
University of Thessaly

Department of Electrical and Computer
Engineering

Thesis:

Development of a Wireless Sensor mote
based on MSP430 micro-controller

Submitted by
Toutziaris Angelos

Supervisor
Dr. Athanasios Korakis

Advisor
Ioannis Kazdaridis

Volos, Greece October 2014

1

Acknowledgements

I would like to express my deep gratitude to Dr. Athanasios Korakis, my

supervisor. I am particularly grateful for the guidance and assistance given by

Ioannis Kazdaridis, whose contribution was crucial for the completion of this

project.

Finally, I wish to thank my parents and friends for their support and

encouragement throughout my study.

2

Περίληψη

Στόχος αυτής της διπλωματικής εργασίας είναι να μελετηθεί και να υλοποιηθεί
η κατασκευή μίας ασύρματης πλατφόρμας αισθητήρων. Για να το πετύχουμε
αυτό, μελετήσαμε τις βασικές αρχές της ασύρματης πλατφόρμας αισθητήρων
και τις ιδιότητες και λειτουργικότητες τεσσάρων συσκευών. Του MSP430F5529
launchpad, του φωτοαντιστάτη, του αισθητήρα θερμοκρασίας και υγρασίας
SHT11 και της συσκευής ασύρματης επικοινωνίας XBee ZB ZigBee.
Αρχικά, συνδέσαμε το launchpad με ένα windows 8.1 PC. Έπειτα
εγκαταστήσαμε το απαραίτητο λογισμικό, συμπεριλαμβανομένων κάποιων
drivers συσκευών και της εφαρμογής περιβάλλοντος προγραμματισμού Code
Composer Studio IDE(CCS). Στη συνέχεια συνδέθηκαν οι αισθητήρες με την
πλατφόρμα. Προγραμματίσαμε τη μονάδα επεξεργασίας μας, τον MSP430F5529
μικρο-ελεγκτή, να επικοινωνεί με τους αισθητήρες να δέχεται και να υπολογίζει
τιμές θερμοκρασίας, υγρασίας και φωτεινότητας.
Έπειτα προσθέσαμε στην υλοποίηση κάποιων χαρακτηριστικών ασφάλειας και
βελτιστοποίησης, όπως το watchdog και τη λειτουργία χαμηλής κατανάλωσης.
Προγραμματίσαμε τον μικρο-ελεγκτή να επανεκκινεί σε περίπτωση που συμβεί
κάποιο σφάλμα λογισμικού, και να εισέρχεται σε κατάσταση χαμηλής ενέργειας
όταν είναι αδρανής.
Το τελικό βήμα ήταν να ρυθμίσουμε δύο Xbee συσκευές ασύρματης
επικοινωνίας. Ρυθμίσαμε τις συσκευές αυτές να συνδέονται μεταξύ τους. Μία
συσκευή συνδέθηκε στον υπολογιστή και μία στην πλατφόρμα.
Δοκιμάσαμε δύο διαφορετικές υλοποιήσεις. Στην πρώτη, προγραμματίσαμε τον
μικρο-ελεγκτή να συλλέγει μετρήσεις, να ενεργοποιεί το Xbee, να μεταδίδει τις
τιμές μετρήσεων στον υπολογιστή, έπειτα να απενεργοποιεί ξανά το Xbee και
να εισέρχεται σε κατάσταση χαμηλής κατανάλωσης ενέργειας. Στην δεύτερη
υλοποίηση, ρυθμίσαμε το Xbee έτσι ώστε να ενεργοποιείται περιοδικά, μετά
από μία κατάσταση απενεργοποίησης. Όταν συμβεί αυτό, να ενεργοποιεί τον
μικρο-ελεγκτή έτσι ώστε να του στείλει τα δεδομένα μετρήσεων για να τα
μεταδώσει ασύρματα στο έτερο Xbee. Από την πλευρά του, ο μικρο-ελεγκτής
λειτουργεί σε κατάσταση χαμηλής κατανάλωσης ενέργειας, ενεργοποιείται ανά
περιόδους, συλλέγει μετρήσεις από τους αισθητήρες και επιστρέφει σε
κατάσταση χαμηλής κατανάλωσης.

3

Abstract

The goal of this thesis is to study the development of a wireless sensor mote and
develop a simple mote. To achieve this, we studied the basic principles of a
wireless sensor mote, the attributes and functionality of four devices. The
MSP430F5529 launchpad, the photoresistor, the SHT11 temperature and
relative humidity sensor and the XBee ZB ZigBee Mesh Module.
Initially, we connected the launchpad with a PC running windows 8.1. After
that, we installed the necessary software including device drivers,
programming/debugging application Code Composer Studio IDE(CCS). Next, the
sensor modules were connected with the launchpad. We programmed the
MSP430F5529 micro-controller to communicate with the sensors and obtain
data and calculate environmental information, such as temperature, relative
humidity and light density levels.
Next, we added some safety and optimization features to the implementation,
such as watchdog and low power mode. We programmed the micro-controller to
reset when an error occurs and operate in low power mode when it is idle.
The final step was to set up two Xbee wireless modules. We configured the
modules to connect to each other. One module was connected with the host PC
and the other with the launchpad.
We tried two different implementations. In the first one, we programmed the
micro-controller to take measurements, cause the Xbee to turn ON, transmit
these measurements to the host PC, turn Xbee to sleep state again and then
operate in low power mode. In the second one, we programmed the Xbee to turn
ON periodically after operating in Sleep state for a specific duration of time.
When this happens, it causes the micro-controller to send measured data via the
wireless module to the host PC. The micro-controller operates in low power
mode, wakes up after a period of time, takes measurements and return to low
power mode.

4

Table of contents

Abbreviations...8
Introduction...9

Wireless sensor mote..9
Controller...9
Transceiver...10
External memory...10
Power source...10
Sensors...11
Project Description..11

Chapter 1. LaunchPad..12
Texas Instruments MSP430F5529 launchpad...........12

USB interface..13
eZ-FET lite Onboard Emulator...................................14

Emulator and Target Isolation Jumper Block..................15
3.3-V and 5-V Jumpers...16
Emulator Connection and Application UART..................16
Programming the MSP430F5529 with external emulator. .17

MSP430F5529 micro-controller................................19
MSP430F5529 Key Features:......................................20
Oscillator and System Clock..20
Configuring Clocks..21
Central Processing Unit (CPU)....................................22

Chapter 2. Sensors..23
Light intensity sensor / Photoresistor.....................23

Circuitry..24
Source code...25

Integrated temperature sensor.................................26
Source code...26

Sensirion SHT11...28
Memory..29
Circuitry..30

5

Communication...31
Communication process...31

Functionality..32
Measurement of R. Humidity & Temperature..................32
Connection reset sequence...32
Read-Write status register...32

Power Consumption..33
Source code..33

Chapter 3. Wireless Communication..37
Xbee Series 2 Radio module.....................................37

Configuration...38
1st implementation: End Device with pin wake-up. 41
2nd implementation: End Device with cyclic sleep. .42
Port/Pin Interrupt...44
Source Code..44

UART Interface...45
Chapter 4. Implementation Features..47

Watchdog..47
Watchdog Mode...48
Watchdog Timer Interrupts..48
Clock Fail-Safe Feature..48
Watchdog time intervals and clock sources..............49
Watchdog Control Registers and Source Code..........49

Low Power Modes..50
Operating Modes...50
Status Register...51
Exiting Low-Power Modes LPM0 Through LPM4.....52

Timers...54
Timer_A registers..54
Configuration...57
Source code..57

Conclusion - Summary...58
Final Results...58

6

Future Work..58
Appendix..59

Source Code...59
Definitions and Functions...59
1st Implementation: Xbee pin wake-up.....................64
2nd Implementation: Xbee cyclic sleep.....................67

References..70

7

Abbreviations

WSN: wireless sensor network

MCU: micro-controller unit

UART: universal asynchronous receiver/transmitter

SBW: Spy-Bi-Wire

UCS: unified clock system

CRC: cyclic redundancy check

LPM: low power mode

USC: universal serial communication

eUSCI: enhanced universal serial communication interface

WDT: watchdog timer

PUC: power-up clear

SMCLK: sub main clock

ACLK: auxiliary clock

VLOCLK: very low frequency oscillator

DCO: digitally controlled oscillator

DLL: dynamic link library

SR: stare register

8

Introduction

Wireless sensor mote

A sensor node, also known as a mote, is a node in a wireless sensor network that
is capable of performing some processing, gathering sensory information and
communicating with other connected nodes in the network. Wireless sensor nodes
have existed for decades and used for applications as diverse as earthquake
measurements to warfare. Nowadays, motes focus on providing the longest
wireless range (dozens of km), the lowest energy consumption (some uA) and
the easiest development process for the user.

The main components of a sensor node are a controller, transceiver, external
memory, power source and one or more sensors.

Controller
The controller performs tasks, processes data and controls the functionality of
other components in the sensor node. The most common controller is a micro-
controller. Other alternatives that can be used as a controller are: a general
purpose desktop microprocessor, digital signal processors, FPGAs and ASICs. A
micro-controller is often used in many embedded systems such as sensor nodes
because of its low cost, flexibility to connect to other devices, ease of programming,
and low power consumption.

9

Fig 1: Wireless Sensor Node

Transceiver
The possible choices of wireless transmission media are radio frequency (RF),
optical communication (laser) and infrared. Radio frequency-based
communication is the most relevant that fits most of the WSN applications. The
functionality of both transmitter and receiver are combined into a single device
known as a transceiver. The transceiver's operational states are transmit, receive,
idle, and sleep.

Most transceivers operating in idle mode have a power consumption almost equal
to the power consumed in receive mode. Thus, it is better to completely shut down
the transceiver rather than leave it in the idle mode when it is not transmitting or
receiving. A significant amount of power is consumed when switching from sleep
mode to transmit mode in order to transmit a packet.

External memory
From an energy perspective, the most relevant kinds of memory are the on-chip
memory of a micro-controller and Flash memory; off-chip RAM is rarely, if ever,
used. Flash memories are used due to their cost and storage capacity. Memory
requirements are very much application dependent. Two categories of memory
based on the purpose of storage are: user memory used for storing application
related or personal data, and program memory used for programming the device.
Program memory also contains identification data of the device if present.

Power source
An important aspect in the development of a wireless sensor node is ensuring that
there is always adequate energy available to power the system. The sensor node
consumes power for sensing, communicating and data processing. Power is stored
either in batteries or capacitors. Batteries, both rechargeable and non-
rechargeable, are the main source of power supply for sensor nodes. As wireless
sensor nodes are typically very small electronic devices, they can only be equipped
with a limited power source of less than 0.5-2 ampere-hour and 1.2-3.7 volts.
Current sensors are able to renew their energy from solar sources, temperature
differences, or vibration.

10

Sensors
Sensors are hardware devices that produce a measurable response to a change in
a physical condition like temperature or pressure. Sensors measure physical data
of the parameter to be monitored. A sensor node should be small in size, consume
extremely low energy, operate in high volumetric densities, be autonomous and
operate unattended, and be adaptive to the environment.
Sensors are classified into three categories: passive, omni-directional sensors;
passive, narrow-beam sensors; and active sensors. Passive sensors sense the
data without actually manipulating the environment by active probing. They are self
powered; that is, energy is needed only to amplify their analog signal. Active
sensors actively probe the environment, for example, a sonar or radar sensor, and
they require continuous energy from a power source. Narrow-beam sensors have
a well-defined notion of direction of measurement, similar to a camera. Omni-
directional sensors have no notion of direction involved in their measurements.

Project Description
The purpose of our project is the development of a wireless sensor node based on
the MSP430 micro-controller. This is a widely applicable micro-controller in the
area of wireless sensor prototypes since it features advanced characteristics
described in the next sections.
The main principle is that the micro-controller is interfaced with several sensing
modules that provide realistic measurements of physical magnitudes. Moreover, the
developed node is able to communicate with a gateway node in order to transmit
the acquired measurements.

The sensors used to measure temperature, relative humidity and brightness are
the following:

● Light intensity sensor or Photoresistor: Detects the light level in the room in
which it is located.

● Sensirion SHT11 temperature and humidity sensor.
● The internal temperature sensor which is integrated in the platform.

The wireless connection and communication is implemented via a Xbee Series2
radio transceiver.
Measuring values were stored in micro-controller's on-chip memory, and the mote
was powered by a USB cable.

The mote was programmed/debugged using the integrated development
environment(IDE) Code Composer Studio(CCS) v5.5.0

Below, there are some details given about the features and characteristics of the
devices.

11

Chapter 1. LaunchPad

Texas Instruments MSP430F5529 launchpad
The MSP430F5529LP LaunchPad is a simple evaluation module for the
MSP430F5529 micro-controller. It provides all the components and interfaces
necessary for developing on the MSP430 MCU. Contains an on-board emulation
for programming and debugging, as well as buttons and LEDs for simple user
interface. The micro-controller will be the mote's controller. It will manage the
procedure of measuring sensing values, extracting environmental information and
sending this information to a host node, a Windows 8.1 machine.

MSP430F5529 launchpad consists of three main parts:

● USB hub and power supply
● eZ-FET Emulator
● MSP430F5529 micro-controller

12

Fig 2: Texas Instruments MSP430F5529 Launchpad

USB interface

USB hub provides the power supply for
all devices on the launchpad. The USB
5-V bus power is reduced to 3.3 V, by a
dc-dc converter. It also gives the ability to
interface with the USB-enabled micro-
controller using MSC, HID or CDC, and
communicate with the PC via the
implemented back-channel UART.

13

Fig 3: Texas Instruments MSP430F5529 Launchpad

Fig 4: USB hub Connection

eZ-FET lite Onboard Emulator

eZ-FET Emulator is an onboard emulator/programmer that allows
programming/debugging the MSP430F5529 micro-controller without connecting
an external programmer.
The eZ-FET lite is a simple and Open-source emulator that supports almost all
MSP430 MCUs. It also provides a "backchannel" UART-over-USB connection with
the host, which can be very useful during debugging, and has LEDs for visual
feedback.

The emulator is supported by the following software development tools: TI's Eclipse
based Code Composer Studio IDE (CCS), IAR Embedded Workbench IDE (IAR),
and Energia open source code editor.
In the context of this project we used CCS IDE to program the micro-controller.

14

Fig 5: MSP430F5529 launchpad components

The eZ-FET lite emulator itself is a composite USB device, which means that it
contains two USB interfaces:

• A CDC interface (virtual COM port) for the emulation function
• A CDC interface (virtual COM port) for the application UART

A computer communicates with the emulator through these two serial interfaces.

Emulator and Target Isolation Jumper Block:

The emulator is connected to the micro-controller with nine wires.
A set of ten jumpers which is placed between the emulator and the F5529 target
device allows the developer to disconnect these wires.

15

Fig 7: Emulator and Target Isolation Jumper Block

Fig 6: Emulator Interfaces

The connection wires as found on jumper block are shown below:

3.3-V and 5-V Jumpers

The emulator provides two supply voltages to the micro-controller. The 5-V VBUS
and 3.3-V power rails, travel through the isolation jumper block.

This routing serves various functions:
• Measurement of the target's power consumption
• Removing the emulator from the circuit when an external (non-USB) power

source is used
• Removing the F5529 target from the circuit when a different external target

board is attached to the emulator(If you want to use the on-board eZ-FET lite
emulator with a different target, you can remove the jumpers and connect
your target hardware to the jumper block)

Emulator Connection and Application UART

MSP430F5529 supports both standard four-wire JTAG and the two-wire Spy-Bi-
Wire (SBW) standard.
The eZ-FET lite emulator on the F5529 LaunchPad supports SBW only. These two
signals travel through jumpers in the isolation block, and can be disconnected if
desired. They are labeled on the block as "SBW RST" and "SBW TEST".
These two wires are responsible for programming/debugging the target MCU.

The backchannel UART consists of four signals: the data signals TXD and RXD,
and the hardware flow control signals RTS and CTS. All four of these signals travel
through the jumper block as well and can be disconnected.

16

Fig 8: Emulator Jumper Description

The backchannel UART pins can be configured for other functionality instead of
the backchannel UART, for example UART communication with an external device
such as a sensor or a wireless module. If this is desired, these jumpers must be
removed.

Programming the MSP430F5529 with external emulator

In order to develop a mote including a single MSP430F5529 micro-controller that is
not connected to an emulator embedded within a launchpad, an external emulator
must be used. The micro-controller's firmware must be programmed with this
emulator.
This external emulator must be connected according to one of the following ways.

If the four-wire JTAG standard is used, the pins that need to be connected are
shown below:

The emulator's JTAG clock pin must be connected with the micro-controller's
pin 75(Pj.3/TCK).
JTAG state control pin must be connected with pin 74(Pj.2/TMS).
Emulator's JTAG data output/test clock pin must connect to pin 73(Pj.1/TDI/TCLK).
Emulator's data input pin must connect to pin 72(Pj.0/TDO).
The output pin that enables JTAG pins must connect to pin 71(TEST/SBWTCK).
Target reset pin must connect to pin 76(RST/NMI/SBWTDIO).

Finally, power supply and ground must connect to pins 11, 18, 50(Power Supply)
and 14, 19, 49 pins (Ground).

17

Fig 9: JTAG-4 pins

If the slower two-wire Spy-Bi-Wire (SBW) standard is used, the pins that need to
be connected are:

The emulator's clock output must connect to the micro-controller's pin
71(TEST/SBWTCK).
The data input/output pin must connect to pin 76(RST/NMI/SBWTDIO).

Power supply and ground must connect to micro-controller's pins 11, 18, 50(Power
Supply) and 14, 19, 49 pins (Ground).

18

Fig 10: JTAG-2 Spy-Bi-Wire pins

MSP430F5529 micro-controller

The MSP430F5529 16-bit MCU has 128KB flash, 8KB RAM, 25-MHz CPU speed,
integrated USB, and many peripherals. The micro-controller will be set to manage
the functions of the mote: sensing, calculating variables, transmitting data,
implementing special features.

19

Fig 11: MSP430F5529 Pins

MSP430F5529 Key Features:

USB-enabled MSP430F5529 16-bit MCU
– Up to 25-MHz System Clock
– 1.8-V to 3.6-V operation
– 128KB flash, 8KB RAM
– Five timers
– Up to four serial interfaces (SPI, UART, I2C)
– 12-bit analog-to-digital converter
– Analog comparator
– Integrated USB, with a complete set of USB tools, libraries, examples, and
 reference guides

Two integrated buttons fully programmable Reset button, Bootstrap loader.
Integrated temperature sensor.

Oscillator and System Clock

The clock system in the MSP430F5529 is supported by the Unified Clock System
(UCS) module that includes support for:

A 32-kHz watch crystal oscillator (XT1 LF mode) (XT1 HF mode is not
supported)
An internal very-low-frequency oscillator (VLO)
An internal trimmed low-frequency oscillator (REFO)
An integrated internal digitally controlled oscillator (DCO)
A high-frequency crystal oscillator (XT2).

The UCS module is designed to meet the requirements of both low system cost and
low power consumption. It features digital frequency locked loop (FLL) hardware,
that in conjunction with a digital modulator, stabilizes the DCO frequency to a
programmable multiple of the selected FLL reference frequency.
The internal DCO provides a fast turn-on clock source and stabilizes in 3.5 μs
(typical).

The UCS module provides the following clock signals:
● Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-

frequency crystal (XT2), the internal low-frequency oscillator (VLO), the
trimmed low-frequency oscillator (REFO), or the internal digitally controlled
oscillator DCO.

● Main clock (MCLK), the system clock used by the CPU. MCLK can be
sourced by same sources made available to ACLK.

● Sub-Main clock (SMCLK), the subsystem clock used by the peripheral
modules. SMCLK can be sourced by same sources made available to ACLK.

● ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16,
ACLK/32.

20

Configuring Clocks

MSP430 applications typically use a fast clock and a slow clock.
The fast clock (called MCLK) sources the CPU and peripherals in some cases,
while the slow one keeps timers and peripherals operating during low power
modes.
This approach reduces power: slow clocks consume less power, so the more often
the fast clock can be disabled, the less power your application may consume.
Typically this fast clock is the MCU's integrated digitally controlled oscillator (DCO).
The DCO itself is an important low-power tool, because unlike a crystal, it has a
very fast start-up time, and thus can be quickly shut down and re-enabled. The
DCO can be activated by an interrupt and stabilize fast enough to respond to it.

Many MSP430 devices, including the F5529, couple the DCO with a frequency-
locked loop (FLL) module that keeps the DCO locked to a precise slower-frequency
reference. This gives good control over the DCO frequency.

The F5529 has three slow clocks available:
• REFO: This is a modestly precise low-power on-chip oscillator that does not

require a crystal. It operates at 32 kHz.
• LFXT1: This is a crystal oscillator. It is very precise and lower power than the

REFO, but it requires a crystal. It, too, operates at 32 kHz.
• VLO: This oscillator is not very precise but does not require a crystal and has

the lowest power of the three. It usually operates somewhere between 12
kHz and 20 kHz.

In the context of this project, we use the ACLK in order to achieve low power
consumption. When the micro-controller is idle, we turn off high frequency clocks,
forcing the device to operate in low power mode.

21

Fig 12: MSP430 Clocks

Central Processing Unit (CPU)

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the
application.
All operations, other than program-flow instructions, are performed as register
operations in conjunction with seven addressing modes for source operand and
four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution
time. The register-to-register operation execution time is one cycle of the CPU
clock. Four of the registers, R0 to R3, are dedicated as program counter, stack
pointer, status register, and constant generator, respectively. The remaining
registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and
can be handled with all instructions.
The instruction set consists of the original 51 instructions with three formats and
seven address modes and additional instructions for the expanded address range.
Each instruction can operate on word and byte data.

22

Fig 13: Launchpad Pinout

Chapter 2. Sensors

Light intensity sensor / Photoresistor

The photoresistor(photocell) is a sensing module connected with the launchpad
that helps measuring the level of ambient light.

A photoresistor or light-dependent resistor (LDR) or photocell is a light-controlled
variable resistor. The resistance value of a photoresistor alters with changes of light
intensity; in other words, it exhibits photoconductivity.
A photoresistor is made of a high resistance semiconductor. In the dark, a
photoresistor can have a resistance as high as a few megaohms (MΩ), while in the
light, a photoresistor can have a resistance as low as a few hundred ohms.

When a light level of 1000 lux (bright light) is directed towards it, the resistance is
400ohms.
When a light level of 10 lux (very low light level) is directed towards it, the
resistance has risen dramatically to 10.43Mohms.

23

Fig 14: Photocell

Circuitry

Photocell is connected to a circuit in the following way. The one end connects to a
5V supply voltage, and the other one to ground through a 10K resistor, forming a
voltage divider.

The micro-controller is connected to the photoresistor with an analog pin, in order to
acquire luminosity measurements by reading the voltage level.
This pin will be defined as input to our system in order to "read" the indicated
value. This pin must be an analog one to be able to detect the entire range of
values that come as an input. A strictly digital pin could only read two values, HIGH
or LOW, which are useless in this case.

Of course the sensing module operates as a resistor and may be used directly on a
circuit, for example to adjust the voltage level that a LED receives, according to
light levels. However in our case the micro-controller reads the value provided by
the photoresistor and detects the brightness in the room.

For this project we programmed the micro-controller to extract a value from a
photocell using the analog-to-digital converter. Using this value we calculate the
ambient light level. The ADC(analog-to-digital converter) compares two voltage
values: a measured voltage and a specified reference voltage. Then it converts the
difference to a numeric value and stores this value in a register. 0 to 5V difference
is translated into 0 to 4095 output value.

24

Fig 15: Photocell Connection

Source code
The source code that implements this function is explained below:

unsigned long brightness=0.0;

The variable brightness that will keep the ambient light level percentage.

 ADC12CTL0 = ADC12SHT02 + ADC12ON; // Sampling time, ADC12 on
 ADC12CTL1 = ADC12SHP; // Use sampling timer
 ADC12IE = 0×01; // Enable interrupt
 ADC12CTL0 |= ADC12ENC;
 P6SEL |= 0×01; // P6.0 ADC option select

Here we set up the Analog-to-Digital Converter options, like sampling time, timer
and input pin.
We also enable interrupts from ADC, in order to get the value when the conversion
is complete.

 ADC12CTL0 |= ADC12SC; // Start sampling/conversion
_delay_cycles(15);

brightness=((long)ADC12MEM0/4095.0)*100;

At the end, a command given to the converter gets a sample and starts converting
it. When the conversion is complete, the converted value is stored in ADC12MEM0
register. Based on the acquired value we calculate the percentage of the ambient
light level.

25

Integrated temperature sensor

In the launchpad platform there is an integrated temperature sensor, located in
the Reference module.
This REF module is a general purpose system that is used to generate reference
voltages, and provide them to other embedded devices such as analog-to-digital
converters, digital-to-analog converters, comparators, in order for them to be able
to operate.

To make a temperature measurement with the sensor, the integrated analog-to-
digital converter device is used.
This converter detects a voltage out of the sensor and stores it in the internal
memory. Then we draw this value and we calculate the value of the temperature.

The temperature calculating function is a linear function. For the calculation we
use some values for calibration, depending on what is the value of the reference
voltage.
We get these values from specific addresses in the micro-controller's memory.

Typically the sensor is able to measure temperatures throughout the operating
temperature range of the platform, which is from -40°C to +85°C.

Source code
For this project we programmed the micro-controller to detect temperature levels
with the help of the integrated temperature sensor. The source code that implement
this function is the following:

#define CALADC12_15V_30C *((unsigned int *)0x1A1A) // Temperature Sensor
Calibration-30 C
#define CALADC12_15V_85C *((unsigned int *)0x1A1C) // Temperature Sensor
Calibration-85 C
unsigned int temp;
volatile float temperatureDegC;
volatile float temperatureDegF;

Calibration values are set according to the reference voltage of 1.5V that we use.
We also declare the variables that will keep the temperature values that are
measured.

26

REFCTL0 &= ~REFMSTR; // Reset REFMSTR to hand over control to
 // ADC12_A ref control registers
ADC12CTL0 = ADC12SHT0_8 + ADC12REFON + ADC12ON;
 // Internal ref = 1.5V
ADC12CTL1 = ADC12SHP; // enable sample timer
ADC12MCTL0 = ADC12SREF_1 + ADC12INCH_10; // ADC i/p ch A10 = temp sense i/p
ADC12IE = 0x001; // ADC_IFG upon conv result-ADCMEMO
__delay_cycles(100); // delay to allow Ref to settle
ADC12CTL0 |= ADC12ENC;

Reference voltage is set at 1.5V. The converter gets a start command. The
source of the converter is the integrated temperature sensor, and the register
which will store the measured value is ADC12MEM0. This is set by the ADC12CTL0
register.
Also, we enable an interrupt that indicates the completion of the conversion and
write of the register ADC12MEM0.
Finally, a delay is added to give time to the reference module to settle, followed by a
command that indicates the completion of the set up, and ability to start making
measurements.

ADC12CTL0 |= ADC12SC; // Sampling and conversion start
_delay_cycles(60);
temp = ADC12MEM0;

// Temperature in Celcius
temperatureDegC = (float)(((long)temp - CALADC12_15V_30C) * (85 - 30)) /
 (CALADC12_15V_85C - CALADC12_15V_30C) + 30.0f;

// Temperature in Fahrenheit Tf = (9/5)*Tc + 32
temperatureDegF = temperatureDegC * 9.0f / 5.0f + 32.0f;

We give a sampling and conversion start command. The conversion is completed
with the write of the ADC12MEM0. Then we get the measured value and calculate
the temperature in Celsius and Fahrenheit using specific formulas.

The temperature values extracted using this sensor were not entirely correct.
Usually there was a difference between the actual temperature and the temperature
measured using the sensor. Very often, the measured temperature was 2 degrees
higher.
The reason of this result is the fact that this sensor is integrated in the launchpad,
and is effected by the launchpad's own temperature.

27

Sensirion SHT11
The Sensirion SHT11 sensor is connected to the platform and provides
measurements of the environment temperature and humidity levels.
The sensor is known for its stability over time, low energy consumption and
sturdiness.
This sensor integrates signal processing elements besides the data
measurement, thereby it gives fully calibrated digital data. It also has an analog-to-
digital converter, and serial interface for communication. These features result in
increased signal quality output, fast response times and high tolerance to external
interference.

It can measure moisture levels of from 0% to 100% accuracy ± 3.0%, and a
temperature of from -40 ° C to 123,8 ° C and with accuracy ± 0,4 ° C.

The results of the measurements are converted either to 8bit humidity and 12bit
temperature or 14bit humidity and 12bit temperature depending on a setting. The
difference is the precision (resolution) of the measurement and of course the
measuring time.
If the measurement has resolution 8bit, measuring time is 20ms, for 12bit resolution
is 80ms and for 14bit resolution is 320ms. These times can be up to 30% smaller,
depending on the power and measurement settings.

The supply voltage of the device must be between 2,4V and 5,5V. The
recommended supply voltage is 3,3V.

The communication between the sensor and the micro-controller is done via an I/O
data connection. Also the device gets an input clock that synchronizes the
communication.

28

Fig 16: SHT11 sensor

Memory

The sensor has an OTP (one-time programmable) memory which contains data for
calibration of the device.
These calibration data are used after each measurement, so that the analog-to-
digital module converts the data measured by sensing modules to values.
Then these values can be transmitted via the serial connection.
The results after each measurement and conversion are not stored in the memory,
but kept in the communication circuit of the sensor, until the micro-controller restarts
the clock. When this happens, the transmission of the results to the host starts.
The results are no longer kept in the sensor. In order for the host to get some more
measurement results the process must start all over again.

Also, the device includes a 1Byte size status register, which contains several
settings.

Specifically, the register's second bit (bit6) is a signal indicating low voltage. If the
voltage on the sensor falls below 2,47V then after a measurement this bit becomes
1. This is useful when the platform is powered by a battery.

The 6th bit (bit2) shows whether the embedded heater that the sensor contains is
on. This heater is an internal device that provides measurements up to 5 to 10
degrees Celsius higher than the ambient temperature. When enabled, the sensor
measures its own temperature, which is used for analysis of the function of the
sensor, for example measurements made before and after the heater is activated.
The sensor is designed for non-continuous operation of this heater.

The seventh bit (bit1) adjusts the measuring process. When this bit is 0, the
calibration values from the OTP memory, are loaded every time there is a
measurement. This function can be disabled resulting in faster measurements by
approximately 10ms.

The 8th bit (bit0) determines the resolution of the measurement. If it is 0 (which is
the default value), then the measurements have 12bit resolution for humidity and
14bit for temperature . If the bit is altered to value 1, then the measurements are
8bit resolution for humidity and 12bit for temperature.

29

Circuitry

The sensor has 10 pins, but only 4 of them are used. One pin is connected to the
supply voltage, another one is connected to the ground. There is one pin
connecting the input clock which is responsible for the synchronization of the
communication, and the fourth pin is an I/O pin for data send/receive between the
sensor and the micro-controller. The pins are shown below:

The proper circuitry for the connection with the micro-controller is the following:

As seen, the data pin of the sensor is also connected to the supply voltage through
a 10k resistor. This is a pull-up resistor, that brings the data pin to a HIGH state
when the devices do not transmit a LOW signal. Also the supply pin is connected to
the ground through a 100nF capacitor. The supply voltage that we used is the
recommended 3.3V.

30

Fig 17: SHT11 pinout

Fig 18: SHT11 Circuitry

Communication

SCK is used to synchronize the communication between micro-controller and
SHT11. Since the interface consists of fully static logic there is no minimum SCK
frequency.
The DATA tri-state pin is used to transfer data in and out of the sensor. For sending
a command to the sensor, DATA is valid on the rising edge of the serial clock (SCK)
and must remain stable while SCK is high. After the falling edge of SCK the DATA
value may be changed.
For reading data from the sensor, DATA is valid after SCK has gone low and
remains valid until the next falling edge of SCK.
To avoid signal contention the micro-controller must only drive DATA LOW. The
external pull-up resistor is required to pull the signal HIGH.

Communication process

The communication between the sensor and the micro-controller consists of some
specific steps.
As a first step the sensor is powered up to chosen supply voltage VDD. The slew
rate during power up shall not fall below 1V/ms. After power-up the sensor needs
11ms to get to Sleep State. No commands must be sent before that time.
To initiate a transmission, a Transmission Start sequence has to be issued. It
consists of a lowering of the DATA line while SCK is HIGH, followed by a LOW
pulse on SCK and raising DATA again while SCK is still HIGH.
After that the sensor is ready to read a command from the DATA line. The
commands consist of three address bits and five command bits. The address bits
are specified to 000. The command bits are shown below:

31

Fig 19: SHT11 Command Codes

The sensor indicates the proper reception of a command by pulling the DATA pin
LOW (ACK bit) after the falling edge of the 8th SCK clock. The DATA line is
released (and goes HIGH) after the falling edge of the 9th SCK clock.

Functionality

Measurement of Relative Humidity and Temperature:

After issuing a measurement command (‘00000101’ for relative humidity,
‘00000011’ for temperature) the controller has to wait for the measurement to
complete. This takes a maximum of 20/80/320 ms for an 8/12/14bit measurement.
The time varies with the speed of the internal oscillator and can be lower by up to
30%.
To signal the completion of a measurement, the SHT11 pulls data line LOW and
enters Idle Mode. The controller must wait for this Data Ready signal before
restarting SCK to read out the data.
Measurement data is stored until readout, therefore the controller can continue with
other tasks and read out at its convenience. Two bytes of measurement data and
one byte of CRC checksum (optional) will then be transmitted. The micro-controller
must acknowledge each byte by pulling the DATA line low. All values are MSB first,
right justified (e.g. the 5th SCK is MSB for a 12bit value, for an 8bit result the first
byte is not used).
Communication terminates after the acknowledge bit of the CRC data. If CRC-8
checksum is not used the controller may terminate the communication after the
measurement data LSB by keeping ACK high. The device automatically returns to
Sleep Mode after measurement and communication are completed.
Important: To keep self heating below 0.1°C, SHT1x should not be active for more
than 10% of the time – e.g. maximum one measurement per second at 12bit
accuracy shall be made.

Connection reset sequence:

If communication with the device is lost the following signal sequence will reset the
serial interface: While leaving DATA HIGH, toggle SCK nine or more times. This
must be followed by a Transmission Start sequence preceding the next command.
This sequence resets the interface only. The status register preserves its content.

Read-Write status register:

After the command Status Register Read or Status Register Write the content of 8
bits of the status register may be read out or written.
After each byte is transmitted, an acknowledgment is sent from the receiver.
In case of write status register, micro-controller sends data and sensor
acknowledges the byte that it received. Data sent are 8bit.

32

In the case of read status register, the sensor sends data and the micro-controller
sends an acknowledgment back for every received byte. The transmission is 2
bytes long, 1byte data and 1byte CRC.

Power Consumption

At sleep mode, the sensor is powered with 0.2 to 1.5 uA. At measuring mode, it is
powered with 0.5 to 1mA.
Power consumption relies between 2 and 5uW in sleep mode. In measuring mode,
power consumption goes up to 3mW.
These measurements took place in regular conditions, such as 25°C, and with 3.3V
power supply.

Source code

For this project we connected the sensor to the micro-controller and programmed
the system to get and calculate values for temperature and relative humidity.
The source code was based on the SHT1x sample code found in sensor's web
page. The code that implements these functions is described below:

//Clock Pin P2_2
#define SCK_OUT (P2DIR |= BIT2)
#define SCK_HIGH (P2OUT |= BIT2)
#define SCK_LOW (P2OUT &= ~(BIT2))

//Data Pin P7_4
#define DATA_DIR_OUT (P7DIR |= BIT4)
#define DATA_DIR_IN (P7DIR &= ~(BIT4))
#define DATA_OUT_HIGH (P7OUT |= BIT4)
#define DATA_OUT_LOW (P7OUT &= ~(BIT4))
#define DATA_IN (P7IN & BIT4)

At this point, we set up the CLOCK and DATA pins. The pin 2.2 is set as clock input
for the sensor. Pin 7.4 is set as data input/output.

//command codes
#define MEASURE_TEMP 0x03 //000 0001 1
#define MEASURE_HUMI 0x05 //000 0010 1

Next, we define the command codes that will be sent to the sensor to perform the
appropriate measurement.

33

float temperature,humidity;

temperature=0.0;
humidity=0.0;

_delay_cycles(176000); //wait 11ms for the sensor to get to Sleep
SCK_OUT;

Then we define the variables that will store the values of relative humidity and
temperature. A delay is inserted here to give time to the sensor to get into sleep
mode. Finally, pin 2.2 is set as output.

temperature = measure_temp();
_delay_cycles(16000000); //wait 1s to prevent sensor overheating
humidity = measure_humi();
_delay_cycles(16000000); //wait 1s to prevent sensor overheating

In the end, we call the functions that implement the measuring procedure. Between
every one of them we insert a delay to keep the sensor self heating low.

These functions are described below:

float measure_temp(){

int ackn, ret_crc, ret_value;
float temperature;
ackn=0;
ret_crc=0;
ret_value=0;
temperature=0.0;

s_transstart();
ackn = s_write_byte(MEASURE_TEMP);
_delay_cycles(5120000); //wait 320ms for the sensor to complete the measurement

ret_value = s_read_byte(1);
ret_value = ret_value * 256;
ret_value += s_read_byte(1);
ret_crc = s_read_byte(0);
temperature = ret_value * 0.01 - 39.7;

return temperature;
}

34

float measure_humi(){

int ackn, ret_crc, ret_value;
float humidity;
ackn=0;
ret_crc=0;
ret_value=0;
humidity=0.0;

s_transstart();
ackn = s_write_byte(MEASURE_HUMI);
_delay_cycles(1280000); //wait 80ms for the sensor to complete the measurement

ret_value = s_read_byte(1);
ret_value = ret_value * 256;
ret_value += s_read_byte(1);
ret_crc = s_read_byte(0);
humidity = -2.0468 + 0.0367*ret_value - 0.0000015955*ret_value*ret_value;

return humidity;
}

The sequence of the commands starts with the transmission start command
(s_transstart();).
After that, the command code for measuring relative humidity or temperature is sent
to the sensor(s_write_byte(MEASURE_HUMI);).
Then a delay is inserted to give the sensor the necessary time to complete the
measurement and the conversion (_delay_cycles(1280000);).
After that, the micro-controller reads three bytes of data from the sensor
(s_read_byte(1);). Two bytes of the measured value and one byte of CRC. When
we read the value, we calculate the level of temperature of relative humidity
according to the right formula.

The functions we used are shown below:

void s_transstart(void){
 DATA_DIR_OUT; //OUTPUT DATA
 DATA_OUT_HIGH;
 SCK_LOW; //Initial state
 _delay_cycles(16);
 SCK_HIGH;
 _delay_cycles(16);
 DATA_OUT_LOW;
 _delay_cycles(16);
 SCK_LOW;
 _delay_cycles(32);
 SCK_HIGH;
 _delay_cycles(16);
 DATA_OUT_HIGH;
 _delay_cycles(16);
 SCK_LOW;
 DATA_OUT_LOW;
}

35

int s_write_byte(unsigned char value){
unsigned char i,error=0;

DATA_DIR_OUT; // set data pin as output direction

for (i=0×80;i>0;i/=2){ //shift bit for masking
if(i & value){ DATA_OUT_HIGH; }//masking value with i , write to SENSI-BUS
else { DATA_OUT_LOW; }
sht11_pulse();

}
DATA_OUT_HIGH; //release DATA-line

SCK_HIGH; //clk #9 for ack
DATA_DIR_IN; // set data pin as input direction

if(DATA_IN){ error=1; } //check ack (DATA will be pulled down by SHT11)
SCK_LOW;

return error; //error=1 in case of no acknowledge
}

int s_read_byte(unsigned char ack){
unsigned char i,val=0;

DATA_DIR_OUT; // set data pin as output direction
DATA_OUT_HIGH; //release DATA-line
DATA_DIR_IN; // set data pin as input direction

for (i=0x80;i>0;i/=2){ //shift bit for masking
SCK_HIGH; //clk for SENSI-BUS
if (DATA_IN){ val=(val | i); } //read bit
_delay_cycles(32);
SCK_LOW;

}
DATA_DIR_OUT; // set data pin as output direction
if(ack == 1) { DATA_OUT_LOW; } //in case of "ack==1" pull down DATA-Line
else { DATA_OUT_HIGH; }

sht11_pulse();
DATA_OUT_HIGH; //release DATA-line
return val;

}

void sht11_pulse(void)
{
 SCK_HIGH; //CLOCK pulse -> approx 2us;
 _delay_cycles(16);
 SCK_LOW;
 _delay_cycles(16);
}

We used the default settings stored in the sensor's status register to complete the
measurement of temperature and relative humidity.

36

Chapter 3. Wireless Communication

Xbee Series 2 Radio module
To enable wireless communication on the developed mote, we used the wireless
transceiver Xbee Series 2(ZigBee Mesh). This module allows the establishment of
complex mesh networks based on IEEE802.15.4 MAC Layer and ZigBee protocols.
It allows a very reliable and simple communication between micro-controllers,
computers, all kinds of systems that have a serial port. Point-to-point and multi-
point networks are supported.

Some features of this module are:

• 3.3V @ 40mA
• 250kbps Max data rate
• 2mW output (+3dBm)
• 400ft (120m) range
• Built-in antenna
• Fully FCC certified
• 6 10-bit ADC input pins
• 8 digital IO pins
• 128-bit encryption
• Local or over-air configuration
• AT or API command set

The Xbee Explorer USB is used in order to set up the wireless module. Xbee
Explorer USB is a device that implements a USB to serial interface. It connects the
Xbee radio module and the computer. It supports all Series1 and Series2 standard
and PRO versions.
In this way, the wireless module is connected to the computer, allowing the user to
program the device, change the settings, and send data for it to transmit through
the air.

37

Fig 20: Xbee Series 2 module

Fig 21: Xbee Explorer USB

Apart from these basic programming and data sending/receiving capabilities, Xbee
Explorer has a reset button, a voltage regulator to supply the XBee with plenty of
power, four LEDs that help debug the XBee: RX (receive data), TX (transmit data),
RSSI (signal-strength indicator), and power indicator.

Configuration

For this project, we used two Xbee modules. One of them was connected to the
computer, and the other was connected to the micro-controller. The transceivers
communicate with each other transferring data between those devices. The
purpose of this communication is to transfer temperature, relative humidity, and light
level values from the micro-controller to a gateway node. In turn the gateway node
will transfer the measurements to a Server machine. In our case we used a Xbee
connected to a Windows machine acting as a gateway node.

In order to perform this function, we followed some specific steps, described below.
Initially, we set up the two wireless modules with the Xbee Explorer. The software
that we used for this, was X-CTU and CoolTerm.

At first we connected one of the modules to the computer, with the Xbee Explorer.
We started the X-CTU application. The device was recognized as an Xbee Series2
module. The firmware was updated to set up the device as a ZigBee coordinator
AT.

38

Fig 22: Xbee radio module connected to

Xbee Explorer USB

The coordinator is the one who defines the communication. It is always ON, and is
the root device(parent). Default settings for the device are set, such as power level,
packet encryption, Baud rate. The AT option defines the command set that controls
the device. After this firmware update, CoolTerm was used to set the PAN ID
(Personal Area Network ID) and the destination address, the MAC address of the
other Xbee module.
Next, this device was disconnected from the computer and the Xbee Explorer, and
the other wireless module was connected. This one was set as a ZigBee End
Device AT. The End Device depends on another device which is the Coordinator,
and acts as a parent of the End Device(child).
The End Device is capable of getting into Sleep state, in order to save power.
Default settings for the device where also set automatically. Then we used
CoolTerm to set the PAN ID, and the destination MAC address, ie the Coordinator's
address.

The values of these settings were:
PAN ID: 2014
Coordinator MAC address: 0013A20040B14038
End Device MAC address: 0013A20040AD74E8
Baud Rate: 9600

Regarding the End Devices sleep mode, we tested cyclic sleep and pin wake-up
options.

In cyclic sleep, the module sleeps for a specified time, and then wakes and sends
a poll request to its parent every 100ms to discover if the parent has any pending
data for the end device.
When it wakes up, the module will start a sleep timer (time until sleep). Any serial or
wireless data received will restart the timer. The sleep timer value is settable. The
module returns to sleep when the sleep timer expires.

Pin sleep allows the module to sleep and wake according to the state of the
Sleep_RQ pin (pin 9). When Sleep_RQ is asserted (high), the module will finish any
transmit or receive operations and enter a low power state. For example, if the
module has not joined a network and Sleep_RQ is asserted (high), the module will
sleep once the current join attempt completes (ie when scanning for a valid network
completes). The module will wake from pin sleep when the Sleep_RQ pin is de-
asserted (low).
When the XBee is awake and is joined to a network, it sends a poll request to its
parent to see if the parent has any buffered data for it. The end device will continue
to send poll requests every 100ms while it is awake.

When a router or coordinator receives a data packet intended for one of its end
device children, it buffers the packet until the end device wakes and polls for the
data, or until a packet buffering timeout occurs.

39

For cyclic sleep end devices, the coordinator must keep these messages for at
least 1.2 times the maximum sleeping period of its children devices.
For pin wake up end devices, this time is not specific.

If an end device does not send a poll message to its parent for more than a
specified time, the parent will assume that the end device has moved out of range
and will remove it from its child table. This timeout called cyclic sleep period is
settable between 1 and 84 seconds. Another option allows the end device not to
poll its parent for a number of cyclic sleep periods. This leads to a maximum poll
timeout that exceeds 2 months.
These settings allow routers and coordinators to be responsive to changing network
conditions.

After we set up both the wireless modules, we connected the coordinator to the
computer with the Xbee Explorer USB, and the end device with the micro-controller,
using an adapter.

The adapter board helps connecting the Xbee module to the micro-controller by
converting the Xbee's 2mm spacing to breadboard friendly spacing.

40

Fig 24: Xbee adapter

board

Fig 23: Xbee radio module connected to a

breadboard using a Xbee adapter board

Pin 1 of the Xbee module was connected to a 3.3V supply voltage, pin 10 was
connected to the ground, and pins 2 and 3(Data In and Data Out) were connected
to the micro-controller's UART interface pins 3.4 and 3.3. The wake up pin DTR(pin
9) of the Xbee module was connected to the micro-controller's pin 1.6 and the
on/sleep pin(pin 13) was connected to the pin 2.7.

1st implementation: End Device with pin wake-up

First, we tried the implementation where the micro-controller controls the function of
the Xbee radio module connected to it. The Xbee's sleep mode was configured with
the option Pin Hibernate, using X-CTU. The micro-controller sends a Hi-to-Lo
transition to Xbee's Sleep-RQ pin(pin 9). In a short period of time, usually some
milliseconds, the radio module turns to ON state. In contrary to that, when the
Sleep-RQ pin is asserted (high) by the micro-controller, the Xbee completes its
current function and gets to Sleep mode.

This implementation sets the micro-controller to operate following some steps.
These steps are executed repeatedly. We describe them next:

• Micro-controller operating in low power mode. Operating in low power mode
means that the main cpu clock is turned off, and the micro-controller stays
idle according to some specified setting. This feature will be described
thoroughly later.

41

Fig 25: Xbee Serries2 radio module pinout

• After a period of time, a timer expires and causes the micro-controller to exit
low power mode and switch to active mode. Entering/exiting low power
mode and configuring timers is described later.

• When the micro-controller switches to active mode, it starts communicating
with the sensors and acquires measurement values.

• Then it calculates and stores temperature, relative humidity and light density.
• After that, writes this data to a string variable, to be able to send it to the

Xbee module.
• Sends a LOW signal to Xbee's Sleep-RQ pin, forcing it to switch to active

mode.
• When the Xbee turns ON, the micro-controller sends each one of the string

variable's characters.
• The Xbee transmits the characters through air, the Xbee connected to the

host PC receives the data.
• After the completion of the transmission, the micro-controller sends a HIGH

signal to the wireless module's Sleep-RQ pin, forcing it to switch back to
sleep mode.

• Finally, the micro-controller itself switches back to low power mode, and
this execution sequence starts all over again.

The basic advantage of this implementation is the fact that the Xbee is ON for the
minimum time possible. Thus, the power consumption is minimized. Also, the micro-
controller wakes up only on certain periods of time, unlike the 2nd implementation.
As a result, the micro-controller's power consumption is minimized too.
The disadvantage of this implementation is the fact that it is necessary to
communicate with a host that is always ON, in order to successfully send data. The
two wireless modules cannot be synchronized, because the micro-controller selects
the state(Sleep/ON) of the End Device.

2nd implementation: End Device with cyclic sleep

For the second implementation, we configured the Xbee to Cyclic Sleep sleeping
mode. This means that the radio module goes to sleep for a specified amount of
time, and then turns to ON mode by itself. After that, it stays ON waiting for packets
from the serial input to transmit or the wireless network to receive. When there is no
input from the serial or wireless channel for some time, the Xbee gets back to sleep
state.
The Cyclic Sleep Period option determines the duration of the time that the Xbee
will stay in sleep mode. The Time Before Sleep option determines how much time
Xbee will wait ON for messages until it switches to Sleep state(when a message is
received, serial or wireless, this time is restarted).
We configured these options using X-CTU. Cyclic Sleep Period was set to 3000ms
and Time Before Sleep was set to 1000ms.

42

For the Xbee set in coordinator mode, Cyclic Sleep Period option determines the
transmission timeout when sending to a sleeping end device. Also determines the
duration the parent will buffer a message for a sleeping child. We set it to 3000ms
as well.
Another option that we set on the Coordinators configuration was Number of Cyclic
Sleep Periods. This option determines the number of cyclic sleep periods used to
calculate end device poll timeout. If an end device does not send a poll request to
its parent coordinator or router within the poll timeout, the end device is removed
from the child table. The poll timeout is calculated by 3*Cyclic Sleep
Period*Number of Cyclic Sleep Periods. In the context of the project, we set the
Number of Cyclic Sleep Periods to 100, in order to rule out the possibility that the
End Device is removed from the Coordinator's child table.
Implementing this operation, we programmed the micro-controller to take
measurements from the sensors and get to a Low Power mode for some time.
Every once in a while, the micro-controller wakes up again, takes measurements,
and gets back to LPM state.
The Xbee itself wakes up periodically.

The execution is split into two parts:
Measuring part

• Micro-controller is in low power mode.
• After a period of time, a timer causes the micro-controller to wake up.
• Then, the micro-controller starts communicating with the sensors and

acquires measurement values.
• Then it calculates and stores temperature, relative humidity and light density.
• After that, writes this data to a string variable, to be able to send it to the

Xbee module.
• Finally, the micro-controller switches back to sleep mode.

Transmitting part
• The Xbee module operates in Sleep mode.
• After a period of time, it wakes up.
• When this happens, a HIGH signal is sent to a micro-controller's pin, causing

an interrupt.
• When this interrupt is detected, the micro-controller pauses its current

function/state and sends each one of the string variable's characters.
• The Xbee transmits the characters through air, the Xbee connected to the

host PC receives the data.
• After the completion of the transmission, the Xbee stays ON waiting for input.
• The micro-controller returns to its previous state.
• After an idle time, the Xbee module switches back to Sleep mode.

The execution of these parts is independent. The transmitting part can happen at
any point of the measuring part.

43

The disadvantage of this implementation is the fact that the Xbee stays ON waiting
for possible input before it switches back to sleep mode. Thus, the power
consumption is greater compared to the first implementation. Also, the micro-
controller might wake up two times. One to perform the measuring part, and one for
the transmitting part. As a result, the micro-controller's power consumption is
increased.
The advantage of this implementation is the fact that it is not necessary to
communicate with a node that is always ON, in order to successfully send data. The
two wireless modules can be synchronized to wake up at the same time, exchange
messages and switch back to sleep mode.

Port/Pin Interrupt
For the second implementation, our goal was to write a firmware that will signal the
micro-controller to switch to operation mode to send the data through the radio
module, when the XBee wakes up.
In order to implement this, we used Xbee's Sleep/ON pin(pin 13). This pin is
asserted HIGH when the radio module is ON, and LOW when the radio module is in
Sleep state. We connected this pin to the pin 2.7 of the micro-controller. Then we
set pin 2.7 as input pin. We programmed the micro-controller to detect an interrupt
when a Low-to-High transition occurs at pin 2.7. When this interrupt occurs, we
handle it by sending data(measured values from sensors) to the Xbee to transmit.

Source Code
To program the device in order to be able to detect this interrupt we followed the
next steps:

First of all, we select the interrupt edge for the specific pin(P2.7), to Low-to-High.

P2IES &= ~BIT7;

P2IES is the 8bit register that determines the interrupt edge for each of the eight
Port2 pins.
0 → Low-to-High transition
1 → High-to-Low transition

Next we clear the interrupt flag for pin P2.7

P2IFG &= ~BIT7;

P2IFG is the 8bit register that keeps the interrupt flags for the eight pins of Port2.
0 → No interrupt pending
1 → Interrupt pending

44

Also we enable the port2 interrupts for pin P2.7

P2IE |= BIT7;

P2IE is the 8bit register that enables/disables interrupts for the pins of Port2.
0 → Interrupt disabled
1 → Interrupt enabled

After this configuration, the micro-controller is programmed to detect Low-to-High
transitions that occur at pin P2.7

When this interrupt occurs, the micro-controller sends the measured values to the
Xbee radio module via serial UART interface. This process is described below.

UART Interface
The MSP430F5529 micro-controller, has an integrated eUSCI(enhanced Universal
Serial Communication Interface), interface that allows multiple serial
communication modes from a single hardware module.
Specifically, the micro-controller contains two Universal Serial Communication
Interface modules, called USCI0 and USCI1. Each one of them provides two
interfaces, USCI_A and USCI_B.
USCI_A interface supports UART, IrDA and SPI protocols, and USCI_B supports
SPI and I2C.

For this project, we used the asynchronous UART communication to transfer data
between the micro-controller and the Xbee wireless module. Using UART mode,
the USCI modules connected the device with an external system through two pins,
RXD and TXD. The first one is data input and the second data output. The module
transmits and receives UART characters to/from the external system with a specific
rate.

To be able to communicate using the UART protocol, we have to configure the
interface. The configuration is made through registers.

First of all, to configure the USCI module, we have to put the module's state in
reset.

UCA0CTL1 |= UCSWRST;

This command sets the module in reset state. UCACTL1 is the first UART control
register.

45

After this we can configure the module.

UCA0CTL1 |= UCSSEL_2;

SMCLK is selected as a clock source.

UCA0BR0 = 6;
UCA0BR1 = 0;

These two registers determine the Baud Rate.
The 16-bit value of UCA0BR0 + UCA0BR1 × 256 is used to calculate the Baud
Rate of the interface.

UCA0MCTL = UCBRS_0 + UCBRF_13 + UCOS16;

UCBRS_0 and UCBRF_13 determine the first and second modulation stage.
UCOS16 enables oversampling.

After the completion of the configuration we force the module to exit reset state and
be initialized.

UCA0CTL1 &= ~UCSWRST;

The last command de-asserts the reset bit which was set by the first command.

After this, the interface is ready. A string contains the data that need to be sent to
the radio module. To send data over the USCI module to the Xbee radio module, all
we have to do is to put the data byte-by-byte in the UART's transmit buffer.

for(i=0;i<240;i++){
while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready?
UCA0TXBUF = String[i];

}

A for loop serves this functionality, writing every byte into the transmit buffer. Each
byte/character is written to the buffer after a check, ensuring that the buffer is
ready(ie the previous character was transmitted).

46

Chapter 4. Implementation Features
Except of the basic mote's functionality which is measuring environmental
information and transmitting them to another network node, we implemented some
special features. These features give the node the following attributes:

• The ability to reset, and restart its execution, if a software error occurs. The
causes of this error could be external disturbances, hardware malfunctions or
even software bugs. This feature is provided by the watchdog timer.

• Low power mode. This feature allows the micro-controller to turn of system
clocks and integrated modules to save power. There are several low power
modes available, to select according to the demands. Exiting a low power
mode and switching back to active mode is possible through interrupts
caused by many reasons. In our implementation, exiting a low power mode is
caused by a timer interrupt.

In this chapter, we describe the functions and modules that provide these features,
and we analyze the study and procedure followed in order to add them to our
development.

Watchdog
The watchdog timer is a 32-bit timer that can be used as a watchdog or as an
interval timer.
The primary function of the watchdog timer (WDT_A) module is to perform a
controlled system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not needed
in an application, the module can be configured as an interval timer and can
generate interrupts at selected time intervals.

Features of the watchdog timer module include:
• Eight software-selectable time intervals
• Watchdog mode
• Interval mode
• Password-protected access to Watchdog Timer Control (WDTCTL) register
• Selectable clock source
• Can be stopped to conserve power
• Clock fail-safe feature

After a PUC, the WDT_A module is automatically configured in the watchdog mode
with an initial ~32-ms reset interval using the SMCLK. The user must setup or halt
the WDT_A prior to the expiration of the initial reset interval.

47

The watchdog timer module can be configured as either a watchdog or interval
timer with the WDTCTL register. WDTCTL is a 16-bit password-protected read/write
register. Any read or write access must use word instructions and write accesses
must include the write password 05Ah in the upper byte. Any write to WDTCTL with
any value other than 05Ah in the upper byte is a password violation and triggers a
PUC system reset, regardless of timer mode. Any read of WDTCTL reads 069h in
the upper byte. Byte reads on WDTCTL high or low part result in the value of the
low byte. Writing byte wide to upper or lower parts of WDTCTL results in a PUC.

The WDTCNT is a 32-bit up counter that is not directly accessible by software. The
WDTCNT is controlled and its time intervals are selected through the Watchdog
Timer Control (WDTCTL) register. The WDTCNT can be sourced from SMCLK,
ACLK, VLOCLK, or X_CLK on some devices. The clock source is selected with the
WDTSSEL bits. The timer interval is selected with the WDTIS bits.

Watchdog Mode
After a PUC condition, the WDT module is configured in the watchdog mode with
an initial ~32ms reset interval using the SMCLK. The user must setup, halt, or clear
the watchdog timer prior to the expiration of the initial reset interval or another PUC
is generated. When the watchdog timer is configured to operate in watchdog mode,
either writing to WDTCTL with an incorrect password, or expiration of the selected
time interval triggers a PUC. A PUC resets the watchdog timer to its default
condition.

Watchdog Timer Interrupts
When using the watchdog timer in the watchdog mode, the WDTIFG flag sources a
reset vector interrupt. The WDTIFG will self clear upon a watchdog timeout event.
The SYSRSTIV can be read to determine if the reset was caused by a watchdog
timeout event. When using the watchdog timer in interval timer mode, the WDTIFG
flag is set after the selected time interval and requests a watchdog timer interval
timer interrupt if the WDTIE and the GIE bits are set. The interval timer interrupt
vector is different from the reset vector used in watchdog mode. In interval timer
mode, the WDTIFG flag is reset automatically when the interrupt is serviced, or can
be reset with software.

Clock Fail-Safe Feature
The WDT_A provides a fail-safe clocking feature, ensuring the clock to the WDT_A
cannot be disabled while in watchdog mode. This means that the low-power modes
may be affected by the choice for the WDT_A clock. If SMCLK or ACLK fails as the
WDT_A clock source, VLOCLK is automatically selected as the WDT_A clock
source. When the WDT_A module is used in interval timer mode, there is no fail-
safe feature within WDT_A for the clock source.

48

Watchdog time intervals and clock sources
There are eight different time intervals for the watchdog. They are software
selectable.
The watchdog counter counts from zero to a specified value. This value is
determined by the time interval select bits.
A clock source is selected to do the counting.
The time that will take the watchdog to expire depends on the time interval and the
clock speed(frequency).

Watchdog Control Registers and Source Code
The 16-bit watchdog control register WDTCTL contains a field (bits 6-5) for clock
selection. Clock source is selected according to the following way:

WDTCTL bits 6-5 Selected Clock Source
00 → SMCLK
01 → ACLK
10 → VLOCLK

value 11 is reserved.

The WDTCTL's 2-0 bits configure the watchdog time intervals according to the
following way:

WDTCTL bits 2-0 Selected Time Interval
000 → 2^31
001 → 2^27
010 → 2^23
011 → 2^19
100 → 2^15
101 → 2^13
110 → 2^9
111 → 2^6

When the watchdog clock source is ACLK (32KHz), it is calculated that if 000 is
selected as time interval, the watchdog timer will expire after 18h:12m:16s. When
111 is selected as time interval, the watchdog timer will expire after 1.95ms.

In the context of the project, we selected ACLK as clock source, and 011 as time
interval. The watchdog timer is supposed to expire after 16seconds (2^19 /
(32*(2^10) Hz) = 16s).
Although, when testing, we found out that with these options the watchdog expires
after about 1min.

49

We have direct access to the watchdog control register. We configure it with the
following command:

WDTCTL = WDTPW+WDTCNTCL+WDTSSEL0+WDTIS_3;

WDTPW is the password 5Ah written to bits 15-8
WDTCNTCL clears the watchdog counter to 0. The watchdog is restarted.
WDTSSEL0 selects the watchdog clock source to ACLK.
WDTIS_3 selects the watchdog time interval to 2^19.

Every time the micro-controller takes measurements, we execute this command to
restart the watchdog timer. If for any reason the micro-controller is not taking
measurements, this timer will not be restarted, and will expire causing the system to
reset (PUC, Power-up Clear reset).

Low Power Modes

Operating Modes

The MSP430 family is designed for ultra-low-power applications and uses different
operating modes. It has one active mode and six software selectable low-power
modes of operation. The operating modes take into account three different needs:
• Ultra-low power
• Speed and data throughput
• Minimization of individual peripheral current consumption

An interrupt event can wake up the device from any of the low-power modes,
service the request, and restore back to the low power mode on return from the
interrupt program.

The following seven operating modes can be configured by
software:

Active mode (AM)
– All clocks are active
Low-power mode 0 (LPM0)
– CPU is disabled
– ACLK and SMCLK remain active, MCLK is disabled
– FLL loop control remains active

50

Low-power mode 1 (LPM1)
– CPU is disabled
– FLL loop control is disabled
– ACLK and SMCLK remain active, MCLK is disabled
Low-power mode 2 (LPM2)
– CPU is disabled
– MCLK and FLL loop control and DCOCLK are disabled
– DCO's dc-generator remains enabled
– ACLK remains active
Low-power mode 3 (LPM3)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO's dc generator is disabled
– ACLK remains active
Low-power mode 4 (LPM4)
– CPU is disabled
– ACLK is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO's dc generator is disabled
– Crystal oscillator is stopped
– Complete data retention

Status Register

Status register(SR) is a 16bit register. The register's 7-3 bits control the operating
mode of the micro-controller.

Specifically:
bit 7: SCG1 System clock generator 1
bit 6: SCG0 System clock generator 0
bit 5: OSCOFF Oscillator off
bit 4: CPUOFF CPU off
bit 3: GIE General interrupt enable

To force the micro-controller to enter low power modes, we configure these status
register bits.
To get to LPM0 we set the SR's bit 4(CPUOFF).
To get to LPM1 we set the SR's bit 4 and 6 (CPUOFF + SCG0).
To get to LPM2 we set the SR's bit 4 and 7 (CPUOFF + SCG1).
To get to LPM3 we set the SR's bit 4, 6 and 7 (CPUOFF + SCG0 + SCG1).
To get to LPM4 we set the SR's bit 4, 5, 6 and 7 (CPUOFF +OSCOFF + SCG0 +
SCG1).

To enable interrupts during a low power mode, we also set the SR's bit 3 (GIE).

51

The advantage of including the CPUOFF, OSCOFF, SCG0, and SCG1 mode-
control bits in the SR is that the present operating mode is saved onto the stack
during an interrupt service routine.
Program flow returns to the previous operating mode if the saved SR value is not
altered during the interrupt service routine. Program flow can be returned to a
different operating mode by manipulating the saved SR value on the stack inside of
the interrupt service routine. When setting any of the mode control bits, the selected
operating mode takes effect immediately.
Peripherals operating with any disabled clock are disabled until the clock becomes
active. Peripherals may also be disabled with their individual control register
settings.
All I/O port pin configurations and RAM/registers are left unchanged.

Wake up from LPM0 through LPM4 is possible through all enabled interrupts.

Exiting Low-Power Modes LPM0 Through LPM4

An enabled interrupt event wakes the device from low-power operating modes
LPM0 through LPM4. The program flow for exiting LPM0 through LPM4 is:

● Enter interrupt service routine
➢ The PC and SR are stored on the stack.
➢ The CPUOFF, SCG1, and OSCOFF bits are automatically reset.

● Options for returning from the interrupt service routine
➢ The original SR is popped from the stack, restoring the previous

operating mode.
➢ The SR bits stored on the stack can be modified within the interrupt

service routine returning to a different operating mode when the RETI
instruction is executed.

In the context of this project, we programmed the micro-controller to enter LPM3
when it is idle.
The reason we chose this low power mode, is that the ACLK is active during LPM3.
When entering LPM3 we initiate a timer. When the timer expires(overflows), the
micro-controller switches to active mode and takes measurements from the
sensors. In order to be able to do that, the timer must be active during LPM3.
The timer's clock source is set to be ACLK. LPM4 disables this clock.
Thus we selected LPM3, which has the lowest power consumption after LPM4.
Of course, we also set the GIE bit, in order to enable the interrupt that will occur
during LPM3 and force exit to active mode, continuing execution right below the
enter LPM command.

52

The functions that we used to configure SR in order to force the micro-controller to
enter and exit LPM3 are:

__bis_SR_register();

and

__bic_SR_register_on_exit();

Entering LPM3: __bis_SR_register(SCG1+SCG0+CPUOFF+GIE);

Exiting LPM3: __bis_SR_register_on_exit(SCG1+SCG0+CPUOFF+GIE);

In the second implementation, the Xbee radio module can also wake up the micro-
controller with a pin interrupt as described. The difference is that when this interrupt
occurs, the micro-controller sends a message to the radio module and then the
SR(state register) is restored, returning the system to the previous state. If it was
operating in LPM3 it will switch back to it. If it was operating in active mode, it will
switch back to it and continue with the execution from the point it stopped when the
interrupt occurred.
Only when the timer interrupt occurs we execute the __bic_SR_register_on_exit
command and the micro-controller is forced to get to active mode.

53

Timers
The micro-controller must exit low power mode after a short period of time. To
specify and select how long will the system stay in low power mode and when it will
get back to active mode to obtain measure values from the sensors, we use a timer.

The micro-controller has four different timers. Three timers of the TIMER_A
family(TIMER0_A5, TIMER1_A3, TIMER2_A3) and one timer of the TIMER_B
family(TIMER0_B7).
In this case, we use TIMER0_A5.

Timer_A is a 16-bit timer/counter with up to five capture/compare registers.
TIMER0_A5 has five, TIMER1_A3 and TIMER2_A3 have three.
Timer_A module is configured with user software, can support multiple
capture/compares, PWM outputs, and interval timing. It also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions
and from each of the capture/compare registers.

Timer_A features include:
• Asynchronous 16-bit timer/counter with four operating modes
• Selectable and configurable clock source
• Up to five configurable capture/compare registers
• Configurable outputs with pulse width modulation (PWM) capability
• Asynchronous input and output latching
• Interrupt vector register for fast decoding of all Timer_A interrupts

Timer_A registers
TIMER0_A5 has fourteen 16bit registers, in order to operate. These are:

• TA0CTL: Control Register
• TA0CCTL0: Capture/Compare Control 0
• TA0CCTL1: Capture/Compare Control 1
• TA0CCTL2: Capture/Compare Control 2
• TA0CCTL3: Capture/Compare Control 3
• TA0CCTL4: Capture/Compare Control 4
• TA0R: Counter
• TA0CCR0: Capture/Compare 0
• TA0CCR1: Capture/Compare 1
• TA0CCR2: Capture/Compare 2
• TA0CCR3: Capture/Compare 3
• TA0CCR4: Capture/Compare 4
• TA0IV: Interrupt Vector
• TA0EX0: Expansion

54

Capture/Compare registers 1-4 are used to record a time event, generate output
signal with modulated width, or cause an interrupt at specific time intervals in
continuous mode. TA0CCR0 is used as a time interval in up mode.
In our case, they are not used. The timer's time interval is 0xFFFF, the maximum
value of the 16bit counter.

TA0R: 16-Bit Timer Counter
The 16-bit timer/counter register, TA0R, increments or decrements (depending on
mode of operation) with each rising edge of the clock signal. TA0R can be read or
written with software. Additionally, the timer can generate an interrupt when it
overflows.

TA0CTL: Control Register
The 16-bit timer control register is responsible for the configuration and operation of
the timer. It contains six programmable fields.

TASSEL (bits 9-8) selects the timer's clock source.
The timer clock can be sourced from ACLK, SMCLK, or externally via TA0CLK or
INCLK.

ID (bits 7-6) determines the clock divider.
The selected clock source may be passed directly to the timer or divided by 2, 4, or
8, using the ID bits.

MC (bits 5-4) configures timer's mode.
There are four modes. Stop mode, the timer is halted. Up mode, the timer counts
up to TA0CCR0. Continuous mode, the timer counts up to 0xFFFF. Up/down mode,
the timer counts up to TA0CCR0 and then down to 0.

TACLR (bit 2) clears the timer.
Setting this bit resets TA0R, the timer clock divider logic, and the
count direction. The TACLR bit is automatically reset and is always read as zero.

TAIE (bit 1) enables timer interrupt.
This bit enables the TAIFG interrupt request.

55

TAIFG (bit 0) interrupt flag.
0 = No interrupt pending
1 = Interrupt pending

Bits 15-10 and 3 are reserved.

TA0IV: Interrupt Vector
TA0IV is a register used to identify and separate the different interrupts that can be
caused by the timer. According to the interrupt source, TA0IV takes a value that we
use to identify and handle the interrupt the desired way .
00h No interrupt pending
02h Interrupt source: Capture/Compare 1 (Highest Priority)
04h Interrupt source: Capture/Compare 2
06h Interrupt source: Capture/Compare 3
08h Interrupt source: Capture/Compare 4
0Ah reserved
0Ch reserved
0Eh Interrupt source: Timer overflow (Lowest Priority)

TA0EX0: Expansion
The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8 using the
TAIDEX bits.

After programming ID or TAIDEX bits, we set the TACLR bit. This clears the
contents of TΑ0R and resets the clock divider logic to a defined state.
The clock dividers are implemented as down counters. Therefore, when the TACLR
bit is cleared, the timer clock immediately begins clocking at the first rising edge of
the Timer_A clock source selected with the TASSEL bits and continues clocking at
the divider settings set by the ID and TAIDEX bits.

The timer starts when MC field of TA0CTL is set to a clock, and this clock is active,
and stops when MC is set to 00. When this happens TA0R is automatically set to 0.

Modifying Timer_A registers
It is recommended to stop the timer before modifying its operation (with exception
of the interrupt enable, interrupt flag, and TACLR) to avoid errant operating
conditions.
When the timer clock is asynchronous to the CPU clock, any read from TAxR
should occur while the timer is not operating or the results may be unpredictable.
Alternatively, the timer may be read multiple times while operating, and a majority
vote taken in software to determine the correct reading. Any write to TAxR takes
effect immediately.

56

Configuration
The Configuration that we chose for this project is the following:

Clock Source: ACLK
Input clock divider: CLK/4
Mode: Continuous
Interrupts: Enable interrupts
Expansion divider: CLK/1

With these options, the micro-controller will exit LPM3 after six seconds.

Source code

TA0EX0 = TAIDEX_0;
TA0CTL = TASSEL_1 + MC_0 + ID_2 + TACLR + TAIE;

Configure initial timer state.

Right before the micro-controller enters LPM3 we start the timer.

TA0CTL |= MC_2;

When an interrupt occurs and the micro-controller must exit LPM3 we detect the
interrupt source. We use the function __even_in_range in order to do that.

__even_in_range(TA0IV,14)

If the interrupt occurs in vector 14 (0Eh) the interrupt source is an overflow of the
timer.

When this happens, we stop the timer and force the micro-controller to exit LPM3.

TA0CTL |= MC_0;
__bic_SR_register_on_exit(LPM3_bits);

LPM3_bits is defined as SCG1+SCG0+CPUOFF+GIE

57

Fig 26: Timer_A continuous mode

Conclusion - Summary

Final Results

Within this thesis we assembled and programed a wireless sensor mote. This mote
is able to function individually and obtain environmental information, such as
temperature, relative humidity and ambient light level. It is able to send this data to
a server using the connected Xbee radio module. The mote's special features allow
it to be operational as long as it is connected to a power supply. It can be part of a
network of wireless sensors, providing valid information about the state of its
environment. Information that might be crucial to a central server.

Future Work

A further step based on this implementation could be adding more sensors to the
mote, such as human presence sensor. Also, the mote could be powered by a
battery, in order to be completely independent.
Different low power modes and timers, or wireless modules could be used, to serve
particular demands.
Finally, the sensors and wireless module could be united to form a board which can
be connected on top of the launchpad.

58

Appendix

Source Code
The project's entire source code is quoted below:

Definitions and Functions

The definitions and operational functions are common for both implementations.

#include <msp430.h>
#include <stdio.h>

//Internal Temperature Sensor calibration values
#define CALADC12_15V_30C *((unsigned int *)0x1A1A) // Temperature Sensor
Calibration-30 C
#define CALADC12_15V_85C *((unsigned int *)0x1A1C) // Temperature Sensor
Calibration-85 C

//SHT11 Clock Pin P2_2
#define SCK_OUT (P2DIR |= BIT2)
#define SCK_HIGH (P2OUT |= BIT2)
#define SCK_LOW (P2OUT &= ~(BIT2))

//SHT11 Data Pin P7_4
#define DATA_DIR_OUT (P7DIR |= BIT4)
#define DATA_DIR_IN (P7DIR &= ~(BIT4))
#define DATA_OUT_HIGH (P7OUT |= BIT4)
#define DATA_OUT_LOW (P7OUT &= ~(BIT4))
#define DATA_IN (P7IN & BIT4)

//SHT11 command codes
#define STATUS_REG_W 0x06 //000 0011 0
#define STATUS_REG_R 0x07 //000 0011 1
#define MEASURE_TEMP 0x03 //000 0001 1
#define MEASURE_HUMI 0x05 //000 0010 1
#define RESET 0x1e //000 1111 0

///////// SHT11 Function declarations ///////////////////////
void sht11Reset();
void sht11_pulse();
int s_write_byte(unsigned char value);
int s_read_byte(unsigned char ack);
void s_transstart();
int s_softreset();
float measure_temp();
float measure_humi();

59

////////// Internal temp sensor and Photocell function declarations ///////////////
void internalTemp();
void lightLevel();

////////////////// Variables /////////////////
unsigned int temp;
volatile float InternalTemperatureDegC;
volatile float InternalTemperatureDegF;
unsigned long brightness=0.0;
volatile float SHT11TemperatureDegC=0.0;
volatile float SHT11RelativeHumidity=0.0;

char String[240];

///////////////////////////////// Functions ///////////////////////////////////

// Measure and return temperature from internal temperature sensor
void internalTemp(){

ADC12CTL0 &= ~ADC12ENC;
ADC12CTL0 = ADC12ON; // Sampling time, ADC12 on
ADC12CTL0 |= ADC12SHT0_8 + ADC12REFON; // Internal ref = 1.5V

ADC12MCTL0 = ADC12SREF_1 + ADC12INCH_10; // ADC i/p ch A10 = temp sense i/p

__delay_cycles(100); // delay to allow Ref to settle
ADC12CTL0 |= ADC12ENC;

ADC12CTL0 &= ~ADC12SC;
ADC12CTL0 |= ADC12SC; // Sampling and conversion start
_delay_cycles(60);

temp = ADC12MEM0;

// Temperature in Celsius
InternalTemperatureDegC = (float)(((long)temp - CALADC12_15V_30C) * (85 - 30)) /
 (CALADC12_15V_85C - CALADC12_15V_30C) + 30.0f;

// Temperature in Fahrenheit
InternalTemperatureDegF = InternalTemperatureDegC * 9.0f / 5.0f + 32.0f;

}

// Measure and return brightness from Photocell
void lightLevel(){

ADC12CTL0 &= ~ADC12ENC;
ADC12CTL0 = 0x0000;
ADC12CTL0 = ADC12ON; // Sampling time, ADC12 on
ADC12CTL0 |= ADC12SHT02; // Sampling time
ADC12MCTL0=0x00;
ADC12CTL0 |= ADC12ENC;

ADC12CTL0 |= ADC12SC; // Start sampling/conversion
_delay_cycles(15);

brightness=((long)ADC12MEM0/4095.0)*100;
}

60

// Measure and return temperature from SHT11
float measure_temp(){

int ackn, ret_crc, ret_value;
float temperature;
ackn=0;
ret_crc=0;
ret_value=0;
temperature=0.0;

s_transstart();
ackn = s_write_byte(MEASURE_TEMP);
if(ackn==1){

sht11Reset();
return 0;

}
_delay_cycles(320000); //wait 320ms for the sensor to complete the

measurement

ret_value = s_read_byte(1);
ret_value = ret_value * 256;
ret_value += s_read_byte(1);
ret_crc = s_read_byte(0);
temperature = ret_value * 0.01 - 39.7;

return temperature;
}

// Measure and return relative humidity from SHT11
float measure_humi(){

int ackn, ret_crc, ret_value;
float humidity;
ackn=0;
ret_crc=0;
ret_value=0;
humidity=0.0;

s_transstart();
ackn = s_write_byte(MEASURE_HUMI);
if(ackn==1){

sht11Reset();
return 0;

}
_delay_cycles(80000); //wait 80ms for the sensor to complete the measurement

ret_value = s_read_byte(1);
ret_value = ret_value * 256;
ret_value += s_read_byte(1);
ret_crc = s_read_byte(0);
humidity = -2.0468 + 0.0367*ret_value - 0.0000015955*ret_value*ret_value;

return humidity;
}

61

// clock output
void sht11_pulse(void){
 SCK_HIGH; //CLOCK pulse -> approx 32us;
 _delay_cycles(16);
 SCK_LOW;
 _delay_cycles(16);
}

// writes a byte on the Sensibus and checks the acknowledge
int s_write_byte(unsigned char value){

unsigned char i,error=0;

DATA_DIR_OUT; // set data pin as output direction

for (i=0x80;i>0;i/=2) //shift bit for masking
{

if (i & value) { DATA_OUT_HIGH; }//masking value with i, write to SENSI-
BUS

else { DATA_OUT_LOW; }
sht11_pulse();

}
DATA_OUT_HIGH; //release DATA-line

SCK_HIGH; //clk #9 for ack
DATA_DIR_IN; // set data pin as input direction

if(DATA_IN){ error=1; }//check ack (DATA will be pulled down by SHT11)
SCK_LOW;

return error; //error=1 in case of no acknowledge
}

// reads a byte form the Sensibus and gives an acknowledge in case of "ack=1"
int s_read_byte(unsigned char ack){

unsigned char i,val=0;

DATA_DIR_OUT; // set data pin as output direction
DATA_OUT_HIGH; // release DATA-line
DATA_DIR_IN; // set data pin as input direction

for (i=0x80;i>0;i/=2) //shift bit for masking
{

SCK_HIGH; //clk for SENSI-BUS
if (DATA_IN){

val=(val | i); //read bit
}

 _delay_cycles(32);
SCK_LOW;

}
DATA_DIR_OUT; // set data pin as output direction
if(ack == 1) { DATA_OUT_LOW; } //in case of "ack==1" pull down DATA-Line
else { DATA_OUT_HIGH; }

sht11_pulse();
DATA_OUT_HIGH; //release DATA-line
return val;

}

62

// generates a transmission start
void s_transstart(void){
 DATA_DIR_OUT; //OUTPUT DATA
 DATA_OUT_HIGH;
 SCK_LOW; //Initial state
 _delay_cycles(16);
 SCK_HIGH;
 _delay_cycles(16);
 DATA_OUT_LOW;
 _delay_cycles(16);
 SCK_LOW;
 _delay_cycles(32);
 SCK_HIGH;
 _delay_cycles(16);
 DATA_OUT_HIGH;
 _delay_cycles(16);
 SCK_LOW;
 DATA_OUT_LOW;
}

// communication reset: DATA-line=1 and at least 9 SCK cycles followed by transstart
void sht11Reset(void){
 unsigned char i;
 DATA_DIR_OUT;//OUTPUT DATA
 DATA_OUT_HIGH;
 SCK_LOW; //Initial state
 for(i=0;i<9;i++){ //9 SCK cycles

 sht11_pulse();
 }
 s_transstart(); //transmission start
}
// resets the sensor by a softreset
int s_softreset(void){

int error=0;
sht11Reset(); //reset communication
error+=s_write_byte(RESET); //send RESET-command to sensor
return error; //error=1 in case of no response form the sensor

}

63

The main() function and the interrupt handlers are different for the
implementations.

1st Implementation: Xbee pin wake-up

int main(void)
{

///////////////////////// Watchdog configuration //////////////////////////////////
WDTCTL = WDTPW+WDTCNTCL+WDTSSEL0+WDTIS_3;

//////////////////////// Timer Interrupt (exit LPM)//////////////////////////////////
 TA0EX0 = TAIDEX_0;
 TA0CTL = TASSEL_1 + MC_0 + ID_2 + TACLR + TAIE; // ACLK, halt timer, divider, clear
TAR, enable interrupt
 // approximately 6 seconds to a full cycle

///////////////////////// ADC configuration ///
 REFCTL0 &= ~REFMSTR; // Reset REFMSTR to hand over control to
ADC12_A ref control registers
 ADC12CTL1 = ADC12SHP; // enable sample timer
 ADC12IE = 0x01; // Enable interrupt
 P6SEL |= 0x01; // P6.0 ADC option select

//////////////////////// UART and LED configuration//////////////////////////////////
 P3SEL = BIT3+BIT4; // P3.3,4 = USCI_A0 TXD/RXD

 P1DIR |= BIT6; //Wake up pin P1.6
 P1DIR |= BIT0; //Launchpad's Red LED as
output --> Xbee Transmitting
 P4DIR |= BIT7; //Launchpad's Green LED as
output: Microcontroller Active mode/LPM --> LED ON/OFF
 P4OUT |= BIT7;
 P2DIR &= ~(BIT7); //P2.7 as input --> HIGH
when Xbee is ON

 UCA0CTL1 |= UCSWRST; // **Put state machine in reset**
 UCA0CTL1 |= UCSSEL_2; // SMCLK
 UCA0BR0 = 6; // 1MHz 9600
 UCA0BR1 = 0; // 1MHz 9600
 UCA0MCTL = UCBRS_0 + UCBRF_13 + UCOS16; // Modln UCBRSx=0, UCBRFx=0, over sampling

 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

////////////////////// Local variables ///
 int i;
 int InternalTemperatureDegCinteger,brightnessinteger;
 int SHT11TemperatureDegCinteger,SHT11RelativeHumidityinteger;

////////////////////// SHT11 initializations /////////////////////////////
 _delay_cycles(12000); //wait 12ms for the SHT11 sensor to get to Sleep
 SCK_OUT; //set the P2.2 as output

64

///////////// Initialize Xbee, give it time to connect to the network /////////////////
 P1OUT |= BIT6;
 P1OUT &= ~(BIT6);
 while((P2IN & BIT7)!=BIT7); //wait until the Xbee module turns ON
 P1OUT |= BIT6;

////////////////////// Measuring and Transmitting Loop ///////////////////////////
 while(1){

 WDTCTL = WDTPW+WDTCNTCL+WDTSSEL0+WDTIS_3; //Reset Watchdog

//////////Measuring values: Temperature, relative humidity and light level ////////////
 internalTemp();

 lightLevel();

 SHT11TemperatureDegC = measure_temp();
 _delay_cycles(1000000); //wait 1s to prevent sensor overheating
 SHT11RelativeHumidity = measure_humi();
 _delay_cycles(1000000); //wait 1s to prevent sensor overheating

///////////////////////// Preparing the Data to be transmitted/////////////////////////
 InternalTemperatureDegCinteger=(int)InternalTemperatureDegC;
 brightnessinteger=(int)brightness;
 SHT11TemperatureDegCinteger=(int)SHT11TemperatureDegC;
 SHT11RelativeHumidityinteger=(int)SHT11RelativeHumidity;

 for(i=0;i<240;i++){
 String[i]=' ';

 }

 sprintf(String, "\nTemperature as measured by the internal tempsensor is: %d
Celsius\n"

 "Temperature as measured by the SHT11 sensor is: %d
Celsius\n"

 "Relative humidity as measured by the SHT11 sensor
is: %d%%\n"

 "Brightness as measured by the Photocell is: %d%
%\n",

InternalTemperatureDegCinteger,SHT11TemperatureDegCinteger,

 SHT11RelativeHumidityinteger,brightnessinteger);

///////////////////////// Data Transmitting procedure/////////////////////////////////
 P1OUT &= ~(BIT6);
 while((P2IN & BIT7)!=BIT7); //wait until the Xbee module turns ON

 for(i=0;i<240;i++){
 while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready?
 UCA0TXBUF = String[i];
 P1OUT ^= BIT0;

65

 }
 P1OUT &= ~(BIT0);
 _delay_cycles(50000);
 P1OUT |= BIT6;
 while((P2IN & BIT7)==BIT7); //wait until the Xbee module gets to Sleep

/////////////// Entering Low Power mode, starting interrupt timer//////////////////////
 P4OUT &= ~(BIT7);
 TA0CTL |= MC_2; //start timer
 __bis_SR_register(LPM3_bits + GIE); //Enter LPM3

 }
}

// Timer0_A5 Interrupt Vector (TAIV) handler
#pragma vector=TIMER0_A1_VECTOR
__interrupt void TIMER0_A1_ISR(void)
{
 switch(__even_in_range(TA0IV,14))
 {
 case 0: break; // No interrupt
 case 2: break; // CCR1 not used
 case 4: break; // CCR2 not used
 case 6: break; // reserved
 case 8: break; // reserved
 case 10: break; // reserved
 case 12: break; // reserved
 case 14: // overflow
 TA0CTL |= MC_0; // halt timer
 __bic_SR_register_on_exit(LPM3_bits); // exit LPM3
 P4OUT |= BIT7;
 break;
 default: break;
 }
}

66

2nd Implementation: Xbee cyclic sleep

int main(void)
{

///////////////////////// Watchdog configuration //////////////////////////////////
WDTCTL = WDTPW+WDTCNTCL+WDTSSEL0+WDTIS_3;

///////////////////////// Port Interrupt (Xbee ON/Sleep) //////////////////////////
 P2IES &= ~BIT7; // P2.7 Lo/Hi edge
 P2IFG &= ~BIT7; // P2.7 IFG cleared
 P2IE |= BIT7; // P2.7 interrupt enabled

//////////////////////// Timer Interrupt (exit LPM)//////////////////////////////////
 TA0EX0 = TAIDEX_0;
 TA0CTL = TASSEL_1 + MC_0 + ID_2 + TACLR + TAIE; // ACLK, halt timer, divider, clear
TAR, enable interrupt
 // approximately 6 seconds to a full cycle

///////////////////////// ADC configuration //
 REFCTL0 &= ~REFMSTR; // Reset REFMSTR to hand over control to
ADC12_A ref control registers
 ADC12CTL1 = ADC12SHP; // enable sample timer
 ADC12IE = 0x01; // Enable interrupt
 P6SEL |= 0x01; // P6.0 ADC option select

/////////////////// UART and LED configuration//
 P3SEL = BIT3+BIT4; // P3.3,4 = USCI_A0 TXD/RXD

 P1DIR |= BIT0; //Launchpad's Red LED as
output --> Xbee Transmitting
 P4DIR |= BIT7; //Launchpad's Green LED as
output: Microcontroller Active mode/LPM --> LED ON/OFF
 P4OUT |= BIT7;
 P2DIR &= ~(BIT7); //P2.7 as input --> HIGH
when Xbee is ON

 UCA0CTL1 |= UCSWRST; // **Put state machine in reset**
 UCA0CTL1 |= UCSSEL_2; // SMCLK
 UCA0BR0 = 6; // 1MHz 9600
 UCA0BR1 = 0; // 1MHz 9600
 UCA0MCTL = UCBRS_0 + UCBRF_13 + UCOS16; // Modln UCBRSx=0, UCBRFx=0, over sampling

 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

////////////////////// Local variables //
 int i;
 int InternalTemperatureDegCinteger,brightnessinteger;
 int SHT11TemperatureDegCinteger,SHT11RelativeHumidityinteger;

///////////////////// SHT11 initializations //////////////////////////////////
 _delay_cycles(12000); //wait 12ms for the SHT11 sensor to get to Sleep
 SCK_OUT; //set the P2.2 as output

67

////////////////////// Measuring Loop ///
 while(1){

 WDTCTL = WDTPW+WDTCNTCL+WDTSSEL0+WDTIS_3; //Reset Watchdog

////////// Measuring values: Temperature, relative humidity and light level /////////
 internalTemp();

 lightLevel();

 SHT11TemperatureDegC = measure_temp();
 _delay_cycles(1000000); //wait 1s to prevent sensor overheating
 SHT11RelativeHumidity = measure_humi();
 _delay_cycles(1000000); //wait 1s to prevent sensor overheating

////////////////// Preparing the Data to be transmitted /////////////////////////
 InternalTemperatureDegCinteger=(int)InternalTemperatureDegC;
 brightnessinteger=(int)brightness;
 SHT11TemperatureDegCinteger=(int)SHT11TemperatureDegC;
 SHT11RelativeHumidityinteger=(int)SHT11RelativeHumidity;

 for(i=0;i<240;i++){
 String[i]=' ';

 }

 sprintf(String, "\nTemperature as measured by the internal tempsensor is: %d
Celsius\n"

 "Temperature as measured by the SHT11 sensor is: %d
Celsius\n"

 "Relative humidity as measured by the SHT11 sensor
is: %d%%\n"

 "Brightness as measured by the Photocell is: %d%
%\n",

InternalTemperatureDegCinteger,SHT11TemperatureDegCinteger,

 SHT11RelativeHumidityinteger,brightnessinteger);

////////////// Entering Low Power mode, starting interrupt timer //////////////
 P4OUT &= ~(BIT7);
 TA0CTL |= MC_2; //start timer
 __bis_SR_register(LPM3_bits + GIE); //Enter LPM3

 }
}

// Timer0_A5 Interrupt Vector (TAIV) handler
#pragma vector=TIMER0_A1_VECTOR
__interrupt void TIMER0_A1_ISR(void)
{
 switch(__even_in_range(TA0IV,14))
 {
 case 0: break; // No interrupt
 case 2: break; // CCR1 not used
 case 4: break; // CCR2 not used
 case 6: break; // CCR3 not used
 case 8: break; // CCR4 not used
 case 10: break; // reserved
 case 12: break; // reserved

68

 case 14: // overflow
 TA0CTL |= MC_0; //halt timer
 __bic_SR_register_on_exit(LPM3_bits); //exit LPM3
 P4OUT |= BIT7;
 break;
 default: break;
 }
}

// Port 1 interrupt service routine
#pragma vector=PORT2_VECTOR
__interrupt void Port_2(void)
{

int i;

///////////////////////// Data Transmitting procedure/////////////////////////////////
for(i=0;i<240;i++){
 while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready?
 UCA0TXBUF = String[i];
 P1OUT ^= BIT0; //Toggle launchpad's Red LED while

transmitting
}
P1OUT &= ~(BIT0);
while((P2IN & BIT7)==BIT7); //wait until the Xbee module gets to

Sleep

P2IFG &= ~BIT7; // P2.7 IFG cleared
}

69

References
[1] Texas Instruments: http://www.ti.com/

[2] TI E2E Community: http://e2e.ti.com/

[3] 43Oh forum: http://forum.43oh.com/

[4] Sparkfun: https://www.sparkfun.com/

[5] Energia: http://energia.nu/pin-maps/guide_msp430f5529launchpad/

[6] Custom Computer Services: http://www.ccsinfo.com/forum/

[7] Element14 Community: http://www.element14.com/community/welcome

[8] Stackoverflow: http://stackoverflow.com/

[9] http://www.education.rec.ri.cmu.edu/content/electronics/common/resistors/1.html

[10] http://en.wikipedia.org/wiki/Photoresistor

[11] http://www.technologystudent.com/elec1/ldr1.htm

[12] Sensirion SHT1x: http://www.sensirion.com/en/products/humidity-
temperature/humidity-temperature-sensor-sht1x/

[13 Sensirion download center: http://www.sensirion.com/en/products/humidity-
temperature/download-center/

[14] Digi XBee ZB: http://www.digi.com/products/wireless-wired-embedded-
solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module

[15] Digi XBee / XBee-PRO ZB (S2) Modules: http://www.digi.com/support/productdetail?
pid=3430&type=utilities

[16] Digi XBee Examples and Guides: http://examples.digi.com/get-
started/configuring-xbee-radios-with-x-ctu/

[17] Parallax XBee adapter board: http://www.parallax.com/product/32403

70

http://www.parallax.com/product/32403
http://examples.digi.com/get-started/configuring-xbee-radios-with-x-ctu/
http://examples.digi.com/get-started/configuring-xbee-radios-with-x-ctu/
http://www.digi.com/support/productdetail?pid=3430&type=utilities
http://www.digi.com/support/productdetail?pid=3430&type=utilities
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module
http://www.sensirion.com/en/products/humidity-temperature/download-center/
http://www.sensirion.com/en/products/humidity-temperature/download-center/
http://www.sensirion.com/en/products/humidity-temperature/humidity-temperature-sensor-sht1x/
http://www.sensirion.com/en/products/humidity-temperature/humidity-temperature-sensor-sht1x/
http://www.technologystudent.com/elec1/ldr1.htm
http://en.wikipedia.org/wiki/Photoresistor
http://www.education.rec.ri.cmu.edu/content/electronics/common/resistors/1.html
http://stackoverflow.com/
http://www.element14.com/community/welcome
http://www.ccsinfo.com/forum/
http://energia.nu/pin-maps/guide_msp430f5529launchpad/
https://www.sparkfun.com/
http://forum.43oh.com/forum/28-energia/
http://e2e.ti.com/
http://www.ti.com/

	Table of contents
	Abbreviations
	Introduction
	Wireless sensor mote

	Controller
	Transceiver
	External memory
	Power source
	Sensors
	Project Description
	Chapter 1. LaunchPad
	Texas Instruments MSP430F5529 launchpad

	MSP430F5529 launchpad consists of three main parts:
	USB interface
	eZ-FET lite Onboard Emulator
	Emulator and Target Isolation Jumper Block:
	3.3-V and 5-V Jumpers
	Emulator Connection and Application UART
	Programming the MSP430F5529 with external emulator
	MSP430F5529 micro-controller
	MSP430F5529 Key Features:
	Oscillator and System Clock
	Configuring Clocks
	Central Processing Unit (CPU)
	Chapter 2. Sensors
	Light intensity sensor / Photoresistor

	Circuitry
	Source code
	Integrated temperature sensor
	Source code
	Sensirion SHT11

	Memory
	Circuitry
	Communication
	Communication process
	Functionality
	Measurement of Relative Humidity and Temperature:
	Connection reset sequence:
	Read-Write status register:
	Power Consumption
	Source code
	Chapter 3. Wireless Communication
	Xbee Series 2 Radio module

	Configuration
	1st implementation: End Device with pin wake-up
	2nd implementation: End Device with cyclic sleep
	Port/Pin Interrupt
	Source Code
	UART Interface

	Chapter 4. Implementation Features
	Watchdog

	Watchdog Mode
	Watchdog Timer Interrupts
	Clock Fail-Safe Feature
	Watchdog time intervals and clock sources
	Watchdog Control Registers and Source Code
	Low Power Modes

	Operating Modes
	Status Register
	Exiting Low-Power Modes LPM0 Through LPM4
	Timers

	Timer_A registers
	Configuration
	Source code
	Conclusion - Summary
	Final Results
	Future Work

	Appendix
	Source Code

	Definitions and Functions
	1st Implementation: Xbee pin wake-up
	2nd Implementation: Xbee cyclic sleep
	References

