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Περίληψη 

Έλλειψη προϊόντος (stockout) σημειώνεται κάθε φορά που ένας πελάτης παραγγέλνει ένα προϊόν 

από έναν προμηθευτή και ο προμηθευτής δεν μπορεί να το παραδώσει άμεσα επειδή δεν το έχει στο 

απόθεμά του. Μια έλλειψη μπορεί να επιφέρει άμεσα ή/και έμμεσα κόστη στον προμηθευτή. Τα 

έμμεσα κόστη σχετίζονται με την απώλεια καλής πίστης των πελατών προς τον προμηθευτή μετά 

από μια έλλειψη και μπορεί να οδηγήσει σε μείωση της μελλοντικής ζήτησης και του μεριδίου 

αγοράς του προμηθευτή. Το κίνητρο αυτής της διατριβής προέρχεται από την ανάγκη της 

ποσοτικοποίησης των έμμεσων κοστών που προκαλούνται από τις ελλείψεις, ενός ζητήματος που 

δεν έχει αντιμετωπισθεί ικανοποιητικά στη βιβλιογραφία. Η διατριβή χωρίζεται σε τρία μέρη που 

διαφέρουν μεταξύ τους ως προς την οπτική γωνία εξέτασης του προβλήματος. 

Στο πρώτο μέρος εξετάζουμε το κλασικό πρότυπο αποθεμάτων Βέλτιστης Ποσότητας 

Παραγγελίας (Economic Order Quantity ή EOQ) με ελλείψεις που κοστολογούνται με έναν 

σταθερό συντελεστή κόστους έλλειψης προϊόντων «b». Ο συντελεστής αυτός αντικατοπτρίζει την 

απώλεια καλής πίστης – και άρα και της μελλοντικής ζήτησης – των πελατών προς τον προμηθευτή 

λόγω των ελλείψεων. Το ερώτημα που θέτουμε είναι πώς θα μπορούσαμε να εκτιμήσουμε την τιμή 

του b; Για να απαντήσουμε στο ερώτημα αυτό, συνδέουμε το κλασσικό πρότυπο αποθεμάτων EOQ 

με ελλείψεις με ένα αντίστοιχο πρότυπο διαχείρισης αποθεμάτων με «διαταραγμένη» ζήτηση, στο 

οποίο δεν υπάρχει κόστος έλλειψης προϊόντων, αλλά η μακροπρόθεσμη μέση ζήτηση είναι μια 

αύξουσα συνάρτηση του επιπέδου εξυπηρέτησης πελατών. Η χρήση του προτύπου διαταραγμένης 

ζήτησης αντικαθιστά το δυσχερές έργο υπολογισμού του b στο κλασσικό πρότυπο EOQ με το 

ευκολότερο έργο υπολογισμού των παραμέτρων της συνάρτησης της διαταραγμένης ζήτησης.  

Στο δεύτερο μέρος αναπτύσσουμε ένα πρότυπο τύπου «εφημεριδοπώλη» δύο προμηθευτών 

που ανταγωνίζονται να πουλήσουν τον ίδιο τύπο προϊόντων σε ένα πελάτη, επαναλαμβανόμενα, σε 
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διακριτές περιόδους, για άπειρο χρονικό ορίζοντα. Στην αρχή κάθε περιόδου, κάθε προμηθευτής 

παραγγέλνει έναν αριθμό προϊόντων που του παραδίδονται άμεσα. Σε κάθε περίοδο, ο πελάτης 

επιλέγει τυχαία έναν από τους δύο προμηθευτές και του ζητάει έναν τυχαίο αριθμό προϊόντων. Η 

πιθανότητα με την οποία επιλέγεται ένας προμηθευτής εξαρτάται από το λεγόμενο «επίπεδο 

αξιοπιστίας» αυτού του προμηθευτή, το οποίο αντικατοπτρίζει την εκτίμηση που έχει ο πελάτης για 

τη σχετική αξιοπιστία του προμηθευτή βάσει της ιστορίας εξυπηρέτησης – μετρούμενης με όρους 

διαθεσιμότητας προϊόντων – που έχουν παράσχει και οι δύο προμηθευτές στον πελάτη στο 

παρελθόν. Τα επίπεδα αξιοπιστίας των προμηθευτών αλλάζουν δυναμικά ανάλογα με την ποιότητα 

εξυπηρέτησης – καλής ή κακής – που ο πελάτης λαμβάνει σε κάθε περίοδο. Μορφοποιούμε το 

πρόβλημα εύρεσης βέλτιστων στάσιμων πολιτικών παραγγελίας για τους δύο προμηθευτές σε 

ισορροπία ως ένα στοχαστικό δυναμικό παίγνιο, και επιλύουμε αριθμητικά τις προκύπτουσες 

συνθήκες βελτιστότητας για διάφορες περιστάσεις του προβλήματος. Σε όλες τις περιστάσεις, 

προκύπτει ότι η βέλτιστη πολιτική παραγγελίας για κάθε προμηθευτή είναι μια πολιτική τύπου 

«παραγγελίας μέχρις ένα επίπεδο» (order-up-to). Στη συνέχεια, εξετάζουμε μια συγκεκριμένη 

περίπτωση του προτύπου, όπου κάθε προμηθευτής έχει μόνο δύο ακραία επίπεδα αξιοπιστίας, ένα 

υψηλό και ένα χαμηλό, τέτοια ώστε όταν βρίσκεται στο χαμηλό επίπεδο, δεν επιλέγεται ποτέ από 

τον πελάτη, ενώ όταν βρίσκεται στο υψηλό, πάντα επιλέγεται. Γι’ αυτήν την περίπτωση 

υποθέτουμε ότι και οι δύο προμηθευτές χρησιμοποιούν μια πολιτική τύπου παραγγελίας μέχρις ένα 

επίπεδο, όπου το επίπεδο παραγγελίας εξαρτάται από το επίπεδο αξιοπιστίας. Μορφοποιούμε το 

πρόβλημα ως μια Μαρκοβιανή Διαδικασία Αποφάσεων με δύο κέντρα απόφασης. Για μια ειδική 

κατανομή της ζήτησης αποδεικνύουμε την ύπαρξη ενός μοναδικού σημείου ισορροπίας Nash, και 

επιλύουμε αριθμητικά τις προκύπτουσες συνθήκες βελτιστότητας στην κατάσταση ισορροπίας για 

να βρούμε τα βέλτιστα επίπεδα παραγγελίας και των δύο προμηθευτών.  

Στο τρίτο και τελευταίο μέρος αναζητούμε εμπειρικά τεκμήρια ότι οι ελλείψεις προϊόντων 

πράγματι επηρεάζουν αρνητικά τη μελλοντική ζήτηση. Για αυτό το σκοπό, εξετάζουμε τη σύνδεση 

μεταξύ ελλείψεων, εξυπηρετήσεων πελατών, τρεχουσών πωλήσεων και μελλοντικής ζήτησης, 

πραγματοποιώντας εκτενή στατιστική ανάλυση ιστορικών δεδομένων πωλήσεων και παραδόσεων 

μιας πραγματικής χονδρεμπορικής εταιρείας για μια περίοδο τεσσάρων ετών. Το βασικό μας 

εύρημα είναι ότι οι ελλείψεις έχουν πράγματι αρνητική επίδραση στις τρέχουσες πωλήσεις και στη 

μελλοντική ζήτηση. 
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Abstract 

A stockout occurs whenever a customer requests an item from a supplier and the supplier can not 

deliver this item due to a temporary lack of stock. A stockout may incur direct or indirect costs to 

the supplier. The indirect costs are related to the loss of customer goodwill following a stockout 

which may lead to a decline in future demand and market share of a supplier, especially in a 

competitive market environment. This thesis is motivated by the need to quantify the indirect costs 

of stockouts, which has long been an unsatisfactorily resolved issue in the literature. It is divided 

into three parts that differ from each other in their perspective. 

In the first part, we revisit the classical Economic Order Quantity (EOQ) model with 

backorders that are being penalized with a backorder penalty cost coefficient, b. This coefficient 

reflects the intangible effect of the future loss of customer goodwill – and therefore demand – 

following a stockout. We ask the question, what could b be? To answer this question, we infer the 

value of b in the EOQ model with penalized backorders by connecting this model to a perturbed 

demand model which assumes that there is no explicit backorder penalty cost, but that the long-run 

average demand rate is an increasing function of the customer service level. The perturbed demand 

model replaces the impracticable task of estimating b in the classical model with penalized 

backorders, with the more feasible task of estimating the parameters of the perturbed demand rate 

function.  

In the second part, we develop a newsvendor-type model of two suppliers that compete to 

sell the same type of items to a customer, repetitively, in discrete periods, for an infinite time 

horizon. At the beginning of each period, each supplier orders a number of items that are delivered 

to him immediately. In each period, the customer randomly chooses one of the two suppliers and 

demands from him a random number of items. The probability of choosing a supplier depends on 
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the so-called “credibility level” of this supplier, which reflects the customer's estimate of the 

supplier's relative credibility based on the history of service – measured in terms of product 

availability – that both suppliers have provided to the customer in the past. The credibility levels of 

the suppliers change dynamically based on the quality of service – good or poor – that the customer 

receives in each period. We formulate the problem of finding optimal stationary ordering policies 

for both suppliers at equilibrium as a stochastic dynamic game, and we numerically solve the 

resulting optimality conditions for several instances of this problem. In all instances, the optimal 

ordering policy for each supplier turns out to be an order-up-to policy. Then, we restrict our 

attention to the case where each supplier has only two extreme credibility levels, a low and a high, 

such that, when in the low level, he is never chosen by the customer, and when in the high level, he 

is always chosen by the customer. For this case, we assume that each supplier uses a credibility 

level-dependent order-up-to policy. This leads to a Markov Decision Process with two decision 

makers. For a special demand distribution, we show that there exists a unique Nash equilibrium, and 

we numerically solve the resulting optimality conditions at equilibrium to find the optimal order-up-

to levels of both suppliers. 

In the third and last part, we seek empirical evidence that stockouts affect future demand. To 

this end, we study the linkage between stockouts, customer service, current sales, and future 

demand, by performing a thorough statistical analysis of historical customer order and delivery data 

of a tool wholesaler and distributor over a period of four years. Our main finding is that stockouts 

do have an adverse effect on current sales and future customer demand. 
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Chapter 1  Introduction 

In this chapter, we provide some background information which supports the motivation behind this 

thesis. We also review the relevant literature, and we give a brief description of the three main parts 

of the thesis, which occupy Chapters 2-4, respectively. 

1.1 Motivation and Background 

Anyone who has taken or taught a course in inventory management is likely to have pondered at 

how to quantify the cost incurred by a stockout. A stockout occurs whenever a customer requests an 

item from a supplier and the supplier can not deliver this item due to a temporary lack of stock. 

Stockouts can be either internal or external to a firm. An internal stockout occurs when an order of a 

department within the organization is not filled. An external stockout occurs when the supplier does 

not fill a customer’s order on time. Internal stockouts can result in lost production and delays. 

Stockouts may incur direct costs which may be analyzed into backorder costs and current profit 

losses. Backorder costs typically include extra costs for administration, price discounts or 

contractual penalties for late deliveries, expediting material handling and transportation, the 

potential interest on the profit tied up in the backorder, etc. The current profit loss is the potential 

profit of the sale, if the sale is lost.  

Although the direct costs incurred by stockouts may be quite significant, what most 

researchers and practitioners understand as stockout costs are the indirect costs that are related to 

the loss of customer goodwill following a stockout which may lead to a temporary or permanent 

decline in future demand and market share of a supplier, especially in a competitive market 

environment. In the short run, the supplier’s sales may fall short of demand when customers 

experience stockouts and choose not to backorder. In the long run, the supplier’s demand itself may 

decline as customers who experience excessive stockouts shift permanently to more reliable 

sources. 
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The quantification of the indirect cost of stockouts has long been an unsatisfactorily 

resolved issue in the literature. Yet, most of the traditional approaches to determining optimal or 

simply good inventory control policies have been based on assuming a specific functional form for 

stockout costs. A commonly used assumption is that backorders are being penalized with a constant 

backorder penalty cost rate, which is often denoted by b. The difficulty in determining an 

appropriate value for b has prompted many researchers to replace the backorder penalty cost by a 

constraint on the customer service level. This may be more appealing to practitioners, but it only 

transposes the problem of estimating the appropriate cost of stockouts to one of determining the 

appropriate customer service level. An inquisitive student may still wonder why a 95% service 

level, which is often used as an example in textbooks, is better than a 94% or a 96% service level. 

The difficulty in estimating b or its surrogate service level target lies in the fact that b is 

supposed to reflect the intangible effect of the loss of customer goodwill following a stockout. As 

Schwartz (1966) noted, however, the effect of the loss of goodwill should not be a penalty cost of 

the type considered in the classical inventory models. This is because the backorder penalty cost 

term in the objective function of such models is subtracted as though the firm incurs an expense at 

the time of the stockout. Yet, the effect of the loss of customer goodwill is incurred not at the time 

of the stockout incident, but at a later time, due to the customer’s decision to alter his future 

demand. With this in mind, Schwartz (1966) modified the classical Economic Order Model (EOQ) 

with backorders by eliminating the explicit backorder penalty cost term from the objective function 

and by assuming that the long-run demand rate – and hence the long-run average reward – is an 

increasing function of the fill rate. Schwartz called the resulting model a “perturbed demand” (PD) 

model. 

We agree with Schwartz that the PD approach to goodwill stockout penalties is more valid 

than the classical inventory theory approach, for two reasons. The first reason is the already stated 

difficulty in picking a good – let alone the best – value for the backorder (or stockout) coefficient or 

the customer service level in the classical approach. The second reason is that the classical approach 

has the following paradox embedded in it. It supposes that there is a backorder penalty cost which 

reflects the future loss of demand due to the loss of customer goodwill following stockouts, and yet 

it assumes that the demand is stationary. While we find that the PD approach to goodwill stockout 

penalties is more valid than the classical inventory theory approach, we are not sure if it is more 

practical than the classical approach. If it were more practical, it would be widely known and used 

by researchers and practitioners, even though researchers and practitioners do not always have the 
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same perception of what “practical” is. Thus, while the PD approach introduced by Schwartz (1966) 

spawned several follow-up papers, to date, the classical inventory theory approach still 

predominates in the vast majority of the inventory management research literature and textbooks. 

The classical approach remains more popular, not only because of tradition, but also because it 

assigns a direct backorder/stockout cost, as opposed to its PD counterpart which assumes indirect 

costs. It is easier, quicker, and more familiar for a manager to think, “I want a customer service 

level of 90%,” or equivalently “It costs me nine times more to allow backorders than to hold 

inventory” than to think in terms of the indirect stockout costs implied by the PD approach. How 

the manager picks the appropriate customer service level or the equivalent backorder cost, however, 

remains obscure. If operations management researchers are to continue teaching the classical 

inventory theory approach to students and advertising it to practitioners, however, they must 

continue seeking a credible answer to the question, what could the backorder penalty cost 

coefficient b be? At the same time, they must address the paradox of the classical approach 

mentioned above. In Chapter 2, we address these issues. 

Schwartz’s and other PD models take a macroscopic view at how the long-run average 

demand depends on customer service but fail to look at the dynamics of how this happens. There is 

a large body of operations management literature that studies the phenomenon whereby customers 

substitute one product with another or switch from one retailer to another when their first-choice 

product or retailer is out of stock. Yet, very few of these works look at the impact of such stockouts 

in future demand. In the short run, if a customer receives poor service from a supplier, he may 

defect to another supplier, and if he receives poor service from that supplier too, he may switch 

back to the original supplier. In other words, customers may switch from one supplier to another 

based on the service they receive from each supplier. Hence, the dynamic inventory control policy 

of one supplier may depend on the dynamic inventory control policy of the competing suppliers. 

This line of thought opens the path for game-theoretic formulations. In Chapter 3, we develop and 

analyze one such model. 

Finally, although intuitively it makes sense that stockouts should affect future demand, no 

study on the impact of stockouts would be complete if it were not supported by empirical evidence. 

Recently, there has been an increasing call for rigorous empirical research in operations 

management. In contrast to other more mature management disciplines, operations management has 

the least developed empirical knowledge base to draw upon in answering challenging questions. 

This may be due to at least two reasons. Firstly, empirical research involves a systematic derivation 
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and analysis of data from direct or indirect observation, a job that most operations management 

researchers are not well trained or interested in doing. Secondly, most companies that have the data 

are hesitant to share it with the rest of the world. In Chapter 4, we seek to find empirical evidence 

that stockouts do adversely affect future by performing a thorough statistical analysis of historical 

customer order and delivery data of a tool wholesaler and distributor over a period of four years. 

1.2 Literature Review 

The quantification of stockout costs that are related to the loss of customer goodwill has long been a 

difficult and unsatisfactorily resolved issue in the literature. As Gardner (1980) puts it, shortage cost 

parameters are no more real than the gods of Olympus. Nonetheless, the effects of stockouts on 

customer behavior have been studied quite extensively by the marketing research community. Most 

of the related work reported in the marketing research literature focuses on identifying and 

explaining consumer reaction to stockouts in retail settings. Such reaction may include item (brand 

and/or variety) or purchase quantity switching, cancellation or deferral of purchase, store switching, 

etc. 

A number of studies postulate a decision model with alternative possible outcomes and 

courses of action of consumers and retailers following a stockout, and estimate the parameters 

(probabilities, costs, etc.) of the model via interviews and/or mail surveys. 

Nielsen (1968a, b) documents the frequency of stockouts observed for items sold in 

supermarkets. In contrast to prior stockout studies that try to estimate the cost of a stockout on the 

basis of unsold inventory only, this study looks into consumer behavior. When recording stockouts, 

a distinction is made between availability of product on shelves and availability in the store, the 

latter meaning that the product is only available in the store backroom. The study also reports 

breakdowns for product categories, days of the week, levels of brand loyalty captured by certain 

product categories, and most importantly substitute, delay, or leave response.  

Walter and Grabner (1975) design a model to describe the decision alternatives of a 

customer who encounters a stockout in a retail store, and conduct an empirical test of their model in 

liquor stores operated by the Ohio Department of Liquor Control.  

Schary and Becker (1978) report the effects of a regional beer strike in which stockouts 

occurred in selected brands. Using brand share as the dependent variable, stockout effects are 

judged to be more short- than long-run. Schary and Christopher (1979) develop a model which 

identifies stockout response in relation to store and product decisions by consumers. They then 
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compare this model to evidence of actual response to stockout situations collected at two units of a 

British supermarket chain. Their findings suggest that stockout perception is not universal and that 

reaction to stockouts influence the total image of the store.  

Zinszer and Lesser (1981) look at how stockouts affect consumers of different demographic 

characteristics, whether the item was on sale and how the stockout affects store image and intended 

future patronage. Badinelli (1986) repeatedly ask decision makers to specify their marginal 

exchange rate between on-hand inventory and backorders, and then use the relatively more exact 

holding cost to estimate the shortage cost function through regression.  

Emmelhainz et al. (1991) report the responses to an in-store interview of consumers who 

experience a stockout on items removed from the grocery shelves by researchers. They find that 

32% of consumers purchase a different brand, 41% purchase a different size or variety of the same 

brand, and 14% go to another store.  

Finally, Campo et al. (2000, 2004) investigate consumer reactions to stockouts – which are 

unexpected and temporary in nature – as opposed to permanent assortment reductions (PAR). Their 

results indicate that retailer losses incurred in case of a PAR may be substantially larger than those 

in case of a stockout for the same item. The results further suggest that stockout losses may 

disproportionately grow with OOS frequency and duration, emphasizing the need to keep their 

occurrence and length within limits.  

Two exceptions of works that focus on business-to-business (B2B) rather than business-to-

consumer (B2C) markets are Dion et al. (1991) and Dion and Banting (1995), who report the results 

of studies of the perceived consequences for B2B market buyers of being stocked out by their 

supplier and their repurchase loyalty on the next purchase occasion. The studies draw data from 

personal interviews and mail surveys. Buyers report lost sales and costly production disruptions 

resulting from the stockouts. The results show that buyers often seek an alternate supplier in the 

face of a stockout, but the majority return to the original supplier on the next purchase occasion. 

Another group of marketing research studies is based on laboratory experiments. 

Charlton and Ehrenberg (1976) is one example in which a panel of consumers in the UK is 

repeatedly offered the opportunity to buy certain artificial brands of a detergent. The study 

examines the effects of price differentials, a promotion, advertising, a stockout condition, the 

introduction of a new product, and certain weak forms of price differentiation on consumer 

dynamics, i.e. on how people change their purchasing habits. As far a the effects of the stockout 
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condition is concerned, it is found that market shares and category sales return to their pre-stockout 

levels with no apparent long-term effects. 

Motes and Castleberry (1985) repeat the same type of experiment using a real potato chip 

brand and find that market shares do not return to their pre-stockout levels whereas category sales 

do. Finally, Fitzsimons (2000) runs four laboratory experiments involving stockouts in a consumer 

choice context. The results of the experiments suggest that consumer response to stockouts is driven 

in large part by two factors: the effect of a stockout on the difficulty of making a choice from the set 

and the degree of personal commitment to the out-of-stock alternative.  

There also exist a limited number of marketing studies that rely on historical data analysis. 

Straughn (1991) is one of the first to use scanner data in a stockout study. She attempts to 

estimate the effects of stockouts on brand share for candy bars. The short-term effect is negligible. 

The long-term effect, defined as more than five weeks following the stockout condition, is 

substantial. Decline in brand share averages 10%.  

Campo et al. (2003) explore the impact of retail stockouts on whether, how much and what 

to buy, by adjusting traditional purchase incidence, quantity and choice models, so as to account for 

stockout effects. Their study is based on scanner panel data of a large European supermarket chain. 

There also exists a relatively recent survey- and experiment-based stream of research on 

consumers’ perceptions of and reactions to waiting and service. 

Anderson et al. (2006) conduct a large-scale field test with a national mail-order catalog and 

find that stockouts have an adverse impact on both the likelihood that a customer will place another 

order and the amount that the customer will spend on future orders (if any).  

Taylor (1994) presents a model of the wait experience which assesses the effects of delay 

duration, attribution for the delay, and degree to which time is filled, on affective and evaluative 

reactions to the delay. An empirical test of the model with delayed airline passengers reveals that 

delays do affect service evaluations; however, this impact is mediated by negative affective 

reactions to the delay. 

Carmon et al. (1995) examine how service should be divided and scheduled when it can be 

provided in multiple separate segments. They analyze variants of this problem using a model with a 

conventional function describing the waiting cost, which is modified to account for some aspects of 

the psychological cost of waiting in line. They show that consideration of the psychological cost can 

result in prescriptions that are inconsistent with the common wisdom of queuing theorists derived 

according to the conventional approach (e.g., equal load assignments). 
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Hui and Tse (1996) conduct an experimental study to examine the impact of two types of 

waiting information – waiting-duration information and queuing information – on consumers’ 

reactions to waits of different lengths. Their results show that though acceptability of the wait and 

affective response to the wait have a significant mediating effect on the relationship between 

waiting information and service evaluation, perceived waiting duration does not. Moreover, neither 

type of information has significant impact in the short-wait condition, whereas waiting-duration 

information has greater impact than queuing information in the intermediate-wait condition and a 

smaller impact in the long-wait condition. 

Kumar et al. (1997) examine the impact of the policy of a waiting time guarantee, on 

customers' waiting experiences and find that that a time guarantee, if met, increases satisfaction at 

the end of a wait; however, if violated, it decreases satisfaction at the end of the wait. 

Zhou and Soman (2003) investigate consumers' affective experiences in a queue and their 

decisions to leave the queue after having spent some time in it (reneging). They find in their first two 

studies that, as the number of people behind increases, the consumer is in a relatively more positive 

affective state and the likelihood of reneging is lower.  

Finally, Munichor and Rafaeli (2005) examine the effect of time perception and sense of 

progress in telephone queues on caller reactions to three tele-waiting time fillers: music, apologies, 

and information about location in the queue. In their first study, they find that call abandonment was 

lowest and call evaluations were most positive with information about location in the queue as the 

time-filler. In their second study, they find that the sense of progress in the queue rather than the 

perceived waiting time mediated the relationship between tele-waiting time filler and caller 

reactions. The issue of the value of time, and, to some extent, product availability seems to be a 

“hot” topic in marketing research today. 

The effects of stockouts on customer behavior have also been studied by the operations 

management community. The first works that appeared in the operations management literature 

develop decision trees to model the consequences of stockouts.  

Chang and Niland (1967) use decision trees to delineate the possible consequences of a 

stockout (e.g., lost sale, temporary cancellation of business, etc.) and their conditional probabilities 

of occurring, which they used to calculate an expected penalty cost. The main disadvantage of 

decision trees is the tremendous amount of time that is required for estimating their parameters. 

With this in mind, Oral et al. (1972) and Oral (1981) ask managers to define costs and probabilities 
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for a stratified sample of their items. They then estimate the penalty costs for the remaining items 

by regressing the shortage cost on the gross unit profit. 

Most of the research on the effects of stockouts on current and future sales in the operations 

management literature has focused on the development of mathematical inventory control models in 

which demand is presumed to be a function of a certain direct or indirect quantitative measure of 

stockouts, such as the average delivery delay, the percentage of demand that is satisfied from on-

hand inventory, the percentage of immediately satisfied customers, etc.  

Hanssmann (1959) is perhaps the first to model a relationship between inventory stocking 

policies and demand. He assumes that demand is normally distributed, with a constant coefficient of 

variation and a mean value that depends on the service level. He balances higher holding costs 

against increased sales in response to the decreased backlogging and the resulting reduction in 

delivery delays.  

The concept of service level-dependent demand is further developed by Schwartz (1965, 

1966, 1970), who develops an innovative “perturbed demand” model in which there is no fixed 

stockout cost but stockouts directly affect future demand. Our work in Chapter 2 relies heavily on 

Schwartz’s perturbed demand model.  

Hill (1976) extends Schwartz's work by obtaining the optimal solution for a perturbed 

demand inventory model with fixed ordering and inventory holding costs. He restricts his attention 

to reorder quantity, reorder point policies, for which he concludes that the optimal reorder quantity 

is either identical to the EOQ and no stockouts are allowed, or is equal to the available storage 

capacity and the stockout level may be allowed to become rather large before an order is received.  

Caine and Plaut (1976) come to the same conclusion as Hill (1976). Moreover, they obtain 

steady-state results for a stochastic periodic review model, similar to that studied by Schwartz 

(1970), where the demand is assumed to be follow an exponential distribution whose mean depends 

on the long run expected disappointment caused by stockouts rather than by the actual service 

received. They only look at a single-period problem with no cost on either ending inventory or 

backlogged demand.  

Robinson (1991) provides a further generalization where the mean and variance of the 

demand in each period varies linearly with the number of satisfied customers in the previous period. 

He also gives an excellent literature review.  

Argon et al. (2001) proposes a single item, periodic review model that investigated the 

effects of changes in the demand process that occur after stockout realizations. More specifically, 
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they investigate a system where the demands in successive periods are deterministic but are affected 

by the backorder realizations. 

Finally, there exist several works that study continuous-time, deterministic, inventory 

control systems in which the demand rate is assumed to be a polynomial function of the inventory 

level. A typical example of such a work is Urban (1995).  

The above works remain within the framework of a single decision maker formulation and 

hence fail to look into the underlying competition interactions between suppliers. Given that the 

future (or even present) defection of a customer depends on what other options that customer has, 

several researchers address service-related issues within a game theoretic framework. There is a 

large body of operations literature works that study product and/or supplier substitution or 

switching when stockouts occur. 

Li (1992) considers competition in production speed in a buyer’s market, assuming that a 

demand will be filled by the supplier who produces the next available product first. This line of 

research has been followed and extended by other works. For example, Ernst and Cohen (1992) and 

Ernst and Powell (1995) consider a single-supplier, single-retailer system in which the demands 

faced by the retailer have a mean and standard deviation that depends on the steady state service 

level. Ernst and Powell (1998) model this system as a Stackelberg game with the supplier as the 

leader.  

Lippman and McCardle (1997) introduces competition into the standard newsvendor 

problem. In their model, two firms make ordering decisions at the beginning of a period to compete 

for the demand in current period. When a shortage happens at one firm, the unmet demand switches 

to the other firm. Along the same line, Netessine et al. (2006) consider a two-firm competition 

problem in a reorder point system setting. When a stockout occurs at one firm, the unmet demand 

will either be backordered or switch to a competitor immediately. Stationary optimal ordering 

strategies are developed under four different scenarios. Since future demand is not affected by 

current activities, the problem is essentially a one-period problem. 

Bernstein and Federgruen (2004a,b) consider price- and service-sensitive demands in a one-

period setting, using a multiplicative demand model. They showed that the equilibrium in an 

infinite-horizon setting is the same as in the one-period setting. 

Dana and Petruzzi (2001) consider a firm’s inventory and price policy when it faces 

uncertain demand that depends on both inventory and price. They extend the classic newsvendor 

model by assuming that consumers who seek to maximize their expected utility chose between 
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visiting the firm and consuming an exogenous outside option. The outside option represents the 

utility that the consumer forgoes when he chooses to visit the firm before knowing whether or not 

the product will be available. They investigate both cases of optimally chosen and exogenously 

given price.  

From our literature review one can see that, since Schwartz (1966)’s work, the two factors, 

competition in product availability and its future effect have been more or less studied separately. 

The only exceptions are Gans (2002), Hall and Porteus (2000), Gaur and Park (2006), and Liu et al 

(2007). 

More specifically, Gans (2002) models consumer learning and choice in response to random 

variation in the quality provided by competing suppliers. He develops an individual-level consumer 

demand model in which consumers use Bayesian updating to learn from their own experiences with 

the quality levels offered by suppliers. In each period, a consumer picks the supplier for which the 

consumer has the highest expectation of service level. Gans derives the steady-state characterization 

of this demand model when suppliers choose static quality policies and analyzes the competition 

between them. 

Hall and Porteus (2000) investigate a simple dynamic model of firm behavior in which two 

firms compete by investing in capacity that is used to provide good service to their customers. 

There is a fixed total market of customers whose demands for service are random and who divide 

their patronage between the firms in each period. They address the issue of the firms’ capacity 

decisions in response to customer service concerns.  

Gaur and Park (2006) build on the model of Hall and Porteus (2000) by considering a model 

with asymmetric customer learning. When consumers experience positive or negative service 

encounters, they update their expectations about future encounters. Liu et al. (2007) also extend the 

work of Hall and Porteus (2000) by incorporating a more general demand model. In all three papers, 

however, it is assumed that there is no inventory carryover or backorder from period to period. 

1.3 Thesis Organization 

The remainder of this thesis is organized into three main parts which occupy Chapters 2-4, 

respectively. 

Motivated by the need to determine reliable backorder penalty cost rates to be used in 

classical inventory control models, in Chapter 2, we revisit the classical Economic Order Quantity 

(EOQ) model with backorders that are being penalized with a backorder penalty cost coefficient, b, 
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which reflects the intangible effect of the future loss of customer goodwill – and therefore demand – 

following a stockout. We ask the question, what could b be? To answer this question, we infer the 

value of b in the EOQ model with penalized backorders by connecting this model to Schwartz’s 

(1966) seminal perturbed demand model which assumes that there is no explicit backorder penalty 

cost, but that the long-run average demand rate is an increasing function of the customer service 

level. The perturbed demand model proposed by Schwartz (1966) replaces the impracticable task of 

estimating b in the classical model with penalized backorders, with the more feasible task of 

estimating the parameters of the perturbed demand rate function.  

In Chapter 3, we develop a newsvendor-type model of two suppliers that compete to sell the 

same type of items to a customer, repetitively, in discrete periods, for an infinite time horizon. At 

the beginning of each period, each supplier orders a number of items that are delivered to him 

immediately. In each period, the customer randomly chooses one of the two suppliers and demands 

from him a random number of items. The probability of choosing a supplier depends on the so-

called “credibility level” of this supplier, which reflects the customer's estimate of the supplier's 

relative credibility based on the history of service – measured in terms of product availability – that 

both suppliers have provided to the customer in the past. The credibility levels of the suppliers 

change dynamically based on the quality of service – good or poor – that the customer receives in 

each period. We formulate the problem of finding optimal stationary ordering policies for both 

suppliers at equilibrium as a stochastic dynamic game, and we numerically solve the resulting 

optimality conditions for several instances of this problem. In all instances, the optimal ordering 

policy for each supplier turns out to be an order-up-to policy. Then, we restrict our attention to the 

case where each supplier has only two credibility levels, a low and a high, such that, when in the 

low level, he is never chosen by the customer, and when in the high level, he is always chosen by 

the customer. For this case, we assume that each supplier uses a credibility level-dependent order-

up-to policy which leads to a Markov Decision Process with two decision makers. We numerically 

solve the resulting optimality conditions at equilibrium to find the optimal order-up-to levels of 

both suppliers. 

Our work in Chapters 2 and 3 is based on developing and analyzing mathematical models in 

which it is assumed that stockouts affect future customer demand. In Chapter 4, we seek to find 

empirical evidence that such an effect exists. More specifically, we study the linkage between 

stockouts, customer service, current sales, and future demand, by performing a thorough statistical 

analysis of historical customer order and delivery data of a tool wholesaler and distributor over a 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 22:13:44 EEST - 18.223.159.57



 

12 

period of four years. Our aim is find to evidence on the effect of stockouts on current sales and 

future customer demand in a wholesale business environment. We hope that the results of this 

analysis can provide useful information to operations management researchers who wish to develop 

and analyze realistic models of supplier-customer behavior, and at the same time complement our 

results in previous chapters. This analysis could also serve as an example for sales and inventory 

management practitioners who wish to perform a similar study on their own data. Another objective 

of Chapter 4 is to statistically analyze the customer order data itself. Given the lack of reports on 

real customer demand data in the literature, this analysis may be of particular interest to inventory 

management researchers who wish to develop and analyze realistic models of customer demand. 

Finally, we summarize our findings in Chapter 5. 
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Chapter 2 Backorder Penalty Cost Coefficient 

“b”: What Could It Be? 

In this chapter, we revisit the Economic Order Quantity (EOQ) model with backorders that are 

being penalized with a backorder penalty cost coefficient, denoted by b, where b reflects the 

intangible effect of the future loss of customer goodwill following a stockout. We will henceforth 

refer to this model as the “penalized backorders” or “PB” model, for short. Our aim is to answer the 

question, what could b be in the PB model? To this end, we propose a scheme for inferring the 

value of b. This scheme is based on connecting the PB model to Schwartz’s (1966) seminal 

alternative EOQ model with backorders and perturbed demand, which assumes that there is no 

explicit backorder penalty cost but that the long-run average demand rate is an increasing function 

of the fill rate. We will henceforth refer to the latter model as the “perturbed demand” or “PD” 

model, for short. The connection between the two models is accomplished by setting the optimal 

decision variables in the PB model equal to the respective variables in the PD model. While the idea 

of this connection and its implementation is the main contribution of this chapter, a secondary 

contribution is the exact analysis of the PD model that we provide along the way. 

The rest of this chapter is organized as follows. In Section 2.1, we summarize some more or 

less known results on the optimal decision variables of the classical PB model and three variations 

of it in which we replace the explicit fixed order cost with a constraint on the order quantity, the 

interorder time, and the starting inventory in each cycle, respectively. We also perform a sensitivity 

analysis of the objective function of the classical PB model to our error in estimating b, in an 

attempt to answer the question, how crucial is it to know the true value of b? In Section 2.2, we 

derive analytical expressions for the optimal decision variables of the respective PD models, i.e., the 

classical PD model and three variations of it which correspond to the three variations of the PB 

model. In Section 2.3, we describe the scheme for inferring the backorder penalty cost coefficient b 

in the PB model from the PD model, and we use this scheme to infer b in the classical PB model 
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and its three variations discussed in Section 2.1. We illustrate the scheme with a numerical example 

in Section 2.4, and we draw conclusions in Section 2.5. 

2.1 The PB Model  

In this section we revisit the classical PB model and three variations of it. The classical PB model 

assumes that a firm receives a single type of products from a supplier, holds them in inventory, and 

delivers them to its customers upon demand. The model also assumes that demand is continuous 

and constant over time, replenishment is instantaneous, delivery is immediate, the order quantity 

does not need to be an integer, and unfilled demand is backordered. Finally, the model assumes that 

the price margin per unit sold, the fixed order cost, the variable order cost per unit ordered, the 

inventory holding cost per unit stocked per unit time, and the backorder penalty cost per unit 

backordered per unit time are known and constant over time. The constant parameters of the PB 

model are denoted by the following symbols: 

p = price margin (selling price minus purchase price) per unit sold; 

k = fixed order cost; 

h = inventory holding cost per unit stored per unit time; 

b = backorder penalty cost per unit backordered per time unit; 

D = demand per time unit. 

The decision variables are the order quantity and the fraction of demand that is met from 

stock, or fill rate, which are denoted by the following symbols: 

Q = order quantity; 

F = fill rate. 

The fill rate must satisfy 0 ≤ F ≤ 1. Note that if F = 0, the firm operates in a pure make-to-

order mode, backordering all the demand and not keeping any inventory. If F = 1, on the other 

hand, the firm operates in a pure make-to-stock mode, keeping inventory and not allowing any 

backorders. If 0 < F < 1, the firm uses a mixed make-to-order and make-to-stock policy. The only 

constraint on the order quantity is that it must be nonnegative. In practical situations, however, there 

may be extra constraints on the decision variables which can lead to different variations of the PB 

model. In this chapter, we consider three such variations in which we replace the explicit fixed 

order cost with a constraint on the order quantity, the interorder time, and the starting inventory in 

each cycle, respectively. Figure 2-1 shows the inventory trajectory in the PB model. 
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Figure 2-1: Inventory versus time for the PB model 

 

The classical PB model and its three variations make up a total of four cases. For each case, 

it is straightforward to derive an expression of the average profit of the firm as a function of the 

decision variables Q and F. Table 2-1 shows the average profit function, denoted by the P(Q, F), 

and the constraints for the four cases. Note that in all cases, the first term of the average profit 

represents the average reward, whereas the remaining terms represent the average cost. Also note 

that the decision variables Q and F only affect the average cost. The quantities Q, Q/D, and QF in 

the last column of Table 2-1 are the order quantity, the interorder time, and the starting inventory in 

each cycle, respectively, and Qmin, Tmin, and Imin are positive, finite numbers denoting the minimum 

values of these quantities, respectively. Parameters Qmin and Tmin may be set either externally by the 

supplier for economic reasons, or internally by the firm to incur an implicit fixed order expense, if 

the explicit fixed order cost k is not known or is difficult to obtain. Similarly, parameter Imin may be 

set internally by the firm to incur an implicit fixed order expense, or as a safety stock against 

fluctuations in demand, because in reality demand may vary.  

Table 2-1 Objective function and constraints for the classical PB model and its three variations 

# P(Q, F) Constraints 

1 
2 2(1 )

2 2
D QF Q FpD k h b
Q

−
− − − 0 ≤ F ≤ 1, Q ≥ 0 

2 
2 2(1 )

2 2
QF Q FpD h b −

− −  0 ≤ F ≤ 1, Q ≥ Qmin 

3 
2 2(1 )

2 2
QF Q FpD h b −

− −  0 ≤ F ≤ 1, Q/D ≥ Tmin 

4 
2 2(1 )

2 2
QF Q FpD h b −

− −  0 ≤ F ≤ 1, QF ≥ Imin 
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In all four cases of the PB model, the objective is to find the optimal values of the decision 

variables Q and F that maximize the average profit subject to the constraints. The methodology to 

do this is quite standard and consists of the following four steps: (1) Express the optimal order 

quantity as a function of F, say Q*(F), (2) write an expression for the average profit as a function of 

F only, say P*(F), after having replaced Q by Q*(F), i.e., P*(F) = P(Q*(F), F), (3) maximize P*(F), 

subject to 0 ≤ F ≤ 1, to determine the optimal fill rate F*, and (4) evaluate Q*(F*) to determine the 

optimal order quantity Q*. The implementation of these steps can be found in many textbooks on 

inventory management (e.g. Zipkin, 2000), at least for the classical PB model (case 1). For cases 2-

4, it can be easily carried out in a similar manner, so we omit the details here for space 

considerations. The results for all the cases are summarized in Table 2-2, where P* in the last 

column is the optimal average profit, i.e., P* = P*(F*) = P(Q*(F*), F*) = P(Q*, F*). 

Table 2-2: Optimal decision variables and objective function for the classical PB model and its 

three variations 

# Q*(F) P*(F) F* Q* P* 

1 2 2

2
(1 )

kD
hF b F+ −

 ( )222 1pD kD hF b F⎡ ⎤− + −⎣ ⎦  
b

h b+
2 ( )kD h b

hb
+ 2

( )
kDhbpD
h b

−
+

 

2 Qmin 
2 2

min min (1 )
2 2

Q F Q FpD h b −
− −  

b
h b+

Qmin min

2( )
hbQpD

h b
−

+
 

3 DTmin 
2 2

min min (1 )
2 2

DT F DT FpD h b −
− −

b
h b+

DTmin min

2( )
hbDTpD

h b
−

+
 

4 minI
F

 
2

min min (1 )
2 2

I F I FpD h b
F
−

− −  b
h b+ min

h bI
b
+ ( )( ) minpD b h b b I− + −

 

From column 4 of Table 2-2, we can observe that in all four cases, the optimal fill rate F* is 

a function of the backorder penalty cost coefficient b. More specifically, in cases 1-3, F* is given by 

the familiar fraction b/(h + b), whereas in case 4, it is given by the square route of this fraction. 

From Tables 2-1 and 2-2, it is easy to see that if Qmin = DTmin, cases 2 and 3 are identical to each 

other. This means that there are really only three cases of the PB model to consider; however, we 

purposely leave the results for both cases 2 and 3 in Table 2-2, because in Section 2.3 we will relate 

them to the results of the respective cases of the PD model, which, as we will see then, are not 

identical to each other. From Table 2-2, it is also easy to see that in cases 2-4, the average profit 

P(Q, F) is strictly decreasing in the order quantity Q and that Q is only restricted by a lower limit. 
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For this reason, the optimal order quantity Q* is simply set at this lower limit, as can be seen in 

column 5 of Table 2-2. In cases 2 and 3, this limit is independent of F and is equal to Qmin and 

DTmin, respectively. In case 4, it is given by Imin/F, which becomes Imin/F* once the optimal fill rate 

F* is set. Finally, case 1 is the only case where P(Q, F) is not strictly decreasing in Q, because of 

the extra fixed order cost term, – kD/Q, which is increasing in Q. In this case, the optimal order 

quantity is given by the familiar square root formula in Table 2-2. 

To summarize, in all cases, F* is a function of b. Moreover, in cases 1 and 4, Q* is a function 

of F*, and hence also a function of b. In cases 2 and 3, on the other hand, Q* does not depend on b. 

Given the difficulty in estimating b, a natural question that first comes to mind is how 

crucial is it to know the true value of b? To answer this question, we will investigate the sensitivity 

of the average cost to our error in estimating b for the classical PB model (case 1). Note that this 

investigation is different from examining the sensitivity of the average cost to a change in b, which 

is carried out in Zipkin (2000). To carry out our investigation, suppose that instead of the true 

backorder penalty cost coefficient b, we use a wrong backorder penalty cost coefficient, say b'. It is 

straightforward to show that the ratio of the optimized average cost using the wrong coefficient b' 

over the true optimal average cost using the true coefficient b is equal to 

 
2(1 ) 1 2

(1 ) 2(1 )
α β αβ

β αβ αβ
+ + +
+ +

 (2.1) 

where α is defined as the ratio of the true backorder penalty cost coefficient over the inventory 

holding cost, i.e., α = b/h, and β is defined as the ratio of the wrong backorder penalty cost 

coefficient over the true backorder penalty cost coefficient, i.e., β = b'/b. It can be easily verified 

that when β = 1, the cost ratio given by expression (2.1) is equal to 1, whereas when β ≠ 1, it is 

strictly greater than 1, as is normally expected. A noteworthy observation is that the ratio of the two 

costs given by (2.1) is a function of the unitless coefficients α and β only and does not depend on 

the absolute values of h and b, the demand rate D, or the fixed order cost k. In other words, the 

relative cost of making an error in estimating b depends only on the size of this error, which is given 

by β, and on the ratio of the true backorder penalty cost coefficient over the inventory holding cost, 

which is given by α. To gain more insight on expression (2.1) we evaluated it numerically for 

different values of α and β. The results are shown in Table 2-3. 

The first row of Table 2-3 shows that if β = 0.1, i.e., if we use a wrong backorder penalty 

cost coefficient b' which is ten times smaller than the true coefficient b, the optimized average cost 

using b' is bigger than the optimal average cost (using b) by a factor which ranges from 1.8004, 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 22:13:44 EEST - 18.223.159.57



 

18 

when α = 0.1, to 2.4103, when α = 10. Similarly, the last row of Table 2-3 shows that if β = 10, i.e., 

if we use a wrong coefficient b' which is ten times bigger than the true coefficient b, the optimized 

average cost using b' is bigger than the optimal average cost (using b) by a factor which ranges from 

1.8175, when α = 0.1, to 1.0390, when α = 10. These observations suggest that the average cost is 

not very sensitive to errors in estimating the backorder penalty cost coefficient. This is not too 

surprising, because using the wrong backorder penalty cost coefficient essentially leads to the 

computation of suboptimal values of the decision variables Q and F, and it is a well-known result in 

Inventory Theory that the objective function of the PB model is not very sensitive to the decision 

variables Q and F. 

Table 2-3: Ratio of the optimized average cost using b' over the true optimal average cost using b, 

for different values of α and β 

α
β 0,1 0,5 1 2 10

0,1 1,80 2,00 2,17 2,38 2,41
0,5 1,07 1,08 1,09 1,08 1,04
1 1,00 1,00 1,00 1,00 1,00
2 1,07 1,07 1,06 1,04 1,01
10 1,82 1,46 1,29 1,17 1,04  

 

A less obvious observation from the results of Table 2-3 is that the cost ratio increases with 

α, if β = 0.1, whereas it decreases with α, if β = 10. This suggests that underestimating b, if b is 

already much smaller than h, is not as bad as underestimating b, if b is much larger than h. 

Similarly, overestimating b, if b is already much larger than h, is not as bad as overestimating b, if b 

is much smaller than h. This distinction is important to note in light of the fact that in most practical 

situations, backorders are deemed by managers to be much more expensive than inventories, i.e., b 

is judged to be much larger than h. An exception of this is in industries where there is rapid spoilage 

or obsolescence of inventories. 

2.2 The PD Model  

The sensitivity analysis in the previous section showed that in the classical PB model, the average 

cost is fairly robust to errors in estimating b. This is somewhat of a relief, because it means that not 
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picking the right value for b is not so catastrophic; however, it still does not answer the question, 

what could b be? 

The difficulty in estimating b lies in the fact that b is supposed to reflect the intangible effect 

of the loss of customer goodwill following a stockout. As Schwartz (1966) noted, however, the 

effect of the loss of goodwill should not be a penalty cost of the type considered in the PB model. 

This is because the backorder penalty cost term in the objective function in all the cases of the PB 

model in Table 2-1 is subtracted as though the firm incurs an expense at the time of the stockout. 

Yet, the effect of the loss of customer goodwill is incurred not at the time of the stockout incident, 

but at a later time, due to the customer’s decision to alter his future demand. With this in mind, 

Schwartz (1966) modified the PB model by eliminating the explicit backorder penalty cost term 

from the objective function and by assuming that the long-run demand rate – and hence the long-run 

average reward – is an increasing function of the fill rate. Schwartz called the resulting model a 

“perturbed demand” model. As was mentioned in Section 2.1, in this chapter, we will refer to 

Schwartz’s model as the “PD” model. More specifically, Schwartz proposed the following long-run 

demand rate function in his PD model: 

 
( )

( )
1 1

AD F
F B

′ ′ =
′+ −

 (2.2) 

where F' is the long-run average fill rate, and parameters A and B are defined as follows: 

A = maximum potential demand rate corresponding to a fill rate equal to one; 

B = reflects the long-run average amount that the customer does not buy because of his 

disappointment due to stockouts. 

Note that we used the symbols “F'” and “D'(·)” to represent the fill rate and the demand rate 

in the PD model, in order to distinguish these variables from the respective variables in the PB 

model. In fact, in this chapter, as a rule, we will use the symbol “prime” for those variables and 

functions in the PD model that also appear in the PB model, to make the distinction between the 

two models clear. Note that the perturbed demand rate D'(F') given by (2.2) is constant, since it 

refers to a constant long-run, average fill rate F'. 

To better see how parameter B affects D'(F'), we evaluated the ratio of the demand rate 

when the fill rate is F' over the maximum demand A, versus F', for different values of B, and we 

plotted the results in Figure 2-2. From Figure 2-2, we can see that when B = 0, the demand rate 

remains constant as the fill rate F' drops from 1 to 0. When B = 1, the demand rate drops to half of 
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its maximum value as F' drops from 1 to 0. When B = 9, the demand rate drops to only 1/10 of its 

maximum value as F' drops from 1 to 0. 

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

F'

D' (F' )/A

B = 0
B = 0.5
B = 1
B = 2
B = 9

 
Figure 2-2: D'(F')/A vs. F' for different values of B  

 

The PD model proposed by Schwartz (1966) replaces the impracticable task of estimating b 

in the PB model, with the more feasible task of estimating parameters A and B of the perturbed 

demand rate function D'(F') given by (2.2). Schwartz (1966) also proposed a procedure for 

measuring parameters A and B from observed demand data. 

In a follow-up paper, Schwartz (1970) continued his investigation of the PD model by 

formulating three variations of this model that correspond to the three variations of the PB model 

discussed in the previous section. In fact, he also considered the same variations with lost sales 

instead of order backlogging, but we will not discuss these variations in this chapter for space 

considerations. If to the three variations with backlogging we add another variation which 

corresponds to the classical PB model and call this the “classical” PD model, then we have a total of 

four cases of the PD model which correspond to the four cases of the PB model discussed in Section 

2.1. Table 2-4 shows the average profit function, denoted by the P'(Q', F'), and the constraints for 

these four cases, where Q' and F' are the decision variables. 

In the three variations of the PD model that Schwartz (1970) considered, i.e., cases 2-4 of 

Table 2-4, he merely stated in 7-8 lines the first-order condition for the optimal quantity of unfilled 

demand which he denoted by L, i.e., in Schwartz’s model L = Q'(1 – F'). However, in none of these 

cases, except case 2, did he solve this condition or provide any further analysis, discussion, or 

insights. In other words, Schwartz formulated the models for cases 3 and 4 but did not solve them. 

In case 2, Schwartz stated the first-order condition – a cubic equation – for the optimal value of L 

and then followed it with some observations obtained from a “simple graphical analysis” to describe 
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the roots of the optimality condition. However, the “simple graphical analysis” that Schwartz 

invoked to describe the roots of the optimality condition is hardly a proof and in fact does not cover 

the entire range of the model parameters. Also, Schwartz’s subsequent proposal to “solve the cubic 

[condition] numerically” to determine the optimal L does not provide any analytical results and 

insights about the solution. 

Table 2-4: Objective function and constraints for the classical PD model and its three variations 

# P'(Q', F') Constraints 

1 
2( )( )

2
D F Q FpD F k h

Q
′ ′ ′ ′

′ ′ − −
′

0 ≤ F' ≤ 1, Q' ≥ 0 

2 
2

( )
2

Q FpD F h
′ ′

′ ′ −  0 ≤ F' ≤ 1, Q' ≥ Qmin 

3 
2

( )
2

Q FpD F h
′ ′

′ ′ −  0 ≤ F' ≤ 1, Q'/D'(F') ≥ Tmin 

4 
2

( )
2

Q FpD F h
′ ′

′ ′ −  0 ≤ F' ≤ 1, Q'F' ≥ Imin 

 

In this chapter, we analytically solve the underlying optimization problems corresponding to 

the four cases of the PD model, and for each case we produce precise expressions and conditions for 

the optimal decision variables. The methodology to do this is quite standard and consists of the 

same four steps for solving the four cases of the PB model, outlined in Section 2.1. However, 

implementing this methodology on the PD model is much more complicated than implementing it 

on the PB model, because the perturbed demand rate function D'(F') given by (2.2) complicates the 

average profit function P'(Q', F') shown in column 2 of Table 2-4. The details of this 

implementation can be found in the Appendix of this chapter. The results of the implementation of 

the first two steps of the methodology are summarized in Table 2-5, whereas the results of the 

implementation of the last two steps are summarized in Table 2-6, where 2F ′  is the smallest real 

root of  

 
[ ] min21 (1 )

pAB hQ F
F B

′−
′+ −

 (2.3) 

and  

 ( )2

3 2 2 2
min

11 21
B pF

B B h T
+

′ = + − −  (2.4) 
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Table 2-5: Optimal order quantity and average profit as a function of F' for the classical PD model 

and its three variations 

# Q'*(F') P'*(F') 

1 [ ]2

2
1 (1 )

kA
hF F B′ ′+ −

2
1 (1 ) 1 (1 )

pA khAF
F B F B

′−
′ ′+ − + −

 

2 Qmin ( )
2

min

1 1 2
Q FpA h

F B
′

−
′+ −

 

3 ( )
min

1 1
AT

F B′+ −
 

( ) ( )
2

min .
1 1 2 1 1

hAT FpA
F B F B

′
−

′ ′+ − + −⎡ ⎤⎣ ⎦
 

4 minI
F ′

 ( )
min

1 1 2
I FpA h

F B
′

−
′+ −

 

 

Table 2-6: Optimal decision variables for the classical PD model and its three variations and 

inferred backorder penalty cost coefficient and resulting optimal order quantity for the respective 

PB models 

 PD Model PB Model 
#  F'* Q'* Condition b Q* 

0 ∞ /(1 ) 2p AB B hk+ <  0 ∞ 

1 2kA
h

 /(1 ) 2p AB B hk+ >  ∞ 2kD
h

 1 

0, 1 ∞, 2kA
h

 /(1 ) 2p AB B hk+ =  0, ∞ ∞, 2kD
h

2F ′  
min

min
*

min 2 min

 or
, 0.5 or
, 0.5,  ( ) / 2

pAB hQ
pAB hQ B
pAB hQ B P F pA hQ

<
= >

′ ′> > > −

2

21
Fh

F
′
′−
 

1 min
*

min 2 min

,   0.5 or
,   0.5, ( ) / 2

pAB hQ B
pAB hQ B P F pA hQ

≥ ≤
′ ′> > < −

∞ 
2 

2F ′ , 1 

Qmin 

*
min 2 min, 0.5, ( ) / 2pAB hQ B P F pA hQ′ ′> > = − 2

21
Fh

F
′
′−
 ∞ 

Qmin 

3F ′  ( )
min

31 1
AT

F B′+ − min2 /(2 )pB B hT+ <  3

31
Fh

F
′
′−
 

3 
1 ATmin min2 /(2 )pB B hT+ ≥  ∞ 

DTmin 

0 ∞ min2 /(1 )pAB B hI+ <  0 ∞ 
1 Imin min2 /(1 )pAB B hI+ >  ∞ Imin 4 

0, 1 ∞, Imin min2 /(1 )pAB B hI+ =  0, ∞ ∞, Imin 
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Columns 2-4 of Table 2-6 show the optimal decision variables and the conditions under 

which they hold, for the four cases of the PD model. The last two columns of Table 2-6 show the 

inferred backorder penalty cost coefficient b and the resulting optimal order quantity Q* in the 

respective cases of the PB model. These two columns were inserted in Table 2-6 for space 

considerations, but they will be discussed in Section 2.3, where they belong. 

From the results shown in columns 2-4 of Table 2-6, we can observe that cases 1 and 4 of 

the PD model are somewhat similar to each other, and so are cases 2 and 3. This was also true for 

the respective cases of the PB model, discussed in Section 2.1. 

The most striking similarity between cases 1 and 4 of the PD model is that in both cases the 

optimal fill rate F′* is always either zero or one. This means that in these two cases, it is always 

optimal either to only hold inventory and not allow any backorders (F′*= 1), thus maximizing the 

long-run demand, or to only allow backorders and not hold any inventory (F′*= 0), thus minimizing 

the long-run demand. Holding inventory and allowing backorders is never optimal. This result was 

not obvious a priori. In fact, in the respective PB models discussed in Section 2.1, we would have 

hardly thought that such a result might hold. Still, this result is not irrational. We know from 

experience that there are some companies that do not tolerate any backorders, while other 

companies operate in a pure make-to-order mode. The reason that F′* is always either zero or one in 

cases 1 and 4 of the PD model is that the average profit function P'*(F') for these two cases, shown 

in the last column of Table 2-5, is always maximized at one or both of the end points of the interval 

of permissible values of F', [0, 1], as is shown in the Appendix of this chapter. 

On the other hand, in both cases 2 and 3 the optimal fill rate F′* is always either one or equal 

to a quantity which is less than one but strictly greater than zero, even if the inventory holding cost 

rate h is extremely large, as long as it is not infinite. This quantity is denoted by 2F ′  and 3F ′ , for 

cases 2 and 3, respectively, and depends on the model parameters; therefore, it can assume a 

continuum of values, depending on these parameters. This means that in these two cases, it is 

always optimal either to only hold inventory and not allow any backorders (F′*= 1), or to allow 

backorders for some time and hold inventory for the rest of the time (0 < F′* < 1). The reason that 

F′* can never be zero in cases 2 and 3 of the PD model is that in these two cases, the first derivative 

of the average profit P'*(F') shown in Table 2-5 is always positive at F' = 0, as is shown in the 

Appendix of this chapter. This implies that it is always preferable to keep some inventory – as low 

as it may be – than not to keep any inventory at all. 
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The only interpretation that we can give about why in cases 1 and 4, F′* is zero whereas in 

cases 2 and 3 it assumes a continuum of finite values is the following. In cases 1 and 4, F′* can be 

zero, because Q'* can go to infinity, and when Q'* goes to infinity, F′* must be zero, as we will 

explain latter. In cases 2 and 3, on the other hand, Q'* can not go to infinity, and therefore F′* does 

not have to be zero (in fact, as we mentioned in the previous paragraph, it can not be zero, because 

the first derivative of the average profit P'*(F') is always positive at F' = 0) but instead assumes a 

continuum of finite values. We should note, however, that if, in cases 1 and 4, we impose a finite 

upper limit, say Qmax, on the order quantity, then it can be shown that F′* can not be zero but instead 

assumes a continuum of positive values, just like in cases 2 and 3. At the same time, if the 

minimum order quantity Qmin in case 2, or the minimum interorder time Tmin in case 3, tends to 

infinity, then Q'* will also tend to infinity, as we will explain latter, and therefore F′* will tend to 

zero, just like in cases 1 and 4. 

For the cases where F′* is always zero or one, i.e., cases 1 and 4, the decisive condition of 

whether to only hold inventory (F′* = 1) or only allow backorders (F′* = 0) is 

/(1 ) 2p AB B hk+ < , in case 1, and 2pAB/(1 + B) < hImin, in case 4. From these conditions, we 

can see that in both cases, increasing the reward related parameters p, A, or B, tends to favor the 

solution F'* = 1, i.e., only hold inventory. On the other hand, increasing the cost related parameters 

h or k, in case 1, and similarly increasing h or Imin, in case 4, tends to favor the solution F'* = 0, i.e., 

only allow backorders. 

In case 1, the parameter that affects mostly the decisive condition is the price margin p, 

because it appears linearly in this condition, whereas parameters h, k and A are in a square root, and 

parameter B appears in a term that ranges between zero and one. In case 4, on the other hand, 

parameters p, A, h, and Imin affect equally strongly the decisive condition, because they appear 

linearly in this condition. In contrast, the effect of parameter B is weaker, because B appears in a 

term that ranges between zero and one. To better understand this point, think of an instance where 

the left-hand side (lhs) of the decisive condition of case 1 is slightly greater than half of the right-

hand side (rhs). Then, from the results in Table 2-6, F'* = 0, i.e., the firm should operate in a pure 

make-to-order mode. Suppose that the firm can double the price margin p without affecting the 

demand rate. Then, the lhs of the decisive condition will become slightly larger than the rhs. Again, 

from the results in Table 2-6, this means that F'* = 1, i.e., the firm should switch its operation from 

a pure make-to-order to a pure make-to-stock mode. If the firm did not have the option of changing 

the price margin p, however, then in order to achieve the switch from make-to-order to make-to-
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stock, which could be achieved by doubling p, it would have to quadruple the maximum demand 

rate A. The reason for which in case 1 the decisive condition is more sensitive to p than to the other 

parameters is that p appears linearly in the objective function P'*(F'), whereas the other parameters 

appear in a square root (see column 3 of Table 2-5). 

From columns 2 and 3 in Table 2-6, we can observe that in all cases, if F'* = 1, then Q'* is 

finite. If F'* = 0, however, which is true only in cases 1 and 4, then Q'* = ∞. The reason for this is 

slightly different in each case. More specifically, in both cases, the appropriate decisive condition 

determines whether F'* = 1 or F'* = 0. The tradeoff at stake, favoring one or the other solution, is 

between incurring high inventory costs (and, in case 1, high ordering costs as well) on one hand, 

and losing long-term demand and therefore revenue, on the other hand. If the model parameters in 

the decisive condition dictate the solution F'* = 0, then it is optimal for the firm to operate strictly 

with backorders and no inventory. Since backorders incur no direct cost, the firm can have as many 

of them as it pleases for free. This much is true for both cases 1 and 4. The difference about why Q'* 

= ∞, between the two cases, is that in case 1, given that every time the firm orders a quantity Q', it 

pays an order cost k, then why not have Q' be infinite to avoid paying the order cost? Hence, Q'* = 

∞. In case 4, on the other hand, if F'* = 0, then Q'* must be infinite, not to avoid paying the order 

cost, since there is not any, but because otherwise, the minimum-inventory constraint Q'F' ≥ Imin 

will be violated. Of course, in real life, the order quantity can not be infinite. This can be handled in 

the model by assuming that the order quantity has an upper limit, say Qmax, which is large enough 

so that Qmax ≥ 2 /kA h , in case 1, and Qmax ≥ Imin, in case 4, and then resolving the optimization 

problem with the additional constraint Q' ≤ Qmax to obtain F'*. As was mentioned earlier, it can be 

shown that if we impose such a limit, F'* can not be zero but instead assumes a continuum of 

positive values, just like in cases 2 and 3. 

For the cases where F′* is always either one or between zero and one, i.e., cases 2 and 3, the 

decisive condition of whether to only hold inventory (F′* = 1) or allow backorders for some time 

and hold inventory for the rest of the time (0 < F′* < 0) is as follows. In case 2, the decisive 

condition is complicated and can be analyzed into three levels of subconditions. These 

subconditions are pAB < hQmin, at the first level, B > 0.5, at the second level, and P'*( 2F ′ ) > pA – 

hQmin/2, at the third level. More specifically, if pAB < hQmin, then the inventory holding cost is high 

enough compared to the loss of revenue caused by a drop in long-term demand, so that the firm can 

afford to allow some backorders, no matter how small B is, as long as it is not zero; hence F'* < 1. If 
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pAB ≥ hQmin, however, then the inventory holding cost may not be high enough compared to the 

loss of revenue caused by a drop in long-term demand to always allow some backorders. In this 

case, whether to allow some backorders or not depends on the value of B. Namely, if B ≤ 0.5, the 

revenue term in P'*(F') always increases faster than the inventory cost term, as F' increases from 0 

to 1, and therefore, F'* = 1, i.e., no backorders are allowed (see Appendix of this chapter). If B > 

0.5, on the other hand, the revenue term in P'*(F') increases faster than the inventory cost term, as F' 

increases from 0 to the smallest root of the derivative of P'*(F'), 2F ′ , then the reverse is true as F' 

increases from 2F ′  to the second smallest root, and finally the revenue term increases faster than the 

inventory cost term again, as F' increases from the second smallest root to 1. In this case, the 

optimal fill rate depends on whether P'*( 2F ′ ) or P'*(1) is larger. 

From the first subcondition of case 2, pAB < hQmin, we can see that increasing parameters p, 

A, or B, tends to favor the solution F'* = 1, i.e., hold inventory and do not allow any backorders, 

whereas increasing h or Qmin tends to favor the solution F'* = 2F ′  < 1, i.e., hold inventory but also 

allow some backorders. We can also see that all five parameters affect the first decisive condition 

equally strongly, because they all appear linearly in this condition. Finally, increasing the minimum 

order quantity Qmin, decreases the smallest real root of expression (2.3) and hence 2F ′ . In fact, as 

Qmin tends to infinity, 2F ′  tends to zero. This is because, as Qmin tends to infinity, the firm is obliged 

to order a quantity that tends to infinity. If it keeps this quantity in stock, its inventory holding cost 

will also tend to infinity. To avoid this, it is preferable for the firm to backorder this quantity and 

pay the price of a reduced long-run demand rate, which is certainly finite. 

In case 3, the decisive condition of whether to only hold inventory or allow backorders for 

some time and hold inventory for the rest of the time is 2pB/(2 + B) < hTmin. From this condition, 

we can see that, similarly to case 2, increasing parameters p or B, tends to favor the solution F'* = 1, 

whereas increasing h or Tmin tends to favor the solution F'* = 3F ′  < 1. Moreover, parameters p, h, 

and Tmin affect equally strongly the decisive condition, because they appear linearly in this 

condition, whereas the effect of parameter B is weaker, because B appears in a term that ranges 

between zero and one. Unlike, case 2, and for this matter cases 1 and 4 as well, in case 3, the 

maximum potential demand rate A is missing from the decisive condition as well as from the 

expression for 3F ′  given by (2.4). This is because A appears linearly in all the terms of the average 

profit P'*(F') shown in column 3 of Table 2-5 and in the Appendix of this chapter; therefore, all A 

does is simply multiply P'*(F') and its derivative by a constant without really affecting their roots. 
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Finally, it can be seen from (2.4) that increasing the minimum interorder time Tmin, decreases 3F ′ . In 

fact, as Tmin tends to infinity, 3F ′ tends to zero, essentially for the same reason that 2F ′  tends to zero, 

as Qmin tends to infinity, explained in the preceding paragraph. 

Finally, recall from our discussion in Section 2.1, that cases 2 and 3 of the PB model are 

identical to each other, if Qmin = DTmin. This is no longer true for cases 2 and 3 of the PD model, 

because the demand rate is not a constant, as was the case in the PB model, but a function of the fill 

rate F′. 

2.3 Inferring b in the PB Model from the PD Model  

In the last sentence of his conclusions, Schwartz (1970) wrote, “The Perturbed Demand approach to 

goodwill stockout penalties is both substantially more valid and more practical than any previously 

considered in the literature of inventory theory.” We agree with Schwartz that the PD approach to 

goodwill stockout penalties is more valid than the classical inventory theory approach, for two 

reasons. The first reason is the already stated difficulty in picking a good – let alone the best – value 

for the backorder (or stockout) coefficient or the customer service level in the classical approach. 

The second reason is that the classical approach has the following paradox embedded in it. It 

supposes that there is a backorder penalty cost which reflects the future loss of demand due to the 

loss of customer goodwill following stockouts, and yet it assumes that the demand is stationary. 

While we find that the PD approach to goodwill stockout penalties is more valid than the 

classical inventory theory approach, we are not sure if it is more practical than the classical 

approach. If it were more practical, it would be widely known and used by researchers and 

practitioners, even though researchers and practitioners do not always have the same perception of 

what “practical” is. Thus, while the PD approach introduced by Schwartz (1966, 1970) spawned 

several follow-up papers, to date, the classical inventory theory approach still predominates in the 

vast majority of the inventory management research literature and textbooks. The classical approach 

remains more popular, not only because of tradition, but also because it is more convenient to use 

by managers, as it assigns a direct backorder/stockout cost, instead of the indirect costs implied by 

its PD counterpart. It is easier, quicker, and more familiar for a manager to think, “I want a 

customer service level of 90%,” or equivalently “It costs me nine times more to allow backorders 

than to hold inventory” than to think in terms of the indirect stockout costs implied by the PD 

approach. In addition, most ERP systems and other decision support tools used in practice rely on 
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the input of user-defined customer service levels. How a manager picks the appropriate customer 

service level or the equivalent backorder cost for an item, however, remains obscure. If OM 

researchers are to continue teaching the classical inventory theory approach to students and 

advertising it to practitioners, they must continue seeking a credible answer to the question, what 

could the backorder penalty cost coefficient b be? At the same time, they must address the paradox 

of the classical approach mentioned above. 

With this in mind, in this section, we propose a scheme for inferring the value of b in the PB 

model which is based on connecting the PB model to Schwarz’s PD model. The connection 

between the two models is accomplished by asking the question, what should b be in the PB model 

to make the optimal decision variables Q* and F* in this model identical to the optimal decision 

variables Q'* and F'* in the PD model, for given parameters A and B and the same reward and cost 

parameters p, k, and h, as those used in the PB model? 

The sought after inferred value of b in the PB model should not be regarded as an 

instantaneous, explicit expense that the firm incurs at the time of a stockout. Rather, it should be 

thought of as an artificial, implicit backorder penalty cost coefficient that the firm should use in 

order to maximize its long-run average profit. To elaborate more on this line of thought, the average 

demand rate D in the PB model should not be regarded as a constant, long-run average demand rate, 

but as an average demand rate which is constant only in the short run. This is because as time 

passes, no matter what the initial value of D is, the average demand rate will drift towards D'(F), 

assuming that the fill rate F is kept constant, so that in the long run, its average value will be equal 

to D'(F). This further means that the average profit in the PB model given in column 2 of Table 2-1 

should be regarded as a short-run rather than as a long-run average profit. By using the optimal 

decision variables Q* and F* in the PB model, the firm is therefore maximizing its “artificial” short-

run average profit which is given in column 2 of Table 2-1. At the same time, however, it is also 

shaping its true long-run average profit which is given in column 2 of Table 2-4, because the fill 

rate F* that it is using determines the long-run average demand rate through equation (2.2). We used 

the adjective “artificial” to describe the average profit given in column 2 of Table 2-1 in the PB 

model, because this profit depends on b, which as we mentioned earlier, should be thought as an 

artificially-set parameter. To complete our reasoning, if the optimal decision variables Q* and F* in 

the PB model are identical to the optimal decision variables Q'* and F'* in the PD model, then 

besides maximizing its artificial short-run average profit, the firm is actually also maximizing its 

true long-run average profit. In order for the optimal decision parameters to be the same in the two 
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models, the firm must use the inferred value of b in the PB model. If it makes an error and uses a 

different value of b, then its long-run average profit will fall short of its potential maximum value. 

With the above discussion in mind, we can see that in order for the optimal fill rate F* in the 

PB model, which given in column 2 of Table 2-2, to be equal to the optimal fill rate F'* in the PD 

model, which is given in column 2 of Table 2-6, b must satisfy 

 
*

*1
Fb h

F
′

=
′−

,   in cases 1-3 (2.5) 

 
*2

*21
Fb h

F
′

=
′−

,   in case 4 (2.6) 

The above expressions give the inferred value of b in the PB model. These expressions 

imply that if F'* = 0, then the inferred value of b in the respective cases of the PB model is zero. 

They also imply that if F'* = 1, then the inferred value of b in the respective cases of the PB model 

is infinite. Finally, if F'* is anywhere between zero and one, then the inferred value of b in the 

respective case of the PB model is finite. The exact inferred value of b for all the cases of the PB 

model is shown in the second to last column of Table 2-6. From that column, it can be seen that in 

cases 1 and 4, the inferred value of b is either zero or infinity, because in these cases F'* is always 

equal to zero or one, as was shown in the previous section. In cases 2 and 3, on the other hand, the 

inferred value of b is either a finite number or infinity, because in these cases F'* is always either 

between zero and one, or equal to one, as was also shown in the previous section. Since, in the cases 

where F'* is between zero and one, F'* assumes a continuum of values, depending one the model 

parameters, as was mentioned in the previous section, the respective inferred value of b also 

assumes a continuum of values, in these cases. 

From column 3 of Table 2-6, it can be seen that in the subcase of case 1 of the PD model, where 

/(1 ) 2p AB B hk+ ≥ , as well as in case 3, the optimal order quantity Q'* is a function of D'(F*). 

From the last column of the same table, it can also be seen that in the respective cases of the PB 

model, if we use the inferred value of b, shown in the second to last column of Table 2-6, then the 

resulting optimal order quantity Q* is given by the same function, but with D'(F'*) in the place of D. 

At first, this seems to suggest that in these cases, the inferred value of b, which by definition 

guarantees that F* = F'*, does not guarantee that Q* = Q'*. This further suggests that in these cases, 

there exist no two models – a PB and a respective PD model – with the same optimal decision 

parameters. This is true in the short run. However, as was mentioned earlier in this section, if the 

firm uses the optimal parameters F* = F'* and Q* in the PB model, then as time passes, no matter 
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what the initial value of D is, the average demand rate will drift towards D'(F*) which is equal to 

D'(F'*), assuming that the fill rate F* is kept constant and equal to F'*, so that in the long run, its 

average value will be equal to D'(F'*). Therefore, in the long run, the optimal order quantity Q* in 

the PB model will be equal to the optimal order quantity in the respective PD model. 

2.4 Numerical Example  

To illustrate the analytical results presented in the previous sections, consider an instance of the 

classical PB model (case 1) with parameters p = 3, k = 200, h = 1, and D = 100. Consider also the 

respective classical PD model (case 1) with parameters A = 144 and B = 2, and the same parameters 

p, k, and h as these in the PB model. From equation (2.2), the maximum and minimum long-run 

average demand rates in the PD model are D'(1) = 144/1 = 144 and D'(0) = 144/(1 + 2) = 48. This 

means that the demand rate drops to 1/3 of its maximum value, A, as F' drops from 1 to 0. From 

column 2 of Table 2-6, the optimal fill rate in the PD model is F'* = 1, since 

/( 1) 3 144 2 /(1 2) 24p AB B + = ⋅ ⋅ + =  is larger than 2 2 1 200 20hk = ⋅ ⋅ = . Moreover, from 

column 3 of the same table, the optimal order quantity in the PD model is equal to 
* 2 200 144 /1 240.Q′ = ⋅ ⋅ =  In order for the optimal fill rate of the PB model, F*, to be equal to F'*, 

then, from the second to last column of Table 2-6, the inferred backorder penalty cost coefficient in 

the PB model must be equal to b = ∞. The last column of Table 2-6 then implies that the optimal 

order quantity in the classical PB model (case 1) is equal to * 2 200 100 /1 200.Q = ⋅ ⋅ =  Clearly, the 

optimal order quantities in the two models are not the same. However, if the firm uses the optimal 

decision variables F* = 1 and * 2Q kD h=  in the PB model, the average demand rate D will drift 

from 100 towards D'(1) = 144, so that in the long run, the optimal order quantities in the two models 

will be equal to each other. 

Now, suppose that there is a minimum order quantity Qmin = 1000, instead of the fixed order 

cost. Then, from our analysis in Sections 2.1 and 2.2, the optimal order quantities in the PB model 

and the respective PD model with minimum order quantity (case 2) are both equal to Qmin = 1000. 

From column 2 of Table 2-6, the optimal fill rate in the PD model with minimum order quantity is 

F'* = 2F ′ , since pAB = 3⋅144⋅2 = 864 is less than hQmin = 1⋅1000 = 1000. 2F ′  is numerically found to 

be equal to 0.112141. In order for the optimal fill rate of the PB model, F*, to be equal to F'*, then, 

from the second to last column of Table 2-6, the inferred backorder penalty cost coefficient in the 
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PB model must be equal to b = 0.112141/(1 – 0.112141) = 0.126304. Now, suppose that the 

minimum order quantity drops to Qmin = 600. Then, from column 2 of Table 2-6, the optimal fill 

rate in the PD model with minimum order quantity is still F'* = 2F ′ , because pAB = 3⋅144⋅2 = 864 is 

greater than hQmin = 1⋅600 = 600, B = 2 is greater than 0.5, and P'*( 2F ′ ), which is equal to 154.23, is 

greater than pA – hQmin/2 = 3⋅144 - 1⋅600/2 = 132, where 2F ′  is numerically found to be equal to 

0.219584. If the minimum order quantity drops further to Qmin = 550, however, then from column 2 

of Table 2-6, the optimal fill rate in the PD model with minimum order quantity jumps to F'* = 1, 

because now pAB = 3⋅144⋅2 = 864 is still greater than hQmin = 1⋅550 = 550, B = 2 is still greater than 

0.5, but P'*( 2F ′ ), which is equal to 155.613, is less than pA – hQmin/2 = 3⋅144 – 1⋅550/2 = 157, 

where 2F ′  is numerically found to be equal to 0.252255. 

Next, suppose that instead of the minimum order quantity, there is a minimum interorder 

time Tmin = 4. Then, from column 2 of Table 2-6, the optimal fill rate in the PD model with 

minimum interorder time (case 3) is F'* = 3F ′ , since 2pB/(2 + B) = 3⋅2⋅2/(2 + 2) = 3 is less than 

hTmin = 1⋅4 = 4. From (2.4), 3F ′  is equal to 0.633975. In order for the optimal fill rate of the PB 

model, F*, to be equal to F'*, then, from the second to last column of Table 2-6, the inferred 

backorder penalty cost coefficient in the PB model must be equal to b = 0.633975/(1 – 0.633975) = 

1.73205. As was mentioned in Section 2.3, in the short run, the optimal order quantity in the PB 

model with minimum interorder quantity Q*, which is equal to DTmin = 100⋅4 = 400, is different 

from the optimal order quantity in the corresponding PD model, Q'*, which is equal to D(F'*)Tmin = 

144⋅4/[1 + (1 – 0.633975)⋅2] = 332.554. However, if the firm uses the optimal decision variables F* 

= b/(h + b), where b is given by (2.5), and Q* = DTmin, in the PB model, the average demand rate D 

will drift towards D'(F'*), and hence the optimal order quantity will drift towards D(F'*)Tmin. 

Therefore, in the long run, the optimal order quantity in the PB model will be equal to the optimal 

order quantity in the PD model. Now suppose that the minimum interorder time drops to Tmin = 2. 

Then, from column 2 of Table 2-6, the optimal fill rate in the PD model with minimum interorder 

time is F'* = 1, because 2pB/(2 + B) = 3⋅2⋅2/(2 + 2) = 3 is greater than hTmin = 1⋅2 = 2. 

Finally, suppose that instead of the minimum interorder time, there is a minimum starting 

inventory Imin = 500. Then, from column 2 of Table 2-6, the optimal fill rate in the PD model with 

minimum starting inventory (case 4) is F'* = 1, since 2pAB/(1 + B) = 3⋅2⋅144⋅2/(1 + 2) = 576 is 

greater than hImin = 1⋅500 = 500. In order for the optimal fill rate of the PB model minimum starting 
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inventory, F*, to be equal to F'*, then, from (2.6), the inferred backorder penalty cost coefficient in 

the PB model must be equal to b = ∞. Moreover, from Table 2-6, the optimal order quantities in the 

PB model and the PD with minimum order quantity are both equal to Imin = 500. 

2.5 Conclusions  

The work in this chapter was motivated by our desire to find a credible answer to the question, what 

could the backorder penalty cost coefficient b be? To this end, we proposed to infer the value of b 

for the PB model by connecting b to the loss in the long-run average demand rate which is affected 

by backorders according to Schwartz’s PD model. We applied this procedure to the classical PB 

model and three variations of it in which we replaced the explicit fixed order cost with a constraint 

on the order quantity, the interorder time, and the starting inventory in each cycle, respectively. We 

found that for the classical PB model and the variation of the PB model with the minimum starting 

inventory in each cycle, the optimal fill rate is always either one or zero, which implies that the 

inferred backorder penalty cost is either infinite or zero, respectively. In the former case, the 

optimal order quantity is finite, whereas in the latter case it is infinite. For the other two variations, 

the optimal fill rate is always either one or a finite number between zero and one, which implies that 

the inferred backorder penalty cost is either infinite or a positive finite number which depends on 

the model parameters, respectively. In both cases, the optimal order quantity is finite. 

Future research could be directed toward repeating this procedure for other PD models, for 

example models that assume that the long-run average demand rate is either a different function of 

the long-run average fill rate than the one given by equation (2.2), or a function of some other 

customer service related performance measure, such as the long-run average backorder waiting time 

or number of backorders.  

Some such functions have been proposed in the literature. For example, Ernst and Cohen 

(1992) proposed a perturbed demand rate which is a linear function of the fill rate. Using our 

notation, their function can be written as 

 ( )( ) 1 1D F A B F′ ′ ′= ⎡ − − ⎤⎣ ⎦  

where A is the maximum potential demand rate corresponding to a fill rate equal to one and B is a 

percentage. 

Zipkin (2000) (problem 3.11, p. 69) proposed the perturbed demand rate function 
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[ ]

( )
( )
aD W

pf W β
′ ′ =

′
 

where W′ is the average waiting time, α and β are positive constants with β > 1, and f(·) is an 

increasing function with f(0) = 1. Given that the average waiting time can be expressed as a 

function of Q′ and F′ as well as the demand rate itself, namely 

 ( )21
2 ( )

Q F
W

D W
′ ′−

′ =
′ ′

 

if we substitute W′ from the equation above into D′(W′), we can see that the perturbed demand rate 

is a rather complicated function of Q′ and F′ satisfying 

 
( )2

( , )
( 1 2 ( , ))

aD Q F
pf Q F D Q F

β
′ ′ ′ =

⎡ ⎤′ ′ ′ ′ ′−⎣ ⎦

 

A less complicated alternative would be to replace the average waiting time W′ with the 

average number of backorders, say R′, in Zipkin’s perturbed demand rate function, i.e., assume that 

 
[ ]

( )
( )
aD R

pf R β
′ ′ =

′
 

Given that the average number of backorders R′ can be expressed as a function of Q′ and F′ as 

follows, 

 ( )21
2

Q F
R

′ ′−
′ =  

then D′(R′) can be rewritten as a function of Q′ and F′ as follows: 

 
( )2

( , )
( 1 2)

aD Q F
pf Q F

β
′ ′ ′ =

⎡ ⎤′ ′−⎣ ⎦

 

In all the models above, the parameters of the perturbed demand function have to be 

estimated. As was mentioned in Section 2.2, Schwartz (1966) proposed a procedure for measuring 

parameters A and B in his model from observed demand data. In general, this is not an easy task; 

however, it is a better defined task that picking a value for b. Of course, a broader question is, 

which perturbed demand model is correct? To answer this question, one would have to try different 

models and use statistical analysis of real demand data to identify the most appropriate model. 

Finally, two other worthwhile directions for future research following this work would be to include 

direct backorder costs besides the indirect loss-of-customer-goodwill costs, to examine models with 

lost sales instead of order backlogging, and to extend this analysis to stochastic inventory models.  
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Appendix 

To solve the four optimization (maximization) problems corresponding to the four cases of the PD 

model shown in Table 2-4 of Section 2.2, we need to solve the first-order and, if necessary, the 

second-order optimality conditions, and consider the possibility of obtaining a maximum at the end 

points of the constraints. To solve the optimality conditions, we use Descartes’s rule of signs. This 

rule, which was first published by Renée Descartes in 1637, states that if the terms of a polynomial 

f(x) are written in a customary fashion – that is with the terms given in decreasing order of the 

exponent of x – then the number of positive real roots of the polynomial is either equal to the 

number of sign changes in the coefficients of successive terms of f(x) or is less than that number by 

an even number (until 1 or 0 is reached). If any coefficients are zero, they are simply ignored. 

Similarly, the number of negative real roots of the polynomial is either equal to the number of sign 

changes in the coefficients of successive terms of f(–x) or is less than that number by an even 

number (until 1 or 0 is reached) (e.g., see Young and Gregory, 1973). 

Solution of the classical PD model (case 1 of Table 2-4) 

For the classical PD model, in order to find the optimal order quantity as a function of F', Q'*(F'), 

we set the first partial derivative of P'(Q', F') with respect to Q' equal to zero and solve the resulting 

equation. This equation is quadratic in Q' and has two solutions, one of which is negative. The only 

positive and therefore acceptable solution is 

 
[ ]

*
2 2

2 ( ) 2( )
1 (1 )

kD F kAQ F
hF hF F B
′ ′

′ ′ = =
′ ′ ′+ −

 (2.7) 

Let P'*(F') be the average profit as a function of F' when the optimal order quantity is used, 

i.e., 

 * * 2( ) ( ( ), ) ( ) 2 ( )
1 (1 ) 1 (1 )

pA khAP F P Q F F pD F F khD F F
F B F B

′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = − = −
′ ′+ − + −

 (2.8) 

To find the optimal fill rate, F'*, we set the first derivative of P'*(F') equal to zero, solve the 

resulting equation, and examine the values of the average profit and its derivative at the end points 

of the interval [0, 1].  

The first derivative of the average profit P'*(F') is 

 
[ ]

[ ]*

2

2 2 (2 )( )
2 1 (1 )1 (1 )

khA F BdP F pAB
dF F BF B

′+ −′ ′
= −

′ ′+ −′+ −
 (2.9) 
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Setting the first derivative of P'*(F') equal to zero, performing a change of variables from F' to Y, 

where Y = 1 + (1 – F')B, and rearranging terms, yields the following 5th degree polynomial equation 

in Y, 

 
2 2

5 4 2 3 22(1 ) (1 ) 0Ap BY B Y B Y
hk

+ + + + − =  (2.10) 

According to Descartes’s rule of signs, the polynomial on the lhs of equation (2.10) has 

exactly one positive real root and exactly two or zero negative real roots. For each real root, Yn, 

there corresponds a real root, F'n, of the rhs of expression (2.9), which is given by F'n = 1 – (Yn – 

1)/B. Since F' represents the long-run, average fill rate, it must take values in the interval [0, 1]. 

Note that if Yn < 1, then F'n > 1, whereas if Yn > 1 + B, then F'n < 0. This implies that for each 

negative real root, Yn, if there are any, the corresponding root F'n is greater than one. It also implies 

that the root F'n corresponding to the only positive real root, Yn, lies in the interval [0, 1] if and only 

if [1,1 ]nY B∈ + . This means that there is at most one real root of the rhs of equation (2.9) that may 

lie in the interval [0, 1]. 

With the above result in mind, to find the optimal fill rate, F'*, we proceed by examining the 

average profit and its derivative at the end points, 0 and 1. From (2.9), it is easy to see that the first 

derivative of the average profit at the two end points, 0 and 1, is given respectively by 

 
*

2
0

( ) (1 ) 1 2
(1 )F

dP F pAB B B khA
dF B′=

′ ′ − + +
=

′ +
 (2.11) 

 
*

1

( ) 2 1
2F

dP F BpAB khA
dF ′=

′ ′ ⎛ ⎞= − +⎜ ⎟′ ⎝ ⎠
 (2.12) 

From (2.8) it is also easy to see that the average profit at the end points, 0 and 1 is given 

respectively by 

 *(0)
1

pAP
B

′ =
+

 (2.13) 

 *(1) 2P pA khA′ = −  (2.14) 

Now, suppose that P'*(0) > P'*(1), which, from (2.13) and (2.14), is true if and only if 

( 1) 2pAB B hkA< + . The latter condition, which can be rewritten as /(1 ) 2p AB B hk+ < , 

implies that the first derivative of the average profit at F' = 0, which is given by (2.11), is always 

negative. This means that as F' increases starting from zero, the average profit, which starts at 

P'*(0), either continuously decreases in the interval [0, 1], or continuously decreases until it reaches 
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a minimum at the only real root of the rhs of expression (2.9) which may possibly lie in the interval 

[0, 1], and then continuously increases – since there is at most one real root in the interval [0, 1] – 

until it reaches P'*(1) at F' = 1. Given our initial assumption that P'*(0) > P'*(1), this further implies 

that the maximum average profit in the interval [0, 1] is attained at F' = 0. 

Now, suppose that P'*(0) < P'*(1), which, from (2.13) and (2.14), is true if and only if 

/(1 ) 2p AB B hk+ > . Then, the first derivative of the average profit at F' = 1, which is given by 

(2.12), is always positive. This means that as F' decreases starting from one, the average profit, 

which starts at P'*(1), either continuously decreases in the interval [0, 1], or continuously decreases 

until it reaches a minimum at the only real root of expression (2.9) which may possibly lie in the 

interval [0, 1], and then continuously increases – since there is at most one real root in the interval 

[0, 1] – until it reaches P'*(0) at F' = 0. Given our initial assumption that P'*(0) < P'*(1), this further 

implies that the maximum average profit in the interval [0, 1] is attained at F' = 1. 

Following the same argument, it can also be shown that if we assume that P'*(0) = P'*(1), 

which, from (2.13) and (2.14), is true if and only if /(1 ) 2p AB B hk+ = , then the maximum 

average profit in the interval [0, 1] is attained at both F' = 0 and F' = 1. 

Solution of the PD model with a minimum order quantity (case 2 of Table 2-4) 

For the PD model with a minimum order quantity Qmin, in order to find the optimal order quantity 

Q'* note that the average profit function P'(Q', F') is decreasing in Q'; therefore, the optimal order 

quantity, Q'*, should be as small as possible as long as the minimum order quantity constraint is not 

violated. This means that Q'* = Qmin. 

Let P'*(F') be the average profit as a function of F' when the optimal order quantity is used, 

i.e., 

 
( )

2 2
* * min min

min( ) ( , ) ( , ) ( )
2 1 1 2

Q F Q FpAP F P Q F P Q F pD F h h
F B

′ ′
′ ′ ′ ′ ′ ′ ′ ′ ′= = = − = −

′+ −
 (2.15) 

To find the optimal fill rate, F'*, we set the first derivative of P'*(F') equal to zero, solve the 

resulting equation, and examine the values of the average profit and its derivative at the end points 

of the interval [0, 1]. 

The first derivative of the average profit P'*(F'), given by (2.15), is given by (2.3), i.e., 

 
[ ]

*

min2
( )

1 (1 )
dP F pAB hQ F

dF F B
′ ′

′= −
′ ′+ −

 (2.16) 
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The above expression implies that the first derivative of the average profit at F' = 0 is always 

positive. Setting the above expression equal to zero and rearranging terms yields the following cubic 

equation in F': 

 ( )( ) ( )22 3 2
min min min2 1 1 0hB Q F hBQ B F hQ B F pBA′ ′ ′− + + + − =  (2.17) 

According to Descartes’s rule of signs, the lhs of the above equation has exactly three or one real 

positive roots, and no negative real roots. To further investigate how many of the positive real roots 

lie in the interval [0, 1], we perform a change of variables from F' to Y, where Y = 1 – F', and reset 

expression (2.16) equal to zero. After rearranging terms we obtain the following cubic equation in Y: 

 ( ) ( )2 3 2
min min min2 2 0.5 0hB Q Y hBQ B Y hQ B Y pBA hQ+ − + − + − =  (2.18) 

For each real root, Yn, of the cubic polynomial on the lhs of the above equation, there 

corresponds a real root of the lhs of equation (2.17), F'n, which is given by F'n = 1 – Yn. To 

determine how many of the roots F'n lie in [0, 1], we proceed as follows. 

First, suppose that pBA < hQmin. Then, according to Descartes’s rule of signs, it can be easily 

shown that the lhs of the equation (2.18) has exactly one positive real root and two or zero negative 

real roots, regardless of the value of B. This is done by examining the cases where B is less than 0.5, 

B is between 0.5 and 2, and B is greater than 2. This implies that for each negative real root Yn, if 

any, the corresponding root F'n is greater than one. It also implies that the root F'n corresponding to 

the only positive real root Yn is less than one. Given than the lhs of equation (2.17) has no negative 

real roots, as was mentioned above, this further implies that the root F'n corresponding to the only 

positive real root Yn is also greater than zero. To summarize, if pBA < hQmin, the cubic polynomial 

on the lhs of equation (2.17) always has exactly on real root, say F'R, in the interval [0, 1] and two 

or zero real roots which are greater than one. Moreover, given that the first derivative of the average 

profit at F' = 0 is always positive, as was mentioned above, then as F' increases starting from zero, 

the average profit continuously increases in the interval [0, F'R), reaches a maximum at F'R, and 

decreases in the interval (F'R, 1], since there are no other real roots in the interval [0, 1]. This also 

means that the first derivative of the average profit at F' = 1 is negative, which from (2.16) is true if 

and only if pAB < hQmin. The latter condition coincides with our original assumption. 

Next, suppose that pBA > hQmin and B < 0.5. Then, according to Descartes’s rule of signs, 

the lhs of the equation (2.18) has no positive real roots and exactly three or one negative real roots. 

This implies that for each negative real root Yn the corresponding real root F'n is greater than one. In 

other words, there are no real roots F'n that lie in the interval [0, 1]. Given that the first derivative of 

the average profit at F' = 0 is always positive, as was mentioned above, this further implies that as 
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F' increases starting from zero, the average profit continuously increases in the interval [0, 1] – 

since there are no real roots in the interval [0, 1] – reaching a maximum at F' = 1. This also means 

that the first derivative of the average profit at F' = 1 is positive, which from (2.16) is true if and 

only if pAB > hQmin. The latter condition coincides with our original assumption. 

Finally, suppose that pBA > hQmin and B > 0.5. Then, according to Descartes’s rule of signs, 

the lhs of the equation (2.18) has exactly two or zero positive real roots and one negative real root. 

This implies that the real root F'n corresponding to the only negative real root Yn is greater than one. 

It also implies that for each positive real root Yn, if any, the corresponding real root F'n is less than 

one. Given than the lhs of equation (2.17) has no negative real roots, as was mentioned above, this 

further implies that the roots F'n corresponding to the positive real roots Yn, if any, are also greater 

than zero. To summarize, if pBA > hQmin and B > 0.5, the cubic polynomial on the lhs of equation 

(2.17) always has two or zero real roots in the interval [0, 1] and one real root which is greater than 

one. If there are two real roots in the interval [0, 1], then, given that the first derivative of the 

average profit at F' = 0 is always positive, it is straightforward to see that the smallest root, say F'2, 

yields a local maximum of the average profit and the second root yields a local minimum. In this 

case, if P'*(F'2) > P'*(1), which from (2.15), can be rewritten as P'*(F'2) > pA – hQmin/2, then the 

average profit is maximized at F' = F'2 in the interval [0, 1]; otherwise, it is maximized at F' = 1. On 

the other hand, if there are no real roots in the interval [0, 1], then, given that the first derivative of 

the average profit at F' = 0 is always positive, it is straightforward to see that the average profit is 

maximized at F' = 1 in the interval [0, 1]. 

The above analysis was extended to include the cases where pBA = hQmin and/or B = 0.5. 

We omit the details here for space considerations. 

Solution of the PD model with a minimum interorder time (case 3 of Table 2-4) 

For the PD model with a minimum interorder time Tmin, in order to find the optimal order quantity 

Q'* note that the average profit function P'(Q', F') is decreasing in Q', so the optimal order quantity, 

Q'*, should be as small as possible as long as the minimum order quantity constraint is not violated. 

This means that Q'* = D(F')Tmin. 

Let P'*(F') be the average profit as a function of F' when the optimal order quantity is used, 

i.e., 
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( ) ( )

2
* * min

min

2
min

( )( ) ( , ) ( ( ) , ) ( )
2

1 1 2 1 1

D F T FP F P Q F P D F T F pD F h

hAT FpA
F B F B

′ ′ ′
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = = −

′
= −

′ ′+ − + −⎡ ⎤⎣ ⎦

 (2.19) 

To find the optimal fill rate, F'*, we set the first derivative of P'*(F') equal to zero, solve the 

resulting equation, and examine the values of the average profit and its derivative at the end points 

of the interval [0, 1]. 

The first derivative of the average profit P'*(F'), given by (2.19), is 

 
[ ] [ ]

2*
min min

2 2

( )
1 (1 )1 (1 ) 2 1 (1 )

hAT F hABT FdP F pAB
dF F BF B F B

′ ′′ ′
= − −

′ ′+ −′ ′+ − + −
  (2.20) 

The above expression implies that the first derivative of the average profit at F' = 0 is always 

positive. Setting the above expression equal to zero and rearranging terms yields the following 

quadratic equation in F': 

 ( )( )2
min min2 1 2 0hABT F hAT B F pAB′ ′− + + =   (2.21) 

The above equation has the following two solutions: 

 ( )2

2 2 2
min

11 21
B p

B B h T
+

+ ± −  (2.22) 

If the term under the square root in the above expression is negative, then both solutions are 

complex numbers. In order for the term under the square root to be negative, the following condition 

must hold: 

( )22
min2 1pB h B T> +  

Suppose that the above condition does hold. Then equation (2.21) has no real solutions. Given that 

the first derivative of the average profit at F' = 0 is always positive, as was mentioned above, then as 

F' increases starting from zero, the average profit continuously increases since equation (2.21) has 

no real solutions; therefore, the maximum average profit for values of F' in the interval [0, 1] is 

attained at F' = 1. 

If the term under the square root in expression (2.22) is positive, then both solutions of the 

quadratic equation (2.21) are real numbers; however, one of them is always greater than one. The 

only real solution that may lie in the interval [0, 1] is the solution F'3 given by (2.4). Given that the 

first derivative of the average profit at F' = 0 is always positive, then in order for the above solution 

to lie in the interval [0, 1], the first derivative of the average profit at F' = 1 must be negative. From 
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(2.20), the latter is true if and only if 2pB < h(2 + B)Tmin, which can be rewritten as 2pB/(2 + B) < 

hTmin.. If this condition holds, then the maximum average profit for values of F' in the interval [0, 1] 

is attained at F' = F'3; otherwise it is attained at F' = 1. 

Solution of the PD model with a minimum starting inventory (case 4 of Table 2-4) 

For the PD model with a minimum starting inventory Imin, in order to find the optimal order quantity 

Q'* note that the average profit function P'(Q', F') is decreasing in Q', so the optimal order quantity, 

Q'*, should be as small as possible as long as the minimum order quantity constraint is not violated. 

This means that Q'*(F') = Imin/F'. 

Let P'*(F') be the average profit as a function of F' when the optimal order quantity is used, 

i.e., 

 
( )

* * min min
min( ) ( , ) ( , ) ( )

2 1 1 2
I F I FpAP F P Q F P I F F pD F h h

F B
′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = = − = −
′+ −

 (2.23) 

To find the optimal fill rate, F'*, we examine the first and second derivative of P'*(F'), as 

well as the values of P'*(F') at the end points of the interval [0, 1]. 

The first and second derivative of the average profit P'*(F'), given by (2.23), are 

 
( )

*
min

2
( )

21 1
hIdP F pAB

dF F B

′ ′
= −

′ ′+ −⎡ ⎤⎣ ⎦
 (2.24) 

 
( )

*2 2

32

( ) 2
1 1

dP F pAB
dF F B

′ ′
=

′ ′+ −⎡ ⎤⎣ ⎦
 (2.25) 

From equation (2.25), it is obvious that for every F' ∈ [0, 1], the second derivative of P'*(F') 

is always positive. This means that the average profit is convex in F' in the interval [0, 1]; therefore, 

the optimal fill rate, F'*, coincides with one of the two end points, 0 or 1. More specifically, if P'*(0) 

> P'*(1), which from (2.23) is true if and only if 2pAB/(1 + B) < hImin, then F'* = 0. Conversely, if 

P'*(0) < P'*(1), which from (2.23) is true if and only if 2pAB/(1 + B) > hImin, then F'* = 1. Finally, if 

P'*(0) = P'*(1), which from (2.23) is true if and only if 2pAB/(1 + B) = hImin, both 0 and 1 are 

optimal. 
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Chapter 3 Competing for Customer Goodwill 

on Product Availability  

In this chapter, we develop a newsvendor-type model of two suppliers that compete to sell the same 

type of items to a customer, repetitively, in discrete periods, for an infinite time horizon. At the 

beginning of each period, each supplier orders a number of items that are delivered to him 

immediately. In each period, the customer randomly chooses one of the two suppliers and demands 

from him a random number of items. The probability of choosing a supplier depends on the so-

called “credibility level” of this supplier, which reflects the customer's estimate of the supplier's 

relative credibility based on the history of service – measured in terms of product availability – that 

both suppliers have provided to the customer in the past. The credibility levels of the suppliers 

change dynamically based on the quality of service – good or poor – that the customer receives in 

each period.  

In Section 3.1, we formulate the problem of finding optimal stationary ordering policies for 

both suppliers at equilibrium as a stochastic dynamic game. In Section 3.2, we propose a numerical 

solution technique for solving the resulting optimality conditions, and in Section 3.3, we implement 

this technique for several instances of the problem. In all instances, the optimal ordering policy for 

each supplier turns out to be an order-up-to policy. In Section 3.4, we restrict our attention to the 

case where each supplier has only two credibility levels, a low and a high, such that, when in the 

low level, he is never chosen by the customer, and when in the high level, he is always chosen by 

the customer. For this case, we assume that each supplier uses a credibility level-dependent order-

up-to policy. This leads to a Markov Decision Process with two decision makers. We numerically 

solve the resulting optimality conditions at equilibrium to find the optimal order-up-to levels of 

both suppliers. Finally, we conclude in Section 3.5. 
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3.1 Model Description and Mathematical Formulation 

We consider a model of two suppliers that compete to sell the same type of items to a single 

customer. Their competition takes places repetitively, in discrete time periods, for an infinite time 

horizon. We make the following assumptions. 

(A1). In each period, the customer randomly chooses one of the two suppliers and demands 

from him a random number of items. 

Let tw  be the customer’s demand in period t.  

(A2). The demands 0 1, , ,w w …  are i.i.d. discrete random variables with probability mass 

function ( )p ⋅ , cumulative distribution function ( )⋅T , and mean θ . 

(A3). The probability with which the customer chooses a supplier depends only on the so-

called “credibility level” of the supplier, which reflects the customer’s estimate of the supplier’s 

relative credibility based on the history of service (measured in terms of product availability) that 

both suppliers have provided to the customer.  

Assumption (A3) states that the suppliers compete for the customer’s goodwill based only 

on the history of product availability. This implies that all other competition drivers, such as price, 

after-sales service, etc, are more or less the same for both suppliers. 

Let ta  be the credibility level of supplier 1 at the beginning of period t. 

(A4). ta  may belong to a number of discrete states, 0,1, , .M…  

(A5). The sum of the credibility levels of both suppliers is constant and equal to M at all 

periods; hence, the credibility level of supplier 2 at the beginning of period t is tM a− .  

Assumption (A5) implies that the credibility level of one supplier is complementary and 

therefore relative to that of the other supplier. This is a reasonable assumption if the customer (a) 

has no other option but to buy the items he demands from one of the two suppliers, i.e., the two 

suppliers form a pure duopoly, and (b) will not change the distribution (e.g., the mean) of his 

demand even if he repeatedly receives poor service from both suppliers; i.e., the customer 

absolutely needs the items he demands. 

(A6). If, in period t, supplier 1 is chosen by the customer and is able to meet all the demand 

(good service), or if supplier 2 is chosen by the customer and is unable to meet all the demand 
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(poor service), then, at the beginning of period 1t + , the credibility level of supplier 1 increases by 

one, i.e. 1 1t ta a+ = +  (therefore, the credibility level of supplier 2 decreases by one), unless ta M= , 

in which case 1ta M+ = . The opposite is true if supplier 2 is chosen by the customer.  

Assumption (A6) describes the dynamic evolution of ta . It implies that the customer’s 

response to good service from one supplier is exactly the same as his response to poor service from 

the other supplier. This assumption simplifies the analysis, because it renders { , 0,1, }ta t = …  a 

birth-death process. Although it appears to be restrictive, it is not crucial in the sense that it does not 

result in any loss of generality. Had we assumed that the customer’s response to good and to poor 

service is asymmetric, the evolution of ta  would have been more complicated, but the structure, 

and hence the analysis, of the model would remain essentially unchanged. A simple example of 

asymmetric behavior would be the case where, if a supplier meets the demand, his credibility level 

increases by one, whereas if he does not meet all the demand, his credibility level decreases by two. 

Let ( )iq a  be the probability that the customer chooses supplier i in a period, given that 

supplier 1’s credibility level is a  at the beginning of that period. Assumption (A5) implies that 

1 2( ) ( ) 1,q a q a+ =  0,1, , ;a M= … therefore 1 1 2( ) 1 ( ) ( )q a q a q a≡ − =  and 2 2 1( ) 1 ( ) ( )q a q a q a≡ − = .  

(A7). 1 1 2 2( ) ( ) and ( ) ( ),  q a q a q a q a a a′ ′ ′≥ ≤ > . 

Assumption (A7) implies that the probability with which the customer chooses a supplier is 

non-decreasing in the supplier’s credibility level. In general, we would expect 1( )q a  and 2 ( )q M a−  

to be similar in shape if the customer’s behavior towards both suppliers is symmetric, at least 

qualitatively, if not quantitatively. A simple assumption would be that 1( )q a  is linear in a, e.g. 

( )min min min
1 1 1 2( ) 1q a q a q q M= + − − , where min

iq  is the smallest probability of choosing supplier i 

when his credibility level is at its lowest possible value. In general, the shape of 1( )q a  should 

depend on the customer’s response to good and to poor service from the same supplier. For 

example, if the customer is more reluctant to significantly change the probability of choosing 

supplier 1, if supplier 1’s credibility level is already too low or too high, than if it is medium, then it 

might be reasonable to assume that 1( )q a  is “S”-shaped, being flatter towards the ends than around 

the middle. If the customer is willing to “forgive” but not forget one or more or more poor services 

in a row by supplier, then it might be reasonable to assume that 1( )q a  is piece-wise constant in a. 

The model is flexible and can accommodate different customer behaviors. 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 22:13:44 EEST - 18.223.159.57



 

44 

(A8). At the very beginning of each period, each supplier orders a number of items that are 

delivered to him immediately. When ordering, he has complete information about his as well as his 

competitor’s current inventory surplus/backlog level and credibility level, but he has no knowledge 

of his competitors ordering decision. 

Assumption (A8) is perhaps the most limiting assumption, because in practice it is unlikely 

that one supplier has complete information of the other supplier’s state. In fact, if a supplier has no 

information about the other supplier’s inventory surplus/backlog level, he can not know with 

certainty his own credibility state. It is natural, however, to look into the complete-information case 

first, before tackling the more complicated incomplete-information case. 

Let t
ix  be the inventory surplus/backlog of supplier i at the very beginning of period t; t

ix  

may take positive or negative values. Let t
iu  be the replenishment quantity ordered (and 

immediately delivered) by supplier i at the beginning of period t.  

(A9). ( )t t
i iu x

+
≥ − , where ( ) ( )max 0,x x+ ≡ . 

Assumption (A9) implies that if the supplier chosen by the customer in a period is unable to 

meet all the demand, then the unmet demand is backordered with this supplier, who must satisfy it 

at the beginning of the next period. This means that the customer does not switch suppliers within 

each period. This assumption is reasonable if the customer routinely demands items (e.g. 

consumables) in each period, without first checking about their availability, and is willing to 

tolerate – albeit, with some dissatisfaction reflected in suppliers’ credibility levels – the wait for one 

period. Assumption (A9) appears somewhat restrictive in that it implies that the supplier’s order 

“must” be big enough to satisfy any backorders from the previous period. If the customer is willing 

to tolerate the wait for one period at no direct cost to the supplier, however, it is easy to see that it 

would be anyway optimal for the supplier to cover the previous period’s backorders, if any, because 

this would maximize his profit. In this case, the constraint of Assumption (A9) would be redundant. 

Based, on the assumptions above, the inventory surplus/backlog of supplier i evolves 

according to the following stochastic dynamic equation: 

 1 ( , , , )t t t t t
i i i ix f x a u w+ =  

where 

 
, with probability ( )

( , , , )
, with probability ( )

i i i
i i i

i i i

x u w q a
f x a u w

x u q a
+ −⎧

= ⎨ +⎩
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(A10). In each period, supplier i receives a reward (selling price) ir  per unit for the items he 

sells and pays a procurement cost ic  per unit for the items he orders. He also incurs an inventory 

holding cost ih  per unit for the items he stocks. 

Since, by Assumptions (A1)-(A3), the suppliers do not compete on price, it is reasonable to 

expect that 1 2r r r= ≡ . We should also expect that ,  1, 2ir c i> = ; otherwise, it makes no sense for 

the suppliers to sell the items. Finally, it is reasonable to assume that i ih c� , e.g. ,  1, 2i ih c iβ= = , 

where β is the interest rate per period. 

Let ( , , , )i i ig x a u w  be the profit of supplier i in a period, as a function of his inventory 

surplus/backlog at the very beginning of the period, ix , his order quantity at the beginning of the 

period, iu , the credibility level of supplier 1 at the beginning of the period, a, and the customer 

demand in the period, w; ( , , , )i i ig x a u w  is given by the following expression: 

 ( )
( )

( ), with probability ( )( , , , )  
with probability ( )

i i i i i i i
i i i i i

i i i i i i

r w c u h x u w q ag x a u w u x
c u h x u q a

+
+⎧ − − + −⎪= ≥ −⎨

− − +⎪⎩
 

Let ( , , )i i iG x a u  be the expected value of ( , , , )i i ig x a u w  over all possible values of w. It is 

easy to see that 

 

[ ]

( ) ( )( )
( ) ( ) ( )

| , ,

0

( , , ) ( , , , )

( ) ( ) ( )

( ) ( ) ( ) ( ) , 

i i

i i

i i i i i iw x a u

i i i i i i i i i i i

x u

i i i i i i i i i i i i i
w

G x a u E g x a u w

r q a c u h x u q a E x u w q a

r q a c u h x u q a x u w p w q a u x

θ

θ

+

+
+

=

≡

⎡ ⎤= − − + + + −⎣ ⎦

⎛ ⎞⎡ ⎤
= − − + + + − ≥ −⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
∑

 

Suppose that supplier i uses a stationary ordering policy iμ  which maps the system state 

1 2( , , )x x a  into the control 1 2( , )i iu x x aμ= , and iμ  is such that ( )1 2( , )i ix x a xμ +≥ −  for all inventory 

states ix , so that iμ  is admissible according to Assumption (A9). Then, under the stationary 

ordering policies 1μ  and 2μ  of the two suppliers, the state of the system, 1 2( , , )t t tx x a , is a discrete-

time Markov chain with one-step transition probabilities, 

 ( )( )

( )( )

1 2 1 1 1 2 2 2 1 2

1 2 1 1 1 2 2 2 1 2

1 1 1 1 2, , ( , , ) , ( , , ), 1

1 1 1 1 2, , ( , , ) , ( , , ), 1

( ) ( ),  ( , , )

( ) ( ),  ( , , )
x x a x x x a w x x x a a

x x a x x x a w x x x a a

P q a p w w x x x a

P q a p w w x x x a
μ μ

μ μ

μ

μ
+ − + +

+ − + −

= ≤ +

= > +
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( )( )

( )( )

1 2 1 1 1 2 2 2 1 2

1 2 1 1 1 2 2 2 1 2

2 2 2 1 2, , ( , , ), ( , , ) , 1

2 2 2 1 2, , ( , , ), ( , , ) , 1

( ) ( ),  ( , , )

( ) ( ),  ( , , )
x x a x x x a x x x a w a

x x a x x x a x x x a w a

P q a p w w x x x a

P q a p w w x x x a
μ μ

μ μ

μ

μ
+ + − −

+ + − +

= ≤ +

= > +
 

where ( ) ( )max 0,a a a +≡ ≡  and min( , )a a M≡ . 

Suppose that supplier i (supplier i’s competitor) uses an admissible stationary ordering 

policy iμ . Then the problem of supplier i is to find a stationary ordering policy iμ  that maximizes 

his long-run average profit, 

 
2

1

1 2 1 2
( , , ) 0

1max lim ( , , ( , , ), | ( , , ))i

t t t
i i

T
t t t t t t t t t

i i i i iTx x a t

J E g x a x x a w x x a
T

μ

μ
μ μ

−

→∞
=

⎡ ⎤≡ ⎢ ⎥⎣ ⎦
∑  

Using standard dynamic programming arguments, i
iJ μ  must satisfy the following Bellman’s 

(optimality) equation 

 { }
1 2 1 2

, 1 2 1 2
( )

( , , ) ( )( , , )

max ( )( , , ) ,  for all ( , , )

i i i

i

i
i i

i i i

i u
u x

J V x x a TV x x a

TV x x a x x a

μ μ μ

μ
+≥ −

+ =

≡
 (3.1) 

where 1 2( , , )i
iV x x aμ  is the differential profit of supplier i in state 1 2( , , )x x a  when his competitor, 

supplier i , uses stationary ordering policy iμ , and , 1 2( )( , , )i

ii uTV x x aμ  is a mapping given by the 

following two expressions for i = 1, 2:  

 

2

1

1 1
2

2

1 1

2 2 1 2
2

1, 1 2 1 1 1

1 1 1 1 2 2 1 2
0

1 1 1 2 2 1 2
1
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2 1 1 1 2 2 1 2
0
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( ) ( ) ( , ( , , ), 1)

( ) ( , ( , , ), 1)

( ) ( ) ( , ( , , ) , 1)

u

x u

w

w x u

x x x a

w
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q a p w V x u w x x x a a
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μ

μ

μ

μ
μ

μ

μ

μ

+

=

∞

= + +

+
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⎦

⎡
+ + − − +⎢

⎣

∑
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2 2 1 2
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( , , ) 1

( ) ( , ( , , ) , 1)
w x x x a
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μ

μ
∞
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1

2

1 1 1 2
1

1

1 1 1 2

1

2, 1 2 2 2 2

( , , )

1 2 1 1 1 2 2 2
0

2 1 1 1 2 2 2
( , , ) 1

2 2 1 1 1 2 2 2
0

( )( , , ) ( , , )

( ) ( ) ( ( , , ) , , 1)

( ) ( ( , , ) , , 1)

( ) ( ) ( ( , , ), , 1)

u

x x x a

w

w x x x a

x

w

TV x x a G x a u

q a p w V x x x a w x u a

p w V x x x a w x u a

q a p w V x x x a x u w a

μ

μ
μ

μ

μ

μ

μ

μ

μ

+

=

∞

= + +

=

≡ +
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∑

∑
2 2

1

2 2

2 1 1 1 2 2 2
1

( ) ( ( , , ), , 1)

u

w x u

p w V x x x a x u w aμ μ

+

∞

= + +

⎡
+⎢

⎣
⎤

+ + − + ⎥
⎦

∑

∑

 

Let *
iμ  be the optimal stationary policy of supplier i at equilibrium, i.e. when his competitor 

also uses his optimal stationary policy, *
iμ . Then, the *,  1, 2i iμ = , must jointly satisfy the optimality 

conditions 

 
( )

**
1 2 , 1 2 1 2( , , ) arg max ( )( , , ),  for all ( , , ),  1, 2i

i
i i

i i u
u x

x x a TV x x a x x a iμμ
+≥ −

= =  (3.2) 

Let 
** i

i iJ J μ≡  and 
**

1 2 1 2( , , ) ( , , )i
i iV x x a V x x aμ≡  be the optimal long-run average profit and 

differential profit of supplier i in state 1 2( , , )x x a  at equilibrium, assuming an equilibrium exists. 

Then, by (3.1), *
iJ  and *

1 2( , , )iV x x a  must satisfy 

 
** *

1 2 1 2 1 2( , , ) ( )( , , ),  for all ( , , ),  1,2i
i i iJ V x x a TV x x a x x a iμ+ = =  (3.3) 

3.2 Numerical Solution Technique  

To solve equation (3.2), we will use value iteration. Since this method requires that the state space 

be finite, we will truncate the infinite state-space of 1 2( , )x x  to a finite state-space, by imposing the 

constraints, 

 min max ,  1, 2i i ix x x i≤ ≤ =  

for some lower and upper bounds, min
ix  and max

ix . If these bounds are large enough, we expect their 

influence to be negligible for states 1 2( , )x x  away from the bounds. 

At each step of the iteration, we will update the values of the optimal control and differential 

profit functions, *
1 2( , , )i x x aμ  and *

1 2( , , )iV x x a , for all states 1 2( , , )x x a , based on the values from the 

previous step, until they converge. The average profit *
iJ  can then be obtained from equation (3.3). 
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Actually, equation (3.3) has a degree of freedom, because *
1 2( , , )iV x x a  is defined as a relative profit 

vector. In other words, if we add the same constant to *
1 2( , , )iV x x a , for all 1 2( , , )x x a , equation (3.3) 

will still hold. To eliminate this degree of freedom, we require that *
1 2( , , ) 0iV x x a′ ′ ′ =  for some fixed 

state 1 2( , , )x x a′ ′ ′ , say 1 2( , , ) (0,0,0)x x a′ ′ ′ = . Then from (3.3), 
**

1 2( )( , , ),  1, 2.i
i iJ TV x x a iμ ′ ′ ′= =  

Let ( )
1 2( , , )n

i x x aμ  and ( )
1 2( , , )n

iV x x a be the approximations of *
1 2( , , )i x x aμ  and *

1 2( , , )iV x x a  

at the nth iteration, respectively. Then the approximation of *
1 2( , , )i x x aμ  at the ( 1)n + th iteration, 

( 1)
1 2( , , )n

i x x aμ + , will be given by another nested value iteration that solves equilibrium condition 

(3.2). Let ( 1)( )
1 2( , , )n k

i x x aμ +  be the approximation of ( 1)
1 2( , , )n

i x x aμ +  at the kth nested iteration, given 

the ( )
1 2( , , )n

iV x x a . Then the successive approximation of ( 1)
1 2( , , )n

i x x aμ + at the ( 1)k + th iteration is 

given by  

 ( )

( )

( 1)( )
2

1
1 1

( 1)( 1)
1

2
2 2

( ),( 1)( 1)
1 1 2 1, 1 2

( ),( 1)( 1)
2 1 2 2, 1 2

( , , ) arg max ( )( , , )

( , , ) arg max ( )( , , )

n k

n k

nn k
u

u x

nn k
u

u x

x x a TV x x a

x x a TV x x a

μ

μ

μ

μ

+

+

+ +

+

+ +

≥ −

+ +

≥ −

=

=
 (3.4) 

 

If the above iteration converges to some values ( 1)
1 2( , , ),  1, 2,n

i x x a iμ + =  then these values 

must satisfy 

 
( )

( 1)( ),( 1)
1 2 , 1 2( , , ) arg max ( )( , , ),  1, 2

n
i

i
i i

nn
i i u

u x
x x a TV x x a iμμ

+

+

+

≥ −
= =  (3.5) 

Once convergence for the ( 1)
1 2( , , ),  1, 2,n

i x x a iμ + =  for all states 1 2( , , )x x a  is attained, the 

approximation of *
1 2( , , )iV x x a  at the ( 1)n + th iteration is given by 

 
( 1) ( 1)( ), ( ),( 1)

1 2 1 2 1 2 1 2( , , ) ( )( , , ) ( ( , , )),  1, 2,  for all ( , , )
n n

i in nn
i i iV x x a TV x x a TV x x a i x x aμ μ+ +

+ ′ ′ ′= − =  (3.6) 

If the above iteration converges to some value *
1 2( , , )iV x x a , for all states 1 2( , , )x x a , then the 

*
1 2( , , )iV x x a  must satisfy 

 
* **

1 2 1 2 1 2( ( , , )) ( , , ) ( )( , , )i i
i i iTV x x a V x x a TV x x aμ μ′ ′ ′ + =  (3.7) 

which from (3.3) implies that 
**

1 2( ( , , ))i
i iJ TV x x aμ ′ ′ ′= . The condition for convergence is 

 
( 1)

1 21 2

( ),( 1) ( 1)
1 2 1 2 1 2( , , )( , , )

max ( , , ) min ( , , ) ( ( , , )),  1, 2
n

inn n
i i ix x ax x a

V x x a V x x a TV x x a iμε
+

+ + ′ ′ ′Δ − Δ < =  (3.8) 

where ε is a small chosen scalar and ( 1) ( 1) ( )
1 2 1 2 1 2( , , ) ( , , ) ( , , )n n n

i i iV x x a V x x a V x x a+ +Δ ≡ − . 
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A detailed version of the value iteration algorithm is shown in the Appendix of this chapter. 

3.3 Numerical Results 

To study the influence of the model parameters on the optimal ordering policies and long-run 

average profit of the suppliers, we implemented the value iteration method described in the previous 

section on several problem instances with 2 and 4 credibility states. In all instances, the selling price 

per item is the same for both suppliers, i.e. 1 2r r r= ≡ , since the suppliers do not compete on price. 

Moreover, in all instances, the customer’s demand in each period, w, is equal to ŵ – 1, where ŵ is 

geometrically distributed with mean 1/ρ, i.e. w has the following probability distribution 

 1

( ) (1 ) ,   0 1
( ) 1 (1 )

1[ ]

ρ ρ ρ

ρ
ρθ

ρ

+

= − < <

= − −
−

= =

w

w

p w
T w

E w

 (3.9) 

We also examined the same instances with Poisson distributed demand and found similar results. 

Our most important finding is that in all instances the optimal ordering policy of both 

suppliers is an order-up-to policy, where the optimal order-up-to level of each supplier depends 

only on his credibility level and not on the inventory surplus/backorder level of the other supplier. 

In other words, all our numerical experiments showed that the optimal control law of supplier i is 

given by 

 *
1 2

0, ( )
( , , )

( ) , ( )
i i

i
i i i i

x s a
x x a

s a x x s a
μ

>⎧
= ⎨ − ≤⎩

 

where ( )is a  is the optimal order-up-to level of supplier i when the credibility level of supplier 1 is 

a. 

Table 3-1 shows the parameter values and the corresponding performance measures, i.e. the 

optimal order-up-to levels and average profit, for both suppliers, for 19 problem instances with 2 

credibility states, low and high, i.e. {0,1}a∈ . The last two columns of Table 3-1 show the number 

of iterations (N) and clock time in seconds that it took for the value iteration to converge on an 

AMD Athlon 64 3000+ @1.8 GHz notebook, for ε = 0.00001. 

The 19 instances in Table 3-1 are clustered into five groups: 1-3, 4-6, 7-10, 11-14, and 15-

19. 
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Table 3-1. Input parameters and results for 19 instances with 2 credibility states 

# ρ  r  1c  2c  1h 2h  1(0)q  1(1)q 1(0)s 1(1)s 2 (0)s 2 (1)s *
1J  *

2J  N Comp. 
Time (sec)

1 0.35 10 5 5 0.01 0.01 0.4 0.6 8 8 8 8 4.57 4.57 80 680.90 
2 0.35 10 5 7 0.01 0.2 0.4 0.6 7 8 1 0 5.1 2.4 91 690.00 
3 0.35 10 5 7 0.2 0.01 0.4 0.6 1 2 7 6 4.09 2.90 79 689.90 
4 0.35 15 5 5 0.01 0.01 0.4 0.6 9 10 10 9 9.19 9.19 76 701.57 
5 0.35 25 5 5 0.01 0.01 0.4 0.6 11 11 11 11 18.47 18.47 70 721.48 
6 0.35 35 5 5 0.01 0.01 0.4 0.6 12 12 12 12 27.74 27.74 67 679.82 
7 0.7 10 5 5 0.01 0.01 0.4 0.6 2 2 2 2 1.05 1.05 250 2431.35 
8 0.6 10 5 5 0.01 0.01 0.4 0.6 3 3 3 3 1.63 1.63 173 1497.17 
9 0.5 10 5 5 0.01 0.01 0.4 0.6 4 4 4 4 2.46 2.46 126 949.26 
10 0.3 10 5 5 0.01 0.01 0.4 0.6 9 10 10 9 5.74 5.74 69 723.96 
11 0.35 10 5 5 0.01 0.01 0.0 0.2 0 0 9 9 0.12 9.08 3049 29610.32
12 0.35 10 5 5 0.01 0.01 0.1 0.3 4 5 9 9 1.11 8.04 347 3223.34 
13 0.35 10 5 5 0.01 0.01 0.2 0.4 6 7 9 9 2.66 6.88 168 1564.15 
14 0.35 10 5 5 0.01 0.01 0.3 0.5 7 7 9 8 3.41 5.73 109 1019.71 
15 0.35 10 5 5 0.01 0.01 0.2 0.2 0 0 0 0 1.85 7.42 213 1916.25 
16 0.35 10 5 5 0.01 0.01 0.2 0.4 6 7 9 9 2.66 6.88 168 1564.15 
17 0.35 10 5 5 0.01 0.01 0.2 0.6 8 9 11 9 3.00 6.09 131 1241.79 
18 0.35 10 5 5 0.01 0.01 0.2 0.8 10 12 12 10 4.53 4.53 97 984.64 
19 0.35 10 5 5 0.01 0.01 0.2 1.0 10 10 7 0 8.92 0.21 1835 18200.90

 

In the first three groups of instances (1-3, 4-6, and 7-10), the probability of choosing either 

supplier when his credibility level is low is the same and equal to 0.4; therefore, in these instances, 

the customer exhibits a symmetric goodwill behavior towards the two suppliers. 

More specifically, in the first group of instances (1-3), we study the effect of the cost 

parameters, , ,  1, 2i ih c i = , on the suppliers’ performance. In instance 1, both suppliers have the same 

ordering and inventory holding cost parameters; therefore their performance measures are identical. 

In instance 2, supplier 2’s cost parameters are higher than those of supplier 1, which are kept at the 

same values as in instance 1. As a result, supplier 2’s optimal order-up-to levels drop dramatically, 

while those of supplier 1 remain almost the same. Consequently, supplier 1 gains some market 

share from supplier 2 and thus increases his average profit. Supplier 2’s profit, on the other hand, 

drops to almost half its value, because of his higher ordering and inventory holding costs as well as 

his loss of market share. In instance 3, supplier 2’s ordering cost is higher than that of supplier 1, 

which is kept at the same value as in instance 1. At the same time, supplier 2’s inventory holding 

cost remains at the same value as in instance 1, while that of supplier 1 is increased. As a result, 

supplier 1’s optimal order-up-to levels drop dramatically, while those of supplier 2 drop only 

slightly. Consequently, supplier 2 gains some market share from supplier 1 but his average profit 
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still drops quite sharply, because his gross profit margin (selling price – procurement cost) is 

reduced. Supplier 1’s profit also drops, because of his higher inventory holding costs as well as his 

loss of market share. 

In the second and third group of instances (4-6 and 7-10), we study the effect of the selling 

price r and the demand distribution parameter ρ, respectively, on the suppliers’ performance. In all 

these instances, both suppliers have the same cost parameters; therefore their performance measures 

are identical. We see that as the selling price r or demand distribution parameter ρ increases, both 

suppliers increase their order-up-to levels, so as not to loose market share, and still gain higher 

profits. 

Finally, in the fourth and fifth groups of instances, (11-14 and 15-19), both suppliers have 

the same cost parameters, but the probability of choosing a supplier when his credibility level is 

low, is no longer the same for both suppliers, as was the case in the first three groups of instances; 

therefore, in these instances, the customer exhibits an asymmetric goodwill behavior towards the 

two suppliers. 

More specifically, in the fourth group of instances (11-14), we study the effect of increasing 

the probabilities 1(0)q  and 1(1)q  while keeping their difference constant and equal to 0.2. As 1(0)q  

and therefore 1(1)q  increases, supplier 1’s market share – and therefore his gross profit – increases. 

This allows him to raise his optimal order-up-to levels, in order to increase the long-run probability 

that his credibility level is high. Supplier 2 behaves exactly the opposite way. In all these instances, 

the customer’s goodwill is biased toward supplier 2, because the probability that he chooses 

supplier 2, when supplier 2’s credibility level is low, is higher that the probability that he chooses 

supplier 1, when supplier 1’s credibility level is low. For this reason, supplier 2’s order-up-to levels 

and the resulting average profit are higher than those of supplier 1. Note that in instance 11, 

1(0) 0s = . This is absolutely reasonable, because the probability that the customer will choose 

supplier 1 when his credibility level is low is zero, since 1(0) 0q = ; therefore, it makes no sense for 

supplier 1 to hold any inventory when his credibility level is low. 

Finally, in the fifth group of instances (15-19), we study the effect of increasing probability 

1(1)q  while keeping 1(0)q  constant and equal to 0.2. We see that when 1 1(1) (0)q q= , both suppliers 

have zero order-up-to levels, i.e. they never hold any inventory. This is absolutely reasonable, 

because when 1 1(1) (0)q q= , neither supplier ever gains or looses customer goodwill (in the sense of 

changing the probability of being chosen in the future) after providing a good or poor service, 
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respectively. With this in mind and given that a stockout incur no direct penalty cost, there is no 

motive for either supplier to hold inventory. As 1(1)q  increases, however, the optimal order-up-to 

level of both suppliers increases. In instances 15-17, the customer’s goodwill is biased toward 

supplier 2. For this reason, supplier 2’s order-up-to levels and the resulting average profit are higher 

than those of supplier 1. In instance 18, which is in fact similar to instance 1, the customer’s 

goodwill behavior toward both suppliers is completely symmetric; hence the performance measures 

of both suppliers are the same. However, the order-up-to levels of both suppliers are higher than 

those in instance 1. This is because the gain and loss of customer goodwill (in the sense of changing 

the probability of being chosen in the future) after providing a good or poor service, respectively, is 

bigger in instance 18 than in instance 1. 

A general remark is that in all instances in Table 3-1, the optimal order-up-to level of each 

supplier when his credibility level is high is no less than his optimal order-up-to level when his 

credibility level is low, i.e. 1 1 2 2(1) (0) and (0) (1)s s s s≥ ≥ . This implies that a supplier must hold at 

least as many items in inventory when his credibility is high than when it is low, which further 

suggests that more money tied in inventories is needed to keep a position of high credibility, where 

the expected rewards are high, than to gain such a position. The above observation is no longer true 

when more than two credibility states, as we will see next. 

We also run 3 problem instances with 4 credibility states each, i.e. {0,1, 2,3}a∈ , in which 

we study the effect of the shape of 1( )q a  on the suppliers’ performance measures. In all instances 

the cost parameters of both suppliers are the same, i.e. 1 2c c c= ≡  and 1 2h h h= ≡ . Also, in all 

instances 1 1 2( ) (3 ) (3 )q a q a q a= − ≡ − , 0,1,2,3a = ; therefore, the customer’s goodwill behavior 

towards the two suppliers is completely symmetric. Table 3-2 shows the parameter values and the 

corresponding performance measures for supplier 1; those of supplier 2 are completely symmetric, 

i.e. 2 1( ) (3 )s a s a= − , 0,1, 2,3a = , and * *
2 1J J= , so they are not shown. 

Table 3-2. Input parameters and results for three instances with 4 credibility states 

# ρ  r  c  h  1(0)q  1(1)q  1(2)q 1(3)q 1(0)s 1(1)s 1(2)s 1(3)s *
1J  N Comp. 

time (sec)
1 0.35 10 5 0.01 0.2 0.4 0.6 0.8 10 12 13 13 4.52 125 2566.82
2 0.35 10 5 0.01 0.2 0.3 0.7 0.8 10 12 14 13 4.52 139 2849.93
3 0.35 10 5 0.01 0.2 0.2 0.8 0.8 10 12 15 13 4.51 190 3924.43
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In all three instances in Table 3-2, the lowest and highest values of 1( )q a  are 0.2 and 0.8, 

respectively. The three instances differ in the shape of 1( )q a . While in all three instances, 1( )q a  is 

in a sense “S”-shaped, it is flatter in instance 2 than in instance 3 (where it is piece-wise linear) and 

completely flat (linear) in instance 1. For this reason, there is a minor difference in the optimal 

performance measures between the three instances. This difference is that the optimal order-up-to 

level corresponding to a = 3 is slightly higher in instance 2 than in instance 1 and even higher in 

instance 3. A closer observation of the results, reveals that in instances 2 and 3, 1( )s a  is no longer 

non-decreasing in a, as was the case in all problem instances with two credibility states, shown in 

Table 3-1. Instead, 1( )s a  is increasing in a for 2a ≤ , but it decreases for 2a ≥ . This can be 

explained by the fact that, in these two instances, the loss in the customer’s goodwill towards 

supplier 1 is higher if supplier 1’s credibility level drops from 2 to 1 than if drops from 3 to 2.  

3.4 The Case of Two Extreme Credibility Levels 

Thus far in this chapter we have assumed that an equilibrium solution the two-supplier game exists, 

but we have not proved that it does. This is in fact quite a formidable task. To shed some light into 

the question of existence and uniqueness of an equilibrium, in this section we will restrict our 

attention to the special case where each supplier has only two extreme credibility levels, a low and a 

high, such that when in the low level, he is never chosen by the customer, and when in the high 

level, he is always chosen by the customer. In other words, {0,1}ta ∈  and 1 1(0) 0,  (1) 1q q= = . In 

addition, we assume that each supplier uses a credibility level-dependent order-up-to policy. Our 

goal is to find the optimal order-up-to levels, (0)is  and (1)is ,of each supplier i, i = 1,2, at 

equilibrium.  

Given that when the credibility level of supplier i is low, the customer will definitely not 

chose him, it is obvious that there is no benefit for supplier i to keep any inventory when his 

credibility state is low; therefore his order-up-to level should be zero, i.e., * *
1 2(0) (1) 0s s= = . 

Suppose then that 1 2(0) (1) 0s s= =  and 1 1 2 2(1) ,  (0)s s s s= = , for some non-negative numbers 

1 2,  s s . Figure 3-1 shows a sample path of the inventory surplus/backlog levels of both suppliers. At 

the beginning of period 0, the credibility level of supplier 1 is 1, i.e. 0 1a = ; therefore supplier 1, 

knowing that the customer will chose him, orders up to 1s . Supplier 2, on the other hand, knowing 
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that the customer will not choose him, orders up to zero. The customer indeed chooses supplier 1 

and demands from him a number of items. Supplier 1 satisfies all the demand from inventory and so 

his inventory level at the beginning of period 1 drops to 1
1x , where 1

1 0x ≥ , so it is a surplus. The 

inventory level of supplier 2, on the other hand, remains at zero, i.e. 1
2 0x = . Since supplier 1 

satisfied all the demand, his credibility level remains at 1 at the beginning of period 1, i.e. 1 1a = ; 

therefore, once again, supplier 1 orders up to 1s . Supplier 2, on the other hand, orders up to zero, i.e. 

he orders no items at all. The same exact sequence of events holds for the next period. Therefore, at 

the beginning of period 2, right after ordering, the inventory level of supplier 1 is at 1s , while that of 

supplier 2 is at zero. Also 2 1a = . The customer once again chooses supplier 1, but this time 

supplier 1 is unable to meet the demand. His inventory level drops to 3
1x , where 3

1 0x < , so it is a 

backlog. Since supplier 1 did not satisfied all the demand, his credibility level drops to 0 at time 3, 

i.e. 3 0a = ; therefore, this time, knowing that the customer will not chose him in that period, he 

orders up to zero. Supplier 2, on the other hand, knowing that the customer will chose him in that 

period, orders up to 2s . Indeed, the customer chooses supplier 2 in period 3 and in the following 

periods, until supplier 2 fails to satisfy all the demand in period 5. So, in period 6, the customer 

switches back to supplier 1 and the cycle is repeated. 
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Figure 3-1. Sample path of both suppliers’ inventory surplus/backlog 
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If we look at the evolution of the inventory surplus/backlog of supplier 1, we will notice that 

he receives no rewards and incurs no costs during the periods in which his credibility level is low, 

i.e., periods 3-5 (the same holds for supplier 2). If we cut these periods off the graph and paste 

together the ends of the rest of the sample path, we will end up with the sample path shown in 

Figure 3-2. This is the sample path of a standard single-newsvendor model, where the newsvendor 

uses an order-up-to 1s  policy and earns a profit of 1 1 1 1( ) ( )r c w h s w +− − −  per period. In other words, 

supplier 1 earns a profit of 1 1 1 1( ) ( )r c w h s w +− − −  during the periods where 1a = , and earns no 

profit at all during the periods where 0a = . Therefore, his long-run average profit is equal to the 

expected value of 1 1 1 1( ) ( )r c w h s w +− − −  multiplied by steady-state probability that 1ta = . 

s1 
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Figure 3-2. Sample path of supplier 1’s inventory surplus/backlog 

 

It is easy to see that { },  0,1,ta t = …  is a simple two-state Markov chain with one-step 

transition probabilities 

 00 2 01 2

10 1 11 1

( ),  ( )
( ),  ( )

= =

= =

P T s P T s
P T s P T s

 

The steady-state probabilities of this Markov chain are given by 

 1 2
0 1

1 2 1 2

( ) ( ),  
( ) ( ) ( ) ( )

π π= =
+ +

T s T s
T s T s T s T s

 (3.10) 

Let 1 2( , )iJ s s  be the long-run average profit of supplier i, given that 1 2(0) (1) 0s s= =  and 

1 1 2 2(1) ,  (0)s s s s= = . Then, based on our discussion above, 1 2( , ),  1, 2iJ s s i =  is given by 

 ( )2
1 1 2 1 1 1 1

1 2

( )( , ) ( ) ( )
( ) ( )

θ +⎡ ⎤= − − −⎣ ⎦+
T sJ s s r c h E s w

T s T s
 (3.11) 
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 ( )1
2 1 2 2 2 2 2

1 2

( )( , ) ( ) ( )
( ) ( )

θ +⎡ ⎤= − − −⎣ ⎦+
T sJ s s r c h E s w

T s T s
 (3.12) 

Expressions (3.11) and (3.12) are typical payoff functions in a two-player competitive game. 

It can be easily verified that 

 2
1 2 1 1

2

( )(0, ) ( )
1 ( )

θ= −
+
T sJ s r c

T s
 (3.13) 

 
1

1 1 2lim ( , )
s

J s s
→∞

= −∞  (3.14) 

Expression (3.13) implies that supplier 1’s average profit is positive when 1 0s = , as long as 

2s < ∞ , and expression (3.14) states that supplier 1’s profit tends to –∞ as 1s  tends to infinity. 

Similar expressions can be written for 2 1( ,0)J s  and 
2

2 1 2lim ( , )
s

J s s
→∞

. 

The goal of supplier i is to set his order-up-to level is  so as to maximize his payoff function, 

given that his competitor uses order-up-to level is . Let *( )i is s  be the optimal order-up-to level of 

supplier i, given that his competitor uses order-up-to level is , i.e., 

 *
1 2( ) arg max ( , )

i
i ii s

s s J s s≡  (3.15) 

We will refer to *( )i is s  as supplier i’s “best response function” to his competitor’s decision 

variable is  (see, Cahon and Netessine, 2005). A question of theoretical and practical interest is, 

does a Nash equilibrium (NE) exist, i.e. is there a pair * *
1 2( , )s s  such that *

2s  is a best response to *
1s  

and vice versa? According to Theorem 1 in Cahon and Netessine (2005), if the decision space of 

each player is compact (closed and bounded) and the payoff function is continuous and quasi-

concave, then there exists at least one pure NE. 

In our model, the decision space of each supplier is not bounded from above; however we 

could easily bound it with some large enough finite number to represent the upper bound on the 

demand distribution. That bound would not affect any of the order quantities and so the transformed 

game would behave just like the original game with an unbounded decision space. What is difficult 

to show is that payoff function of each player is quasi-concave. To do this, we would have to prove 

that the second partial derivative of each supplier’s payoff function with respect to his order-up-to 

level is non-positive. To see why this is a formidable task, consider the first partial derivative of any 

one supplier, say supplier 1, with respect to his order-up-to level. This is given by 
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( )

( )1 1 2 1 2 1 2
1 1 1 1 12

1 1 21 2

( , ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

θ +∂ ⎡ ⎤= − − − −⎣ ⎦∂ ++

J s s f s T s T s T sr c h E s w h
s T s T sT s T s

 (3.16) 

It can be easily verified that 

 
( )1

1 1 2 2
1 12

1 0 2

( , ) (0) ( ) ( )
1 ( )

θ
=

∂
= −

∂ +s

J s s f T s r c
s T s

 (3.17) 

 
1

1 1 2
1

1

( , )lim
s

J s s h
s→∞

∂
= −

∂
 (3.18) 

Similar expressions can be derived for supplier 2. 

Expression (3.17) implies that the derivative of the average profit of supplier 1 is positive at 

1 0s = , as long as 2s < ∞ . This further implies that *
1 2( ) 0s s > . Expression (3.18) states that the 

derivative of the average profit of supplier 1 with respect to 1s  is negative as 1s  tends to infinity. 

This means that 1 1 2( , )J s s  is increasing in 1s  at 1 0s =  and decreasing as 1s  tends to infinity; 

however, we do not know if 1 1 2( , )J s s  is unimodal. To find out, we would have to determine the 

sign of the second partial derivative of 1 1 2( , )J s s  with respect to 1s ; however, no firm conclusions 

can be reached about the sign of 2
1 1 2 1 1( , )J s s s s∂ ∂ ∂ , whose expression is too complicated to even 

display it here. 

Another option to see whether there exists al least on NE would be to investigate whether 

the game in our model is supermodular, in view of Theorem 3 in Cachon and Netessine (2005), 

which states that in a supermodular game1 there exists at least one NE. The second partial cross 

derivative of 1 1 2( , )J s s  is given by the following expression: 

 ( )
( )( ){

( )( )}

2
1 1 2 2

1 2 1 1 1 13
1 2 1 2

1 1 1 2 1 1 2

( , ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

θ +∂ ⎡ ⎤= − − − −⎣ ⎦∂ ∂ +

− − + +

J s s f s T s T s r c h E s w
s s T s T s

hT s T s T s T s T s T s

 

Unfortunately, no firm conclusions can be reached about the sign of the above expression. 

It appears then that there is no easy way to obtain any general results concerning the 

existence of a NE. For this reason, we will next limit our attention to the special case where the 

demand distribution is discrete and is given by (3.9).  
                                                 

1 A supermodular game is a game in which all the players’ payoff functions are supermodular. Supplier 1’s payoff 

function 1 1 2( , )J s s  is supermodular if 2
1 1 2 1 2( , ) 0J s s s s∂ ∂ ∂ ≥ , for all 1 2,s s . 
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 Suppose then that the distribution of the customer’s demand is given by (3.9). It is easy to 

verify that 

 
( )1

1 1

1 1

1( ) 1 (1 )

( 1)

ρ ρ
ρ

θ

+ −⎡ ⎤− = − − −⎣ ⎦

= − −

sE s w s

s T s
 (3.19) 

After substituting ( )F ⋅  from (3.9) and 1[( ) ]E s w +−  from (3.19) into the payoff of supplier 1, 

given by (3.11), we obtain 

 
( )( )

( ) ( )( )
2

1

1 2

2
1 1 2 1 1 1 1 1

1 2

1 1 1 1

( )( , ) ( ) ( 1
( ) ( )

(1 ) ( )(1 ) (1 )(1 (1 ) )
(1 ) (1 )

θ θ

ρ ρ ρ ρ ρ
ρ ρ ρ

= − − − −
+

−
= − − − − − − −

− + −

s
s

s s

T sJ s s r c h s T s
T s T s

r c h s
 (3.20) 

The order-up-to levels of the two suppliers, 1 2,s s , are discrete numbers. To examine the 

shape of 1 1 2( , )J s s  with respect to 1s  we will examine the difference in supplier 1’s payoff function 

for two adjacent order-up-to levels, 1 1s −  and 1s . After some algebraic manipulations this 

difference can be written as follows 

 

( )( )
1 2 1 1

2 1 2 1 2

1 1 2 1 1 2

1 1
1 1 1 1

1

( , ) ( 1, )

(1 ) (1 ) (1 (1 ) ) ( )(1 )
              

(1 ) (1 ) (1 ) (1 ) (1 )

s s s s

s s s s s

J s s J s s

h s r cρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

+ +

− +

− − =

⎡ ⎤− + − − − − − −⎣ ⎦−
− − + − − + −

 (3.21) 

If 1 1 2( , )J s s  is concave in 1s , then the best response function of supplier 1 is given by 

 { }
1 1

*
1 2 1 1 2 1 1 2: int
( ) arg min ( , ) ( 1, ) 0 1

s s
s s J s s J s s= − − ≤ −  

In order for the difference given by (3.21) to be non-positive, the term inside the brackets in 

the numerator must be non-negative, because the denominator is positive. In other words, 

{ }1 2 1 1

1 1

1 1*
1 2 1 1 1 1: int
( ) arg min (1 ) (1 ) (1 (1 ) ) ( )(1 ) 0 1s s s s

s s
s s h s r cρ ρ ρ ρ ρ+ +⎡ ⎤= − + − − − − − − ≥ −⎣ ⎦  

If we divide both sides of the condition inside the brackets in the above expression by 
1 1

1(1 )sh ρ +− , which is positive, and perform some further algebraic manipulations, we obtain the 

following simpler expression 

 2 1 2

1 1

* 1 1
1 2 1: int

1

( ) arg min (1 ) (1 ) 1
1

s s s

s s

r cs s s
h

ρ ρ ρ
ρ

−⎧ ⎫−
= + − ≥ − + −⎨ ⎬−⎩ ⎭

 (3.22) 

A similar expression can be derived for *
2 1( )s s . 
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Note that the left-hand side of the condition inside the brackets in expression (3.22) is equal 

to 2(1 )sρ−  when 1 0s = , so it is clearly smaller than the right-hand side. As 1s  increases, however, 

the left-hand side increases monotonically – in fact with an increasing rate – so the above 

expression has exactly one solution, which also proves that 1 1 2( , )J s s  is concave in 1s ; therefore 

according to Theorem 1 in Cachon and Netessine (2005), there exists at least one pure NE. Next, we 

will prove that if 1s  and 2s  are continuous, there exists a unique NE. 

Suppose we relax the integer constraints on 1s  and 2s , and allow 1s  and 2s  to be continuous. 

Then we can draw the left-hand side (lhs) and the right-hand side (rhs) of the condition inside the 

brackets in expression (3.22) as continuous functions of 1s , for different values of 2s . Figure 3-3 

shows these functions for four different values of 2s , namely 0, 2s′ , 2 2s s′ ′+ Δ , and ∞, where 

20 s′< < ∞  and 2 0s′Δ > . The rhs’s are represented by the horizontal dotted lines, and the lhs’s are 

shown by the solid increasing curves. The point where the lhs intersects – i.e. is equal to – the rhs, 

for a given 2s , is *
1 2( )s s . On the x-axis of the graph, we show *

1 2( )s s′  – which we denote by 1s′  – and 

*
1 2 2( )s s s′ ′+ Δ . It is clear from the graph that the mapping *

1 2( )s s  is increasing in 2s ; therefore 

* *
1 2 2 1 2 1 1 1( ) ( )s s s s s s s s′ ′ ′ ′ ′ ′+ Δ ≡ + Δ = + Δ , for some positive 1s′Δ . 

According to Theorem 4 in Cachon and Netessine (2005), if the best response function 
*
1 2( )s s  is a contraction on the entire 2s  space (and similarly *

2 1( )s s  is a contraction on the entire 1s  

space), then there exists a unique NE. In our case, to show that *
1 2( )s s  is a contraction on the entire 

2s  space, we have to show that 1 2s s′ ′Δ < Δ .  

As we mentioned earlier, 1s′  and 1 1s s′ ′+ Δ  are the points that satisfy the condition “lhs = rhs” 

for 2 2s s′=  and 2 2 2s s s′ ′= + Δ , respectively, i.e. 1s′  and 1 1s s′ ′+ Δ  satisfy 

 

2 1 2

2 1 2 1 2 2

1 1
1

1

( ) 1 1
1 1

1

(1 ) (1 )
1

( ) (1 ) (1 )
1

s s s

s s s s s s

r cs
h

r cs s
h

ρ ρ ρ
ρ

ρ ρ ρ
ρ

′ ′ ′−

′ ′ ′ ′ ′ ′− + Δ −Δ +Δ

−′ + − = − +
−

−′ ′+ Δ + − = − +
−

 

If we subtract the first from the second equation above, we have 

 2 1 2 1 2 1 2 2 2( )
1 (1 ) (1 ) (1 ) (1 )

1
s s s s s s s s ssρ ρ ρ ρ ρ

ρ
′ ′ ′ ′ ′ ′ ′ ′ ′− + Δ −Δ − +Δ′Δ + − − − = − − −

−
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11
1

1 (1 )ssρ
ρ ρ

+
− −

1 

11
sρ

ρ−
 

2(1 )sρ ′−
2 2(1 )s sρ ′ ′+Δ−

2 1
1 (1 )

1
s ssρ ρ

ρ
′ −+ −

−

2 2 1
1 (1 )

1
s s ssρ ρ

ρ
′ ′+Δ −+ −

−

0 

2
1 1 1(1 ) ( )s r c hρ ′− + −

2 2
1 1 1(1 ) ( )s s r c hρ ′ ′+Δ− + −

1 1 11 ( )r c h+ −

1 1 1( )r c h−

lhs: 2 0s =  

lhs: 2s = ∞  

rhs: 2 0s =

rhs: 2s = ∞

rhs: 2 2 2,  0s s s′ ′= < < ∞
rhs: 2 2 2 2,  0s s s s′ ′ ′= + Δ Δ >

1s  *
1 2 2 1 1( )s s s s s′ ′ ′ ′+ Δ ≡ + Δ  *

1 2 1( )s s s′ ′≡

lhs: 2 2 2 2,  0s s s s′ ′ ′= + Δ Δ >

lhs: 2 2 2,  0s s s′ ′= < < ∞

 
Figure 3-3. Left-hand side and right-hand side of the condition in (3.22) as functions of 1s , for 

different values of 2s  

It is clear that the rhs of the above equality is negative and that the first term of the lhs is 

positive; therefore, in order for the equality to hold, the term 2 1 2 1 2 1( )(1 ) (1 )s s s s s sρ ρ′ ′ ′ ′ ′ ′− + Δ −Δ −− − −  must be 

negative. But in order for this to happen, 2 1s s′ ′Δ − Δ  must be positive, which means that 1 2s s′ ′Δ < Δ . 

Consequently, *
1 2( )s s  is a contraction on the entire 2s  space. 

The same exact arguments can be used to show that *
2 1( )s s  is also a contraction on the entire 

1s  space. This guarantees that there exits a unique NE. 

To study the influence of the model parameters on the optimal performance of the two 

suppliers, we found the optimal order-up-to levels at equilibrium and the corresponding optimal 

average profits of the two suppliers for 10 problem instances. The model parameters that we used 

for these instances are identical to those used in instances 1-10 in Table 3-1, except for 1(0)q  and 

1(1)q , which are equal to 0 and 1, respectively. The input parameters and the results for the 10 

instances are shown in Table 3-3. The optimal order-up-to levels at equilibrium, 1 2,NE NEs s , were 

found by performing a fixed point iteration to simultaneously solve 
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*

1 1 2
*

2 2 1

( )

( )

NE NE

NE NE

s s s

s s s

=

=
 

where *
1 ( )s ⋅  is given by (3.22) and *

2 ( )s ⋅  by a symmetric expression. *
1J  is then equal to 

1 1 2( , )NE NEJ s s , where 1( , )J ⋅ ⋅  is given by (3.20), and *
2J  is equal to 2 1 2( , )NE NEJ s s , where 2 ( , )J ⋅ ⋅  is 

given by a symmetric expression. Although we proved that if 1s  and 2s  are continuous there exists 

a unique NE, in all instances that we examined we found exactly two NE points, namely 1 2( , )NE NEs s  

and 1 2( 1, 1)NE NEs s+ + . This is because 1s  and 2s  were constrained to be integers. In Table 3-3, we 

chose to display the smallest NE, namely 1 2( , )NE NEs s , because this yields a higher average profit for 

both suppliers. 

Table 3-3. Input parameters and results for 10 instances with 2 extreme credibility states 

# ρ  r  1c  2c 1h 2h 1
NEs 2

NEs *
1J  *

2J  
1 0.35 10 5 5 0.01 0.01 925 925 0.0271 0.0271 
2 0.35 10 5 7 0.01 0.2 41 27 8.8730 0.0013 
3 0.35 10 5 7 0.2 0.01 46 58 0.0026 4.9817 
4 0.35 15 5 5 0.01 0.01 1854 1854 0.0250 0.0250 
5 0.35 25 5 5 0.01 0.01 3711 3711 0.0257 0.0257 
6 0.35 35 5 5 0.01 0.01 5568 5568 0.0264 0.0264 
7 0.7 10 5 5 0.01 0.01 212 212 0.0136 0.0136 
8 0.6 10 5 5 0.01 0.01 331 331 0.0150 0.0150 
9 0.5 10 5 5 0.01 0.01 497 497 0.0200 0.0200 

10 0.3 10 5 5 0.01 0.01 1163 1163 0.0300 0.0300 
 

From the results in Table 3-3, we see that in all symmetric instances, namely instances 1 and 

4-10, the optimal order-up-to levels of both suppliers are extremely large, which suppresses their 

average profit slightly above zero. Only in instances 2 and 3 one of the two suppliers (the one with 

the lower inventory holding cost) achieves an average profit which is not close to zero. 

3.5 Conclusions 

We analyzed a discrete-time infinite horizon inventory model in which two suppliers compete for a 

single customer on product availability. We formulated the problem of finding optimal stationary 

ordering policies for both suppliers at equilibrium as a stochastic dynamic game, and we 

numerically solved the resulting optimality conditions for several instances of this problem. The 
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results indicate that both suppliers must follow the same type of policy, which can be characterized 

as an order-up-to policy. The order-up-to levels are generally different for each supplier and as the 

numerical examples suggested, they are independent of the competitor’s inventory position. 

It may not be that difficult to prove that the optimal ordering policy for each supplier, given 

that his competitor uses a stationary ordering policy, is an order-up-to policy. What is certainly 

much more demanding to prove is the existence and uniqueness of a NE, as the analysis of the 

simple two-credibility-level system in Section 3.4 showed. 

The proposed inventory model could be extended and modified in a number of ways. Firstly, 

we could consider the situation where there is no information sharing between the two suppliers. In 

this case each supplier must decide his replenishment orders without knowing the inventory or 

service level of his competitor. Another meaningful extension of our model would be to set the 

selling values as decision variables. In this way the customer’s next supplier choice would be 

affected not only by previous service levels, but by pricing policies as well. Finally, we could 

generalize the model for more than two suppliers. 

Appendix 

The complete value iteration algorithm outlined in Section 3.2 is as follows: 

 
Main Routine: 
int i, j; 
#include "Implementation Routine.c"  
int a = 0;  /* Credibility state of supplier 1 */ 
int X1 = 0; /* Inventory level of supplier 1 */ 
int X2 = 0; /* Inventory level of supplier 2 */ 
int g = 0; 
int k = 0; 
 
/* Main Routine */ 
main()  
{FILE *fptr; 
fptr = fopen("results.txt", "w"); 
 
/* Variable initializations */ 
V1diffmax = –1;  
V2diffmax = –1; 
V1diffmin = 1; 
V2diffmin = 1; 
 
/* Probabilities q1(α), α = 0,.., 3 */ 
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P[0] = 0.2;  
P[1] = 0.4;  
P[2] = 0.5; 
P[3] = 0.8; 
 
/* Check for convergence according to (3.8) */   
while (fabs(V1diffmax – V1diffmin) > fabs(e*TTable1[X1΄ – X1min][ X2΄ – X2min][ a1΄]) || fabs(V2diffmax – 
V2diffmin) > fabs(e*TTable2[X1΄ – X1min][ X2΄ – X2min][ a2΄])){ 
 

/* Run main value iteration step. * /  
for (a = 0; a <= M; a++){ 

for (X2 = X2min; X2 <= X2max; X2++){ 
for (X1 = X1min; X1 <= X1max; X1++){ 

/* Set V1old, V2old equal to the differential profit function values from previous step. */ 
V1old[X1 – X1min][X2 – X2min][a] = V1[X1 – X1min][ X2 – X2min][a];  
V2old[X1 – X1min][X2 – X2min][a] = V2[X1 – X1min][ X2 – X2min][a]; 
/* Find new optimal control and differential profit mapping values from (3.5) */ 
optU1U2(X1, X2, a); }}} 

 
for (a = 0; a <= M; a++){ 

for (X2 = X2min; X2 <= X2max; X2++){ 
for (X1 = X1min; X1 <= X1max; X1++){ 

/* Find new differential profit function values from (3.6) */ 
V1[X1 – X1min][X2 – X2min][a] = TTable1[X1 – X1min][X2 – X2min][a] – TTable1[X1΄ – X1min][ 

X2΄ – X2min][ a1΄]; 
V2[X1 – X1min][X2 – X2min][a] = TTable2[X1 – X1min][X2 – X2min][a] – TTable2[X1΄ – X1min][ 

X2΄ – X2min][ a2΄]; 
V1diffmax = max(V1diffmax, (V1[X1 – X1min][X2 – X2min][a] – V1old[X1 – X1min][X2 – 

X2min][a])); 
V2diffmax = max(V2diffmax, (V2[X1 – X1min][X2 – X2min][a] – V2old[X1 – X1min][X2 –

X2min][a])); 
V1diffmin = min(V1diffmin, (V1[X1 – X1min][X2 – X2min][a] – V1old[X1 – X1min][X2 – 

X2min][a])); 
V2diffmin = min(V2diffmin, (V2[X1 – X1min][X2 – X2min][a] – V2old[X1 – X1min][X2 – 

X2min][a])); }}} 
 

printf("V1diffmax – V1diffmin = %Lf\t", V1diffmax – V1diffmin); 
printf("e*TTable1' = %Lf\n", e*TTable1[X1΄ – X1min][ X2΄ – X2min][ a1΄]); 
printf("V2diffmax – V2diffmin = %Lf\t", V2diffmax – V2diffmin); 
printf("e*TTable2' = %Lf\n", e*TTable2[X1΄ – X1min][ X2΄ – X2min][ a2΄]);} 

 
print_UTTables(); 
fclose (fptr); } 
 
 
Implementation Routine: 
#include "Declaration Routine.h" 
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/* Routine that finds new 1 1 2( , , )x x aμ  values from the 1st expression of (3.4), given old 2 1 2( , , )x x aμ  
values */ 
void optU1(int X1, int X2, int a, int U2)  
{long double temp1; 
long double cumprob1; 
long double prob1; 
long double temp11; 
 
T1temp = –10000; 
for (U1 = – min(0, X1); U1 <= min(U1max, X1max – X1); U1++){ 

Wmax1 = X1 + U1 – X1min; 
Wmax2 = X2 + U2 – X2min; 
temp1 = (long double) – C1*U1; 
 
if (P[a] != 0){ 

cumprob1 = 0.0; 
temp11 = 0.0; 
for (w = 0; w <= X1 + U1; w++){ 

prob1 = p*(pow((1 – p), w)); 
cumprob1 = cumprob1 + prob1; 
temp11 = temp11 + (prob1)*(r1*w – h1*(X1 + U1 – w) + V1[(X1 + U1 – w) – X1min][ X2 + 

U2 – X2min][min((a + 1), M)]);}  
for (w = min(X1 + U1 + 1, Wmax1); w <= Wmax1; w++){ 

prob1 = p*(pow((1 – p), w)); 
cumprob1 = cumprob1 + prob1;  
temp11 = temp11 + (prob1)*(r1*w + V1[(X1 + U1 – w) – X1min][ X2 + U2 – X2min][max((a – 

1), 0)]);} 
 

temp11 = temp11 + (1 – cumprob1)*(r1*(X1 + U1 – X1min) + V1[(X1min) – X1min][ X2 + U2 – 
X2min][max((a – 1), 0)]); 

temp1 = temp1 + P[a]*temp11;} 
 
if (P[a] != 1){ 

cumprob1 = 0.0; 
temp11 = 0.0; 
for (w = 0; w <= (X2 + U2); w++){ 

prob1 = p*(pow((1 – p), w)); 
cumprob1 = cumprob1 + prob1; 
temp11 = temp11 + (prob1)*(V1[(X1 + U1) – X1min][( X2 + U2 – w) – X2min][max((a – 1), 

0)] – h1*max(0, ( X1 + U1)));} 
for (w = min(X2 + U2 + 1, Wmax2); w <= Wmax2; w++){ 

prob1 = p*(pow((1 – p), w)); 
cumprob1 = cumprob1 + prob1;  
temp11 = temp11 + (prob1)*(V1[(X1 + U1) – X1min][( X2 + U2 – w) – X2min][min((a + 1), 

M)] – h1*max(0, ( X1 + U1)));} 
 

temp11 = temp11 + (1 – cumprob1)*(V1[(x1 + u1) – x1min][(x2min) – x2min][min((a + 1), 
M)] – h1*max(0, (x1 + u1))); 
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temp1 = temp1 + (1 – P[a])*temp11;} 
 
if (temp1 > T1temp){  

u1temp = U1;  
T1temp = temp1;}}} 

 
 
/* Routine that finds new 2 1 2( , , )x x aμ  values from the 2nd expression of (3.4), given new 

1 1 2( , , )x x aμ  values */ 
void optU2(int X1, int X2, int a, int U1) 
{long double temp2; 
long double cumprob2; 
long double prob2; 
long double temp22; 
 
T2temp = – 10000; 
for (U2 = – min(0, X2); U2 <= min(U2max, X2max – X2); U2++){ 

Wmax1 = X1 + U1 – X1min; 
Wmax2 = X2 + U2 – X2min; 
Temp2 = (long double) –C2*U2; 
 
if (P[a] != 1){ 

cumprob2 = 0.0; 
temp22 = 0.0; 
for (w = 0; w <= X2 + U2; w++ ){ 

prob2 = p*(pow((1 – p), w)); 
cumprob2 = cumprob2 + prob2; 
temp22 = temp22 + (prob2)*(r2*w – h2*(X2 + U2 – w) + V2[(X1 + U1) – X1min][(X2 + U2 – 

w) – X2min][max((a – 1), 0)]); }  
for (w = min(X2 + U2 + 1, Wmax2); w <= Wmax2; w++){ 

prob2 = p*(pow((1 – p), w)); 
cumprob2 = cumprob2 + prob2;  
temp22 = temp22 + (prob2)*(r2*w + V2[(X1 + U1) – X1min][(X2 + U2 – w) – X2min][min((a 

+ 1), M)]);} 
 

temp22 = temp22 + (1 – cumprob2)*(r2*(X2 + U2 – X2min) + V2[(X1 + U1) – X1min][( X2min) – 
X2min][min((a + 1), M)]); 

temp2 = temp2 + (1 – P[a])*temp22; } 
 
if (P[a] != 0){ 

cumprob2 = 0.0; 
temp22 = 0.0; 
for (w = 0; w <= (X1 + U1); w++ ){ 

prob2 = p*(pow((1 – p), w)); 
cumprob2 = cumprob2 + prob2; 
temp22 = temp22 + (prob2)*(V2[(X1 + U1 – w) – X1min][(X2 + U2) – X2min][min((a + 1), 

M)] – h2*max(0, ( X2 + U2))); } 
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for (w = min(X1 + U1 + 1, Wmax1); w <= Wmax1; w++ ){ 
prob2 = p*(pow((1 – p), w)); 
cumprob2 = cumprob2 + prob2;  
temp22 = temp22 + (prob2)*(V2[(X1 + U1 – w) – X1min][(X2 + U2) – X2min][max((a – 1), 

0)] – h2*max(0, (X2 + U2)));} 
 

temp22 = temp22 + (1 – cumprob2)*(V2[(X1min) – X1min][(X2 + U2) – X2min][max((a – 1), 0)] 
– h2*max(0, ( X2 + U2))); 

temp2 = temp2 + (P[a])*temp22; } 
 
if (temp2 > T2temp){  
u2temp = U2; 
T2temp = temp2;}}} 

 
 
/* Routine that finds new optimal control and differential profit mapping values from expression 
(3.5)*/ 
void optU1U2(int x1, int x2, int a) 
{int u2temp_old; 
u2temp_old = X2max – X2 + 100; 
u2temp = X2max – X2; 
 
while (u2temp != u2temp_old){ 

u2temp_old = u2temp; 
/* Given old 2 1 2( , , )x x aμ  values, find new 1 1 2( , , )x x aμ  values from the 1st expression of (3.4) */ 
optU1(X1, X2, a, u2temp_old); 
/* Given new 1 1 2( , , )x x aμ  values, find new 2 1 2( , , )x x aμ  values from the 2nd expression of (3.4) */ 
optU2(X1, X2, a, u1temp);} 
 

UTable1[X1 – X1min][X2 – X2min][a] = u1temp; 
UTable2[X1 – X1min][X2 – X2min][a] = u2temp; 
TTable1[X1 – X1min][X2 – X2min][a] = T1temp; 
TTable2[X1 – X1min][X2 – X2min][a] = T2temp;} 
 
 
/* Routine that prints optimal order quantities * *

1 2 1 2( , , ) ( , , ),  1, 2i iu x x a x x a iμ= = */ 
void print_UTTables() 
{int i, j, k; 
fptr = fopen("results.txt", "w"); 
 
for (k = 0; k <= M; k++ ){ 

fprintf(fptr, "Printing UTable1 for a = %d \n", k); 
for (i = X2max – X2min; i >= 0; i– – ){ 

fprintf(fptr, "X2\t"); 
for (j = 0; j <= X1max – X1min; j++ ){ 

fprintf(fptr, " %d\t", UTable1[j][i][k]); } 
fprintf(fptr, "\n");} 
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fprintf(fptr, "Printing UTable2 for a = %d \n", k); 

for (i = X2max – X2min; i >= 0; i– – ){ 
fprintf(fptr, "X2\t"); 
for (j = 0; j <= X1max – X1min; j++ ){ 

fprintf(fptr, "%d\t", UTable2[j][i][k]);} 
fprintf(fptr, "\n");}} 

fclose (fptr); } 
 
 
Declaration Routine: 
/* Routine with variable and parameter declarations */ 
#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
  
FILE *fptr; 
/* State-space grid parameters */ 
int X1max = 10; 
int X2max = 10; 
int X1min = – 41; 
int X2min = – 41; 
 
#define N 53 
#define Nss 52 
 
#define p 0.35 /* Parameter ρ of the geometric distribution of customer demand */ 
#define M 3  /* Number of credibility levels */ 
 
/* reward and cost parameters */ 
#define h1 0.01 
#define h2 0.01 
#define r1 10 
#define r2 10 
#define C1 5 
#define C2 5 
 
/* Upper limit of control variables */ 
#define U1max 100 
#define U2max 100 
 
int w, U1, U2, u1temp, u2temp, X1, X2, a, Wmax1, Wmax2; 
 
long double T1, T2, T1temp, T2temp, temp1, temp2; 
long double V1diffmax, V2diffmax; 
long double V1diffmin, V2diffmin; 
long double Tempdiff1, Tempdiff2; 
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long double P[M + 1]; 
long double V1[Nss][Nss][M + 1] = {0}; 
long double V2[Nss][Nss][M + 1] = {0}; 
long double V1old[Nss][Nss][M + 1]; 
long double V2old[Nss][Nss][M + 1]; 
long double TTable1[Nss][Nss][M + 1] = {0}; 
long double TTable2[Nss][Nss][M + 1] = {0}; 
int UTable1[Nss][Nss][M + 1] = {0}; 
int UTable2[Nss][Nss][M + 1] = {0}; 
int X1΄ = 0; 
int X2΄ = 0; 
int a1΄ = 1; 
int a2΄ = 0; 
long double e = 0.00001; 
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Chapter 4 Do Stockouts Undermine Current 

Sales and Future Customer 

Demand? 

The main goal of this chapter is to shed some light into the effect of stockouts on current sales and 

future customer demand in a wholesale business environment. To this end, we study the linkage 

between stockouts, customer service, current sales, and future demand, by performing a thorough 

statistical analysis of historical customer order and delivery data of a tool wholesaler and distributor 

over a period of four years. We hope that the results of this analysis will provide useful information 

to operations management (OM) researchers who wish to develop and analyze realistic models of 

supplier-customer behavior. Our analysis could also serve as an example for sales and inventory 

management practitioners who wish to perform a similar study on their own data. Another objective 

of this chapter is to statistically analyze the customer order data itself. Given the lack of reports on 

real customer demand data in the literature, this analysis may be of particular interest to inventory 

management researchers who wish to develop and analyze realistic models of customer demand. 

Recently, there has been an increasing call for rigorous empirical research in OM. In 

contrast to other more mature management disciplines, OM has the least developed empirical 

knowledge base to draw upon in answering challenging questions. This may be due to at least two 

reasons. Firstly, empirical research involves a systematic derivation and analysis of data from direct 

or indirect observation, a job that most OM researchers are not well trained or interested in doing. 

Secondly, most companies that have the data are hesitant to share it with the rest of the world. We 

hope that this chapter will add an empirical contribution to the OM literature. 

The remaining of this chapter is organized as follows. In Section 4.1, we discuss the 

procedure of collecting the order and delivery data and transforming it into meaningful variables 

that measure customer service, order fill rate, and the rate of future demand. In Section 4.2, we 
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discuss the values of the sample means and coefficients of variation (CVs) of these variables. In 

Section 4.3, we perform a trend analysis of the customer order data. In Section 4.4, we identify the 

distributions of the order data, and in Section 4.5, we test for the existence of autocorrelations in the 

order data. In Section 4.6, we test for the existence of correlation between customer service and 

order fill rate, and in Section 4.7, we test for the existence of correlation between customer service 

and the rate of future demand. In Section 4.8, we try several commonly used nonlinear regression 

models between the variables measuring customer service and those measuring the rate of future 

demand. Finally, in Section 4.9, we summarize our findings and discuss their implications. 

4.1 Data Collection 

The company that provided the customer order and delivery data for this study was established as a 

retailer of ironware in Central Greece in 1922. Today, it is a large wholesaler and distributor of 

imported hand tools, hardware, industrial tools and equipment, electric power tools, accessories for 

power tools, welding machines and accessories, agricultural implements, and other similar products. 

The company imports and distributes products of many major European and Asian tool 

manufacturers in a very competitive environment. It is also an exclusive importer and distributor of 

a limited number of European and American tool manufacturers. The facilities of the company 

include a large central warehouse and two local retail shops that sell hand tools, industrial 

equipment, electric power tools and related equipment. The sales department of the company is 

staffed with twelve well-trained salespersons that travel in company owned cars to support over two 

thousand customers throughout the country, including numerous islands. The customers are retail 

shops and smaller distributors, i.e. the company operates in a B2B market. 

Customers place their orders usually by toll-free phone or fax and sometimes by email, and 

expect their orders to be met immediately. Each order typically contains several items (SKUs) in 

different quantities and with different prices and is handled by the salesperson who has been 

assigned to the customer that placed the order. The items of the order that are in stock are delivered 

to the customer usually on the next working day. Same-day delivery is possible for orders that are 

placed before noon. The items that are out of stock are backordered. The backordered items must be 

delivered within a specific time frame set by the customer. If they are not delivered by this time 

frame, the order for these items is cancelled. If this time frame is zero, the order for items that are 

out of stock is immediately cancelled. Usually, an order is partially met in more than one delivery, 

and part of it may be cancelled. 
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The company keeps a record of every order, including the items that are cancelled. For each 

order, it also keeps a record of the delivery dates and the items delivered on those dates. From these 

records we extracted the order and delivery information for the nine most important customers of 

the company, for a period of four years that included 1043 working days, from January 1, 1999 to 

December 31, 2002. To simplify the analysis of the data, we aggregated all the items in each order 

and expressed each order and its deliveries in terms of their monetary values in €. More specifically, 

for each order i of each customer, we collected the following raw data: 

ai : arrival date of the order; 

di : monetary value of the order that was placed, including the value of the items that 

were eventually cancelled from the order; 

Ji : number of deliveries of the order; 

bj,i : delivery date of the jth delivery of the order, j = 1, …, Ji; 

qj,i : monetary value of the jth delivery of the order, j = 1, …, Ji; 

κj,i ≡ bj,i – ai : delay in number of working days between the arrival date of the order and the 

jth delivery date of the order, j = 1, …, Ji. 

The main goal of our study was to examine if the customer service that the company 

provided to any particular order of a customer affected the fill rate of that order, i.e. the fraction of 

the order that was eventually delivered (not cancelled), as well as the rate of future orders of the 

same customer, and if so, how strong these effects were. To this end, we defined a set of variables 

to be used as measures of the customer service level, the order fill rate, and the rate of future orders. 

More specifically, for each order i, we defined the following variables as measures of the customer 

service level and the order fill rate, and computed their values: 

,1
1 iJ

i j i ij
x q d

=
≡ −∑ : fraction of the value of the order that was cancelled; 

,ii J ik κ≡ : maximum delivery delay; 

( ), ,1
2iJ

i j i j i i i ij
f q d k xκ

=
≡ +∑ : weighted sum of delivery delays. 

In the above expression for fi, the first term represents the weighted sum of the delivery 

delays, where the delay of each delivery is weighted by the fraction of the value of the order that 

was filled in this delivery. The second term represents a penalty for not delivering the cancelled part 

of the order weighted by the fraction of the value of the order that was cancelled. This penalty was 

chosen somewhat arbitrarily. We knew that it had to be larger than the maximum delivery delay, so 
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we chose it to be twice the value of the maximum delivery delay. For each order i, we also defined 

the following variables as measures of the rate of future orders, and computed their values: 

ei ≡ ai+1– ai: number of working days until the arrival of the next order; 

hi ≡ di+1: monetary value of the next order placed. 

We then entered all the above data into separate order and delivery data tables, one table for 

each customer. An example of such a table is Table 4-1, which shows the data for customer 4. 

Table 4-1: Table of order and delivery data for customer 4 

Order 
No. Raw data 

Service level 
and fill rate 
variables 

Future order 
variables 

i ai di Ji b1,i q1,i b2,i q2,i b3,iq3,iκ1,iκ2,iκ3,i xi ki fi  ei hi 
1 1/29/99 614.91 2 2/3/99 449.17 2/6/99 165.74 - - 3 5 - 0 5 3.54  9 574.15 
2 2/11/99 574.15 2 2/12/99 369.8 2/26/99204.35 - - 1 11 - 0 11 4.56  5 1573.96 
#  #  #  #  #  #  #  #  # # # # # # #  #   #  #  

46 12/4/02 77.57 1 12/28/03 77.57 - - - - 17   0 17 17  1 141.6 
47 12/5/02 141.6 1 12/9/02 141.6 - - - - 2   0 2 2  - - 

 

To get an idea of how the customer orders look like, Figure 4-1 shows a plot of the 

monetary value versus the arrival date of each order for customer 4. 
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Figure 4-1: Monetary value in € versus arrival date for the orders of customer 4 

 

Besides the tables that we created for each individual customer, we also created a table 

containing the order and delivery data for the ensemble of the customers. The way we created this 

table was by aggregating all the orders from different customers that arrived in any particular day 
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into a single order whose monetary value was the sum of the monetary values of the individual 

customer orders in that day. The set of delivery dates of this aggregate order was the union of the 

delivery dates of the individual orders, the number of deliveries was the number of elements of the 

set of delivery dates, and the monetary value of each delivery date was the sum of the monetary 

values of the orders delivered to all the customers on that date. 

An issue that emerged after having collected the data was how to treat outliers. An outlier is 

an observation that lies an abnormal distance from all the other observed values. In order to identify 

the outliers in our data we applied the box plot technique. The box plot is a graphical display that 

uses the median and the lower and upper quartiles, defined as the 25 and 75 percentile and denoted 

by Q1 and Q2, respectively, to describe the behavior of the data in the middle and the ends of the 

distributions. A box plot is constructed by drawing a box between the upper and lower quartiles 

with a solid line drawn across the box to locate the median. The following quantities (called fences) 

are needed for identifying extreme values in the tails of the distribution: the lower and upper inner 

fences, defined as Q1 – 1.5IQ and Q2 + 1.5IQ respectively, and the lower and upper outer fences, 

defined as Q1 – 3IQ and Q2 + 3IQ, respectively, where IQ denotes the inter-quartile range and is 

defined as the difference Q2 – Q1. A point beyond an inner fence on either side is considered a mild 

outlier. A point beyond an outer fence is considered an extreme outlier. 

Using the box plot technique, we scanned the order and delivery data table of each customer 

and we eliminated those rows (orders) i whose corresponding ei or hi values were found to be 

extreme outliers. This way, we eliminated approximately 10% of the rows of each table. Had we not 

eliminated these data, we would have ended up with: (1) biased or distorted estimates (e.g. sample 

means and CVs), (2) inflated sums of squares, which would make it difficult to partition sources of 

variation in the data into meaningful components, (3) and distorted p-values, which would make it 

hard to make inferences about statistical significance, or lack thereof. More importantly, had we not 

looked for indications that there was something unusual in the data we might have drawn false 

conclusions. More specifically, if we had included the outliers in our analysis, we risked having 

attributed extremely high values of ei or hi to the customer service level of order i, when such 

extreme values were most likely due to an extraordinary event that caused the customer to deviate 

from his normal behavior. For example, if a customer decided to buy an unusually expensive item 

in his next order, the monetary value of that order would be abnormally large; yet, this should not 

have been related to the service level he received. Similarly, if a customer suspended his business 

for Christmas or Easter holidays, or summer vacations, or some other reason, the number of days 
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until the arrival of his next order, ei, would be abnormally large; yet, this would have nothing to do 

with the service level that the customer received prior to the suspension of his business. Note that 

when we computed the values of variables κj,i and ei as the difference in number of working days 

between two dates, we excluded the weekend days between the two dates, but we did not exclude 

any other days during which the company was closed, because this information was not available. 

4.2 Discussion of the Sample Means and CVs of the Data 

From the data that we collected for each customer and for the ensemble of the customers, we 

computed the sample mean and CV of all the variables, after having eliminated the elements 

corresponding to extreme outliers. The results are shown in Table 4-2, where N denotes the sample 

size and μy and cy denote the mean and CV of any given variable y, respectively. 

Table 4-2: Sample mean and CV of the order and delivery variables 

Customer 
Statistic 1 2 3 4 5 6 7 8 9 Ensemble

N 80 53 121 42 145 59 247 48 41 631 
μe 8.4000 17.9434 5.9256 18.5952 4.7415 15.7966 2.8300 18.9167 18.6829 1.5166 
ce 0.9012 0.7302 0.8228 0.6010 0.7475 0.6473 0.7489 0.7244 0.6554 0.5680 
μh 509.867 1749.450 443.077 868.006 181.840 500.020 76.352 403.289 890.080 759.470
ch 0.8279 0.9304 1.1447 0.7317 1.1420 0.6552 0.7363 0.9094 0.8939 1.2023 
μx 0.0310 0.0543 0.0453 0.0803 0.0447 0.0473 0.0180 0.0271 0.0351 0.0419 
cx 3.1807 1.5816 2.8148 1.4645 2.2196 1.7937 3.7844 3.6385 2.5932 2.4038 
μk 3.1875 13.3774 4.0331 14.1190 4.5714 5.0508 0.6761 9.2500 14.2927 6.4675 
ck 2.6324 1.1937 2.0283 1.0503 5.2273 1.9536 3.4418 1.4019 1.3330 2.4330 
μf 2.9795 4.9908 2.9352 6.0301 2.5095 3.0252 1.7865 4.5409 4.6097 1.8724 
cf 2.2602 1.1002 2.0763 0.9478 1.9906 1.1370 5.9746 1.8950 1.9171 1.8213 

 

From the sample means of the variables of each individual customer shown in Table 4-2, we 

can see that the customers exhibited different average ordering behaviors. As a result, they received 

different average levels of customer service, to which they responded appropriately. To help us 

distinguish these differences, we constructed Table 4-3, in which we arranged the customers in 

decreasing order of their sample mean values for several variables. 

From Table 4-3, we can see that the customers who have larger μh values, i.e., who placed 

larger orders, have larger μk and μf values, i.e., faced larger maximum and average delivery delays. 

This is most likely due to the fact the larger the order value is, the larger the number of items in the 

order, and therefore the larger the probability that some of the items are out of stock. In response to 
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the reduced customer service that they received, these customers generally had larger order 

cancellation percentages, μx, except for customer 9, who had a relatively low cancellation 

percentage. From Table 4-3, we can also see that the customers who placed larger orders, generally 

had larger μe values, i.e., ordered less frequently, except for customer 8, who placed smaller orders 

relatively infrequently. 

Table 4-3: Ordering of customers based on the sample mean of several order and delivery variables 

Statistic Larger ←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ Smaller 
μe 9 4 8 2 6 1 3 5 7 
μh 2 9 4 1 6 3 8 5 7 
μx 4 2 6 3 5 9 1 8 7 
μk 9 4 2 8 6 5 3 1 7 
μf 4 2 9 8 6 1 3 5 7 

 

From the sample CVs of the variables shown in Table 4-2, we can observe that different 

variables exhibited different levels of variability. Hopp and Spearman (2000) classify a random 

variable as having low variability, moderate variability, or high variability, if its CV is smaller than 

0.75, between 0.75 and 1.33, or greater than 1.33, respectively. Using this classification, we can see 

from the data that the number of days until the arrival of the next order, e, had low to moderate 

variability for all the customers as well as the ensemble of the customers. Similarly, the monetary 

value of the next order, h, had moderate variability for all the customers as well as the ensemble of 

the customers, except for customer 6 who had low variability. All the other variables, which are 

related to the service that the company provided to the customers and to the customers’ immediate 

response to that service, i.e., x, k, and f, had high variability for most of the customers as well as the 

ensemble of the customers, whereas for the rest of the customers they had moderate variability. 

4.3 Trend Analysis of the Order Data 

After having computed the sample means and CVs of the order and delivery data, we set out to 

explore if there was a trend in the order data. To this end, for each customer, we aggregated the 

monetary values of all the orders that arrived within each month and plotted them against time. The 

plots are shown in Figures 4-2 to 4-4. We then performed a linear regression of the monthly orders 

to find out if there is a trend in the demand during the entire 4-year period studied. The resulting 

trend in € per day and the R2 coefficient of the regression analysis are shown in Table 4-4. In the 
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same table, we also display the average monthly monetary value of all orders during any year Y, 

denoted by dmY, for each of the four years that we examined. 

From the results in Table 4-4, it appears that there was a small positive trend in the demand 

for seven out of nine customers, and a very small negative trend for the remaining two customers. 

For most customers, the R2 coefficient was extremely small, meaning that the linear trend model 

explains very little of the variability in the monthly orders. To a large extent, this is due to the fact 

that for most customers the increment in the average monthly demand from year to year changed 

dramatically in size and, even worse, in sign. The only customers that did not exhibit ups and 

downs in their average monthly demand from year to year were customers 1, 3, and 9. Not 

surprisingly, these customers had the highest R2 coefficients. 
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Figure 4-2: Monthly orders for customers 1-3 
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Figure 4-3: Monthly orders for customers 4-6 
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Figure 4-4: Monthly orders for customers 7-9 

Table 4-4: Average monthly demand in € per month for each year, demand trend in € per day for 

the entire 4-year period, and corresponding R2 coefficient 

 Customer 
 1 2 3 4 5 6 7 8 9 

dm1999 525.6425 1812.551 625.0392 1067.327 872.045 656.305 465.9592 465.2525 490.2725
dm2000 901.7273 1673.877 924.84 451.1033 816.3225 796.9983 408.3542 342.6708 674.0317
dm2001 1587.33 1359.666 1471.438 1341.301 521.332 340.054 477.903 366.582 930.935
dm2002 1678.218 2235.555 1918.204 692.3258 1046.498 795.2392 544.8942 525.6225 1042.158

4-year trend 1.0951 0.0893 1.1142 -0.0364 0.1048 -0.0658 0.0796 0.0487 0.4423 
R2 0.2259 0.0007 0.2191 0.0004 0.0058 0.0027 0.0143 0.0018 0.0470 

 

4.4 Distribution Identification of the Order Variables 

One of the main objectives of real data analysis is to determine the distributions of the variables that 

describe the physical data. Identifying candidate distributions is both an art and a science, as it 

requires an understanding of the underlying physical process, knowledge of the characteristics of 

the theoretical distributions, and a statistical analysis of the data. We studied the histograms and 

descriptive statistics of the historical data and fitted several candidate theoretical distributions for 

the order interarrival times and monetary values, e and h, respectively, for each individual customer 

and for the ensemble of the customers. For each candidate distribution, we used a least-squares fit 

followed by a probability plot (PP) in order to confirm the goodness of fit of that distribution. In a 

PP, the cumulative proportion for a variable is plotted against the cumulative proportion expected if 
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the sample were from a specific theoretical distribution. If the sample is from the specific 

distribution, points will cluster around a straight line. In addition, we created detrended PPs that 

show the individual divergences between the observed and estimated cumulative values.  

The results showed that the Weibull distribution provided the best or close to the best fit for 

every variable. This is not surprising given that the flexibility of the Weibull distribution allows it to 

fit many data sets. The parameters of the Weibull distribution are its shape and scale. The shape 

parameter of the Weibull distribution, denoted by β, provides insight into the behavior of the 

random variable of interest and in particular the shape of its hazard rate function in case the variable 

represents the time between two random events. The hazard rate function is a well-known function 

in reliability theory that provides an instantaneous (at time t) rate of occurrence of a random event 

such as a failure or, in our case, the arrival of a customer order. A value of β > 1 signifies an 

increasing hazard rate function, whereas a value of β < 1 signifies a decreasing hazard rate function. 

When β = 1, the hazard rate function is constant and the Weibull distribution is identical to the 

exponential distribution. When 1 < β < 2, the hazard rate is increasing and concave. When β = 2, the 

hazard rate is increasing and linear. When β > 2, the hazard rate is increasing and convex. Finally, 

when β < 1, the Weibull distribution is similar in shape to the exponential, whereas when β > 3, the 

Weibull distribution is somewhat symmetrical like the normal distribution. When 1 < β < 3, the 

Weibull distribution is skewed to the left. The scale parameter of the Weibull distribution, denoted 

by θ, influences both the mean and the spread of the distribution. As θ increases, the probability that 

the event will not occur at a given point in time increases, whereas the slope of the hazard rate 

decreases.  

The parameters of the Weibull distribution for the variables e and h of each customer and 

the ensemble of the customers are shown in Table 4-5, where ι denotes the order of fit and is 

defined as the order of the maximum individual divergence between the observed and estimated 

cumulative values. An order of fit below 0.15 indicates a very good fit. 

From the results in Table 4-5, we can see that the shape parameter β of the Weibull 

distribution of the number of days until the next order arrival, e, is between 1 and 2 for all the 

customers as well as for the ensemble of the customers. This means that the Weibull distribution is 

skewed to the left. It also means that the order interarrival times have an increasing and concave 

hazard rate, i.e. the longer the time since the last order arrival date, the larger the probability that the 

next order will arrive soon. This is natural, because as the time since the last order arrival date of 

any particular customer passes, this customer’s inventories are being depleted by his own customers 
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and so the probability that he will soon place a replacement order increases. The fact that β > 1 for 

all the customers and for the ensemble of the customers also means that the interarrival time 

distributions deviate from the exponential distribution, for which β = 1, although not dramatically, 

since for five out of nine customers, β is below 1.2, and for the remaining four customers it is 

between 1.2 and 1.4. The results in Table 4-5 also show that the shape parameter β of the Weibull 

distribution of the monetary values of the orders, h, is between 1 and 2 for seven out of nine 

customers. This means that the Weibull distribution is skewed to the left for these customers. For 

the remaining two customers as well as for the ensemble of the customers β is less that 1, which 

means that the Weibull distribution is similar in shape to the exponential. 

Table 4-5: Weibull parameters of the interarrival times and monetary values of the orders 

Customer 
Var Par 1 2 3 4 5 6 7 8 9 Ensemble

 θ 8.6553 19.76 6.2803 21.6131 5.174 18.078 3.08 20.7746 20.9895 1.6984 
e β 1.0925 1.1 1.1713 1.3460 1.364 1.186 1.312 1.1777 1.2404 1.6969 
 ι 0.05 0.08 0.05 0.10 0.03 0.08 0.05 0.12 0.11 0.04 
 θ 540.394 1624.712 207.902 957.475 191.067 566.257 83.272 415.053 885.922 663.013

h β 1.218 0.6932 1.372 1.1386 1.509 1.2533 1.631 1.1636 0.8895 0.8979 
 ι 0.05 0.10 0.07 0.11 0.06 0.11 0.07 0.07 0.125 0.06 

 

Finally, from Table 4-5, we can see that the scale parameter θ of the Weibull distribution of 

both variables e and h is close to the average values of these variables, μe and μh, which are 

displayed in Table 4-2. 

4.5 Determination of Autocorrelation in the Order Data 

Many analytical models of inventory management systems assume that the customer order 

interarrival times as well as the order sizes are independent random variables. In this section we test 

the validity of this assumption for the historical customer order data that we collected by testing for 

the existence of autocorrelation in that data. Lack of autocorrelation is necessary but not sufficient 

to show that successive observations of a random variable are independent. For the purposes of 

practical inventory management, however, testing for autocorrelation should suffice as an indication 

of independence. 

Using (auto) regression analysis, we calculated the autocorrelation coefficients for lags 

ranging from 1 to 10, and we performed the Durbin-Watson test for addressing the significance of 
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the lag – 1 autocorrelation, for the times between consecutive customer orders, e, and the monetary 

values of each order, h, for each individual customer and the ensemble of the customers. The results 

are shown in Tables 4-6 and 4-7, for e and h, respectively. Each table lists the lag – 1 

autocorrelation coefficient, the maximum autocorrelation coefficient for any lag ranging from 1 to 

10, and the lag corresponding to that maximum, which are labeled: lag – 1 r, max |r|, and lag for 

max |r|, respectively. Each table also lists the Durbin-Watson statistic D and 4 – D. One of the 

assumptions of regression analysis is that the residuals for consecutive observations are 

uncorrelated. If this is true, the expected value of the Durbin-Watson statistic D is 2. Values less 

than 2 indicate positive autocorrelation, and values greater than 2 indicate negative autocorrelation. 

Table 4-6: Autocorrelation and Durbin-Watson test for the customer order interarrival times e 

Customer 
 1 2 3 4 5 6 7 8 9 Ensemble

Autocorrelation 
Lag – 1 r -0.027 -0.037 0.209 -0.084 -0.117 0.175 0.178 -0.011 -0.208 0.18 
Max |r| 0.333 0.143 0.252 0.195 0.163 0.183 0.178 0.252 0.195 0.22 

Lag for Max |r| 12 9 12 2 2 3 1 1 7 9 
Durbin-Watson Statistic 

D 1.986 2.035 2.03 1.952 1.958 1.963 1.99 1.976 1.951 2.049 
4 - D 2.014 1.965 1.97 2.048 2.042 2.037 2.01 2.024 2.049 1.951 

Durbin-Watson 0.01 Test Bounds 
D0.01,L 1.47 1.32 1.52 1.25 1.52 1.38 1.52 1.32 1.25 1.52 
D0.01,U 1.52 1.4 1.56 1.34 1.56 1.45 1.56 1.4 1.34 1.56 

Conclusion for H0: ρ = 0, and 
H1: ρ > 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 
H1: ρ < 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

 

From Tables 4-6 and 4-7, we can see that the Durbin-Watson statistic D is very close to 2 

for all the e and h data. This means that the lag – 1 autocorrelation in the data is very small. The 

significance of the lag – 1 autocorrelation can be addressed with the Durbin-Watson test. This test 

compares D with upper and lower bounds Dα,U and Dα,L for a given significance level α. For the 

positive autocorrelation hypothesis (ρ > 0), if D < Dα,L, we conclude that there is positive 

autocorrelation and if D > Dα,U, we conclude that there is not. If Dα,L < D < Dα,U, the test is 

inconclusive. For the negative autocorrelation hypothesis (ρ < 0), if 4 – D < Dα,L, we conclude that 

there is negative autocorrelation, and if 4 - D > Dα,U, we conclude that there is not. If Dα,L < 4 – D < 

Dα,U, the test is inconclusive (e.g., see Hines and Montgomery, 1990). From Tables 4-6 and 4-7, it 

can be seen that the conclusion of all the tests is that there is neither positive nor negative lag – 1 
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autocorrelation at the 0.01 significance level in any of the data. Therefore, assuming independence 

appears valid for all practical purposes for both e and h. 

Table 4-7: Autocorrelation and Durbin-Watson test for the customer order monetary values h 

Customer 
 1 2 3 4 5 6 7 8 9 Ensemble

Autocorrelation 
Lag – 1 r -0.11 -0.259 -0.012 0.097 0.023 0.119 -0.025 -0.123 -0.055 0.033 
Max |r| 0.163 0.222 0.276 0.19 0.155 0.238 0.195 0.276 0.248 0.118 

Lag for Max |r| 8 3 4 8 7 2 12 3 2 16 
Durbin-Watson Statistic 

D 2.014 1.987 1.923 1.99 1.995 1.908 1.997 2.075 1.966 2 
4 - D 1.986 2.013 2.077 2.01 2.005 2.092 2.003 1.925 2.034 2 

Durbin-Watson 0.01 Test Bounds 
D0.01,L 1.47 1.32 1.52 1.25 1.52 1.38 1.52 1.32 1.25 1.52 
D0.01,U 1.52 1.4 1.56 1.34 1.56 1.45 1.56 1.4 1.34 1.56 

Conclusion for H0: ρ = 0, and 
H1: ρ > 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 
H1: ρ < 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

4.6 Determination of Correlation between Customer Service 

and Order Fill Rate 

In Section 4.2, we conjectured that customers who face larger company delivery delays respond to 

these delays with larger order cancellation percentages. This conjecture was based on a rough 

comparison between the mean value of the maximum delivery delay k and the order cancellation 

percentage x among different customers. To better support and refine this conjecture, we tested for 

the existence of correlation between customer service and the order fill rate for each customer 

separately as well as for the ensemble of the customers. More specifically, we examined if the 

maximum delivery delay, k, which measures customer service, was statistically correlated with the 

fraction of the value of the order that was cancelled, x, which determines the order fill rate. 

To test the existence of correlation between two random variables one needs to compute the 

correlation coefficient of the two variables. Correlation coefficients range in value from –1, 

indicating a perfect negative relationship, to +1, indicating a perfect positive relationship. There are 

several correlation coefficient definitions. The most common is Pearson's correlation coefficient 

which measures the linear association between two variables and is used if the variables are 

normally distributed. If two variables are not normally distributed or if their relationship is not 
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linear, Pearson's correlation coefficient is not an appropriate statistic for measuring their 

association. 

Scatter plots of the k and x variables revealed that the distributions of both these variables 

were significantly skewed to the left and hence were far from being normal. For this reason, 

Pearson’s correlation coefficient would be an inappropriate statistic to use. A more appropriate 

statistic is Spearman's ρ correlation coefficient, which measures the rank-order association between 

two variables and works regardless of the distributions of the variables. With this in mind, we 

computed Spearman's correlation coefficient ρ with its two-tailed significance level p for variable k 

and x, for each customer and for the ensemble of the customers. The results are shown in Table 4-8, 

where the correlations that are significant at a 0.05 level are marked with one asterisk, while those 

that are significant at a 0.01 level are marked with two asterisks. 

Table 4-8: Spearman’s ρ correlation coefficient and corresponding two tailed significance level p 

regarding the correlation between variables k and x 

Customer 
 1 2 3 4 5 6 7 8 9 Ensemble
ρ 0.115 0.221* 0.491** 0.087 0.413** 0.257* 0.153* -0.077 0.09 0.348**
p 0.308 0.05 0.000 0.585 0.000 0.05 0.016 0.603 0.575 0.000 
 

From the results displayed in Table 4-8, we can see that for five customers, namely 

customers 2, 3, 5, 6, and 7, as well as for the ensemble of the customers, there is a statistically 

significant positive correlation between k and x either at the 0.01 or the 0.05 level, since the 

corresponding p-value is smaller than 0.01 or 0.05, respectively. The existence of these correlations 

indicates that when customers 2, 3, 5, 6, and 7, face larger company delivery delays, they respond 

with larger order cancellation percentages. 

For the remaining four customers, namely customers 1, 4, 8, and 9, Spearman’s ρ coefficient 

is positive (except in the case of customer 8 where it is slightly negative) but not significantly 

different from zero at the 0.01 or even the 0.05 level, because the corresponding p-value is greater 

than 0.01 or 0.05, respectively. For these customers, therefore, there is no statistically significant 

evidence that the company’s delivery delays affect their order fill rate.  
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4.7 Determination of Correlation between Customer Service 

and Future Customer Orders 

One of the main goals of our study was to examine if the poor service that a customer receives due 

to a stockout affects the rate of his future orders. To this end, we tested for the existence of 

correlation between customer service and future customer orders from the data that we collected. 

More specifically, we examined if the variables that measure the severity of stockouts, which we 

call independent variables, were statistically correlated with the variables that measure the change 

in the rate of future customer orders, which we call dependent variables. 

The independent variables that measure the severity of a stockout faced by any particular 

order i of any particular customer are xi, ki, and fi. The dependent variables that measure the change 

in the rate of future customer orders following order i are ei and hi. Intuition suggests that a drop in 

the rate of future customer orders may be affected not only by the most recent stockout experienced 

by a customer but by previous stockouts as well, although the effect of older stockouts on the drop 

in future customer demands should be less intense than the effect of more recent stockouts. In order 

to test the hypothesis that the drop – if any – in the rate of future customer orders due to the loss of 

customer goodwill is a phenomenon that is cumulative over time but at the same time customers are 

forgetting and forgiving as time passes, we introduced three new sets of variables, which were 

defined as the exponentially smoothed versions of the three original independent variables, xi, ki, 

and fi. In each new variable, the severity of the stockout faced by order i is measured by weighing 

the current value as well as all the previous values of the respective variable with geometrically 

decreasing weights as we go back in time. More specifically, the exponentially smoothed versions 

of the independent variables were defined as follows: 

1(1 )i i iX x Xα αα α −≡ + −  

1(1 )i i iK k Kα αα α −≡ + −  

1(1 )i i iF f Fα αα α −≡ + −  

where α is the smoothing factor. Note that as α tends to 1, more and more weight is being placed on 

the more recent value of the independent variable, whereas as α tends to 0, more and more weight is 

being placed on past values of the independent variable. In this study, we considered four values for 

α, namely, 0.2, 0.4, 0.6, 0.8, and 1. 

In Section 4.4, we saw that the distributions of the dependent variables e and h are skewed 

to the left and hence are far from being normal. For this reason, we argued that Pearson’s 
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correlation coefficient would be an inappropriate statistic to use in order to test the correlation 

between the independent and the dependent variables. A more appropriate statistic is Spearman's ρ 

correlation coefficient. With this in mind, we computed Spearman's correlation coefficient ρ with its 

two-tailed significance level p for each pair of independent variables Xα, Kα, and Fα, for α = 0.2, 0.4, 

0.6, 0.8, and 1, and dependent variables e and h. The results are shown in Tables 4-9 and 4-10, 

where the correlations that are significant at a 0.05 level are marked with one asterisk, while those 

that are significant at a 0.01 level are marked with two asterisks. 

From the results displayed in Tables 4-9 and 4-10, we can see that for seven out of nine 

customers at least one of the independent variables is statistically correlated with at least one of the 

dependent variables. This supports the allegation that stockouts adversely affect the rate of future 

customer orders, at least for most customers. Moreover, for the majority of the cases where there is 

a statistically significant correlation between an independent and a dependent variable, the 

corresponding Spearman’s ρ correlation coefficient is below 0.4, indicating that this correlation is 

not very strong. 

From the results shown in Tables 4–9 and 4–10, we can see that for all the cases where the 

correlation between an independent variable and variable e is significant, this correlation is positive 

(see Table 4-9). This is in line with intuition, which suggests that the larger the value of the 

independent variable is, the lower the service level, and hence the longer the time until the next 

order, e. On the other hand, for all the cases where the correlation between an independent variable 

and variable h is significant, this correlation is negative (see Table 4-10). This is also intuitively 

reasonable, because the larger the value of the independent variable is, the lower the service level, 

and hence the smaller the value of the next order, h. 

From Tables 4–9 and 4–10, we can also observe that the pairs of independent and dependent 

variables that have statistically significant correlations vary from customer to customer. This 

suggests that different customers respond differently to stockouts as far as their future orders are 

concerned. To see this, let us look in detail at the pairs of variables that have statistically significant 

correlation coefficients, for each customer separately. 

Customers 1 and 5 are the only customers that exhibit no statistically significant correlation 

between any independent and any dependent variable. This means that there is no statistical 

evidence that customers 1 and 5 change the rate of their future orders in response to stockouts. This 

may be due to a number of factors that we did not take into account in this study, such as the size 
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and level of sophistication of each customer, special pricing contracts between the company and its 

customers, the geographical proximity of each customer to the company, etc. 

Table 4-9: Spearman’s ρ correlation coefficient and corresponding two tailed significance level p 

regarding the correlation between each independent variable and variable e 

  Customer 
Ind. var.  1 2 3 4 5 6 7 8 9 

X1 ρ 0.005 0.045 .266** 0.008 -0.021 -0.121 .165** 0.277 0.086 
 p 0.962 0.748 0.003 0.958 0.803 0.363 0.01 0.057 0.593 

X0.8 ρ 0.041 0.023 .249** -0.049 0.008 -0.085 0.053 0.146 0.191 
 p 0.715 0.868 0.006 0.756 0.924 0.521 0.405 0.321 0.232 

X0.6 ρ 0.042 0.109 .230* -0.157 0.031 -0.055 0.026 0.139 0.203 
 p 0.71 0.439 0.011 0.32 0.707 0.677 0.688 0.347 0.204 

X0.4 ρ 0.062 0.171 .200* 0.24 0.05 -0.018 -0.02 0.118 0.185 
 p 0.586 0.221 0.028 0.126 0.55 0.889 0.759 0.424 0.246 

X0.2 ρ 0.089 0.197 .184* .383* 0.098 0.004 -0.102 0.056 0.158 
 p 0.435 0.157 0.044 0.012 0.235 0.975 0.111 0.706 0.323 

K1 ρ 0.19 0.12 0.159 0.194 0.089 .306* .223** 0.284 0.237 
 p 0.091 0.392 0.081 0.219 0.285 0.018 0 0.05 0.136 

K0.8 ρ 0.193 0.22 0.1 0.262 0.084 .304* .179** 0.169 0.264 
 p 0.086 0.114 0.275 0.093 0.312 0.019 0.005 0.251 0.096 

K0.6 ρ 0.201 0.248 0.101 0.278 0.09 .295* .167** 0.158 0.234 
 p 0.074 0.073 0.268 0.074 0.28 0.023 0.008 0.283 0.142 

K0.4 ρ 0.16 .291* 0.123 0.294 0.11 .281* .135* 0.129 0.17 
 p 0.157 0.034 0.178 0.059 0.183 0.031 0.034 0.382 0.287 

K0.2 ρ 0.151 0.237 .204* 0.276 0.132 0.206 .128* 0.086 0.058 
 p 0.18 0.088 0.024 0.077 0.111 0.118 0.044 0.562 0.72 

F1 ρ 0.113 0.13 .261** 0.096 -0.005 0.176 .268** .298* 0.132 
 p 0.32 0.352 0.004 0.546 0.954 0.181 0 0.04 0.409 

F0.8 ρ 0.126 0.114 .256** 0.072 0.03 0.192 .194** 0.262 0.215 
 p 0.264 0.415 0.005 0.649 0.72 0.145 0.002 0.072 0.176 

F0.6 ρ 0.142 0.111 .239** 0.017 0.033 0.2 .141* 0.23 0.276 
 p 0.208 0.427 0.008 0.914 0.689 0.128 0.027 0.117 0.081 

F0.4 ρ 0.142 0.111 .244** -0.041 0.056 0.144 0.068 0.168 0.308 
 p 0.208 0.43 0.007 0.796 0.503 0.276 0.288 0.253 0.05 

F0.2 ρ 0.164 0.029 .214* -0.031 0.094 0.072 -0.01 0.118 0.296 
 p 0.147 0.835 0.018 0.843 0.255 0.588 0.872 0.424 0.06 
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Table 4-10: Spearman’s ρ correlation coefficient and corresponding two tailed significance level p 

regarding the correlation between each independent variable and variable h 

  Customer 
Ind. var.  1 2 3 4 5 6 7 8 9 

X1 ρ 0.158 -0.147 -0.173 -0.27 -0.041 -0.199 0.009 -.354* -0.137 
 p 0.161 0.294 0.058 0.083 0.618 0.13 0.893 0.014 0.394 

X0.8 ρ 0.175 -0.139 -0.116 -.323* -0.035 -0.169 -0.025 -0.023 -.379* 
 p 0.121 0.322 0.205 0.037 0.671 0.2 0.697 0.876 0.015 

X0.6 ρ 0.179 -0.103 -0.102 -.369* -0.019 -0.15 -0.019 -0.035 -.389* 
 p 0.111 0.463 0.267 0.016 0.818 0.256 0.764 0.811 0.012 

X0.4 ρ 0.163 -0.052 -0.08 -.305* 0.005 -0.089 -0.009 -0.021 -.340* 
 p 0.149 0.712 0.383 0.05 0.948 0.502 0.891 0.889 0.029 

X0.2 ρ 0.162 -0.088 -0.053 -0.291 0.035 -0.004 0.006 -0.039 -0.277 
 p 0.15 0.532 0.563 0.062 0.675 0.977 0.927 0.793 0.08 

K1 ρ 0.026 -0.067 -.212* -0.151 -0.134 -0.085 0.01 -0.104 -0.101 
 p 0.817 0.636 0.02 0.341 0.104 0.523 0.878 0.48 0.529 

K0.8 ρ -0.004 0.003 -.181* -0.104 -0.119 -0.159 -0.063 -0.082 -0.108 
 p 0.972 0.984 0.047 0.514 0.152 0.229 0.327 0.578 0.502 

K0.6 ρ -0.023 0.033 -0.166 -0.106 -0.121 -0.196 -0.068 -0.059 -0.116 
 p 0.836 0.814 0.069 0.504 0.145 0.136 0.286 0.692 0.469 

K0.4 ρ -0.066 0.023 -0.161 -0.098 -0.117 -0.218 -0.088 -0.032 -0.183 
 p 0.558 0.868 0.078 0.538 0.157 0.097 0.167 0.828 0.252 

K0.2 ρ -0.047 0.009 -0.157 -0.152 -0.094 -0.145 -0.075 -0.021 -0.189 
 p 0.682 0.949 0.086 0.335 0.26 0.273 0.239 0.888 0.237 

F1 ρ 0.134 0.035 -.215* -0.064 -0.094 -0.095 0.051 -0.125 -0.026 
 p 0.235 0.806 0.018 0.687 0.259 0.475 0.424 0.396 0.871 

F0.8 ρ 0.156 0.022 -.199* -0.091 -0.078 -0.075 0.057 -0.12 0.113 
 p 0.167 0.874 0.029 0.565 0.347 0.573 0.374 0.416 0.482 

F0.6 ρ 0.122 -0.011 -.183* -0.131 -0.074 -0.067 0.059 -0.049 0.129 
 p 0.281 0.938 0.045 0.407 0.375 0.616 0.357 0.743 0.42 

F0.4 ρ 0.09 -0.025 -0.144 -0.107 -0.051 -0.057 0.068 -0.042 0.156 
 p 0.425 0.858 0.114 0.502 0.537 0.669 0.29 0.775 0.329 

F0.2 ρ 0.092 -0.073 -0.102 -0.153 -0.027 -0.108 0.102 -0.024 0.199 
 p 0.415 0.603 0.264 0.334 0.746 0.414 0.109 0.869 0.213 

 

For customers 2 and 6, the only statistically significant correlation that exists is between 

variables Kα and e. This means that there is statistical evidence that when customer 2 or 6 faces a 

long maximum delivery delay following a stockout, he extends the number of days until his next 

order. Moreover, customer 2 appears to have a fairly long memory of the disservice associated with 

the long maximum delivery delay, since the smoothing factor for which the correlation is 

statistically significant is much smaller that one (α = 0.4). For customer 6, on the other hand, the 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 22:13:44 EEST - 18.223.159.57



 

87 

smoothing factor for which the correlation coefficient is the highest is one. This means that for 

customer 6, the correlation between the two variables is the highest if we assume that his behavior 

regarding future orders is only affected by the most recent stockout and not by past stockouts. The 

fact that there is no statistically significant correlation between the variables of the pairs (Xα, e) and 

(Fα, e) means that the rate of future orders of customers 2 and 6 is not affected by the fraction of the 

order that is cancelled or the weighted average delivery delay following a stockout. Similarly, the 

fact that there is no statistically significant correlation between any independent variable and h, 

means that there is no statistical evidence that customers 2 and 6 change the monetary value of their 

next order following a stockout. 

For customer 3, there is a statistically significant correlation between every independent and 

every dependent variable, except for the pair of variables (Xα, h). This means that there is statistical 

evidence that customer 3 extends the number of days until his next order and lowers the monetary 

value of his next order following a stockout. The correlations which seem to be stronger are those 

between the variables of the pairs (Xα, e) and (Fα, e). This means that for customer 3, it is the 

fraction of the order that is cancelled following a stockout and the weighted average delivery delay 

rather than the maximum delivery delay that mostly affect the rate of his future orders. A closer 

look at the results reveals that for all the pairs of variables that exhibit statistically significant 

correlations, the smoothing factor for which the correlation coefficient is the highest is one, except 

for the pair (Kα, e). This means that for customer 3, the correlation between the two variables is the 

highest if we assume that his behavior regarding future orders is affected only by the most recent 

stockout and not by previous stockouts. 

For customer 4, there are statistically significant correlations between the variables of the 

pairs (Xα, e) and (Xα, h). Therefore, there is statistical evidence that when customer 4 cancels a large 

fraction of his order following a stockout, he extends the number of days until his next order and he 

lowers the monetary value of his next order. Moreover, he appears to have a fairly long memory of 

the disservice associated with the stockout, since the smoothing factor for which the statistically 

significant correlation coefficient is higher is much smaller than one (α = 0.2 for the pair (Xα, e) and 

α = 0.6 for the pair (Xα, h)). 

For customer 7, there is a statistically significant correlation between every independent 

variable and e, but no correlation between any independent variable and h. This means that there is 

statistical evidence that customer 7 extends the number of days until his next order but does not 

lower the monetary value of his next order following a stockout. A close examination of the results 
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reveals that wherever there is a statistically significant correlation, the higher the smoothing factor 

is, the higher the correlation coefficient. This implies that for customer 7, the correlations between 

the independent variables and e are the highest if we assume that his behavior regarding future 

orders is affected only by the most recent stockout and not by previous stockouts. 

For customer 8, there are statistically significant correlations between the variables of the 

pairs (Fα, e) and (Xα, h). This means that there is statistical evidence that when customer 8 faces a 

long weighted average delivery delay following a stockout, he extends the number of days until his 

next order. In addition, when he cancels a large fraction of his order following a stockout, he lowers 

the monetary value of his next order. A close examination of the results reveals that the smoothing 

factor for which the correlations are statistically significant is one. This means that the behavior of 

customer 8 regarding future orders is affected only by the most recent stockout and not by previous 

stockouts. 

Finally, customer 9 is the only customer that exhibits a statistically significant correlation 

between an independent variable, namely Xα, and h, but no correlation between any independent 

variable and e. This means that there is statistical evidence that when customer 9 cancels a large 

fraction of his order following a stockout, he reduces the monetary value of his next order but he 

does not extend the number of days until his next order. Moreover, he appears to have a fairly long 

memory of the disservice associated with the stockout, since the smoothing factor for which the 

statistically significant correlation coefficient is higher is smaller than one (α = 0.6). 

To summarize, for two out of nine customers there is no statistical evidence that stockouts 

affect the rate of their future orders. For the remaining seven customers, there is statistically 

significant evidence that stockouts affect either the time until their next order, e, or the monetary 

value of their next order, h, or both. More specifically, for three customers, stockouts affect both e 

and h, for three other customers they affect only e, and for one customer they affect only h; 

therefore, it seems that most customers who experience stockout reduce the frequency of their 

future orders and some lower the amount that they order. 

Table 4-11 summarizes the results presented above by showing for each pair of independent 

and dependent variables and for each customer, the smoothing factor of the independent variable for 

which the statistically significant correlation (if any) between the two variables is the highest. 

From Table 4-11, we can see that in the ten cases in which there is a statistically significant 

correlation between an independent variable and variable e, this independent variable is Xα, Κα, and 

Fa in 3, 4, and 3 cases, respectively. This means that the number of days until the next order is 
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almost equally affected by the fraction of the current and past orders that were cancelled and the 

maximum as well as the weighed average delivery delay of the current and past orders. Moreover, 

in the five cases where there is statistically significant correlation between an independent variable 

and variable h, this independent variable is Xα, Κα, and Fa in 3, 1, and 1 case, respectively. This 

means that in most cases the monetary value of the next order is mostly affected by the fraction of 

the current and past orders that were cancelled. 

Table 4-11: Smoothing factor for which the statistically significant correlation between the 

correlated variables is the highest 

 Customer 
Correlated vars. 1 2 3 4 5 6 7 8 9 

(e, Xα)   1 0.2   1   
(e, Kα)  0.4 0.2   1 1   
(e, Fα)   1    1 1  
(h, Xα)    0.6    1 0.6 
(h, Kα)   1       
(h, Fα)   1       

 

4.8 Regression Analysis 

After having verified the existence of statistically significant correlations between several 

independent and dependent variables, we used nonlinear regression to find what – if any – is the 

relationship between each set of dependent and independent variables that exhibited a statistically 

significant correlation. 

The first step in finding accurate and reliable nonlinear regression models between the 

independent and dependent variables that exhibited significant correlations was to create scatter 

plots, which could help us recognize the nature of their relationship. Unfortunately, the scatter plots 

did not reveal any evident relationship in any of the pairs of variables examined. The next step was 

to produce curve estimation regression statistics and related plots for several different commonly 

used curve estimation regression models shown in Table 4-12, where x is the independent variable 

and ŷ is the estimate of the dependent variable. Table 4-13 shows the best fitted regression model 

and its corresponding characteristics, namely, the R2 coefficient, the significance level, and the 

values of the equation coefficients, for the pairs of variables with the highest statistically significant 

correlation coefficients shown in Table 4-11. 
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Table 4-12: Common curve estimation regression models  

Regression model Curve expression 

Logarithmic ( )0 1ˆ lny b b x= +  

Inverse 0 1ŷ b b x= +  

Cubic 
2 3

0 1 2 3ŷ b b x b x b x= + + +

Power 1
0ˆ by b x=  

Compound 0 1ˆ xy b b=  

S-curve ( )0 1ˆ b b xy e +=  

Exponential 1
0ˆ b xy b e=  

 

Table 4-13: Best fitted regression model for the pairs of variables with the highest statistically 

significant correlation coefficients 

Customer 
Dep. 
var. 

Ind. 
var. 

Regression
Model  R2 

Significance
Level b0 b1 b2 b3 

2 e K0.4 Cubic 0.145 0.05 7.64 1.55 0.089 0.0022
3 e X1 Cubic 0.071 0.035 5.358 0.479 -0.016 0.000
 e K0.2 Cubic 0.111 0.003 3.94 0.44 -0.02 0.0026
 e F1 Cubic 0.078 0.023 4.879 0.799 -0.042 0.001
 h K1 Exponential 0.045 0.02 233.94 -0.036   
 h F1 Exponential 0.064 0.005 245.877 -0.057   

4 e X0.2 Exponential 0.220 0.002 31.82 -0.11   
 h X0.6 Exponential 0.246 0.001 1058.71 -0.07   
6 e K1 Cubic 0.154 0.026 11.891 2.342 -0.124 0.002
7 e X1 S-curve 0.035 0.003 1.160 -4.3⋅10-6   
 e K1 S-curve 0.05 0.000 1.061 -3.7⋅10-6   
 e F1 S-curve 0.07 0.000 1.068 -4.2⋅10-6   

8 e F1 Cubic 0.138 0.08 12.542 3.019 -0.138 0.001
 h X1 Inverted 0.182 0.002 373.47 0.0002   
9 h X0.6 Cubic 0.236 0.018 573.105 175.163 -7.5168 0.0376

 

From the results displayed in Table 4-13, we can see that the best fitted regression model is 

different for different pairs of correlated variables, with the cubic model being the winner in most 

cases, followed by the exponential model. However, in all cases, R2 is very low, which means that 

the regression curve explains very little of the variation of the data. Therefore, unfortunately, we 

were not able to establish a firm regression model that can describe the nature of the relationship 

between any pair of correlated variables. 
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4.9 Conclusions 

The analysis of the descriptive statistics performed in Section 4.2 leads to the conjecture that on 

average, customers who place larger orders, order less frequently, face larger company delivery 

delays and respond to these delays with larger order cancellation percentages. This conjecture is 

also supported by the positive test for the existence of correlation between customer service and 

order fill rate performed in Section 4.6. This implies that multi-item inventory control models which 

assume order fill rates that depend on order quantities are a good representation of reality. The 

analysis in Section 4.2 further shows that the order interarrival times and monetary values exhibit 

low to moderate variability, whereas the company delivery delays and the resulting customer order 

cancellation percentage exhibit moderate to high variability. The elevated variability in customer 

service is most likely due to the highly disruptive effect of stockouts, which leads to long delivery 

delays. A better design of the stocking policy used by the company might help reduce some of this 

variability. 

The trend analysis performed in Section 4.3 showed that different customers exhibit demand 

trends of different size and sign from year to year. This means that the ordering behavior varies 

from customer to customer; therefore, studies that rely on analyzing the behavior of a set of 

customers and then using the results of this analysis to infer the behavior of other customers should 

be received with caution. 

The analysis of Section 4.4 showed the customer order interarrival times and monetary value 

can be well described by the Weibull distribution. The interarrival time distributions, in particular, 

are skewed to the left and deviate from the exponential distribution although not dramatically. This 

does not mean that inventory control models assuming exponentially distributed interarrival times 

are necessarily inaccurate; however, such models should certainly be used with caution when the 

interarrival times deviate from the exponential distribution. 

The tests for the existence autocorrelations in the customer order data performed in Section 

4.5 showed that the customer order interarrival times and monetary values are not auto correlated, 

which for all practical purposes means that they are independent. This is good news for the vast 

number of inventory management researchers who have assumed independently distributed 

demands in their models. 

The tests for the existence of correlations between the customer service variables and the 

future customer order variables performed in Section 4.7 showed that for two out of nine customers 

there is no statistical evidence that stockouts affect the rate of their future orders. For the remaining 
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seven customers, however, there is statistically significant evidence that stockouts affect either the 

number of days until their next order, e, or the monetary value of their next order, h, or both. More 

specifically, for three customers stockouts affect both e and h, for three other customers they affect 

only e, and for one customer they affect only h; therefore, it seems that most customers who 

experience stockouts extend the number of days until their next order and some lower the amount of 

their next order. Moreover, the tests showed that the frequency of future orders is almost equally 

affected by the fraction of the current and past orders that were cancelled and the maximum as well 

as the weighed average delivery delay of the current and past orders. The monetary value of future 

orders, on the other hand, is mostly affected by the fraction of the current and past orders that were 

cancelled. Finally, three out of the seven customers who exhibited significant correlations had a 

fairly long memory of the disservice associated with a stockout, whereas the remaining four 

customers had no memory of past stockouts as far as their future order behavior is concerned. In 

summary, stockouts do have a negative effect on the rate of future demand for most of the 

customers, but this effect differs from one customer to another. This implies that what may alleviate 

the problem for one customer may not work for another customer. 

Finally from regression analysis performed in Section 4.8, we were not able to establish a 

firm regression model that can describe the nature of the relationship between any pair of correlated 

variables. This means that stylized mathematical models that assume a certain functional form of 

the dependence of the rate of future customer orders on stockouts should be received with caution, 

unless they are based on empirical evidence. 

There are several issues that we did not take into account in this study. We did not analyze 

in detail the items in each order so we did not take into account whether the customers accepted 

item substitution in case of a stockout, whether the company offered a price discount for the out-of-

stock items, whether the cancelled items of an order were purchased from another wholesaler or 

were included in a subsequent order, etc. We also did not directly make the distinction between an 

order for an expensive item and an order for many less expensive items of equal worth. Future 

research should be directed towards including such details in the analysis. It would also be worth 

while to explore why none of the regression curves that we tried models well the adverse effect of 

stockouts on future demand. Including more independent variables in our model, such as the price 

at which the items were sold, and trying out multivariable regression models might help towards 

this direction. 

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 22:13:44 EEST - 18.223.159.57



 

93 

Chapter 5 Thesis Summary 

This thesis was motivated by the need to quantify the indirect cost of a stockout, which is related to 

the loss of customer goodwill following a stockout. Such a loss may lead to a decline in future 

demand and market share of a firm, especially in a competitive market environment. We examined 

the issue of quantifying the indirect costs of stockouts from three different perspectives covered in 

Chapters 2-4, respectively. 

In Chapter 2, we revisited the classical Economic Order Quantity model with backorders 

that are being penalized with a backorder penalty cost coefficient, b. For this model, which we 

referred to as the PB (penalized backorders) model, we proposed to infer the value of b by 

connecting b to the loss in the long-run average demand rate which is affected by backorders 

according to Schwartz’s alternative PD (perturbed demand) model. We applied this procedure to the 

classical PB model and three variations of it in which we replaced the explicit fixed order cost with 

a constraint on the order quantity, the interorder time, and the starting inventory in each cycle, 

respectively. We found that for the classical PB model and the variation of the PB model with the 

minimum starting inventory in each cycle, the optimal fill rate is always either one or zero, which 

implies that the inferred backorder penalty cost is either infinite or zero, respectively. In the first 

case, the optimal order quantity is finite, whereas in the latter case it is infinite. For the other two 

variations, the optimal fill rate is always either one or a finite number between zero and one, which 

implies that the inferred backorder penalty cost is either infinite or a positive finite number which 

depends on the model parameters, respectively. In both cases, the optimal order quantity is finite. 

Future research following this work could be directed toward repeating this procedure for 

other PD models, for example models that assume that the long-run average demand rate is either a 

different function of the long-run average fill rate than the one given by equation (2.2), or a function 

of some other customer service related performance measure, such as the long-run average 

backorder waiting time or number of backorders. In any such model the parameters of the perturbed 

demand function would have to be estimated. As was mentioned in Section 2.2, Schwartz (1966) 
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proposed a procedure for measuring parameters A and B in his model from observed demand data. 

In general, this is not an easy task; however, it is a better defined task that picking a value for b. Of 

course, a broader question is, which perturbed demand model is correct? To answer this question, 

one would have to try different models and use statistical analysis of real demand data to identify 

the most appropriate model. We did this in Section 4.8 but we were not able to establish a firm 

regression model that can describe the nature of the relationship between stockouts and future 

demand. Finally, two other worthwhile directions for future research following this work would be 

to include direct backorder costs besides the indirect loss-of-customer-goodwill costs, to examine 

models with lost sales instead of order backlogging, and to extend this analysis to stochastic 

inventory models.  

In Chapter 3, we analyzed a discrete-time infinite horizon inventory model in which two 

suppliers compete for a single customer on product availability. We formulated the problem of 

finding optimal stationary ordering policies for both suppliers at equilibrium as a stochastic 

dynamic game, and we numerically solved the resulting optimality conditions for several instances 

of this problem. The results indicate that both suppliers must follow the same type of policy, which 

can be characterized as an order-up-to policy. The order-up-to levels are generally different for each 

supplier and as the numerical examples suggested, they are independent of the competitor’s 

inventory position. 

It may not be that difficult to prove that the optimal ordering policy for each supplier, given 

that his competitor uses a stationary ordering policy, is an order-up-to policy. What is certainly 

much more demanding to prove is the existence and uniqueness of a NE, as the analysis of the 

simple two-credibility-level system in Section 3.4 showed. 

The proposed inventory model could be extended and modified in a number of ways. Firstly, 

we could consider the situation where there is no information sharing between the two suppliers. In 

this case each supplier must decide his replenishment orders without knowing the inventory or 

service level of his competitor. Another meaningful extension of our model would be to set the 

selling values as decision variables. In this way the customer’s next supplier choice would be 

affected not only by previous service levels, but by pricing policies as well. Finally, we could 

generalize the model for more than two suppliers. 

Finally, in Chapter 4, we sought empirical evidence that stockouts do adversely affect future 

by performing a thorough statistical analysis of historical customer order and delivery data of a tool 

wholesaler and distributor over a period of four years. The tests for the existence of correlations 
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between the customer service variables and the future customer order variables showed that for two 

out of nine customers there is no statistical evidence that stockouts affect the rate of their future 

orders. For the remaining seven customers, however, there is statistically significant evidence that 

stockouts negatively affect the number of days until their next order and/or the monetary value of 

their next order. Moreover, the tests showed that the frequency of future orders is almost equally 

affected by the fraction of the current and past orders that were cancelled and the maximum as well 

as the weighed average delivery delay of the current and past orders. The monetary value of future 

orders, on the other hand, is mostly affected by the fraction of the current and past orders that were 

cancelled. Finally, three out of the seven customers who exhibited significant correlations had a 

fairly long memory of the disservice associated with a stockout, whereas the remaining four 

customers had no memory of past stockouts as far as their future order behaviour is concerned. In 

summary, stockouts do have a negative effect on the rate of future demand for most of the 

customers, but this effect differs from one customer to another. This implies that what may alleviate 

the problem for one customer may not work for another customer. Unfortunately we were not able 

to establish a firm regression model that can describe the nature of the relationship between any pair 

of correlated variables. This means that stylized mathematical models that assume a certain 

functional form of the dependence of the rate of future customer orders on stockouts should be 

received with caution, unless they are based on empirical evidence. 

There are several issues that we did not take into account in Chapter 4. We did not analyze 

in detail the items in each order so we did not take into account whether the customers accepted 

item substitution in case of a stockout, whether the company offered a price discount for the out-of-

stock items, whether the cancelled items of an order were purchased from another wholesaler or 

were included in a subsequent order, etc. We also did not directly make the distinction between an 

order for an expensive item and an order for many less expensive items of equal worth. Future 

research should be directed towards including such details in the analysis. It would also be worth 

while to explore why none of the regression curves that we tried models well the adverse effect of 

stockouts on future demand. Including more independent variables in our model, such as the price 

at which the items were sold, and trying out multivariable regression models might help towards 

this direction. 
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