
Department of Electrical and Computer
Engineering

University of Thessaly, Volos, Greece

Μελέτη επίδρασης προσεγγιστικών υπολογισμών

στην ποιότητα αποτελεσμάτων, την επίδοση και

το ενεργειακό αποτύπωμα επιστημονικών

εφαρμογών / Studying the effects of
approximate computing on the quality of results,
the performance and the energy footprint of

scientific applications

Panos S. Koutsovasilis

March 23, 2016

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

ACKNOWLEDGMENTS

I would like to thank my supervisors Christos D. Antonopoulos, Niko-
laos Bellas and Spyros Lalis for their help and guidance throughout
this process, their ideas and feedback have been absolutely invaluable.
This work has been supported by (a) The European Commissions

7th Framework Programme (FP7/2007- 2013) under grant agreement
FP7-323872 (Project SCoRPiO) and (b) The Aristeia II action (grant
agreement 5211, project Centaurus of the operational program Educa-
tion and Life-long Learning which is co-funded by the European Social
Fund and Greek national resources).

2

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

”We cannot solve our problems with the same thinking we used when
we created them”

— Albert Einsten

3

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

ΠΕΡ ΙΛΗΨΗ

Μία από τις μεγαλύτερες προκλήσεις που αντιμετωπίζουν οι μηχανικοί

υπολογιστών, είναι η δημιουργία υπολογιστικών συστημάτων με ιδιαίτε-

ρα μειωμένη κατανάλωση ενέργειας, όσο αναφορά τόσο το υλικό όσο

και το λειτουργικό κομμάτι του συστήματος. Μία από τις πιο δημο-

φιλής μεθόδους για την επίτευξη ενεργειακής αυτονομίας για το υλικό

κομμάτι ενός υπολογιστικού συστήματος, είναι η ενσωμάτωση υπολογι-

στικών μονάδων που επιδεικνύουν διαφορετικές υπολογιστικές ικανότη-

τες με χαμηλότερα χαρακτηριστικά κατανάλωσης ενέργειας σε σχέση με

τις συμβατικές αρχιτεκτονικές (Ετερογένεια - Heterogeneity). Μια άλλη
προσέγγιση είναι η παραλλαγή των υπολογιστικών πράξεων μιας εφαρ-

μογής, με κατάλληλες που θα έχουν σαν αποτέλεσμα την μείωση της ε-

νεργειακής κατανάλωσης αλλά και την αλλοίωση των αποτελεσμάτων της

εφαρμογής (Προσεγγιστικός υπολογισμός - Approximate Computing).
Πιθανές παραλλαγές είναι η απελευθέρωση των σημείων συγχρονισμού

που απαιτούνται από την εφαρμογή, η παράλειψη υπολογισμού διάφορων

μεταβλητών, κτλ.

Σε αυτή την Μεταπτυχιακή εργασία συνδυάζουμε Heterogeneity και
Approximate Computing και αξιολογούμε την επίδραση τους στην ενερ-
γειακή κατανάλωση και την ποιότητα αποτελεσμάτων δύο εφαρμογών. Α-

φού μεταφέραμε τα υπολογιστικά κομμάτια κάθε εφαρμογής σε ισοδύναμα

OpenCL tasks επιλέξαμε το Centaurus API Framework ως τον διαχει-
ριστή της εκτέλεσης για κάθε εφαρμογή. Το Centaurus API Frame-
work προσφέρει ιδιαίτερη ευκολία στον προγραμματιστή, μιας και δεσμε-
ύει/μεταφέρει/απελευθερώνει αυτόματα οποιοδήποτε αντικείμενο μνήμης

χρειάζεται κατά την εκτέλεση των αντίστοιχων OpenCL tasks. Επίσης
επιτρέπει την εύκολη μετάβαση από ακριβής σε προσεγγιστική, και α-

ντίστροφα, εκτέλεση των διαφόρων OpenCL tasks.
Η πρώτη εφαρμογή είναι η SPSStereo (SPS) η οποία είναι μια εφαρμογή
υπολογιστής οράσεως. Η SPS υπολογίζει μια εκτίμηση της πυκνότητας
του βάθους, καθώς και την εξαγωγή ορίων (π.χ. ορίων έμφραξης α-

ντικειμένων), έχοντας σαν δεδομένα ένα ζευγάρι εικόνων καθώς αυτό

προκύπτει από την φωτογράφιση μιας στατικής σκηνής από μία στερεο-

σκοπική κάμερα. Η SPS αποτελείται από δύο μέρη, ένα μέρος υπεύθυνο
για την εκτενής αναγνώριση ομοιών περιοχών ανάμεσα στις δύο εικόνες

(SGM), και ένα δεύτερο για την ταξινόμηση και την εξαγωγή των ορίων.
Το πιο χρονοβόρο μέρος και κατ΄ επέκταση πιο ενεργειοβόρο είναι το

SGM , για το οποίο και υλοποιήσαμε μια ισοδύναμη OpenCL έκδοση, και
ως προσεγγιστική εκτέλεση αφαιρέσαμε την υπολογιστικά ακριβή ανάγκη

των επιμέρους υπολογιστικών διαδικασιών για συγχρονισμό.

Η δεύτερη εφαρμογή είναι η Molecular Dynamics (MD) , η οποία προ-
σομοιώνει τις κινηματικές ιδιότητες, όπως θέση, ταχύτητα κτλ. ατόμων

4

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

υγρού ΄Αργον τα οποία βρίσκονται υπό την επίδραση ενός δυναμικού

Lennard-Jones και περιορισμένα σε ένα νοητό κουτί. Η MD αλγοριθμικά
χωρίζεται σε τρία μέρη, Αρχικοποίηση, Εξισορρόπηση και Προσομοίωση.

Σαν προσεγγιστικές εκτελέσεις αλλάξαμε το στάδιο της προσομοίωσης,

με υπολογισμούς που εξαιρούν κάποια άτομα, και μετατοπίζουν τα άτομα

στο πεδίο του χρόνου περισσότερο από αυτό που έχει οριστεί κατά το

στάδιο της Αρχικοποίησης.

Στο στάδιο της αξιολόγησης των πειραματικών αποτελεσμάτων, κάθε

επιμέρους προσεγγιστική εκτέλεση αξιολογείται για κάθε εφαρμογή, συ-

γκρίνοντας την ποιότητα της εξόδου με την αντίστοιχη της ακριβής ε-

κτέλεσης. Ως μονάδα μέτρησης ποιότητας για την SPS χρησιμοποιήσαμε
την μετρική Peak Signal to Noise Ratio (PSNR) . Επιπρόσθετα θεω-
ρούμε πως το μέγιστο όριο οπού και φέρει η ακριβής εκτέλεση είναι τα

44 db και όχι το άπειρο που είναι στην πραγματικότητα για λόγους α-
ναπαράστασης και σύγκρισης των πειραματικών αποτελεσμάτων μεταξύ

των διαφορετικών εκτελέσεων. Για την MD χρησιμοποιήσαμε την μετρι-
κή της σχετική απόκλισης για τη μέση ενέργεια του συστήματος και την

μέση πίεση ανά άτομο. Βάσει των πειραματικών αποτελεσμάτων που προ-

κύπτουν είναι δίκαιο να θεωρήσουμε πως ο συνδυασμός της Heterogeneity
και Approximate Computing αποτελεί έναν αποδεκτό συμβιβασμό μετα-
ξύ ενεργειακής κατανάλωσης και απώλειας ποιότητας αποτελεσμάτων μιας

εφαρμογής.

5

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

ABSTRACT

One major concern of computer engineers is to create more energy ef-
ficient computer systems, both in terms of software and hardware. A
popular way of gaining energy efficiency is to exploit heterogeneity and
accelerator-based systems which combine different architectures with
different computational characteristics and provide better performance
in terms of energy efficiency in certain computational tasks. Another
bold, yet viable alternative; is approximate computing. It tries to min-
imize the energy footprint of applications at the expense of output
quality be either dropping some calculations, relaxing synchronization
barriers etc.
In this Msc. thesis we exploit both heterogeneity and approximate

computing on two different applications. For each application we imple-
mented an OpenCL version of its computational tasks and we employed
Centaurus API Framework as the orchestrator of application execu-
tion. Centaurus API Framework is able to invoke OpenCL kernels with
minimum effort from the programmer, as it automatically allocates/-
transfers any memory object needed. Also it can automatically choose
between an accurate or an approximate version of computational task
according to the specified energy budget.
The first application is SPSStereo (SPS) which is a computer vision

application. It performs a dense depth estimation and boundary labels
extraction (such as occlusion boundaries), having as input the left and
the right portion of a static scene captured with a stereo camera pair.
SPS derives in two parts, one for calculating an extended semi global
block matching (SGM) and a plane slanted algorithm for inferring the
segmentation and boundary labels extraction. As SGM is the hotspot
of SPS, we implemented an OpenCL version and as approximations we
relaxed synchronization barriers and drop calculations of SGM inner
computational tasks.
The second application is Molecular Dynamics (MD) which simulates

kinematic properties such as position, velocity etc of liquid Argon atoms
when they act in a kind of force produced by a Lennard-Jones pair
potential in a bounded box. MD derives in three parts, Initialization,
Equilibration, Simulation in which we implemented the corresponding
OpenCL versions and as for approximations we drop calculations in
Simulation.
In the experimental evaluation we evaluate each exploited approxi-

mations in the aforementioned applications by comparing against the
output produced by a fully accurate execution of application. For
SPSStereo we use Peak Signal to Noise Ratio (PSNR) and we pick
that fully accurate execution output is of 44 dB instead of actual infin-

6

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

ity dB in fairness to graphical representation and comparison of quality
between executions with approximate tasks. For MD we use Relative er-
ror for average total system energy, and pressure per atom. According
to our evaluation results, combination of heterogeneity and approxi-
mate computing is a viable trade-off between energy consumption and
quality of output.

7

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

CONTENTS

1 introduction 12
2 background 14

2.1 Parallel Processing Architectures 14
2.2 Multicore Processors 15
2.3 Manycore Processors 17
2.4 OpenCL Framework 18
2.5 Centaurus Framework 19

3 spstereo disparity image 22
3.1 Semi-Global Matching 22

3.1.1 Capped Sobel Filter 23
3.1.2 Census Transform 23
3.1.3 Sum of Absolute Difference (SAD) 24
3.1.4 Hamming Distance 24
3.1.5 Image Row Costs Calculation 24
3.1.6 Semi-Global Matching 25
3.1.7 Speckle Filter 25
3.1.8 Enforce Image Consistency 25

3.2 Implementation 26
3.3 Approximations 28
3.4 Experimental Evalution 29

3.4.1 SGMDR approximation 30
3.4.2 SGMRS approximation 32
3.4.3 SGMEPS approximation 34

4 molecular dynamics simulation 37
4.1 Theoretical Analysis 37
4.2 Implementation 40
4.3 Approximations 42
4.4 Experimental Evalution 43

4.4.1 MDCT 43
4.4.2 MDDT 45

5 related work 47
5.1 Approximate Computing 47
5.2 Heterogeneity 47

6 conclusion 49
bibliography 50

8

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

L I ST OF F IGURES

Figure 1 Four cores multicore processor level diagram. 16
Figure 2 Nvidia Kepler architecture GPU level diagram. 17
Figure 3 OpenCL platform model with one host and mul-

tiple devices. 19
Figure 4 Task life in the Centaurus framework. 20
Figure 5 Stereo camera geometry showing epipolar line

analysis (scanlines) 23
Figure 6 Flowchart of original SGM implementation 26
Figure 7 Centaurus implementation flowchart of SGM sec-

tion 27
Figure 8 (a) Left (Base) image (b) Right (Match) Im-

age 29
Figure 9 Output of fully accurate execution for image

size 1241× 376 29
Figure 10 SGMDR time execution vs ratio of accurate tasks 30
Figure 11 SGMDR quality (PSNR) vs ratio of accurate

tasks 31
Figure 12 (a) Output of fully approximate SGMDR execu-

tion. (b) Difference image between fully approx-
imate and fully accurate executions. 31

Figure 13 SGMDR energy consumption vs ratio of accu-
rate tasks 32

Figure 14 SGMRS time execution vs ratio of accurate tasks. 32
Figure 15 SGMRS quality (PSNR) vs ratio of accurate

tasks. 33
Figure 16 (a) Output of fully approximate SGMRS execu-

tion. (b) SGMRS difference image between fully
approximate and fully accurate executions. 33

Figure 17 SGMRS energy consumption vs ratio of accu-
rate tasks. 34

Figure 18 SGMEPS time execution vs ratio of accurate
tasks. 34

Figure 19 SGMEPS quality (PSNR) vs ratio of accurate
tasks. 35

Figure 20 (a) Output of fully approximate SGMEPS ex-
ecution. (b) SGMEPS difference image between
fully approximate and fully accurate executions. 35

Figure 21 SGMEPS energy consumption vs ratio of accu-
rate tasks. 36

Figure 22 Lennard-Jones potential graph. 39
Figure 23 MD Centaurus Framework implementation flowchart. 42

9

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

List of Figures

Figure 24 MDCT time execution vs ratio of accurate tasks 43
Figure 25 MDCT quality vs ratio of accurate tasks 44
Figure 26 MDCT position vector of particles between ap-

proximate and accurate execution at half simu-
lation 44

Figure 27 MDCT energy consumption vs ratio of accurate
tasks 45

Figure 28 MDDT time execution vs ratio of accurate tasks 45
Figure 29 MDDT quality vs ratio of accurate tasks 46
Figure 30 MDDT position vector of particles between ap-

proximate and accurate execution 46
Figure 31 MDDT energy consumption vs ratio of accurate

tasks 46

10

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

L I ST OF TABLES

Table 1 System of units used in MD simulation. 40

11

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

1
INTRODUCTION

Energy efficiency is critical in systems which are limited in a certain
energy budget for consumption. This category of energy-constrained
environments contains a variety of systems such as, wearable devices
which due to their mobile nature have long up-time expectations, but
also large scale HPC systems and data centers, where a significant per-
centage of the total cost of operation is due to power costs, as well as
the cost of building, maintaining and operating the necessary cooling
infrastructure. This Msc. thesis field of interest is the impact of ex-
ploiting heterogeneity and approximate computing, on an application
energy footprint.
Current hardware architecture constraints such as the fact that en-

ergy consumption cant be regulated at core-level accordingly to the de-
mands of its computational task, leads to unnecessary lower idle times
of computational cores packed in the same chip and results to higher
power rate. Thus, without exploiting specialized hardware power rate
is not prone to reduction. As a result with current technologies the only
reasonable effort to be done is try reducing the total time of application
execution and by extension reducing application energy footprint.
A typical solution to achieve optimal performance per watt is het-

erogeneous computing, mainly expressed as the exploitation of GPUs.
GPUs are programmable accelerators, efficiently targeting specific com-
putational patterns. In contrast to conventional CPU-like architectures,
GPUs offer massive, partially asynchronous parallel execution through
many computational cores. Although their power footprint is slightly
higher than that of a typical CPU, they are superior in terms of per-
formance per Watt. At the expense of a few extra Watts, applications
that exhibit sufficient parallelism can utilize GPUs to reduce both their
execution time and energy footprint.
Another bold approach for substantially boosting energy efficiency

is approximate computing. Previous work on approximate computing
[1] shows that application energy footprint can substantially reduce
by relaxing the need for fully precise or completely deterministic op-
erations. Also the intrinsic resilience in several application domains,
such as computer vision and computational physics, to inexactness in
their computations, results to a viable trade-off between energy effi-
ciency and acceptable results in aspect of quality. Due to direct corre-
lation of approximation and the quality of results, approximations need

12

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

introduction

to specifically target particular computational steps which exhibit the
aforementioned characteristics and usually require a domain expert to
implement them, otherwise results could be unacceptable in terms of
quality.
In this Msc. thesis context, we will combine both Heterogeneity and

Approximate Computing, implementing Centaurus API framework. Cen-
taurus Framework is able to invoke OpenCL kernels with minimum
effort from the programmer. Also it automatically allocates/transfers
any memory object needed by OpenCL kernel and can automatically
select according to its energy budget if it will invoke an accurate or an
approximate version of computational task. In addition all the afore-
mentioned exploiting and the Centaurus API implementation is done
on large-scale real world applications which are SPStereo and Molecular
Dynamics.
SPStereo (SPS) [2] performs a dense depth estimation and boundary

labels extraction (such as occlusion boundaries), having as input the
left and the right portion of a static scene captured with a stereo camera
pair. The application proposes a new slanted plane algorithm which in
contrast to date plane proposals eliminates the time-consuming parts
and delivers an algorithm which can easily find use in robotics appli-
cations such as autonomous driving. Moreover the aforementioned al-
gorithm consists of two parts, an extended semi global block matching
(SGM) part which computes an initial reference disparity semi-depth
map. This semi-depth map then is used as input to a plane slanted al-
gorithm for inferring the segmentation and boundary labels extraction.
Molecular Dynamics (MD) context is in general a computer simula-

tion of atoms or molecules which derives from N-Body simulation. In
this particular application we simulate the behaviour of liquid Argon
molecules restricted in a bounded box. Specifically we simulate kine-
matic properties such as position, velocity etc of liquid Argon atoms
when they act in a kind of force produced by a Lennard-Jones pair
potential [3]. MD simulations find appliance in many science domains
such as theoretical physics, biochemistry and biophysics. For example
they are used to examine atomic-level effects of dynamics, that cannot
be observed with naked eye or any other macroscopic technique, such
as ion-subplantation.
The rest of the thesis is structured as follows. Section 2 expatiates all

the related work in heterogeneous and approximate computing. Section
3 discuss detailed Heterogeneous architectures and frameworks imple-
mented in this Msc. thesis. Section 4 presents a theoretical analysis
and suitable approximations exploited of each application. Section 5
presents the experimental evaluation of both applications. Section 6
concludes the thesis and presents directions for future work.

13

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

2
BACKGROUND

This chapter introduces the basic aspects of both CPU and GPU hard-
ware architectures and how they are coupled in a heterogeneous com-
puter system. Finally we expose the programming frameworks used by
this Msc. thesis such as OpenCL and Centaurus API.

2.1 parallel processing architectures

As the need for more performance and general programmability from
both consumer and scientific community has grown, computer indus-
try had to evolve both in software and hardware technologies. Single
core processing failed to meet the expectations for many reasons, such
as hardware designs had become rather complex in order to achieve
higher frequencies, fact that leads to higher yield of manufacturing pro-
cess. More importantly, power dissipation proved to be proportional to
clock frequency [4] , imposing a natural limit on clock rates. Although
several techniques [5] emerged in the previous 15 years which were able
to sustain a boost of clock speed by a factor of 4000, the ability of
manufacturers to dissipate heat has reached a physical limit. Leakage
power dissipation gets worse as transistor gates get smaller because
gate dielectric thicknesses must proportionately decrease. As a result,
a breakthrough increase in clock speed without expensive cooling in-
frastructures is not possible.
As viable solution, parallel processing has been introduced by the in-

dustry in order to add more parallel resources while maintaining man-
ageable power characteristics [6]. Parallel processing is not something
new, it has a long history back of the mid 1960’s. The reason which
made them seriously unpopular those past days, was the difficulty of
programming them, but also the continuous evolution of single core
processors in terms of performance. Another reason was that, paral-
lelism as a concept wasn’t rather popular, resulting many algorithms
lack a parallel version. This suggests that parallel processing in past
days, demanded employance of both scientists and engineers who un-
derstood the application domain and had the resources and skills to
program them. The main reason for which parallel processing resur-
faced is that raw performance increase can come from increasing the
number of cores rather than frequency, which translates into a slower

14

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

2.2 multicore processors

growth in power consumption. However, this approach represents a
significant gamble for the following reasons:

• Parallel programming science has not advanced nearly as fast as
our ability to build parallel hardware.

• As the size of transistors will be measured in just a few tens of
atoms at most, quantum effects[7] will have to be taken into ac-
count and consequently we will see in parallel processing architec-
tures an increased unreliability of the hardware, with components
failing more often and—more importantly—intermittently.

• There will be so many transistors on the chip that it will be,
power wise, impossible to switch on all of these at the same time.
This phenomenon is known as the dark silicon problem [8].

Parallel processing architectures can be classified in a number of ways.
In the following sections we discuss two of the most famous kinds of
multicore architectures which are trends at the time this MSc thesis
is written and are often a part of heterogeneous high performance sys-
tems.

2.2 multicore processors

The first category of parallel processing is a multicore processor which
typically [9] is made up of two, four, six or even eight independent pro-
cessor cores in the same silicon. They are connected through an on-chip
bus, which is a central intersection through which all information flow
between processor cores, memory and I/O (Figure 1). Most current gen-
eral purpose multicore processors are homogeneous both in instruction
set architecture and performance. This means that they can execute
the same binaries and that it does not really matter, from functional
point of view, on which core a program runs. Also threads are executed
concurrently, which is typically a boost in performance as regards in-
tensive computational tasks and reduction in power consumption than
coupling multiple single-core processors. However as more cores are
added the on-chip bus creates an information traffic jam as all the data
must travel through the same path, partially limiting the benefits of
multiple cores.
The most common hardware with this kind of architecture is a CPU

of a computer system. Specifically, Intel’s base-entry chips at present,
are offering four real cores and in combination with her Hyper-Threading
technology, are translated up to eight logical cores. As it is shows in the
Figure 1 multicore processors employ multiple levels of cache memory.
Caches existed from the early days of hardware processing designing,
in the form of small pools of memory that store information which is
most likely to be needed by the next computation of CPU. In this way
data can be accessed faster than having to be read from main memory.

15

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

2.2 multicore processors

Nowadays caches employ multiple levels with different access latency
and size per each, in order to push further back the need of the CPU
to access the main memory for data. Moreover, some levels of cache
are shared between cores such as the Level 3 in Figure 1. This ability
of different cores have both read and write access to a cache level de-
mands a mechanism guaranteing cache consistency between them, such
as M.E.S.I. protocol [10]. As a result, although bigger size caches is
facilitating higher hit rates of data in cache and better performance, it
may also lead to reduced performance due to cache misses. So another
difficulty of parallel programming is the exposure of programmer to
dangers like cache misses which demand extra programming effort for
their minimization.

L3 Cache

System Bus

System Memory

Processor 0

Core 0

CPU

L1 Cache

L2 Cache

Core 1

CPU

L1 Cache

L2 Cache

Interconnection Bus

Core 2

CPU

L1 Cache

L2 Cache

Core 3

CPU

L1 Cache

L2 Cache

Figure 1: Four cores multicore processor level diagram.

The main characteristic of a multicore processor are:

• Limited number of real cores.

• All cores are general purpose with the same performance/power
characteristics.

• Fast caches with multiple levels and different sizes.

• Cache consistency protocols.

16

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

2.3 manycore processors

2.3 manycore processors

A manycore processor is fair to say that in general is a multicore pro-
cessor with higher number of cores up to hundreds or even thousands.
In addition its cores are simpler in aspect of designing but also slower
than the ones in a multicore processor. The most common manycore
architecture hardware is a GPU. Nowadays GPUs employ thousands
of cores, fact that makes them considered as accelerators. Due to the
tremendous parallelism inherent in graphics, GPUs have long been mas-
sively parallel machines and as result parallel algorithms can really see
performance gain in comparison with running on a CPU [11]. At the
early days of GPUs, they were special-purpose hardwired application
accelerators, suitable only for conventional graphics applications but
modern GPUs are fully programmable, massively parallel, single and
double point precision processing capable.

LD/ST LD/ST

LD/ST LD/ST

LD/ST LD/ST

LD/ST LD/ST

LD/ST LD/ST

LD/ST LD/ST

LD/ST LD/ST

LD/ST LD/ST

SFU

SFU

SFU

SFU

Register File

Dispatch Unit Dispatch Unit

Warp scheduler Warp Scheduler

Instruction Cache

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

Streaming Multiprocessor

L1 cache/Shared Memory

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

Streaming Multiprocessor

L1 cache/Shared Memory

Interconnection bus

Constant memory

Texture memory

Global memory

Shared L2 Cache

Figure 2: Nvidia Kepler architecture GPU level diagram.

As it is shown in the above Figure, a GPU also employs other units
such as Load/Store units which are responsible for fetching/saving data
from/to global memory of GPU. Also sports Special Function Units,
which are responsible for fast approximate transcendental operations
on single point precision processing. As regards cache, L1 cache is dis-
tributed per Streaming Multiprocessor (SMP) along with Shared Mem-
ory which is a special level of cache implemented in GPUs. In order to
hide the latency of loading data from global memory for all these cores

17

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

2.4 opencl framework

and maximize the memory bandwidth, as much as possible, GPUs ex-
pose another low-access-latency Level of cache, called Shared Memory,
in which the programmer is able to save data with high reusability in
future computation, and as a result increase data locality. Moreover
GPUs offer other kinds of memory to ease the programmer and exploit
low latency data loading, such as constant memory, which as the name
implies is a read only memory to GPU kernels and can only be initial-
ized by the host. Another kind of read only memory, is texture memory
which is designed mostly for graphics applications where memory ac-
cess patterns exhibit a great deal of spatial locality. In a computing
application, this roughly implies that a thread is likely to read from an
address “near” the address that nearby threads read.
The main characteristic of a manycore processor are:

• Hundreds or thousands cores.

• Simple and low frequency cores.

• Fast caches with multiple levels and different sizes.

• Extra level of cache shared memory.

2.4 opencl framework

OpenCL[12], first released in December of 2008, is an industry stan-
dard framework for programming heterogeneous systems composed by
a variety of processors such as CPUs and GPUs. OpenCL is the first of
its kind and gives the ability to programmers to write a single program
that can run on a wide range of systems, from conventional computers
to nodes in massive supercomputers, without necessary extra tweaking.
But this code portability comes at expense of programming effort. In
OpenCL the programmer is exposed to low-level parametrization and
he must explicitly define the platform, its context, and how computa-
tional work is scheduled onto different devices. This is the main reason
OpenCL receives a lot of criticism, many programmers don’t need or
even want the detailed control OpenCL provides.
OpenCL defines a host scope and independent scopes for each com-

patible processor/device found installed in system. Programmers re-
act with device scope by invoking OpenCL kernels (Figure 3). All the
aforementioned necessary parametrization and kernel scheduling by the
programmer is done in the host scope. As a result an OpenCL appli-
cation consists of two distinct parts, the host program and a collection
of one or more kernels. Moreover, OpenCL framework is divided into
the following three components:

• OpenCL platform API: It is up to device vendor to define
its own device corresponding OpenCL framework. As a result
multiple OpenCL platforms can exist on a single heterogeneous

18

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

2.5 centaurus framework

computer at one time. For example, the CPU vendor and the
GPU vendor may define their own OpenCL frameworks. Each
supplied OpenCL framework is recognized as a platform by an
OpenCL program and it is a struct which refers to the installed
devices and their OpenCL capabilities. This API provides the
programmers a way to query the system about the available plat-
forms and create the appropriate context for it.

• OpenCL runtime API: Provides the necessary functions to pro-
grammers to set up the command-queues, define memory objects
and build the dynamic libraries from which kernels are defined.
Programmers can attach either one command-queue to a single
device or multiple within a single context. Besides memory object
definition it also exposes functions for managing memory objects,
such as transferring from host to device and vice versa. It also
keeps track of how many instances of kernels use these objects
(e.g retain a memory object) and when kernels are finished with
a memory object (e.g. release a memory object). Another feature
is synchronization points for managing data sharing and enforce
of constraints on the execution of kernels.

• OpenCL programming language: The kernel programming
language in OpenCL is called the OpenCL C programming lan-
guage because which is derived from the ISO C99 language.

…
…

……
…

……
…

……
…

…

Host

Compute unit OpenCL Device

Processing
Element

Figure 3: OpenCL platform model with one host and multiple devices.

2.5 centaurus framework

Centaurus Framework is an energy aware framework which is able to
choose between approximate and accurate execution in order to meet
either a programmer defined energy frame or behave accordinly to an
internal policy for energy consumption minimization. For task creation,
Centaurus Framework offers its own programming model which is built

19

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

2.5 centaurus framework

on top of LLVM[13] compiler, and it adopts a task-based paradigm,
using #pragma directives. Tasks are implemented as OpenCL kernels,
facilitating execution on heterogeneous systems.
Centaurus programming model offers flexible execution on heteroge-

neous systems, without the exposure of the programmer to many low-
level concepts, such as inter-task synchronization, scheduling and data
manipulation. This combination of heterogeneous tasks and energy-
wise execution of tasks (accurate/approximate) is a feature that is in-
troduced for the first time in a framework.
Moreover, Centaurus Framework is divided into the following com-

ponents:

• Centaurus platform API: The Centaurus platform inherits the
typical OpenCL platform model, depicted in Figure 3, providing
an abstract execution model over all available devices. Due to
the fact that Centaurus framework hides from programmer all
the tedious parametrization needed in OpenCL, programmer cant
specify exact task per device bindings but he can specify on which
type of device the task must run (e.g. CPU, GPU etc.).

• Centaurus runtime API: Centaurus runtime system is respon-
sible for orchestrating the execution and the selection of the accu-
rate or approximate implementation for each task, based on the
active policy among a number of scheduling policies and the addi-
tional programmer’s/user’s information through directive clauses.
Tasks are implemented as OpenCL kernels. The tasks execute on
one or more devices and host program manages their creation and
synchronization. Also in host scope, the programmer defines and
spawns tasks annotated with information about significance and
data dependencies. Significance can also be defined within device
code in the form of subtasks. The compiler generates different
code versions for each case, accurate and approximate. Figure 4
depicts the life cycle of a task, from creation to completion.

Figure 4: Task life in the Centaurus framework.

• Centaurus memory model: As in OpenCL, independent scopes
are defined for host and all the available devices in system. By us-

20

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

2.5 centaurus framework

ing directives the programmer from host scope can transfer host-
to-device, device-to-host or device-to-device data. As for memory
objects release, Centaurus framework keeps track of task execu-
tions and when a memory object is not needed by a future task
is deleted in any device scope which is allocated.

• Centaurus programming model: The task programming lan-
guage is OpenCL C language and the host counterpart language
is ISO C99 language. It also exposes #pragma directives for nec-
essary task and memory management between host and devices
scopes.

21

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3

SPSTEREO DISPARITY IMAGE

SPStereo(SPS) is a stereo vision application producing a dense dispar-
ity map of a static scene captured with a stereo pair camera. It com-
bines a Stereo Global Matching (SGM) algorithm [14] and a slanted
plane algorithm which assumes that the 3D scene is piece-wise planar
and the motion is rigid or piece-wise rigid [15, 16]. A robust and dense
computation depth information is necessary in many (automated) ma-
chine vision applications such as driver assistance systems, robotics and
is a cheap effective alternative to RGB-D cameras. In the sections to
follow we analyse the original algorithm used and its hotspots. Next we
will discuss the transition to a more GPU oriented version exploiting
Centaurus Framework and the implementation of viable approxima-
tions.

3.1 semi-global matching

After profiling the original implementation with Intel Vtune Perfor-
mance Analyzer we discovered that the most time consuming task is
the first section of application, the Semi Global Matching (SGM). SGM
considers pairs of images with known intrinsic and extrinsic orientation
(stereo-camera characteristics) and is responsible for an initial disparity
image estimation. Moreover, disparity estimation is the task of iden-
tifying the projection point of the same 3D real-world point in two or
more images taken from distinct viewpoints. The most challenging task
of a disparity estimation algorithm is to identify correctly a point and
its different references from different viewpoints in the same 3D world
despite the high level of ambiguity.
As Figure 5 depicts, the stereo image pair is facilitating an epipolar

geometry and as a result the further analysis of similarity between
pixels from left and right image (base and match image, respectively)
is done in 1D epipolar lines (scanlines) level. In order to deal with non-
unique or wrong correspondences due to low texture and ambiguity,
the semi-global matching facilitates other computer vision techniques
to check pixel consistency and produce proper matching costs between
base and match image. The detailed steps of SGM algorithm are the
following:

22

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.1 semi-global matching

Figure 5: Stereo camera geometry showing epipolar line analysis (scan-
lines)

3.1.1 Capped Sobel Filter

Is a high pass filter and especially in computer vision and it highlights
edges and transitions of pixels intensity by applying the following op-
erator per image pixel.

P =

 -1 0 +1
-2 0 +2
-1 0 +1

 (1)

Moreover the final pixel in the resulting sobel image is produced
through the following transformation

Rsobel(P) =

2 · cap P > cap

P + cap −cap < P < cap

0 P < −cap
(2)

where cap is an algorithm defined constant which further highlights
edges.

3.1.2 Census Transform

It defines a central pixel which is surrounded by a virtual square window
D of size M ×M . The intensity of the corresponding pixels in the
window is mapped to a bit string and then the central window pixel

23

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.1 semi-global matching

value is replaced by this string accordingly the movement of the window
(e.g. left, right etc).

Rcensus(P) = ⊗
[i,j]εD

ξ(P ,P + [i, j]) (3)

where ⊗ is the contetation of corresponding bits and function ξ is de-
fined as

ξ(P ,P ′) =
{

1 P ≥ P ′
0 P < P ′

(4)

3.1.3 Sum of Absolute Difference (SAD)

Is used to indicate the similarity between image blocks and in this appli-
cation context, is measured by taking the absolute difference between
each pixel in the left image block D in accordance with the correspond-
ing right image block, resulting as a cost factor corresponding to the
similarity of pixel regions.

Csad(x, y) =
∑

[i,j]εD

∣∣∣Il[x, y]− Ir[x+ i, y+ i]
∣∣∣ (5)

where I is the corresponding left and right image respectively.

3.1.4 Hamming Distance

Although Hamming Distance is mainly used in information theory, in
this context is implemented as an extra indication of block similarities
calculating the minimum number of substitutions required to change
one pixel of left image block D into the corresponding right image block
pixel.

Chamming(x, y) =
∑

[i,j]εD

∣∣∣Il[x, y]⊕ Ir[x+ i, y+ j]
∣∣∣ (6)

where ⊕ bitwise XOR operation between two pixels.

3.1.5 Image Row Costs Calculation

Combines the result of previous SAD and Hamming image block anal-
ysis and calculates final pixelwise costs for each image. Also in order
to produce more accurate results cost pixels from different image rows
are being aggregated and the final cost is defined as

Cr(p, d) = Cfinal(p, d) +Cr(p, d− 1) +Cr
i
(p, d)−Cr

j
(p, d) (7)

24

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.1 semi-global matching

where Cr
i

and Cr
j

are the aggregated costs from different rows and

Cr(p, d− 1) is the exactly previous calculated cost. Also Cfinal is de-
fined as

Cr(p, d) = Chamming(p, d) +Csad(p, d) (8)

3.1.6 Semi-Global Matching

Every image row is considered a scanline which consists of costs paths.
The path costs Lr(P , d) are aggregated along a path r according to

Lr(p, d) = Cr(p, d) +min

Lr(p− r, d)
Lr(p− r, d− 1) + P1
Lr(p− r, d+ 1) + P1
min
i
Lr(p− r, i) + P2

−min
l
Lr(p− r, l)

(9)

Where d is the disparity and i, l are indexes of different paths r. The
first term is the calculated costs for the pixel from previous analysis.
The second term adds the minimal path costs of the previous path
r including a penalty P1 for disparity changes and P2 for disparity
discontinuities, respectively. The third term in order to fix any wrong
correspondences due to low texture and ambiguity removes the minimal
path costs of previous paths. Moreover SGM is applied forward and
backwards on both images and the resulting disparity image pixel is
defined as

df (p, r) = Factord

dbest(p, r) +

d(p+1,r)−d(p−1,r)
4·(d(p,r)−d(p−1,r)) , d(p−1,r)

d(p+1,r) < 1
d(p+1,r)−d(p−1,r)
4·(d(p,r)−d(p+1,r)) , d(p−1,r)

d(p+1,r) ≥ 1

(10)

Let dbest be the disparity with the lower cost associated in this path p
of row r.

3.1.7 Speckle Filter

Searches in image for tearing regions which is shown as noise and en-
hances it in order to eliminate these regions.

3.1.8 Enforce Image Consistency

Enhances both left and right produced images, so they have matching
disparity intensity and lighting conditions.

25

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.2 implementation

In Figure 6 is shown the flowchart of the original SGM sequential
implementation.

RGB to Grayscale
(Left and Right image)

Capped Sobel Image
(Left image)

Capped Sobel Image
(Right image)

Census Transform
(Left image)

Census Transform
(Right image)

Calculate Top Row
Costs

(Left image)

Calculate Remaing
Row Costs
(Left image)

Pixel Sum of Absolute
Difference

(Left image row-wise)

Calculate Hamming
Distance

(Left image row-wise)

Calculate image Costs
(Right image)

Perform SGM
(Left image)

Perform SGM
(Right image)

Enforce Image
Consistency

(Left and Right image)

Speckle Filter
(Left image)

Speckle Filter
(Right image)

Figure 6: Flowchart of original SGM implementation

3.2 implementation

SPS original implementation was written in C++, a programming lan-
guage which is not supported by Centaurus Framework. Also it was
exploiting Intel SIMD extensions in order to achieve fast and robust
results, and shrink as much as possible any time-consuming task. In
order to begin with the migration to a GPU version and Centaurus
Framework implementation, the application was completely rewritten
in C language along with the corresponding originally utilized classes
(e.g. vector, stack etc). After affirming the exactness of results between
C and C++ versions we translated all previous mentioned functionali-
ties to corresponding OpenCL kernels.

26

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.2 implementation

RGB to GrayScale
(Left and Right Image)

Capped Sobel Filter
(Left Image)

Capped Sobel Filter
(Right Image)

Census Transform
(Left Image)

Census Trasform
(Right Image)

1st Left Costs Image
Calculation

1st Pass Perform SGM
(Left Image)

Speckle Filter
(Left Image)

Speckle Filter
(Right Image)

Enforce Image Consistency
(Left & Right Image)

2nd Left Costs Image
Calculation

SAD and Hamming Calculation
(Left Image)

1st Right Costs Image
Calculation

2nd Right Costs Image
Calculation

1st Pass Perform SGM
(Left Image)

2nd Pass Perform SGM
(Left Image)

2nd Pass Perform SGM
(Right Image)

O
p

en
C

L
K

e
rn

e
ls

GPU GPU

GPUGPU

GPU

GPU

GPU

GPU

GPU

CPU

CPU

CPU

CPU

GPU

GPU GPU

GPU

Approximate version
device binding

Accurate version
device binding

Kernels in the same
taskgroup

(parallel execution)

Figure 7: Centaurus implementation flowchart of SGM section

Firstly the fact that original version was exploiting SIMD extensions
made the code hard to understand and trace data dependencies. Also
despite that SIMD by definition is indicating some level of data par-
allelism, in most cases the level of parallelism is not sufficient of fully
utilizing a GPU, so geometry of each functionality had to be revisited.
Pretty much most of the corresponding OpenCL kernels are implement-
ing the same algorithmic steps, but there are also functionalities which
are implemented with step-reduction kernels due to prohibiting data
dependencies.
Specifically, the function of calculating image row costs as is shown

in equation 7 exhibits both vertical and horizontal data dependencies.
Horizontal dependencies are due to the second term which is the exact
previous calculated cost path in the same row, and vertical because the
last two terms are adding and subtracting respectively, the correspond-
ing path costs of previous calculated rows. Thus this function is broken
up to two OpenCL kernels, each one responsible for satisfying one of
data dependencies. At the end both their results are summed resulting
the same function.

27

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.3 approximations

In addition, there are functionalities that have sequential dependen-
cies across consecutive image rows that make it impossible to exploit
any level of data parallelism higher than the already implemented. This
kind of function is SGM and as shown in equation 9 the second term
requires the local minimum between different path costs of rows in the
image, fact that establishes an uncertainty of data access pattern and
leads to limited level of parallelism. Thus due to insufficient paral-
lelism of utilizing a GPU the corresponding function is translated to a
CPU oriented OpenCL kernel in which original SIMD is replaced with
OpenCL vectorization extensions, in order to maintain the originally
implemented level of data parallelism.
Concluding, the resulting flowchart of our SGM implementation in

Centaurus Framework is shown in Figure 7. As it depicts some of
functions run concurrently and there are appropriate versions of tasks
for both accurate and approximate executions which will be detailed
in the following section.

3.3 approximations

After successfully implementing the accurate version in Centaurus Frame-
work we tried to exploit different approximations in order to produce
acceptable output in aspect of quality (PSNR) and reduce total execu-
tion time. As a baseline approximation we exploited the relaxation in
dependencies of calculated paths between previous scanlines (SGMDR).
Furthermore each path cost is considered independent from previous
calculated path cost in the same row, and for every path cost emerges
one local minimum. As a result, horizontal dependencies from equation
9 are eliminated and the equation of SGM function becomes

Lr(p, d) = Cr(p, d) +min

{
Lr(p− r, d)
min
i
Lr(p− r, i) + P2 −min

l
Lr(p− r, l)

(11)

This approximated version of SGM function exhibits high level of
parallelism, thus the corresponding kernel is GPU oriented. Another
approximation injected in combination with SGMDR is the reduction of
necessary forward and backwards analysis of SGM function to just back-
wards (SGMRS). Our last approximation is the elimation of computa-
tion intensiveness in SGM pixel region similarity functions by excluding
completely Census function execution (SGMEPS). Each approximation
evaluation is presented in the following section.

28

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.4 experimental evalution

3.4 experimental evalution

In this section all aforementioned approximations will be evaluated
in aspect of execution time, quality and energy consumption. Firstly
Figure 8 shows the input images on which our approximations will be
evaluated.

(a)

(b)

Figure 8: (a) Left (Base) image (b) Right (Match) Image

Each approximation output quality is evaluated in metric of PSNR
(dB). We pick that fully accurate execution output is of 44 dB instead
of actual infinity dB in fairness to graphical representation and compari-
son of quality between executions with approximate tasks. This is valid
because in image benchmarking, images with 44 dB are considered to
have high fidelity. Figure 9 depicts the output of an accurate execution
for image size 1241× 376 which is considered the gold standard in the
following approximations evaluation.

Figure 9: Output of fully accurate execution for image size 1241× 376

29

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.4 experimental evalution

3.4.1 SGMDR approximation

0

2

4

6

8

10

12

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

0.0 0.25 0.5 0.75 1.0

Exe
cut

ion
 Tim

e (s
ec)

Ratio of accurate tasks execution

Total Time 1241x376 Total Time 1280x720Total Time 1920x1080 SGM time 1241x376SGM Time 1280x720 SGM Time 1920x1080

Figure 10: SGMDR time execution vs ratio of accurate tasks

In Figure 10 the total time of SPS execution is shown for each ratio
configuration. In ratio 1.0 configuration it is clearly that SGM section
of SPS takes almost the one fourth of total time execution. As more
approximate task executions are injected and for configurations of ra-
tio 0.75 and 0.5 we notice a small reduction of SGM section time that
doesn’t affect total time execution. This is due to the fact that approxi-
mate version of tasks is GPU execution binded in contrast with accurate
version which is CPU binded. This mixture of device binded executions
causes extra memory transfers between GPU and CPU which prohibit
the further reduction of total execution time. In ratio 0.25 we see that
time execution gets reduced and even more in fully approximate execu-
tion of ratio 0.0. Another noticeable effect is that the second section
of SPS application is getting slower as more tasks are being approxi-
mately executed and this is due to the fact that more erroneous regions
of initial disparity image are surfaced.
As Figure 11 shows, quality decreases in accordance to the number

of approximate tasks execution reaching a minimum of 36.267 dB for
image size 1241× 376 and 27.537 dB for size 1920× 1080. This differ-
ence is due to the fact that SGMDR approximation is highly correlated
with image size. While the size of image gets larger, then more local
minimum path costs emerges as the scalines get wider. Thus the error
injection rate is bigger and the output is further differentiated from the
golden.

30

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.4 experimental evalution

0.0
4.0
8.0

12.0
16.0
20.0
24.0
28.0
32.0
36.0
40.0
44.0

0.0 0.25 0.5 0.75 1.0

PSN
R (d

B)

Ratio of accurate tasks execution

1241x376 1280x720 1920x1080

Figure 11: SGMDR quality (PSNR) vs ratio of accurate tasks

(a)

(b)

Figure 12: (a) Output of fully approximate SGMDR execution. (b) Dif-
ference image between fully approximate and fully accurate
executions.

We can observe in Figure 12b that we lose shape detail of objects. In
accurate version we preserve the total minimum path cost of a scanline
and thus any change in disparity by the existence of object is located
correctly. In the approximate version total minimum is replaced by
local minimums and this likely difference in minimum value of different
pathcosts is resulting to injection of non-existent artifacts and alterna-
tion of objects shape. However, object positioning and disparity in the
scene are still correct.

31

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.4 experimental evalution

0.0
200.0
400.0
600.0
800.0

1,000.0
1,200.0
1,400.0
1,600.0
1,800.0
2,000.0

0.0 0.25 0.5 0.75 1.0

Ene
rgy

 Co
nsu

mp
tion

 (J)

Ratio of accurate tasks execution

1241x376 1280x720 1920x1080

Figure 13: SGMDR energy consumption vs ratio of accurate tasks

Energy consumption as shown in Figure 13, is highly correlated with
total execution time. We see a 55% reduction for 1241× 376 size and
49% for both 1280× 720 and 1920× 1080 sizes.

3.4.2 SGMRS approximation

0

2

4

6

8

10

12

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

0.0 0.25 0.5 0.75 1.0

Exe
cut

ion
 Tim

e (s
ec)

Ratio of accurate tasks execution

Total Time 1241x376 Total Time 1280x720Total Time 1920x1080 SGM time 1241x376SGM Time 1280x720 SGM Time 1920x1080

Figure 14: SGMRS time execution vs ratio of accurate tasks.

Time perfomance of SGMRS approximation is almost the same with
SGMDR. The final results show the already implemented gains from
SGMDR approximation and an extra 0.06 seconds reduction (ratio 0.0)
due to the exclusion of backwards analysis. SGMRS has such low im-
pact on total time because the excluded kernel are too small in duration.

32

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.4 experimental evalution

0.0
4.0
8.0

12.0
16.0
20.0
24.0
28.0
32.0
36.0
40.0
44.0

0.0 0.25 0.5 0.75 1.0

PSN
R (d

B)

Ratio of accurate tasks execution

1241x376 1280x720 1920x1080

Figure 15: SGMRS quality (PSNR) vs ratio of accurate tasks.

Quality of fully approximate execution is reduced to 33.713 dB of
image size 1241× 376. This is due to the fact that as backward SGM
analysis is excluded are also excluded the corresponding minimums and
as a result we have more erroneous regions.

(a)

(b)
Figure 16: (a) Output of fully approximate SGMRS execution. (b)

SGMRS difference image between fully approximate and
fully accurate executions.

As regards object shape correctness we can see that in this approxi-
mation objects shape is transformed even more from SGMDR approx-
imation. The lack of backward analysis leave false disparities which
leads to further distortion of objects shape.

33

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.4 experimental evalution

0.0
200.0
400.0
600.0
800.0

1,000.0
1,200.0
1,400.0
1,600.0
1,800.0
2,000.0

0.0 0.25 0.5 0.75 1.0

Ene
rgy

 Co
nsu

mp
tion

 (J)

Ratio of accurate tasks execution

1241x376 1280x720 1920x1080

Figure 17: SGMRS energy consumption vs ratio of accurate tasks.

Energy consumption of ratio 0.0 configuration is 257.92 J and SGMRS
is by 2.5% more energy efficient than SGMDR and by 57% from fully
accurate execution. As for sizes 1280× 720 and 1920× 1080 the gain
is 5.5% and 54.5% from SGMDR and fully accurate execution respec-
tively.

3.4.3 SGMEPS approximation

0

2

4

6

8

10

12

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

0.0 0.25 0.5 0.75 1.0

Exe
cut

ion
 Tim

e (s
ec)

Ratio of accurate tasks execution

Total Time 1241x376 Total Time 1280x720Total Time 1920x1080 SGM time 1241x376SGM Time 1280x720 SGM Time 1920x1080

Figure 18: SGMEPS time execution vs ratio of accurate tasks.

Time performance of SGMEPS is the same with SGMRS. Although
in SGMEPS, kernels responsible of Census function are reduced, their
duration are in scale of 20 msec thats why their reduction doesn’t affect
the total execution time.

34

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.4 experimental evalution

0.0
4.0
8.0

12.0
16.0
20.0
24.0
28.0
32.0
36.0
40.0
44.0

0.0 0.25 0.5 0.75 1.0

PSN
R (d

B)

Ratio of accurate tasks execution

1241x376 1280x720 1920x1080

Figure 19: SGMEPS quality (PSNR) vs ratio of accurate tasks.

Quality for image size 1241× 376 stays the same with SGMRS and
for other two remaining sizes is slightly improved. This is due the fact
that SGMEPS is reducing the functions responsible for determining
similarities between pixel regions. This relaxation cannot improve the
distortion of objects shape but as Figure 20b shows, can improve the
calculated disparity of erroneous regions to be closer to ground truth.

(a)

(b)

Figure 20: (a) Output of fully approximate SGMEPS execution. (b)
SGMEPS difference image between fully approximate and
fully accurate executions.

35

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

3.4 experimental evalution

0.0
200.0
400.0
600.0
800.0

1,000.0
1,200.0
1,400.0
1,600.0
1,800.0
2,000.0

0.0 0.25 0.5 0.75 1.0

Ene
rgy

 Co
nsu

mp
tion

 (J)

Ratio of accurate tasks execution

1241x376 1280x720 1920x1080

Figure 21: SGMEPS energy consumption vs ratio of accurate tasks.

Energy profile of SGMEPS stays the same with SGMRS for the same,
already mentioned reason that SGMEPS doesn’t show any time execu-
tion improvement.

36

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4

MOLECULAR DYNAMICS S IMULATION

Molecular Dynamics (MD) is widely used to simulate many particle
systems ranging from solids, liquids, gases, and biomolecules on Earth,
to the motion of stars and galaxies in the Universe. The first success-
ful Molecular Dynamics simulation was done in 1964 by A. Rahman
[17] who studied dynamical properties such as heat transport of liquid
Argon. Later his work was extended by Verlet whose improvements, es-
pecially the Verlet integration algorithm [18] and particle neighbor lists
[19], are widely used today. In the sections to follow we will analyse
the theoretical background of MD, our implementation, the approxima-
tions we exploited and their corresponding evaluation.

4.1 theoretical analysis

MD is basically a system of N atoms, which interact between them
under a kind of inter-particle force but also in some cases in addition
with external forces. The baseline of such system is the equation of mo-
tion for particles which is basically the numerically integrated Newton’s
equation of motion. The resulting equation of motion for the particle
system is defined as

m
d2ri
dt2

= Fi(r1, r2, ..., rN), i = 1, 2, ...,N . (12)

where:

• N is the number of atoms in the system.

• ri are the position vectors of atoms.

• Fi are the forces acting upon N particles in the system.

In the absence of external forces, the system is in equilibrium state
and static properties such as temperature and pressure are measured
as averages over time. Moreover forces derives from potential functions
U(r1, r2, ..., rN) which can be presented as a sum of pairwise particles
interactions

U =
N∑
i=1

N∑
j 6=i

u(rij) (13)

37

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4.1 theoretical analysis

where:

• rij = ri − rj is the distance between particles.

• rij ≡ |rij| is the magnitude of distance vector.

In addition forces are correlated to potential accordingly to

Fi(r1, r2, ..., rN) = −5ri U(r1, r2, ..., rN) (14)

where implies the conservation of total energy E = Ekin +Epot.
One of the most famous pair potentials for van der Waals systems is

the Lennard-Jones potential. Although Lennard-Jones potential is not
the most faithful representation of the potential energy surface, it is
used widespread due to its computational expediency. Lennard-Jones
potential is given by the following equation:

V (r) = 4ε

(σ
r

)12
−
(
σ

r

)6
 (15)

where

• V is the intermolecular potential between the two atoms or molecules.

• ε is the well depth (material dependent).

• σ is the distance at which the intermolecular potential between
the two particles is zero (material dependent).

• r is the distance between both particles.

Furthermore at short distances the term proportional to r−12, in-
dicates a repulsive force between atoms due to nonbonded overlap of
electronic orbitals. On the contrary, at long distances the dominant
term is proportional to r−6 which indicates an attractive force and
thus the pair of atoms experiences a small stabilizing force. When
distance of pair atoms is approximately equal to σ then the potential
energy reaches a minimum value and the force is approximately zero
between the pair of atoms (Figure 22).

38

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4.1 theoretical analysis

In
te

rm
o

le
cu

la
r

P
o

te
n

ti
al

 (
V

)
(P

o
te

n
ti

al
 E

n
er

gy
)

σ

ε

r(σ)

F = 0

Attractive ForceRepulsive
Force

Figure 22: Lennard-Jones potential graph.

The inter-particle forces arising from the Lennard-Jones potential (15)
in accordance with (14) have the form

F (r) = −dV (r)

dr
=

24ε
σ

2
(
σ

r

)13
−
(
σ

r

)7
 (16)

There are many interesting quantities that can be measured for a sys-
tem in thermal equilibrium. For example the total energy which is
given by

Etotal =
m

2

N∑
i=1

v2
i +

∑
pairs ij

V (|ri − rj |) (17)

which is the sum of kinetic and potential energies. The conservation
of total energy can be monitored by measuring it periodically between
several simulation time steps. The averages of kinetic and potential
energies can also be measured separately.
Another interesting observable quantity of the system is the pressure

P . If the system is confined in a box with walls, the pressure can
be estimated from the average force exerted by atoms bouncing off
the walls. However, there is a more convenient way of measuring the
pressure using the virial theorem [20] which states that

PV = NkBT −
1
3

〈
N∑
i=1

ri ·Fi

〉

where

• kB is the Boltzmann constant.

39

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4.2 implementation

• T is the absolute temperature of the system in thermal equilib-
rium.

• < . . . > denotes a time (ensemble) average.

4.2 implementation

In this section, the discussion will focus on the computational imple-
mentation of previous theoretical analysis. In order to be able to work
with values proportional to units of length (e.g. σ, ε etc) instead of
atomic scale values, which are typically very small and also to simplify
the equations of motion, due to the elimination of atomic level fac-
tors, we choose to implement dimensionless units, also called MD units.
Thus the Lennard-Jone potentials takes the simplified form

V (r) = 4
(
r−12 − r−6

)
(18)

The produced inter-particles forces are defined as

F (r) = 48
(
r−14 − 1

2r
−8
)

(19)

The total energy of the MD system is given by

Etotal =
1
2

N∑
i=1

v2
i +

∑
pairs ij

V (|ri − rj |) (20)

The corresponding mapping of MD units to SI metric system is shown
in the following table.

Table 1: System of units used in MD simulation.

Physical Quantity Unit Value for liq. Ar
length σ 3.4× 10−10 m
energy ε 1.65× 10−21 J
mass m 6.69× 10−26 kg
time σ(m/ε)1/2 2.17× 10−12 s
velocity (ε/m)1/2 1.57× 102 m/s

As regards time integration we exploited the "Velocity" Verlet algo-
rithm [18], because Euler time integration doesn’t provide the numer-
ical stability necessary to reproduce energy conservation phenomenon

40

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4.2 implementation

in equilibrium state. The resulting equations for motion of an atom
are:

v(t+ ∆t) = v(t) + a(t)∆t+O((∆t2)) (21)

r(t+ ∆t) = r(t) + 1
2a(t)(∆t)2 +O((∆t3)) (22)

And the expression of velocity at mid-interval v(t+ ∆t/2) is:
v(t+ ∆t/2) = v(t) + a(t)∆t/2
r(t+ ∆t) = r(t) + v(t+ ∆t/2)∆t
a(t+ ∆t) = F(r(t+ ∆t))/m
v(t+ ∆t) = v(t+ ∆t/2) + a(t+ ∆t)∆t/2

(23)

Another important step in MD simulation is the initialization of physi-
cal quantities. Systems which are in thermal equilibrium like ours and
are exposed to constant quantities such as number of particles, bound
box volume and energy are called microcanonical ensembles. This type
of simulation is called a microcanonical MD method [21]. According
to the ergodic hypothesis, if the initial state of the system is chosen
sufficiently carefully, then the successive states of the system as a func-
tion of time can be used to compute the thermal averages of various
observables such as temperature and pressure. Thus for initialization
we implemented a simple random generator filling particles positions
vector within the range of box dimensions and initial particles velocity
in a range [−1.0, 1.0].
Finally the MD simulation is derived to the following algorithmic steps:

• Initialization: The volume box that bounds the atoms is set.
Position and velocity vectors of the particles are being inflated.

• Equilibration: A time step h is chosen, and the equations of
motion are solved iteratively for a sufficient number of steps to
allow the system to come to equilibrium.

• Simulation: The iterations are continued. Physical quantities
are measured at each time step, and their thermal averages are
computed as time averages.

The implemented algorithm has both O(N2) time and space complexity
and as Figure 23 depicts the sections of Initialization and Equilibration
are done in host-scope. Furthermore in order to exploit parallel execu-
tion of tasks we divided Simulation section up to four tasks. Except
the possibility of running to different devices, this implementation also
give us the advantage of alleviating execution of multiple task command
queues provided by Centaurus Framework. Thus before task invocation,
the total position and velocity vectors of particles is broadcasted to each

41

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4.3 approximations

device that is task execution binded. Next each device evaluates the
necessary physical quantities of an individual portion of particles and
at the end returns the corresponding updated values. These values are
concatenated and are rebroadcasted in the next time step. Lastly for vi-
sual representation of the MD simulation we implemented an OpenGL
graphics scene which visualizes the position vectors of atoms in each
time-step.

O
p

e
n

C
L

K
e

rn
el

Start

Initialize position and velocity
vectors with random generator

Calculate number of total time
step of MD simulation

Available time
steps

End
FALSE

TRUE

Calculate velocity at
mid-interval

Update position

Calculate the force

Update the accelaration

Update velocity

Transfer Total
position and

velocity vector

Transfer Total
position and

velocity vector

Transfer Total
position and

velocity vector

Transfer Total
position and

velocity vector

Evaluate physical
quantities for

particles portion

Evaluate physical
quantities for

particles portion

Evaluate physical
quantities for

particles portion

Evaluate physical
quantities for

particles portion

Return only
portion updated

values

Return only
portion updated

values

Return only
portion updated

values

Return only
portion updated

values

Figure 23: MD Centaurus Framework implementation flowchart.

4.3 approximations

In order to reduce as much as possible the computational intensiveness
of the implemented simulation, we set a cut-off region (MDCT). This
distance acts as a threshold which creates a surrounding region to a
particle and enables it only to interact with any particle that submits to
this region and ignore everything out of it. This kind of approximation

42

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4.4 experimental evalution

is viable as the dominant term in equation 15 for large distances, is
negligible and has small magnitude on the resulting total force that
acts on the desired particle. After experimentation, we found that an
acceptable distance in terms of quality is 40 Å. Another approximation
we exploited is propagating the particles in time with double time step
(MDDT) in comparison with accurate version. Although we skip time
steps the implemented "Velocity" Verlet integration method provides
sufficient motion stability in order for energy conservation phonemenon
to be observed, without particular loss of quality.

4.4 experimental evalution

In this section both approximations will be evaluated in aspect of time
execution, quality and energy consumption. The quality is being eval-
uated by calculating the average total energy of the system every 100
time steps of simulation. The pressure is sampled with the same in-
terval and at the end of simulation is averaged to result into the final
average pressure per particle. Both approximations will be evaluated
on a MD simulation parameterised with 32768 particles bounded in a
[−300, 300] Å Box per dimension, for total simulation 1 ps with time
steps of 1 fs (1000 steps). For better representing in the following Fig-
ures (26, 30) the corresponding position vectors are calculated for 1024
particles.

4.4.1 MDCT

177.347

308.379 335.901

571.562

700.889

40.1836 42.2306 45.4059
53.1097

59.4336

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00 0.25 0.50 0.75 1.00

Exe
cut

ion
 Tim

e (s
ec)

Ratio of accurate tasks execution

CPU GPU

Figure 24: MDCT time execution vs ratio of accurate tasks

The time execution reduction between fully accurate and fully approx-
imate executions (ratio 1.0 and 0.0 respectively) is 37% for GPU and
75% for CPU.

43

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4.4 experimental evalution

99.00%
99.10%
99.20%
99.30%
99.40%
99.50%
99.60%
99.70%
99.80%
99.90%

100.00%
100.10%

0.00 0.25 0.50 0.75 1.00

Qua
lity

Ratio of accurate tasks execution

Average System Total EnergyAverage Pressure per atom

Figure 25: MDCT quality vs ratio of accurate tasks

Figure 26: MDCT position vector of particles between approximate and
accurate execution at half simulation

At ratio 0.0 configuration relative error is 0.2% for average system total
energy quality reduction and 0.5% for average pressure per atom. This
order of magnitude for relative error is almost negligible. Figure 26
shows that distribution of atoms for both fully accurate (blue) and fully
approximate (red) execution is homogeneous another factor that leads
to so small quality drops and makes the MDCT a viable approximation.
The energy consumption is respectively reduced 38% and 72% for GPU
and CPU device executions.

44

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4.4 experimental evalution

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00 0.25 0.50 0.75 1.00

Ene
rgy

 Co
nsu

mp
tion

 (J)

Ratio of accurate tasks execution

CPU GPU

Figure 27: MDCT energy consumption vs ratio of accurate tasks

4.4.2 MDDT

88.8361

242.191
305.309

548.361

701.535

20.0328

34.1467
37.6697

42.7831

57.289

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00 0.25 0.50 0.75 1.00

Exe
cut

ion
 Tim

e (s
ec)

Ratio of accurate tasks execution

CPU GPU

Figure 28: MDDT time execution vs ratio of accurate tasks

The time execution meets the gains of the already MDCT approxima-
tion with further reduction reaching of 65% for GPU and 87% for CPU
between fully accurate and fully approximate executions (ratio 1.0 and
0.0 respectively). The double propagation of atoms in time is causing
falsely containment of some atoms to the box edges (Figure 30) causing
higher order of relative error in comparison with MDCT. Specifically
at ratio 0.0 configuration relative error is 2.8% for average system total
energy quality reduction and 3.1% for average pressure per atom. This
order of magnitude for relative error is still acceptable. The energy
consumption is respectively reduced 67% and 86% for GPU and CPU
device executions.

45

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

4.4 experimental evalution

95.00%
95.50%
96.00%
96.50%
97.00%
97.50%
98.00%
98.50%
99.00%
99.50%

100.00%

0.00 0.25 0.50 0.75 1.00

Qua
lity

Ratio of accurate tasks execution

Average System Total EnergyAverage Pressure per atom

Figure 29: MDDT quality vs ratio of accurate tasks

Figure 30: MDDT position vector of particles between approximate
and accurate execution

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00 0.25 0.50 0.75 1.00

Ene
rgy

 Co
nsu

mp
tion

 (J)

Ratio of accurate tasks execution

CPU GPU

Figure 31: MDDT energy consumption vs ratio of accurate tasks

46

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

5

RELATED WORK

As this Msc thesis consists of two applications, in this section we expa-
tiate related work which are some also consisted of many applications
and often are a part of a bigger framework or a stand-alone bench-
mark suite. We classify related work in heterogeneity and approximate
computing exploitation and further analysis.
All these approaches focus either on heterogeneity or approximate com-
puting and some of them are performance-wise focused rather than
energy consumption. Also most of them contain small size mostly
kernel-scale applications which prohibit or distort the real impact on
an application energy footprint and loss of output quality by exploiting
heterogeneity and approximate computing.

5.1 approximate computing

AxBench [22] is a benchmark suite combined with the NPU compiler,
and is written in C++ and CUDA. It consists of seven pre-made bench-
marks with the necessary annotations to work with the NPU compila-
tion workflow. The set of benchmarks covers both CPU and GPU ap-
plications. ApproxIt [23] is an approximate computing framework for
iterative methods with quality guarantees. Specifically is a lightweight
quality estimator that is able to capture the solution quality of each
iteration and use it to guide the selection of approximate computing
mode in the next iteration. Thus, ApproxIt is able to gain application
energy efficiency under quality guarantees. EnerJ [24] is an extension
to Java that gives the ability to use type qualifiers that distinguish
between approximate and precise data types. Each computation that
follow, regarding the aforementioned data types is done either approx-
imately or accurately according to these type qualifier.

5.2 heterogeneity

Rodinia [25], is a benchmark suite that provides several applications
that support execution on diverse accelerators. By this, it tries to cap-
ture the execution patterns and match the best accelerator to the con-
sisting computational tasks of an application performance-wise. Opend-
warfs [26] and Shoc [27] as Rodinia offers a varity of application that

47

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

5.2 heterogeneity

support heterogeneous execution and tries to evaluate the efficacy of
such parallel architectures and ultimately identify the architectural in-
novations that benefit the performance of an application.

48

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

6
CONCLUS ION

In this MSc thesis we introduce the combination of heterogeneity and
approximate computing to minimize energy consumption on non-trivial
applications for energy footprint minimization. Experimental results
indicate that it is realistic and beneficial to exploit the trade-off be-
tween energy consumption and output quality, by providing different
approximation levels for each application.
As part of future work is to evaluate, the trade-off between power effi-
ciency and error resilience on heterogeneous reliable / unreliable com-
puting environments. Also another key direction is to expose the sig-
nificance analysis of each application computations to an automatic
–machine learning– technique.

49

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

BIBL IOGRAPHY

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Test Symposium (ETS),
2013 18th IEEE European, pp. 1–6, May 2013.

[2] K. Yamaguchi, D. McAllester, and R. Urtasun, “Efficient joint
segmentation, occlusion labeling, stereo and flow estimation,” in
ECCV, 2014.

[3] J. E. Jones, “On the determination of molecular fields. i. from the
variation of the viscosity of a gas with temperature,” Proceedings
of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 106, no. 738, pp. 441–462, 1924.

[4] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip leak-
age estimation considering power supply and temperature varia-
tions,” in Proceedings of the 2003 International Symposium on
Low Power Electronics and Design, ISLPED ’03, (New York, NY,
USA), pp. 78–83, ACM, 2003.

[5] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge,
“Drowsy caches: simple techniques for reducing leakage power,”
in Computer Architecture, 2002. Proceedings. 29th Annual Inter-
national Symposium on, pp. 148–157, 2002.

[6] W. M. Arden, “The international technology roadmap for semicon-
ductors—perspectives and challenges for the next 15 years,” Cur-
rent Opinion in Solid State and Materials Science, vol. 6, no. 5,
pp. 371 – 377, 2002.

[7] A. Asenov, G. Slavcheva, A. Brown, J. Davies, and S. Saini, “In-
crease in the random dopant induced threshold fluctuations and
lowering in sub-100 nm mosfets due to quantum effects: a 3-d
density-gradient simulation study,” Electron Devices, IEEE Trans-
actions on, vol. 48, pp. 722–729, Apr 2001.

[8] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in
Computer Architecture (ISCA), 2011 38th Annual International
Symposium on, pp. 365–376, June 2011.

[9] P. Gepner and M. Kowalik, “Multi-core processors: New way to
achieve high system performance,” in Parallel Computing in Elec-
trical Engineering, 2006. PAR ELEC 2006. International Sympo-
sium on, pp. 9–13, Sept 2006.

50

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

Bibliography

[10] J. L. Hennessy and D. A. Patterson, Computer architecture: a
quantitative approach. Elsevier, 2011.

[11] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore gpus,” in Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pp. 1–10,
May 2009.

[12] A. Munshi et al., “The opencl specification,” Khronos OpenCL
Working Group, vol. 1, pp. l1–15, 2009.

[13] C. Lattner and V. Adve, “The llvm compiler framework and in-
frastructure tutorial,” in Languages and Compilers for High Per-
formance Computing, pp. 15–16, Springer, 2005.

[14] H. Hirschmüller, “Stereo processing by semiglobal matching and
mutual information,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 30, no. 2, pp. 328–341, 2008.

[15] K. Yamaguchi, T. Hazan, D. McAllester, and R. Urtasun, “Con-
tinuous markov random fields for robust stereo estimation,” in
Computer Vision–ECCV 2012, pp. 45–58, Springer, 2012.

[16] K. Yamaguchi, D. McAllester, and R. Urtasun, “Robust monoc-
ular epipolar flow estimation,” in Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pp. 1862–1869,
IEEE, 2013.

[17] A. Rahman, “Correlations in the motion of atoms in liquid argon,”
Phys. Rev., vol. 136, pp. A405–A411, Oct 1964.

[18] L. Verlet, “Computer "Experiments" on Classical Fluids. I. Ther-
modynamical Properties of Lennard-Jones Molecules,” Physical
Review Online Archive (Prola), vol. 159, pp. 98–103, July 1967.

[19] L. Verlet, “Computer "experiments" on classical fluids. i. ther-
modynamical properties of lennard-jones molecules,” Phys. Rev.,
vol. 159, pp. 98–103, Jul 1967.

[20] R. Wolfe and J. R. Sams, “The virial theory of adsorption and
the surface areas of solids,” The Journal of Physical Chemistry,
vol. 69, no. 4, pp. 1129–1135, 1965.

[21] S. Nosé, “A molecular dynamics method for simulations in the
canonical ensemble,” Molecular physics, vol. 52, no. 2, pp. 255–
268, 1984.

[22] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” in Pro-
ceedings of the 2012 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 449–460, IEEE Computer Society,
2012.

51

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

Bibliography

[23] Q. Zhang, F. Yuan, R. Ye, and Q. Xu, “Approxit: An approximate
computing framework for iterative methods,” in Proceedings of the
51st Annual Design Automation Conference, DAC ’14, (New York,
NY, USA), pp. 97:1–97:6, ACM, 2014.

[24] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,
and D. Grossman, “Enerj: Approximate data types for safe
and general low-power computation,” in ACM SIGPLAN Notices,
vol. 46, pp. 164–174, ACM, 2011.

[25] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Workload Characterization, 2009. IISWC 2009.
IEEE International Symposium on, pp. 44–54, IEEE, 2009.

[26] K. Krommydas, W.-c. Feng, M. Owaida, C. D. Antonopoulos, and
N. Bellas, “On the characterization of opencl dwarfs on fixed and
reconfigurable platforms,” in Application-specific Systems, Archi-
tectures and Processors (ASAP), 2014 IEEE 25th International
Conference on, pp. 153–160, IEEE, 2014.

[27] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable het-
erogeneous computing (shoc) benchmark suite,” in Proceedings of
the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, pp. 63–74, ACM, 2010.

52

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:17:00 EEST - 3.143.239.217

	Acknowledgments
	Dedication
	Περίληψη
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Parallel Processing Architectures
	Multicore Processors
	Manycore Processors
	OpenCL Framework
	Centaurus Framework

	SPStereo Disparity Image
	Semi-Global Matching
	Capped Sobel Filter
	Census Transform
	Sum of Absolute Difference (SAD)
	Hamming Distance
	Image Row Costs Calculation
	Semi-Global Matching
	Speckle Filter
	Enforce Image Consistency

	Implementation
	Approximations
	Experimental Evalution
	SGMDR approximation
	SGMRS approximation
	SGMEPS approximation

	Molecular Dynamics Simulation
	Theoretical Analysis
	Implementation
	Approximations
	Experimental Evalution
	MDCT
	MDDT

	Related Work
	Approximate Computing
	Heterogeneity

	Conclusion
	Bibliography

