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PRELIMINARY DESIGN OF A KNUDSEN PUMP

ARISTEA MANIOU

University of Thessaly, Department of Mechanical Engineering, 2011

Supervisor: Dr. D. Valougeorgis, Professor, Mesoscale Methods in Flows and
Transport Phenomena

Abstract

In this work, the phenomenon of thermal transpiration, also referred to as 

“thermal creep”, is studied. The Knudsen pump, is a type of vacuum pump that works 

by the principle of thermal transpiration. First of all, the dimensionless Knudsen 

number is defined, and the flow regimes, according to the different Knudsen numbers, 

are mentioned. A simple description of the phenomenon of thermal transpiration is 

provided.

The purpose of this work is to investigate the basic flow configuration related to 

a preliminary design of a Knudsen pump, and for this we apply kinetic model 

equations to investigate the rarefied gas flow through a cylindrical tube whose ends 

are maintained at different temperatures.

A detailed literature review of the phenomenon is provided along with details 

concerning the kinetic models developed to approximate the problem. The description 

of the problem and the formulation of the corresponding kinetic equations are 

presented, as well as the simulation of the boundary conditions. The problem is 

described by the integro - differentia] Boltzmann equation, which is used to 

determine the distribution of particles in physical and molecular velocity space, as 

well as in time. The macroscopic quantities of practical interest are obtained from the 

moments of the distribution function.
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The kinetic model used in the simulations was the ellipsoidal model. In 

particular, we apply the non - linear ES model subject to Maxwell diffuse boundary 

conditions, to solve the non - isothermal flow of a rarefied gas through a cylindrical 

tube. The solutions provided, are valid in the whole range of the Knudsen number.

Results regarding the flow, for the bulk quantities of velocity, heat flux, 

temperature and density are presented in terms of the three dimensionless parameters 

describing the flow, namely the rarefaction parameter δ, the temperature ratio TJT0Ut 

and the channel aspect ratio L/R.

Finally, an overview of this work is presented together with some concluding 

remarks and some suggestions concerning future work in this field.

\ II
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ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΑΝΤΛΙΑΣ KNUDSEN

ΑΡΙΣΤΕΑ ΜΑΝΙΟΥ

Πανεπιστήμιο Θεσσαλίας, Τμήμα Μηχανολόγων Μηχανικών, 2011

Επιβλέπων Καθηγητής: Δρ. Δημήτριος Βαλουγεώργης, Καθηγητής Αναλυτικών 

και Υπολογιστικών Μεθόδων Μεσοκλίμακας σε Φαινόμενα Ροής και

Μεταφοράς

Περίληψη

Στην παρούσα μεταπτυχιακή εργασία μελετάται το φαινόμενο του θερμικού 

ερπυσμού, στο οποίο βασίζεται και η λειτουργία της αντλίας Knudsen. Αρχικά, 

γίνεται μια γενική αναφορά στα φαινόμενα ροής και μεταφοράς εκτός 

θερμοδυναμικής ισορροπίας και ορίζεται ο αδιάστατος αριθμός Knudsen. 

Παρουσιάζονται οι περιοχές της ροής , όπως αυτές διακρίνονται με βάση τον αριθμό 

Knudsen, καθώς επίσης και κάποια στοιχεία που αφορούν στις μεθοδολογίες 

επίλυσης. Δίνεται μια συνοπτική περιγραφή του φαινομένου του θερμικού ερπυσμού 

(thermal creep) και μια αναφορά σε πιθανές εφαρμογές, συμπεριλαμβανόμενης της 

αντλίας Knudsen.

Σκοπός της εργασίας είναι η προκαταρκτική μελέτη της αντλίας Knudsen, 

επιλύοντας το πρόβλημα ροής σε κυλινδρικό αγωγό λόγω διαφοράς θερμοκρασίας, 

ώστε να προκόψουν ποσοτικά αποτελέσματα σχετικά με τη ροή, που θα μας 

επιτρέψουν να εκτιμήσουμε τα χαρακτηριστικά και τις ιδιαιτερότητές της. Έτσι θα 

μπορέσουν να προκόψουν τα πρώτα συμπεράσματα σχετικά με το σχεδιασμό και τις 

πραγματικές δυνατότητες της αντλίας Knudsen.

Ακολούθως, παρουσιάζεται λεπτομερής βιβλιογραφική ανασκόπηση του 

φαινομένου του θερμικού ερπυσμού, συμπεριλαμβανομένων των ροών σε αγωγούς 

μεγάλου μήκους όπου η ροή θεωρείται πλήρως ανεπτυγμένη αλλά και των ροών σε 

αγωγούς πεπερασμένου μήκους.
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Έπεται η διατύπωση του προβλήματος. Δίνεται η περιγραφή της γεωμετρίας 

που μελετήθηκε, παρουσιάζονται οι κινητικές εξισώσεις και διατυπώνονται οι 

συνοριακές συνθήκες. Στην προσέγγιση με βάση την κινητική θεωρία, όπως αυτή 

εκφράζεται μέσω της εξίσωσης Boltzmann, ο βασικό άγνωστος είναι η συνάρτηση 

κατανομής, ενώ οι μακροσκοπικές ποσότητες που μας ενδιαφέρουν προκύπτουν από 

τις ροπές της συνάρτησης κατανομής.

Τα κινητικά μοντέλα, σε αρκετές εφαρμογές έχουν αποδειχθεί αρκετά 

αξιόπιστα, και χρησιμοποιούνται εναλλακτικά αντί της εξίσωσης Boltzmann, 

δίνοντας ακριβή αποτελέσματα σε όλο το εύρος του αριθμού Knudsen. Το κινητικό 

μοντέλο που χρησιμοποιήθηκε είναι το ελλειψοειδές μοντέλο (ellipsoidal model, ES) 

για μη ισοθερμοκρασιακές ροές. Παρουσιάζεται η αριθμητική μέθοδος για ροή σε 

αγωγούς πεπερασμένου μήκους και αναφέρονται οι ιδιαιτερότητες του αλγορίθμου, 

στην περίπτωση του θερμικού ερπυσμού.

Στη συνέχεια, παρουσιάζονται τα αποτελέσματα που προκύπτουν, τα οποία 

βρίσκονται συγκεντρωμένα σε πίνακες, στο τέλος του αντίστοιχου κεφαλαίου.

Τέλος, γίνεται μια σύνοψη όλων των παραπάνω, καταγράφονται τα 

συμπεράσματα που προέκυψαν από την παρούσα εργασία, και προτείνονται θέματα 

που μπορούν να μελετηθούν ως συνέχεια της εργασίας αυτής.
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Chapter 1

Introduction

1.1 General concepts

Manufacturing processes that can create extremely small machines have been 

developed in recent years. Electrostatic, magnetic, electromagnetic, pneumatic and 

thermal actuators, motors, valves, gears, cantilevers, diaphragms and tweezers less 

than 100 μιη in size have been fabricated. These have been used as sensors for 

pressure, temperature, mass flow, velocity, sound and chemical composition; as 

actuators for linear and angular motions; and as simple components for complex 

systems such as robots, micro-heat-engines and micro-heat-pumps.

Microelectromechanical systems (MEMS) refer to devices that have a 

characteristic length of less than 1 mm but more than 1 pm, that combine electrical 

and mechanical components and that are fabricated using integrated circuit batch­

processing technologies [Gad - el - Hak, 2002],

In this wide variety of applications, encountered in our everyday life, gas flows 

are very important. The development of such devices, as the ones mentioned above, 

has opened up an entirely new field of research where the behaviour of flows far from 

equilibrium conditions is very important.

In most cases, the equations of mass, momentum and energy equilibrium 

combined by the Newton - Fourier - Fick constitutive equations, describe their 

behaviour very well and have been actually applied successfully for many years. 

However, this formulation is subject to certain limitations due to the underlying 

assumption that the gas must be considered as a continuum medium. Even though this 

is a reasonable assumption for many cases, there are situations where this hypothesis 

fails, as the mean free path between inter - molecular collisions may become 

comparable to a characteristic length, due to conditions of low pressure or if the gas is 

confined in a region of very small dimensions. In such cases the continuum medium 

assumption collapses [Misdanitis, 2009].

Beyond a certain limit, it is not possible to investigate such phenomena 

accurately without taking into account the molecular nature of the gas. In this case, we

I
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may say that the gas is in a rarefied state, for which the departure from the 

thermodynamic equilibrium leads to a failure of the macroscopic equations. To deal 

with these cases, several approaches are used depending on the application under 

study. Concepts derived from statistical mechanics and the kinetic theory of gases, 

need to be involved.

The governing equation is the Boltzmann equation, which is based on the 

kinetic theory of gases used to describe transport phenomena, with emphasis on dilute 

gas systems. This equation concerns the distribution function of particles, a 7- 

dimensional probability density distribution of molecules in the physical space, 

molecular velocity space and time. Like all methods, the statistical approach through 

the Boltzmann equation is characterized by its respective advantages and 

disadvantages The Botzmann equation is quite complex and can be solved 

analytically only for very specific situations, a fact that often leads us to the pursuit of 

numerical solutions, since the experimental investigation is, usually, very costly. 

However, the solution of this equation, though painful, is widely used today and leads 

to a good approach for a large number of problems with satisfactory results.

Rarefied gas flows are mainly found in small devices and low-pressure 

applications. The characteristic number that determines the degree of rarefaction and 

the area in which continuum model equations are valid is the Knudsen number (Kn), 

which is defined by the relationship

where L is a characteristic dimension of the problem, λ the mean free path of the 

particles, y the ratio of specific heats, Ma the Mach number and Re the Reynolds 

number. The mean free path is defined as the average distance travelled by molecules 

between collisions and can be mathematically expressed by multiplying the average 

molecular velocity ξ to the mean free time, i.e.

(1.1)

λ = ξτ (1.2)

The average molecular velocity is given by

2
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ξ =J^ = y/3RT . (1.3)
V m

where kH is the Boltzmann constant (kB = 1.3805x 10 23J/k), m the molecular 

mass and R the specific gas constant. If v is the collision frequency, which is 

determined by dividing the number of collisions N that occur in the time unit to the 

total number of molecules n in a unit volume, then the mean free time between 

collisions equals

1 _ n 
~ v ~ N

(1.4)

The mean free path cannot be measured directly and may be calculated on the 

basis of measured macroscopic quantities in accordance to the relationship [Sharipov 

& Seleznev, 1998]

λ = (1.5)

where P is the local pressure,// the dynamic viscosity at local temperature T, and

u0=J^=j2RT . (1.6)
V m

υ0 is the most probable molecular velocity. The quantity u0 is often used to non- 

dimensionalise the molecular velocity. It must also be noted here, that, the 

relationship (1.5) is valid for the hard sphere model (HS), in which the molecules are 

pictured as impenetrable billiard balls of specific diameter. Another molecular 

velocity of some interest is the mean thermal velocity

(») (1.7)

3
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Also, the gas rarefaction parameter δ is frequently used, which is linked to 

the Knudsen number as follows [Sharipov & Seleznev, 1998]:

= (1.8)
2 λ 2 Kn μ ]] 2kHT μυ0

The Kn number (or rarefaction parameter δ) is characteristic of any problem 

(e.g. study of heat transfer effects through rarefied gases, study of non - linear flows 

driven by large pressure differences for small length ratios) and its value characterizes 

the flow of gas. The local value of the Knudsen number in a particular flow 

determines the degree of rarefaction and the degree of validity of the continuum 

model. The different Knudsen number regimes are determined empirically and they 

are, therefore, only approximate for a particular flow geometry and they have been 

specified in the pioneering experiments conducted by Knudsen in 1909. In the limit of 

a zero Knudsen number, the mean free path is zero, i.e. for P φ o the viscosity is zero 

and then the Navier-Stokes equations reduce to the inviscid Euler equations. The 

equivalent molecular viewpoint is described by the local Maxwellian distribution. As 

Kn increases, rarefaction effects become more important and, eventually, the Navier- 

Stokes equations break down. The different Knudsen number regimes are depicted in 

Figure 1.1 and can be summarized as follows:

* Kn = 0,(<J -» go) : Hydrodynamic Limit. Flere the Euler equations are valid.

* Kn < ΚΓ3 > 10’): Hydrodynamic Regime. The gas may be considered as 

a continuum medium and the Navier - Stokes equations are applicable, 

coupled with no-slip boundary conditions.

* 10 3 < Kn < 10"' (l03 < δ < ίο): Slip regime. Non - equilibrium phenomena start

manifesting in the boundary regions of the domain. In particular, velocity slip 

and temperature jump are observed on the walls.

* 10“' < Kn < 1θ(ΐΟ > δ > ΚΓ1): Transition regime. A kinetic description of 

the gas is necessary, since intermolecular collisions are reduced and the 

distribution function is not of the Maxwellian type. The Boltzmann equation is

4
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valid here. It is noted that the validity of the Boltzmann equation is extended 

well outside the transition regime.

* Kn> 1θ(<5 < ΚΓ1): Free molecular regime. The molecules undergo ballistic 

motion and remain unaffected by other molecules. No intermolecular 

collisions take place in this regime.

ία US

1
1
1

1
1
1

1
1
1

Continuum flow
(9t$WW density levels)

1
1
1

Γ"
1
1 Transition regrne

(moderately rarefied)

1
1
1

1
1
11

Slip-flow regime
(slightly rarefied)

.Ί
1
11

1 ’
1
11

Free molecular flow
(fciaWX rarefied)

Figure 1.1: Knudsen number regimes (Gad-el-Hak, 2002)

As we depart from the hydrodynamic regime, non - equilibrium phenomena appear: 

The gas and the wall surface do not have the same velocity, or temperature, secondary 

flows are induced by temperature gradients (or concentration gradients for mixtures) 

and so on. These phenomena cannot be captured by the classical hydrodynamic 

equations and can be examined via the kinetic theory of gases. The problem is 

described by the integro-differential Boltzmann equation, which is used to determine 

the distribution of particles in physical and molecular velocity space, as well as in 

time. There are difficulties associated with the seven-dimensional nature of the 

distribution function, as well as with the complexity of the collision term, which is 

usually substituted by an appropriate model.

1.2 Thermal Transpiration flow

Thermal transpiration flow is the macroscopic movement of a rarefied gas, 

induced by a temperature gradient. It is well known that by applying a disequilibrium 

of temperature to a tube filled with a rarefied gas, without any initial difference of 

pressure or any difference in chemical constitution, the gas will macroscopically

5
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move from the lower to the higher temperature zone. This phenomenon was named by 

Reynolds Thermal Transpiration, in 1878. Reynolds [Reynolds, 1879], in an 

investigation with a plaster-of-Paris plug separating two regions, one cold region and 

one hot region, maintained at different temperatures Tc and TH, showed that at very 

low densities, the equilibrium pressures on the two sides are related by the law

Ph_

Pc

rT \1/2
1 H

Tc
(1.9)

Maxwell closely followed this investigation up by mathematically analyzing the 

phenomenon using the, at the time, still controversial kinetic theory. Later on, in 

1909, Knudsen proved Reynolds’s law for the case of a tube by using both theoretical 

and experimental research [Cardenas et al., 2011], In the experiment presented by 

Knudsen, two pressure gauges are joined by a pipe with several narrow and wide 

sections, where every second joint of the sections of the pipe is heated, in order for the 

temperature of the heated and unheated joints to be kept at 500°C [Sone et al., 1996], 

Knudsen’s research led to the supposition that the above cited law was valid only at a 

zero-flow final equilibrium state, which followed a transitional stage of gas 

displacement [Cardenas et al., 2011], Since then, various researchers have 

contributed intermittently towards the understanding of thermal transpiration flow 

[Gupta et al., 2007],

A simple experiment to demonstrate a rarefied gas flow induced along an 

unequally heated wall was proposed by Y. Sone [Sone, 1991], The experimental 

apparatus, which is shown in Fig. 1.2, consists of a rectangular glass plate, which is 

set with its longer sides in the vertical direction, and an electric heater on Nichrome 

wire is placed near the lower side of the back of the plate. A windmill to detect 

vertical wind is placed in front of the plate. The whole system is placed in a 

cylindrical vacuum chamber of a glass bell jar on a steel base, where the pressure can 

be controlled between atmospheric condition and several Pascals. The cellophane 

vanes of the windmill are suspended on a needle and rotate by vertical wind. When 

heated, the temperature of the plate is about 34°C near its upper side, 50°C in the 

middle, 63°C at the height of the vanes and 140°C at the lower side of the plate.

6
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BELL JAR

Figure 1.2: Experimental apparatus (Sone, 1991)

With this apparatus, Sone tried to detect a flow induced along the plate by the 

rotation of the windmill under pressure ranging from atmospheric condition down to 

about 3 Pa [Sone, 1991].

In recent times, the advent of micro - electro mechanical systems (MEMS) 

made way for new perspectives on thermal transpiration [Cardenas et al., 2011], 

Actually, the interest in the temperature induced flow is growing in connection with 

micromachine engineering. A pumping system making use of the flow attracts new 

attention, since such a system has no moving parts and no mixing process. In a 

rarefied gas in a pipe, whose temperature has a gradient along its axis, a flow is 

induced in the direction of the gradient, and this How has a pumping effect [Sone et 

al., 1996], The possibility of using the pumping effect of thermal transpiration to 

create a micro - compressor without moving parts, led to various experimental works 

by several researchers, in which the attention is mainly focused on the pressure 

increase due to the application of a temperature gradient along the channel [Cardenas 

et al., 2011].

7
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1.3 The Knudsen pump

Danish physicist Martin Knudsen introduced a vacuum pump that works for a 

gas under rarefied conditions or in microscales. This pump is a type of vacuum pump 

that works by the principle of thermal transpiration, as mentioned above, has no 

moving parts and offers high reliability [McNamara & Gianchandani, 2003],

A basic configuration of a Knudsen pump consists of two chambers, maintained 

at different temperatures, connected by a narrow channel that restricts gas flow to the 

free molecular regime. If the system is sealed, the ratio of equilibrium pressures in the 

two chambers is nominally given by the ratio of the square root of the respective 

temperatures, as shown in Eq. (1.9). Knudsen demonstrated a multiple stage thermal 

transpiration pump, by alternating a series of volumes and tubes [Vargo et ah, 1999], 

A modern version of this configuration was presented in recent years [Vargo et ah, 

1999],

The flow of a gas in a grooved channel, due to an imposed temperature gradient 

in the longitudinal direction, has also been investigated. This flow has common 

characteristics with the classical Poiseuille flow and is found in thermal creep 

problems, but the presence of rectangular grooves that are placed periodically in one 

of the two stationary walls, results in a two dimensional flow pattern [Naris & 

Valougeorgis, 2006].

The feasibility of making a Knudsen pump by using a two - dimensional 

channel with a “snaky” shape, has also been investigated. The channel is composed of 

alternately arranged straight and semicircular segments, with a periodic temperature 

distribution [Aoki et ah, 2007],

1.4 Scope of the present work

In the present work we investigate the basic flow configuration related to a 

preliminary design of a Knudsen pump. We apply classical kinetic model equations to 

investigate the rarefied gas flow through a cylindrical tube whose ends are maintained 

at different temperatures. We consider a monatomic rarefied gas stored in two large 

reservoirs connected by a cylindrical tube of radius R and length L, as shown in

8
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Figure 1.3. A temperature difference is imposed between the two containers, causing 

a flow of the gas through the tube. The walls and the gas in the container areas far 

from the tube are maintained at the same pressure Po [Pantazis, 2011]

p = p0
τ -Tu

IA
\

ΛVMMM/UU/Ut/UU/U//A

How direction

p Po 
r = ic

Figure 1.3: Basic flow configuration (Pantazis, 2011)

Our objective is to determine the macroscopic distributions for the whole 

range of the Knudsen number. This is accomplished by using non-linear kinetic 

equations. In particular, the flow can be modelled by implementing the nonlinear 

BGK and Shakhov kinetic equations coupled to Maxwell diffuse boundary conditions 

[Maxwell, 1879],

The contents of this thesis are as follows: In Chapter 2 a literature review of 

the kinetic theory and kinetic models developed to approximate the flow is presented. 

The most important concepts and equations concerning the phenomenon of thermal 

transpiration are introduced and discussed. Also, available research work solving the 

specific problem under consideration is discussed. In Chapter 3 we present a 

description of the problem and the formulation of the corresponding kinetic equations 

based on the implemented ES model. The simulation of the boundary conditions is 

also described in this chapter. Finally, the basic macroscopic quantities of interest are 

presented as well. The numerical scheme is described in Chapter 4. Results regarding 

the flow are provided in Chapter 5. Also, basic conservation principles and flow 

properties valid for the whole range of the Knudsen number are derived. Chapter 6 

provides an extensive report on several configurations concerning the Knudsen pump. 

Based on the results that are obtained and presented in Chapter 5, an estimation on a 

highly reliable Knudsen pump is presented. Finally, in Chapter 7, a brief outline of the
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present work, followed by some concluding remarks and the description of future 

work are presented.

It must be pointed out that the present work is based upon advanced and 

computationally efficient numerical codes, developed by Dr. S. Pantazis during his 

Ph. D. studies at the University of Thessaly.
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Chapter 2

Literature review

2.1 The phenomenon of thermal transpiration

Investigating the phenomenon of thermal transpiration, or thermal creep, as the 

basis of a vacuum pump, has a sporadic history since the early 1900s [Vargo et al., 

1999]. Thermal transpiration refers to the phenomenon of gas molecules drifting from 

the cold end to the hot end of a narrow channel subjected to a longitudinal 

temperature gradient. Reynolds’s pioneering investigations of thermal transpiration 

were closely followed by a rigorous mathematical analysis by Maxwell in 1879. In 

1910, Knudsen first proposed the feasibility of a gas pump based on this phenomenon 

[Gupta & Gianchandani, 2008], and its basic concept is illustrated in Figure 2.1.

“O o —
1 

o P T rH ’ 1 H

D Narrow Channel pu■

»oσ „____Q ~ H
rr~ 

V 'h
QEbF~QCTQl-

Cold Chamber Hot Chamber

Figure 2.1: Thermal transpiration. If two chambers are connected by a channel that restricts flow to the 
free - molecular regime, the ratio of pressures at equilibrium is nominally equal to the ratio of the 
square root of their absolute temperatures (Gupta and Gianchandani, 2008)

Consider two vessels containing a gas at different temperatures 7c, TH and 

connected by a capillary. The pressure of both vessels and at all walls remains 

constant and equal to Pq. To maintain the temperature difference between the vessels, 

the gas begins to move from the cold vessel to the hot one [Sharipov, 1996]. Our aim 

is to calculate quantities of practical interest, such as the mass flow rate, in the steady 

state. Problems of this type have been investigated by various researchers, for several 

cross - sections and different conditions [Pantazis, 2011].

There are significant applications for such flows and particularly for a flow 

through cylindrical tubes. In the case of an orifice, i.e. a tube of negligible length, the 

configuration can be used for comparison with experimental data without the
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influence of gas - surface interaction, since the results are practically independent of 

the wall accommodation properties. Thus, the apparatus can be experimentally 

realized and used as a test for kinetic models, numerical methods and intermolecular 

interaction models. Furthermore, orifices and finite length channels are commonly 

encountered in many practical applications in aerospace engineering, vacuum, 

microfluidics and other applications, while long channels are also common in vacuum 

and MEMS networks.

The study of short channels poses large difficulties due to the increased 

dimensionality of the problem: the distribution function is four- or five - dimensional 

and the complete flow field, including part of the upstream/downstream containers, 

must be included in the simulation. In that case the methodology is differentiated 

[Pantazis, 2011],

The flow through long channels has been considered by many researchers and 

for various geometries, both numerically and experimentally. The availability of 

results stems from the simplifications occurring, because of the fully developed flow 

conditions. Due to this hypothesis, the channel end effects are considered to be 

negligible. In all these works however, it was assumed that the gradients are so small 

that the kinetic equation and the boundary conditions can be linearized near the 

equilibrium state. As a result, a dimensionless flow rate as a function of the Knudsen 

number is obtained. However, in practice, e.g. in vacuum systems, one deals with 

large pressure or temperature drops [Sharipov, 1997].

If the system, as described above in Figure 2.1, is closed, a pressure drop is 

established between the vessels. The pressure drop causes a gas flow which is 

opposite to the thermal creep so that the whole mass flow through the capillary 

vanishes in the stationary state. This is the so - called thermomolecular pressure 

effect.

Pumping energy is supplied by temperature changes alone, as already 

mentioned. A general feature of such pumps is that the upper pressure limit is reached 

when the mean free path becomes small relative to the physical dimensions of the 

pump in the region of the temperature transition. Thus, the upper pressure limits of 

these pumps have been determined by the microfabrication limits of the day; they 

have operated at relatively low pressures, with low throughputs, and have not become 

main line pumps. In recent years, however, Micro-Electronic-Mechanical Systems 

(MEMS) have introduced a whole new level of miniaturization to devices in general,
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including vacuum devices, and hence have raised the upper pressure limits, and thus 

the throughputs of thermal molecular pumps to atmospheric levels. The general 

pumping phenomenon has various names: Knudsen compressor; thermal

transpiration; thermal creep; thermodynamic, thermomolecular, thermal molecular, 

and accommodation pumping. Broadly speaking, these pumps divide into two classes: 

(a) those requiring no specially prepared surfaces, (b) those in which special surfaces 

are essential. The latter have no low pressure limit [Hobson & Salzman, 2000].

The thermomolecular pressure effect is very important in practice, because in 

many studies it is necessary to calculate the pressure P/y in a vacuum chamber at a 

given temperature T/yj, from a measured pressure Pc in another chamber at a given 

temperature Tc. If the chambers are joined by a capillary and the relation of Pw to Pc, 

T/y, Tc is known, one easily obtains P/y.

The scientific importance of the effect is also significant, because it is sensitive 

to many properties of the gas such as viscosity, thermal conductivity etc. In that way, 

it can be used to verify a validity of kinetic models describing both gas - gas and gas 

- surface interactions. Thermomolecular pressure difference measurements can be 

used to calculate several thermal properties of polyatomic gases as well. Thus, due to 

the great practical and scientific importance, the thermal transpiration phenomena 

continue to attract the attention of theoretical and experimental researchers as well.

As stated before, the relation between Ph, Pc, Th and Tc in a general form can 

be written as

JjL
P, Tr

(2.1)

where the coefficient γ depends on many factors: the length - to - radius ratio of the 

capillary, the kind of the gas, and the nature of the gas - surface interaction [Ritos et 

al., 2011]. But the coefficient y significantly depends on the Knudsen number defined 

as Kn - λ/α, where λ is the mean free path and a is the capillary radius. The mean 

free path can be related to the pressure and temperature as seen in Section 1.5, of the 

present thesis.

Thus, for a given gas, the Knudsen number is a function of the pressure and 

temperature Kn = Kn(P,T) [Sharipov, 1996].
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2.2 Thermal creep configurations

2.2.1 Ideal aperture

Figure 2.2 is a simplified drawing of an apparatus of Pyrex glass constructed by 

Edmonds and Hobson to represent an ideal aperture. Volumes were measured and 

known. The dashed line represents a sharp transition between 7j (77.4K at liquid 

nitrogen or 232K at solid CO2 mush) and T2 (room temperature -295K). P2 is 

measured by a Bayard - Alpert gage operated at room temperature and at very low 

electron current. P\ is not measured directly but deduced by the reduction in P2 when 

T\ is lowered, assuming that the total quantity of gas in the closed system in the gas 

phase is unchanged. The physical adsorption of helium on Pyrex glass at 77.4K and 

also of neon is negligible. The inner diameter of the aperture was 20 mm [Hobson & 

Salzman, 2000],

aperture

Figure 2.2: Schematic diagram of two volumes at different temperatures joined by an “ideal aperture” 
(Hobson and Salzman, 1999)

2.2.2 Volumes joined by a tube

A new apparatus was built and is shown schematically in Fig. 2.3, in which the 

volumes were joined by a long, relative to the radius, Pyrex tube with essentially the 

same inner diameter as the aperture in Fig. 2.2. It was empirically found that y varied 

from Pyrex tube to Pyrex tube. The experimental range was 1.1 < y < 1.3. Since Pyrex 

tubes were frequently used for measurements on physical adsorption isotherms in 

which thermal transpiration corrections were required at low pressures, a material for
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the tube was sought with more reproducible characteristics. It was found that Pyrex 

glass could be leached or roughened [Hobson & Salzman, 2000].

Figure 2.3: Schematic diagram of two volumes at different temperatures joined by a long tube (Hobson 
and Salzman, 1999)

2.2.3 Accommodation pump

Figure 2.4 shows the first accommodation pump. There are now three volumes: 

A and B at room temperature, and C at liquid nitrogen temperature. A is joined to C 

through a rough tube and B is joined to C through a smooth tube. It is argued that at 

equilibrium: PA /PC=(T2 /Τ’,)172; PBIPC = (l/y)(T2 /Τ’,)172. Hence, PA IPB = y is called 

the compression ratio. The experimental results confirm this prediction [Hobson & 

Salzman, 2000].

Figure 2.4: Schematic diagram of the first accommodation pump (Hobson and Salzman, 1999)
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Baum visualized the thermal transpiration pump operating as a circulation pump 

in the pressure range of 1 to 10'2 Torr with a speed of about 0.1 litre sec'1, or as a 

forepump for a waterjet pump or a means of extending the range of a vacuum pump. 

Baum also considered it suitable, with certain modifications, as an isotope separator.

Schumacher et al. considered the device purely as a pump, however, and 

operated it in the range of 10'1 Torr to 10'3 Torr and for speeds of about 0.5 to 1.5 litre 

sec'1.

The theory of thermal transpiration is well known. If two volumes are connected 

by a tube with dimensions less that the mean free path of the gas molecules, and the 

ends of the connecting tubes are kept at different temperatures, then a pressure 

differential is set up between the ends of the tube, such that the pressure ratio equals 

the square root of the temperature ratio. This relationship represents the equilibrium 

condition, under which there is no net gas flow along the tube.

In order that the throughput of the pump is not too small, the connecting tubes 

should be as large in cross - sectional area as possible, and this clashes with the 

requirement that molecular flow be established in them. Baum overcame this by 

making the tube annular in cross section; thus, its area was large while its width was 

small [Turner, 1966].

Pham - Van - Diep et al. first outlined a microelectromechanical systems 

(MEMS) based thermal transpiration Knudsen compressor. Later on, Vargo et al. 

presented a device that is a modern version of Knudsen’s thermal transpiration 

compressor. A Knudsen compressor generates large changes in pressure by utilizing a 

cascade of multiple stages. Each stage is composed of a capillary and connector 

section. A temperature increase across the capillaries results in a thermal transpiration 

driven, pressure increase. The capillary section is followed by a connector section 

where the pressure is approximately constant, while the temperature drops to its 

original value entering the stage.

The original analysis of a Knudsen compressor’s performance was based on the 

assumption of an ideal situation of free - molecule flow in the capillary section and 

continuum flow in the connector section of a compressor stage. While these 

conditions can be closely matched in laboratory compressors, it is expected in practice 

that both the capillary and the connector sections of the compressor frequently will 

operate in the transitional flow regime [Vargo et al., 1999].
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Naris and Valougeorgis also investigated the flow of a gas in a grooved channel, 

due to imposed temperature and pressure gradients in the longitudinal direction. The 

flow has common characteristics with the classical Poiseuille flow and thermal creep 

problems, but the presence of the rectangular grooves that are placed periodically in 

one of the two walls, results in a two - dimensional flow pattern. The objective was to 

solve both the pressure and the temperature driven problems in the whole range of the 

Knudsen number, and a kinetic approach based on the Shakhov model was followed. 

They also studied pressure and temperature driven flows through triangular and 

trapezoidal microchannels, giving special attention to the computation of the 

coefficient of the thermomolecular pressure difference [Naris & Valougeorgis, 2006], 

Aoki et al. investigated the feasibility of constructing a Knudsen pump by 

changing the curvature of the channel instead of changing its cross - sectional area. 

They showed that a two - dimensional channel with a “snaky” shape, as shown in 

Figure 2.5, composed of alternately arranged straight semicircular segments, with a 

periodic temperature distribution, has a pumping effect [Aoki et al., 2007].

Figure 2.5: Snaky cascade system (Aoki et al., 2007)

A major challenge in the design of thermal transpiration based pumps is to 

ensure good thermal isolation between the hot and cold ends of the pump in order to 

maximize the thermal difference.

The primary parameters affecting the thermal isolation are the thermal 

conductivity of the pump channel material, and the length of the channel separating 

the hot and the cold sides. Although a longer channel will improve the thermal 

isolation, a longer channel also increases the gas flow impedance, requiring the 

making of a tradeoff. Typically, a Knudsen pump uses a resistive heater to actively 

heat the hot side and the cold side is passively cooled by means of a heat sink.
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A novel technique to create a vacuum pump on an integrated circuit chip was 

presented by R. M. Young. This pump consists of small tubes operating in the free 

molecular regime, connected to larger, although still miniature, viscous flow 

chambers. The gas is alternately heated and cooled as it traverses these tubes and 

chambers, with the thermal transpiration effect creating a mass flow and compression 

in each stage [Young, 1999].

A novel solution to attaining a large thermal difference was presented by Pharas 

and McNamara. They first used a thermoelectric material in the bidirectional 

operation of a gas pump using thermal transpiration. The thermoelectric material 

maintains a higher temperature difference which favours thermal transpiration and 

thus increases the efficiency of gas pumping [Pharas & McNamara, 2010],

Although the phenomenon of thermal transpiration has been known for more 

than a century, very few efforts have focused on the atmospheric pressure operation of 

a Knudsen pump, because this requires channels with hydraulic diameter smaller than 

approximately 100 nm. Vargo and Muntz first reported a mesoscale device for 

operation near atmospheric pressure using nanoporous aerogel, providing a best case 

pressure drop of 11.5 Torr («1.5 kPa) using helium [Vargo et al., 1999, Hobson & 

Salzman, 2000].

McNamara and Gianchandani reported the feasibility of using lithographically 

patterned nanochannels in a chipscale, fully micromachined, Knudsen pump that 

achieved a pressure drop of about 54.7 kPa with 80 mW of input power. However, the 

limitation on the density of lithographically patterned narrow channels in a 

micromachined Knudsen pump constrains the flow rate to the order of 10”6 cc/min. 

Also, in their 2008 work, Gupta and Gianchandani explored the use of a naturally 

occurring zeolite, clinoptilolite, for a chip-scale, thermal transpiration-based gas pump 

[Gupta & Gianchandani, 2008],
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Chapter 3

Problem description and formulation

3.1 Introduction

Studies have shown that an unconventional solid state device, the Knudsen 

compressor, can be operated as a micro-scale pump or compressor over a pressure 

range from several atmospheres down to about 10 mTorr. The critical components of 

Knudsen compressors are gas transport membranes, which can be formed from 

materials with randomized (porous) flow channels to densely packed parallel arrays of 

multiple individual flow channels. In the computational studies several approaches 

have been employed: the direct simulation Monte Carlo (DSMC) method, and discrete 

ordinate solutions of the ellipsoidal statistical (ES) and Bhatnagar - Gross - Krook 

(BGK) kinetic models. The ES kinetic model permits accurate descriptions of 

temperature gradient driven flows, easily resolving flow velocities of well under a few 

meters per second for reasonable computational costs [Pantazis, 2011].

It must be noted that there are some basic requirements, for the construction of a 

kinetic model, and these are the following:

■ The laws of conservation must be satisfied

■ The distribution function should approach the Maxwellian distribution in 

equilibrium

■ Results near the hydrodynamic regime should agree with exact results 

known for that case

■ The Η-Theorem must be satisfied

The BGK model was the first model to appear and has been widely applied, mostly 

due to its simplicity:

(3.1)

with v being the collision frequency, assumed to be independent of the molecular 

velocity, and fM is the local Maxwellian, calculated with the local number density,
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temperature and velocity according to Equation (3.1). The Maxwellian and local 

distribution parts represent the gain and loss terms of the Boltzmann collision 

operator, respectively. This model is closely related to the Maxwell diffuse type of 

reflection for interaction with walls, since molecules relax to the local Maxwellian 

distribution with a uniform angular distribution around the point of collision after a 

single collision.

The BGK model has provided satisfying results in the whole range of the 

Knudsen number. In fact, it has been seen in many works that the results provided by 

this model are reasonably close to the ones provided by the Boltzmann equation (e.g. 

within 1-2%). However, there are some well known limitations of the model. In 

particular, the collision frequency must be adjusted according to the flow needs. For 

an isothermal flow, a Chapman-Enskog expansion method is used to obtain the 

correct value of viscosity, while for non-isothermal transport phenomena the heat 

conductivity is matched to the value provided by the full collision integral by the 

same method. It is impossible to have simultaneously both transport coefficients 

correctly determined by this model and therefore it yields a Prandtl number equal to 

unity for monatomic gases (the correct value is 2/3). In the BGK model, the collision 

frequency must be multiplied by 3/2 for the solution of heat transfer problems and 

therefore it is not appropriate for the simulation of coupled flow and heat transfer 

phenomena.

Two more models were produced in the same manner but also keeping higher 

moments of the collision term, namely the Shakhov model

Q(fJs) = L \fM 
μ

2 m J ηι(ξ - uY 5
+------ 7----- γτ<7·Κ - u\ —----------------
\5n(kjr \ 2k,T 2

\

-/(Tg£) (3.2)

and the ellipsoidal model

Q{f, As ) = ^Pr|^VHexpπ
'.7 = 1

■/ (3.3)
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where
/2kBT 5 2(1-Pr)PIJ

mPr u nmVx
(3.4)

In the above expressions, Pr is the Prandtl number, ke is the Boltzmann constant, m is 

the molar mass and δ//the Kronecker delta. The ellipsoidal model is derived to further 

satisfy the expression

It can be seen that by substituting Pr = 1 in (3.2) and (3.3) the BGK expression is 

retrieved. In the simulations the characteristic value for monatomic gases, Pr = 2/3, 

has been used to obtain the correct values for all physical quantities.

A shortcoming of the Shakhov model is that the H-theorem has not been proven 

in its nonlinear form. However, since it was shown that the H-theorem holds for the 

ES model, it is believed that it also holds for the S model since they have been 

produced in the same manner.

It is also important to note that it is sometimes possible to linearize the 

distribution function in terms of a small quantity depending on the problem at hand 

(e.g. a small pressure gradient in a pressure driven flow). In this case, the resulting 

equations are easier to handle and possess favourable mathematical properties. 

Furthermore, similar equations have been widely used in the past in neutron transport 

problems and this leads to an exchange of concepts and methods [Pantazis, 2011].

3.2 Geometry of the problem under consideration and governing 

equations

Consider two large reservoirs connected by a cylindrical tube of radius R and 

length L, as shown in Figure 3.1. The two reservoirs containing a rarefied gas at 

temperatures Tc and TH and maintained at pressure P0 are connected via a channel 

through which the gas flows. The reservoirs are infinitely large and only a fraction of

J(£ -M,fe - )fi:sd%
nkj

Pr
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their real size is shown here. The position vector* = (xg X2, X3) refers to (x, y, Θ) with 

a characteristic length Lq = R, where R is the tube radius. The flow is oriented towards 

the positive direction of the x coordinate. Due to the geometrical properties of the 

flow, the dependence on the component X3 is also omitted. Finally, the velocity vector 

is denoted by c = (c\, c% ci) and the component orientations are identical to the ones 

of the corresponding coordinates in the physical space.

Figure 3.1: Flow configuration and coordinate system

It must be noted that the complete geometry is simulated, including the part of 

the containers before and after the channels. This type of investigation is possible for 

short to moderately long channels, and has been realized here for a cylindrical tube. 

Two cases are investigated with the channel length being 10 and 50 times the tube 

radius respectively.

The molecular velocity coordinate system is shown in Figure 3.2, below.

Figure 3.2: Velocity coordinate system for the tube problem

The symbol 9 denotes the direction perpendicular to the r - x plane, while Θ is the 

molecular velocity angle in the F - 9 plane. The computational domain includes a
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part of the containers upstream and downstream of the tube, since the channel is 

relatively short and the effects of flow entrance and exit need to be taken into account.

The starting point is the ES kinetic model equation, which has been found to 

exhibit significant advantages in comparison to its predecessor, the BGK model, such 

as the adjustment of the Prandtl number. In cylindrical coordinates it is expressed by

: + i dL
r dr r δθ ' dx

= v(fi:s-f) (3.6)

with f - f{r,χ,ξι.,ξ9,ξχ) being the distribution function and v is the collision 

frequency. The collision term is retained in its non - linear form with

(3.7)

where

4=[(2*»ri»/mpr)-2(l-Pr)V nmPr\

as stated above in the Equation (3,4). Pr is the Prandtl number, ke is the Boltzmann 

constant, m is the molar mass and by the Kronecker delta. Also, η, T, w, P(/ are the

number density, temperature, gas bulk velocity and stress tensor components, 

respectively. By substituting Pr = 1, the BGK expression is obtained. The 

characteristic value for monatomic gases, i.e. Pr = 2/3, has been used in the following 

calculations.

The left reservoir conditions, i.e. the number density n and pressure P, are 

chosen as reference quantities and are denoted by n0, P0, with PQ = n0kHT0 from the 

ideal gas law. All quantities of practical interest are non - dimensionalized as follows:

r x ξ fol n 
r = — ,x = — , c = —, g = —-, p = —, u

R R R
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with υ0 = ^2kBT0 /m being the most probable molecular velocity and q being the 

heat flux vector.

The collision frequency is given by the expression

v = — Pr (3.9)
μ

where μ is the dynamic viscosity. The reference rarefaction parameter δ0 is defined 

as

It is inversely proportional to the Knudsen number and therefore as δ0 increases the 

atmosphere becomes more dense (or less rarefied). The cases of δ0 = 0 and δ0 —> oo 

correspond to the free molecular and the hydrodynamic limits respectively.

It is seen that the distribution function g = g(x,r,cr,c9,cx) cannot be projected 

in the velocity space, because all molecular velocity components are required. As a 

result, g depends on a total of five dimensions. The velocity vector is transformed 

into cylindrical coordinates c = (cp,9,cx) and the final form of the governing 

equation is

P0R _ Vtt 1
(3.10)

μ0υο 2 Kn(

cp cos#

where the dimensionless ES model term becomes
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with

Κ = [τδν-{\-?τ)ΡνΙρ\χ (3.13)

We only examine velocity angles in <9e[0,;r] since the distribution function is 

axisymmetric [Pantazis, 2011],

3.3 Macroscopic quantities

The macroscopic quantities are also non - dimensionalized, leading to the 

following expressions:

P = 2 J| \cpgdcxd0dcp (3.14)
0 0 -oo

^ co n co ,

Γ = T" ί i \cr l(c/- cos0 - ur )2 + \CP sin θ)2 + (cx - Ux Y JgdcxdGdcp (3.15)
0 0-«

CO 7T CO

u*= — \\ \cnc*gdcxd6dcp (3.16)
Pr 0 0 -<»

/■) oo π co

ur = — | J Jc^ cos<%dc(dGdcp (3.17)
Pr 0 o-t

co π m

Ρί = 2ii !cr(c'-u’ic,- ui VdcxdedcP (3-18)
0 0 -co

co n co - _

<7, = 2 j { \cp l(cp cos Θ - ur )2 + (cp sin θ)2 + (cx - ux )2 fcx - ux )gdcxdGdcp (3.19)
0 0 -co 

co π oo _

^ = 2 J J ic/> Kc*> cos^ ~ ur )2 + (CP sin θ)2 + k - ux Y lcp cosd~ ur )gdcxdGdcp (3.20)
0 0 -oo

Vector/tensor components containing the 9 -direction once, i.e. u9,pr9,p,9,q9, are 

equal to zero, while p99 is not. Pressure can be obtained by P - ρτ .
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The main quantity of interest is the mass flow rate through the tube M and our 

aim is to calculate it for a wide range of the parameters characterizing the flow: the 

reference rarefaction parameter<50, the channel aspect ratio L/R and the temperature 

ratio Tc/Th. For the current problem, the mass flow rate is calculated by

κ
Μ = 2π J[mn(x,f)}7t (x, r)rdr (3.21)

o

The flow rate given by Equation (3.21) is non - dimensionalized according to

(3.8)

Μ = 2π(ηιη0 Xu0XKR2)jp(x,r}ix(x,r)rdr (3.22)
0

Then we multiply and divide with υ0 = ^2(kH / m)T0 and use the ideal gas law 

Po = n0kBT0 to get

2 p
υ0 = 2nR2 —- Jp[x,r)/t (x,r)rdr (3.23)

υο 0

Finally, dividing by the pressure driven, free molecular solution 

MhM - R2 Ίπ Ρ„,/υ0 we get the dimensionless flow rate

Μ I—
W -----= 4JnG (3.24)

where the reduced flow rate is defined as the integral

Gx= \p{x,r)ix{x,r)rdr (3.25) 
0
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Chapter 4

Numerical scheme

4.1 Introduction

In this chapter, we describe the typical numerical algorithm used to obtain our 

results. The main characteristic of the numerical scheme are similar to the ones found 

in previously formulated discrete velocity schemes. The continuum spectrum of the 

molecular velocity magnitudes c: and cr is discretized to M values, their values being 

chosen according to the roots of the A/h order Legendre polynomial mapped in [0, 

Cz.max] and [0, Cr.max] respectively, while the molecular velocity angles Ng are 

uniformly distributed in [0,2π], [0, π] for the tube, due to the axisymmetric properties 

of the flow. The distribution functions, bulk quantity fields and governing equations 

are further discretized by a finite volume scheme in the physical space for Nx x Nr 

points.

The discrete velocity method algorithm is then applied, consisting of the 

following steps:

i. Bulk quantity perturbations p, u and τ are initially assumed

ii. The discretized equations are solved using a marching scheme

iii. New estimations for the bulk quantities are calculated

iv. Steps (ii) and (iii) are repeated until convergence is reached for the

The kinetic equation is discretized according to the second order finite volume 

scheme. At each interval Δη, Αθ/, Axk around rt, Θ t, xk, we act upon the governing 

equation with

macroscopic quantities
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to eliminate all derivatives. Then, all integrations can either be carried out analytically 

or substituted by the trapezoidal rule.

The kinetic equations are solved independently for each velocity component if 

the macroscopic quantities are known. A marching scheme is applied to solve these 

equations to avoid solving a system, maximizing efficiency and reducing memory 

consumption. This is highly desirable, since the tube problem is five - dimensional 

and therefore subject to significant computational limitations.

The description for the cylindrical geometry marching scheme is briefly 

described here (Figure 4.1, below).

Figure 4.1: Schematic representation of the tube marching scheme

The discretized equation is solved for the unknown values (white nodes) using the 

known quantities (dark nodes) from the previous column (green arrows) or the 

boundary conditions (blue arrows). However, we must also take into account the 

additional complexity of the angular velocity component. The angles are calculated 

starting from θ — π, where a simplified version of the discretized equation can be 

applied, solving all the way through until the lower boundary. Then, angles starting 

from θ = π - ΑΘ down to θ = π/2 are calculated in this sequence (as the purple 

arrow indicates) while moving downwards. The symmetry condition is applied at the 

center and thus the boundary values for Θ = π12 down to <9 = 0. Finally, we solve 

for these distributions until we reach the upper surface. Angles in (π,2π) are 

symmetric and do not need to be calculated again. By taking the discretized version of
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the moments of the macroscopic perturbations, employing Gauss - Legendre 

quadrature for the velocity magnitudes and the trapezoidal rule for the angles, 

macroscopic quantities are calculated and this procedure is repeated for all columns 

and each combination of cz, c,· until the complete macroscopic field has been found.

The application of this algorithm has two important consequences: First, 

memory requirements are dramatically reduced, since two temporary arrays of 

dimensions (Nr, Ng) can be used for the distribution function in the current and the 

previous column instead of one large with dimensions (Nx, Nr. M, Ng, M) (which 

would also be more costly to access in memory due to the multiple dimensions). 

Storing the distribution only in parts of the domain needed by the marching scheme 

allows the simulation of much larger and denser grids. Second, the velocity magnitude 

independency leads to a straightforward parallelization of the code. Each processor 

solves the kinetic equation for a group of velocities and information on macroscopic 

quantities and impermeability constants is exchanged between the processors at the 

end of each iteration. In this manner, the transmission of the distribution function is 

circumvented, greatly reducing the cost of parallel communication. A large number of 

processors, namely M*Ng/2 and M\ can be used for the tube problem respectively.

It has also been seen that the convergence rate benefits significantly by adjusting 

the initial assumption for the macroscopic variables to reasonable values. For 

example, in the problems of linearized flow through a channel or tube, the density 

perturbation is chosen equal to unity in the left vessel, zero in the right and varies 

linearly inside the channel. In the same context, velocities are set to zero everywhere 

in the field. This selection is quite close to the final expected distribution of 

macroscopic variables and significantly reduces the number of iterations.
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Chapter 5

Results and discussion

5.1 Numerical parameters

The geometric parameters used for the tube geometry are presented in the 

following table:

Table 1: Geometric parameters
δ

Oo

1 5

Tc/T„ 0.1 0.5

L/R 1 5

The numerical parameters used in the simulations can be seen in Table 2.

Table 2: Numerical parameters
Numerical Parameters

Number of discrete angles N$ 80

Number of grid changing steps 5

Discrete magnitudes of radial velocity 16

Discrete magnitudes of axial velocity 16

Convergence criterion 10'6

Size of the reservoirs connected to the tube 8x8

In Table 3, the required CPU time in minutes is presented, as well as the number 

of iterations necessary to complete each case, for 16 different runs. It is observed that, 

in each case of L/R, CPU time and the number of iterations are drastically reduced as 

the temperature ratio increases and as the value of δ decreases.
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Table 3: Total CPU time in hours and number of iterations for each case

TC/TH = 0.1 TdTH = 0.5

L/R:=1 L/R:=5 L/R::1 r 1 1:5

δ CPU time (hr) Iterations CPU time (hr) Iterations CPU time (hr) Iterations CPU time (hr) Iterations

0.0 16.7 4 25.9 6 8.9 2 14.4 3

0.1 >99 22 >99 21 18.3 4 19.05 4

1.0 >379 82 >417 88 >58 13 > 37 7

5.0 > 1405 183 > 1330 98 > 152 28 >79 11

5.2 Flow rates

The dimensionless flow rates, obtained for each case can be seen in the 

following table (Table 4). The “minus” sign is related to the coordinated system for 

the tube problem, and indicates that the direction of the flow is from the right (cold 

side) reservoir to the left reservoir (hot side).

Table 4: Dimensionless flow rates (80 discrete angles were used in the simulation)

Tc/Th = 0.1 Tc/Th = 0.5

δ L/R=l L/R=5 L/R=l L/R=5

0.0 -1.454 -0.670 -0.278 -0.128

0.1 -1.211 -0.487 -0.265 -0.117

1.0 -0.545 -0.188 -0.190 -0.072

5.0 -0.188 -0.061 -0.088 -0.029

For benchmarking purposes, the problem was further investigated by using 120 

and 160 discrete angles respectively, instead of 80, for smaller values of the 

rarefaction parameter. As we can see in Tables 5 and 6, excellent agreement is 

demonstrated in all cases.

Table 5: Dimensionless flow rates (120 discrete angles were used in the simulation)

Tc/Th = 0.1 Tc/Th = 0.5

δ L/R=l L/R=l

0.0 -1,45463570 -0,27854670

0.1 -1,21114860 0,26546480
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Table 6: Dimensionless flow rates (160 discrete angles were used in the simulation)

Tc/Th = o.l Tc/Th = 0.5

δ L/R=l L/R=l

0.0 -1,45463710 -0,27854690

0.1 -1,21113720 -0,26546410

5.3 Macroscopic distributions

Results for the bulk quantities of axial and radial velocity, axial and radial heat 

flux, temperature and density are presented in this section (Figures 5.1 - 5.16), in 

terms of the three dimensionless parameters describing the flow, namely the 

rarefaction parameter δ, the temperature ratio Tc/Th and the channel aspect ratio UR.

Observing Figures 5.1 to 5.16 we see that, in all cases, the axial velocity 

decreases as the length of the tube increases, which shows that the phenomenon is 

occurring at a slower pace in the case of channel aspect ratio UR = 5 than in the case 

of UR = 1. As the temperature ratio increases from Tc/Tw =0.1 to Tc/TH = 0.5 we 

can see that the temperature inside the tube increases as well, showing that the 

phenomenon becomes more intense in the latter case. Also, the axial heat flux is 

always positive, denoting, as expected, that heat is moving from the cold side to the 

hot side of the tube.

We can also observe that, in all cases, the density decreases as the rarefaction 

parameter increases, while the temperature increases. As the length of the tube 

increases, density increases as well, while as the temperature ratio is increased, 

density decreases significantly and temperature increases.

No significant changes are observed in the radial velocities or the radial heat 

fluxes, indicating that the flow is mainly in the axial direction. However, it can be 

seen that the velocity component in the radial direction is non - zero, as well as the 

radial heat flux, something that shows that the flow is not fully developed.

We present the complete set of results related to the distributions so that it may 

be conveniently useful for reference or future work. However, a comparison between 

all these results can be performed more easily if we observe Figure 5.17.
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In Figures 5.18 - 5.19 we can see the density and temperature distributions for 

the tube geometry with δ = 0.1 at (a) UR = 1, Tc/Th = 0.1, (b) UR = 1, Tc/Th — 0.5, 

(c) UR = 5, Tc/Th = 0.1 and (d) UR = 5, T/Th = 0.5, respectively. In Figure 5.20 we 

can see the streamlines, for each case. It is clearly seen that, in all cases, the gas is 

moving from the cold side (i.e. the right reservoir) to the hot side (i.e. the left 

reservoir), indicating the presence of thermal transpiration.

5.4 Dimensional flow rates

In this section, some indicative dimensional results are provided. Assuming we 

have a tube radius equal to 1 pm, we use Equation (1.8) to calculate the pressure for 

various values of the rarefaction parameter S. We then calculate the free - molecular 

solution by using the, already mentioned in section 3.3, relationship

M FM - T ^ Pin /»0

Finally, by using Equation (3.24) we get the dimensional flow rate.

In Table 7, we can the dimensional flow rates obtained for three different values 

of the rarefaction parameter δ.

Table 7: Dimensional flow rates

Tc/Th = 0.1 Tc/Th = 0.5
δ L/R=l L/R=5 L/R=l L/R=5

0.1 4.89E-12 1.97E-12 1.07E-12 4.73E-13

1.0 2.20E-11 7.60E-12 7.68E-12 2.91E-12

5.0 3.80E-11 1.23E-11 1.78E-11 5.86E-12
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Macroscopic distributions along the tube with L/R = 1, TC/TH- 0.1 and <5=0.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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Figure 5.2: Macroscopic distributions along the tube with L/R = 1, Tc/T</ = 0.1 and <5=0.1.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Macroscopic distributions along the tube with UR = 1, Tc/TH = 0.1 and <5= 1.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (0 density
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(b)

(c) (d)

(e) (f)

Figure 5.4: Macroscopic distributions along the tube with UR - 1, Tc/TH = 0.1 and <5=5.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Macroscopic distributions along the tube with UR = 5, TC/TH- 0.1 and <5 = 0.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(a)

(c) (d)

(e) (f)

Figure 5.6: Macroscopic distributions along the tube with L/R = 5, T(/TH = 0.1 and <5 = 0.1.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(b)

(c) (d)

(e)

Figure 5.7: Macroscopic distributions along tube with L/R = 5, TC/TH = 0.1 and <5=1.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(a) (b)

(c) (d)

Figure 5.8: Macroscopic distributions along tube with UR = 5, Tc/Th - 0.1 and <5 = 5.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Macroscopic distributions along the tube with UR = 1, TC/TH = 0.5 and <5 = 0.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(a) fb)

(c) (d)

(e) (f)

Figure 5.10: Macroscopic distributions along the tube with UR = 1, TC/TH = 0.5 and δ = 0.1.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Macroscopic distributions along the tube with UR = 1, Tc/TH = 0.5 and <5=1.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(c) (d)

(e) (0

Figure 5.12: Macroscopic distributions along the tube with UR = 1, TC/TH = 0.5 and <5 = 5.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density

45
Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:05:29 EEST - 18.216.35.67



(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Macroscopic distributions along the tube with UR = 5, TC/TH = 0.5 and <5 = 0.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(C) (d)

(e) (f)

Figure 5.14: Macroscopic distributions along the tube with UR = 5, TC/TH= 0.5 and δ = 0.1.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(c) (d)

Figure 5.15: Macroscopic distributions along the tube with L/R = 5, TC/TH- 0.5 and <5=1.
la) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Macroscopic distributions along the tube with UR = 5, TC/TH = 0.5 and <5 = 5.
(a) Axial velocity, (b) radial velocity, (c) axial heat flux, (d) radial heat flux, (e) temperature and (f) density
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(a) (b)

(c) (d)

Figure 5.17: Distributions of axial velocity
(a) UR = 1, TC/TH = 0.1, (b) UR = 5, TC/TH = 0.1, (c) UR = 1, TC/TH = 0.5 and (d) UR = 5, TC/TH = 0.5
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(C) (d)

Figure 5.18: Density distributions for the tube geometry with <5 = 0.1 
(a) L/R - 1, T(/TH = 0.1, (b) L/R = 1, TC/TH = 0.5, (c) UR = 5, Tc/TH = 0.\ and (d)UR = 5, TciTH = 0.5
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(c) (d)

Figure 5.19: Temperature distributions for the tube geometry with δ = 0.1 
(a) UR = 1. TC/TH = 0.1, (b) UR = 1, TC/TH = 0.5, (c) Z//? = 5, TC/TH = 0.1 and (d) UR = 5, TC/TH = 0.5
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Figure 5.20: Streamlines for the tube geometry with <5 = 0.1 
(a) UR = 1, TC/TH = 0.1, (b) UR = 1, TC/TH = 0.5, (c) UR = 5, TC/TH = 0.1 and (d) UR = 5, TC/TH = 0.5
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Chapter 6

Knudsen pumps

6.1 Fabricated thermal transpiration pumps

6.1.1 The Knudsen compressor

A Knudsen compressor generates large changes in pressure by utilizing a 

cascade of multiple stages. Each stage is composed of a capillary and connector 

section. A temperature increase across the capillaries results in a thermal transpiration 

driven, pressure increase. The capillary section is followed by a connector section 

where the pressure is approximately constant, while the temperature drops to its 

original value entering the stage. Figure 6.1 outlines an illustrative single stage of a 

Knudsen compressor.

Figure 6.1: Illustrative single stage of a Knudsen compressor (Vargo et. Al, 1999)
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The original analysis of a Knudsen compressor’s performance was based on the 

assumption of an ideal situation of free - molecule flow in the capillary section and 

continuum flow in the connector section of a compressor stage. While these 

conditions can be closely matched in laboratory compressors, it is expected in practice 

that both the capillary and the connector sections of the compressor frequently will 

operate in the transitional flow regime [Vargo et ah, 1999].

6.1.2 Micromachine based vacuum pump on a chip actuated by the 

thermal transpiration effect

As it was previously mentioned, gas micropumping technology takes interest in 

many applications, ranging from portable handheld gas sensing microsystems such as 

breath analyzers, to filtration and by - pass medical devices [Gupta & Gianchandani, 

2008, Pharas & McNamara, 2010],

As mentioned before, a major challenge in the design of a thermal transpiration 

based pumps is to ensure good thermal isolation between the hot and cold ends of the 

pump to maximize the thermal difference. The primary parameters affecting the 

thermal isolation are the thermal conductivity of the pump channel material, and the 

length of the channel separating the hot and the cold sides. Typically, a Knudsen 

pump uses a resistive heater to actively heat the hot side and the cold side is passively 

cooled as shown in Figure 6.2.

Figure 6.2: A conventional Knudsen pump utilizing a resistive heater has an asymmetric design (Pharas 
and McNamara, 2010)

55
Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:05:29 EEST - 18.216.35.67



The total power consumption is minimized by thermally insulating the hot side. This 

creates an asymmetric design in which the hot and the cold sides have different 

geometries and different material requirements [Pharas & McNamara, 2010],

A novel technique to create a vacuum pump on an integrated circuit chip was 

presented by R. M. Young. It must be noted that, thermal transpiration pumps are 

particularly suited to miniaturization and fabrication by integrated circuit (IC) 

lithographic techniques. The pump proposed by Young consists of small tubes, 

operating in the free molecular flow regime, connected to larger, although still 

miniature, flow chambers. The gas is alternately heated and cooled as it traverses 

these tubes and chambers, the thermal transpiration effect creating a mass flow and 

compression in each stage. The pump has no moving parts, eliminating wear and 

particulate generation and increasing reliability. Also, the power is low, in the 

milliwatt range, permitting battery power for portability; no valves are required and 

the pump is silent, with no noise being generated.

The thermal transpiration effect has been used in the measurement of 

thermodynamic and transport properties of gases. Also, the thermal transpiration 

effect can be used to construct a dynamic, i.e. continuously flowing, vacuum pump, as 

demonstrated by a number of researchers over the years. All of these previous pumps 

have been large, macroscopic benchtop or larger units, and have been laboriously 

fashioned. Machining the critical dimension R « λ is technically quite challenging 

using conventional fabrication techniques. Muntz et al. have demonstrated in a 

laboratory unit that a micromachined membrane of microchannels can be successfully 

used to create a thermal transpiration vacuum pump.

The characteristic etch depth and thin film deposition thicknesses used in 1C 

fabrication are typically of the order of the mean free path length (about 65nm for 

room temperature air at atmospheric pressure). Thus, as pointed out by several 

researchers, there is a natural coincidence in MEMS fabrication technology and pump 

dimensions for thermal transpiration pumps. Figure 6.3 shows a top view schematic of 

a chip which has been etched to form a series of free molecular flow tubes connecting 

larger, continuum flow chambers.
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Figure 6.3: Top view schematic of a MEMS fabricated, multistage thermal transpiration pump on a 
chip (Young, 1999)

Since each stage is limited in compression ratio by, at best, the square root of the 

temperature ratio, multiple stages are required. One manufacturing advantage now 

gained is ease of fabrication of these many stages for, 1C MEMS photolithography 

permits fabrication of many chambers and tubes just as IC lithography permits the 

fabrication of many transistors on a chip.

At one end of the connecting tube, the gas must be heated for the pumping to 

take place. Thin film heaters, fabricated on the substrate, are simple and robust. From 

a heat transfer point of view, placing the heater in direct contact with the substrate 

heats mostly the substrate. Only a small portion of the power ends up in the gas, and 

indeed, one only needs to heat up the gas. Heating the substrate results in wasted 

power. Thus, placing the heater on an air bridge, shown in Figure 6.4, reduces power 

consumption by an order of magnitude.

Figure 6.4: Three -dimensional scheme of a MEMS fabricated thermal transpiration pump cell, 
showing an air bridge heater located at the left end of the large continuum cell, and two connecting 
tubes, whose length is small in comparison with the mean free path length (Young, 1999)

Micromachined air bridge heaters have been demonstrated to be low power, typically 

10-100 mW in atmospheric pressure air and lower in power in vacuum, and can
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operate for indefinitely long periods of time at temperatures of 300 - 350 °C in 

atmospheric pressure air, and also readily reach 500 - 600 °C. They have even been 

demonstrated up to incandescence in air for short periods of time -751000 - 1400 K. 

With a proper encapsulant such as silicon nitride or oxide, they are potentially 

operational in corrosive atmospheres. Also, due to the physics of the thermal 

transpiration effect, lighter gases such as H2 and He are pumped better than the 

heavier species; again this is an advantage over many other types of pumps.

The mass flow throughout a round tube is limited, but obviously numerous such 

tubes, placed in parallel, can be formed to connect the two continuum cavities. 

Indeed, the free molecular tubes shown in Figure 6.4 are roughly rectangular in cross 

section. The use of rectangular features is another advantage of using IC MEMS 

fabrication technology. The Knudsen criterion for free molecular flow is based on the 

shallowest dimension, in our case the depth characteristic length of such a rectangle. 

It is very easy for us to pattern these tubes and etch them to depths ranging from the 

submicron up to hundreds of microns. The cross-sectional scheme shown in Figure

6.5 illustrates two stages of this pump, made up of two etched chips bonded together.

Tree-

Figure 6.5: Cross - sectional schematic of the MEMS fabricated thermal transpiration pump (Young, 
1999)

The pump is a dry pump, that is, no oil is used, either for lubrication and seals as 

in a piston pump, or as the working fluid as in a diffusion pump. This eliminates the 

need for cold traps to prevent oil from backstreaming into the sensor or other 

components, and there is no concern about oil aging or reacting with the gases being 

pumped. Being a dry pump also means that the pump will operate in any orientation.

This pump does not need valves to operate. Many other pumps require either 

passive or active valving to accomplish their compression (e.g., piston pumps). This
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again increases reliability. Furthermore, it eliminates pulsations in the gas pressure or 

flow. It also makes the pump silent.

With proper engineering, this thermal transpiration pump on a chip can be self- 

priming, that is, it will pump from below 10 mTorr up to atmospheric pressure on its 

own; no fore pump is needed [Young, 1999],

6.1.3 Bidirectional operation of a gas pump

A novel solution to attaining a large thermal difference was presented by Pharas 

and McNamara. They first used a thermoelectric material in the bidirectional 

operation of a gas pump using thermal transpiration. The thermoelectric material 

maintains a higher temperature difference which favours thermal transpiration and 

thus increases the efficiency of gas pumping.

A thermoelectric module is used to actively heat the hot side, while 

simultaneously actively cooling the cold side. Without the need for a heat sink, the 

design is inherently symmetrical, as seen in Figure 6.6, and the pump can be operated 

in the forward or reverse directions by changing the direction of current flow in the 

thermoelectric module, making this design the first bidirectional Knudsen pump.

Figure 6.6: Knudsen pump using the thermoelectric module has a symmetric design (Pharas and 
McNamara, 2010)

Pharas and McNamara reported two experimental designs based on the use of the 

thermoelectric module.

The first design uses a long channel length to provide better thermal isolation 

between the hot and cold sides, while the second design uses a short channel length to 

minimize the gas flow impedance through the channel and improve the gas flow rate.
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The schemes of the two Knudsen pump designs are shown in Figure 6.7, below.

Outiet-1Λ
Water Drop Forward Direction

• - * ► Reverse Direction

Figure 6.7: (a) Scheme of the bidirectional Knudsen pump using the lateral design and (b) Exploded 
view of the bidirectional Knudsen pump using the radial design (Pharas and McNamara, 2010)

In Figure 6.7(a), a thermoelectric module is thermally coupled to a nanoporous 

material with the use of a top and a bottom copper plate. The temperature difference 

across the nanoporous material causes a gas flow due to thermal transpiration. An 

inlet and outlet are formed on either side of the nanoporous material. This design is 

referred to as the lateral pump design.

In Figure 6.7(b), a thermoelectric module in the shape of a ring is thermally 

coupled to a nanoporous material with the use of a top and bottom plate. This design 

is referred to as the radial pump design. For both designs when the thermoelectric is 

powered on, one face gets hotter while the other face gets colder. The plates serve as 

heat spreaders to transfer thermal energy from both faces of the thermoelectric 

module to either side of the nanoporous material, and thus control the hot and cold 

end temperatures of the channels.

Gas is pumped from the cold side inlet to the hot side outlet due to thermal 

transpiration. For a lOOnm pore size channel over a temperature range of 280 - 380K, 

Kn is between 0.53 and 0.72, while for a 50nm pore size channel over the same range 

of temperature, Kn is between 1.07 and 1.45. Thus, all the experiments were 

conducted in the transition flow regime. Insulating the pump with a low thermally 

conductive material will help lower the heat losses to the environment. The radial
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pump design has no thermal insulation and the lateral pump design has plastic sheets 

that help insulate it.

Photographs of the fabricated devices are shown in Figure 6.8. Each device has 

two thermocouples embedded in them, one for the hot side and one for the cold side.

Top Plate +—Inlet
Thermocouple:

Bottom
Plate

hermoelectri
Outlet Module

Plastic
Screws'

illi

Figure 6.7: Photographs of the actual pumps: (a) lateral pump design and (b) radial pump design 
(Pharas and McNamara, 2010)

After simulations of the devices, Pharas and McNamara showed that the radial 

pump design achieved a normalized flow rate that is 50 times greater than the lateral 

pump design. The reason for this improved flow rate include a higher temperature 

difference across the nanoporous material, a more uniform temperature distribution, 

and a thinner nanoporous material that permits a higher flow rate. The pump works in 

both directions, with a lower flow rate in the reverse direction [Pharas & McNamara, 

2010],

6.1.4 Thermal transpiration in zeolites

Although the phenomenon of thermal transpiration has been known for more 

than a century, very few efforts have focused on the atmospheric pressure operation of 

a Knudsen pump because this requires channels with hydraulic diameter smaller than 

approximately 100 nm. Vargo and Muntz reported a mesoscale device for operation 

near atmospheric pressure using nanoporous aerogel, providing a best case pressure
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drop of 11.5 Torr («1.5 kPa) using helium. McNamara and Gianchandani reported the 

feasibility of using lithographically patterned nanochannels in a chipscale, fully 

micromachined, Knudsen pump that achieved a pressure drop of about 54.7 kPa with 

80 mW of input power. However, the limitation on the density of lithographically 

patterned narrow channels in a micromachined Knudsen pump constrains the flow 

rate to the order of 10-6 cc/min [Gupta and Gianchandani, 2008].

In their 2008 work, Gupta and Gianchandani [Gupta and Gianchandani, 2008] 

explored the use of a naturally occurring zeolite, clinoptilolite, for a chip-scale, 

thermal transpiration-based gas pump.

Naturally occurring zeolites have a dense interconnected network of 

nanochannels (>1014 pores/cm2). These billions of nanochannels can transpire gas in 

unison, resulting in gas flow rates significantly greater than possible with a micro- 

fabricated Knudsen pump having a limited number of lithographically patterned 

nanochannels. Clinoptilolite, the zeolite used in this study, is one of the most 

abundant and widely mined natural zeolites, and is easily machinable.

(a)

Figure 6.8: Crystal structure of Clinoptilolite

(b)

It has nanopores with hydraulic diameter of «0.45 nm and has bulk porosity of 

«34%, which enable the required free-molecular flow, even at atmospheric pressure. 

It is an inexpensive, easily accessible, and mechanically strong nanoporous material.

The zeolite-based Knudsen pump described here has two circular zeolite disks 

with a flexible heater sandwiched between them as shown in Figure 6.9 below:
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Figure 6.9: Exploded view of a zeolite-based Knudsen pump showing relative location of various 
components. The arrows represent the flow of pumped gas (Gupta and Gianchandani, 2008)

Thin, perforated aluminum disks are used on both sides of the zeolite disks to 

improve the temperature uniformity along these surfaces without blocking the gas 

flow. The assembly is packaged in a thermally insulating polyvinyl chloride (PVC) 

cavity. The two zeolite disks are peripherally bonded to the cavity using a vacuum 

grade epoxy to prevent leakage. The common outlet to both sides of the pump is 

located at the center, and the two inlets are at the top and the bottom of the device. 

This particular configuration, with a separate zeolite disk pumping gas from either 

side of a single heater, is termed the double-sided pumping architecture. Also, a 

singlesided pump, using just one zeolite disk, for example zeolite-1, in Fig. 6.9 is also 

possible.

In Figure 6.10, a fabricated device can be seen, which has a final packaged 

volume of 55x55x12 mm . It uses two 2.3mm thick, 48mm diameter zeolite disks, 

and a flexible resistive Kapton heater (18.7 Ω). The heater is a thin, etched-foil 

resistive element laminated between insulating layers of Kapton.
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Figure 6.10: Zeolite-based Knudsen pump with PVC encapsulation (Gupta and Gianchandani, 2008)

However, the performance of such a Knudsen pump is constrained by 

imperfections in clinoptilolite. The equivalent leakage aperture due to imperfections 

in the natural zeolite samples is estimated by measuring the resistance to isothermal 

pressure-driven flow. The difference between the measured pressure and the ideal 

value for the nanoporous material indicates the leakage (Poiseuille) flow as seen in 

Fig. 6.11. The 1.15 mm thick zeolite samples have typical leak aperture diameters of 

10.2-13.5 pm/cm2.

Figure 6.21: Experimental characterization of pressure-driven gas flow across a typical 25mm diameter 
and 1.15mm thick zeolite disk (Gupta and Gianchandani, 2008)

It appears that a zeolite-based Knudsen pump using naturally occurring 

nanoporous clinoptilolite, and potentially other zeolites as well, can be built for 

atmospheric pressure operation. Having no moving parts, it offers the promise of high 

reliability. The architecture of the Knudsen pump presented by Gupta and
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Gianchandani can be potentially extended to serial or parallel multistage pumping. 

These configurations can result in gas flow rates of 0.005-0.02 cc/min-cm2 of zeolite 

disk, or gas pumping pressure on the order of 50 kPa, for power density levels of 

roughly 1 W/cm2, and may have potential applications in gas chromatographs, mass 

spectrometers and systems requiring presice control of gas flow [Gupta & 

Gianchandani, 2008].
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Chapter 7

Concluding remarks

The scope of the present work is to investigate the phenomenon of thermal 

transpiration, also referred to as “thermal creep”. The Knudsen pump, whose “driving 

principle” is that of thermal transpiration, is particularly suited to miniaturization and 

fabrication techniques. It has been found that it is an attractive possibility for 

microscale pumps and macroscale pumps and this attractiveness is attributed to the 

unique features of Knudsen compressors, such as low power, moderate size, no 

moving parts and no working fluids.

To this purpose, we apply kinetic model equations in order to investigate the 

rarefied gas flow through a cylindrical tube, whose ends are maintained at different 

temperatures.

After a brief introduction and literature review in chapters 1 and 2 respectively, 

the formulation of the problem is presented in chapter 3. In chapter 4 the numerical 

scheme is described, while results regarding the flow are presented in chapter 5. In 

chapter 6, a report on several configurations concerning the Knudsen pump is 

provided.

The problem is described by the integro - differential Boltzmann equation, 

which is used to determine the distribution of particles in physical and molecular 

velocity space, as well as in time. The macroscopic quantities of practical interest are 

obtained from the moments of the distribution function.

For the modeling of the flow, the ellipsoidal kinetic model and, in particular, the 

non - linear ellipsoidal model subject to Maxwell diffuse boundary conditions, has 

been used in the simulations. The numerical solution is based on the discrete velocity 

method. The results include all macroscopic quantities of practical interest, including 

the velocity, temperature, heat flux and density in the whole range of the Knudsen 

number, in terms of the rarefaction parameter δ, the temperature ratio Tin/Tout and the 

channel aspect ratio L/R.

In all cases, the axial velocity decreases as the length of the tube increases. As 

the temperature ratio increases from TJT0U, = 0.1 to T„/Tom = 0.5 we can see that the 

temperature inside the tube increases as well. Also, the axial heat flux is always
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positive, denoting, as expected, that heat is moving from the cold side to the hot side 

of the tube. By applying the streamlines we see that the gas is moving from the cold 

side (i.e. the right reservoir) to the hot side (i.e. the left reservoir), indicating the 

presence of the phenomenon of thermal transpiration.

In the future, the implementation of the non linear kinetic equations could be 

extended to solve problems in more complex geometries, and in a wider range of 

conditions. A comparison could also be made with some of the already fabricated 

devices, as well as an estimation of the optimal geometry of a Knudsen pump. A 

novel concept for the design of innovative Knudsen pumps based on the basic thermal 

creep theory is a challenging project.
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