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Iepiinyn

Ta cvotiuoto Tolarldv kepardv (MIMO) gival evpémg viobeTnéve oTa. GOYYXPOVO ACVPLOTO
GLGTHLOTA LETAOOOTG AOY® TNG LTEPOYNG TOVG GE TAXVTNTA LETAGOONG Kot TOtOTNTO 61potoc. Ta
Koyelmtd diktva 3G kot 4G 1MON XPNOUOTOIOVV GUGTILOTE TOALUTADY KEPUIDV OTMG Kol TO
Tp®TOKOALO acvpudtov OSwtoov WLAN 802.11n. Avotuydg mopdro to mpoavapepOivta
TAEOVEKTNLATO, KUPLO YOPOKTNPIOTIKO TOV OAYOPIOU®OV  amoK®OIKOTOINGNG GLUGTNUATOV
TOAMOTADV KEPALDV EIVOL 1| LEYOAN TOALTAOKOTNTA. XTIC LEPEG UG TO TO OTOUTNTIKO KOUUATL
OTO0. GUCTNUOTO TOAAOMAGV Kepou®v ivor 1M otabepn moAvTAOKOTNTA TV OAyopiBuwv
OTOKMOIKOTOINGNG OAAG Kot 1 0modoTikn] vAomoinon avtodv oe vAkd. H mieoymoeio tov
ONUOGLEVUEVMOV DAOTIOUCEMV OVUPEPETAL GE OEVOPOELDN AAYOPIOLLOVS ALY KOt AAYOPIOLOVG TTOV
é&xovv PBaomn Vv ghaylotomoinon TAEYUATOG, He TOAAEG VAOTOMGELS GE LAIKO TOV® GTIG dVO
npoavapepheiceg  watnyopiec. Or  mePIGGOTEPES  VAOMOMGELS — TMPAYLOTOTOWOVVTOL  GE
OAOKANPOUEVA KUKADUATO E101KOV okoToV pe 64 — QAM dwpdpomon, 4 kepaieg otny mAgvpd
TOV TOUTOV Kot GAAES TOGEG GE QUTN TOL OEKTN. AVTA TO YOPOKINPLOTIKE KOVOTOWOLV TIG
TPOJAYPUPES TOV GVYXPOVAOV TPMOTOKOAA®V acVPUATNG HETAdOONG, OAAL dev cupPadilovv pe
v perroviikn texvoroyio 5G kot v 802.11 ac dmov vioBetovv dapoppmcels 256 QAM ko
TEPLGGOTEPEG KEPOEG. e OVTN TNV OMA®UATIKY epyacia Ba peletnBodv dAol ot Guyypovol
aAyOpOOl aTOKMIKOTOINGONG TOAAATADY KEPOLOV TOL VIAPYOoLY oty Pipioypapio Kot o
d00¢l Bdon oto Moo emnpedleTon N amddooT Kol Katd OG0 gival avdroyn pe to péyedog tov
oAoKANpoUEVOL KuKA®pPatog. Emiong Oa pehetnBovv cevapla avtdv tov aiyopibuwv mov Oa
KOAVTTTOLV TIG AOLTNOELG LEAAOVTIKAOV cvuotnudteov. Tédog Ba d00el mepiocdtepn onpacio 6tovg
dvo o ToAVSLINTNUEVOLS aAYOPIOLOVE TTOV VTTAPYOLY aVTY| TNV oTiyUn otV BipAoypapia, Tov
IFSD kot tov KBR-LR ot 8a yivouv mpotdoeic yio tnv Bertioon avtdv tomv 600.
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Abstract

Multiple-Input Multiple-Output (MIMO) systems are widely adopted in the state-of-the-art
wireless communication standards because of their superiority in data rates and signal reliability.
3G and 4G cellular networks already use MIMO antennas like the Wireless Local Area Network
(WLAN) 802.11n standard. Unfortunately, despite the aforementioned advantages, MIMO
systems are characterized by formidable complexity. Nowadays, the most challenging thing in
MIMO detection is the fixed (the same number of iterations for every received symbol) and low
complexity of algorithms which interpreted in efficient Very-Large-Scale Integration (VLSI)
implementations. The majority of published work referred to Tree-Search and lattice reduction-
aided algorithms with a lot of VLSI implementations. The greater part of them are implemented
on Application-Specific Integrated Circuit (ASIC) with 64- Quadrature Amplitude Modulation
(QAM) modulation scheme and 4 x 4 MIMO antennas. So far, these MIMO scenarios meet the
expectations of wireless communication standards, but the upcoming 5G and the latest WLAN
standards (e.g. 802.11ac) adopt higher order modulation schemes (256 QAM) and more antennas.
Hence, in this diploma thesis we study the state-of-the-art MIMO detection algorithms and present
the performance/area trade-offs of their VLSI implementations for configuration scenarios that
will be used in the future technologies. The Imbalanced Fixed Sphere Decoder (IFSD) and K-Best
Real Lattice Reduction-aided (KBR-LR) will be further elaborated because they are the cutting-
edge MIMO detection technology.

vii



viii



Acknowledgements

The fulfilment of this diploma thesis would have been impossible for me to complete without the
help of numerous people. First and foremost, | would like to thank my supervisors George
Stamoulis and Nestoras Evmforfopoulos for the guidance and their support. Also | would like to
thank the PhD candidate Charalambos Antoniadis for his time and the assignment of this thesis
subject. Many thanks to my friends for the encouragement and the memorable moments. Last but
not least, 1 would like to thank my family for their continuous support and heartfelt encouragement.
| am forever indebted for their sacrifices.






Contents

R 101 oo [F o { [ o PSSR 1
1.1 MIMO tECANOIOGY .. .coiiiiiiiieece ettt 1
1.2 Motivation & CONHDULION. .......c.oiiiiiiieec s 2
1.3 TRESIS OULIING ...t bbb ens 2

2 Fundamentals of MIMO deLECTION .....c.eoieiiieiieie s 4
2.1 MIMO — OFDM System MOEL..........cccoooiiiiiiee e 4
p N |V | - (= ox 1 o] I PSPPSR 8
2.3 MatrixX TranSTOrMALIONS. .......ccuiiieieiie ettt sttt esraeneeenee e 9

3 MIMO Detection AIGOITTNMS .......ciiiiiiie e 11
T8 A N 1 - T g I 1< (<o 1 o o SRR 11

3.1.1  Zero-FOrcing DeteCiON........ccouiiiiiieeie et 11
3.1.2  Minimum Mean Square Error DeteCtion ..........cccccevveieiieiicie e 12
3.2 Tree-Search Detection AlGOrithmS........ccoviiiiieii i 14
3.2.1  SPNEIE DECOUEN ......occveeieceie ettt ettt et re e 14
3.2.2  FixXed SPhEre DECOUEN ........ccuiiiiieieieiee et 17
3.2.3  Imbalanced Fixed Sphere DECOUET ..........cccviiiiiiiiiieiie e 19
KT B (= 1Ty D =T olo o T SR 22
3.25  Tree-Search Algorithms BER Performance...........ccoceoeiiiiiiiininieienesc e 24
3.3 Lattice reduction — aided AetECLONS.........civiiiieieieeie e 26
3.3.1  LattiCe REAUCTION ..ottt ettt 26
3.3.2  Complex LLL AIGOrthm .......ccooiiiiieece e 28
3.3.3  Zero-Forcing LR-aided DeteCtion..........ccccvvveiieiiiiiie e 30
3.34  K-Best Real LR-aided DEteCtION .......c.cccueiieiiiiiiiieiieeie e e 32

4 VLSI Implementation of MIMO Detection AIgOrithms.........cccccooiininininiiie e 36

O S T - od o1 1 (=T od (U= SRR 36
411  Metric CompPUtation UNIT........coooiiiiiiiiiiieiiseeeee e 37
4.1.2  Metric ENUmMEration UNIt.........ccooiiiieiiiie e 38

4.2 K-Best IMPIemMeNntation .........cocuiiiiiiiieiie et 40



A3 FSD s 42

O 1 I PR 42
45  K-Best Real LR-AIE ........ccoiiiiiiiicie et 45
4.6  Comparison of IFSD and KBR-LR ........ccccoiiiiiiiii e 49
5  ConClUSIONS & FULUIE WOTK........ciiiiiiiiieiieiie et 51
5.1 CONCIUSIONS ..ottt bbbt b e bbbt b e e e et st b et beeneane s 51
5.2 FULUIE WOTK ..ottt bbbttt bbbt ene s 51

Vi



List of Figures

2.1 OFDM VS FDM BanaWIath ..........ccooiiiiiiiieiiieie i 4
2.2 MIMO SYSEM MO ...t 5
2.3 Pilot Symbols for Channel EStIMAtioN ...........cccooiiiiiiiiieiiecceseee e 6
2.4 64-QAM Constellation DIAGIAM ........ccccoeiiiiiiiiiii e 7
2.5 Effect of Channel MatriX H 0N BPSK ......cooiiiiiiiiiiiee s 8
3.1 ZF and MMSE performance for QPSK 4 X 4 SYStEM .......cccccveveiieieerie e 13
3.2 ZF and MMSE performance for 256-QAM 4 X 4 SYStEM.......ccccecieeieerieiieie e seesee e 13
3.3 Sphere Decoder Tree for 4 X 4 64-QAM ......ccooiiiiiie et 14
3.4 Candidate vectors inside the SPhEre ..o 16
3.5 BPSK 3 X 3 Tree DIAQIAM .....cciuieieiieeiie ettt ettt e staenne e e sneenas 16
3.6 FSD 16-QAM 4 X 4 Tree DIagram ......ccccociieiieiiiiieesie et ste et sre e ae e 19
3.7 IFSD 16-QAM 4 X 4 RVD Tree DIagram ........ccccciveiiiiieiieiie e sie e sre e sre e 20
3.8 K-Best (K = 4) QPSK 4 X 4 Tree DIagram ........cccooeiirieiiiieie e 24
3.9 SD, FSD, IFSD and K-Best RVD with K=4 BER figure .........cccccocoviiiieiiiiineieeieseesennn 26
3.10 Decision Regions a) before LR b) after LR ......c.cooviiiiiice e 27
3.11 MIMO System a) Usual b) With LR ......ooiiiii e 28
3.12 ZF and ZF-LR BER PErfOrMANCE ........ccoiiiiiiiiiiiiiiciieieieseese et 32
3.13 Zig-zag movements for calculation of constellation points ..........ccccoevvieviveieicieneere e 33
3.14 KBR and KBR-LR BER performance (K = 8) for 64 QAM 4 X 4 system..........c..c.......... 35
4.1 SD detector VLS ArChITECIUIE .....c.eoieeiieeie e 37
4.2 Principle of ordered £ -norm enumeration for 64-QAM modulation ..........c.cccccceeviiieenen. 38
4.3 RTL block diagram of MCU/MEU ........ccooiiiiiiiiiiiieee s 39
4.4 GAIN-MUX NQrdWare UNIT .......ccoiiiiieiieieeeeeie et ee e 41
4.5 K-Best MIMO detector VLSI arChiteCture ........coccooeeiiiieiieiiecsee e e 41
4.6 IFSD detector VLSI arChiteCUIE .......cooiiiiiieieeie et 43
4.7 Circuit diagram at STAJE 2 ....oocveeiieeiie ittt nres 44
4.8 Block diagram for one HOLLL Iteration .........ccccooiiiiiiiiieiie s 47

vii



4.9 Proposed VLSI architecture iterations number per BlOCK ..........cccooeiiieiiiiinieiiiie e 48

4.10 BER Performance of IFSD and KBR-LR for 4 X 4 and 64-QAM .........cccccevveevveiieiiveennen. 50
4.11 BER Performance of IFSD and KBR-LR for 4 X 4 and 256-QAM ........c..cccceevvevveiveenen. 50
5.1 BER Performance of IFSD and IFSD pruned for 4 X 4 and 64-QAM ...........ccccccevvevvernennn. 52

viii



List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.1
4.2
4.3
4.4
4.5
4.6

b AN 10T 1101 o PSSR 12
Sphere Decoder AIGOItNM ........oooiiiiie e e 15
FSD AIGOTTTNM . bbb 17
IFSD AIGOITTNM ottt bbb 21
K-BESt AIGOTTERM ...t 22
Tree-Search Algorithms examined VECIOrS NUMDEN ........ccoooiiiiiiiiiineee e 25
O I I I A o o )1 1 OSSPSR 28
4 o I N [ o] 4 1013 RSSO 31
K-Best Real LR-aided AIGOrthm .........ccoooiiiiece e 33
Performance of SD VLSI arChiteCtUre .........ccoocoiiiiiiiiiieieriese e 40
Performance of proposed K-Best VLSI architeCture ...........cccccveriiininieieienese e 42
Performance of IFSD VLSI arChiteCIUIE .........coceiiiiiiieieeie e 45
CLLL AIGOTEM ..o bbbttt 45
HOLLL AIGOFITRM <. 46
Performance of KBR-LR VLSI architeCture ..........cccooieieiiieneiesc e 48






List of Symbols

w O

= =3

S N N ™ Q C =2 T

Complex transmitted symbol vector
Estimated complex transmitted symbol vector
Additive White Gaussian Noise vector
Complex MIMO channel matrix

LR-reduced complex MIMO channel matrix
Number of receive antennas

Number of transmit antennas

Complex constellation

Unitary matrix with complex entries

Upper triangular matrix with complex entries
LR complex transformation matrix

The set of integers

Swapping control factor in LLL

Xi



xii



List of Notations

a Scalar value

|a| Absolute value of a

a Complex-Valued vector
a Post-LR version of a

[|a]| Norm of a

(a, b) Inner product of a and b
A Complex-Valued matrix
A LR-Reduced version of A
A1 Inverse of A

A Conjugate transpose of A
Ajj Entry in i-th row and j-th column of A
a; i-th column of A

Abc:ay  Submatrix of A, formed by rows a to b and columns c to d

R{-} Real part of a complex number
3{-} Imaginary part of a complex number
|- Rounding to the nearest integer

Xiii



Xiv



List of Acronyms

ASIC
3G

4G

5G
AWGN
BER
CGU
CLLL
CP
FDM
FPGA
FFT
FSD
HOLL
ICI
ICU
IFFT
IFSD
ii.d
ISI
KBR-LR
LLL

Application-Specific Integrated Circuit
Third Generation of Cellular Networks
Fourth Generation of Cellular Networks
Fifth Generation of Cellular Networks
Additive White Gaussian Noise
Bit-Error-Rate

Candidate Calculation Unit

Complex Lenstra-Lenstra and Lovasz
Cyclic Prefix

Frequency Division Multiplexing
Field-Programmable Gate Array

Fast Fourier Transform

Fixed Sphere Decoder
Hardware-Optimized Lenstra-Lenstra and Lovéasz
Inter-Carrier Interference

Interference Cancellation Unit

Inverse Fast Fourier Transform
Imbalanced Fixed Sphere Decoder
Independent Identically Distributed
Inter-Symbol Interference

K-Best Real — Lattice Reduction

Lenstra-Lenstra and Lovasz

XV



MCU
MEU
MIMO
ML
MMSE
NSU
OFDM
PCU
PED
QAM
QoS
RTL
RVD
SD
SISO
SNR
VLSI
WLAN
ZF

Metric Computation Unit

Metric Enumeration Unit

Multiple-Input Multiple-Output

Maximum Likelihood

Minimum Mean Squared Error

Node Selection Unit

Orthogonal Frequency Division Multiplexing
PED Calculation Unit

Partial Euclidian Distance

Quadrature Amplitude Modulation

Quality of Service

Register-Transfer Level

Real-Valued Decomposition

Sphere Decoder

Single-Input Single-Output or Soft-Input Soft-Output decision
Signal-to-Noise-Ratio

Very Large Scale Integration

Wireless Local Area Network

Zero-Forcing

XVi



XVii



XViii



1 Introduction

1.1 MIMO technology

The evolution of computer science increases the interaction between users and consequently the
total data traffic per month. The exponential growth of consumed data [1] generates Quality of
Service (QoS) problems on web and wireless communications, so if we want to provide the same
QoS in web and cellular networks, new protocols and standards are necessary. The overcrowded
frequency allocation chart invokes the need for better spectral efficiency and utilization of
allocated bands from cognitive radio systems which conceived in order to counteract the
confinement of finite radio spectrum. Also the Internet of Things tendency requires energy
efficient devices and constitutes a big challenge for the 5G transceivers design. MIMO systems
utilize the radio spectrum efficiently and provides higher system reliability with low power
consumptions. Recently, large scale MIMO systems [2] draw the attention of researchers because
they operate in much larger frequencies with more spectral and energy efficiency. In addition,
these systems solve the problem of overcrowded spectrum allocation map because unused
frequencies will be useful. It is noteworthy that large systems which consisted of 100 antennas and
more, can be useful only with linear or linear LR-aided MIMO detectors because the complexity
is prohibitive for other detectors. This fact gives us an extra point to study the LR-aided detectors.
The multitude of transmitter and receiver antennas can be arranged in order to produce the gains
below:

e Diversity gain: Transmitted signals facing fluctuations during the attenuation of signal
power. This phenomenon called fading and decreasing the quality of channel. Channel
fading can be counteracted from MIMO system which send multiple copies of the same
signal over partially independent fading paths. The diversity order is equivalent to number
of independent channels, and as the order increases the BER is improved to.

e Spatial multiplexing gain: Every antenna can send an independent data stream at the same
time. With this technique, the system utilizes the channel capacity better than traditional
Soft-Input Soft-Output (SISO). For more antennas the gain is increasing. Each antenna
receives a mixed signal which constituted from transmitted signals. These signals are
demultiplexed at receiver with MIMO detectors.

e Array gain: Multiple receive antennas are able to pick up more transmitted power, so we
increase the transmission range. Also this technique achieves better Signal-to-Noise-Ratio
(SNR).



Previous setups offer a unique advantage in our system. For example, space-time coding used for
diversity gain, as the opportunistic beamforming. The simple beamforming maximizes the array
gain. Finally, the spatial multiplexing offers the highest data rate with the best spectral efficiency.

1.2 Motivation & Contribution

Every complex system has some tradeoffs on his design. Core area, power consumption, algorithm
complexity and throughput are taken into consideration during the design of MIMO detector
chipset. Every component on the receiver chain needs to operate approximately at the same
throughput but with a rational core area and power consumption. For example, 3G and after
standards use turbo decoder for better BER performance. This technique requires 5 times more
core area than an IFSD VLSI implementation and 8 times more energy for the same throughput.
Hence, we need to be careful with our designs without exceed the ordinary core area and power
consumption. The fixing of algorithm complexity is the key for an efficient architecture. Sphere
decoder was a milestone, but the unknown number of iterations and subsequently the execution
time generated the need for buffers and more complex architectures. From the same problem
suffers every lattice reduction (LR) algorithm, thus the creation of hardware optimized LR
algorithms with fixed iterations it was necessary. Consequently, we are concerned about the
aforementioned points in order to design a chipset which is able to become commercial. The
missing part in literature is the design and performance measure of modern algorithms for different
scenarios. In this diploma thesis we measure the performance of cutting-edge MIMO detection
algorithms on the same device (Field-Programmable Gate Array (FPGA) board) for higher
modulation schemes and trying to show who is the best algorithm for every emerging technology
and the potential improvements of these algorithms.

1.3 Thesis outline

This thesis is organized as follows. First of all, every algorithm is studied theoretically (BER
performance and complexity analysis) and secondly we are focusing on hardware implementations
performance (power consumption, core area, throughput). More detailed, Chapter 2 introduces the
MIMO system model, the necessary notation which used along with basic preprocessing
techniques, and finally the optimal MIMO detection technique. Chapter 3 describes the Zero-
Forcing (ZF) and Minimum Mean Squared Error (MMSE) Linear detection algorithms which are
used in systems with large number of antennas, but the BER performance is critically low. In the
same chapter analyzed the evolution of Tree-Search algorithms and how the Sphere Decoder (SD)



which performs exhaustive search with optimal BER performance, became with fixed complexity
and lower BER performance. Finally, in this Chapter follows a theoretical description of lattice
reduction and how is applied in MIMO detectors. Chapter 4 analyzes the Zero-Forcing (ZF) and
Minimum Mean Squared Error (MMSE) Linear detection algorithms which are used in systems
with large number of antennas, but the BER performance is critically low. Chapter 4 deals with
the VLSI implementations of Tree-Search algorithms. First of all, takes place the examination of
SD architecture which leads the researchers to fix the complexity of SD and introduce algorithms
with fix iterations. The most popular algorithms are Fixed Sphere Decoder (FSD) and IFSD which
are also examined in this chapter. Also in this chapter presented the VVLSI implementation of LR
unit which optimize the CLLL algorithm in order to fix the number of iterations and then examine
the K-Best Real LR-aided algorithm. The comparison of IFSD and KBR-LR for different
modulation orders and number of antennas takes place on the same chapter. BER and VLSI
performance taken into account in order to make a safe conclusion on which algorithm performs
better in each scenario. Finally, the chapter 5 concludes the work of this diploma thesis and sets a
plan for future work.



2 Fundamentals of MIMO detection

2.1 MIMO - OFDM System Model

OFDM is very popular in wireless communications because divides the main frequency carrier
into smaller parallel subcarriers which are orthogonal to each other [3]. These subcarriers
generated and restored efficiently with the Inverse Fast Fourier Transform (IFFT) and Fast Fourier
Transform (FFT) process respectively. The orthogonality between subcarriers allows to utilize
more efficiently the allocated bandwidth, instead of a Frequency Division Multiplexing (FDM)
without orthogonality. We can see the difference in Fig 2.1:

Figure 2.1: OFDM vs FDM Bandwidth

It is necessary to transmit symbols separated by guard intervals in order to minimize Inter-Symbol
Interference (IS1). As Inter-Symbol Interference is called the overlapping of symbol by the
previous symbol. The most common method for guard interval is the extension of the last symbol
into the begging of the next one, known as Cyclic Prefix (CP). Every subcarrier transmitted from
one transmitter antenna to every receiver antenna after the pass of independent identically
distributed (i.i.d) Rayleigh fading channel, which modeled by matrix H with M columns and N
rows (M and N is the number of receiver and transmitter antennas respectively). In Fig. 2.2
illustrated a simplified MIMO System Model.



Figure 2.2: MIMO System Model

Channel matrix come of the channel estimation process. Every antenna receives a different capture
of every transmitted symbol because of Inter-Carrier Interference (ICI). Inter-Carrier Interference
called the overlapping of carriers due to frequency offset. In order to acquaint the channel matrix
at the receiver side, the best way to achieve this is the transmission of pilot symbols. Hence a
previously agreed OFDM symbol transmitted periodically, the receiver knows which symbol
received and the calculation of channel matrix placed on the receiver side. This process takes place
every block which contains 5 OFDM symbols, so every 5 symbols we transmit one pilot symbol
and 4 data symbols as we can see on Fig 2.3:



Figure 2.3: Pilot Symbols for Channel Estimation

The period for pilot symbol transmission selected experimentally. Small period is inefficient
because we transmit too much pilot symbols which information is unnecessary. Large period
allows the change of channel state and makes the channel matrix obsolete. The procedure of
channel matrix estimation is out of our concerns for this thesis and the previously mentioned are
cover the necessary theory for the understanding of MIMO detection. The received vector y
consisted of the transmitted OFDM symbols vector s, multiplied by the channel matrix H and this
product added with the n which is symbolize the Additive White Gaussian Noise (AWGN). The
equation below describes the previously mentioned:

y=Hs+n

y, s and n vectors are consisted of M elements because of M receiver antennas. The channel
matrix contains complex numbers because of Rayleigh model and the noise vector also contains
complex numbers because we assumed AWGN. The symbol vector contains complex numbers
because we examine only the QAM modulation schemes. Every QAM constellation symbol
included in O which includes |0| = 2M¢ symbols with M bits per symbol and N x M, bits per
OFDM symbol. So symbols vector s € ON. In Fig 2.4 presented a constellation diagram for 64-
QAM:



Figure 2.4: 64-QAM Constellation Diagram

Channel matrix H rotates the transmitted symbol and in order to decode the received vector y we
need to multiply it with the inverse of H. For a Single-Input Single-Output (SISO) system with
BPSK modulation, assumed the transmission of symbol 1 with channel matrix H = —0.91 —
0.01i and noise n = 0.015 + 0.001i. The symbol without the effect of channel matrix and noise
illustrated at the top-left of Fig 2.5. At the top-right of the same figure is the symbol after the
multiplication with the channel matrix H, then the addition with noise n gives the result at the
bottom-left of figure, and the last one scheme is after the equalization with H (§ = y/H). The
symbol is not the same as the initial, it moved downwards but the decoding is still possible. We
cannot decode the symbol without equalization, because as we see it can move everywhere.
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Figure 2.5: Effect of Channel Matrix H on BPSK

2.2 ML Detection

The purpose of MIMO detector at the receiver side is to obtain the best possible estimation of the
transmitted symbol vector s. To achieve this, we need to calculate the Euclidean distance of
received vector y and the product of channel matrix H with all possible symbol vectors. This is
presented by the following equation:

$ = argmin|ly — Hs||?
seoON



This method is known as Maximum-Likelihood (ML) detection and achieves the best possible
solution because is the optimal detector. This algorithm performs better than anyone, but with the
highest complexity. As we said it is necessary to calculate the Euclidean distance for every possible
vector and with the symbol vector s € ON, a supposed LTE system with 64-QAM constellation and
4 x 4 antennas have |0|Y = 64* = 16.777.216 candidate vectors. The necessity for algorithms
with lower complexity it is obvious from the beginning of MIMO systems, and the specifications
of modern systems make the use of ML detection prohibitive.

2.3 Matrix Transformations

On the following chapters we describe a lot of algorithms which based on matrix transformations,
and especially QR decomposition and Real-Value Decomposition (RVD). QR decomposition
processing the channel matrix H and generates 2 matrices, the orthogonal matrix Q and the upper
triangular matrix R. Channel matrix H looks like:

hi1  hiz - hpy
H = hyq h:22 ham
hyi by hym
And the Q and R looks like:
qi11 G122 " Qim 1 Tiz2 = Tum
0= q?1 q?z QZ:M R = 0 7"2:2 - TZ:M
dn1  4n2 t gnm 0 0 - Tyym

The second matrix transformation is the RVD. We are decomposing the complex value into a real
and imaginary part. The dimensions of channel matrix H from M X N become 2M x 2N and
received vector y from N become 2N. The decomposition of H and y looks like the following:
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3 MIMO Detection Algorithms

3.1 Linear Detection

3.1.1 Zero-Forcing Detection

Zero-Forcing (ZF) detection is the simplest and less accurate method. Based only on the
multiplication of received vector y by the pseudoinverse channel matrix H'. Thus, we are trying
to remove from received vector y the effect of channel matrix H with the multiplication by
pseudoinverse HT. The received signal y is equal to:

y=Hs+n

The multiplication by HT = (H"H)"*H" (Moore-Penrose pseudoinverse) gives the following
result:

yHT = H'Hs + H'n=s + H'n

The received vector is rotated in his initial position and we have to face only the noise distortion
multiplied by HT. To overcome this, we estimate the Euclidian Distance between every symbol of
constellation set @ and each symbol of received vector. The selection of symbols with minimum
Euclidian Distance gives us the estimated vector 8. Further detail for ZF MIMO detection
algorithm in Table 3.1 below:
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Input: Channel matrix H, received vector y
Output: Estimated transmit vector §

1) HY = (H'H)"*HY

2) d=yH"=H'Hs+ H'n=s+ H'n
3) fori=1:M

4) §®O =M

5) for j = 2:10|

6 if a0 -0 <[l - 500
7) OIS0

8) end

9) end

10)end

Table 3.1: ZF Algorithm

3.1.2 Minimum Mean Square Error Detection

Minimum Mean Square Error (MMSE) MIMO detection algorithm uses the same steps as ZF but
takes into consideration the noise covariance for better BER performance. Noise covariance used
in equalization process of received vector y as the following equation:

y(HUH + 621)"*H" = s + (H"H + o%1)"*H"n

This technique has much better BER performance than ZF for low constellation order but for
higher orders where the modern systems demand gives us almost the same performance. In Fig 3.1
illustrated the MMSE and ZF performance for QPSK 4 x 4 system, where the better BER
performance of MMSE is obvious:
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Figure 3.1: ZF and MMSE performance for QPSK 4 x 4 system

On the contrary, in Fig 3.2 the BER performance of ZF and MMSE for the same antenna
configuration but for 256-QAM modulation it is nearly the same:

Figure 3.2: ZF and MMSE performance for 256-QAM 4 X 4 system
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3.2 Tree-Search Detection Algorithms

3.2.1 Sphere Decoder

The main idea of sphere decoder [4] is the examination of vectors which are restricted by the limits
of sphere. The algorithm of ML decoding examines all the possible candidate vectors of ON. We
can reduce the set of candidate vectors with the Sphere Decoder algorithm. In order to apply this
algorithm, it is necessary to apply QR decomposition on channel matrix H. Also we need to
multiply the received vector y with the Hermitian transpose of matrix Q. Thus the candidate
vectors forming a tree as in the Fig 3.3 below:

Figure 3.3: Sphere Decoder Tree for 4 x 4 64-QAM

The set of candidate vectors reduced proportionally to radius R of Fig 3.3. The Partial Euclidean
Distance (PED) (which in his shortest version is equal to radius of sphere) calculated with the
formula:

T(5©) = Teoa (s0) + [es(s©) [

Where |ei(s(i))|2 = |bi+1(5(i+1)) - RiiSil2 and bi+1(s(i+1)) = 5’\1 - Z?/I:Tiﬂ Rijsj
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and the radius is equal to the smallest T;. The symbol selection performed by selection of symbol
with the minimum distance e;. After N stages we reach the first candidate symbol vector and the
first radius. The process of PED and vector examination takes place iteratively, so after the reach
of first radius and vector, we examine all the previous levels recursively according to their T;. The
selected branch can rejected during the examination of middle levels because of PED larger than
radis . If we reach a node with PED bigger than our radius, the process stops and we examine
nodes of higher levels. The radius updated when reach a node in level 1 with PED smaller than the
current radius. The algorithm described in further detail below:

Input: Channel matrix H, received vector y
Output: Estimated transmit vector §

1) Initialize:s =10, 0, - 0];8§=1[0, 0, -+ 0]; QR decomposition in H;
9 = Qfy; radius = ;i = M;

2) Compute T; for each symbol of constellation set O (equation for T; above)

3) Choose the symbol of constellation set with the smallest T; and assign it to S;

4) ifT; > radius: i =i+1

5) ifi = M + 1: terminate;

6) ifi=1.8=s; radius= T

7) i =1i—1:gotostep3;

Table 3.2: Sphere Decoder Algorithm

Sphere decoder achieves BER same as ML detection by the examination of few elements of OV,
Unfortunately, the number of candidate vectors is unknown (unfixed complexity) and still high for
low SNR values. This happens because we cannot predict how many times the radius will change
during the execution, and how many elements restricted by Radius each time. We can see an
example in Fig 3.4, where it is obvious the difference between ML and SD and the fluctuation of
SD candidate vectors (depended on radius length). SD examines vectors inside the red sphere
(which is reduced if we achieve smaller radius) in contrast with the ML decoding which examines
all the possible candidate vectors.
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Figure 3.4: Candidate vectors inside the sphere

As we mentioned previously the biggest weakness of Sphere decoder is the unfixed complexity
which generates inefficient VLSI implementation. Also the use of RAM with noticeable capacity
increasing the core area, but the use of it is necessary for high-order constellations. We discuss
more about SD VLSI architecture on next chapters which are dedicated to VLSI implementations
and their tradeoffs. Also a figure of SD BER performance will be presented at the end of this
chapter. Here is an example of BPSK 3 x 3 system for better understanding of SD algorithm:

Figure 3.5: BPSK 3 x 3 Tree Diagram
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We Examine the T; of 2 possible BPSK symbols, the -1 is the symbol with shortest distance so
we assign the value s = [0, 0, —1]. Then we diminish the index from i = 3 to i = 2 and we
examine the T; of level 2. In this level the symbol 1 gives us the shortest distance and we assign
the value in s = [0, 1, —1]. Next we calculate the minimum T; of level 1 and we find the
value -1. Then we reduce the index from i = 2 to i = 1, so we update the radius and from oo takes
the value of T; on level 1. Alsowe assignthe s = [1, 1, —1]to§. According to SD algorithm,
we go back to level 2 and examine the next shortest symbol which is -1 but the PED T; is bigger
than radius, so we go to level 3. The next shortest symbol of level 3 is the 1, so we assign this to
vector s = [0, 0, 1] and we go to level 2. In this level the symbol 1 gives us the shortest T; ,
and thesameinthelevel 1 (s = [0, 1, 1]).Tiinlevel1issmallerthan radius, so we update the
radius and we assign to § the s (s = [1, 1, 1]). Finally, we step to level 2, the next shortest
symbol -1 gives us T; longer than radius so we go to level 3 and the algorithm terminates with
s=1[1, 1, 1].

3.2.2 Fixed Sphere Decoder

Despite the noticeable reducing of complexity, Sphere Decoder cannot meet the expectations of
modern wireless communications systems because his main weakness is the unpredictable number
of iterations. New wireless standards need an algorithm with fixed and less iterations, specific
number of examined nodes which consequently reduce the complexity and give efficient VLSI
implementations. FSD [5] takes into consideration all the previously mentioned and proposes the
following algorithm:

Input: Channel matrix H, received vector y

Output: Estimated transmit vector §

1) Initialize: s'°' =[0, 0, -+ 0];5=1[0, 0, 0]; PED!O! =
[0, 0, -+ O0]; QR decompositionin H; 9 = Q"y; i = M;
2) forj=1:10|
3) Compute T; U) for each symbol of constellation set O (equation for T; above)

4)  PEDY) = minT;¥
5 sV =00
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6) end
7) fori=M—-1:1
8) for j = 1: 0]

9) Compute T; U) for each symbol of O and keep only this with the smallest PED
10) PEDY) = min T,V
M _
11) Si" = SminPED
12) end
13)end

14) The estimated vector has the smallest PED, consequently: § = spinr,

Table 3.3: FSD Algorithm

FSD performs full examination on steps 3-5, which means in M™ level calculates and keeps the
PED for every element of O . For the other steps, FSD performs single node examination, namely
calculate the PED for every element of O but keeps only the element with the minimum PED. The
fixed complexity it is obvious in previous pseudocode which consisted of “for loops” instead of
“while loops”. On chapter 2 we analyzed the complexity of ML detection. As we said, a system
with 64-QAM constellation and 4 x 4 antennas have |0|¥ = 64* = 16.777.216 candidate vectors
which are all examined. The FSD examines |O|?> = 64 x 64 = 4.096 vectors, the 0,2% of ML
vectors, but almost with the same BER performance. Despite the much smaller set of candidate
vectors, FSD algorithm can be designed efficiently as VVLSI architecture. Fig. 3.6 visualizes the
FSD algorithm tree for a 16-QAM 4 x 4 system and makes clear the full examination of M™ level
and single examination of the other levels.
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Figure 3.6: FSD 16-QAM 4 X 4 Tree Diagram

3.2.3 Imbalanced Fixed Sphere Decoder

The FSD algorithm reduced the complexity dramatically, but is still prohibitive for modern
systems. IFSD [6] reduces the set of examined vectors even more. To achieve this, RVD is
necessary (discussed on chapter 1) because doubles the levels of tree and allow more flexible
schemes in node examination. In order to understand better the impact of RVD in search tree, we
can see the differences of Fig 3.7 and Fig. 3.6. Fig. 3.7 shows the real-valued tree for 16-QAM
4 x 4 system and Fig. 3.6 as we previously mentioned, the complex tree for the same system.
Complex tree consisted of 4 levels and 16 children for each node. Real-valued tree consisted of 8
levels instead of 4, and 4 children for each node instead of 16. In M™ level, the node with the
smallest PED is very likely part of solution and we need to focus more on this branch. In complex
search tree the only way is to reject nodes with the largest PED in M™ level, but this technique
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gives bad BER performance. In real-valued tree we can reduce branches in the 2M™ -1 level as we
can see on Fig. 3.7:

Figure 3.7: IFSD 16-QAM 4 X 4 RVD Tree Diagram

Because of RVD, the calculation of PED takes place as following:

T; =Ty + inc; +inciyq

2
: _ 2N
Where nc; = |yl- - Zj=i+2 Ri,jsj - Ri,iSi

= |5 - Ri,i3i|21
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2
: _ 2N
and inc;q = |)’i — Xizir2 Riv1,jSj — Riz1i+1Sim1

~ 2
= |yl+1 - Ri+1,i+15i+1|
With (i = 1,3,...,2N — 1)

As we previously mentioned, IFSD trying to reduce the complexity of FSD. For the
aforementioned system with 64-QAM constellation and 4 x 4 antennas the FSD examines |0]? =

2
64 X 64 = 4.096 vectors. IFSD for the same system examines Krsp = (lo”"‘”'J’l;X'Ore“l' =

(101+1)x|0] _ 9x64
2 2

= 288 candidate vectors, almost the 7% of FSD. Consequently, the reduction

of candidate vectors set makes the BER performance worse. We can understand better how IFSD
performs with the help of the following pseudocode:

Input: RVD channel matrix Hreal, RVD received vector Yreal

Output: Estimated RVD transmitted vector §

1) Initialize: s*iFsp =0, 0, -+ 0];8=1[0, 0, - O0];k=1;
PED¥irsp = [0, 0, - 0]; QR decomposition in H,q;; ¥ = Qy; i = 2M;

2) Compute T; for each symbol of constellation set O,..,; (equation for T; above) and store
at PED

3) Sort(PED)
4) fOI’j =1 |0real|
5) forl = 1: |Opeqt| — Jj

6) sgk) — o(PEDY)

7) k=k+1

8) end

9) end

10)i=i-1

11) Compute T; for each symbol of constellation set O,..,; and store at PED
12) Sort(PED)

k=1

14)for j = 1: [Oreail
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15)  forl =1:|0,eq| —J

pPEDWY)
16) Sgk) = Orgeal )
17) k=k+1
18) end
19)end

20)fori =2M — 2:1
21) fOF ] = 1::7(:”;'5[)

22) Compute T; for each symbol of 0,.,; and keep only this with the smallest PED
) (min PED)

23) Slg) = real

24) end

25)end

26) The estimated vector has the smallest PED, consequently: § = spinT,

Table 3.4: IFSD Algorithm

3.2.4 K-Best Decoder

K-Best is also Tree-Search MIMO detector [7] proposed before FSD and IFSD. K-Best has a set
of examined vectors which their number is linearly proportional to constellation size, unlike the
FSD which is exponentially proportional. K-Best algorithm keeps the K best nodes (nodes with
the smallest PED) of each level but performs in higher BER compared to FSD and IFSD with
lower complexity and more efficient VLS| implementations. In Table 3.5 below, described the K-
Best MIMO detection algorithm:

Input: Channel matrix H, received vector y
Output: Estimated transmit vector §

1) Initialize: s =[0, 0, --- 0];8=1[0, 0, -+ 0]; QR decompositionin H;
:)7 = QHy; i = M; PEDK|0| =0
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2) Compute T; for each symbol of constellation set O (equation for T; above) and keep the
K best symbols (with the smallest PED)

3) sglzK) = K Best symbols of O

4) fori=M—-1:1

5) for j=1:K

6) Compute T; for each symbol of O and store to PED

7) end

8) Sort(PED)

9) sglzK) = K Best symbols of O

10)end

11) The estimated vector has the smallest PED, consequently: § = spinr,

Table 3.5: K-Best Algorithm

If K = 10|, FSD and K-Best have the same set of examined vectors but FSD performs better
because of examines the best children of the initial | 0| branches instead of K-Best which is focused
on branches with the smallest PED and eventually is likely to examine one part of the tree. K-Best
examines K|0| vectors, so for the previously mentioned system and for K = 10 we have 10 X
64 = 640 examined vectors. In Fig. 3.7 below, illustrated an example of K-Best for K = 4, QPSK
modulation and 4 X 4 antenna configuration:
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Figure 3.8: K-Best (K = 4) QPSK 4 x 4 Tree Diagram

As we can see, the K-Best terminated with 4 children of 3 initial branches. This is the reason for
bad BER performance. They are existing several versions of K-Best, some of them with RVD.
Hence, as we said previously can be used more complex techniques for the selection of nodes in
each level, like the IFSD. K-Best Real will be examined in the next Chapters which are focus on
LR.

3.2.5 Tree-Search Algorithms BER Performance

Only the SD algorithm from the previously mentioned MIMO detectors performs with ML BER
performance. We cannot prove mathematically the larger complexity of SD, because SD examines
nodes and FSD, IFSD and K-Best examine vectors. Only if the SD find a vector with lower PED
than radius algorithm has examined a vector, but the average examined nodes consist much larger
vectors set than the set which FSD examines. Also we mentioned that for low SNR values SD
examines almost the ML candidate vector set. In Table 3.6 presented only the number of examined
vectors for FSD, IFSD and K-Best because it is impossible to compare their fixed complexity with
the unfixed complexity of SD.
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Algorithm Complexity |

ML |0N|

FSD 10]2

IFSD (Yo + 1D x|op/ 2
K-Best K|O|

Table 3.6: Tree-Search Algorithms examined vectors number

The Fig. 3.8 shows the BER performance of all previously mentioned algorithms for a system with
64-QAM constellation and 4 X 4 antennas:
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Figure 3.9: SD, FSD, IFSD and K-Best RVD with K=4 BER figure

3.3 Lattice reduction — aided detectors

3.3.1 Lattice Reduction

Correlation between basis vectors of channel matrix is responsible for some of errors during the
detection process. LR transforms the channel matrix H via a linear transformation matrix T , into
a new basis H = HT which is more orthogonal and uncorrelated. Consequently, this
transformation of channel matrix prevents the errors in detection which caused by the correlation.
The received vector y is equal to:

y=Hs+n=HTT 's+n=Hx+n

Where: x=T71s
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Detector estimates the ® which belong in the lattice reduced constellation O¥ and then transformed
into the original constellation with the aid of matrix T

(%o}
Il
~
=

In order to understand better the idea of LR, it is necessary to pay attention in Fig. 3.9 below:

Figure 3.10: Decision Regions a) before LR b) after LR

Essentially, the LR transformation re-interpreting the received vector y and makes widen the
decision regions. In Fig. 3.10 a) are the original decision regions with each symbol very close to
the others. With these decision regions it is easier for every MIMO detection algorithm to make a
false estimation, unlikely with the Fig. 3.10 b) where the decision regions are widened and every
symbol has more space. It is noteworthy to mention, LR has wide use, like cryptography and
mathematics. In Fig 3.11 illustrated the equivalent LR MIMO system model:
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Figure 3.11: MIMO System a) Usual b) with LR

3.3.2 Complex LLL Algorithm

In 1982, Lenstra-Lenstra and Lovasz (LLL) proposed the first polynomial-time LR algorithm [8]
which calculates lattice reduced basis. LLL is the base of every LR MIMO detection algorithm.
For this diploma thesis we use the Complex LLL (CLLL) [9] which is adapted on the needs of
complex numbers and MIMO detection LR. In Table 3.7 are numbered the steps of CLLL.:

Input: Channel matrix H = [hy4, -+, h,], factor & € (%, 1)

Output: CLLL-reduced basis H', unimodular matrix T = [tq, -+, t;,]

1) forj=1tondo

3) end for

4) forj=1tondo

5) fori=j+1tondo
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1 i—1 —
6) Wij — H—j(<h,-, ) — Y ForttixHr)

7) Hi < H; — |.uij|2~7'[j
8) end for

9) end for

10)T « I,

1)k « 2

12) while k < 2 do

13)  if [R(uipe—1)| > 5 0F [I(ptire—1)| > 5 then

14) ¢ < |l
15) hk — hk — Ch]
16) tk — tk - Ct]
17) forl =1tojdo
18) Ml < R — Cl,l
19) end for
20) endif
21) |f }[k < (6 - |,uk,k_1|2)7{k_1 then
22) hk—l = hy
23) hk = hy—1
. 2
24) Hie-1 = Hie + |tipe—1| Hi—1
. _ Hi-1
25) Pik-1 = Hick—1 (ﬂk-l)
r _ (Hk-a
26) i = (j{k_l)}[k
. . H .
27) Hijk-1 = Hi,k—l.uk,k—l"'/'[i,kw: Jk<i<n,
28) Mik = Hik—1 — HikMr k-1 k<i<mn,
29) Pk-1j = Hij> 1<j<k-2
30) Prj = Hk—1,» 1<j<k-2
31) k «max(2,k—1)
32) else
33) forj=k—1to1step—1do
34) if [ ()| > 5 or S| > then
35) ¢ < [ue]
36) hk — hk — Ch]
37) ty <ty — Ct]
38) forl=1tojdo
39) Mt < Hi — CHg,l
40) end for
41) end if
42) end for
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43) k—k+1
44)  endif

45) end while

46)return H as H', and T.

Table 3.7: CLLL Algorithm

3.3.3 Zero-Forcing LR-aided Detection

ZF LR-aided algorithm follow the same steps as ZF algorithm, but some steps are adopted to LR
equivalent model. First of all, we need the calculation of matrix T which is calculated by the CLLL
algorithm of Table 3.7. The received vector y as we previously mentioned is equal to:

y=Hs+n=HTT 's+n=Hx+n

On the receiver side the process become more complex because of matrix T which produces a
constellation set with unknown number of elements. Theoretically we can calculate the new
constellation set elements, but the complexity becomes exponentially like the ML algorithm. In
order to overcome this difficulty, after the equalization of received vector y we rounding the result
to the nearest integer. This step takes place because of new constellation set which consisted of
complex elements who are generated by the combination of integers and formed as:

A=L+17Zi

After that, the rounded result multiplied by T matched with the original constellation set as the ZF
MIMO detection. The whole process of ZF-LR described on the Table 3.8 below:
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Input: Channel matrix H, received vector y
Output: Estimated transmit vector §

1) T = CLLL(H)

2) H=HT

3) At = (H"H)~*HY

4) % =|yHY| = |H'Hs + H'n| = |s + H'n]
5) d=TR

6) fori=1:M

) 30 =W

8) for j = 2: 10|

9) 0 — 0] < [la® - 50D
10) 8§ = W)

11) end

12) end

13)end

Table 3.8: ZF LR Algorithm

MMSE detection performed with the same changes in order to perform LR-aided detection, but
the description and BER performance of MMSE algorithm it is unnecessary to studied because
this diploma thesis is focusing on high-order constellations where the BER performance of MMSE
and ZF is nearly the same. In Fig 3.12 above, illustrated the BER performance of ZF and ZF-LR:
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Figure 3.12: ZF and ZF-LR BER performance

3.3.4 K-Best Real LR-aided Detection

ZF algorithm performs better with the aid of LR, but for demanding systems an algorithm with
better BER performance is necessary. K-Best Real LR-aided (KBR-LR) which proposed in [10]
combines the K-Best MIMO detection algorithm and LR. In this algorithm version used the RVD
equivalent (like the IFSD algorithm) as described in Introduction. The main problem is the
unknown symbol number of transformed constellation, because we need to know the number of
children for each node and as we previously mentioned the number of constellation set elements
is unknown. KBR-LR overcomes this difficulty by the provision of children. In order to achieve
this, we need the bi+1(s(i+1)) of PED equation which described in SD paragraph and we remind
it below:

i(50) = T (00 # e )

Where |€i(S(i))|2 = |bi+1(5(i+1)) — Rl'iSl'lz

and by (s“V) = 3, — X7, Ry
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The algorithm calculates K children for every node, so we have K2 children for the M — 1 level
and below. Only the Best K of K2 nodes examined in the next level. The K nodes calculated by

the division of bi+1(s(i+1)) with R;; . We rounding the result for the first child and follows zig-
zag moves for the other K — 1 children like the Fig. 3.13 below:

Figure 3.13: Zig-zag movements for calculation of constellation points

l+1( )

ii

The ;1% is the result of the division , so the s;[* is equal to:

i

o < rae)

In Table 3.4 described the K-best Real LR-aided algorithm with the aid of CLLL algorithm which
described in Table 3.8:

Input: Channel matrix H, received vector y

Output: Estimated transmit vector §
1) Initialize: s€*D* =0, 0, -- 0];8=[0, 0, -- O0]; QR decomposition in H;
:)7 = QHy; i = ZM, PEDK|0| =0
, (i+1)
2) Compute s;[°1 ... 5;[K+1] with 5,10l = [%] and T; for each s;

3) Sort(s;) according to their PED
4) fori=2M—-1:1
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5) for j=1:K

. . . (sl D) .
6) Compute s;U1 - s;U+K+1 with ;U1 = lw] and T; for each s;0)
7) end

8) Sort(s;) and keep the K best

9) end

10) The estimated vector has the smallest PED, consequently: § = spinr,

Table 3.9: K-Best Real LR-aided Algorithm

KBR-LR BER performance behaviors strange for SNR values smaller than 33dB because of LR
but after this value the better performance of KBR-LR is noticeable. KBR BER performance along
to KBR-LR illustrated in Fig 3.14 below:
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Figure 3.14: KBR and KBR-LR BER performance (K = 8) for 64 QAM 4 X 4 system
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4 VLSI Implementation of MIMO Detection
Algorithms

4.1 SD architecture

The study of SD MIMO detection algorithm VLSI implementation will make clear the
disadvantages of SD MIMO detection algorithm. Also this study is necessary because establishes
some basic hardware units which help to understand better the VLSI implementations of FSD,
IFSD and K-Best. We did not implement this architecture for the purposes of this diploma thesis
because the SD VLSI architecture cannot meet the modern expectations, but we based on the
implementation of Andreas Burg [11]. The main target of every VLSI architecture design is the
conversion of MIMO detection algorithm into efficient hardware modules. The studied
architecture operates with 2 main hardware modules in order to reduce the number of iterations.
These 2 modules called Metric Computation Unit (MCU) and Metric Enumeration Unit (MEU).
The goal of this VLSI architecture is the examination of one node per cycle. With a simple
architecture when the algorithm reaches new solution or a branch which need to prune, a whole
cycle is necessary for the operation of level changing. MEU tries to reduce these wasted cycles
and operates in parallel with MCU which is responsible for the forward iterations of SD detector.
When MCU reaches new solution or “dead” branch, the MEU has check if the branch of upper
level can be the next examined child or needs to prune. Hence, in the next cycle MCU unit will
examine a new node in upper levels which suggested by MEU. The VLSI implementation of SD
architecture illustrated in the following Fig. 4.1:
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Figure 4.1: SD detector VLSI Architecture

4.1.1 Metric Computation Unit

MCU is responsible for the forward iterations of SD MIMO detection algorithm. Consisted of 3
major units, the PED computation unit, slicer and b; computation unit. di(s(")) notation is
equivalent to our notation in theoretical description of SD, T; (s(i)). b; computation unit calculates
the b; as following:

Mt
bi(s®¥) = 9 — Z Ri_1jsj
=i

This unit receives as inputs the 9;_; , s¢Y, Ry ;. and the s;. ;-1 , sCY, R;_y 4, COMe
from cache and previous hardware units out of our concerns. s; produced by slicer. According to
theory, it is necessary to compute the PED for every child of current node, sort the PEDs and
choose the best available. The slicer hardware module finds only the best child and forward them
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to PED and b; computation unit. This calculation takes place only with some comparisons of b;
and some predefined decision boundaries. The remain symbols examined by the MEU unit.
Finally, the PED computation unit receives as inputs the b;,; , R;; , Ti+1(s(i+1)) and calculates
the PED according to equation:

Where [e;(s©)|* = |1 (sD) — Rys;

i(50) = T (560 # e O

|2

All the subunits of MCU are pipelined, more details about pipeline stages and their performance
at the end of this subchapter.

4.1.2 Metric Enumeration Unit

MEU is very similar to MCU unit. PED and b; computation unit are exactly the same (the only
difference is the examination of previous level by MEU), but instead of slicer unit MEU is supplied
with enumeration unit. This unit sorting the remaining children (the best child examined by MCU
in the previous cycle) and select a preferred child for forwarding in MCU in case which the second
reaches a new solution or a dead end. Calculations based on £ norm and examines a subset of
symbols (which selected by slicer) as the Fig 4.2 bellow:
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Figure 4.2: Principle of ordered £ -norm enumeration for 64-QAM modulation



PED calculated with £ norm like the following equation:
Tes = |biys — Ri,i5i|o~o = max{|R(bir1 — Ri;si)|, [S(bizr — Rissi)|}

After the examination of the first subset, the architecture examines the other subsets of
constellation. PEDs calculated in MCU in MEU simultaneously, and then the 2 results compared
with the Radius (SC check unit). If the new child satisfies the Radius constrain, PED and the new
child stored in cache memory. Then data from SC check unit and cache used to determine the next
level and the new Radius. In Fig 4.3 illustrated a more detailed RTL block diagram of MCU/MEU
module:

Figure 4.3: RTL block diagram of MCU/MEU

The main drawback of this VLSI implementation is the unknown number of iterations and
consequently the unstable throughput. In table 4.1 below listed the performance characteristics of
this architecture:
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CMOS Tech 0.13um
Antennas 1x1t04 x4
Modulation BPSK to 64-QAM
Norm £?
Enumeration ordered £® - norm
Pipeline stages 5 X

Area® [KGE] 97.1

Freq. [MHz] 625
Throughput for D,,,, = 7° [Mbps] 2143

Table 4.1: Performance of SD VLSI architecture

20ne GE corresponds to the area of a two-input drive-one NAND gate

b Dy, denotes the average number of nodes used for block processing

4.2 K-Best implementation

Despite the poor BER performance (comparatively to IFSD) K-Best MIMO detection algorithm
achieves a satisfactory solution for high order constellations where the core area of IFSD is
prohibitive, and also K-Best has the ability to cooperate with LR. In this subchapter we study one
of the best proposes in literature [12], with the highest throughput and a lot of optimizations in
VLSl implementation. First of all, the VLSI architecture designed for 4 x 4 antennas configuration
and adapted modulation with possible configurations from BPSK to 256-QAM. Also the
architecture designed for complex values. In 4" stage, K-Best detector selects the K = 21 best
nodes according to their PEDs. In other stages, parent nodes divided into 3 groups, where group
1,2 and 3 contains the best, medium and worst parent nodes respectively. For the 1% group detector
keeps the best 4 children of each parent, the best 3 for the 2" group and only the best child for 3"
group. The 56 values which resulting, sorted and only the 21 with smallest PED kept for the next
stage. Exceptionally, for the 1% stage the sorting is unnecessary because we are looking only for
the node with the best PED which is the solution. PED calculated with the known equation of SD.
The strongest point of this architecture, is the replacement of many multipliers and dividers with
shifts. Every r;; element driven into GAIN block that amplifies r;; with modulation gain in order

to construct the product of r;; and every element of constellation set. Output signals from GAIN

unit are inputted to |0 MUX blocks. Every MUX block controlled by signal which denote the
number of constellation element. Fig 4.4 below shows the GAIN-MUX block:
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Figure 4.4: GAIN-MUX hardware unit

The whole architecture presented in following Fig 4.5:

Figure 4.5: K-Best MIMO detector VLSI architecture

In STAGEA4 block, z,! and z,© are the imaginary and real part of the 4™ element of received vector
y which denoted as z in this work. DI4 CAL finds the 21 best elements of 4" stage in 2 clock
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cycles. SIGN ABS in DI4 CAL finds the absolute value of z,' and z,9, CONS-LOCAT specifies
the sub-domain where inputs belong and according to this information DI/DQ CAL calculates the
best values of b; and finally XDE-CODE find the best constellation points. CAL F3 is responsible
for interference cancellation, B1,2,3 named the 3 groups which are previously mentioned and 2D-
SORT unit is responsible for the sorting of produced PEDs. Finally, on the following Table 4.2
are enumerated the performance points of proposed K-Best VVLSI architecture:

CMOS Tech 0.90nm
Antennas 4 X 4
Modulation BPSK to 256-QAM
Power Consumption 56 mW

Area [KGE] 180

Freq. [MHz] 590
Throughput 2700

Table 4.2: Performance of proposed K-Best VVLSI architecture

4.3 FSD

FSD is the precursor of IFSD and their implementation is very similar because the number of nodes
and iterations is fixed. We stay focus more on IFSD because is in the cutting edge of tree-search
algorithms and the FSD VLSI implementations are obsolete comparatively to IFSD. FSD
described in 3.2.3 and approximately uses 10 times more hardware than IFSD. The design
principals of FSD and aforementioned K-Best are very similar, but for more details a Soft Input
implementation proposed in [13].

4.4 IFSD

IFSD proposed in [14] because the FSD architecture core area is prohibitive for high order
constellations. The theoretical part described in 3.2.3 and obviously IFSD algorithm give us an
efficient architecture, because of fixed iterations and number of nodes. In order to remember the
equations of IFSD we mentioned below:

T; = Ty + inc; +inciyq
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, _ 2N

Where inc; = |yi - Zj=i+2 R;jsj — R;;s;
- 2

= |YL - Ri,iSi| '

2
: _ 2N
and inc;q = |3’i — Xizir2 Riv1,jSj — Riz1i41Sim1

~ 2
= |yl+1 - Ri+1,i+15i+1|

With (i = 1,3,...,2N — 1)

This architecture has 4 x 4 antennas and 64-QAM modulation but supports multiple constellation
orders and number of antennas. In Fig 4.6 illustrated the VVLSI architecture of IFSD:
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Figure 4.6: IFSD detector VVLSI architecture

Preprocess stage is out of our study topic and every process which takes place in this unit described
on introduction. First stage of IFSD MIMO detection process is the PE-A where the interference

cancellation is unnecessary. As interference cancellation called the:

2N
Vo=yi— Z R; js;

j=i+2
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For this process is responsible the Interference Cancellation Unit (ICU) and exist only in PE-B
which operates for lower levels. PE-A consisted of Node Selection Unit (NSU) and PED
Calculation Unit (PCU). ICU suppresses the inter-antenna interference introduced by the signal
that previously have been detected. The value of ICU is different for different symbols of above
levels. NSU selects the best nodes using the real-value zigzag enumeration unit and PCU calculates
the PEDs for each level according to IFSD PED equation which mentioned above. Finally,
Candidate Generation Unit (CGU) generates with shifts all the possible values of R;;s; in order to
reduce the multipliers of IFSD VLSI architecture. A more detailed scheme of PE-B illustrated in
Fig 4.7 below:

X7 Xg lR 68=R 57 X7 Xg
= - - - -
[ | CGU sign(Res) 5 ™
"; < MSB 5 - ~
I Rs7] 3IRsr| SIRsA] TIRsA 2] g
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ICU f . | ICU
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! i

] Process at | Process at . T; -'|’__b
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Figure 4.7: Circuit diagram at stage 2

RVD gives us more efficient and simple hardware with sort critical paths which consequently
increasing the throughput. CGU saves multipliers which is the more frequent component of
presented VLSI implementation. IFSD is much efficient in BER performance than K-Best with
the same examined nodes. Also IFSD is the best solution for the majority of wireless systems in
nowadays. In table 4.3 below presented the performance characteristics of IFSD:

44



CMOS Tech 65nm
Antennas 4 x4
Modulation 64-QAM
Power Consumption 102.7mW @ 1.2V
Area [KGE] 88.2

Freq. [MHz] 165
Throughput [] 1980

Table 4.3: Performance of IFSD VLSI architecture

4.5 K-Best Real LR-aided

K-Best Real LR-aided VVLSI architecture which proposed in [15] was the first LR unit in literature
with fixed. K-Best LR-aided VLSI implementation designed according to theory of Chapter 3, but
the base for hardware-optimized LR is the following LR algorithm of Table 4.4:

Input: Channel QR decomposed matrices Q, R and quality factor §
Output: LR transformed matrices @, R and unimodular matrix T

1) Initialize: @ =Q, R=R, T = Iy, xn, kK =2;

2) while k < N,
3) fori=k—-1:-1:1
4) H= lﬁl,k/ﬁl,l];
5) R(1:1,k) =R(1:Lk) —pu-R(1:1,0);
6) TCGC,k)=TC,k)—u-T(C,D;
7) end

. ~ 2 ~ 2 ~ 2
8) if & |Ri—i k-1 > |Riexe|” + | Rie—
9) Swap (k — 1)th and kth columns in R and T;

a* Ry k-1 Rick-1

10) 0= [—,8 ﬁ] where @ = e ST A B = TR
11) R(k—1:k k—1:Ny) = OR(k — 1: k, k — 1: Ny);
12) 0G,k—1:k)=0(, k- 1:k)e";
13) k = max(k — 1,2);
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14)  else

15) k=k+1,
16) end

17)end

Table 4.4: CLLL Algorithm

LR unit adapts the algorithm of Table 4.4 in order to fix the iterations and simplify some of the
calculations. Hence, the algorithm of Table 4.5 is the hardware-optimized version of 4.4. First of
all, Hardware-Optimized LLL (HOLLL) replaces the multiplications of steps 5) and 6) with simple
comparisons. Also the replace of Lovaz condition with Siegel condition (line 15) which requires
one multiplication and comparison reduce even more the core area. Additionally, HOLLL
replacing @ with Z transformation in order to perform K-Best direct to Z (z = Q"y). Finally, the
architecture replaces multiplications of lines 10-12 (Table 4.5) with 2-D CORDICs.

Input: Channel QR decomposed matrices R, Z and quality factor §
Output: LR transformed matrices R, Z and unimodular matrix T

1) Initialize: R = R, T = Iy, xn, ,Stop = FALSE ;
2) while stop = FALSE

3) k = 2;stop = TRUE;

4) while k < Ny

5) forl=k—-1:-1:1

6) ur =0,u; =0;

7) if (0.5 |Ry| < |R(Rii)| < 1.5+ |Riy]) ur = 13
8) else if (|R(Ryx)| = 1.5 |Ry|) {ur = 23;

9) if (0.5 |Ry| < |S(Rip)| < 1.5+ |Ryy|) (s = 1%
10) else if (|S(R,)| = 1.5 |Ryy|) {wi = 2;

12) R(1:Lk) = R(1:Lk) — pg - R(1:1,D);

13) TG, k)=TC,k)—uq-TC,D;
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14) end

15) if 8 |Re—vk—1| > | Rkl

16) Swap (k — 1)th and kth columns in R and T;
17) Update in R and in Z using 2-D CORDICs;
18) stop = FALSE,

19) end

20) k=k+1;

21) end

22)end

Table 4.5: HOLLL Algorithm

In Fig 4.8 illustrated the block diagram of one HOLLL iteration. This block below, repeated 9
times because the whole LR unit consisted of 9 iterations. Between these blocks there are register
banks, so the architecture is 7-stage pipelined.
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Figure 4.8: Block diagram for one HOLLL iteration

This architecture supports 4 x 4 64-QAM scenario and consecutively the dimensions of channel
matrix are 4 X 4. The nine LR iterations follows the sequence k = {2, 3,4, 2, 3,4, 2, 3,4}, where
k is the column of matrix R operated on in each iteration. Iterations (3,4) and (6,7) can executed
in parallel because these iterations performing on different rows. Executed iterations illustrated in
Fig 4.9 bellow:
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Figure 4.9: Proposed VLSI architecture iterations number per block

The part of K-Best is out of our study regions because we describe similar architectures in previous
subchapters. It is noteworthy to mention, the core area and clock on this architecture are
independent from constellation order. The main factor for core area is the number of antennas,
because for more antennas the channel matrix becomes bigger and consequently the LR unit area.

CMOS Tech 65nm
Antennas 4 x4
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Modulation 64-QAM
Power Consumption 155.1mW
Area [KGE] 193
Freq. [MHz] 1433
Throughput [Mbps] 3600

Table 4.6: Performance of KBR-LR VLSI architecture

4.6 Comparison of IFSD and KBR-LR

The main advantage of KBR-LR is the constant core area for different constellation orders. The
difference of BER performance is negligible in KBR-LR for 64-QAM and 256-QAM because the
LR reduce the correlation of channel matrix H. In Fig 4.10 illustrated the BER performance of
KBR-LR and IFSD for 64-QAM and in Fig 4.11 the BER performance for 256-QAM. Throughput
increased proportionally for KBR-LR and IFSD with the same rate, the clock remains the same
because the architecture for the 2 implementations designed with the same way and the critical
paths keep the same value. The main difference of 2 implementations is the increasing of IFSD
core area and consequently the power consumption.
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Figure 4.10: BER Performance of IFSD and KBR-LR for 4 x 4 and 64-QAM

Figure 4.11: BER Performance of IFSD and KBR-LR for 4 x 4 and 256-QAM

The BER performance of 2 algorithms increasing proportionally but the VLSI implementation of
4 x 4 256-QAM requires more hardware than 4 x 4 64-QAM instead of KBR-LR which needs
the same hardware for the 2 VLSI implementations.
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5 Conclusions & Future Work

5.1 Conclusions

The BER performance of each algorithm presented in chapter 3 for the commonly adopted scenario
4 x 4 antennas and 64-QAM modulation. The interpretation of MIMO detection algorithm in
VLSI architecture constitutes a more complex procedure, because every architecture has
unexpected characteristics proportionately to BER performance. First of all, we examined the
VLSI architecture of SD, in order to make clear the disadvantages of unstable throughput and the
unknown number of iterations. Despite the poor BER performance of K-Best MIMO detector in
compare to IFSD, the study of his architecture was necessary because is prerequisite for the
implementation KBR-LR. The aforementioned reasons emerging the IFSD MIMO detection
algorithm as the best for VLSI implementation of all tree-search algorithms. In literature there are
MIMO detection algorithms and architectures which meet the expectations of every antenna and
constellation order scenario. LR achieves noticeable BER performance for high constellation
orders with few PED units, so LR-aided algorithms are ideal for high order constellations where
the IFSD suffers from large core area because of candidate vectors large set. Consequently, we
drawing the conclusion that IFSD algorithm is suitable for systems where the number of antennas
and constellation set give a VLSI implementation with rational core area. For larger systems, LR-
aided or linear MIMO detection algorithms can manage the huge set of candidate vectors.

5.2 Future Work

After the KBR-LR VLSI implementation which proposed in [15], several LR algorithms published
with fixed iterations and better BER performance. The hardware implementation of new
algorithms will give us more efficient hardware LR units. In [16] proposed a new LR algorithm
which delete the tradeoff factor 6 and with fixed iterations performs near to CLLL algorithm
without §. Also the efficient pruning of some branches in IFSD examination reduces the core area
and make the IFSD VLSI implementation more competitive for higher modulations and antenna
configurations. Simulations of IFSD algorithm with the pruning of worst branches gives us
encouraging results. In Fig 5.1 bellow illustrated the performance of original IFSD for 4 x 4
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antennas and 64-QAM modulation along a modified version which prune the half branches of M™
level:

Figure 5.1: BER Performance of IFSD and IFSD pruned for 4 x 4 and 64-QAM

Pruned branches generate noticeable bad impact in BER performance of MIMO detection. In order
to improve the BER performance we are working on a new VLSI architecture with two parallel
IFSD MIMO detectors which operate coherently. An extra unit examines the correlation of channel
matrix H and for low correlation 2 different vectors driven into the 2 parallel MIMO detectors
simultaneously. In case of high correlation, the 2 parallel detectors cooperate and perform the
original IFSD MIMO detection. With the calculation of correlation, we are able to know the quality
of channel and consequently the probability for correct detection. This new MIMO detection
technique targeting in systems with higher modulation order and number of antennas. For the
proposal of new MIMO detection algorithm, needs to experimenting with different methods in
order to find the optimal correlation calculation unit and the number of pruned branches for the 2
parallel IFSD detectors.
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