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Περίληψη

Την περίοδο που συντάσσεται το παρόν, το Διαδίκτυο έχει εξελιχθεί 
σε  ένα  παράδεισο  διαμοιρασμού  περιεχομένου  πολυμέσων. 
Παράλληλα,  οι  εξελίξεις  στον  τομέα  υλικού  (ολοκληρωμένα 
κυκλώματα,  ευκρινείς οθόνες αφής μικρού μεγέθους κ.α.)   και  η 
ανάπτυξη  εύχρηστου  και  αξιόπιστου  λογισμικού  για  φορητές 
συσκευές οδήγησαν στη ραγδαία αύξηση της χρήσης των τοπικών 
ασύρματων  δικτύων.  Τα  τοπικά  αυτά  δίκτυα   φέρουν  συνήθως 
ετερογενή χαρακτηριστικά, κυρίως ως προς την επεξεργαστική ισχύ 
των  κόμβων  τους  και  το  bandwidth των  επιμέρους  συνδέσεων. 
Συνεπώς  οι  χρήστες  του  δικτύου  έχουν  διακριτές  απαιτήσεις,  οι 
οποίες όμως αφορούν στο ένα -κοινό- περιεχόμενο πολυμέσων. Σε 
αυτή  την  κατεύθυνση  εργαστήκαμε  για  να  υλοποιήσουμε  μια 
κατανεμημένη  αρχιτεκτονική  διαμοιρασμού  βίντεο  για  δίκτυα 
τέτοιου τύπου.  Η αρχιτεκτονική που  υλοποιήσαμε εκμεταλλεύεται 
τον  υψηλό  ρυθμό  μετάδοσης  συνδέσμων  μεταξύ  κόμβων, 
συνδεδεμένων  σε  τοπικά  ασύρματα  δίκτυα,  ενώ  παράλληλα 
εγγυάται  την  απόδοση  του  κλασσικού  μοντέλου  πελάτη-
εξυπηρετητή.  Παράλληλα  μέσα  από  μια  σειρά  πειραμάτων 
αποδείξαμε πως η προσέγγυσή μας  προσφέρει σημαντική βελτίωση 
στην απόδοση διαμοιρασμού βίντεο, εστιάζοντας στις παραμέτρους, 
εκείνες,  που  επηρεάζουν  τα  μέγιστα  τη  συμπεριφορά  της 
υλοποιημένης αρχιτεκτονικής.
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Chapter 1

Introduction

The invention of the motion picture camera in 1888, allowed the modern man, for the 
first time in human history, to capture and store single pictures on a single reel. Since 
then,  video  has  served  as  a  medium  for  entertainment  and  communication  [1]. 
Television broadcasting gave an extra boost in the popularity of video. Recorded shows 
or live events were made available to millions of people around the world through 
over-the-air broadcasts and cable signals.

At the end of the millennium, Internet and World Wide Web offered a new boost in 
the popularity of video. Initially, demands for text, pictures and document exchange 
were typical for the provided services which were available at the time, such as Web 
browsing and file transfer. Soon enough though, individuals started to experiment with 
the  transfer  of  multimedia  data–  mainly  sound  and  video–  over  the  Internet. 
Furthermore,  reinforced  by  technological  advancements  such  as  processing  power, 
video  compression  techniques  and  higher  networking  speeds  real-time  multimedia 
transfer over the Internet gained significant attention during the last ten years. 

Streaming is a technology that allows the user to transfer video over the net in real-
time, without waiting for the entire file to be downloaded [2]. This technology is based 
on  the  idea  that  a  video  file  can  be  separated  into  small  parts.  These  parts  are 
transmitted in succession to the end-user and then combined together again in order to 
playback  the  video,  without  waiting  for  all  the  parts  to  be  delivered.  Therefore, 
streaming offers nearly instantaneous playback of a video file in spite of it’s size. This 
size undependability, plus the fact that end users do not spare any storage space for 
streaming a video, combined with the rise of broadband Internet connections resulted in 
a major boost in streaming popularity [3].

This popularity made video distribution to be the primary reason behind the major 
growth of data traffic over wireless networks. Moreover, an increase by two orders of 
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magnitude compared with the current volume of data is expected within the next four 
years [4]. 

Despite  the  advancements  in  wireless  networks  and  wireless  data  services,  this 
increased demand is likely to lead in a breakdown of cellular and wireless systems. 
This problem can be addressed by bringing the video content closer to the end users. 
This  can  be  achieved  by  caching  popular  video  files  and  then  through  localized 
communication exploit their proximity in order to improve video throughput [5]. The 
cooperation of coexisting heterogeneous wireless networks promises great  potential, 
especially  in  our  study case  of  localized  communication,  i.e  video  distribution  via 
short-range links among the user terminals.

The architecture which we implemented for the purposes of this Thesis embodies 
many  of  the  above  characteristics.  Our  system  exploits  the  short-range/high-rate 
connections between the mobile devices of a local WAN in order to stream video files.  
The system offers actually a generic framework for simulating networks with many 
terminals.  At  the  same  time  it  facilitates  configurable  heterogeneous  links  and  is 
designed in a way to be expandable.

In the second Chapter we present in brief some general principles, rules, techniques 
and mechanisms regarding the basic knowledge that this Thesis is based on. In Chapter 
3 we combine this knowledge and offer an overview of the  distributed architecture, 
including a brief discussion about connection options, a basic example and the abstract 
form  that  we  worked  on,  during  the  development  of  the  Thesis.  Chapter  4 
accommodates  all  the  details  that  we  consider  as  critical  for  having  a  better  
understanding of the implementation of the system. Initially we present an overview of 
the simulation tool Omnet++. Furthermore we discuss the functionality of the different 
components of the system highlighting the critical parts. 

The behavior of the implemented framework is tested in Chapter 5. We conduct a 
number of experiments aiming into validating the correct behavior of the system under 
certain circumstances.  We, further,  focus on some interesting parameters  offering a 
broader  view  of  the  challenges  that  emerge.  Finally  in  Chapter  6  we  present  our 
conclusions.
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Chapter 2

Background Knowledge

In this Chapter we present the principles, rules methods and mechanisms of various 
schemes and systems, including both wireless networks and video streaming in order to 
introduce  some  basic  knowledge  that  we  used  during  the  development  of  the 
implementation of the architecture. 

In recent times, the expansion of wireless Local Area Networks(LAN) has been 
immense. University campuses, cafeterías, hospitals and hotels have all been hotspots 
for IEEE802.11 based wireless LANs. Furthermore, nowadays nearly all of the mobile 
devices come with a type of 802.11 network interface. At the same time, cellular wide 
access  wireless  networks  have  emerged  and  are  gaining  popularity.  These 
heterogeneous wireless  networks coexist,  but have many differences regarding data 
rates, coverage, mobility and so on.

Local access wireless networks have, in general, high data rates and relatively small 
power consumption on their terminals, but support limited mobility and coverage. On 
the contrary, wide access networks have large coverage and mobility, while suffering 
from  lower  data  rates  and  high  power  consumption.  Therefore,  these  two 
heterogeneous wireless networks complement each other and could be both efficient in 
case they operate in a cooperative way [6].

2.1 Cooperative Networks

Cooperative networking is a scientific issue that has many different understandings. 
Cooperation  can  be  distinguished  into  two  major  categories.  Macro  and  Micro 
cooperation.
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Macro cooperation involves wireless terminals, wireless routers and access points 
which all collaborate in order to exploit shorter radio propagation and increase the data 
rate. 

In micro cooperation the cooperating units may be algorithms, processing units or 
functional  parts.  The  gains  of  the  micro  cooperation  can  vary  from increasing  the 
bandwidth of the backbone link, improving the reliability of the wireless channel and 
lowering the power consumption of the terminal (end-user device).

Macro and micro cooperation are actually two approaches on the same issue of 
cooperative networking. These approaches can be finally integrated together.

2.1.1 Micro Cooperative Architecture & Scenarios
 
Fig. 1 and Fig. 2 demonstrate two typical architectures of the different cooperation 

categories that we discussed above. We are going to focus on the micro cooperative 
network architecture of Fig. 2. This version facilitates a number of terminals that are 
connected  locally  in  a  wireless  network.  At  the  same  time  they  are  connected 
individually with an access point/base station using a different wireless standard, for  
instance cellular reception. These terminals have to be multi-modality ones, i.e. they 
should be able to communicate simultaneously with the access point/base station and 
the peer terminals, with long and short range links respectively.

In this type of  cooperative networks,  the multi-modality  terminals  and the base 
station usually operate and communicate down to packet granularity. Therefore,  the 
architecture of this network is actually very similar to the one of a centrally controlled 
p2p  network.  There  are  many  scenarios  regarding  the  operation  of  the  micro 
cooperative networks which are discussed in [6]. One of them which is very interesting 
and  useful  for  our  work  is  that  of  the  Unicast  Transport/Multicast  Servise.  In  this 
scenario the mobile terminals  have multicast  service and this service is  transported 
through unicast links to the other terminals (peers).

 The same team conducted a number of experiments by implementing cooperative 
network prototypes to illustrate the potential of such type of networks.

In particular, they assumed that a server hosts some digital content which can be 
accessed by mobile terminals over cellular interface. At the same time, the architecture 
offers the possibility to the mobile terminals to collaborate and exchange disjointed 
parts of the digital content over short-range links in case they manage to find a peer.

Two commercial  Nokia N70 devices  were used to  illustrate this  approach.  The 
devices  communicated to  each other  via bluetooth and were connected to  the base 
station using GPRS. The base station provided two download possibilities to the mobile 
terminals. A stand-alone download, where the content was available in a single large 
file and a split file download, where the content was  divided into two equally large 
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files. In the stand-alone download each terminal downloads the file in a given time T 
with data rate R. In the cooperative scenario though, where the terminals download a 
smaller  file  from  the  base  station  and  then  exchange  the  missing  file  with  their 
neighbors  the  download  time  became  nearly  half  (~T/2).  This  simple  experiment 
demonstrated that  through cooperation higher data rates are achievable without 
increasing the complexity.  

2.2 Video Streaming in general

Video Streaming refers to the constant delivery of video content from a provider, to an 
end-user  that  instantly  proceed  to  playback  [7]  .  The client  (end-user)  can  start  to 
playback the media before the whole video file has been transmitted. Therefore, the end 
user can enjoy nearly instantaneous playback despite the size of the video.

The  generic  video  streaming  architecture  can  be  divided  into  six  areas;  media  
compression,  application-layer  QoS control,  media  distribution  services,  streaming  
servers, media synchronization at the receiver side, and streaming media protocols [8]. 
In order for the video to be transmitted over a network it is necessary to be compressed  
into a digital stream with a reduced bit rate.

This  task  is  performed  by  various  applications  known  as  encoders.  Decoders 
decompress the compressed stream. These two types of applications combined together 
form  the  codec.  MPEG-2,  MPEG-4,  H-264 (also  known as  AVC-Advanced Video 
Coding) are some of the well-known and most used codecs [9].

The coded video streams consist of successive pictures called inter- or intra-frames. 
Inter frames are frames that result from Inter frame prediction. Inter frame prediction 
tries to exploit the temporal redundancy between neighboring frames, thus leading to a 
higher compression rate. There are two types of Inter-frame, the B-Frames and the P-
Frames. The main difference between the two types of frames is the reference frame 
they use for the Inter prediction. Intra-frames are frames that do not depend on any 
other –neighboring or not– frames of the video stream. They are known as I-Frames.

The Group of Pictures is a structured sequence of Intra- and Inter- frames. The 
typical  GoP structure is  IBBPBBP...  .  The Inter  prediction dictates  that  among the 
frames of a Group of Pictures there are many dependencies. Fig. 3 illustrates these 
dependencies in a typical GoP [10].

Video  streaming,  also,  involves  various  transport  protocols  that  packetize  the 
compressed bit-streams and send the packets to the clients that  requested the given 
video file. Since video streaming is affected by transport delays and packet losses many 
network support mechanisms have emerged in order to cope with them. Among those 
mechanisms  are  the  application  level  multicast  and  content  replication  (caching) 
which improves the scalability [8].
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During our work on this subject we took into consideration many of the above. Of 
course we also had to maintain the complexity of our project in a permissible limit. 
Hence, some simplifications were imposed.

2.3 Peer-To-Peer Video Streaming

In  the  introductory  chapter  we  briefly  reviewed  the  evolution  of  video  streaming 
through the Internet. The World Wide Web can be viewed abstractly as a collection of  
millions of servers and clients that form a distributed system in order to provide access 
to associated documents and files.

The client-server  model that  was initially employed in the WWW proved to be 
inadequate. This was due to the fact that resources are usually concentrated in a small  
number  of  nodes,  while  in  order  to  provide  continuous  service  and  permissible 
responsiveness,  complex  fault-tolerant  and  load-balance  algorithms  have  to  be 
employed.  Additionally  the  limitations  set  on  network  bandwidth  worsened  the 
situation  even  more.  These  two  important  issues  lead  the  researchers  to  explore 
alternative models and schemes which allocate processing load and network bandwidth 
among all the nodes that form a distributed system [11].

P2p networking exploits  the computer  power,  the  network  connectivity  and  the 
storage in a way that allows users to leverage their collective power to the benefit of 
all. The nodes of a p2p network have equal roles thus they are often called peers. The 
peers  of  a  p2p network  cooperate in  a  distributed manner  in  order  to  achieve  the 
desired objective.

One of the key features of a p2p system is that every peer contributes resources 
such  as  processing power,  storage  and  of  course  bandwidth.  Therefore,  the overall 
system capacity increases as more nodes/peers join the system, making it's scalability 
significantly better than the one of the client-server model.

Those intrinsic characteristics make the P2P model a potential candidate to solve 
various  problems  in  multimedia  streaming  over  the  Internet  [12].  A  peer  can  act 
simultaneously as a client and as a server. This allows a peer who is downloading a 
video file to upload it to other peers at the same time. Therefore according to [13] p2p 
streaming decreases considerably the bandwidth needs of the source. The objective of 
this type of streaming is to maximize the video quality on individual peers despite 
the  bandwidth  heterogeneity  and  irregularity  of  the  links  among  them.  This 
objective  then  is  closely  related with  our work. In  our implementation  we have 
included  some  features  and  functionality  from  p2p  streaming  systems  such  as 
Chainsaw [14].
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Figure 1. Macro cooperative architecture

Figure 2. Micro cooperative architecture

Figure 3. GoP structure [10]
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Chapter 3

Architecture Overview

In this section we are going to discuss the basic features of the distributed video sharing 
architecture that we propose.

Our architecture aims into fulfilling the requirements of video streaming, i.e. high 
data rates and low latency, by exploiting the advantages offered by new schemes of 
networking and communication such as micro cooperative networks and p2p systems. 
By combining various elements, methods and disciplines of these schemes we propose 
and  implement  a  distributed  video  sharing  architecture  for  wireless  networks  with 
heterogeneous links.

In this  chapter  we are going to  study a generic architecture of  a  wireless  LAN 
consisting of a number of end-user devices such as laptops, smartphones and tablets.  
Moreover, we try to analyze the possible connections of the devices, examine a specific 
architecture and it's abstracted version on which our implementation is developed and 
finally present details regarding our algorithms and techniques used in it.

3.1 Connection Options, Channels and Data Rates 

As  we  have  previously  seen  from  the  literature  regarding  the  evolution  of 
heterogeneous wireless networks and cooperative networks the options of connecting 
the mobile devices with each other and the access point/base station are numerous. 
Cellular reception, bluetooth and Wi-Fi are some of the standards that have been tested 
from researchers. Table 1 shows some connection options and features of them.

As we discussed in previous chapters, IEEE802.11 is the most popular standard for 
wireless communications. This connection option forms a basic framework that we can 
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work on,  which  at  the  same time is  plausible  and  based  on  contemporary  popular 
wireless standards. The devices that form the wireless network in our initial framework 
are connected to an access point via an IEEE802.11.b connection. Furthermore, they 
are connected to each other via IEEE802.11.a.  

So far we have discussed the wireless part of our architecture. A part of it though is 
wired. In this part resides the video server which is connected to the access point via 
the  Internet.  This  connection  is  considered  as  a  standard  DSL Internet  connection. 
More connection options and details will be discussed in Chapter 5.

802.11 Frequency(GHz) Max. Data Rate (Mbit/s) Outdoor Range(m)

a 5 54 120

b 2.4 11 140

g 2.4 54 140

n 2.4/5 72.2 250

Table 1

3.2 Basic Framework  

The architecture is based on a framework consisting of a local wireless network and a 
remote  video  server.  A  number  of  mobile  devices  such  as  laptops,  tablets  and 
smartphones  may  be  connected  to  the  wireless  network.  Fig.  4  illustrates  the 
framework we had in mind when we started working on the generic architecture of this 
project.

The particular wireless network of the figure consists of 4 devices connected on an 
access  point  (blue links).  The devices of  this particular  figure are two laptops,  one 
tablet PC and one smartphone. The access point connects over the Internet with a video 
server. The dotted line shows the wired and the wireless segment of our architecture.

3.2.1 Principles, Methods and Algorithms

The  contemporary  model  of  video  transfer  is  that  of  the  client-server  one.  Fig.  5 
demonstrates  such  a  transfer  taking  place  into  the  familiar  system  that  we  are 
discussing. Particularly, the user of the smartphone requests a video from the video 
server. A connection between the smartphone and the server is established and then the 
server starts to stream the video file. We notice that the gray rectangles that resemble 
the packets  are indexed in a way to illustrate that  they are streamed  in order.  The 
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packets travel from the server through the Internet and then through the wireless link 
(blue line).

The key difference between this model and the one of the proposed architecture is 
that  user devices may request and –in case they are available– receive data/packets  
from other devices of the local WAN.

Fig. 6 illustrates a system that allows a node of the local wireless network  which is 
already receiving data/packets to share them with another node of the local network. 
This is a core function of our system. The packets are transmitted via a wireless link 
(red line) which connects the smartphone directly with the laptop and has no relevance 
to the standard WiFi connection between the laptop and the access point (blue line). 
This feature is based on the micro cooperative architecture that we discussed in Chapter 
2. 

By combining the two previous approaches we have a distributed system which 
receives data from both the Internet (video server) and peers that have them available. 
Fig. 7  shows a distributed system that operates in the way we described. In particular,  
the laptop user requests a video file from the smartphone. The first frames/packets of 
the video stream to the laptop (orange rectangles with id's 0 and 1). In this scenario 
some frames are missing from the smartphone. This can occur for a number of reasons.  
For instance, these frames may part of the enhancement layer that is not necessary for a 
low quality version of the video that the smartphone user requested, or they could be 
missing due to packet loss. The missing frames then can be transferred from the video 
server to the laptop through the other wireless link (blue line) and be combined for a 
high quality version of the video.

Our design gives priority on the transfer of data from the peers at the local 
WAN. This is a core feature due to the fact that with this system we try to exploit the  
proximity of  the  data  residing  in  nodes  that  are  connected  via  short-range/high-
bandwidth links.

Moreover, a node of the local WAN is, also, able to request data from the video 
server. This characteristic ensures that each mobile device/node will definitely receive 
video frames at some time -assuming that the channel connecting the node with the 
access point does not drop any packets. Additionally, this feature is absolutely essential 
because initially we assume that none of the nodes has any video frames, thus the first 
node requests the video stream from the video server.
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Figure 5. Standalone streaming according to the client-
server model

Figure 4. Architecture with 4 mobile devices
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Figure 6. Streaming from a peer

Figure 7. Distributed streaming



3.2.2 Abstract form of the Architecture

Although  the  framework  presented  in  Fig.  4  is  very  intuitive  and  offers  a  fair 
understanding of the components and connections of our architecture, we ultimately 
had to come up with a more abstract version of it.

This  version reduces and factors  out  many details  so that  we can focus on the 
features of the framework that we are interested in. Fig. 8 illustrates the abstract form 
of the architecture of Fig. 4 . 

Initially, we notice that there is no distinction among the mobile devices, thus they 
are labeled simply as terminals. The access point remains as a component. It's role is 
auxiliary and is limited on an elementary level of routing between the terminals and the 
base station. An individual could argue that in the abstract form of the architecture that 
we examine, the access point could be eliminated without any obvious consequences 
regarding  the  coherence  of  our  system,  but  the  module  itself  serves  a  structural 
necessity. It helps us to facilitate two types of heterogeneous links, one representing the 
wireless links that connect to the terminals and the other representing the connection to 
the Internet the base station. The latter is actually the video server that we have seen in 
previous illustrations.  We named this  component  in a way that  reflects  it's  generic 
overseeing role in the whole system. In essence the base station embodies a fraction of 
the  operations  of  the  video  server,  plus  some  new  functionality  regarding  the 
distributed nature of our system. 

Finally, the abstract form of the system demonstrates three types of links. The blue 
and the red ones are wireless links, but have different colors due to the fact that we 
regard them as heterogeneous, i.e. links with different data rates, delay and packet drop 
rate. The black link represents the connection of the local WAN to the Internet and thus 
the base station. Again, we are going to present more details regarding the links in the 
next Chapter.   

15
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Figure 8. Abstract form of the architecture
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Chapter 4

Implementation

In order to verify the feasibility of our distributed video sharing architecture we used  
the OMNET++ network simulator to design, simulate and define our system's features 
in detail.

Initially, in this Chapter we present an overview of the tool we used to implement 
our system, the Omnet++ network simulator. Then, we discuss the key features of our 
system in detail. Subsequently, we examine various details regarding the structure and 
organization of our implementation as well as the functionality of each module and the 
behavior of the whole system in some intriguing scenarios.

4.1 An Overview of OMNET++ Network Simulator

Omnet++ is described from it's official  site as ''an extensible,  modular,  component-
based  C++  simulation  library  and  framework,  primarily  for  building  network 
simulators.  'Network'  is  meant  in  a broader sense that  includes  wired and wireless 
communication networks, on-chip networks, queuing networks, and so on" [15].

Omnet++  is  a  network  simulator  that  initiated  by  András  Varga  in  Technical 
University  of  Budapest,  Department  of  Telecommunications  (BME-HIT).  It  is 
developed in C++ and it is free to use for Academic and non-profit projects. All these 
features made Omnet++ an ideal tool for academic research, boosting it's popularity in 
the global scientific community. 

Omnet++ is  not  a  simulator  itself.  Instead,  it  offers  a  set  of  tools  that  form an 
infrastructure for simulating networks. The most fundamental ingredient of  Omnet++ 
is  it's  component  architecture.  Simulation  models  are  assembled  from components 
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labeled as modules. These modules can be written in a way to be reusable, thus forming 
a generic and flexible architecture. Modules have parameters that can customize their 
behavior. The modules of the lowest hierarchy level are called simple modules. Simple 
modules are written in C++ and make use of the simulation library [15].

Along with the modularity and the flexibility of the simulation components Omnet+
+ offers great scalability. Modules can be connected to each other through gates and 
combine to  form  compount  modules.  The number  of  hierarchy  levels  is  unlimited. 
Model structure is described in Omnet++'s NED language. 

Modules  communicate  with  each  other  through  a  message  passing  mechanism. 
Messages can carry arbitrary data structures and can be delivered directly or through a 
predefined path to their destination module, making Omnet++ ideal for modeling both 
wire  and  wireless  communication  systems.  Fig.  9  illustrates  an  abstract  layout  of 
simple and compount modules, connections and gates.

The timing simulation is  very simple.  The "local  simulation time" of  a  module 
advances only when a message is received. The message can arrive either from another 
module or from the receiving module itself through the  selfmessage feature –mainly 
used to implement timers.

Gates are the main communication interfaces of the modules. Incoming messages 
are delivered on the input gates,  while outcoming messages depart  from the output 
gates. A  connection links two gates. Additionally,  channels   are C++ classes, which 
encapsulate  parameters  and  behavior  regarding  connections,  such  as  data  rate, 
propagation delay and packet error rate. These parameters are very useful in case a 
physical link is to be modeled.

The user defines the structure of the model in NED language descriptions (Network 
Description). NED lets the user declare simple modules,  and connect and assemble 
them into compound modules.

Finally, Omnet++ comes with a build-in mechanism to record simulation results 
and collect statistics.

All these features, along with the GUI for simulation execution and the IDE based 
on the Eclipse platform, conveyed us in choosing the Omnet++ as  the most suitable 
simulator for implementing our architecture.

 

4.2 Modeling the System's Components

4.2.1 Network Description – Structure and Organization

In Chapter 3 we discussed an abstract form of the architecture which lets us focus on 
the important features of it, while reducing any abundant details. Our implementation is 
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based  upon  this  abstract  form,  regarding  both  the  system's  structure  and  the 
functionality of each module.

The system's  structure  and organization is  described in  a  NED file.  As we can 
observe from the abstract form of the architecture three basic components stand out and 
therefore we model these components in our implementation as three simple modules .  
The NED file then includes the declaration of three simple modules, the terminal, the 
base station and the access point. 

 The terminals have one gate for connection to the access point and N-1 gates for 
connection to the other terminals in the local WAN –where N is the total number of 
terminals in the WAN. The base station has only one input/output gate that connects it  
to  the  access  point.  The  access  point  has  the  most  gates  among  the  three  simple 
modules because it's routing role places it in the center of our system, functioning as a 
“bridge”  between  the  Internet  and  the  local  wireless  network.  The  access  point 
accommodates  one  gate  for  connection  to  the  base  station  and  N  other  gates  for 
connecting with all the terminals.

The NED file also contains the definition of the channels that connect the modules 
of our system. If we go back again to the abstract picture of our system we notice that 
there are three colors  of  lines,  the  red,  the  blue  and the black ones.  Therefore  we 
modeled three channels, each with different characteristics. All three of these channels 
are extended from the  ned.DatarateChannel class provided by Omnet++'s simulation 
library. Fig. 10 demonstrates the names of the particular channels and the parameters 
that  they inherit  from the DatarateChannel  class.  WirelessA and  WirelessB  serve as 
wireless links between the access  point  and the terminals and among the terminals 
themselves  respectively.  We  can  define  each  channel's  parameters  separately  and 
model the heterogeneous links of our system with precision and flexibility. ap2Internet 
is the channel that models the Internet connection. Again we can modify the parameters 
accordingly in order to experiment with different data rates and delays. Fig. 11 shows 
the GUI output of the  network overview of our system for a local  WAN of three 
terminals.
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Figure 9. Simulation modules layout

Figure 10. Channel sublassing

Figure 11. Network topology for 3 
terminals



4.2.2 Simulation Modules – Parameters and Functionality

After  finishing  the  design  of  the  network  structure  in  the  NED  file  we  have  to 
implement the functionality of each module.  This is done by writing the code in a  
separate C++ file, which is later linked with the NED and the simulation files (.ned and 
.ini respectively).

 Simple modules  are represented by a C++ class  which is  subclassed  from the 
cSimpleModule class  provided  by  the  simulation  library.  The  modules  then  are 
registered by the Define_Module() macro. In every module we redefine two methods 
from the cSimpleModule class; initialize() which is invoked from the simulation kernel 
just once at the beginning of every simulation, and handleMessage() which is invoked 
whenever a message arrives at the module. In our implementation we had to add some 
extra methods in every module. These methods are auxiliary and mainly generate or 
forward the various messages of our simulation. Fig. 12 illustrates the modules and the 
extra methods or parameters that each of them uses.

As  we mentioned  in the  overview of Omnet++,  modules  communicate  through 
messages.  The  messages  are  represented  as  objects  of  the  cMessage class  or  it's 
subclasses.  Messages  that  are  sent  or  scheduled  (selfmessages)  are  held  by  the 
simulation kernel in a list  which maintains their order until  their time comes to be 
delivered to the modules via the handleMessage() method. When a message arrives in 
a module the programmer is responsible for writing the code accordingly in order to 
establish the behavior of the module. Therefore, the main functionality of our modules 
is  implemented  in  the  redefined  handleMessage() method.  Moreover,  for  our 
implementation we subclassed and created a number of new message classes due to the 
varying amount and types of data that we had to attach to them. They are depicted in 
Fig. 13 where we can also view each message's parameters.

Now we are going to study in detail the implementation of each module. Let us  
begin  with  the  module  that  embodies  the  core  –and  arguably  the  most  complex– 
functionality, the terminal.

Each terminal maintains a struct that stores information about:

• the number of video files that the terminal requests.
• the number of video frames of each video file that are stored and ready for 

playback.
• the  exact  frames  that  have  already  been  requested,  either  from  another 

terminal or from the base station. This is very useful in order to avoid double 
requests of the same frame. 

• the availability of every video frame in every terminal. 
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Figure 12. Simulation modules subclassing
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Figure 13. Message subclassing and the extra parameters we used for our 
implementation



For the implementation we consider that  every video file is  divided into groups of  
pictures, called GoPs. Every GoP consists of a number of bframes. This assumption is 
not 100% accurate regarding the video streaming and coding we discussed in Chapter 
2. However, it offers a simple modeling, close to the actual layered video coding. The 
code is written in a way that both the number of GoPs and bframes can be defined 
easily, offering a flexible base for experimentation.

The behavior of the terminal module depends on what message it receives. When a 
message arrives, the terminal updates it's struct with the data attached to the message 
and  depending  on  the  situation  it  sends  new  messages.  Fig.  14  demonstrates  the 
functionality of the module as a state machine. Now we are going to study each state.

Idle. This is the initial state of each module after the invoking of the  initialize() 
method.  In  this  method  we  initialize  the  struct  of  each  terminal,  where  we  can 
implicitly set which terminals we want to act as seeders. Also we can set explicitly 
when each  terminal  will  start  to  request  a  video  file.  This  happens  by  sending an 
“initialize” message to the base station. 

When a terminal receives a “trigger” message from the base station it moves to the 
next state. The initialization process and the message exchange between the terminals 
and the base station is depicted in Fig. 15.

State 1. As we described earlier each terminal requests the video stream from other 
terminals first. Therefore,  it  is necessary to know which terminals have the content 
available. This is established by exchanging “index” messages. An index message is a 
message that  carries  an index  of  a  video  file.  The index is  a  boolean  array which 
indicates what bframes a certain terminal has stored.

In this state if the terminal is  not a seeder it  requests via a “REQ BlayerIndex” 
message an index from all the other terminals.

When a terminal receives a “REQ BlayerIndex” message from any other terminal it 
moves to the next state.

State  2.  In  this  state  a  terminal  generates  a  “RPL  BlayerIndex”  message  that 
attaches the index of the requested video file. Fig. 16 shows an index for a video file 
with  3  GoPs,  each  one  consisting  of  5  bframes.  The  terminal  that  generated  this 
particular index has only the first GoP of the video available. The message then is sent 
directly to the interested terminal.

When a terminal receives a “RPL BlayerIndex” message it moves to the next state.

25



26

Figure 14. Terminal state machine



State 3. In our implementation a terminal retrieves the information from the  “RPL 
BlayerIndex” message it receives and then updates the  available2request field of its 
struct. Available2request is a two-dimension array that stores information regarding the 
availability of GoPs on each terminal. In general if a GoP is marked as available on a 
terminal then the streaming of the frames of this GoP may begin. Table 2 illustrates a  
particular instance of the available2request field of terminal 1. Please notice that the 
line which corresponds to the terminal's  id (1) is highlighted with blue color. Also, 
notice that all the GoPs of this line are marked as non-available to request from this 
terminal.  In  our  implementation  we  assume  that  the  line  that  corresponds  to  the 
terminal itself, has by default marked all the GoPs with 0. In the instance of Table 2 if  
terminal 1 needs to request GoP 1, it could choose between terminal 2 and 3. If it needs 
to request GoP 4, though, it will scan the respective column and after finding all the 
entries as zeros will eventually send a request message to the base station.  

The terminal continues to the next state only when all the peers of the local WAN 
has sent an Index reply. We implement this by scheduling a  “Notify”  self-message. 
Fig. 17 demonstrates the sequence of messages that the terminals exchange in order to 
obtain the video Indexes. 

GoP

Terminal

0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 0 0

2 1 1 1 1 0

3 1 1 0 0 0
Table 2

State 4. When a terminal is in this state it is certain that it has all the necessary 
information in order to start requesting bframes. It is worth noticing here that GoPs and 
bframes are requested, either from a peer or the base station, sequentially. In this state 
we handle the first frame of the first GoP of the video file. The terminal checks if the 
GoP is available in the peers through a simple iteration of them. Subsequently, it sends 
a “REQ Bframe” message to the first peer that has the first GoP available. If no peers 
have this GoP in their cache the terminal sends the message to the base station. A 
pseudo-code that summarizes the above  is given in Algorithm 1.  
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Figure 15. Initialization sequence

Figure 16. Index structure

Figure 17. Index exchange sequence



Algorithm 1 Request the first bframe of the first GoP of a video file

Input:  number of terminals in the local WAN, terminals

for each t in terminals do
if available2request[t][0] then

“REQ Bframe” ← generateRequestBframeMessage(0)
sendMessage(“REQ Bframe”, t)

else
“REQ Bframe” ← generateRequestBframeMessage(0)
sendMessage(“REQ Bframe”, base station)

endif
endfor

State 5. In case the terminal receives a request message for a frame it generates a 
reply message which is subclassed from the  cPacket library class. This message has 
extra parameters that are essential for the purposes of our implementation. Particularly, 
we have the ability to set the length of the message in bytes or bits, thus the links with 
different data rates can be simulated properly.

The terminal's function in this state is rather straightforward. It simply sends the 
generated message (“RPL Bframe”) back to the sender.

State 6. When a reply message arrives at the terminal a sequence of checks takes 
place in order to establish the correct behavior of the system. Our implementation has 
some dynamic elements that enhance the performance of the architecture exploiting it's 
distributed and real-time characteristics. 

The system embodies an update mechanism which is deployed when a terminal 
reaches  a  certain  amount  of  cached  GoPs.  We  call  this  amount  the  Window  of  
Availability (WoA). If the GoPs that  the terminal has received cover the WoA, the 
terminal sends an “Update” message to all the other terminals in order to inform them 
that  it  has  bframes  available  for  streaming.  Algorithm 2 shows a pseudo-code that 
summarizes all the above.

In our implementation a terminal requests a bframe only when it has received the 
previous one. An alternative approach would be for the terminals (and the base station) 
to exchange acknowledgment messages. However, this would increase the number of 
exchanging messages, thus the congestion on our network.

Every time a terminal receives a “RPL Bframe” message it checks to verify whether 
the Bframe is the last one of the current GoP. If the Bframe concludes the GoP, we 
proceed to the next GoP and check if this is the last Gop of the video file. In that case 
the terminal stores the simulation time in a local variable, which will help us with the  
statistics collection. Furthermore, we schedule a self-message (“terminate”) which will 
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make  the  transition  of  the  terminal  to  the  final  State  8.  If  the  current  GoP is  not 
complete yet, we choose the next bframe generate a new request message. In order to  
establish  from  where  to  send  the  new  message,  the  terminal  checks  it's 
available2request struct. If the GoP that accommodates the Bframe is not cached in 
any of the peers, the terminal requests it  from the base station. Otherwise it selects 
randomly a peer and forwards the newly generated “REQ Bframe” message to that one. 
Algorithm 3 summarizes in pseudo-code the above procedure, from the moment a reply 
message arrives at  the terminal, up until the moment the terminal requests the next 
bframe. An interesting scenario that involves an update is depicted in Fig. 18. 

Algorithm 2 Send Update Messages

Input:  number of terminals in the local WAN, terminals &
             window of availability, WoA &
             counter for delivered GoPs to the terminal, accumulatedGoPs. 

receiveMessage(“RPL Bframe”)
accumulatedGoPs←accumulatedGoPs+1

if accumulatedGoPs=WoA then
accumulatedGoPs← 0
“Update” ← generateUpdateMessage()
for each t in terminals do

send(“Update”, t)
endfor

endif

Algorithm 3 Request next bframe

Input: total number of Groups of Pictures of the video file, NoGoPs &
            number of terminals in the local WAN, terminals &
            the id of the current GoP extracted by the received “RPL Bframe” message, gop

receiveMessage(“RPL Bframe”)
A ← currentGoPHasMissingFrames(gop)
if  A then

nextBframe ←  findFirstMissingBframeOfGoP(gop)
else

gop ← gop+1
endif
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if gop != NoGoPs then
for each t in terminals do

if available2request[t][gop] then
gopNotCachedInTerminal ← False

else
gopNotCachedInTerminal ← True

endif
endfor
if gopNotCachedInTerminal then

“REQ Bframe” ← generateRequestBframeMessage(nextBframe)
sendMessage(“REQ Bframe”, base station)

else
destination ← rand()%terminals
while ((destination == self)&& (!(available2request[destination][gop])))

destination ← rand()%terminals
endwhile
“REQ Bframe” ← generateRequestBframeMessage(nextBframe)
sendMessage(“REQ Bframe”, terminal)

endif
else

finished ← getSimulationTime()
self-message(“Terminate”)

endif

State 7. This is the state of a terminal that has just received an "Update" message. 
The message carries an index which is exactly the same as the index that the peers  
exchange  after  the  initialization  process.  The  receiver  terminal  updates  the 
available2request field that is associated with the sender. The process is the same as in 
State 3.

State 8. In this state the terminal just checks whether all the other terminals have 
finished  the  streaming  and  if  it  is  so,  it  ends  the  simulation  by  invoking  the 
endSimulation() method. 

The next module that we are going to study is the base station. As we can assume 
simply  by  observing  the  Fig.  19  that  illustrates  the  states  of  the  module  and  the 
transitions among them, this module is less complex. The base station module has also 
a struct  that  acts like a local  database,  useful  for  storing information regarding the 
video files. Here, we only had to maintain data regarding the structure of the video  
files, particularly the number of GoPs and bframes per video file.

In a matter of fact, we could say that although the name of this module implies a 
key role to the architecture, in reality it acts like a slave, i.e. this module does not iniate 
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Figure 18. Update scenario sequence

Figure 19. Base station state machine



any  action  in  our  system.  It's  behavior  is  limited  in  initiating  a  video  stream and 
sending reply messages to the interested terminals. Therefore, the functionality is rather 
limited. The following three states summarize it for a better understanding.

Idle. In this state the base station has just finished the initialization process. This 
process involves the video files that this module has in memory. The base station then,  
waits for an "initialize" message from any of the terminals.

State  1.  When  an  "initialize"  message  arrives  on  the  base  station  the  module 
invokes a method that generates a "trigger" message. The message then is sent back to 
the original sender through the access point, triggering the start of a video streaming.

State 2. The base station in this state behaves exactly as the terminal in state 5. If it  
receives a request for a bframe from a certain terminal, it  invokes a "RPL bframe" 
message generator method which sets the parameters of the reply packet, i.e. packet 
length, appropriately. The base station attaches the id of the original sender on the reply 
and forwards the message to the access point.

The last simulation module of our implementation is the access point. As we have 
mentioned in Chapter 3 this module's role is auxiliary. It's only contribution   revolves 
around the  routing  of  messages  that  the  terminals  exchange  with  the  base  station. 
Again, we demonstrate the different states of this module in Fig. 20 . 

Idle. The  initialize() method of this simulation module is actually blank, because 
there is nothing to be initialized. It does not maintain any kind of information regarding 
the video files or anything else relevant to our architecture.

State 1  & State 3.  These are the two states  in which the access point  receives 
messages from the terminals and forwards them to the base station. The forwarding is 
done by invoking methods for each case.

State 2 & State 4. In these two states the access point forwards messages from the 
base station back to the terminals. Again, the forwarding is performed by invoking the 
appropriate methods. An interesting observation regarding all the states of this module 
is that in every state the access point forwards a message that caused the transition on 
the current state. 
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Figure 20. Access point state machine



Chapter 5

Experiments

Despite  the  fact  that  the  main  purpose  of  this  Thesis  is  to  implement  a  generic  
framework  for  a  distributed  video  sharing  architecture  for  heterogeneous  wireless 
networks, one final goal is a brief analysis of the behavior of our system under various 
conditions. These conditions regard structural parameters of the system such as data 
rates or the number of terminals and, also, other parameters such as the Window of 
Availability.

In  order  to  verify  the  correct  behavior  on  each  occasion  and  validate  the 
functionality  of  our  implementation  we  conducted  a  series  of  experiments.  These 
experiments involved some alternations to the C++ code of our modules. However, 
Omnet++ offers a result recording and statistics collection mechanism that helped us to 
limit those alternations, thus maintaining the complexity of our code in permissible  
levels.

5.1 Validating the system's behavior

Initially  we  tested  whether  the  system  actually  works  as  it  was  supposed  to.  We 
initiated  a  network  consisting  of  three  terminals.  We  assumed  that  the  video  file  
consists of 20 GoPs and each GoP accommodates 5 bframes. The packet length that we 
used in all our experiments is set to 1475 bytes. This makes the size of a GoP 7375 
Bytes. We should note here that this number has not connection at all with GoP sizes of 
coding methods such as MPEG-4. It's purpose is to facilitate a reasonable packet size in 
order to help us test our system in permissible time limits.

In  this  first  experiment  we tested  two scenarios.  In  the  first  scenario,  all  three 
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terminals request the video file at the same time. Additionally we deactivate the update 
mechanism. Therefore,  all  the terminals  start  to  stream the file  in  the conventional 
client-server model. Every terminal requests a bframe and when it receives it proceeds 
with the next request. In the second scenario we test the fully cooperative case, which 
dictates that a terminal joins the network while the other two have already streamed the 
video file and have it cached. From now on we are going to refer to the first scenario as 
the standalone and to the second one as the fully cooperative.

The results of both simulations were plotted on the same diagram Fig. 21. The time 
of  the  vertical  axis  is  the  accumulated  time  of  the  simulation,  i.e.  the  sum of  the 
completion  times  of  the  three  terminals.  On  the  horizontal  axis  we  have  various 
AP2Internet data rates. As we move rightwards on this axis the data rates increase. In 
all occasions the fully cooperative streaming is faster than the standalone one. A very 
interesting observation is the steady difference in accumulated times of the two systems 
no matter how big the data rate of the Internet connection is. The real improvement 
then relies on the approach of our design and not on connection speeds. 

5.2 Experimenting with the Window of Availability

In the next series of experiments we concentrated on a critical parameter of our imple-
mentation. Window of Availability serves as an update indicator affecting the dynamic 
nature of the architecture.  The lower the  WoA is,  the more dynamic our system is. 
Excluding this parameter for this sequence of experiments we used again the same 
parameters as before. Our scenario in this case involves three terminals who do not 
request  a  stream simultaneously,  but sequentially  with some seconds separating the 
requests.  We record the finish times of  each one and accumulate them to take the 
diagram of Fig. 22. The WoA is illustrated as the percentage of the total number of the 
video's GoPs. We observe that for small window sizes the times remain low and as the 
window increases, less updates are sent to the terminals, thus many of them do not have 
information about the availability of GoPs on terminals and they request them from the 
base  station.  If  the  update  mechanism  is  completely  disabled  (No  WoA)  the 
accumulated  times  are  the  same  as  the  standalone  scenario  of  the  first  phase  of 
experimentation, which is actually the worst case scenario.

This gain in performance though comes at a cost. Small window equals with many 
updates, which equals with many “Update” messages exchange on the network. During 
this phase of experimentation we modified the C++ code of the terminal modules in 
order to record the number of update messages exchanged between the terminals for. 
We run again the same scenario for the same WoA values. The results are illustrated in 
Fig. 23 which confirms our claim. Small windows increase the number of messages on 
the  local network.
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From this diagram though we can infer another important issue. When a terminal 
completes it's Window of availability, sends an update message. In order for the GoPs 
of the window to be available for streaming, they have to be cached on the terminal. 
This puts caching on the frame, too, and it can be combined with research towards 
distributed  caching.  Finding  a  trade  off  between  these  parameters  is  an  emerging 
challenge [5] .

5.3 Measuring the latency

An important quality measure regarding video streaming is the latency, especially the 
one  of  the  first  GoPs,  which  dictates  the  playback  startup.  In  this  phase  of 
experimentation  we  took  advantage  of  Omnet++'s  record  result  and  statistics 
mechanism.  We  used  it  to  record  the  delay  of  the  reply  packets.  The  delay  was 
measured by timestamps attached to the reply messages.

We simulated the same scenario as in the previous phase. This time we opted for a 
different  representation  of  the  results.  We present  the  delay  of  each  terminal  in  a 
separate  diagram.  This  alternation  offers  a  better  insight  on  the  systems  dynamic 
nature.

In Fig. 24 we observe the delay of reply packets arriving on terminal 0. This is the  
first terminal that initiates a request. The delays for a given Internet data rate are the 
same regardless of the WoA's size. This is due to the fact that the first terminal always 
requests and receives packets from the base station. The update messages are in fact 
delivered, but the GoPs they revolve have already been streamed from the base station. 
The variation on results in this case regards the decreased delays when the Internet  
connection gets faster which is absolutely justified.

The delays of terminal 1, which is the second one to request the particular stream 
are depicted in Fig. 25. In this case we observe that there are variations among different 
WoA values,  which  indicates  that  this  terminal  does  stream  from  other  peers  (in 
particular  it  streams  from  terminal  0).  As  we  can  infer  from  the  fourth  column 
standalone downloads from the base station deteriorate the latency. The differences of 
delay among simulations with different Internet connection speeds are now smaller. 
This provides another proof for our claim that terminal 1 streams from peers, since the 
Internet's speed impact is rather limited.

Fig. 26 corroborates the conclusion that we made above. Terminal 2 which is the 
last  one  to  start  the streaming enjoys  the  smallest  delay  of  all  the terminals  in  all 
simulations, due to the fact that it exploits the cached GoPs on the other two terminals 
and  streams them through the high data rate short-range links. As well as before, in  
this case the Internet speed has a very limited impact, smaller than that of terminal 2,  
which is again justified. 
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5.4 Experimenting with data rates

In the next phase we experimented with the structure parameters, the data rate of the 
Internet connection and the wireless channels. 

We simulated both the above scenarios  with different  AP2Internet  channel data 
rates. The data rates represent the speeds of modern ADSL and VDSL connections. 
Moreover, the data rates of the wireless channels are 72 and 54 Mbps for  WirelessA 
and  WirelessB respectively.  These  values  maintain  the  condition  that  the  local 
bandwidth (WirelessA) is always higher than the bandwidth to the Internet (WirelessB). 
The results for five different connections are illustrated in Fig. 27. As we can observe 
the finish time of the particular terminal of the system (the one that is not a seeder) is 
the same in all occasions which is correct due to the fact that the fully cooperative 
scenario does not involve any streaming from the base station. The line that represents 
the finish times of the terminal in the standalone scenario is declining as the connection 
speeds  increase.  We  expect  this  behavior  because  higher  data  rates  lessen  the 
transmission time of the packets, thus leading to decreased streaming completion time 
for the particular terminal.

In Chapter 3 we referred briefly to the various wireless connection options that are 
available for  the local  WAN. During our experimentation we tested some different 
combinations while keeping the  AP2Internet data rate at  8Mbps and the results are 
depicted  in  Fig.  28.  An interesting  observation on this  particular  figure  is  that  the 
second pair of columns demonstrates the smaller difference between the two scenarios 
and the fourth the biggest. If we take into consideration that the standalone scenario 
relates  only  with  the  WirelessB link  and  the  fully  cooperative  one  only  with  the 
WirelessA link this outcome is expected. Of course in this occasion an individual could 
argue that we stretched the boundaries of the assumption we made before, i.e. that the 
local bandwidth should be higher than the bandwidth to the internet. We should keep in 
mind thought that the AP2Internet link still serves as a bottleneck in the connection of a 
terminal  to  the  Internet,  thus  we  took  the  initiative  to  assign  equal  speeds  to  the 
wireless connections.
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Figure 21. Accumulated time for two different system configurations. 
The classic-standalone and the distributed-cooperating streaming.

Figure 22. The effect of WoA on the accumulated time of a three-terminal 
distributed-cooperative system.
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Figure 23. The number of “Update” messages exchanged in a three-terminal 
distributed configuration for various WoA values.

Figure 24. The delay of the first terminal that triggers a stream on a three-terminal 
distributed configuration, illustrated for various Internet connection speeds and 

indicative values of WoA.
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Figure 25. The delay of the second terminal that triggers a stream on a three-terminal 
distributed configuration, illustrated for various Internet connection speeds and 

indicative values of WoA.

Figure 26. The delay of the third terminal that triggers a stream on a three-terminal 
distributed configuration, illustrated for various Internet connection speeds and 

indicative values of WoA.
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Figure 27. The effect of the Internet connection speed on the finish time of terminal 2 
(the second that starts to request the video) of a three-terminal distributed system run 

for both configurations.

Figure 28. The effect of the combination of various Wireless data rates on the finish 
time of terminal 2 (the second that starts to request the video) of a three-terminal 

distributed system run for both configurations.
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Chapter 6

Conclusions

In this final section we restate the observations that we made after experimenting with 
our implementation and we conclude.

The  rise  of  broadband  Internet  connections  and  the  oversupply  of  cheap  yet 
powerful mobile devices led to a boost in sharing multimedia content over wireless 
networks. Furthermore, as we discussed in Chapter 2, research on the heterogeneous 
wireless networks shows that the development towards fully cooperative networks may 
facilitate  higher  data  rates  without  increasing  the  complexity.  Additionally,  micro 
cooperative  networks  may  be  regarded  as  centrally  controlled  p2p  systems.  We 
combined this observation with various elements of existing p2p systems targeted into 
video streaming and we implemented a distributed video sharing architecture for local 
wireless networks with heterogeneous links.

Moreover, we conducted a series of experiments in order to verify the behavior of 
our  system under  certain  conditions.  During  these  experiments  we  focused  on  the 
characteristics that mostly defined our approach and could validate the correct behavior 
in each occasion. We examined the performance of the distributed architecture under 
various data rate combinations. For all possible combinations the results indicate that  
our  approach  does  offer  an  advantage  when compared  to  the  contemporary  client-
server streaming model for local WANs. Further, since latency is a decisive factor for 
video streaming performance we showed that that our system decreases it. The most 
interesting  outcome  of  these  experiments  though,  is  the  impact  of  the  update 
mechanism  that  our  implementation  embodies.  Although  it  is  essential  for  the 
distributed function of the system, an aggressive configuration of this mechanism may 
increase dramatically the number of messages on the network. Finally, this mechanism 
can also be linked with issues regarding the impact of caching data in terminals.

With this work we showed that there is a great potential in approaches regarding 
video sharing that are targeted into cooperative networking for wireless networks. 
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