based on the design’s functional, speed, and area require-
ments. Design Compiler provides options that enable you to customize and control optimization.
Design Compiler performs the following three levels of optimization:

• Architectural optimization

• Logic-level optimization

• Gate-level optimization

4.4.8.1 Architectural Optimization

Architectural optimization works on the HDL description. It includes such high-level synthesis
tasks as:

• Sharing common sub-expressions

• Sharing resources

• Selecting DesignWare implementations

• Reordering operators

• Identifying arithmetic expressions for data-path synthesis (DC Ultra only).

4.4.8.2 Logic-Level Optimization

Logic-level optimization works on the GTECH netlist. It consists of the following two processes:

• Flattening: Flattening is a common academic term for reducing logic to a 2-level
AND/OR representation. DC uses this approach to remove all intermediate variables
and parenthesis (using Boolean distributive laws) in order to optimize the design. This
option is set to “false” by default. It is useful for speed optimization because it leads to
just two levels of combinational logic.

• Structuring: Structuring is used for designs containing regular structured logic, for e.g.,
a carry-look-ahead adder. It is enabled by default for timing only. When structuring, DC
adds intermediate variables that can be factored out. This enables sharing of logic that in
turn results in reduction of area. Structuring comes in two flavors: timing (default) and
Boolean optimization. The latter is a useful method of reducing area, but has a greater
impact on timing.

4.4.8.3 Gate Level Optimization

Gate-level optimization works on the generic netlist created by logic synthesis to produce a
technology-specific netlist. It includes the following processes:

• Mapping: This process uses gates (combinational and sequential) from the target tech-
nology libraries to generate a gate-level implementation of the design whose goal is to
meet timing and area goals.

• Delay Optimization: The process goal is to fix delay violations introduced in the map-
ping phase. Delay optimization does not fix design rule violations or meet area constraints.
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• Design Rule Fixing: The process goal is to correct design rule violations by inserting
buffers or resizing existing cells. Design Compiler tries to fix these violations without
affecting timing and area results, but if necessary, it does violate the optimization con-
straints.

• Area Optimization: The process goal is to meet area constraints after the mapping,
delay optimization, and design rule fixing phases are completed.

The figure 4.24 shows the AHB-lite slave RAM module before and after compiling the design.
The post compilation figure is after the scan chain insertion that will be explained at the next
section (4.5)
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(a) AHB-lite slave RAM module before compilation

(b) AHB-lite slave RAM module after compilation

Figure 4.24: AHB-lite slave RAM module before vs after compilation
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4.5 Scan Chain Insertion, Design For Test

In Section 2.3 we gave an overview of DFT techniques and their necessity in design that are
going to fabricate was given. This section will focus in the use of Design Compiler to implement
a scan chain with the multiplexed flip-flop style. A figure of scan chain insertion is shown below
(4.25):

Figure 4.25: DFT insertion flow

4.5.1 Create test protocol

In order to insert scan chains to the design we have to define the test protocol. That means
that we have to specify the signals that are going to be used in the scan chain. When specifying
a DFT signal there are two options:

• use an existing signal as a DFT signal

• define a new one that Design Compiler will create automatically while performing the
DFT insertion

In this thesis, we used the second option, although it was the more difficult one because it
becomes difficult to attach an I/O cell to the new signal. Considering this problem, a further
modification at the top cell that included pads (4.2.1). That modification included the import
of the necessary signals for scan chain insertion at the top level RTL. In the multiplexed flip-flop
style, that is used here, the required signals are the following:

• Clock: The AHB-lite slave clock used here

• Reset: The AHB-lite slave reset used here

• Scan data input: new pad created for this signal
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• Scan data output: new pad created for this signal

• Scan enable: new pad created for this signal

The above signals are specified in the .tcl file by the commands:

set dft signal -view existing dft -type ScanClock -port [get ports PI clk] -timing 45 55
set dft signal -view existing dft -type reset -port [get ports PI reset] -active state 1

set dft signal -view spec -type ScanEnable -port [get ports PI Scan enable] -active state 1
set dft signal -view spec -type ScanDataIn -port [get ports PI Scan In]

set dft signal -view spec -type ScanDataOut -port [get ports PO Scan Out]

Finally, the test protocol has to be created:

create test protocol

Once the signals and the elements that are going to be used are correctly specified in the
corresponding test protocol, we can proceed with the next step.

4.5.2 Preview DFT and Scan Chain Synthesis

After creating the test protocol, we preview the scan chain with preview dft coomand that
checks specification for consistency. Afterwards, we want to check the design for any Design
Rule Check (DRC) violations. The DRC check can be invoked with:

dft drc

When the process finishes , the ”Violation Browser” window appears showing the detected
violations. If any violations appear we have to eliminate them. Otherwise we proceed to the
final step.

4.5.3 Compile, Configure and insert DFT

Once the violations have been corrected (or ignore if possible), the design must be compile
including the ”-scan” option among the compile parameters. This option tells Design Compiler
to replace the elements being part of the DFT for scannable elements. After that, the last step
before inserting the scan chain is to configure the way that it is going to be inserted. There are
many options before inserting the scan chain. The most relevant for our design it the three-
state buffers and bidirectional ports: By default, DFT Compiler infers logic to bring all the
three-state buffers and bidirectional ports into ’Z’ state. This behavior is not necessary in our
design, and consequently, has to be deactivated:

set dft configuration -fix disable -fix bidirectional disable

Finally, the insertion of the scan chain is executed with:

insert dft

A comparison of a register vs a scan register is shown in the figure 4.26

4.6 Design Finishing

After the final reports and the netlist produced from synthesis flow from Design Compiler, we
are ready to proceed to the test vectors extraction. Only if our design is error free we can
proceed further. Otherwise, we must re-run Design Compiler with changing the constraints we
set in order to achieve the results we want considering time, power, area.
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(a) Normal Flip-Flop

(b) Scan register

Figure 4.26: Register vs Scan Register
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4.7 Test vectors extraction

According to [10] the goal of ATPG is to create a set of patterns that achieves a given test
coverage, where test coverage is the total percentage of testable faults the patterns set actually
defect. The ATPG run itself consist of two main steps: generating patterns and fault simulation
to determine which faults the pattern detect. The two most typical methods for pattern gener-
ation are random and deterministic. Additionally, the ATPG tool can fault simulate patterns
from an external set and place those patterns detecting fault in a test set. TetraMAX is a
high-speed, high-capacity Automatic Test Pattern Generation (ATPG) tool. It can generate
test patterns that maximize test coverage while using a minimum number of test vectors for
a wide variety of design types and design flows. It is well suited for designs of all sizes up to
millions of gates. With scan testing, the sequential elements of the device are connected into
chains and used as primary inputs and primary outputs for testing purposes. Using ATPG
techniques, you can test a much larger number of internal faults than with functional testing
alone.

TetraMAX offers three different ATPG modes: Basic-Scan, Fast-Sequential, and Full-Sequential.
TetraMAX supports test pattern generation for five types of fault models: stuck-at faults, IDDQ
faults, transition delay faults, path delay faults, and bridging faults. It is also compatible with
a wide range of design-for-test tools such as DFT Compiler. The design flow using DFT Com-
piler and TetraMAX ATPG is recommended for maximum ease of use and quality of results.
TetraMax ATPG init screen is shown below at Figure 4.27

Figure 4.27: Synopsys TetraMax ATPG Init Screen

Scan inserted netlist, is passed to TetraMAX as inputs. Second step is to build internal
database for pattern generation. Specific TetraMAX libraries and netlist are combined and for
building module definitions. BUILD process takes place in build mode of TetraMAX. And after
completion of successful build process SPF file, which contains scan definitions are provided to
check DRC. Several rule violations are check during DRC mode like clock, verilog syntax, scan
chain, set/reset etc. and must be cleared before pattern generation. After clean DRC mode

73



CHAPTER 4. FRONT END FLOW

it automatically transfer mode to TEST mode. Now at last several efforts as per specification
are selected and applied for pattern generation. Selecting fault model and test mode, ATPG
process starts. Patterns are generated and stored in different formats like STIL, WGL, Verilog,
VHDL, binary and other foundry formats.

Quick estimation of Test and Fault coverage are done after patterns are generated using
saved database and results in terms of reports and summaries. Three possible quality measures
are defined as follows: Test coverage = detected fault / detectable faults. Test coverage gives
the most meaningful measure of test pattern quality and is the default coverage reported in
the fault summary report. Test coverage is defined as the percentage of detected faults out of
detectable faults. Fault coverage = detected fault / all faults. Fault coverage is defined as the
percentage of detected faults out of all faults. ATPG effectiveness = ATPG resolvable fault /
all faults. ATPG effectiveness is defined as the percentage of ATPG-resolvable faults out of
the total faults. Report summaries are generated in two forms collapsed and uncollapsed fault
summaries. Following results are of stuck – at fault model with basic mode and all desired
manual efforts. Design reports will be shown at chapter 8.

TetraMAX maintains a list of potential faults in the design and assigns each such fault to
a fault class according to its detectability status. Faults classes are organized into categories.
A two-character symbol is used as an abbreviated name for both classes and categories. There
are five higher-level fault categories containing a total of 11 lower-level fault classes:

1. DT: detected

(a) DR: detected robustly

(b) DS: detected by simulation

(c) DI: detected by implication

2. PT: possibly detected

(a) AP: ATPG untestable-possibly detected

(b) NP: not analyzed-possibly detected

3. UD: undetectable

(a) UU: undetectable unused

(b) UT: undetectable tied

(c) UB: undetectable blocked

(d) UR: undetectable redundant

4. AU: ATPG untestable

(a) AN: ATPG untestable-not detected

5. ND: not detected

(a) NC: not controlled

(b) NO: not observed

TetraMAX can generate patterns in verilog (table/single), verilog (parallel/serial), VHDL,
STIL/WGL, Binary and several other formats which will be used after the fabrication process
to test the fabricated design for faults.
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4.8 Logic Equivalence Checking

Formal Verification verifies the circuit without changing the logic of the circuit. It is the defacto
standard used today in the industry. Some of the tools which use formal verification today in the
industry are Conformal (from cadence), Formality (from Synopsys). Formal verification is an
algorithmic-based approach to logic verification that exhaustively proves functional properties
about a design. The algorithms formal verification uses are:

• Binary Decision Diagram (BDD): It is a compact data structure of Boolean logic. It can
represent the logic state encoded as a Boolean function.

• Symbolic Finite State Machine (FSM) Traversal

Typically, the following are the types of formal verification:

• Equivalence Checking: Verifies the functional equivalence of two designs that are at
the same or different abstraction levels (e.g., RTL-to-RTL, RTL-to-Gate, or Gate-toGate).
It checks combinatorial and sequential elements. (Basically checks if two circuits are
equivalent). For sequential elements, it checks if the specific instance name occurs in both
the circuits or not.

• Model Checking: Verifies that the implementation satisfies the properties of the design.
Model checking is used early in the design creation phase to uncover functional bugs.

Here we use the Equivalence checking using Conformal from Cadence. Conformal LEC (Figure
) is a powerful equivalence checking tool. It can provide a formal proof that the output from
Synthesis matches the original RTL code. It can do all of that without having to run a single
simulation. In this section of the tutorial, we will learn how to read in a RTL and a synthesized
design and how to prove that they are functionally equivalent. The original RTL netlist is
usually referred to as the ”golden” design. It serves as the reference for the comparison. The
synthesized gate-level netlist is also called the ”Revised” design. The following files are
required for running the equivalence checking:

• RTL files (golden design) (.v)

• Netlist exported from Design Compiler (revised design) (.v)

• The primitive cells library (.lib)

• Script (.tcl) optional

Since both the designs have been successfully loaded, we can now start the verification process.
Conformal has 2 operating modes, the ”Setup” and the ”LEC” mode. Switch to the LEC mode
by Clicking on the ”LEC” icon in the upper right hand corner of the window. A table is now
printed in the conformal LEC window. It lists the primary inputs (PI) and primary outputs
(PO) in both the revised and golden designs. They are equal if the golden and revised designs
have the same number of inputs and outputs. After comparing the two designs the equivalence
checker reduces the two designs into canonical representations and then checks to see if they
are equal.

In our design we had non equivalences at all registers. That happened because we changed
the initial RTL code and design by changing the registers into scan registers. A rename command
needed in order to solve this problem. After the renaming command the design netlist had no
non equivalences and it was ready to import into Cadence Encounter for exporting the final
layout.
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Figure 4.28: Cadence Conformal GUI mode
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5.1 Initial steps

At the previous chapter (chapter 4) we finished the Front-End flow of our Design and we now
have a clean verilog netlist. Proceeding, we have to ensure that some modules should have
unique names and they may not. We have to fix that problem by using an Encounter command
to make the instances unique:

uniquifyNetlist -top slaveuniquify chip uniq.v AMS 35b4c3 dft.v

takes the netlist exported from Design Compiler (AMS 35b4c3 dft.v), the top level module
name (slaveuniquify) and exports the uniquified netlist (chip uniq.v).

Physical placement of a design requires the layout and timing information of the standard
cells. Constraint driven placement may be utilized with constraints generated during RTL
synthesis. Layout and timing information is provided from the technology vendors. The former
is provided by the Library Exchange Format (LEF) file. The information in the LEF file is the
text version of the Virtuoso standard cell view abstract and includes layer names, layer widths,
layer usage, external dimensions, cell pin and port as well as blockage description. An example
of how standard cells abstract is and how they connect with each other is shown in figure 5.1,
where we see the interconnection of two NOT gates with one NOR gate 2x2 (2-inputs with
driving strength 2). Timing information, is provided by the technology libraries (.lib), which
are available as worst-corner and best-corner cases to model process variations. The constraints
set during synthesis may be transferred to Encounter by a Synopsys Design Constraints (SDC)
file. The file is Tool Command Language (TCL) based and specifies the design intent, including
the timing, power, and area constraints. With the worst-case and best-case libraries we create
the corners we want the tool to place, route and optimize our design. This is the Multi Mode
Multi Corner (MMMC) as it called and it combines the .lib, .lef, .sdc, .cap (capacitance tables)
to create the analysis views : worst with the worst-case combination of these files for the setup
analysis view and fast with the best-case combination of these files for the hold analysis mode.
The gate-level netlist of the design which was generated during RTL synthesis needs to be
provided in verilog format. A waveform of the SoC Encounter initial gui is shown in the figure
5.2
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Figure 5.1: Standard cell interconnection

Figure 5.2: SoC EDI initial GUI
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5.1.1 I/O File

The physical location as well as the orientation of the IO’s need to be specified in a IO assignment
file. Beside the IO’s which are already inferred with the RTL model, IO’s for core and pad power.
So, we have to create a .ioc file to obtain all the pads that transfer signals (basically exported
from Design Compiler) and the new power pads that the design needs. We also place the corner
pads to the corners of the design. In the .ioc file we name the side of the pad that we want to
be placed (E for east, W for west, N for north and S for south) as well as the pad name.

After that we need to invoke the tool (initial screen shown in figure 5.2) and we have to
import our design. We had to choose between many IO pad cells, so we had to review all of
them and choose the right ones for power pads, signal pads as well as clock and reset pads.
Figure 5.3 shows an example of some of these pad cells with 3.3 Voltage and figure 5.4 shows
an example of these pad cells with a voltage of 5.

The figure 5.5 shows us a vertical cut of a wafer and how the metals and the transistors are
represented.

The figure 5.6 shows us the power buses for the pad limited c35 IO cells. The LV IO-cells
have two pairs of power buses: The ESD-Rails and the power supply for the periphery-ring.
The ESD-Rails have names which end with an ”o” (e.g. vdd3o! and gnd3o!). The power supply
for the periphery ring has to use the letter ”r” (e.g. vdd3r1! or gnd3r!). The power bus vdd3r!
is split into two physical buses vdd3r1! and vdd3r2!, these two buses are connected together in
the VDD pads. On 3 bus cells or on HV cells additional vsub! buses can be found on the cells.
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Figure 5.3: c35 IOLIB Cells 3.3V
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Figure 5.4: c35 IOLIBV5 Cells 5.0V
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Figure 5.5: Wafer Cross

Figure 5.6: Power Buses for the pad limited C35 IO cells

83



CHAPTER 5. BACK END FLOW

5.1.2 Design Import

Before importing the design we have to ensure that we have selected the technology we work
on (in our case is 350nm). So we use the command:

setDesignMode -process 250 -flowEffort high

(Because the newest version of SoC Ecnounter runs with technology up to 250nm). Furthermore,
we have to specify the scan chain in order the tool not try to reorder or ”change” the scan chain.
To achieve that we use the command:

specifyScanChain scan1 -start PAD scan in/Y -stop PAD scan out/A
scanTrace

where we specify the imput pin and the output pin of the scan chain and we tell the tool to
locate this scan chain.

The technology and design files need to be read by Encounter to generate a database. The
technology files that accommodate physical and timing information are accessed by selecting
files with the extension .lef and .lib The required .lib files model worst-case (wc) and best-case
(bc) process corners by max-timing and min-timing libraries, respectively. This is valid for the
standard cells and IO’s, as well as for any hard macro model. The design files consist of the
gate-level netlist, timing constraint file, and pad arrangement, having the endings .v .sdc .ioc.
We also have to specify the VDD and GND (or the way they called at the .lef file from all pads
and standard cells) for Power and Ground nets, respectively. A figure of Design import is shown
below (Figure 5.7)

Figure 5.7: Design Import

In this design we use the c35 CORELIB and c35 IOLIB as library sets. This libraries as we
saw at section 4.4.2.1 its cells has a smaller dynamic power consumption but bigger leakage power
comparing with the 5 Volts lib that has small leakage and high dynamic power consumption.
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After importing the design we can see at the .log file that the results are extracted that we
have:

• Read 248 cells in library ’c35 CORELIB WC’ which is the library for the standard cells
of our design.

• Read 181 cells in library ’c35 IOLIB WC’ which is the library for the IO pads of our
design.
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5.2 Floorplan

After importing our design we have to specify the dimensions of the SoC core, arrangement
of the core rows, distance between SoC core and IO’s, physical location of any hard macros
and distance between these blocks and the core rows. The floorplan can be either core- or pad
limited dependent on the size of the design and the number of pads. The space between the
core and pad frame need to be specified to make space for the power supplies. In order to
improve timing the gates should be placed as dense as possible on the core rows. This density is
indicated by the core utilization. By specifying the Core to IO Boundary on each side, i.e., left,
top, right, bottom, a gap between the core and IOs will be introduced, and the Core Utilization
is updated. It is recommended to increase both Core to IO Boundary and the value for the
desired core utilization until Core Utilization reaches a value around 0.8. Thereby, 20% of the
core row space will be reserved for buffers in the clock tree (to be created later) and signal
routing. The settings under the Advanced tab specify arrangement of the core rows and should
remain unchanged. The IO’s need to be placed in a certain distance to avoid a design rule
violation. Furthermore, it is necessary to specify the global net connections, e.g., VCC and
GND, need to be specified. The floorplan created with dimensions of: 2600 um x 2600 um, that
means a 6.76mm2 at die area. That means that the final area of the SoC will be at 6.76mm2 .

A figure after floorplaning our design is shown below (fig 5.8). Also, a schematic of the
floorplan dimensions is shown at figure 5.9

Figure 5.8: Floorplan
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Figure 5.9: Floorplan dimensions
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5.3 Power Plan

The gates on the core rows and the blocks need to be connected to the IO supply pads. This
connection is done by core and block rings that need to be setup during power planning. In this
section we specify the physical location and size of the power rings. Furthermore, it is recom-
mended to route power stripes above the core rows to assure a sufficient current propagation.
For the TopBottom and LeftRight we select the top routing metals, Metal 3 Horizontal and
Metal 4 Vertical respectively.

We configure the width as 20um and spacing as 10um. For the offset we select center in
channel so the power ring center at the margin we left for that purpose between pads and core
area of the design. For the stripes we select the Metal 4 Vertical routing layer. We configure
the width as 10um and spacing as 10um. Finally, we specify the spacing from the left side
of the core area that the first stripe be placed at 100um and the spacing between the stripes
(set-to-set distance) to 150um. In the figure 5.10 we can see the power plan of the design after
the above procedure.

Figure 5.10: Power Plan

After power planing we have the below results:

• 4301 new pwr-pin connections were made to global net ’vdd!’.

• 4301 new gnd-pin connections were made to global net ’gnd!’.

• 53 new gnd-pin connections were made to global net ’gnd5o!’.

• 53 new gnd-pin connections were made to global net ’gnd5r!’.

• 53 new pwr-pin connections were made to global net ’vdd3r!’.

• 53 new pwr-pin connections were made to global net ’vdd5o!’.
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• 53 new pwr-pin connections were made to global net ’vdd5r!’.

The vdd! and gnd! are the power and ground definitions for the core cells while vdd3o! vdd3r2!
vdd3r1! vdd! are power and gnd3r! gnd3o! gnd! are the ground nets for IO pads.

3 Types of power pads are available in the digital IOLIBs (the cell names might have different
extensions in the different libraries):

• VDD3I = core supply

• VDD3R = periphery logic supply (vdd3r! bus) and core supply

• VDD3O = ESD Rail supply (vdd3o! bus)

• VDD3ALL = ESD + peri-logic + core supply

In our design we had to make sure that all power bus rings in the periphery are supplied. This
could either be done by using a single VDD3ALL pad or by using a combination of VDD3R,
VDD3I, and VDD3O pads (Splitting the supply rails reduces noise on the nets). As the VDD3R
cell could also be used to supply the core cells, it would also be possible to use only VDD3R
and VDD3O cell to get a correct power supply. In this case VDD3R pad has to be connected
to the core supply nets. Bellow is a representation of the power pads which maps to the IO
library we use (figure 5.11).

Figure 5.11: Power Pads

Similar to the power pads also 3 types of ground pads are available:

• GND3I: core supply

• GND3R: periphery logic supply (gnd3r! bus) and core supply

• GND3O: ESD Rail supply (gnd3o! bus)

• GND3ALL: core + periphery + ESD Rail supply

As for the power pads you also need to make sure that all of your ground buses in the periphery
ring nets are connected to one of the ground pads.
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5.4 Placement and Routing

At the next step we have to place and route our design. The standard cells have to be placed at
the core area of our design. With this goal, it is necessary to select a timing-driven placement
algorithm to improve the placement of instances on timing critical paths. In this optimization
all the buffer, inverter and delay cells are deleted in order to calculate the real capacitance
and resistance value associated to every net. With these values, SOC Encounter can estimate
the optimum driving capabilities for every cell to fulfill timing requirements, some cells can be
”upsize” or ”downsize” depending on the requirements. Sometimes, SOC Encounter place two
cells too close to each other, yielding in a ”spacing violation”. These violations can be fixed
performing geometry verification with: then using the ”Violation browser” to find the exact
location and, finally, spacing the cell manually.

Before doing the design routing we need to fill the margins between IO pads with filler pads.
To do that we have to move the signal pads that already are placed at the IO area of our design
close to each other without any gap between them. Afterwards, we run the following command
to fill the gaps that arising with the filler pads:

addIoFiller -cell PERI SPACER 100 P V5 -prefix IOFILLER

And we repeat the command with each pad from the ones with the bigger dimensions to the
ones with the smaller dimensions (we find them by reading the .lef file that the foundry provides
us) in order to fill all the remaining gaps. The purpose of doing this procedure is to have a
continuous power distribution with no gaps that could cause power shutdown of the circuit.
Filler pads are dummy pads that only have the three power and two ground pins mentioned at
section 5.3 (They do not transfer any signal) We totally place:

Pad dimension 100 50 20 10 5 2 1 0.1

Top side 6 0 0 1 1 2 0 2

Left 7 0 0 1 1 2 0 2

Bottom 7 0 0 1 1 2 0 2

Right 7 0 0 1 1 2 0 2

Table 5.1: Global Signals

The n (0.1, 1, 2, ... 100) indicates the vertical size that each filler pad has. The results after
placement are:

stdCell: stdCell: 4016 single + 0 double + 0 multi Total standard cell length = 79.0160 (mm),
area = 1.0272 (mm2 )

Average module density = 0.349

Density for the design = 0.349 = stdcell area 56440 sites (1027208 um2 ) / alloc area 161505
sites (2939387 um2).

Pin Density = 0.412 = total number of pins 23267 / total Instance area 56440.

textitInitial total scan wire length: 89162.415

Final total scan wire length: 69323.389

Improvement: 19839.026 percent 22.25
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textitTotal length: 8.640e+05um, number of vias: 49246

M1(H) length: 0.000e+00um, number of vias: 23149

M2(V) length: 3.225e+05um, number of vias: 22916

M3(H) length: 4.070e+05um, number of vias: 3181

M4(V) length: 1.345e+05um

A figure of the placed and routed design with the insertion of filler pads is shown at the
figure 5.12

Figure 5.12: Design after Placement and Routing

5.4.1 Pre-CTS optimization

After the design is placed we observe that there are some timing and area problems. We run
the first design optimization (Pre-CTS), so the tool optimize the area, timing and some DRC
problems of our design. Optimization is moving cells and nets in order to achieve the best
timing and area results. Figure 5.13 shows the design after the optimization we perform before
Clock Tree Synthesis (CTS).
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Figure 5.13: Design after Placement and Routing Optimization (Pre CTS)

92



CHAPTER 5. BACK END FLOW

5.5 Clock Tree Synthesis

The physical location of the registers is known after cell placement and thus the clock tree can
be synthesized. SoC Encounter generates a clock tree by mapping the requirements in the clock
specification file (.cts) and constraint file (.scf) to the physical facts. The clock tree is assembled
by appropriate sized clock buffers that will be accommodated in the core row gaps. The clock
should be able to reach all the points of the design at the same time, otherwise, data from the
past clock cycle can be used in the current cycle. The requirements for the reset are not so
strict because it is ”only” necessary that reaches all the logic within a clock cycle. In order to
performed this task with SOC Encounter, a ”clock tree specification file” has to be provided
containing the synthesis information for every clock and reset in the design. In our design we
create this file from all the available buffers from the library files. A figure of the design after
Clock Tree Synthesis (CTS) is shown at the figure 5.14, a more clear display is shown at figure
5.15. In figure 5.16 we can see the min/max paths of the Clock Tree Synthesis (CTS) and the
final figure (5.17) shows us the phase delay of the Clock Tree Synthesis (CTS).

Figure 5.14: Clock Tree Synthesis no.1

According to [3]
Setup Time: is the minimum amount of time the data signal should be held steady before the
clock event so that the data is reliably sampled by the clock. This applies to synchronous input
signals to the flip-flop.
Hold Time: is the minimum amount of time the data signal should be held steady after the
clock event so that the data are reliably sampled. This applies to synchronous input signals to
the flip-flop.

Flip-flops are subject to a problem called metastability, which can happen when two
inputs, such as data and clock or clock and reset, are changing at about the same time. When
the order is not clear, within appropriate timing constraints, the result is that the output may
behave unpredictably, taking many times longer than normal to settle to one state or the other,
or even oscillating several times before settling.
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Figure 5.15: Clock Tree Synthesis no.2

Figure 5.16: Clock Tree Synthesis display min max paths

As soon as the clock tree has been synthesized, a hold timing analysis has to be done. SoC
Encounter needs to use the delay cells to fixed situations, which are quite common throughout
the design. Like before, the design needs to be optimized using:

optDesign -postCTS -hold
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Figure 5.17: Clock Tree Synthesis phase delay
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5.6 Power Analysis

Power analysis supposes that the power plan of our design was correct and evaluate the cor-
rectness of power supply to all the cells of our design and the IR drop violations.This task is
not critical in this design due to the over dimensioning of the power supply. Assuming:

• Clock frequency of 83.3 MHz (12 ns as our clock is)

• A toggle probability of 0.5. That means that the registers will toggle the half amount of
the clock given.

• Worst case condition supply voltage is 4.5 Volts according to our design library.

The power of a circuit is consists of:

• Dynamic Power

• Leakage power

Internal power P int is the power dissipated inside a cell for the charging and discharging
of internal capacitances and due to crossover currents.
Switching power P ext is the power dissipated inside a cell for charging and discharging the
load capacitance connected to the cell’s output. That external load consists of the input capac-
itances of all cells being driven plus the parasitic capacitances of the wires (aka interconnect).
The total power dissipation P tot related to a cell can now be expressed as P tot = P stat +
P dyn
A detailed figure of Static Power analysis and the IR drop applied on the circuit is shown at the
figure 5.18 below. While in figure 5.19 we can see the power distribution with auto adjustment.

Figure 5.18: Static Power Analysis IR drop
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Figure 5.19: Auto Power Analysis IR drop
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5.7 Verification

Before exporting the final reports and files, the circuit has to pass some verification tests from
Encounter. Design Rule Check (DRC) process has to be run in order to find possible layout
rule violations. The command is:

verifyGeommetry

We also perform some other final verifications such as verify the connectivity of all the cells,
pins, pads with the command:

verifyConnectivity

Finally we run

verify drc

in addition to the verifyGeommetry command to ensure that there are no DRC violations. If
there are no violations, the GDSII file can be extracted. Also the SPEF, SDF and verilog netlist
files are extracted. There might be some problems such as wire DRC violations. We then have
to move the wires on our own with the move tool Encounter has. A figure of a wire error before
and after fixing it with wire editing tools is shown in figure 5.20

We are now ready to proceed to the final step of our design finishing.
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(a) Wire violation

(b) Violation corrected

Figure 5.20: Wire edit example
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5.8 Design Finishing

The gaps on the core and IO rows need to be filled with dummy cells referred to as core and
IO filler, respectively. Core filler cells ensure the continuity of power/ground rails and N+/P+
wells in the row. Figure 5.21 shows a closer look of how the design looks like with the filler
cells. We add all the available filler cells from the list from the window that shows up that our
library has available. The number in the name specifies the width of the filler cell. The gaps on
the pad frame need to be filled with IO fillers which connect the pad-row power supply. The
IO frame is filled by execution of the command below:

addFiller -cell ENDCAPL ENDCAPR FILLCAPX16 FILLCAPX2 FILLCAPX32
FILLCAPX4 FILLCAPX8 FILLCELLX16 FILLCELLX1 FILLCELLX2 FILLCELLX32

FILLCELLX4 FILLCELLX8 -prefix FILLER

Figure 5.21: Design Finishing filler cells

Finally for extracting the GDSII

streamOut GDSII/slaveuniquify.gds -mapFile
../../AMS/C35B4C3/cds/HK C35/LEF/c35b4/qrclay.map -libName AMS C35B4C3 -units

1000 -mode ALL

The GDSII file we just exported is the file that we are going to send to the foundry for the
final checks (DRC, antenna process violations) they perform. If the design passes all the tests
they do afterwards, then the fabrication process is ready to begin. The final result of the design
with no violations is shown below on figure 5.22

And a detailed final correct routed is shown at the image 5.23
All the commands which were executed during a run of SoC Encounter are dumped into

a encounter. cmd file. This file needs to be cleaned from all excessive commands that were
executed on the way. Open encounter.cmd in text editor and remove such commands. Save the
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Figure 5.22: Design Finishing filler cells

Figure 5.23: Routed Signals Closer look

cmd file with a different name and source it in the encounter shell. The entire place and route
process should be automatically executed, and result in the same layout as done manually.
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5.9 Static Timing Analysis

After exporting the GDSII file from Encounter we have to run some final timing tests to ensure
that the timing of our design is the same that we want to and we do not have any setup or
hold violations. The EDA tool used to perform this action is Tempus from Cadence. An initial
screen of the tool is shown in the figure 5.24

Figure 5.24: Cadence Tempus initial GUI with necessary files

As we can see at the figure 5.24, we use the .spef file, the libraries, .lef, the verilog netlist, the
.sdc file from Design Compiler, the floorplan file, the .def file and the placement file exported
from SoC Encounter flow. With these files we can have a schematic view of our design and
proceed to the final Static Timing Analysis (STA) of our design. The most important files to do
that are the verilog netlist from SoC Encounter flow, the .sdc exported from Design Compiler
flow which give us all the constraints we set in our design and most importantly the clock
definition. Also, very important is the .spef file. Standard Parasitic Exchange Format (SPEF)
is an IEEE standard for representing parasitic data of wires in a chip in American Standard
Code for Information Interchange (ASCII) format. Resistance, capacitance and inductance of
wires in a chip are known as parasitic data. But SPEF does not include inductances. SPEF is
used for delay calculation and ensuring signal integrity of a chip which eventually determines
its speed of operation.

In figures 5.25 we can see the tempus setup time histogram and in figure 5.26 we can see
the tempus hold time histogram. As we can realize from the images follows, setup and hold
violations were solved after SoC Encounter flow and our design is ready for the final signoff
verification test we explain to the next section(5.10)
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Figure 5.25: Cadence Tempus setup time histogram

Figure 5.26: Cadence Tempus hold time histogram
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5.10 Signoff Formal Verification

Last but not least a final signoff verification is required in order to ensure the logic equivalence
of our circuit that is now ready to send for fabrication. We verified that the netlist exported
from Cadence SoC Encounter is the same in terms of logic as the netlist exported from Design
Compiler. Again we had to rename some instances that were different in SoC Encounter, but
the logic of the circuit was the same. We can also run Cadence Conformal from SoC Encounter
gui and check the design through there. For our design, because we have only the academic
licenses for the EDA tools, the integrated Conformal at SoC Encounter did not work, so we had
to run it separately.
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The results of the design is summarized at the table that follows. The table 6.1 contains
the final frequency, area and power of the design that will operate after its fabrication process.

Instance Frequency (MHz) Area (mmˆ2) Power (mW)

Slaveuniquify
(top level)

80.64
12.4ns

6.76 (die size area) 280.83 (total power)

Table 6.1: Final Results

And the power results which consists of Dynamic Power (Switching power, Internal power)
and Leakage power are shown in the table 6.2

Power(mW) Internal Switching Leakage

Slaveuniquify
(top level)

213.51326128
(76.0291%)

67.28797235
(23.9603%)

0.02967489
(0.0106%)

Table 6.2: Power Results

The total gate area is at 54.6000 um2. Analytically the area per module is shown in table
6.3

Module Gates Cells Area

slaveuniquify 22742 5756 1241731.4 umˆ2

ahb slave 19442 4497 1061533.2 umˆ2

ahb slave ram 347 159 18964.4 umˆ2

ahb slave mem 19036 4296 1039402.0 umˆ2

Table 6.3: Area Results

The test coverage considering scan chain insertion was at 100% with full scan and multi-
plexed flip-flops style. The final GDSII file was exported and send to the foundry for fabrication
(which will take approximately 4 months including the packaging and the final testing of the
design). For more detailed results and reports from Electronic Design Automation (EDA) tools
, you can refer to chapter 8. Finally, the required minimum area for fabrication was at 7mm2,
so the reason we choose 6.76mm2 for the final die size area is to satisfy the minimum fabrication
area requirements from the foundry.

Finally, we can see the run time of each EDA tool used at the table 6.4 . As we notice, the
run time varies per tool. The reason of this variety on run times is depending on which corner we
choose each time to run and which script with which constraints. More constraints means more
run time because the tool tries to satisfy these constraints. Furthermore the minimum time
achieved with the c35v5 5.0V design lib with c35 CORELIB V5 WC.db, c35 IOLIBV5 WC.db
as worst case design libraries set while the biggest run time achieved with c35 1.8V design
lib with c35 CORELIBD WC.db, c35 IOLIB WC.db as worst case design libraries set. The v5
notation means that the cells included to the respective design libraries have a 5 Volts operating
voltage while where we do not have any v5 notation the voltage is less than 5 (from 1.8 to 3.3).

The final table is making clear what made us choose the right library set combination
possible. The only constraint we had is to make a design as fast as we could, so we set a clock
period at 50ns to all designs and we took the results following at tables ??, ??, ??.
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EDA tools Design Compiler TetraMAX ATPG SoC Encounter

runtime (minutes) 3 - 120 4 - 6 60-240

Memory Usage (GB)
of 32GB available

1 1 1.5

# of Cores used 1 (local) 1 (local) 8 (local)

Table 6.4: Run time Results

Process 1.8v 1.8v 2.2v 2.2v

Library set
(Core-IO libs)

CORELIB
- IOLIB

CORELIBD
- IOLIB

CORELIB
- IOLIB

CORELIBD
- IOLIB

Worst negative
slack (ns)

23.347620 20.687208 31.461990 30.307341

Total Power
(mW)

5.218016 4.538731 7.836362 6.828680

Internal Power
(mW)

3.190864 2.756248 4.749336 4.153425

Switching Power
(mW)

2.013087 1.777478 3.070842 2.669174

Leakage Power (pW) 1.406694e+07 4.991078e+06 1.618433e+07 6.087151e+06

Area (umˆ2) 2628676.707783 2560673.007113 2619785.905987 2549806.806873

Table 6.5: Library process comparison

Process 2.7v 2.7v 3.3v 3.3v

Library set
(Core-IO libs)

CORELIB
- IOLIB

CORELIBD
- IOLIB

CORELIB
- IOLIB

CORELIBD
- IOLIB

Worst negative
slack (ns)

34.920925 33.997688 0.404160 36.811172

Total Power
(mW)

11.743589 10.414916 71.594215 15.733788

Internal Power
(mW)

7.303819 6.362256 44.437351 9.656704

Switching Power
(mW)

4.420347 4.045175 27.132803 6.067789

Leakage Power (pW) 1.943141e+07 7.528124e+06 2.404943e+07 9.328473e+06

Area (umˆ2) 2604102.503986 2546070.286953 2600429.902935 2544221.926521

Table 6.6: Library process comparison
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Process 2v 3v 4v 5v

Library set
(Core-IO libs)

CORELIB V5
- IOLIBV5

CORELIB V5
- IOLIBV5

CORELIB V5
- IOLIBV5

CORELIB V5
- IOLIBV5

Worst negative
slack (ns)

-7.356525 14.098717 22.341166 24.976328

Total Power
(mW)

9.867247 17.576820 29.046421 45.671612

Internal Power
(mW)

6.408111 11.318076 18.348286 29.017313

Switching Power
(mW)

3.454204 6.252011 10.689300 16.643463

Leakage Power (pW) 4.938449e+06 6.735742e+06 8.845647e+06 1.083181e+07

Area (umˆ2) 3032106.079094 2878373.882740 2860239.482403 2838949.682816

Table 6.7: Library process comparison
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7.1 Conclusion

If we consider the years passed from the invention of transistor to nowadays, we can see that
technology made huge steps throughout these years. For almost half century we moved from
big transistors that could be visible in bare eyes to transistors that we need the most advanced
microscopes to see their form. Furthermore, from ”hand-made” designs we moved to designs
created with the aid of Electronic Design Automation (EDA) tools. These tools helped designers
to build big projects, such as processors and fit billion of transistors in a small area. Also, by
decreasing the transistors dimensions, we managed to make computations even more faster and
less power consuming. Nowadays, we talk for System on Chip (SoC), which are chips containing
billions of transistors and made for many purposes. As we can see at the table 6.2 of chapter 6
we realize that the total amount of leakage power the circuit consumes is way more smaller that
the total dynamic power of the circuit. As we mentioned before that happens because of the
technology we use, where if we have bigger technology our concerns are on the Dynamic power
whilst we have smaller designs e.g. 90nm and below leakage power becomes more important
that the Dynamic power. The main goal of this thesis that was to complete a VLSI design
flow of AMBA ARM AHB-lite slave circuit at 350nm with AMS C35B4C3 technology library
with the latest versions of EDA tools which legally provided for academic use from Europractice
agreement my department has, was achieved. Now the chip will enter the fabrication process
with the foundry in order to approximately 4 months from now we have a full functional and
fabricated AMBA ARM AHB-lite slave circuit. The process we followed in order to achieve
that outcome was:

• Take the specifications from [7] of the AHB-lite slave circuit in order to design the block
diagrams and the signals the circuit would have according to these specifications.

• Afterwards, we started to write the RTL code which part of the RTL code that described
the circuit found at opencores website. At this step the interaction and the feedback with
the simulation EDA tools was necessary. After using three EDA tools (VCSMX, Simvision,
Questasim) from the three biggest vendors (Synopsys, Cadence, Mentor Graphics) to
compare the results and ensure that the waveforms produced was identical, the initial
RTL with exhaustive testbench, written from the AHB-lite slave specifications of ARM,
tested at functional simulation mode and if something went wrong we had to go back and
correct some sections on the RTL code.

• When we took a waveform as we designed it, we used Design Compiler to complete the
logic synthesis of the circuit and scan chain insertion. After many trials that the design has
to pass in order to satisfy the timing mostly requirements, we write out the verilog netlist
produced from Synopsys Design Compiler as well as .sdc file that was the constraints file we
set during the logic synthesis and other files that gave us the opportunity to double-check
our results and reach to a conclusion that we had a netlist that satisfied our requirements.

• The synthesized netlist produced from Design Compiler, imported to Synopsys TetraMAX
ATPG which is a tool for Automatic Test Pattern Generation (ATPG). There, we got
results for the test coverage of scan chains of the circuit itself as well as the test vectors
that we will use after fabrication process to test our design for stuck-at faults.

• Before going to the physical implementation of our design, we had to do a final check with
Cadence Conformal, for the logic equivalence checking of the circuit.

• Now we were ready to proceed to the layout flow of our design with Cadence SoC Encounter
EDA tool were we indented to export the final GDSII file that will be send for fabrication.

110

http://www.europractice-ic.com/
http://opencores.org/


CHAPTER 7. CONCLUSION AND FUTURE WORK

First of all we had to floorplan the design, i.e. define the area that the design would
have in order the pads, power ring and standard cells would be placed. Then, we proceed
with the power plan where we defined the power and ground nets of our design and made
the power ring, and stripes in order to have a proper power distribution to our circuit.
Afterwards, we made the placement and the first routing of the signals in our design. In
this step we got the first power, density (percentage of area the design had of the core
area that was available) and timing results. After the standard cells placed we had to
create the clock tree of the design in order to eliminate all timing violations of our design.
The next step was to analyze the power of our design in order to examine if there were
any hot spots of areas that needed a lot of power consumption and take the necessary
measures to eliminate these violations. Before exporting the GDSII file was necessary to
do the final verification tests regarding DRC and connectivity mostly. After the design
passed all the verification steps we produced the final GDSII file to be send to the foundry
for fabrication as well as the final verilog netlist, parasitic extraction files, placed design
files, etc.

• Before our design was send to the foundry we had to do some final Static Timing Analysis
(STA) tests to ensure that the timing of our design was correct.

• Last but not least we had to ensure that our design after layout is correct in terms of
Logic. For that purpose a final signoff logic equivalence checking with Cadence Conformal
needed to performed.

7.2 Future Work

In this final section, we have to mention the future work can be done on this thesis. First of
all, for academic funding reasons the final design will be fabricated at 350nm with a voltage
of 5 Volts. For future System on Chip (SoC) fabrications at the department can be used a
smaller design process, such as 45nm or 28nm. Despite the area reduction we will observe, we
will realize the meaning of leakage power problems on this smaller processes designs. According
to [11], Power consumption (7.1) can be divided into two aspects:

• Dynamic power the power that is consumed by a device when it is actively switching
from one state to another. Dynamic power consists of switching power, consumed while
charging and discharging the loads on a device, and internal power (also referred to as
short circuit power), consumed internal to the device while it is changing state.

• Leakage power the power consumed by a device not related to state changes (also
referred to as static power). Leakage power is actually consumed when a device is both
static and switching, but generally the main concern with leakage power is when the device
is in its inactive state, as all the power consumed in this state is considered ”wasted” power.
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Figure 7.1: Total circuit power

As we can see at figure 7.2, leakage power becomes the main concern as the transistors
getting smaller. Furthermore we have more cores in our designs nowadays, so leakage power is
a big problem there also.
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(a) Power vs number of cores

(b) Power vs technology scaling

Figure 7.2: Power distribution with technology scaling
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Various techniques have been developed to reduce both dynamic and leakage power. The
two most common traditional, mainstream techniques are:

• Clock gating the disconnecting of the clock from a device it drives when the data going
into the device is not changing. This technique is used to minimize dynamic power (figure
7.3a).

• Multi-Vth optimization – the replacement of faster Low-Vth cells, which consume more
leakage power, with slower High-Vth cells, which consume less leakage power. Since the
High-Vth cells are slower, this swapping only occurs on timing paths that have positive
slack and thus can be allowed to slow down (figure 7.3b).

(a) Clock gating (source: Synopsys)

(b) Multi-Vth

Figure 7.3: Synopsys VCSMX vs Cadence Simvision initial waveform

114



CHAPTER 7. CONCLUSION AND FUTURE WORK

As technologies have shrunk, leakage power consumption has grown exponentially, thus
requiring more aggressive power reduction techniques to be used. Similarly, clock frequency
increases have caused dynamic power consumption of the devices to outstrip the capacity of
the power networks that supply them, and this becomes especially acute when high power
consumption occurs in very small geometries, as this is a power density issue as well as a power
consumption issue.

Several advanced low power techniques have been developed to address these needs. The
most commonly adopted techniques today are:

• Multi-voltage (MV) the operation of different areas of a design at different voltage
levels. Only specific areas that require a higher voltage to meet performance targets are
connected to the higher voltage supplies. Other portions of the design operate at a lower
voltage, allowing for significant power savings. Multi-voltage is generally a technique used
to reduce dynamic power, but the lower voltage values also cause leakage power to be
reduced (figure 7.4a).

• Power gating the complete shut off of supply nets to different areas of a design when
they are not needed (also known as MTCMOS or power shutdown). Since the power has
been completely removed from these shutdown areas, the power for these areas is reduced
essentially to zero. This technique is used to reduce leakage power (figure 7.4b).

(a) Multy supply voltage

(b) Power Gating

Figure 7.4: Advanced low-power techniques

It is very common to see multi-voltage and power gating used together on the same design,
whereby different regions operate at different voltages, and one or more of those regions can
also be shutdown.

Finally, if we move a step beyond and do a research on EDA tools comparison. This
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comparison will consist of EDA tools of Synopsys and Cadence. More specifically the comparison
will be as follows:

• Logic Synthesis: Synopsys Design Compiler vs Cadence RTL Compiler

• Logic Equivalence Checking: Synopsys Formality vs Cadence Conformal

• Automatic Test Pattern Generation: Synopsys TetraMAX ATPG vs Cadence En-
counter Test

• Physical Design: Synopsys IC Compiler vs Cadence SoC Encounter

• Static Timing Analysis: Synopsys Primetime vs Cadence Tempus
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8.1 Design Compiler Results

Area report (top level)

Report : area

Design : slaveuniquify

Version: J-2014.09-SP2

Date : Mon Jul 6 00:11:49 2015

Librarys Used:

c35_CORELIB_WC File: /home/komourtz/AMS/C35B4C3/synopsys/c35_3.3V/c35_CORELIB_WC.db

c35_IOLIB_WC File: /home/komourtz/AMS/C35B4C3/synopsys/c35_3.3V/c35_IOLIB_WC.db

Number of ports: 41

Number of nets: 82

Number of cells: 42

Number of combinational cells: 0

Number of sequential cells: 0

Number of macros/black boxes: 41

Number of buf/inv: 0

Number of references: 4

Combinational area: 171826.199623

Buf/Inv area: 18054.399719

Noncombinational area: 871197.612701

Macro/Black Box area: 1395640.000000

Net Interconnect area: 161766.090611

Total cell area: 2438663.812325

Total area: 2600429.902935

1
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Violation report

Report : constraint

-all_violators

Design : slaveuniquify

Version: J-2014.09-SP2

Date : Mon Jul 6 00:11:47 2015

max_area

Required Actual

Design Area Area Slack

-----------------------------------------------------------------

slaveuniquify 0.000000 2600430.000000 -2600430.000000

VIOLATED

1
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Setup timing report

Report : timing

-path full

-delay max

-max_paths 1

Design : slaveuniquify

Version: J-2014.09-SP2

Date : Mon Jul 6 00:11:49 2015

Operating Conditions: WORST-MIL Library: c35_CORELIB_WC

Wire Load Model Mode: enclosed

Startpoint: ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[1]

rising edge-triggered flip-flop clocked by CLK

Endpoint: ahb_slave_inst/ahb_slave_mem/DOUT_reg[1]

rising edge-triggered flip-flop clocked by CLK

Path Group: CLK

Path Type: max

Des/Clust/Port Wire Load Model Library

------------------------------------------------

slaveuniquify 30k c35_CORELIB_WC

ahb_slave_test_1 10k c35_CORELIB_WC

ahb_slave_mem_test_1

10k c35_CORELIB_WC

Point Incr Path

--------------------------------------------------------------------------

clock CLK rise edge 0.000000 0.000000

clock network delay ideal 0.000000 0.000000

ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[1]/C DFSC1

0.000000 0.000000 r

ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[1]/Q DFSC1

1.918338 1.918338 f

ahb_slave_inst/ahb_slave_ram/ADDR_RD[1] ahb_slave_ram_test_1

0.000000 1.918338 f

ahb_slave_inst/ahb_slave_mem/ADDR_RD[1] ahb_slave_mem_test_1

0.000000 1.918338 f

ahb_slave_inst/ahb_slave_mem/U992/Q NOR21 1.204737 3.123075 r

ahb_slave_inst/ahb_slave_mem/U1387/Q NAND22 0.168019 3.291094 f

ahb_slave_inst/ahb_slave_mem/U1386/Q INV3 1.733972 5.025066 r

ahb_slave_inst/ahb_slave_mem/U27/Q BUF2 2.337953 7.363019 r

ahb_slave_inst/ahb_slave_mem/U196/Q AOI221 0.579772 7.942791 f

ahb_slave_inst/ahb_slave_mem/U195/Q NAND41 1.057071 8.999863 r

ahb_slave_inst/ahb_slave_mem/U539/Q OAI212 0.236692 9.236555 f

ahb_slave_inst/ahb_slave_mem/U1536/Q NAND41 0.842835 10.079391 r

ahb_slave_inst/ahb_slave_mem/U1688/Q AOI221 0.454668 10.534059 f

ahb_slave_inst/ahb_slave_mem/U1686/Q NAND22 0.463758 10.997816 r

ahb_slave_inst/ahb_slave_mem/DOUT_reg[1]/D DFSEC1 0.000134 10.997951 r

data arrival time 10.997951

clock CLK rise edge 12.000000 12.000000

clock network delay ideal 0.000000 12.000000

ahb_slave_inst/ahb_slave_mem/DOUT_reg[1]/C DFSEC1 0.000000 12.000000 r

library setup time -0.597889 11.402111

data required time 11.402111
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--------------------------------------------------------------------------

data required time 11.402111

data arrival time -10.997951

--------------------------------------------------------------------------

slack MET 0.404160

1
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Power report

Information: Updating design information... UID-85

Information: Propagating switching activity low effort zero delay simulation. PWR-6

Warning: Design has unannotated primary inputs. PWR-414

Warning: Design has unannotated sequential cell outputs. PWR-415

Report : power

-analysis_effort low

Design : slaveuniquify

Version: J-2014.09-SP2

Date : Mon Jul 6 00:11:47 2015

Librarys Used:

c35_CORELIB_WC File: /home/komourtz/AMS/C35B4C3/synopsys/c35_3.3V/c35_CORELIB_WC.db

c35_IOLIB_WC File: /home/komourtz/AMS/C35B4C3/synopsys/c35_3.3V/c35_IOLIB_WC.db

Operating Conditions: WORST-MIL Library: c35_CORELIB_WC

Wire Load Model Mode: enclosed

Design Wire Load Model Library

------------------------------------------------

slaveuniquify 30k c35_CORELIB_WC

ahb_slave_test_1 10k c35_CORELIB_WC

ahb_slave_ram_test_1 10k c35_CORELIB_WC

ahb_slave_mem_test_1 10k c35_CORELIB_WC

Global Operating Voltage = 3

Power-specific unit information :

Voltage Units = 1V

Capacitance Units = 1.000000pf

Time Units = 1ns

Dynamic Power Units = 1mW derived from V,C,T units

Leakage Power Units = 1pW

Cell Internal Power = 44.437294 mW 62%

Net Switching Power = 27.132820 mW 38%

---------

Total Dynamic Power = 71.570114 mW 100%

Cell Leakage Power = 24.0494 uW

Internal Switching Leakage Total

Power Group Power Power Power Power % Attrs

--------------------------------------------------------------------------------------------------

io_pad 5.515468 22.154610 3.092414e+06 27.673168

38.65%

memory 0.000000 0.000000 0.000000 0.000000 0.00%

black_box 0.000000 0.000000 0.000000 0.000000 0.00%

clock_network 0.000000 0.000000 0.000000 0.000000 0.00%

register 38.062965 1.714385 1.735926e+07 39.794746

55.58%
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sequential 0.000000 0.000000 0.000000 0.000000 0.00%

combinational 0.858918 3.263807 3.597753e+06 4.126307

5.76%

--------------------------------------------------------------------------------------------------

Total 44.437351 mW 27.132803 mW 2.404943e+07 pW 71.594215 mW

1
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QoR report

Report : qor

Design : slaveuniquify

Version: J-2014.09-SP2

Date : Mon Jul 6 00:11:57 2015

Timing Path Group ’CLK’

-----------------------------------

Levels of Logic: 10.000000

Critical Path Length: 10.997951

Critical Path Slack: 0.404160

Critical Path Clk Period: 12.000000

Total Negative Slack: 0.000000

No. of Violating Paths: 0.000000

Worst Hold Violation: 0.000000

Total Hold Violation: 0.000000

No. of Hold Violations: 0.000000

-----------------------------------

Cell Count

-----------------------------------

Hierarchical Cell Count: 3

Hierarchical Port Count: 155

Leaf Cell Count: 4342

Buf/Inv Cell Count: 346

Buf Cell Count: 285

Inv Cell Count: 61

CT Buf/Inv Cell Count: 0

Combinational Cell Count: 2259

Sequential Cell Count: 2083

Macro Count: 0

-----------------------------------

Area

-----------------------------------

Combinational Area: 171826.199623

Noncombinational Area:

871197.612701

Buf/Inv Area: 18054.399719

Total Buffer Area: 15815.799629

Total Inverter Area: 2238.600090

Macro/Black Box Area:

1395640.000000

Net Area: 161766.090611

-----------------------------------

Cell Area: 2438663.812325

Design Area: 2600429.902935

Design Rules

-----------------------------------

Total Number of Nets: 6447

Nets With Violations: 0
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Max Trans Violations: 0

Max Cap Violations: 0

-----------------------------------

Hostname: noyce

Compile CPU Statistics

-----------------------------------------

Resource Sharing: 0.004318

Logic Optimization: 0.366875

Mapping Optimization: 24.889622

-----------------------------------------

Overall Compile Time: 28.064869

Overall Compile Wall Clock Time: 67.053444

--------------------------------------------------------------------

Design WNS: 0.000000 TNS: 0.000000 Number of Violating Paths: 0

Design Hold WNS: 0.000000 TNS: 0.000000 Number of Violating Paths: 0

--------------------------------------------------------------------

1
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Scan configuration report

Report : Scan configuration

Design : slaveuniquify

Version: J-2014.09-SP2

Date : Mon Jul 6 00:11:47 2015

========================================

TEST MODE: all_dft

VIEW : Specification

========================================

Chain count: 1

Scan Style: Multiplexed flip-flop

Maximum scan chain length: Undefined

Exact scan chain length: Undefined

Physical Partitioning: Horizontal

Replace: True

Preserve multibit segments: False

Clock mixing: No mix

Internal clocks: none

Add lockup: True

Lockup type: latch

Insert terminal lockup: False

Create dedicated scan out ports: False

Shared scan in: 0

Bidirectional mode: No bidirectional type

Internal Clock Mixing: False

Test Clocks by System Clocks: False

Hierarchical Isolation: False

Multiple Scan Enable: Disable

Pipeline Scan Enable: Disable

Voltage Mixing: False

Identify Shift Register: False

Power Domain Mixing: False

Reuse MV Isolation Cells: True

Multi LSSD: Disable

1
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Scan path report

Report : Scan path

Design : slaveuniquify

Version: J-2014.09-SP2

Date : Mon Jul 6 00:11:49 2015

========================================

TEST MODE: Internal_scan

VIEW : Existing DFT

========================================

========================================

AS SPECIFIED BY USER

========================================

========================================

AS BUILT BY insert_dft

========================================

Scan_path Len ScanDataIn ScanDataOut ScanEnable MasterClock SlaveClock

----------- ----- ----------- ----------- ----------- ----------- -----------

I 1 2083 PI_Scan_In PO_Scan_Out PI_Scan_enable PI_clk -

1
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Hold timing results

Report : timing

-path full

-delay min

-nworst 10000

-input_pins

-max_paths 10000

Design : slaveuniquify

Version: J-2014.09-SP2

Date : Mon Jul 6 00:11:54 2015

Operating Conditions: WORST-MIL Library: c35_CORELIB_WC

Wire Load Model Mode: enclosed

Startpoint: ahb_slave_inst/ahb_slave_ram/data_phase_reg

rising edge-triggered flip-flop clocked by CLK

Endpoint: ahb_slave_inst/ahb_slave_ram/error_reg

rising edge-triggered flip-flop clocked by CLK

Path Group: CLK

Path Type: min

Des/Clust/Port Wire Load Model Library

------------------------------------------------

slaveuniquify 30k c35_CORELIB_WC

ahb_slave_ram_test_1

10k c35_CORELIB_WC

Point Incr Path

--------------------------------------------------------------------------

clock CLK rise edge 0.000000 0.000000

clock network delay ideal 0.000000 0.000000

ahb_slave_inst/ahb_slave_ram/data_phase_reg/C DFSC1

0.000000 0.000000 r

ahb_slave_inst/ahb_slave_ram/data_phase_reg/Q DFSC1

1.220685 1.220685 r

ahb_slave_inst/ahb_slave_ram/error_reg/SD DFSC1 0.000134 1.220819 r

data arrival time 1.220819

clock CLK rise edge 0.000000 0.000000

clock network delay ideal 0.000000 0.000000

ahb_slave_inst/ahb_slave_ram/error_reg/C DFSC1 0.000000 0.000000 r

library hold time 0.000000 0.000000

data required time 0.000000

--------------------------------------------------------------------------

data required time 0.000000

data arrival time -1.220819

--------------------------------------------------------------------------

slack MET 1.220819
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Coverage estimation (part of)

In mode: Internal_scan...

Design has scan chains in this mode

Design is scan routed

Post-DFT DRC enabled

Information: Starting test design rule checking. TEST-222

Loading test protocol

...basic checks...

...basic sequential cell checks...

...checking vector rules...

...checking clock rules...

...checking scan chain rules...

...checking scan compression rules...

...checking X-state rules...

...checking tristate rules...

...extracting scan details...

-----------------------------------------------------------------

DRC Report

Total violations: 0

-----------------------------------------------------------------

Test Design rule checking did not find violations

-----------------------------------------------------------------

Sequential Cell Report

0 out of 2083 sequential cells have violations

-----------------------------------------------------------------

SEQUENTIAL CELLS WITHOUT VIOLATIONS

ahb_slave_inst/ahb_slave_ram/counter_reg[0]

ahb_slave_inst/ahb_slave_ram/HRESP_reg

ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[7]

ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[6]

ahb_slave_inst/ahb_slave_ram/STALL_reg

ahb_slave_inst/ahb_slave_ram/error_reg

ahb_slave_inst/ahb_slave_ram/modulo_result_error_reg[1]

ahb_slave_inst/ahb_slave_ram/modulo_result_error_reg[0]

ahb_slave_inst/ahb_slave_ram/WR_pre_d_reg

ahb_slave_inst/ahb_slave_ram/RD_pre_d_reg

ahb_slave_inst/ahb_slave_ram/ADDR_WR_reg[7]

ahb_slave_inst/ahb_slave_ram/ADDR_WR_reg[6]

ahb_slave_inst/ahb_slave_ram/ADDR_WR_reg[5]

ahb_slave_inst/ahb_slave_ram/ADDR_WR_reg[4]

ahb_slave_inst/ahb_slave_ram/ADDR_WR_reg[3]

ahb_slave_inst/ahb_slave_ram/ADDR_WR_reg[2]

ahb_slave_inst/ahb_slave_ram/ADDR_WR_reg[1]

ahb_slave_inst/ahb_slave_ram/ADDR_WR_reg[0]

ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[5]

ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[4]

ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[3]
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ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[1]

ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[0]

ahb_slave_inst/ahb_slave_ram/counter_reg[2]

ahb_slave_inst/ahb_slave_ram/counter_reg[1]

ahb_slave_inst/ahb_slave_ram/data_phase_reg

ahb_slave_inst/ahb_slave_ram/ADDR_RD_reg[2]

ahb_slave_inst/ahb_slave_mem/Mem_reg[255][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[255][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[255][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[255][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[255][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[255][2]

ahb_slave_inst/ahb_slave_mem/Mem_reg[255][1]

ahb_slave_inst/ahb_slave_mem/Mem_reg[255][0]

ahb_slave_inst/ahb_slave_mem/Mem_reg[254][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[254][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[254][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[254][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[254][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[254][2]

ahb_slave_inst/ahb_slave_mem/Mem_reg[254][1]

ahb_slave_inst/ahb_slave_mem/Mem_reg[254][0]

ahb_slave_inst/ahb_slave_mem/Mem_reg[253][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[253][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[253][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[253][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[253][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[253][2]

ahb_slave_inst/ahb_slave_mem/Mem_reg[253][1]

ahb_slave_inst/ahb_slave_mem/Mem_reg[253][0]

ahb_slave_inst/ahb_slave_mem/Mem_reg[252][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[252][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[252][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[252][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[252][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[252][2]

ahb_slave_inst/ahb_slave_mem/Mem_reg[252][1]

ahb_slave_inst/ahb_slave_mem/Mem_reg[252][0]

ahb_slave_inst/ahb_slave_mem/Mem_reg[251][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[251][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[251][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[251][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[251][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[251][2]

ahb_slave_inst/ahb_slave_mem/Mem_reg[251][1]

ahb_slave_inst/ahb_slave_mem/Mem_reg[251][0]

ahb_slave_inst/ahb_slave_mem/Mem_reg[250][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[250][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[250][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[250][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[250][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[250][2]

ahb_slave_inst/ahb_slave_mem/Mem_reg[250][1]

ahb_slave_inst/ahb_slave_mem/Mem_reg[250][0]

ahb_slave_inst/ahb_slave_mem/Mem_reg[249][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[249][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[249][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[249][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[249][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[249][2]
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ahb_slave_inst/ahb_slave_mem/Mem_reg[249][1]

ahb_slave_inst/ahb_slave_mem/Mem_reg[249][0]

ahb_slave_inst/ahb_slave_mem/Mem_reg[248][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[248][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[248][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[248][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[248][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[248][2]

..............

..............

..............

ahb_slave_inst/ahb_slave_mem/Mem_reg[1][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[1][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[1][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[1][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[1][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[1][2]

ahb_slave_inst/ahb_slave_mem/Mem_reg[1][1]

ahb_slave_inst/ahb_slave_mem/Mem_reg[1][0]

ahb_slave_inst/ahb_slave_mem/Mem_reg[0][7]

ahb_slave_inst/ahb_slave_mem/Mem_reg[0][6]

ahb_slave_inst/ahb_slave_mem/Mem_reg[0][5]

ahb_slave_inst/ahb_slave_mem/Mem_reg[0][4]

ahb_slave_inst/ahb_slave_mem/Mem_reg[0][3]

ahb_slave_inst/ahb_slave_mem/Mem_reg[0][2]

ahb_slave_inst/ahb_slave_mem/Mem_reg[0][1]

ahb_slave_inst/ahb_slave_mem/Mem_reg[0][0]

ahb_slave_inst/ahb_slave_mem/DOUT_reg[7]

ahb_slave_inst/ahb_slave_mem/DOUT_reg[6]

ahb_slave_inst/ahb_slave_mem/DOUT_reg[5]

ahb_slave_inst/ahb_slave_mem/DOUT_reg[4]

ahb_slave_inst/ahb_slave_mem/DOUT_reg[3]

ahb_slave_inst/ahb_slave_mem/DOUT_reg[2]

ahb_slave_inst/ahb_slave_mem/DOUT_reg[1]

ahb_slave_inst/ahb_slave_mem/DOUT_reg[0]

....Inferring feed-through connections....

Information: Test design rule checking completed. TEST-123

Running test coverage estimation...

47664 faults were added to fault list.

ATPG performed for stuck fault model using internal pattern source.

----------------------------------------------------------

#patterns #faults #ATPG faults test process

stored detect/active red/au/abort coverage CPU time

--------- ------------- ------------ -------- --------

Begin deterministic ATPG: #uncollapsed_faults=32804, abort_limit=10...

0 10178 22626 0/0/0 52.52% 0.02

0 3250 19376 0/0/0 59.34% 0.03

0 2085 17291 0/0/0 63.72% 0.05

0 1171 16120 0/0/0 66.17% 0.05

0 1168 14952 0/0/0 68.62% 0.06

0 928 14024 0/0/0 70.57% 0.06

0 807 13217 0/0/0 72.26% 0.07

0 799 12418 0/0/0 73.94% 0.07

0 772 11646 0/0/0 75.56% 0.08

0 627 11019 0/0/0 76.88% 0.08

0 701 10318 0/0/0 78.35% 0.09

0 600 9718 0/0/0 79.61% 0.09

0 516 9202 0/0/0 80.69% 0.10

0 604 8598 0/0/0 81.96% 0.10
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0 531 8067 0/0/0 83.07% 0.11

0 415 7652 0/0/0 83.94% 0.11

0 416 7236 0/0/0 84.82% 0.12

0 437 6799 0/0/0 85.73% 0.12

0 377 6422 0/0/0 86.52% 0.13

0 418 6004 0/0/0 87.40% 0.13

0 412 5592 0/0/0 88.27% 0.13

0 431 5161 0/0/0 89.17% 0.14

0 334 4827 0/0/0 89.87% 0.14

0 361 4466 0/0/0 90.63% 0.15

0 323 4143 0/0/0 91.31% 0.15

0 311 3832 0/0/0 91.96% 0.15

0 256 3576 0/0/0 92.50% 0.16

0 289 3287 0/0/0 93.10% 0.16

0 235 3052 0/0/0 93.60% 0.17

0 193 2859 0/0/0 94.00% 0.17

0 251 2608 0/0/0 94.53% 0.17

0 222 2386 0/0/0 94.99% 0.18

0 168 2218 0/0/0 95.35% 0.18

0 170 2048 0/0/0 95.70% 0.19

0 212 1836 0/0/0 96.15% 0.19

0 137 1699 0/0/0 96.43% 0.19

0 139 1560 0/0/0 96.73% 0.20

0 147 1413 0/0/0 97.03% 0.20

0 114 1299 0/0/0 97.27% 0.20

0 112 1187 0/0/0 97.51% 0.21

0 123 1064 0/0/0 97.77% 0.21

0 136 928 0/0/0 98.05% 0.21

0 132 796 0/0/0 98.33% 0.22

0 124 672 0/0/0 98.59% 0.22

0 112 560 0/0/0 98.82% 0.23

0 81 479 0/0/0 98.99% 0.23

0 70 409 0/0/0 99.14% 0.23

0 77 332 0/0/0 99.30% 0.24

0 74 258 0/0/0 99.46% 0.24

0 59 199 0/0/0 99.58% 0.24

0 74 125 0/0/0 99.74% 0.25

0 65 60 0/0/0 99.87% 0.25

0 32 28 0/0/0 99.94% 0.25

0 28 0 0/0/0 100.00% 0.25

Pattern Summary Report

-----------------------------------------------

#internal patterns 0

-----------------------------------------------

Uncollapsed Stuck Fault Summary Report

-----------------------------------------------

fault class code #faults

------------------------------ ---- ---------

Detected DT 47654

Possibly detected PT 0

Undetectable UD 10

ATPG untestable AU 0

Not detected ND 0

-----------------------------------------------

total faults 47664

test coverage 100.00%

-----------------------------------------------
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Information: The test coverage above may be inferior

than the real test coverage with customized

protocol and test simulation library.

1
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8.2 TetraMAX ATPG Results

TetraMAX ATPG summary

Uncollapsed Stuck Fault Summary Report

-----------------------------------------------

fault class code #faults

------------------------------ ---- ---------

Detected DT 66900

detected_by_simulation DS 52014

detected_by_implication DI 14886

Possibly detected PT 0

Undetectable UD 10

undetectable-unused UU 10

ATPG untestable AU 0

Not detected ND 0

-----------------------------------------------

total faults 66910

test coverage 100.00%

fault coverage 99.99%

-----------------------------------------------

Pattern Summary Report

-----------------------------------------------

#internal patterns 1003

#full_sequential patterns 1003

-----------------------------------------------
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Undetected faults

sa0 UU PI_HBURST[2]

sa1 UU PI_HBURST[2]

sa0 UU PI_HBURST[1]

sa1 UU PI_HBURST[1]

sa0 UU PI_HBURST[0]

sa1 UU PI_HBURST[0]

sa0 UU PI_HSIZE[1]

sa1 UU PI_HSIZE[1]

sa0 UU PI_HSIZE[0]

sa1 UU PI_HSIZE[0]
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Faults example

sa0 DI PAD_scan_in/Y ITP 1: 13440/0/0, SCOAP=1/1/2 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U42/B AOI221 2: 13444/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U40/D AOI221 3: 13473/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U49/B AOI221 4: 13488/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[236][0]/Q DFSE1 5: 13492/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U50/D AOI221 6: 13496/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1512/D AOI221 7: 13501/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U47/B AOI221 8: 13519/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U48/B AOI221 9: 13524/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U56/D AOI221 10: 13530/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[222][0]/Q DFSE1 11: 13531/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[220][0]/Q DFSE1 12: 13536/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[219][0]/Q DFSE1 13: 13539/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[213][0]/Q DFSE1 14: 13555/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U53/B AOI221 15: 13558/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[211][0]/Q DFSE1 16: 13560/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U63/B AOI221 17: 13576/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1518/D AOI221 18: 13589/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U59/D AOI221 19: 13595/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[198][0]/Q DFSE1 20: 13596/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[183][0]/Q DFSE1 21: 13640/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U39/D AOI221 22: 13468/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1087/B AOI221 23: 13648/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1089/D AOI221 24: 13651/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U55/B AOI221 25: 13568/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[175][0]/Q DFSE1 26: 13663/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[170][0]/Q DFSE1 27: 13675/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U123/B AOI221 28: 13692/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U134/D AOI221 29: 13713/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U135/B AOI221 30: 13720/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U133/D AOI221 31: 13723/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[255][0]/Q DFSE1 32: 13441/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1082/D AOI221 33: 13729/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U130/D AOI221 34: 13739/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U122/B AOI221 35: 13697/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U143/D AOI221 36: 13762/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[138][0]/Q DFSE1 37: 13763/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[137][0]/Q DFSE1 38: 13766/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U141/B AOI221 39: 13769/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U62/D AOI221 40: 13610/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U60/D AOI221 41: 13600/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1084/D AOI221 42: 13773/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U139/D AOI221 43: 13778/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[131][0]/Q DFSE1 44: 13782/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U138/B AOI221 45: 13785/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1077/B AOI221 46: 13801/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1078/D AOI221 47: 13804/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[119][0]/Q DFSE1 48: 13819/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1072/B AOI221 49: 13822/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U131/B AOI221 50: 13736/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1073/D AOI221 51: 13825/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[116][0]/Q DFSE1 52: 13826/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1074/D AOI221 53: 13830/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1058/D AOI221 54: 13843/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U99/D AOI221 55: 13853/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[106][0]/Q DFSE1 56: 13854/1/0, SCOAP=1/1/35 0/0/0/0
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sa0 DS ahb_slave_inst/ahb_slave_mem/U98/B AOI221 57: 13860/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1057/D AOI221 58: 13864/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[254][0]/Q DFSE1 59: 13443/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[100][0]/Q DFSE1 60: 13870/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U95/D AOI221 61: 13874/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[98][0]/Q DFSE1 62: 13875/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U108/D AOI221 63: 13892/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U107/D AOI221 64: 13897/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[166][0]/Q DFSE1 65: 13686/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[91][0]/Q DFSE1 66: 13896/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1060/B AOI221 67: 13889/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[90][0]/Q DFSE1 68: 13898/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U106/D AOI221 69: 13902/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[88][0]/Q DFSE1 70: 13903/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[96][0]/Q DFSE1 71: 13880/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1059/D AOI221 72: 13908/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U103/B AOI221 73: 13920/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U102/D AOI221 74: 13923/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U96/D AOI221 75: 13869/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1091/B AOI221 76: 13622/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[152][0]/Q DFSE1 77: 13724/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[184][0]/Q DFSE1 78: 13636/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1092/B AOI221 79: 13627/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[241][0]/Q DFSE1 80: 13477/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1070/D AOI221 81: 13931/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[79][0]/Q DFSE1 82: 13930/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[78][0]/Q DFSE1 83: 13932/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U115/D AOI221 84: 13936/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U41/B AOI221 85: 13480/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[76][0]/Q DFSE1 86: 13937/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[75][0]/Q DFSE1 87: 13940/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U114/D AOI221 88: 13946/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1066/D AOI221 89: 13952/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U142/D AOI221 90: 13757/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[165][0]/Q DFSE1 91: 13689/1/0, SCOAP=1/1/35 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U112/D AOI221 92: 13957/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U146/D AOI221 93: 13635/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U1085/B AOI221 94: 13754/0/1, SCOAP=1/5/31 0/0/0/0

sa0 DS ahb_slave_inst/ahb_slave_mem/U111/D AOI221 95: 13962/0/1, SCOAP=1/5/31 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[186][0]/Q DFSE1 96: 13631/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[234][0]/Q DFSE1 97: 13497/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[67][0]/Q DFSE1 98: 13961/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[66][0]/Q DFSE1 99: 13963/1/0, SCOAP=1/1/35 0/0/0/0

sa1 DS ahb_slave_inst/ahb_slave_mem/\Mem_reg[240][0]/Q DFSE1 100: 13479/1/0, SCOAP=1/1/35 0/0/0/0
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Pattern example

Pattern 0 full_sequential

Time 0: period = 100

Time 0: load 1 =

0010111010 0101001111 1000110001 0001110100 0101011111 1100101111 1100101111

0101101011 0101010100 0111100100 0101100001 0010110111 0101110001 1101101001

0101110100 0111000100 0101100101 0111010011 1001000110 0011011000 1000010010

1101010101 0100100010 0101101001 0101011110 1100011101 0011001110 0101001001

0111100100 1110001101 1011100001 1110101000 1011000110 1101010111 0110001010

0011110001 0010010100 0110100110 0100000101 0001001100 1010111010 1011100111

0001110110 0100100001 0001110100 1011101111 1110100111 0100101111 1000101010

1111001011 0101001010 1100001101 0010110000 1101101110 1100111100 0010001001

0001011110 1101100101 0111110110 0001110011 0111100110 0110000110 1101001100

0110000011 0101010110 1011111101 0100100110 1001001001 1101100000 0001010010

1101000110 0001000001 1010001010 0011000111 1100010010 1001010111 1011010011

1010110010 0001110001 0011001101 1001001001 1101100110 0000101000 0001000101

0100101111 0010010111 0110101000 0001111101 0101010100 1001110011 0010100111

0101001100 0010011000 0110101111 0110011100 1010111001 0000011000 0111010100

0011010101 0001011101 1111101101 0011000101 0001010100 0110011011 0011011010

1110100010 1110011100 1001011111 0000100111 1101110110 1101000101 1101010011

0001111110 1010010010 1011001000 0100110101 1101110111 0110110101 0001001110

1100110110 0011010010 0101010110 1111011000 1101101101 1001101100 1100100010

0010110110 1000001011 0111101011 1001101011 1011011100 1000010011 0101100001

0010010010 1000110101 0010010000 1110111110 1101111100 1011010001 1001000110

1101100101 0101011100 1110010100 0100010001 0100011100 1100100111 0100101111

0100101001 0111100100 1111101100 0010110100 0000011110 1011111111 0000010101

0101001101 1001000111 0101010000 0000111101 1101000110 0111010111 0011100011

0100001001 0101110100 1001010100 0100000101 0000100000 1010010010 0001111011

0000100110 0111000110 1000100011 1000100101 0000100001 0111110001 0001110011

1011010101 0101010100 0100101111 0011000010 0101010000 0010011101 0000001101

1111101100 0010110101 0111111010 1110101010 1011011111 0100110010 1101110111

1000010011 0000101110 1010110101 0101011000 0011000010 0001101111 0001100001

0011010110 0101000101 1110010000 0001101010 1011100010 0101110101 0100111111

1100010010 1001011101 1011100001 1100100100 0110001010 010

Time 100: force_all_pis = 1000111010 1001111011 1100001001

Time 140: measure_all_pos =1000000001 0

Time 145: pulse clocks PI_clk 2

Time 200: unload 1 =

1110001100 1100000010 1010101110 1110001011 1010100000 0011010000 0011010000

1010010100 1010101011 1000011011 1010011110 1101001000 1010001110 0010010110

1010001011 1000111011 1010011010 1000101100 0110111001 1100100111 0111101101

0010101010 1011011101 1010010110 1010100001 0011100010 1100110001 1010110110

1000011011 0001110010 0100011110 0001010111 0100111001 0010101000 1001110101

1100001110 1101101011 1001011001 1011111010 1110110011 0101000101 0100011000

1110001001 1011011110 1110001011 0100010000 0001011000 1011010000 0111010101

0000110100 1010110101 0011110010 1101001111 0010010001 0011000011 1101110110

1110100001 0010011010 1000001001 1110001100 1000011001 1001111001 0010110011

1001111100 1010101001 0100000010 1011011001 0110110110 0010011111 1110101101

0010111001 1110111110 0101110101 1100111000 0011101101 0110101000 0100101100

0101001101 1110001110 1100110010 0110110110 0010011001 1111010111 1110111010

1011010000 1101101000 1001010111 1110000010 1010101011 0110001100 1101011000

1010110011 1101100111 1001010000 1001100011 0101000110 1111100111 1000101011

1100101010 1110100010 0000010010 1100111010 1110101011 1001100100 1100100101

0001011101 0001100011 0110100000 1111011000 0010001001 0010111010 0010101100

1110000001 0101101101 0100110111 1011001010 0010001000 1001001010 1110110001

0011001001 1100101101 1010101001 0000100111 0010010010 0110010011 0011011101

1101001001 0111110100 1000010100 0110010100 0100100011 0111101100 1010011110
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1101101101 0111001010 1101101111 0001000001 0010000011 0100101110 0110111001

0010011010 1010100011 0001101011 1011101110 1011100011 0011011000 1011010000

1011010110 1000011011 0000010011 1101001011 1111100001 0100000000 1111101010

1010110010 0110111000 1010101111 1111000010 0010111001 1000101000 1100011100

1011110110 1010001011 0110101011 1011111010 1111011111 0101101101 1110000100

1111011001 1000111001 0111011100 0111011010 1111011110 1000001110 1110001100

0100101010 1010101011 1011010000 1100111101 1010101111 1101100010 1111110010

0000010011 1101001010 1000000101 0001010101 0100100000 1011001101 0010001000

0111101100 1111010001 0101001010 1010100111 1100111101 1110010000 1110011110

1101101000 1010111010 0001101111 1110010101 0100011101 1010001010 1011000000

0011101101 0110100010 0100011110 0011011011 1001111110 001
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8.3 SoC Encounter Results

Gate Count

Gate area 54.6000 um^2

Level 0 Module slaveuniquify Gates= 22742 Cells= 5756 Area= 1241731.4 um^2

Level 1 Module ahb_slave_inst Gates=19442 Cells=4497 Area= 1061533.2 um^2

Level 2 Module ahb_slave_inst/ahb_slave_ram Gates=347 Cells=159 Area= 18964.4 um^2

Level 2 Module ahb_slave_inst/ahb_slave_mem Gates=19036 Cells=4296 Area= 1039402.0 um^2
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Verify DRC

###############################################################

# Generated by: Cadence Encounter 14.13-s036_1

# OS: Linux x86_64Host ID noyce

# Generated on: Fri Jul 10 00:10:16 2015

# Design: slaveuniquify

# Command: verify_drc -report reports/slaveuniquify.drc.rpt -limit 1000

###############################################################

No DRC violations were found
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Verify connectivity

###############################################################

# Generated by: Cadence Encounter 14.13-s036_1

# OS: Linux x86_64Host ID noyce

# Generated on: Fri Jul 10 00:10:19 2015

# Design: slaveuniquify

# Command: verifyConnectivity -type all -report reports/slaveuniquify.conn.rpt -error 1000 -warning 50

###############################################################

Verify Connectivity Report is created on Fri Jul 10 00:10:19 2015

Begin Summary

Found no problems or warnings.

End Summary
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Power Report

∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ Encounter 14.13− s036 1 (64 b i t ) 08/14/2014 18 :19 ( Linux 2 . 6 )
∗
∗
∗ Date & Time : 2015−Jul−10 00 : 10 : 11 (2015−Jul−09 21 : 10 : 11 GMT)
∗
∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗
∗ Design : s l a v eun i qu i f y
∗
∗ Liber ty L i b r a r i e s used :
∗ . . / . . /AMS/C35B4C3/ l i b e r t y / c35 3 . 3V/c35 CORELIB WC. l i b
∗ . . / . . /AMS/C35B4C3/ l i b e r t y / c35 3 . 3V/c35 IOLIB WC . l i b
∗
∗ Power Domain used :
∗ Rai l : vdd ! Voltage : 3
∗ Rai l : vdd3r1 ! Voltage : 2 .97
∗ Rai l : vdd3r2 ! Voltage : 2 .97
∗ Rai l : vdd3o ! Voltage : 2 .97
∗
∗ Power View : slow
∗
∗ User−Defined Act i v i ty : N.A.
∗
∗ Act iv i ty F i l e : N.A.
∗
∗ Hi e r a r c h i c a l Global Ac t i v i t y : N.A.
∗
∗ Global Act i v i t y : N.A.
∗
∗ Sequent i a l Element Act i v i ty : N.A.
∗
∗ Primary Input Act i v i ty : 0 .500000
∗
∗ Defau l t i c g r a t i o : N.A.
∗
∗ Global Comb ClockGate Ratio : N.A.
∗
∗ Power Units = 1mW
∗
∗ Time Units = 1e−09 s e c s
∗
∗ report power −o u t f i l e r epo r t s /power . rpt −s o r t t o t a l −c lock network a l l
∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Clock In t e r na l Switching Leakage Total Percentage
Power Power Power Power (%)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CLK 151 42 .2 0 .006638 193 .2 54 .84
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total ( exc lud ing dup l i c a t e s ) 151 42 .2 0 .006638 193 .2 54 .84
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

In s tance Power Report f o r CLK c lock network

Ins tance Max Toggles Total Toggles I n t e r n a l Switching Leakage
Total Percentage Ce l l

Input Pins Output Pins Power Power Power
Power (%) Name
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PAD clk 1 .613 e+08 1 .613 e+08 2 .229 0 .2645 7 .622 e−05
2 .493 0 .7078 ITCK4P
c l k L3 I 8 1 .613 e+08 1 .613 e+08 0.1153 0 .2067 5 .383 e−06
0 .322 0 .0914 BUF15
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c l k L3 I 1 2 1 .613 e+08 1 .613 e+08 0.1154 0 .2032 5 .383 e−06
0 .3187 0.09046 BUF15
c l k L3 I 9 1 .613 e+08 1 .613 e+08 0.1145 0 .1947 5 .36 e−06
0 .3092 0.08779 CLKBU15
c l k L3 I 2 1 .613 e+08 1 .613 e+08 0.1157 0 .1932 5 .383 e−06
0 .3089 0 .0877 BUF15
c l k L3 I 3 0 1 .613 e+08 1 .613 e+08 0.1157 0 .1896 5 .383 e−06
0 .3053 0.08666 BUF15
c l k L3 I 1 3 1 .613 e+08 1 .613 e+08 0.1149 0 .1844 5 .36 e−06
0 .2992 0.08494 CLKBU15
c l k L3 I 2 5 1 .613 e+08 1 .613 e+08 0 .116 0 .178 5 .383 e−06
0 .294 0 .08347 BUF15
c l k L3 I 2 8 1 .613 e+08 1 .613 e+08 0.1163 0 .1721 5 .383 e−06
0 .2885 0.08189 BUF15
c l k L3 I 1 5 1 .613 e+08 1 .613 e+08 0.1152 0 .1729 5 .36 e−06
0 .2881 0.08178 CLKBU15
c l k L3 I 1 0 1 .613 e+08 1 .613 e+08 0.1161 0 .1691 5 .383 e−06
0 .2852 0.08096 BUF15
c l k L3 I 6 1 .613 e+08 1 .613 e+08 0.1162 0 .1686 5 .383 e−06
0 .2848 0.08085 BUF15
c l k L3 I 4 1 .613 e+08 1 .613 e+08 0.1162 0 .1673 5 .383 e−06
0 .2835 0.08048 BUF15
c l k L3 I 7 1 .613 e+08 1 .613 e+08 0.1163 0 .1665 5 .383 e−06
0 .2828 0.08028 BUF15
c l k L3 I 1 7 1 .613 e+08 1 .613 e+08 0.1162 0 .1654 5 .383 e−06
0 .2816 0.07995 BUF15
c l k L3 I 2 2 1 .613 e+08 1 .613 e+08 0.1166 0 .1636 5 .383 e−06
0 .2802 0.07954 BUF15
c l k L3 I 1 1 .613 e+08 1 .613 e+08 0.1164 0 .1631 5 .383 e−06
0 .2796 0.07936 BUF15
c l k L3 I 2 1 1 .613 e+08 1 .613 e+08 0.1166 0 .1625 5 .383 e−06
0 .2792 0.07925 BUF15
c l k L3 I 3 1 1 .613 e+08 1 .613 e+08 0.1163 0 .1627 5 .383 e−06
0 .2789 0.07918 BUF15
c l k L3 I 5 1 .613 e+08 1 .613 e+08 0.1155 0 .1619 5 .36 e−06
0 .2774 0.07874 CLKBU15
c l k L3 I 2 9 1 .613 e+08 1 .613 e+08 0.1166 0 .16 5 .383 e−06
0 .2766 0.07852 BUF15
c l k L3 I 2 0 1 .613 e+08 1 .613 e+08 0.1168 0 .156 5 .383 e−06
0 .2729 0.07746 BUF15
c l k L3 I 2 7 1 .613 e+08 1 .613 e+08 0.1168 0 .1534 5 .383 e−06
0 .2702 0.07669 BUF15
c l k L3 I 2 6 1 .613 e+08 1 .613 e+08 0.1168 0 .1513 5 .383 e−06
0 .2681 0.07611 BUF15
c l k L3 I 2 3 1 .613 e+08 1 .613 e+08 0.1159 0 .1505 5 .36 e−06
0 .2665 0.07565 CLKBU15
c l k L3 I 3 1 .613 e+08 1 .613 e+08 0.1168 0 .145 5 .383 e−06
0 .2619 0.07434 BUF15
c l k L3 I 1 1 1 .613 e+08 1 .613 e+08 0.1159 0 .1424 5 .36 e−06
0 .2584 0.07334 CLKBU15
c l k L4 I 8 2 1 .613 e+08 1 .613 e+08 0.1176 0 .1403 5 .383 e−06
0 .2578 0.07319 BUF15
c l k L3 I 1 9 1 .613 e+08 1 .613 e+08 0.1171 0 .1406 5 .383 e−06
0 .2577 0.07316 BUF15
c l k L3 I 0 1 .613 e+08 1 .613 e+08 0.1169 0 .1404 5 .383 e−06
0 .2574 0.07306 BUF15
c l k L4 I 247 1 .613 e+08 1 .613 e+08 0.1175 0 .1378 5 .383 e−06
0 .2553 0.07248 BUF15
c l k L4 I 162 1 .613 e+08 1 .613 e+08 0.1176 0 .1367 5 .383 e−06
0 .2543 0.07219 BUF15
c l k L4 I 5 6 1 .613 e+08 1 .613 e+08 0.1176 0 .1359 5 .383 e−06
0 .2535 0.07198 BUF15
c l k L4 I 246 1 .613 e+08 1 .613 e+08 0.1176 0 .135 5 .383 e−06
0 .2526 0.07171 BUF15
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
c l k L5 I 105 1 .613 e+08 1 .613 e+08 0.1227 0.01029 5 .383 e−06
0 .133 0 .03776 BUF15
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c l k L5 I 634 1 .613 e+08 1 .613 e+08 0.1239 0.009141 5 .383 e−06
0 .133 0 .03776 BUF15
c l k L5 I 554 1 .613 e+08 1 .613 e+08 0.1233 0.009682 5 .383 e−06
0 .133 0 .03775 BUF15
c l k L5 I 563 1 .613 e+08 1 .613 e+08 0.1237 0.009298 5 .383 e−06
0 .133 0 .03775 BUF15
c l k L5 I 186 1 .613 e+08 1 .613 e+08 0.1242 0.00881 5 .383 e−06
0 .133 0 .03775 BUF15
c l k L5 I 833 1 .613 e+08 1 .613 e+08 0.1241 0.00882 5 .383 e−06
0 .133 0 .03775 BUF15
c l k L5 I 694 1 .613 e+08 1 .613 e+08 0.1234 0.00959 5 .383 e−06
0 .133 0 .03775 BUF15
c l k L5 I 226 1 .613 e+08 1 .613 e+08 0 .124 0.008946 5 .383 e−06
0 .133 0 .03775 BUF15
c l k L5 I 370 1 .613 e+08 1 .613 e+08 0.1235 0.009417 5 .383 e−06
0 .133 0 .03774 BUF15
c l k L5 I 638 1 .613 e+08 1 .613 e+08 0.1237 0.009224 5 .383 e−06
0 .1329 0.03774 BUF15
c l k L5 I 846 1 .613 e+08 1 .613 e+08 0.1236 0.009314 5 .383 e−06
0 .1329 0.03774 BUF15
c l k L5 I 108 1 .613 e+08 1 .613 e+08 0.1233 0.009604 5 .383 e−06
0 .1329 0.03773 BUF15
c l k L5 I 228 1 .613 e+08 1 .613 e+08 0 .124 0.008899 5 .383 e−06
0 .1329 0.03773 BUF15
c l k L5 I 678 1 .613 e+08 1 .613 e+08 0.1239 0.009046 5 .383 e−06
0 .1329 0.03773 BUF15
c l k L5 I 247 1 .613 e+08 1 .613 e+08 0.1232 0.009734 5 .383 e−06
0 .1329 0.03773 BUF15
c l k L5 I 330 1 .613 e+08 1 .613 e+08 0.1238 0.009082 5 .383 e−06
0 .1329 0.03773 BUF15
c l k L5 I 780 1 .613 e+08 1 .613 e+08 0.1239 0.008964 5 .383 e−06
0 .1329 0.03773 BUF15
c l k L5 I 170 1 .613 e+08 1 .613 e+08 0.1237 0.009185 5 .383 e−06
0 .1329 0.03773 BUF15
c l k L5 I 664 1 .613 e+08 1 .613 e+08 0.1237 0.009205 5 .383 e−06
0 .1329 0.03772 BUF15
c l k L5 I 519 1 .613 e+08 1 .613 e+08 0.1235 0.009348 5 .383 e−06
0 .1329 0.03772 BUF15
c l k L5 I 281 1 .613 e+08 1 .613 e+08 0.1233 0.009531 5 .383 e−06
0 .1328 0.03771 BUF15
c l k L5 I 214 1 .613 e+08 1 .613 e+08 0.1243 0.008521 5 .383 e−06
0 .1328 0.03771 BUF15
c l k L5 I 7 5 1 .613 e+08 1 .613 e+08 0.1233 0.009476 5 .383 e−06
0 .1328 0 .0377 BUF15
c l k L5 I 896 1 .613 e+08 1 .613 e+08 0.1236 0.009169 5 .383 e−06
0 .1328 0 .0377 BUF15
c l k L5 I 728 1 .613 e+08 1 .613 e+08 0.1232 0.009613 5 .383 e−06
0 .1328 0 .0377 BUF15
c l k L5 I 432 1 .613 e+08 1 .613 e+08 0.1234 0.009359 5 .383 e−06
0 .1328 0 .0377 BUF15
c l k L5 I 231 1 .613 e+08 1 .613 e+08 0.1238 0.008979 5 .383 e−06
0 .1328 0.03769 BUF15
c l k L5 I 250 1 .613 e+08 1 .613 e+08 0.1235 0.009299 5 .383 e−06
0 .1328 0.03769 BUF15
c l k L5 I 651 1 .613 e+08 1 .613 e+08 0.1237 0.009035 5 .383 e−06
0 .1327 0.03768 BUF15
c l k L5 I 8 7 1 .613 e+08 1 .613 e+08 0.1236 0.009142 5 .383 e−06
0 .1327 0.03768 BUF15
c l k L5 I 150 1 .613 e+08 1 .613 e+08 0.1239 0.008816 5 .383 e−06
0 .1327 0.03767 BUF15
c l k L5 I 827 1 .613 e+08 1 .613 e+08 0.1239 0.008762 5 .383 e−06
0 .1327 0.03767 BUF15
c l k L5 I 668 1 .613 e+08 1 .613 e+08 0.1232 0.009462 5 .383 e−06
0 .1327 0.03767 BUF15
c l k L5 I 624 1 .613 e+08 1 .613 e+08 0.1234 0.009307 5 .383 e−06
0 .1327 0.03767 BUF15
c l k L5 I 702 1 .613 e+08 1 .613 e+08 0 .123 0.009696 5 .383 e−06
0 .1327 0.03767 BUF15
c l k L5 I 573 1 .613 e+08 1 .613 e+08 0.1236 0.009046 5 .383 e−06
0 .1327 0.03766 BUF15
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c l k L5 I 723 1 .613 e+08 1 .613 e+08 0.1229 0.009713 5 .383 e−06
0 .1327 0.03766 BUF15
c l k L5 I 542 1 .613 e+08 1 .613 e+08 0.1234 0.009225 5 .383 e−06
0 .1327 0.03766 BUF15
c l k L5 I 374 1 .613 e+08 1 .613 e+08 0.1237 0.008975 5 .383 e−06
0 .1326 0.03765 BUF15
c l k L5 I 391 1 .613 e+08 1 .613 e+08 0.1239 0.008708 5 .383 e−06
0 .1326 0.03765 BUF15
c l k L5 I 259 1 .613 e+08 1 .613 e+08 0.1241 0.008458 5 .383 e−06
0 .1326 0.03764 BUF15
c l k L5 I 230 1 .613 e+08 1 .613 e+08 0.1238 0.008776 5 .383 e−06
0 .1326 0.03764 BUF15
c l k L5 I 781 1 .613 e+08 1 .613 e+08 0 .124 0.008625 5 .383 e−06
0 .1326 0.03764 BUF15
c l k L5 I 135 1 .613 e+08 1 .613 e+08 0.1239 0 .0087 5 .383 e−06
0 .1326 0.03764 BUF15
c l k L5 I 556 1 .613 e+08 1 .613 e+08 0.1233 0.009285 5 .383 e−06
0 .1326 0.03764 BUF15
c l k L5 I 444 1 .613 e+08 1 .613 e+08 0.1227 0.00987 5 .383 e−06
0 .1326 0.03763 BUF15
c l k L5 I 604 1 .613 e+08 1 .613 e+08 0.1233 0.009257 5 .383 e−06
0 .1326 0.03763 BUF15
c l k L5 I 603 1 .613 e+08 1 .613 e+08 0.1236 0.008963 5 .383 e−06
0 .1325 0.03762 BUF15
c l k L5 I 242 1 .613 e+08 1 .613 e+08 0.1239 0.008617 5 .383 e−06
0 .1325 0.03762 BUF15
c l k L5 I 606 1 .613 e+08 1 .613 e+08 0.1233 0.009221 5 .383 e−06
0 .1325 0.03762 BUF15
c l k L5 I 453 1 .613 e+08 1 .613 e+08 0.1234 0.009116 5 .383 e−06
0 .1325 0.03762 BUF15
c l k L5 I 363 1 .613 e+08 1 .613 e+08 0.1235 0.009015 5 .383 e−06
0 .1325 0.03761 BUF15
c l k L5 I 103 1 .613 e+08 1 .613 e+08 0.1228 0.009712 5 .383 e−06
0 .1325 0.03761 BUF15
c l k L5 I 354 1 .613 e+08 1 .613 e+08 0.1236 0.008825 5 .383 e−06
0 .1325 0.03761 BUF15
c l k L5 I 1 3 1 .613 e+08 1 .613 e+08 0.1228 0.009633 5 .383 e−06
0 .1325 0 .0376 BUF15
c l k L5 I 830 1 .613 e+08 1 .613 e+08 0 .124 0.008482 5 .383 e−06
0 .1325 0 .0376 BUF15
c l k L5 I 3 1 1 .613 e+08 1 .613 e+08 0.1228 0.009602 5 .383 e−06
0 .1324 0 .0376 BUF15
c l k L5 I 6 2 1 .613 e+08 1 .613 e+08 0.1236 0.008789 5 .383 e−06
0 .1324 0.03759 BUF15
c l k L5 I 735 1 .613 e+08 1 .613 e+08 0.1236 0.008852 5 .383 e−06
0 .1324 0.03759 BUF15
c l k L5 I 371 1 .613 e+08 1 .613 e+08 0.1236 0.008805 5 .383 e−06
0 .1324 0.03759 BUF15
c l k L5 I 869 1 .613 e+08 1 .613 e+08 0.1236 0.00885 5 .383 e−06
0 .1324 0.03759 BUF15
c l k L5 I 367 1 .613 e+08 1 .613 e+08 0.1235 0.008872 5 .383 e−06
0 .1324 0.03758 BUF15
c l k L5 I 612 1 .613 e+08 1 .613 e+08 0.1235 0.008816 5 .383 e−06
0 .1324 0.03757 BUF15
c l k L5 I 3 7 1 .613 e+08 1 .613 e+08 0.1239 0.008488 5 .383 e−06
0 .1324 0.03757 BUF15
c l k L5 I 472 1 .613 e+08 1 .613 e+08 0.1229 0.009458 5 .383 e−06
0 .1323 0.03757 BUF15
c l k L5 I 497 1 .613 e+08 1 .613 e+08 0.1241 0.008211 5 .383 e−06
0 .1323 0.03757 BUF15
c l k L5 I 630 1 .613 e+08 1 .613 e+08 0.1236 0.008753 5 .383 e−06
0 .1323 0.03757 BUF15
c l k L5 I 1 1 1 .613 e+08 1 .613 e+08 0.1235 0.008841 5 .383 e−06
0 .1323 0.03756 BUF15
c l k L5 I 508 1 .613 e+08 1 .613 e+08 0.1241 0.008212 5 .383 e−06
0 .1323 0.03755 BUF15
c l k L5 I 134 1 .613 e+08 1 .613 e+08 0.1239 0.008323 5 .383 e−06
0 .1323 0.03754 BUF15
c l k L5 I 340 1 .613 e+08 1 .613 e+08 0.1236 0.008614 5 .383 e−06
0 .1322 0.03754 BUF15
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c l k L5 I 826 1 .613 e+08 1 .613 e+08 0.1236 0.008564 5 .383 e−06
0 .1322 0.03753 BUF15
c l k L5 I 445 1 .613 e+08 1 .613 e+08 0.1227 0.009485 5 .383 e−06
0 .1322 0.03753 BUF15
c l k L5 I 113 1 .613 e+08 1 .613 e+08 0.1236 0.008528 5 .383 e−06
0 .1322 0.03752 BUF15
c l k L5 I 114 1 .613 e+08 1 .613 e+08 0.1236 0.00852 5 .383 e−06
0 .1322 0.03752 BUF15
c l k L5 I 743 1 .613 e+08 1 .613 e+08 0.1237 0.00838 5 .383 e−06
0 .1321 0.03751 BUF15
c l k L5 I 416 1 .613 e+08 1 .613 e+08 0.1235 0.008665 5 .383 e−06
0 .1321 0.03751 BUF15
c l k L5 I 734 1 .613 e+08 1 .613 e+08 0.1235 0.008637 5 .383 e−06
0 .1321 0.03751 BUF15
c l k L5 I 6 5 1 .613 e+08 1 .613 e+08 0.1239 0.008217 5 .383 e−06
0 .1321 0 .0375 BUF15
c l k L5 I 659 1 .613 e+08 1 .613 e+08 0.1235 0.008558 5 .383 e−06
0 .1321 0 .0375 BUF15
c l k L5 I 610 1 .613 e+08 1 .613 e+08 0.1232 0.008826 5 .383 e−06
0 .1321 0.03749 BUF15
c l k L5 I 400 1 .613 e+08 1 .613 e+08 0 .123 0.009031 5 .383 e−06
0 .132 0 .03748 BUF15
c l k L5 I 294 1 .613 e+08 1 .613 e+08 0.1223 0.009656 5 .383 e−06
0 .1319 0.03745 BUF15
c l k L5 I 7 4 1 .613 e+08 1 .613 e+08 0.1231 0.00875 5 .383 e−06
0 .1319 0.03744 BUF15
c l k L5 I 4 3 1 .613 e+08 1 .613 e+08 0.1235 0.00824 5 .383 e−06
0 .1318 0 .0374 BUF15
c l k L5 I 498 1 .613 e+08 1 .613 e+08 0.1228 0.008894 5 .383 e−06
0 .1317 0.03738 BUF15
c l k L5 I 464 1 .613 e+08 1 .613 e+08 0.1226 0.009022 5 .383 e−06
0 .1317 0.03738 BUF15
c l k L5 I 882 1 .613 e+08 1 .613 e+08 0.1231 0.008512 5 .383 e−06
0 .1316 0.03737 BUF15
c l k L5 I 1 9 1 .613 e+08 1 .613 e+08 0.1234 0.00818 5 .383 e−06
0 .1316 0.03735 BUF15
c l k L5 I 423 1 .613 e+08 1 .613 e+08 0 .123 0.008499 5 .383 e−06
0 .1315 0.03732 BUF15
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 151 42 .2 0 .006638
193 .2 54 .84

Master Clock Power i n c l ud ing generated c l o ck s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CLK has t o t a l 1220 i n s t an c e s
generated c l o ck s :

151 42 .2 0 .006638 193 .2 54.84%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Clock network has t o t a l 1220 i n s t an c e s

151 42 .2 0 .006638 193 .2 54.84%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ Power D i s t r i bu t i on Summary :
∗ Highest Average Power : PADHREADY (BU16P ) : 4 .004
∗ Highest Leakage Power : PAD scan out (BU16P ) : 7 .944 e−05
∗ Total Cap : 3 .73121 e−10 F
∗ Total i n s t an c e s in des ign : 5797
∗ Total i n s t an c e s in des ign with no power : 0
∗ Total i n s t an c e s in des ign with no a c t i v i t y : 0
∗ Total F i l l e r s and Decap : 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Post-route Hold summary

###############################################################
# Generated by : Cadence Encounter 14.13− s036 1
# OS: Linux x86 64 ( Host ID noyce )
# Generated on : Fr i Jul 10 00 : 04 : 28 2015
# Design : s l a v e u n i q u i f y
# Command: optDesign −postRoute −hold
###############################################################

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
optDesign Fina l Non−SI Timing Summary

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
| Hold mode | a l l | r eg2reg | d e f a u l t |
+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+
| WNS ( ns ) : | 0 .000 | 0 .259 | 0 .000 |
| TNS ( ns ) : | 0 .000 | 0 .000 | 0 .000 |
| Vio l a t i ng Paths : | 1 | 0 | 1 |
| Al l Paths : | 8341 | 4173 | 6251 |
+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+−−−−−−−−−+

+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+
| | Real | Total |
| DRVs +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−|
| | Nr nets ( terms ) | Worst Vio | Nr nets ( terms ) |
+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+
| max cap | 0 (0 ) | 0 .000 | 0 (0 ) |
| max tran | 0 (0 ) | 0 .000 | 0 (0 ) |
| max fanout | 0 (0 ) | 0 | 0 (0 ) |
| max length | 0 (0 ) | 0 | 0 (0 ) |
+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+

Density : 42.125%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Power results Final

-----------------------------------------------------------------------------------------

Total Power

-----------------------------------------------------------------------------------------

Total Internal Power: 213.51326128 76.0291%

Total Switching Power: 67.28797235 23.9603%

Total Leakage Power: 0.02967489 0.0106%

Total Power: 280.83090876

-----------------------------------------------------------------------------------------

Group Internal Switching Leakage Total Percentage

Power Power Power Power %

-----------------------------------------------------------------------------------------

Sequential 40.98 5.447 0.01736 46.45 16.54

Macro 0 0 0 0 0

IO 18.21 0.9083 0.003109 19.12 6.808

Combinational 5.559 18.99 0.002641 24.56 8.744

Clock Combinational 148.8 41.94 0.006562 190.7 67.91

Clock Sequential 0 0 0 0 0

-----------------------------------------------------------------------------------------

Total 213.5 67.29 0.02967 280.8 100

-----------------------------------------------------------------------------------------

Rail Voltage Internal Switching Leakage Total Percentage

Power Power Power Power %

-----------------------------------------------------------------------------------------

vdd! 3 195.3 66.38 0.02657 261.7 93.19

vdd3r1! 2.97 6.069 0.3028 0.001036 6.373 2.269

vdd3r2! 2.97 6.069 0.3028 0.001036 6.373 2.269

vdd3o! 2.97 6.069 0.3028 0.001036 6.373 2.269

Clock Internal Switching Leakage Total Percentage

Power Power Power Power %

-----------------------------------------------------------------------------------------

CLK 151 42.2 0.006638 193.2 68.8

-----------------------------------------------------------------------------------------

Total excluding duplicates 151 42.2 0.006638 193.2 68.8

-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------

Total leakage power = 0.0296749 mW

Cell usage statistics:

Library c35_IOLIB_WC , 41 cells 0.722085% , 0.00310946 mW 10.478410%

Library c35_CORELIB_WC , 5637 cells 99.277915% , 0.0265654 mW 89.521590%
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8.4 Tempus STA Results

Setup timing results Final

###############################################################

# Generated by: Cadence Tempus 14.13-s037_1

# OS: Linux x86_64Host ID noyce

# Generated on: Thu Jul 9 23:37:22 2015

# Design: slaveuniquify

# Command: report_critical_instance -max_insts 20 -max_slack 1 -cost_type worst_slack > slaveuniquify.crit

###############################################################

# -----------------------------------------------------------------------------------------

# Report Critical Instance:

# Slack: max slack = 1

# only count the paths and end points whose slack is worse than 1

# Cost: worst slack.

# Date: Thu Jul 09 23:37:24 EEST 2015

# -----------------------------------------------------------------------------

# Inst:combinatorial Cell Cost

# -----------------------------------------------------------------------------

ahb_slave_inst/ahb_slave_mem/FE_OCPC471_n5911 CLKBU2 0.188

ahb_slave_inst/ahb_slave_mem/FE_OFC340_n4382 CLKBU2 0.188

ahb_slave_inst/ahb_slave_mem/FE_OFC329_n4382 BUF4 0.188

ahb_slave_inst/ahb_slave_mem/U688 OAI211 0.188

ahb_slave_inst/ahb_slave_mem/U323 NAND40 0.188

ahb_slave_inst/ahb_slave_mem/U325 AOI220 0.188

ahb_slave_inst/ahb_slave_mem/U972 CLKIN2 0.188

ahb_slave_inst/ahb_slave_mem/U979 NOR21 0.188

ahb_slave_inst/ahb_slave_mem/U1008 CLKIN3 0.188

ahb_slave_inst/ahb_slave_mem/U1009 NAND22 0.188

ahb_slave_inst/ahb_slave_mem/U1553 NAND41 0.188

ahb_slave_inst/ahb_slave_mem/U1690 NAND21 0.188

ahb_slave_inst/ahb_slave_mem/U1692 AOI220 0.188

ahb_slave_inst/ahb_slave_mem/FE_OCPC451_n5103 CLKBU2 0.190

ahb_slave_inst/ahb_slave_mem/FE_OFC343_n4382 CLKBU2 0.190

ahb_slave_inst/ahb_slave_mem/FE_OFC330_n4382 CLKBU6 0.190

ahb_slave_inst/ahb_slave_mem/U951 OAI210 0.190

ahb_slave_inst/ahb_slave_mem/U398 AOI220 0.190

ahb_slave_inst/ahb_slave_mem/U1566 NAND40 0.190

ahb_slave_inst/ahb_slave_mem/U1694 NAND20 0.190

# -----------------------------------------------------------------------------
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