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Abstract

A mandolin is a musical instrument in the lute family. Lute family includes
instruments which make sound by the vibration of strings.

MoMu-STK is o set of open source audio signal processing and algorithmic
synthesis classes. It was designed to facilitate rapid development of music synthesis
and audio processing software, with an emphasis on cross-platform functionality, real-
time control, ease of use, and educational example code. The Synthesis Toolkit is
extremely portable and it's completely user-extensible. STK currently runs with real-
time support (audio and MIDI) on Linux, Macintosh OS X, and Windows computer
platforms. Generic, non-real time support has been tested under Next Step, Sun, and
other platforms and should work with any standard C++ compiler. For control, the
Synthesis Toolkit uses raw MIDI (on supported platforms), and SKINI (Synthesis
ToolKit Instrument Network Interface, a MIDI-like text message synthesis control
format). The Synthesis Toolkit can generate simultaneous SND (AU), WAV, AIFF,
and MAT-file output sound file formats (as well as real-time sound output), so you
can view your results using one of a large variety of sound/signal analysis tools
already available (e.g. Snd, Cool Edit, Matlab).

In this thesis we describe a method for developing a mandolin music synthesis
based on the Mobile Music Synthesis Toolkit (MoMu-STK). We use a set of C++
classes of MoMu-STK to create our own program. In order to cover our specific
needs, we modify some of the existing classes and write a new program. This
program produces music compositions (audio files) based on the mandolin
instrument.

The proposed method can be used in a variety of ways, allowing composers to
generate music compositions based on different musical instruments or a combination
of musical instruments that belong to the same or different families. Moreover, since
MoMu offers a collection of useful utilities used for audio synthesis and processing,
graphics, and threading, we can provide useful functionality for mobile phone music
application development.



ITeptAnymn

To pavtoAivo elval éva povoikd Opyavo g HeEYAANG owkoyévelag tov Aaovtov. H
OlKOYEVEL TOL AOVUTOUL TIEPIAAHPAVEL Opyava TTIOL TTAPAYOLV X0 oMo T SOVNOT TV
X0pSaQv.

To MoMu-STK eivar éva oUvoAo amd KAAQOElg eme&epyaciag OnpATOg NXOL KOl
aAyop1Buikng ovvBeong. Eixe oxediaotel yia va SievkoAdvel v tayeia avamtuén g
oLVBEONG HOVOIKNG KAl TOL AOYIOHIKOU €meéepynoiog NYOL HE EUOAOT OTN Cross-
platform AeitovpylKOTNTA, OTOV €AEYXO TPAYHOTIKOD XPOVOUL, OTNV EUVKOAIX OTN
Xprion, Kabag kol otov ekmadevTiko Kadika. To STK eivon e§onpetikd @opntod Kot
nMANpwg enektdolpo. To STK Aettoupyel emi tov TApOVTOg pe vmooTnpn o€
npaypatiko xpovo (audio ko MIDI) otig Linux, Macintosh OS X kot Windows
TAXTQOPHEG LMOAOYIOT®V. T'eVIK®, 1| LMOOTAPIEN OE PN TPAYHOTIKO XpOVO, €xel
dokipaotel oLPPVA pe TNV Next Step, v Sun, Kot GAAeg TAXATQOPEG Kat Ba TTpEmel
va SovAevel pe omoodnmote mpotvro C compiler. T tov €Aeyxo, 10 STK
xpnotponotel raw MIDI (otig vmootnpilopeveg mAat@oppeg), kou SKINI (Synthesis
ToolKit Instrument Network Interface). To STK pmopei va mapayetl tavtoyxpova SND
(AU), WAV, AIFF, kan MAT-apyeia nxov og €5060 (kabwng Kol TpayHaTikol Xpovou
apyela Nyov g €€od0), wote va pmopeite va Oeite TA QMOTEAEOPATR OOG
XPT|OHOTIOI®OVTOG €Va epyaAeio amo pia peydAn mowiAia epyaieiov avdAvong nxouv /
onpatog mov eivan 6N Stxbéopa (m.y. Snd., Cool Edit, Matlab).

Ymv epyacia aut MEPLYPAQOLHE Pl HEBOSO Yyl TNV aVATTLEN HIKG HOVLOIKNG
oLVBeoNC Pe HOVOKS Gpyavo To HavToAivo pe Bdon To epyaAeio ohvBeong HOVOIKNG
ywx kivnta (STK-MoMu). Xpnoipomnotovpe éva gbvoAo and C++ kAdoelg tov MoMu-
STK ywx va dnpiovpynoovpe 1o S1k0 pog mpoypappa. o my KGALYT eV e181Kov
QVOYK®V HOG, TPOTIOTIOOVHE KATIOLEG OO TIG LTIAPXOVOEG KAAOELG KOl YPAPOVE €va
VEO TIPOYPOHHA. AVTO TO TIPOYPUHHA TIPAYEl GLVBETELG HOVOIKNG (apxeia NXOL) HE
HOLO1KO OpYvVO TO HOVTOALvO.

H npotewvopevn pébodog pmopei va xpnotponomndei oe pia mowkidia and tpodmoug,
EMTPEMOVING OTOVG GLVBETEG VX TIPAYOLV HOVLOIKEG ouvBEaelg mov Paciovtal oe
SIQOPETIKA HOVOIKG Opyava 1] o€ oLVOLAGHO TV HOLOIKAOV OPYAVAOV TA OToix
avrkouv otny i81a 1| oe SapopeTikeg owkoyeveleg. EmmAéov, dedopévou 01t to MoMu
TIPOOPEPEL P OLAAOYN QATIO XPTOUA TPOYPAHHUATH TIOU XPTOHOTOI0LVTAL Yo TNV
oLvBeon kou eme&epyacia Nyov, yux 1 ypa@wkd kot ywx threading, pmopovpe va
TIAPEXOVHE XPT|OHEG AEITOLPYIEG YIX QVATITUEN EQPAPHOYQOV HOUVOIKNG O€ KIVNTH
TNAEQQVO.
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Chapter 1 : Introduction To Music Theory

This Section will give you a basic introduction to the general rules that are the basis
for music all over the world.

1.1 Solfege Syllables

Solfege is a pedagogical solmization technique for the teaching of sight-
singing in which each note of the score is sung to a special syllable, called a
solfege syllable. The seven syllables commonly used for this practice in
English-speaking countries are: do, re, mi, fa, sol, la, and ti/si.

In the major Romance and Slavic languages, the syllables Do, Re, Mi, Fa, Sol,
La, and Si are used to name notes the same way that the letters C, D, E, F, G,
A, and B are used to name notes in English. This system is called fixed do and
is used in Spain, Portugal, France, Italy, Belgium, Romania, Latin American
countries and in French-speaking Canada as well as countries such as Bosnia
and Herzegovina, Russia, Poland, Serbia, Ukraine, Bulgaria, Greece, Albania,
Macedonia, Iran, Lebanon, Turkey and Israel where non-Romance languages
are spoken.

Table 1: Traditional fixed do

Note name Syllable
C do

D re

E mi

F fa

G SO

A la

B ti

1.2 The Notes Of Music

There are only 12 different notes that make up the building blocks of any song
you have ever heard. Even music from cultures that were previously considered



to have a separate music systems have been studied and found to use the 12
note system. These 12 notes create what is known as a chromatic scale.

C, C# (Db), D, D# (Eb), E, F, F# (Gb), G, G# (Ab), A, A# (Bb), and B.

It is important to note that the "#" symbol is pronounced "sharp" and the "b"
symbol is pronounced "flat". For example, D# is the note above D and the note
below E. Eb is the same note as D# simply with a different name. In most
circumstances, however, we refer to the note above C as C#, not Db, and the
note above F as F#, not Gb, though either way is theoretically acceptable. In
the same sense, the note above D is referred to as Eb, and the note above A is
referred to as Bb. Each of these notes are (effectively) the same distance apart
from one to the next. In reality, D# is 6% higher than D and E is 6% higher
than D# and so on. these numbers are not exact, as they have been altered so
that the octaves match up. The distance between two notes that are one fret
apart is called a half step or a semitone, the distance between two notes that are
two frets apart is called a whole step or a tone. I prefer to use the terms half
step (HS) and whole step (WS).

An octave is a note that sounds the same as another note but twice as high.
Once you go through the chromatic scale starting, for example, on G, you have
the following scale. G, Ab, A, Bb, B, C, C#, D, Eb, E, F, F#... But then what?
Well, you get G again, but twice as high as the G you started on. The distance
between these two notes is called an octave.

1.3 Scales

If you play all twelve of these notes on an instrument in succession, it won't
sound like much. That's because the song we have heard all our lives have not
included all twelve notes and our brains don't like to hear it. Our brains have
become accustomed to other scales. Most of the scales we hear in music from
the past and present usually only have 7 different notes, sometimes only 5. The
first note of a scale is called the root. The major scale, which is usually
described as "happy" is played:

Root, WS, WS, ST, WS, WS, WS, ST (octave)

while the minor scale, which is usually described as "sad" is played:

Root, WS, ST, WS, WS, ST, WS, WS (octave)



The C scale is unique in the sense that when you play the C major scale, there
are no sharps or flats, just C, D, E, F, G, A, B, C. Likewise, the A minor scale
has no sharps or flats. Because of this, A minor is known as the relative minor
of C. In the case of G major and E minor, they both have one sharp (F#),
Making E minor the relative minor of G major.

1.4 Intervals

In music, an interval is the distance between two notes. We can count simple
intervals by simply starting with the root and counting up to the note in
question through the scale of the root. For example, the interval between a C
and an A would be calculated in the following manner:

C(1),D(2),E(3),F4),G(5),A(6)

So now we know that the interval from C to A is a 6th. However, musicians
like to make things complicated, so there is more to the question. The way to
calculate the more precise interval is to follow this table.

Table 2: Intervals

L)istance in half steps Interval Name

b HUnison ‘
‘1 HMinor Second ‘
P HMajor Second ‘
‘3 HMinor Third ‘
P HMaj or Third ‘
‘5 HPerfect Fourth ‘
b HTritone ‘
‘7 HPerfect Fifth ‘
8 ‘Minor Sixth |
9 ‘Major Sixth |
‘10 HMinor Seventh ‘




‘1 1 ‘ ‘Maj or Seventh ‘
‘12 ‘ ‘Octave ‘

So now we can count chromatically, saying C (0), C# (1), D (2), Eb (3), E (4),
F (5), F# (6), G (7), Ab (8), A (9). That's a 9 half step difference, making it a
Major Sixth. While it may seem like a lot now, it's not too bad once you get the
hang of it.

1.5 The Circle Of Fifths

Possibly the most important structure in music theory, the circle of fifths ties all
of the notes, chords, and scales together by relating them to one another.

Major

\\ (0 sharps);;
\\ (0 flats) f’

‘ / (1 sharp)

" (5 flats) / \ (5 sharps) ™
~ /(6 flats) N

/(6 sharps) \
Db / ‘ B

/
!

! Gb/F# |

Figure 1: The Circle of Fifths



Again, this is a lot of information all at once, so don’t feel like you need to
learn it all at once. Looking at this larger circular jumble of information, it is
best to break it down into sections.

The first thing to notice is that, when you follow the outermost letters
clockwise, they are all separated by perfect fifths, C to G, G to D, etc.
Following the circle counterclockwise, the progression moves in fourths, C to
F, F to Bb, etc.

As a practical tool, lets say we wanted to play a song in A. To figure out what
chords to play, you already know that you want the I, IV, and V. Looking at the
circle of fifths, find the A. Your fourth will be one step counterclockwise from
your A, and your fifth will be one step clockwise from your A.

The next section of the circle is the inner circle. The inner circle deals with
relative minors. As you have learned, each scale has a number of sharps or
flats, or, in the case of C major, no sharps or flats. When it comes to minor
scales, it is the same, with Am being the scale with no sharps or flats. From this
information we can discover that both C and Am use the same notes. the C
scaleis C, D, E, F, G, A, B, C. The Am scaleis A, B, C, D, E, F, G, A. There
are no sharps or flats in either scale. One way of looking at it is, to play the Am
scale, you play the notes of a C scale but rather than starting on the C note, you
start on the A note. As another example, the key of D consists of the notes D,
E, F#, G, A, B, C#, D. The relative minor of D is Bm, which has the notes B,
C#, D, E, F#, G, A, B. One easy way to find the relative minor of a key is to
count backwards two notes. For example, counting backwards two notes on the
A major scale gives you A, G# (Ab), F#. Therefore, your relative minor of A is
F#m. Understanding the theory behind relative minors simplifies music even
farther by reducing the number of scales you need to know. Rather than picking
around until you get all the notes of the Dm scale, play your F major scale but
start on the D note of the scale, giving you D, E, F, G, A, Bb, C, D.



Chapter 2 : Sound and Music
2.1 Sound Waves

Sound is the vibration of air particles, which travels to your ears from the
vibration of the object making the sound. These vibrations of sound in the air
are called sound waves.

When a door is slammed, the door vibrates, sending sound waves through the
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Figure 2: a slammed door

When a mandolin string is plucked, the string vibrates the soundboard, which
sends sound waves through the air.
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Figure 3: a plucked string

What makes one sound different from another? To answer this question, we
need to look at the waveforms of the two different sounds, to see the shape of
their vibrations.

The waveform of a door slamming looks something like this:

Figure 4: waveform of a door
slamming



This waveform is jerky and irregular, resulting in a harsh sound. Notice how it
is loud (with big waves) at the start, but then becomes soft (small waves) as it
dies away.

The waveform of a mandolin string looks something like this:

Figure 5: waveform of a
mandolin string

This waveform makes the same transition from loud to soft as the first, but
otherwise is quite different.

The mandolin string makes a continuous, regular series of repeated cycles,
which we hear as a smooth and constant musical tone.

This regularity of the vibration is the difference between a musical sound and a
non-musical sound.

2.2 Musical Sounds

Musical sounds are vibrations which are strongly regular. When you hear a
regular vibration, your ear detects the frequency, and you perceive this as the
pitch of a musical tone.

Figure 6: pitch of a musical sound

Non-musical sounds are a complex mix of different (and changing)
frequencies. Your ear still follows these vibrations, but there is no strong
regularity from which you can pick up a musical tone.
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Figure 7: pitch of a non-musical
sound



Many sounds are a mixture of both, such as drums and other percussion
instruments. You can usually decide which of two drums has the higher pitch,
even if it might be difficult to decide exactly what that pitch is.

Most sounds have some regularity in them (even a door slamming) but not
enough for your ear to detect a specific pitch.

2.3 Amplitude and Frequency

There are two main properties of a regular vibration - the amplitude and the
frequency - which affect the way it sounds.

Amplitude is the size of the vibration, and this determines how loud the sound
is. We have already seen that larger vibrations make a louder sound.
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Figure 8: Low Amplitude Figure 9: High Amplitude

Amplitude is important when balancing and controlling the loudness of sounds,
such as with the volume control on your CD player. It is also the origin of the
word amplifier, a device which increases the amplitude of a waveform.

Frequency is the speed of the vibration, and this determines the pitch of the
sound. It is only useful or meaningful for musical sounds, where there is a
strongly regular waveform.

Figure 10: Low W\/\/\/\/\/\/\/\I

Frequency

Figure 11: High
Frequency



Frequency is measured as the number of wave cycles that occur in one second.
The unit of frequency measurement is Hertz (Hz for short).

A frequency of 1 Hz means one wave cycle per second. A frequency of 10 Hz
means ten wave cycles per second, where the cycles are much shorter and
closer together.
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Figure 12: Frequency of 1 Hz and 10 Hz

The note A which is above Middle C (more on this later) has a frequency of
440 Hz. It is often used as a reference frequency for tuning musical
instruments.

2.4 Musical Instrument Tone

There is a huge variety of musical instruments and sounds, as you would
already know from your experience with music. Even two instruments playing
the same note can sound very different.

This is because a musical instrument produces a sound wave which is a
combination of different but related frequencies (known as harmonics) which
all mix together to create the distinctive tone or voice of the instrument.

The lowest frequency is usually dominant, and you perceive this one as the
pitch. The combination of the other harmonics provides the distinctive shape of
the waveform, and thereby the distinctive tone of the instrument.
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Figure 13: create the tone or voice of the instrument.
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2.5 Frequency and Pitch

Frequency and pitch describe the same thing, but from different viewpoints.
While frequency measures the cycle rate of the physical waveform, pitch is
how high or low it sounds when you hear it.

This is directly related to frequency: the higher the frequency of a waveform,
the higher the pitch of the sound you hear.

Think of the sound of a car or motorcycle engine accelerating. As the engines
turns faster (at a higher frequency) the engine makes a higher-pitched sound.

Human ears can only hear sounds within a certain range of frequencies. As
people grow older, their hearing range reduces. A young person can usually
hear sounds in the range of 20 Hz to 20,000 Hz.

The Figure below is an example of a continuous pitch sweep from the lowest to
the highest audible frequencies.

Figure 14: continuous pitch from the lowest to the highest
audible frequencies.

At the lower end of this range are low-pitched sounds like the booming of
thunder before a storm. At the upper end of this range are high-pitched sounds
like the piercing whine of a mosquito.

Between these is the whole spectrum of sound and music!



2.6 Doubling Frequency

Something very interesting happens when you double the frequency of a note.
The pitch of the doubled frequency sounds higher, but somehow the same as
the original note, while the pitches of all frequencies in between sound quite
different.

Lets use the pitch of frequency 440 Hz as an example. It is the note A, as
mentioned earlier. The pitch of frequency 880 Hz is higher, but sounds like the
same note.

It seems strange, but there is a logical reason for this similarity. The sound
waves below show us that two cycles of the 880 Hz frequency fit exactly in the
space of a single cycle of the 440 Hz frequency.
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Figure 15: Sound waves of
440Hz and 880Hz

If we keep doubling this frequency, we find that all of the resulting pitches
sound similar, except that each one is higher than the last. In fact, they are all
the note A, just like the original, but they are all one octave apart from each
other.

2.7 What Is String Muting & Damping?

String muting means preventing certain strings from sounding while we play
other strings.

String Damping means stopping the string we are playing from vibrating with
its usual freedom, and “dampening” the sound so that a muffled type of tone is



produced. When we damp, unlike when we mute a string, the actual pitch of
the note is still evident.

The reason we need to mute strings at times is because otherwise the vibrating
strings will interfere with the music we are making. For instance, in doing
many rock licks, the bending and release of a higher string will cause lower
bass strings to vibrate, either because we actually bump into them, or because
they start to vibrate “in sympathy” with the ones we have played.

The reason we damp notes (usually bass notes) is because the tone produced is
itself an expressive musical device. For hundreds of years, string players have
done it, and in classical music it is called “pizzicato”.

2.7.1 How is it done?

The way we mute or damp strings we don’t want to hear from is by touching
the string with the skin of the side of the hand. If you do a karate chop on the
table, the part of your hand touching the table is the part used to mute the
strings.

This is the same position we use to mute the strings, however, there is more to
the story. We have to make smaller adjustments to the hand as we play and
move from string to string.

2.7.2 The Difference Between Muting Position and Damping
Position

The hand itself is in the same position in relation to the strings for both
techniques, but the position of the hand itself is different. Since we do not need
any tone from the note in muting, it does not matter where along the length of
the strings we place our hand, as long as we silence the strings.

For damping, since we need a discernable pitch, we must place our hands down
by the bridge and only partially cover the strings, right at the point where they
meet the bridge. We have to leave enough string free to vibrate.

2.8 What is Strumming?

Strumming is way of playing a stringed instrument such as a guitar. A strum
or stroke is a sweeping action where a fingernail or plectrum brushes past
several strings in order to set them all into motion and thereby play a chord.
Strums are executed by the dominant hand, right for a right-handed musician
and left for a left handed one, while the other hand holds down notes on the
fretboard. Strums are contrasted with plucking, as means of activating strings



into audible vibration, because in plucking, only one string is activated by a
surface at a time. A hand-held pick or plectrum can only be used to pluck one
string at a time, but multiple strings can be strummed by one. Plucking multiple
strings simultaneously requires a finger style or finger pick technique.

2.9 Tuning
2.9.1 What is tuning?

Tuning is the process of adjusting the pitch of one or many tones from musical
instruments until they form a desired arrangement. Pitch is the perceived
fundamental frequency of a sound. Instruments basically just produce
vibrations, and these vibrations produce the sound that we hear. The vibrations
or soundwaves that an instrument produces are measured by hertz (symbol:
Hz). One hertz simply means one cycle per second, 100 Hz means one hundred
cycles per second, and so on. The average human can hear sounds between 20
Hz and 16,000 Hz. In music and acoustics, the frequency of the standard pitch
A above middle C on a piano is usually defined as 440 Hz.
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Figure 16: Lower/ Higher
Frequency Soundwave

2.9.2 What does "My instrument is out of tune" mean?

When an instrument is out of tune it means that the pitch or tone of the
instrument is either too high or too low. If a tone is too high, it is considered
sharp, if it is to low, then it is flat.
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Figure 17: in and out of tune



2.9.3 Why do instruments go out of tune?

Well, there are many factors why an instrument may go out of tune. Some
instruments get 'out of tune' with damage or age (warping) when they will no
longer play true and have to be repaired. Also changes in temperature and
humidity can affect some sensitive instruments. As temperatures fluctuate,
instruments may expand or contract. This causes the instrument to go slightly
out of tune. On stringed instruments, brand new strings go out of tune quickly
at first and need to be "broken in" at first. Also a string obviously can get out of
tune if the tuning pegs or tuning devices are bumped or adjusted.

Chapter 3 : Musical Instrument Digital
Interface

3.1 What is MIDI?

MIDI (short for Musical Instrument Digital Interface) is an electronic
musical instrument industry specification that enables a wide variety of digital
musical instruments, computers and other related devices to connect and
communicate with one another. It is a set of standard commands that allows
electronic musical instruments, performance controllers, computers and related
devices to communicate, as well as a hardware standard that guarantees
compatibility between them. MIDI equipment captures note events and
adjustments to controls such as knobs and buttons, encodes them as digital
messages, and sends these messages to other devices where they control sound
generation and other features. This data can be recorded into a hardware or
software device called a sequencer, which can be used to edit the data and to
play it back at a later time. MIDI carries note event messages that specify
notation, pitch and velocity, control signals for parameters such as volume,
vibrato, audio panning and cues, and clock signals that set and synchronize
tempo between multiple devices. A single MIDI link can carry up to sixteen
channels of information, each of which can be routed to a separate device. The
1983 introduction of the MIDI protocol revolutionized the music industry.

3.2 MIDI Note Numbers for Different Octaves

In this system, middle C (MIDI note number 60) is C4. A MIDI note number
of 69 is used for A440 tuning, that is the A note above middle C.

Table 3: MIDI Note Numbers



Note Numbers
Octave

Cc |ce | D Dpe| E| F | F&| @
| 1 Jojt]2)3]4]5]6]7]
0 2] 13 1l 5] 6] 17| 18] 19
| 1 |24 25 26 | 27 28| 29 || 30 || 31 |
2 36 || 37 | 38 | 39 | 40 | 41 || 42 | 43
3 4g | 49 || so || st | s2 | 53| s4 || ss
|4 | oo 61 || 62 | 63 64 || 65 66 || 67 |
5 72 73 74| 5| 76| 77| 78 || 79
|6 | 84 85| 8 | 87 || 88 | 89 || 90 || 91 |
7 96 || 97 | 98 | @9 | 100 101 | 102 | 103
8 102 108 | 110 | 111 12| 113 | 114 || 115
9 | 1z0 121 122 | 123 124 125 | 126 | 127 |

Note Numbers

Octave

G#£| A | A* | B

| 1 | 8| 9 | 10

0 20 || 21 | 22 | 23

| 1 | 32 33 | 34 |35

2 44 | 45 || 46 | 47

3 s6 || 57 | 58 | 59

|4 | e8| 69 || 70 |71

5 20 || 81 | 82 | 83

| 6 | 92| 93| %4 |95

7 104 | 105 || 106 | 107

8 | 1s| 117 | 1s|ny

3.3 MIDI Note Numbers

The MIDI specification only defines note number 60 as "Middle C", and all
other notes are relative. The absolute octave number designations shown here
are based on Middle C = C4.

There is a discrepancy that occurs between various models of MIDI devices
and software programs, and that concerns the octave numbers for note names.
If your MIDI software/device considers octave 0 as being the lowest octave of
the MIDI note range, then middle C's note name is C5. The lowest note name is



then CO (note number 0), and the highest possible note name is G10 (note
number 127).

Some software/devices instead consider the third octave of the MIDI note
range (2 octaves below middle C) as octave 0. In that case, the first 2 octaves
are referred to as -2 and -1. So, middle C's note name is C3, the lowest note
name is C-2, and the highest note name is G8.

A MIDI controller can have up to 128 distinct pitches/notes. But whereas
musicians name the keys using the alphabetical names, with sharps and flats,
and also octave numbers, this is more difficult for MIDI devices to process, so
they instead assign a unique number to each key.

The numbers used are 0 to 127. The lowest note upon a MIDI controller is a C
and this is assigned note number 0. The C# above it would have a note number
of 1. The D note above that would have a note number of 2. So "Middle C" is
note number 60. A MIDI note number of 69 is used for A440 tuning, that is the
A note above middle C.

Most keyboard controllers have a "MIDI transpose” function so that, even if
you don't have the full 128 keys, you can alter the note range that your
keyboard covers. For example, instead of that lowest A key being assigned to
note number 21, you could transpose it down an octave so that it is assigned a
note number of 9.

3.4 MIDI Note Names

Many instruments can play distinct pitches. For example, an acoustic piano has
88 keys, or 88 distinct pitches/notes.

Instruments with keyboards were among the earliest, most versatile musical
instruments at around the time when musicians were devising a way to notate
music. So, it's traditional to name musical pitches based upon the piano
keyboard. They are visually grouped into octaves where one octave contains 12
keys.

Musicians name the musical pitches played upon the white keys by using the
alphabetical names A to G. For example, "middle C" is the white key closest to
the center of the keyboard. Musicians append sharps or flats to the alphabetical
names to identify the black keys. For example, the black key above middle C is
a C#. Also, musicians use the octave number to further identify a particular
key.

3.5 MIDI Messages
3.5.1 Note On

Purpose

Indicates that a particular note should be played. Essentially, this means that
the note starts sounding, but some patches might have a long VCA attack time



that needs to slowly fade the sound in. In any case, this message indicates that a
particular note should start playing (unless the velocity is 0, in which case, you
really have a Note Off).

Status
Status is the MIDI channel.

Data
Two data bytes follow the Status.

The first data is the note number. There are 128 possible notes on a MIDI
device, numbered 0 to 127 (where Middle C is note number 60). This indicates
which note should be played.

The second data byte is the velocity, a value from 0 to 127. This indicates with
how much force the note should be played (where 127 is the most force). It's up
to a MIDI device how it uses velocity information. Often velocity is be used to
tailor the VCA attack time and/or attack level (and therefore the overall volume
of the note). MIDI devices that can generate Note On messages, but don't
implement velocity features, will transmit Note On messages with a preset
velocity of 64.

A Note On message that has a velocity of 0 is considered to actually be a Note
Off message, and the respective note is therefore released.

A device that recognizes MIDI Note On messages must be able to recognize
both a real Note Off as well as a Note On with 0 velocity (as a Note Off). There
are many devices that generate real Note Offs, and many other devices that use
Note On with 0 velocity as a substitute.

Errata

In theory, every Note On should eventually be followed by a respective Note
Off message (ie, when it's time to stop the note from sounding). Even if the
note's sound fades out (due to some VCA envelope decay) before a Note Off
for this note is received, at some later point a Note Off should be received. For
example, if a MIDI device receives the following Note On:

Note On/chan 0, Middle C, velocity could be anything
except 0

Then, a respective Note Off should subsequently be received at some time, as
SO:

Note Off/chan 0, Middle C, velocity could be anything

Instead of the above Note Off, a Note On with 0 velocity could be substituted
as so:

Really a Note Off/chan 0, Middle C, velocity must be 0



If a device receives a Note On for a note (number) that is already playing (ie,
hasn't been turned off yet), it is the device's decision whether to layer another
"voice" playing the same pitch, or cut off the voice playing the preceding note
of that same pitch in order to "retrigger" that note.

3.5.2 Note Off

Purpose

Indicates that a particular note should be released. Essentially, this means that
the note stops sounding, but some patches might have a long VCA release time
that needs to slowly fade the sound out.

Status
Status is the MIDI channel.

Data
Two data bytes follow the Status.

The first data is the note number. There are 128 possible notes on a MIDI
device, numbered 0 to 127 (where Middle C is note number 60). This indicates
which note should be released.

The second data byte is the velocity, a value from 0 to 127. This indicates how
quickly the note should be released (where 127 is the fastest). It's up to a MIDI
device how it uses velocity information. Often velocity will be used to tailor
the VCA release time. MIDI devices that can generate Note Off messages, but
don't implement velocity features, will transmit Note Off messages with a
preset velocity of 64.

3.5.3 Control Change

This message is quite versatile; it is usually generated by a musician using
knobs, sliders, footswitches, or pressure on a physical MIDI controller (or
MIDI-equipped instrument). While the response to this message is generally
totally up to the receiving device, it is typically used to change the tone, timbre,
or volume of an instrument's sound.

3.5.4 Chord

Indicates that a particular sequence of chords should be played.

3.5.5 ChordOff

Indicates that a particular sequence of chords should be released.

3.6 How do messages work?

All MIDI compatible controllers, musical instruments, and MIDI-compatible
software follow the same MIDI 1.0 specification, and thus interpret any given



MIDI message the same way, and so can communicate with and understand
each other. For example, if a note is played on a MIDI controller, it will sound
at the right pitch on any MIDI instrument whose MIDI In connector is
connected to the controller's MIDI Out connector.

When a musical performance is played on a MIDI instrument (or controller) it
transmits MIDI channel messages from its MIDI Out connector. A typical
MIDI channel message sequence corresponding to a key being struck and
released on a keyboard is:

1. The user presses the middle C key with a specific velocity (which is
usually translated into the volume of the note but can also be used by the
synthesizer to set characteristics of the timbre as well). The instrument
sends one Note-On message.

2. The user changes the pressure applied on the key while holding it down:
a technique called Aftertouch (can be repeated, optional). The instrument
sends one or more Aftertouch messages.

3. The user releases the middle C key, again with the possibility of velocity
of release controlling some parameters. The instrument sends one Note-
Off message.

Note-On, Aftertouch, and Note-Off are all channel messages: embedded in the
message is one of 16 channel IDs. This enables instruments to be set to respond
to messages on specific channels while ignoring all others. (System messages,
in contrast, are designed to be responded to by all connected devices.) For the
Note-On and Note-Off messages, the MIDI specification defines a number
(from 0-127) for every possible note pitch (C, C#, D, etc.), and this number is
included in the message along with the velocity value.

Other performance parameters can be transmitted with channel messages, too.
For example, if the user turns the pitch wheel on the instrument, that gesture is
transmitted over MIDI using a series of Pitch Bend messages (also a channel
message). The musical instrument generates the messages autonomously; all
the musician has to do is play the notes (or make some other gesture that
produces MIDI messages). This consistent, automated abstraction of the
musical gesture could be considered the core of the MIDI standard.

3.7 MIDI Note Number to Frequency Conversion

The standard tuning pitch is A4 (A above middle C) 440 Hertz(Hz). When the
octave is divided into 12 equally spaced pitches, then each interval between
these pitches when they are arranged within the same octave in an ascending
sequence is the equal-tempered semitone:

2112 = 1.059463094 . . .



The frequencies of equal-tempered pitches are easily calculated from any

reference frequency according to :

— /12
f - 2 n fref

where n is the number of semitones between the reference frequency (f, ef) and
the desired frequency, f .

For example, the frequency of the equal-tempered pitch located a major third
up (+4 semitones) from A440 is 440(2%1%) = 554.365... Hz, while middle C, a

major sixth down ( -9 semitones), has a frequency of 440(2'9/12) =

261.6255...Hz.

Table 4: Frequencies of MIDI Note Numbers

MIDI MIDI
Frequency Frequency
Note Note

'C 0 81757989156 12  16.3515978313
Db 1 86619572180 13  17.3239144361
‘D 2 91770239974 14  18.3540479948
Eb 3 97227182413 15  19.4454364826
'E 4 103008611535 = 16  20.6017223071
F 5 109133822323 17  21.8267644646
Gb 6 11.5623257097 18  23.1246514195
G 7 122498573744 = 19 | 24.4997147489
Ab 8 129782717994 20 = 259565435987
A 9 13.7500000000 = 21 | 27.5000000000
Bb 10 145676175474 22 29.1352350949
‘B 11 154338531643 23  30.8677063285
N |
'C 24 327031956626 36 = 65.4063913251
Db 25 34.6478288721 37 | 69.2956577442
‘D 26 367080959897 38  73.4161919794
Eb 27 388908729653 39  77.7817459305
E 28 41.2034446141 40 = 82.4068892282




—_

'F 29 436535289291 @ 41  87.3070578583
Gb 30 46.2493028390 = 42 | 92.4986056779
‘G 31 489994294977 43 | 97.9988589954

N

Ab 32 519130871975 44  103.8261743950
A 33 550000000000 45  110.0000000000
Bb 34 582704701898 @ 46 = 116.5409403795
‘B 35 61.7354126570 @ 47 | 123.4708253140

'C 48 130.8127826503 60  261.6255653006
Db 49 1385913154884 61  277.1826309769
‘D 50 146.8323839587 62  293.6647679174
Eb 51 155.5634918610 63 = 311.1269837221
E 52 164.8137784564 64  329.6275569129
'F 53 1746141157165 65  349.2282314330

(@)

—_

N

w

U1

Gb 54 184.9972113558 66  369.9944227116
‘G 55 1959977179909 = 67 | 391.9954359817
Ab 56 207.6523487900 68  415.3046975799
A 57 220.0000000000 69  440.0000000000
Bb 58 233.0818807590 70 | 466.1637615181
‘B 59 246.9416506281 71 = 493.8833012561

'C 72 5232511306012 84  1046.5022612024
Db 73 5543652619537 85  1108.7305239075
‘D 74 587.3295358348 86 | 1174.6590716696
Eb 75 6222539674442 87 | 1244.5079348883
'E 76 659.2551138257 88  1318.5102276515
F 77 6984564628660 89  1396.9129257320
Gb 78 739.9888454233 = 90 | 1479.9776908465
G 79 7839908719635 91  1567.9817439270
Ab 80 830.6093951599 92  1661.2187903198
A 81 880.0000000000 93 | 1760.0000000000
Bb 82 9323275230362 94  1864.6550460724
‘B 83 9877666025122 = 95 | 1975.5332050245
N |
'C 96 2093.0045224048 108 = 4186.009044809
Db 97 2217.4610478150 109 = 4434.922095630

—_




‘D 98 2349.3181433393 110 4698.636286678
Eb 99 2489.0158697766 111 = 4978.031739553
'E 100 2637.0204553030 112 = 5274.040910605
'F 101 2793.8258514640 113  5587.651702928
Gb 102 2959.9553816931 114  5919.910763386
‘G 103 3135.9634878540 115 6271.926975708
Ab 104 3322.4375806396 116 = 6644.875161279
A 105 3520.0000000000 117 = 7040.000000000
Bb 106 3729.3100921447 118 = 7458.620234756
‘B 107 3951.0664100490 119 = 7902.132834658
- |
C 120 8372.0180896192 |
Db 121 8869.8441912599 |
D 122 9397.2725733570 |
Eb 123 9956.0634791066 |

|

|

|

|

E 124 10548.0818212118
F 125 11175.3034058561
Gb 126 11839.8215267723
G 127 12543.8539514160

Chapter 4 : Putting All Of This Into Terms On
The Mandolin

"So," you may be asking, "What does all this abstract information actually have
to do with anything". Well, that is a very interesting question with an even
more interesting answer. In, the long run, nothing. Ideally, you should get so
comfortable with all this information that you forget you ever learned it and it
becomes second nature to your playing. The fundamentals of music theory can
be hard to grasp, but they will improve the way you think about and play music
in ways you cannot imagine. Knowing the information above will help you
connect everything you play on the mandolin with everything else you play on
the mandolin and any other instrument, including singing. Knowing your scale
theory will help you play in different keys, and your interval theory will help
your overall ability to play on the fretboard, whether you are playing a simple
scale on the first few frets or a crazy blues solo up above the 15th fret on your



highest string. It will also help you stay grounded when the basics of theory
come up (as it inevitably will) in my lessons.

Because the mandolin is tuned in fifths (G to D, D to A, A to E), every pattern
you learn or come across can be transposed up, down, and across strings to any
key with relative ease. Unlike many guitar players, good mandolin players do
not need to rely on capos to play in some funny keys like B.

4.1 What is a mandolin?

A mandolin is a plucked string instrument in the lute family.

Plucked string instruments are a subcategory of string instruments that are
played by plucking the strings.

Plucking is a way of pulling and releasing the string in such as way as to give
it an impulse that causes the string to vibrate. Plucking can be done with either
a finger or a plectrum.

Most plucked string instruments belong to the lute family (such as guitar, bass
guitar, mandolin, banjo, etc.), which generally consist of a resonating body, and
a neck; the strings run along the neck and can be stopped at different pitches.

4.2 History of a mandolin

Mandolins evolved as part of the Lute family in Italy during the 17th -18th
centuries, and the deep bowled mandolin produced particularly in Naples
became a common type in the 19th century. The original instrument was the
mandola ( mandorla is almond in Italian and describes the instrument body
shape) and evolved in the 15th century from the Lute.

A later, smaller mandola was developed and became known as a mandolina.
The 20th century saw the rise in popularity of the mandolin for celtic,
bluegrass, jazz and classical styles. Much of the development of the mandolin
from neapolitan bowl back to the flat back style is thanks to Orville Gibson
(1856 - 1918) and Lloyd Loar, the chief designer for the Gibson Mandolin-
Guitar Manufacturing Co Ltd.

4.3 Mandolin Anatomy

We could say that this instrument is a combination of a violin, guitar, lute, and
banjo rolled into one. While the lute’s body is round, the mandolin, although
made in a number of variations, generally has a hollow body that includes a
sounding board with a teardrop shape. Some of the instruments are designed
with scrolls or similar-type projections. Mandolins have floating bridges and
pin blocks or tailpieces at their edges to which the strings of the instrument are
affixed. Instead of pegs, the instrument uses mechanical tuning machines for
purposes of tuning. The neck on the instrument is usually flat or has a radius
that is imperceptible. The nut appears at the top of the neck which includes a



fretted fingerboard. Metal strings on the instrument come in pairs or double
courses of four.

Headstock
Tuners
Fret
Mut or Zero Fret
Bottom
Course
(string) Top Course
G (string)
!&.'
Fretboard
12" Fret
Sound hole
Bridge
Soundboard
Tailpiece

Figure 18: a mandolin instrument1

At the very top is the headstock( or peg head). The headstock supports eight
tuning keys, which are used to tune the eight mandolin strings. Depending on
the angle at which your tuning keys are sitting, you might be able to see a small
hole in it, through which the string is threaded. The headstock is also usually
where the manufacturer puts their name. So if you see someone sneaking a
covert glance at your headstock, they’re usually trying to find out who made
the mandolin you are playing.

The nut (or zero fret) sits in between the peg head and the neck. If you look
closely at the nut, you can see tiny grooves in it. These grooves hold the strings



steady, and keep them from getting pushed all over the place when you touch
the strings. These grooves eventually wear down over time. If they become too
wide, it allows your strings to roll while you play. If they become too deep,
they can prevent your strings from vibrating and your instrument will not get a
good sound. These are problems that are easily repaired by a qualified luthier.

The neck is the long thin piece that connects the peg head to the body.

The fretboard ( or fingerboard) is on the top side of the neck. - that's the part
that your fingertips will touch. The fingerboard should be flat, with no grooves
Or Worn spots.

The fingerboard is bisected over its entire length, by wires that are embedded in
it. These wires are called frets. When you play the mandolin, your fingers
should go BEHIND the frets, not ON the frets. When you press your finger
behind a fret, you push the string tight against the fret. That action changes the
sound that the string makes, and so produces the note you're playing.

The bridge serves two purposes. The first is to act as a partner with the nut,
and keep your strings from rolling while you play. The bridge also has tiny
grooves in which your strings sit and, like the nut, can become worn with age
and cause poor sound. The bridge also controls the instrument's "action". The
action refers to the distance that the strings sit above the fingerboard. Some
players prefer that the strings sit very high and away from the fingerboard,
because they hit the strings very hard with their fingertips while they play. If
the action is high, then the strings will serve as a sort of trampoline, to cushion
the impact of their fingertips on the fingerboard. Another player with a gentler
touch might find the same mandolin difficult to play, because they have to
press extremely hard to hold the string down against the fret. There is no good
or bad action — it's strictly a matter of personal preference. But if you find your
mandolin physically difficult to play, you might want to consider having the
action adjusted, which is accomplished by slightly raising or lowering the
height of the bridge. Some bridges have little wheels on the sides — that's why
they're there. Others have small holes through which a wrench is used to adjust
the height.

The tailpiece is ornamental — it covers the ends of the strings. It is the area
where the strings attach to the instrument below the bridge or at the base of the
instrument. It is usually removed fairly easily — on most mandolins, it just
slides (not pulls) off. Hold the body of your mandolin firmly with one hand,
and, using a sliding motion, gently push the tailpiece away from the body. The
tailpiece is intended to be taken on and off, so that you can put new strings on
your instrument.

The sound hole on a mandolin is used to project musical quality more
effectively. While the vibrations produced come primarily from the surface of
the sounding board, the sound holes aid in permitting some of the sound that is
generated within the mandolin to emanate outside of it. Sound holes come in
various shapes.



4.4 GDAE Chords & Fretboard of the Mandolin

Figure 18: Fretboard of a mandolin

Each fret is a semitone. The instruments are tuned so that the next highest
string sounds the same as the one below fretted at the 7th fret. (This means that
they are tuned in 5ths.

Explanation:

G and D are 5 whole notes apart [G-A-B-C-D] but in total, there are actually 7
semitones (frets) [G-G#-A-Bb-B-C-C#-D] with G counting as zero).
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The notes from the nut to the 12th fret on a string is called an octave and has 12
semitones and 8 whole tones (hence Octave). The octave note is the same note
as the open string but a whole set of notes higher in pitch. The length of the
string determines the pitch (frequency) of the basic note (open string). A longer
string gives a slower frequency, and hence a lower note. Holding a string down
at a certain fret shortens the string and makes it sound higher in pitch. The frets
are positioned at just the right interval to ensure that the notes sound correctly
and have the right relationship with each other. (This is called the Well
Tempered Scale - not all instruments are well tempered - in more ways than
one!)

The mandolin family of instruments can be tuned easily by getting the bottom
(G) string(s) in tune and then tuning each higher course to the previous string at
the 7th fret - they should sound the same. You can get the G in tune from a
piano, another musician, a tuning fork or an electronic tuner.

Middle C on a mandolin is 4th string, 5th fret which gives you some idea of the
range of the instrument. Octave mandolins are a whole octave lower, so middle
C occurs at 2nd string, 3rd fret.

4.5 Tuning of a mandolin

The most common tuning by far is GDAE. Mandolin is tuned in fifths starting
with the G strings as the lowest strings:

® fourth (lowest tone) course: G3 (196.00 Hz)

@ third course: D4 (293.66 Hz)

@® second course: A4 (440.00 Hz; A above middle C)
@ first (highest tone) course: E5 (659.25 Hz)

The thickest pair (at the top for a right-handed player) are tuned to the note G
above middle C. The next pair are tuned to the D above, the next to the A
above that and the thinnest pair are tuned to the E above that. The strings are
tuned in unison (both in the pair are tuned to the same note). The Mandolin can
be tuned to an electronic tuner, another instrument (e.g. piano), or to itself.

Here are diagrams illustrating this tuning sequence:



Figure 20: tuning sequence



Chapter 5 : MoMu-STK

5.1 General Information

5.1.1 What is MoMu-STK?

MoMu-STK (short for Mobile Music Synthesis Toolkit) is a light-weight
software toolkit for creating musical instruments and experiences on mobile
device, and currently supports the iPhone platform (iPhone, iPad, iPod
Touches). MoMu provides API's for real-time full-duplex audio, accelerometer,
location, multi-touch, networking, graphics, and utilities. The MoMu Toolkit
was developed as part of the Mobile Music research initiative in Music,
Computing & Design group at Stanford University's CCRMA, in collaboration
with Smule.

5.1.2 What is the Synthesis ToolKit (STK)?

The Synthesis ToolKit in C++ (STK) is a set of open source audio signal
processing and algorithmic synthesis classes written in the C++ programming
language. STK was designed to facilitate rapid development of music synthesis
and audio processing software, with an emphasis on cross-platform
functionality, real time control, ease of use, and educational example code. The
Synthesis ToolKit is extremely portable (it's mostly platform-independent C
and C++ code), and it's completely user-extensible (all source included, no
unusual libraries, and no hidden drivers). STK currently runs with real time
support (audio and MIDI) on Linux, Macintosh OS X, and Windows computer
platforms. Generic, non-realtime support has been tested under NeXTStep,
Sun, and other platforms and should work with any standard C++ compiler.

The Synthesis ToolKit is free. The only parts of the Synthesis ToolKit that are
platform-dependent concern real-time audio and MIDI input and output, and
that is taken care of with a few special classes. The interface for MIDI input
and the simple Tcl/Tk graphical user interfaces (GUIs) provided is the same, so
it's easy to experiment in real time using either the GUIs or MIDI. The
Synthesis ToolKit can generate simultaneous SND (AU), WAV, AIFF, and
MAT-file output soundfile formats (as well as real time sound output), so you



can view your results using one of a large variety of sound/signal analysis tools
already available (e.g. Snd, Cool Edit, Matlab).

5.1.3 What the Synthesis ToolKit is not.

The Synthesis Toolkit is not one particular program. Rather, it is a set of C++
classes that you can use to create your own programs. A few example
applications are provided to demonstrate some of the ways to use the classes. If
you have specific needs, you will probably have to either modify the example
programs or write a new program altogether. Further, the example programs
don't have a fancy GUI wrapper. It is easy to embed STK classes inside a GUI
environment but we have chosen to focus our energy on the audio signal
processing issues. Spending hundreds of hours making platform-dependent
graphical user interfaces would go against one of the fundamental design goals
of the ToolKit - platform independence.

For those instances where a simple GUI with sliders and buttons is helpful, we
use Tcl/Tk (that is freely distributed for all the supported ToolKit platforms). A
number of Tcl/Tk GUI scripts are distributed with the ToolKit release. For
control, the Synthesis Toolkit uses raw MIDI (on supported platforms), and
SKINI (Synthesis ToolKit Instrument Network Interface, a MIDI-like text
message synthesis control format).

5.1.4 A brief history of the Synthesis ToolKit in C++.

Perry Cook began developing a pre-cursor to the Synthesis ToolKit (also called
STK) under NeXTStep at the Center for Computer Research in Music and
Acoustics (CCRMA) at Stanford University in the early-1990s. With his move
to Princeton University in 1996, he ported everything to C++ on SGI hardware,
added real-time capabilities, and greatly expanded the synthesis techniques
available. With the help of Bill Putnam, Perry also made a port of STK to
Windows95. Gary Scavone began using STK extensively in the summer of
1997 and completed a full port of STK to Linux early in 1998. He finished the
fully compatible Windows port (using Direct Sound API) in June 1998.
Numerous improvements and extensions have been made since then.

The Toolkit has been distributed continuously since 1996 via the Princeton
Sound Kitchen, Perry Cook's home page at Princeton, Gary Scavone's home
page at McGill University, and the Synthesis ToolKit home page. The ToolKit
has been included in various collections of software. Much of it has also been
ported to Max/MSP on Macintosh computers by Dan Trueman and Luke
Dubois of Columbia University, and is distributed as PeRColate. Help on real-
time sound and MIDI has been provided over the years by Tim Stilson, Bill
Putnam, and Gabriel Maldonado.



5.2 Class Documentation

5.2.1. Delay Class Reference

Non-Interpolating Delay Line Class.

Inheritance Relationship for Delay: Delay->Filter->Object

Public Methods

* Delay(long max_length)

Constructor which specifies the maximum delay-line length.
* Delay()

Class destructor.

» void clear ()

Clears the internal state of the delay line.

« void setDelay (StkFloat length)

Set the delay-line length.

» StkFloat tick(StkFloat sample)

Input one sample to the delay-line and return one output.

5.2.1.1 Detailed Description

Non-interpolating delay line class.

This protected Filter subclass implements a non-interpolating delay-line.
This one uses a delay line of maximum length specified on creation.

A non-interpolating delay line is typically used in fixed delay-length
applications,

such as for reverberation.

5.2.1.2 Member Function Documentation



5.2.1.2.1 void Delay::setDelay (StkFloat length)
Set the delay-line length.

The valid range for length is from 0 to the maximum delay-line length.

The documentation for this class was generated from the following
file:

* Delay.h

5.2.2. DelayA Class Reference

Allpass interpolating delay line class.

Inheritance relationship DelayA: DelayA->Filter->Object

Public Methods

* DelayA (long max_length)

Constructor which specifies the maximum delay-line length.
* DelayA ()

Class destructor.

» void clear ()

Clears the internal state of the delay line.

« void setDelay (StkFloat length)

Set the delay-line length.

StkFloat tick (StkFloat sample)

Input one sample to the delay-line and return one output.

5.2.2.1. Detailed Description
Allpass interpolating delay line class.

This one uses a delay line of maximum length specified on creation and
interpolates fractional length using an all-pass filter. This version is more
efficient for computing static length delay lines (alpha and coeff are



computed only when the length is set, there probably is a more efficient
computational form if alpha is changed often (each sample)).

5.2.2.2 Member Function Documentation
5.2.2.2.1 void DelayA::setDelay (StkFloat length)
Set the delay-line length.

The valid range for length is from 0.5 to the maximum delay-line length.

The documentation for this class was generated from the following
file:

* DelayA.h

5.2.3. DelayL Class Reference

Linearly Interpolating Delay Line Class

Inheritance relationship for DelayL:: DelayL->Filter->Object

Public Methods

* DelayL (long max_length)

Constructor which specifies the maximum delay-line length.
* DelayL ()

Class destructor.

» void clear ()

Clears the internal state of the delay line.

« void setDelay (StkFloat length)

Set the delay-line length.

» StkFloat tick (StkFloat sample)

Input one sample to the delay-line and return one output.

5.2.3.1. Detailed Description



Linearly interpolating delay line class.

This Delay subclass uses a delay line of maximum length specified on
creation, and linearly interpolates fractional length. It is designed to be
more efficient if the delay length is not changed very often.

5.2.3.2. Member Function Documentation
5.2.3.2.1 void DelayL::setDelay (StkFloat length)
Set the delay-line length.

The valid range for length is from 0 to the maximum delay-line length.

The documentation for this class was generated from the following
file:

* DelayL.h

5.2.4. Filter Class Reference

Filter class.

Inheritance relatioship for Filter::

Delay, DelayA, DelayL, OneZero ->Filter->Object

Public Methods

* Filter ()

Default constructor creates a zero-order pass-through filter”.
« Filter ()

Class destructor.

» StkFloat lastOut ()

Return the last computed output value.

5.2.4.1. Detailed Description

Filter class.



This class is a base class for all filters. This filter is defined as something
which has inputs(s), output(s), and gain.

The documentation for this class was generated from the following
file:

* Filter.h

5.2.5. Instrmnt Class Reference

Instrument base class.

Inheritance relationship for Instrmnt::

Mandolin, PluckTwo ->Instmnt->Object

Public Methods
* Instrmnt ()

Default constructor.

evirtual void noteOn (StkFloat frequency, StkFloat amplitude)
Start a note with the given frequency and amplitude.

» virtual void noteOff (StkFloat amplitude)

Stop a note with the given amplitude.

» virtual void setFreq (StkFloat frequency)

Set instrument parameters for a particular frequency.

» Stkfloat lastOut ()

Return the last output value.

» virtual StkFloat tick ()

Compute one output sample.

» virtual void controlChange (int number, StkFloat value)
Perform the control change specified by number and value (0.0 — 128.0).

5.2.5.1. Detailed Description
Instrument base class.

This class provides an interface for the mandolin instrument.

The documentation for this class was generated from the following
file:



e Instrmnt.h

5.2.6. Mandolin Class Reference

Commuted Mandolin Subclass of enhanced dual plucked-string
model

Inheritance relationship for Mandolin::

Mandolin->Instrmnt->Object

Public Methods
* Mandolin (StkFloat lowestFrequency)

Class constructor, taking the lowest desired playing frequency.

» void pluck (StkFloat amplitude)

Pluck the strings with the given amplitude (0.0 - 1.0) using the current
frequency.

» void pluck (StkFloat amplitude, StkFloat position)

Pluck the strings with the given amplitude (0.0 - 1.0) and position (0.0 -
1.0).

» virtual void noteOn (StkFloat frequency, StkFloat amplitude)

Start a note with the given frequency and amplitude (0.0 - 1.0).

« void setBodySize (StkFloat size)

Set the body size.

» virtual StkFloat tick ()

Compute one output sample.

« virtual void controlChange (int number, StkFloat value)

Perform the control change specified by number and value (0.0 — 128.0).

5.2.6.1 Detailed Description

Commuted Mandolin Subclass of enhanced dual plucked-string model.

This class inherits from PluckTwo and uses ”commuted synthesis”
techniques

to model a mandolin instrument.

Control Change Numbers:



* Body Size =2

* Pluck Position = 4

* String Sustain = 11

* String Detuning = 1

* Microphone Position = 128

The documentation for this class was generated from the following
file:

* Mandolin.h

5.2.7. Noise Class Reference

Noise Generator Class.

Inheritance relationship for Noise:: Noise->Object

Public Methods

* Noise ()

Default constructor.

« virtual Noise ()

Class destructor.

« virtual StkFloat tick ()

Return a random number between -1.0 and 1.0 using the random()
function.

» StkFloat lastOut ()

Return the last computed value.

5.2.7.1. Detailed Description
Noise Generator Class.

Generic random number generation using the random() function. The
quality of



the random() function varies from one OS to another.

The documentation for this class was generated from the following
file: Noise.h

5.2.8. Object Class Reference

Object Base Class.
This is mostly here for compatibility with Objective C.

5.2.8.1. Detailed Description

The documentation for this class was generated from the following
file “Object.h”.

This file defines sampling rates, basic trigonometric constants, states
for envelopes, MIDI definitions and generally all the necessary
definitions for our program.

5.2.9. OneZero Class Reference
One Zero Filter Class.

Inheritance relationship for OneZero:: OneZero->Filter->Object

Public Methods

* OneZero ()

Default constructor creates a first-order low-pass filter.
* OneZero ()

Class destructor.

» void clear ()

Clears the internal state of the filter.



» void setCoeff (StkFloat aValue)
Set the coefficient value.

« void setGain (StkFloat aValue)

Set the filter gain.

« StkFloat tick (StkFloat sample)

Input one sample to the filter and return one output.

5.2.9.1. Detailed Description
One Zero Filter Class.

The parameter gain is an additional gain parameter applied to the filter on
top of the normalization that takes place automatically. So the net max
gain through the system equals the value of gain. sgain is the
combination of gain and the normalization parameter, so if you set the
poleCoeff to alpha, sgain is always set to gain / (1.0 - fabs(alpha)).

5.2.9.2. Member Function Documentation
5.2.9.2.1 void OneZero::setGain (StkFloat aValue) [virtual]
Set the filter gain.

The gain is applied at the filter input and does not affect the coefficient
values.

The default gain value is 1.0.
Reimplemented from Filter.

The documentation for this class was generated from the following
file:

* OneZero.h

5.2.10. PlayMusic Class Reference

PlayMusic Class.

This class is aimed to control commuted dual plucked-string model.

Inheritance relationship for PlayMusic::
PlayMusic->Instrmnt->Object



Public Methods
*PlayMusic()

Default constructor.

*PlayMusic()

Class destructor.

» virtual void noteOnN(short num, StkFloat amplitude)

Start a note with the given num and amplitude.

« virtual void noteOffN(short num, StkFloat amplitude)

Stop a note with the given num and amplitude.

» virtual StkFloat tick()

Compute and return one output sample.

» virtual void controlChange(int number, StkFloat value)

Perform the control change specified by number and value (0.0 - 128.0).
» virtual void Mandolin_Chords(StkFloat amplitude, char* chordString)
Choose Mandolin chords.

The documentation for this class was generated from the following
file:

* PlayMusic.h

5.2.11. PluckTwo Class Reference

Karplus-Strong plucked model class.

Inheritance relationship for PluckTwo::

PluckTwo-> Instrmnt->Object

Public Methods
* PluckTwo (StkFloat lowestFrequency)

Class constructor, taking the lowest desired playing frequency.
* PluckTwo ()

Class destructor.

» void clear ()

Reset and clear all internal state.

« virtual void setFreq (StkFloat frequency)

Set instrument parameters for a particular frequency.

* void setDetune(StkFloat detune)



detune the two strings by the given factor

» void setFreqAndDetune(StkFloat frequency, StkFloat detune)
efficient combined setting of frequency and detuning

» void setPluckPos(StkFloat position)

set the pluck position along the string

» void setBaseL.oopGain(StkFloat aGain)

set the base loop gain

» virtual void noteOff (StkFloat amplitude)

Stop a note with the given amplitude.

5.2.11.1 Detailed Description

Karplus-Strong plucked model class.

This class implements a plucked physical model based on the Karplus-
Strong algorithm.

The documentation for this class was generated from the following
file:

e PluckTwo.h

5.2.12. RawWave Class Reference

RawWave Soundfile Class

Inheritance relationship for RawWave: RawWave->Object

Public Methods

* RawWave(char *fileName)

Class Constructor taking the name of the soundfile.

* RawWave(StkFloat *someData,long al.ength)
Overloaded Constructor taking the data and the length.
* RawWave()

Class Destructor

*void reset()



Clear output and reset time pointer to zero.

* void normalize()

Normalize data to a maximum of +-1.0.

» void normalize(StkFloat peak)

Normalize data to a maximum of +-peak.

» void setRate(StkFloat rate)

Set the data read rate in samples.

» void setFreq(StkFloat aFreq)

Set the data interpolation rate based on a looping frequency.
* void addTime(StkFloat time)

Increment the read pointer by time in samples.
» void addPhase(StkFloat anAngle)

Increment current read pointer by anAngle, relative to a looping
frequency.

» void addPhaseOffset(StkFloat anAngle)
Add a phase offset to the current read pointer.
« void setL.ooping(int al.oopStatus)

Set the looping variable.

» StkFloat tick()

Compute and return one output sample.

« int informTick()

Update current time.

» StkFloat lastOut()

Return the last computed output value.

5.2.12.1 Detailed Description
RawWave Sound file Class.

This class can open a raw 16bit data (signed integers) file, and play back
the data once or looping, with linear interpolation on playback.

5.2.12.2 Member Function Documentation
5.2.12.2.1 void RawWave::setRate(StkFloat rate)



Set the data read rate in samples. The rate can be negative. If the rate
value is negative, the data is read in reverse order.

5.2.12.2.2 void RawWave::setFreq(StkFloat aFreq)
Set the data interpolation rate based on a looping frequency.
5.2.12.2.3 void RawWave:: addPhase(StkFloat anAngle)

Increment current read pointer by anAngle, relative to a looping
frequency. In this function we add time in cycles. As one cycle we
consider the length.

5.2.12.2.4 void RawWave:: addPhaseOffset(StkFloat anAngle)

Add a phase offset to the current read pointer. In this function we add a
phase offset in cycles. As one cycle we consider the length.

The documentation for this class was generated from the following
file:

e RawWave.h

5.2.13. RawWvOut Class Reference
Raw Wave File Output Class

Inheritance relationship for RawWvOut : RawWvOut->Object

Public Methods

* RawWvOut (char *fileName)
Constructor taking the soundfile.
* RawWvOut ()

Class destructor.

* long getCounter()

Return the number of output.
StkFloat getTime ()

Return the number of seconds of data output.



» void tick (StkFloat sample)

Output a sample in vector.

5.2.13.1 Detailed Description

This class opens a mono NeXT .snd file 16bit data at 22KHz, and pokes
buffers of samples into it.

The documentation for this class was generated from the following
file:
* RawWvOut.h

5.2.14. SKINI Class Reference

SKINI Text File Reader Class

Inheritance relationship for SKINI:: SKINI->Object

Public Methods
« SKINI ()

Default constructor used for parsing messages received externally.
» SKINI (char *fileName)

Constructor taking a SKINI formatted scorefile.

« SKINI ()

Class destructor.

* long parseThis (char* aString)

Attempt to parse the given string, returning the message type.

* long nextMessage ()

Parse the next message (if a file is loaded) and return the message type.
* long getType ()

Return the current message type.

* long getChannel ()

Return the current message channel value.

» StkFloat getDelta ()

Return the current message delta time value (in seconds).

« StkFloat getByteTwo ()

Return the current message byte two value.

» StkFloat getByteThree ()



Return the current message byte three value.

* long getByteTwolnt ()

Return the current message byte two value (integer).

* long getByteThreelnt ()

Return the current message byte three value (integer).
» char* getRemainderString ()

Return remainder string after parsing.

* char* getMessageTypeString ()

Return the message type as a string.

* char* whatsThisType (long type)

Return the SKINI type string for the given type value.
» char* whatsThisController (long type)

Return the SKINI controller string for the given controller number.

5.2.14.1 Detailed Description

This class can open a SKINI File and parse it.

SKINI (Synthesis ToolKit Instrument Network Interface) is like MIDI,
but allows for floating point control changes, note numbers, etc.

Example: noteOn 60.01 111.132 plays a sharp middle C with a velocity
of 111.132

The documentation for this class was generated from the following
file:

« SKINILh

5.2.15. Voice Class Reference

Voice manager class.

Inheritance relationship for Voice:: Voice->Object
Public Methods

* Voice(int maxVoices, char *instrType)

Class constructor taking the maximum number of voices and the desirable
instrument(in my case the mandolin).



* Voice ()

Class destructor.

* long noteOnN (StkFloat noteNum, StkFloat amplitude)

Initiate a noteOn event with the given note number and amplitude and
return a unique note tag.

* long noteOn(StkFloat frequency, StkFloat amplitude)

Initiate a noteOn event with the given frequency and amplitude and return
a unique note tag.

» void noteOffN (int note_num, StkFloat amplitude

Send a noteOff to all voices having the given note number and amplitude.
» void noteOffT (long tag, StkFloat amplitude)

Send a noteOff to the voice with the given note tag.

» void pitchBend (StkFloat value)

Send a pitchBend message to all voices.

» void pitchBend (long tag, StkFloat value)

Send a pitchBend message to the voice with the given note tag.

« void controlChange (int number, StkFloat value)

Send a controlChange to mandolin instrument.

* void controlChange (long tag, int number, StkFloat value)

Send a controlChange to the voice with the given note tag.

* void kill (long tag)

Send a noteOff message to the voice with the given note tag.

*long oldestVoice()

Return the tag of the sounding note.

» StkFloat tick ()

Mix the output for all sounding voices.

5.2.15.1 Detailed Description

Voice manager class.

We just need to define the maximum number of voices we want and the
mandolin instrument will be mangling. We then pipe SKINI messages
into it and it will return the mixed channel signal each tick. Each noteOn
returns a unique tag, so we can send control changes to unique instances
of mandolin within an ensemble. SKINI (Synthesis toolKit Instrument
Network Interface) is like MIDI, but allows for floating point control
changes, note numbers, etc.

Example: noteOn 60.01 111.132 plays a sharp middle C with a velocity
of 111.132.



5.2.15.2 Member Function Documentation

5.2.15.2.1 long Voice::noteOnN (StkFloat note_num, StkFloat amplitude)

Initiate a noteOn event with the given note number and amplitude and
return a unique note tag. If no voices are found, the function returns -1.
The amplitude value should be in the range 0.0 - 128.0.

5.2.15.2.2 void Voice::noteOffN (StkFloat note_num, StkFloat
amplitude)

Send a noteOff to all voices having the given note number and amplitude.
The amplitude value should be in the range 0.0 - 128.0.

5.2.15.2.3 void Voice::noteOffT (long tag, StkFloat amplitude)

Send a noteOff to the voice with the given note tag.

The amplitude value should be in the range 0.0 - 128.0.

The documentation for this class was generated from the following
file:

* Voice.h
5.3 Usage Documentation

Directory Structure
The top level distribution contains the following directories:

- The src directory contains the source .cpp files for all the algorithm
classes.

- The include directory contains the header files for all the algorithm
classes.

- The rawwaves directory contains my music.raw used with the classes.

5.4 Compiling

The Synthesis ToolKit can be used in a variety of ways, depending on your
particular needs. Some people choose the classes they need for a particular
project and copy those to their working directory. Others create Makefiles that
compile project-specific class objects from common src and include directories.
And still others like to compile and link to a common library of object files.
STK was not designed with one particular style of use in mind.

My approach in using STK was to simply copy the class files needed for my
program into a project directory named PlayMusic. Some of the classes were



modified for the need of my program, while others remained as they were. The
program was then compiled on Linux, using the GNU g++ compiler as follows:

g++ -g -Wall -Im *.CPP -o PlayMusic

5.5 Control Input

Each Synthesis ToolKit instrument, in this case the mandolin, exposes its
relevant control parameters via public functions such as setFrequency() and
controlChange(). Generally programmers are free to implement the control
scheme of their choice in exposing those parameters to the user.

A text-based control protocol called SKINI is provided with the Synthesis
ToolKit. SKINI extends the MIDI protocol in incremental ways, providing a
text-based messaging scheme in human-readable format and making use of
floating-point numbers wherever possible. Each SKINI message consists of a
message type (e.g., NoteOn, PitchBend), a time specification (absolute or
delta), a channel number (scanned as a long integer), and a maximum of two
subsequent message-specific field values. Knowing this, it should be relatively
clear what the following SKINI "scorefile" specifies:

NoteOn  0.000082 2 55.0 82.3
NoteOff  1.000000 2 55.0 64.0
NoteOn  0.000082 2 69.0 82.8
StringDetune 0.100000 2 10.0
StringDetune 0.100000 2 30.0
StringDetune 0.100000 2 50.0
StringDetune 0.100000 2 40.0
StringDetune 0.100000 2 22.0
StringDetune 0.100000 2 12.0
NoteOff 1.000000 2 69.0 64.0

MIDI messages are easily represented within the SKINI protocol.

Since the program is compiled as PlayMusic and we allow control via SKINI
messages read from a SKINI scorefile, for example, testscor.ski the program
can be run as:

./PlayMusic testscor.ski



Chapter 6 : Synthesis ToolKit Instrument
Network Interface (SKINI)

6.1 MIDI Compatibility

SKINI was designed to be MIDI compatible wherever possible, and extend
MIDI in incremental, then maybe profound ways.

Differences from MIDI, and motivations, include:

» Text-based messages are used, with meaningful names wherever possible.
This allows any language or system capable of formatted printing to generate
SKINI. Similarly, any system capable of reading in a string and turning
delimited fields into strings, floats, and integers can consume SKINI for
control. More importantly, humans can actually read, and even write if they
want, SKINI files and streams. Use an editor and search/replace or macros to
change a channel or control number. Load a SKINI score into a spread sheet to
apply transformations to time, control parameters, MIDI velocities, etc.

* Floating point numbers are used wherever possible. Note Numbers,
Velocities, Controller Values, and Delta and Absolute Times are all represented
and scanned as ASCII double-precision floats. MIDI byte values are preserved,
so that incoming MIDI bytes from an interface can be put directly into SKINI
messages. 60.0 or 60 is middle C, 127.0 or 127 is maximum velocity etc. But,
unlike MIDI, 60.5 can cause a 50 cent sharp middle C to be played. As with
MIDI byte values like velocity, use of the integer and SKINI-added fractional
parts is up to the implementor of the algorithm being controlled by SKINI
messages. But the extra precision is there to be used or ignored.

6.2 Why SKINI?

SKINI was designed to be extensible and hackable for a number of
applications: embedded synthesis in a game or VR simulation, scoring and
mixing tasks, real- time and non-real time applications which could benefit
from controllable sound synthesis, JAVA controlled synthesis, or eventually
maybe JAVA synthesis, etc. SKINI is not intended to be ”the mother of score
files,” but since the entire system is based on text representations of names,
floats, and integers, converters from one scorefile language to SKINI, or back,
should be easily created.

6.3 SKINI Messages

A basic SKINI message is a line of text. There are only three required fields,
the message type (an ASCII name), the time (either delta or absolute), and the
channel number. Don’t think that this is MIDI channel 0- 15 (which is
supported), because the channel number is scanned as a long integer. Channels
could be socket numbers, machine Ids, serial numbers, or even unique tags for



each event in a synthesis. Other fields might be used, as specified in the
SKINI.tbl file. This is described in more detail later. Fields in a SKINI line are
delimited by spaces, commas, or tabs. The SKINI parser only operates on a line
at a time, so a newline means the message is over.

Multiple messages are NOT allowed directly on a single line (by use of the ;
for example in C). Message types include standard MIDI types like NoteOn,
NoteOff, ControlChange, etc. MIDI extension message types (messages which
look better than MIDI but actually get turned into MIDI-like messages) include
StringDamping, etc.

All fields other than type, time, and channel are optional, and the types and

usage of the additional fields is defined in the file SKINILtbl. The other
important file used by SKINI is SKINI.msg, which is a set of defines to make
C code more readable, and to allow reasonably quick re-mapping of control
numbers, etc.. All of these defined symbols are assigned integer values.

6.4 C Files Used To Implement SKINI

SKINI.cpp is an object which can either open a SKINI file, and successively
read and parse lines of text as SKINI strings, or accept strings from another
object and parse them. The latter functionality would be used by a socket, pipe,
or other connection receiving SKINI messages a line at a time, usually in real
time, but not restricted to real time. SKINI.msg should be included by anything
wanting to use the SKINI.cpp object. This is not mandatory, but use of the SK
blah symbols which are defined in the .msg file will help to ensure clarity and
consistency when messages are added and changed. SKINI.tbl is used only by
the SKINI parser object (SKINI.cpp). In the file SKINI.tbl, an array of
structures is declared and assigned values which instruct the parser as to what
the message types are, and what the fields mean for those message types. This
table is compiled and linked into applications using SKINI, but could be
dynamically loaded and changed in a future version of SKINI.

6.5 SKINI Messages and the SKINI Parser

Here are the basic rules governing a valid SKINI message:
» If the first character in a SKINI string is ’/’ that line is treated as a comment.

o If there are no characters on a line, that line is treated as blank. Tabs and
spaces are treated as non-characters.

* Spaces, commas, and tabs delimit the fields in a SKINI message line. (We
might allow for multiple messages per line later using the semicolon, but
probably not. A series of lines with deltaTimes of 0.0 denotes simultaneous
events. For read-ability, multiple messages per line doesn’t help much, so it’s
unlikely to be supported later).

* The first field must be a SKINI message name (like NoteOn). These might
become case-insensitive , so don’t plan on exciting clever overloading of



names (like noTeOn being different from NoTeON). There can be a number of
leading spaces or tabs, but don’t exceed 32 or so.

* The second field must be a time specification in seconds. A time field can be
either delta-time or absolute time. Absolute time messages have an ’=’
appended to the beginning of the floating point number with no space. So
0.10000 means delta time of 100 ms, while =0.10000 means absolute time of
100 ms. Absolute time messages make most sense in score files, but could also
be used for (loose) synchronization in a real-time context. Real-time messages
should be time-ordered AND time-correct. That is, if you’ve sent 100 total
delta-time messages of 1.0 seconds, and then send an absolute time message of
=90.0 seconds, or if you send two absolute time messages of =100.0 and =90.0
in that order, things will get really fouled up. The SKINI parser doesn’t know
about time, however. The RawWvOut device is the master time keeper in the
Synthesis ToolKit, so it should be queried to see if absolute time messages are
making sense. Absolute times are returned by the parser as negative numbers
(since negative deltaTimes are not allowed).

* The third field must be an integer channel number. Don’t think that this is just
MIDI channel 0-15 (which is supported). The channel number is scanned as a
long integer. Channels 0-15 are in general to be treated as MIDI channels.
After that it’s wide open. Channels could be socket numbers, machine Ids,
serial numbers, or even unique tags for each event in a synthesis. A -1 channel
can be used as don’t care, omni, or other functions depending on your needs
and taste.

* All remaining fields are specified in the SKINI.tbl file. In general, there are
maximum two more fields, which are either SK INT (long), SK DBL (double
float), or SK STR (string). The latter is the mechanism by which more
arguments can be specified on the line, but the object using SKINI must take
that string apart (retrieved by using getRemainderString()) and scan it. Any
excess fields are stashed in remainderString.

6.6 A Short SKINI File

/*Howdy!!! Welcome to SKINI

Sk 3k ok ok >k s S S sk sk S ok ok ok ok ke e s S Sk Sl Sk ok ok ok sk ke ke Sk S sk Sk ok ok ok ok ke ke ke sk sk sk

Howdy!! ToolKit SKINI File */

StringDamping 0.02 127
Chord 0.02100 G
StringDamping 0.2232

StringDamping =4.02 0.0
ChordOff 0.02 100



Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping

0.22100G
0.2232
0.02127
0.02 100
0.22100C
0.2232
0.02127
0.0 2100
0.22100C
0.2232
0.02127
0.0 2100
0.22100G
0.2232
0.02127
0.0 2100
0.22100G
0.2232
0.02127
0.0 2100
0.22100D
0.2232
0.02127
0.02 100
0.22100D
0.2232
0.02127
0.0 2100
0.22100G
0.2232
0.02127
0.0 2100
0.22100G
0.2232
0.02127



ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
StringDamping
ChordOff
Chord
StringDamping
ChordOff
StringDamping
Strumming
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn

0.0 2100
0.22100C
0.2232
0.02127
0.0 2100
0.22100C
0.2232
0.02127
0.0 2100
0.22100G
0.2232
0.02127
0.0 2100
0.22100D
0.2232
0.02127
0.02 100
0.22100G
0.2232
0.02127
0.0 2100
0.22100G
0.1232
0.12100
0.02120
0.02127
0.1 25560
0.7 2 55 60
0.0 2 60 60
0.4 260 60
0.0 262 60
0.2 26260
0.0 2 60 60
0.2 260 60
0.0 2 59 60



NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NotStrumming
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
NoteOn
NoteOff
Chord
ChordOff

0.4 259 60
0.0 257 60
0.22 5760
0.0 2 55 60
0.2 2 5560
0.0 262 60
0.8 26260
0.1267 100
0.7 267 100
0.0272100
0.4272100
0.0274100
0.2274100
0.0272100
0.2272100
0.020
0.0271100
0.1271100
0.0276 100
0.1276100
0.0274100
0.1274100
0.0270 100
0.1270100
0.0269 100
0.1269 100
0.0267 100
0.1267 100
0.0264 100
0.1264100
0.0262 100
0.1262100
0.0264G
20264



6.7 The SKINL.tbl File and Message Parsing

The SKINI.tbl file contains an array of structures which are accessed by the
parser object SKINI.cpp. The struct is:

struct SKINISpec {
char messageString[32];
long type;
long data2;
long data3;

}

so an assignment of one of these structs looks like: messageString ,type, data2,
data3 where type is the message type sent back from the SKINI line parser and
data<n> is either:

* NOPE : field not used, specifically, there aren’t going to be any more

fields on this line. So if there is is NOPE in data2, data3 won’t even
be checked.

* SK INT : byte (actually scanned as 32 bit signed long integer). If it’s a
MIDI data field which is required to be an integer, like a controller
number, it’s 0-127. Otherwise, get creative with SK INTs.

» SK DBL : double precision floating point. SKINI uses these in the MIDI
context for note numbers with micro tuning, velocities,

controller values, etc.

* SK STR : only valid in final field. This allows (nearly) arbitrary message
types to be supported by simply scanning the string to
EndOfLine and then passing it to a more intelligent handler. For
example, MIDI SYSEX (system exclusive) messages of up to

256 bytes can be read as space-delimited integers into the 1K SK STR

buffer. Longer bulk dumps, sound files, etc. should be handled as a
new message type pointing to a File Name, Socket, or something else
stored in the SK STR field, or as a new type of multi-line message.
Here’s a couple of lines from the SKINI.tbl file :

{"NoteOff" , __ SK_NoteOff ,
SK_DBL, SK_DBL},

{"NoteOn" , _ SK_ NoteOn_ ,

SK_DBL, SK_DBL},

{"ControlChange" , __ SK_ControlChange_ ,
SK_INT, SK_DBL},



{"Volume" , __SK_ControlChange_, _ SK_Volume_ ,
SK_DBL},
{"StringDamping" ,  __SK_ControlChange_, _ SK_StringDamping_ ,
SK_DBL},
{"StringDetune" , __SK_ControlChange_, _ SK_StringDetune_ ,
SK_DBL},

The first three are basic MIDI messages. The first two would cause the parser,
after recognizing a match of the string "NoteOff” or "NoteOn”, to set the
message type to 128 or 144 ( SK NoteOff and SK NoteOn are defined in the
file SKINL.msg to be the MIDI byte value, without channel, of the actual MIDI
messages for NoteOn and NoteOff). The parser would then set the time or delta
time (this is always done and is therefore not described in the SKINI Message
Struct). The next two fields would be scanned as double-precision floats and
assigned to the byteTwo and byteThree variables of the SKINI parser. The
remainder of the line is stashed in the remainderString variable.

The ControlChange spec is basically the same as NoteOn and NoteOff, but the
second data byte is set to an integer (for checking later as to what MIDI control
is being changed). The Volume spec is a MIDI Extension message, which
behaves like a ControlChange message with the controller number set
explicitly to the value for MIDI Volume (7). Thus the following two lines
would accomplish the same changing of MIDI volume on channel 2:

ControlChange 0.000000 2 7 64.1
Volume 0.0000002 64.1

The StringDamping and StringDetune messages behave the same as the
Volume message, but use Control Numbers which aren’t specifically nailed-
down in MIDI. Note that these Control Numbers are carried around as long
integers, so we’re not limited to 0-127. If, however, you want to use a MIDI
controller to play an instrument, using controller numbers in the 0-127 range
might make sense.

Chapter 7 : Testing my program trying different
scorefiles

We allow control via SKINI messages read from six different SKINI score
files: CHORDS.SKI, FUNSKINI.SKI, FUNICULA.SKI, TESTSCOR.SKI,
SCALES.SKI, PICKDUMP.SKI.

Running the program we notice that different score files give different
computation time. Moreover, we take different computation time every time we
change a set of rate variables in one scorefile.

These are the rate variables: SRATE



SRATE_OVER_TWO = SRATE/2
ONE_OVER_SRATE = 1/SRATE
RATE_NORM = 22050 / SRATE

Here's a table which shows the computation time of each skini file while
changing the SRATE variable

Table 6: Computation time

COMPUTATION TIME
SKINI _FILE SRATE=220.50 Hz |[SRATE=441 Hz SRATE=800 Hz
SCALES.SKI 19.000000 sec 18.500000 sec 20.756250 sec
CHORDS.SKI 14.799910 sec 14.299954 sec 16.556000 sec
FUNSKINI.SKI 17.024172 sec 16.524965 sec 18.776625 sec

FUNICULA.SKI

16.625713 sec

16.128073 sec

18.374750 sec

TESTSCOR.SKI

17.200726 sec

16.701042 sec

18.955999 sec

PICKDUMP.SKI

9.749569 sec

9.250000 sec

11.506250 sec

Simultaneously with the computation time a file test.wav.snd is created, every
time I run my program. Different score files give different audio files.
Furthermore, we take different audio files every time we change the set of rate
variables in one scorefile. In order to open these audio files, I use audacity, a
free digital audio editor and recording application, available for Linux.




Here are the waveforms of each scorefile after taking consider all the possible
values of the variable SRATE

1) SRATE =22050 Hz

Figure 21: waveforms of CHORDS.SKI, FUNICULA.SKI, FUNSKINI.SKI

Figure 22: waveforms of PICKDUMP.SKI, SCALES.SKI, TESTSCOR.SKI



2) SRATE =44100 Hz

Figure 23: waveforms of CHORDS.SKI, FUNICULA.SKI, FUNSKINI.SKI

Figure 24: waveforms of PICKDUMP.SKI, SCALES.SKI, TESTSCOR.SKI



3) SRATE = 80000 Hz

Figure 25: waveforms of CHORDS.SKI, FUNICULA.SKI, FUNSKINI.SKI

Figure 26: waveforms of PICKDUMP.SKI, SCALES.SKI, TESTSCOR.SKI



Chapter 8 : Conclusion

8.1 Limitations

The STK has been developed in the same department of
Stanford University as MoMu and was already released in 1995
but is still developed until now. It offers “an array of unit generators
for filtering, input/output, etc., as well as examples of new and
classic synthesis and effects algorithms for research, teaching,
performance, and composition purposes”. The STK has been
slightly modified by the MoMu team. In terms of
documentation and community support, the STK library makes
a good impression: A comprehensive tutorial covers the basic
features. Several demo projects that are included in the source
download provide well documented examples. An API
documentation offers an overview about the available classes
and their methods. Al-though the library is already more than
15 years old, the mailing list is still active and a
comprehensive archive exists.

All in all, this library seems to be very promising. It provides
a very comprehensive set of features, is well documented
and with 15 years of age a very matured library with
efficient algorithms. Still, it cannot work wonders with the limited
resources of mobile devices and therefore virtual instruments that are
developed using the STK, should of course use as little resources as
possible.

8.2 Future Work

Motivated by the newly blossoming field of mobile music, the Mobile Music
(MoMu) toolkit offers a collection of application programming interfaces (API)
and utilities focusing on mobile music development and design. The initial
MoMu release focuses on usability and rapid prototyping for the iPhone OS
with a particular emphasis toward unifying audio input/output, synthesis, and
graphics with the on board sensors now available on commodity mobile phones
including accelerometer, compass, location, and multi-touch. More specifically,
the



fundamental design goals of MoMu include:
-Real-time audio, synthesis, and control
-Consistent conventions for external sensor access
-Unified common functionality for mobile music
-Focus on ease of use, setup, and installation
-Open source C, C++, and Objective-C code

In this thesis we used MoMu-STK to develop a mandolin music synthesis and
to produce music compositions (audio files) based on the mandolin instrument.
Following this music synthesis, composers can generate music compositions
based on different musical instruments or a combination of musical instruments
that belong to the same or different instrument families.

Moreover, since MoMu offers a collection of useful utilities used for audio
synthesis and processing, graphics, threading, and general purpose filtering, we
can provide useful functionality for mobile phone music application
development.

The design focus enables programmers with little or no prior mobile
development experience to rapidly develop interactive audio applications,
while concentrating on musical and aesthetic considerations. MoMu builds
upon the iPhone OS SDK as well as several open source software packages
including the Synthesis ToolKit (STK) for sound synthesis and processing,
OSCpack for networking via Open Sounds Control, and a Fast Fourier
Transform (FFT) implementation adapted from the CARL software
distribution. To maximize performance on current mobile hardware, MoMu has
been implemented largely in a low-level language (C/C++). The open-source
nature allows for custom modifications or additions for production level
applications. As far as our experience has shown, such an approach tends to be
more familiar to computer musicians and audio developers alike, easier to
learn, and lends itself to greater code reuse for future platforms. It can also
encourage academic researchers and commercial developers to focus on more
musical and interactive applications.
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