[TANEIIIXTHMIO OEXXAAIAX

TMHMA MHXANIKQN HAEKTPONIKQN YIIOAOT'IZTQN,
THAEIIIKOINQNIQON & AIKTY(QN

Zxedlaom Kol VAOTO oM
ovotnuatog client-server yio ™
ovAAoyn 6edouevwy oo
TLELP LA TIKES OLATAEELGS
eTLTAYLVVTWV owpatLldlwv Tov CERN

ErtiBAemnovrec:
ETKOUPOG KABNYNTAG
JUyypaPEac: Xpnotog
ANTQNOINOYAO2

ABavaotoc TONAAOYAHZ
AvamAnpwtng kaBnyntng
NikoAaoc MMEAAAZ

5 Oktwpplou 2012

Acknowledgements

By the end of this Thesis, I would like to thank the section leader of BE-BI-SW section
at CERN and my personal supervisor Lars Jensen for the professional guidance and
the confidence he showcased in my skill set during my studentship at CERN.

I would also like to thank the project leader of the fast beam intensity measurements
(FBCT) for the LHC, Dr. David Belohrad for his guidance and excellent cooperation
on the FBCT project for the LHC.

Furthermore, I would like to thank Michael Ludwig for the time he spent talking with
me about the existing implementation of the FBCT servers in the LHC — system A and
B — along with other general matters that helped me evolve personally.

In addition, I would like to thank my supervisors of this Thesis Christos D.
Antonopoulos and Nikolaos Bellas for taking over the difficult part of the remote
supervision of this Thesis, their excellent cooperation and their suggestions and
corrections on this work.

Last but not least, I would like to thank my family, Theodoros, Chrysi, Christos and
Alexandros who helped me form a solid ground to evolve my personality and Eirini
who showed me how to do it.

Mepianym

‘Eva and ta peyalvtepa epevvntikd kévrpa otov topéa g Puoikng Yyniov
Evepysuov (High Energy Physics) eivon o Evpomaikoc Opyaviopodg IMupnvikng
‘Epevvag (CERN) mov €yl cav kOHplto 6komd vo LeAeToEL Ta OepeMdon ototyeia g
OVANg Kabdg Kot TG OLVAUELS TOV OOKOUVIOL OVOUETAED TOVLG EmTayOhVOVTag
copatidolr péoa omd poe aAAnAovyio emtayvvtdv (accelerator complex) ko
odnymvtog ta o€ ovykpovoels. To CERN ypeldletar d1dpopa dayveotikd epyaieia
OV UETPAVE TO YOPOKTNPIOTIKA TNG OEGUNG COUATIOIMV TPOKELUEVOL VO EAEYEEL TO
CUUTAEYLO TOV EMLTAYLVIOV TOL Kot £va amd avTd eival To oot pétpnong Fast
Beam Current Transformer (FBCT), to onoio petpdet v €viaon g Séounc.

Adym tov 0Tt T0 VRdpyYov VAKS (hardware) tov FBCT cvotiuoatog dev €xet
OYEOOOTEL PUE TOV KAADTEPO SVVATO TPOTO OTOTE KOl OEV EKUETOALEDETAL OAEG TOL TIC
duvaToTNTEG, XPEWOTNKE VO 0AAGEEL. Q¢ €K TOVTOV, TO LAMKO Eavaoyedldotnke Kot
amAoTomONKeE MOTE Vo ENCEL TIG OLVATOTNTEG TOV KO Vo, OOTEAETEL TN PAOT EVOG
eviaiov cvotiuartog pétpnong FBCT, 1o onoio Oa pmopetl va ypnoiponombei 1660
OTIS YPOUWKEG OGO KOl OTIC UM YPORMIKEG (OOKTOUAOL) EYKOTAGTACELS TOV
cuumAéypatog tov emtayuviov Tov CERN. AkolovBdvtog avtég Tig aAlayés, ot
Topovoo SAMUATIKY Tpoteivoupe v vAomoinon evdg client-server AOYIGUIKOV
ocvotnuatog mov Oa eréyyel 1o FBCT cvomua mov eival eykatestnuévo otov Super
Proton Synchrotron (SPS) emtayvvtr). EmumAéov, peletovpe 1o oyxedlaopud Kot tnv
vAomoinon €vog eviaiov client-server Aoyiopikoy GLGTANOTOS, TO omoio Ha
avtikotaotnoel ta vdpyovia otov Large Hadron Collider (LHC) emroyvvn, kabodg
Kot Bo cuvodéyel pedhovikég eykatactaoelg tov FBCT cvotmuotog 6to cOUmAEy Lo
tov emroyvviov Tov CERN.

Abstract

One of the biggest research centers in the domain of High Energy Physics
(HEP) is the European Organization for Nuclear Research or CERN Laboratory
whose main goal is to accelerate particles through a sequence of accelerators —
accelerator complex — and bring them into collision in order to study the fundamental
elements of matter and the forces acting between them. For controlling the accelerator
complex, CERN needs several diagnostic tools to provide information about the
beam’s attributes and one such system is the Fast Beam Current Transformer (FBCT)
measuring system that provides beam intensity information.

The current hardware of the FBCT system is not well designed and thus the
entire system is not benefiting from all of its capabilities and hence, a renovation is
required. As a result, the hardware was redesigned and simplified in order to increase
its capabilities and provide the base of a unified FBCT measuring system that could
be installed in both kinds of the CERN’s accelerator complex’s parts, linear and
nonlinear (rings). Following the above changes, this Thesis is proposing the
implementation of an operational client-server software solution to control the FBCT
installation in the Super Proton Synchrotron (SPS) accelerator, as well as studying the
design and implementation of a unified client-server software scheme that can replace
the operational ones in the Large Hadron Collider (LHC) and can accompany further
installations of the FBCT measuring system, elsewhere in the CERN accelerator
complex.

Table of Contents

TaDIE O FIGUIESeviieieiieeieeee ettt et e et e e et e e entaeeenaaeeenseeeenseeennnes 7
TabLE OF TaADLES.....ceeeiiiee ettt sttt 9
I TEOAUCTION ...ttt ettt ettt et e esaeeeaeeas 10
2 BaCKEIOUNGoiiiiieeeece ettt e et e e e aae e eareeenneee e 12
2.1 General Background..........ccoeiiiiiiiiiiciieecece e 12
2,11 CERN ettt ettt ettt et a et et e ae e b neens 12
2.1.2 CERNIS SIIUCTUTE ..couiiiiiiieiiceiieeee ettt 12
2.1.3 The CERN accelerator COMPIEX.......ccueeruirerieeeriieeiieeieeesveeeieeeeveeesvee e 14
2,114 CoNLIOl CONLET ..ottt ettt ettt ettt e e s ens 15
2,15 BUNCRES .ttt 15
2.1.6 Beam Charge Measurements [8].........cccceerieriieniieniienienieeiie e eieesee e 15
2.1.7 FESA FramewWorK.......cccccceriiriiiiniiiititeniteesteste ettt 16

2.2 Hardware ATChItECIUIEeoouiriiriiiiieiieieet ettt 18
2.2.1 Fast Beam Current Transformer (FBCT) measurement system........................ 18
2.2.2 FIMMIWATE .eutiiiiieiiieeieeieet ettt ettt ettt sttt ettt see et sat e bt et eaaesbeeaesaaens 20
2.2.3 Driver Background...........coocieiiiiiiiiiiie e 25

2.3 The FBCTSINthe SPS...c.oiiii et 25
2.3.1 Software ArChItECtUIEccceviiriiiiiieieeieee et 25
2.3.2 Previous Implementation...........ceecueirieiiieniienieeieesie e 26

24 The FBCTs Inthe LHCoooiiiiiiiiiiiiiiiieceetceete et 28
2.4.1 Software ArChItECTUIEccc.ueiiiiiiiiiieiieeete e 28
2.4.2 Existing Implementationcceeviieriiieeniie et 28

3 OUr IMPLemMENtAtiONcueiiiiiiiieiieeie ettt ettt eir e e beessseebeesaseesseessneenseas 30
3.1 HIGI LIEVEL ettt ettt enaeenaaens 30
3.1.1 WIaPPETr - DESIZN ...evieiiiieeiieeciee ettt et s 30
3.1.2 TeStEr = DESIZN ..oeviiiiiieiieciie ettt ettt ettt e eaee b e e e e enbeenee e 30
3.1.3 DabInfo - DESIZN..ccuuiiiiiiiiiiieeiiie ettt ettt e e e sree e 31

R N) o OO PRRRROS 31
315 LHC e ettt ettt 36

3.2 Technical IMpPlementationc..cceeeiierieiiiieniieeie ettt eaeeraeeeneens 44

3.2.1 Wrapper — Common Implementation..............ccceerieeiieeniieeiieenieeieesee e 44

3.2.2 Tester — Common Implementation...........ccceceeeeueerieeieenieeieenie e 45
3.2.3 DablInfo — Implementationccceerieeriienieeiienie et 46

3 24 S P S ettt ettt 48
32,5 LHC ottt e 52

A RESUILS .ottt et ettt b et et sae et et 64
AL P ettt et sttt et et e bt e tesaeeteeneen 64
A2 LHC ottt et ettt et e n e et e tesneeteenaan 65

5 Conclusions and Future Workc.ccoooiiiiiiiiiieeeee e 67
5.1 CONCIUSIONS ottt ettt ettt ettt et e st e bt e sabeebeesaeeebeenaee 67
T 0 O) < OSSR 67

S. 1.2 LHC ettt ettt et et na e ae e 67

5.2 FUture WOrK..o..oooiiii e e 68
L3 10) F L0 ea¥:1 o] 1) PSPPSRSO 69

Table of Figures

Figure 2-1: CERN'S LOZO [22]...eietieiiieiieeie ettt ettt ettt ettt st et eseteeseeenseennees 12
Figure 2-2: CERN's structure (source: Laura Saulnier, TECH induction 2012)..................... 13
Figure 2-3: Beams Department's StruCtUIEcccceeeiiiieiiieniieeeiie et 13
Figure 2-4: Beam Instrumentation’s StIUCLUTIEcovieiiiieriiiiiiieiienieeite e 14
Figure 2-5: CERN Accelerator CompleX [6]ccovveeeiiieeiiieeiiieeiee et eeeeeveeesvee e 14
Figure 2-6: FESA'S service SUPPLIES [9]...eeoiiiiiiiiieiieiieeiteie ettt 17
Figure 2-7: Block schematic of the FBCT measurement system [10].........cccccovevviienieniennnen. 19
Figure 2-8: SPS FBCT's VMEG64x crate — on the left with green lights is the FEC, on the right
of the FEC the DAB is installed and in the middle of the crate the BOBR is visible............. 20
Figure 2-9: table's 2-3 Legend.........ccouiiiiriiriiiiiiicieeteeeeee sttt 21
Figure 2-10: FESA Framework Interface..........cccccoooeiiiiiiiiiiieeeeeee, 26
Figure 2-11: Total Intensity History from beam1 of the LHC, System Bc...c.cce. 29
Figure 3-1: ROSALI plot with error in BLR ..o, 32
Figure 3-2: ROSALI plot with correct BLRcccooiiiiiiiiiiceeeeeen 32
Figure 3-3: Data flow between front-end server and GUI clientcccceocveveiiiniiniincnnn. 34
Figure 3-4: BFCTSR ExpertGUI UML Class Diagram..........ccccceveevverienerieneenienieneeniennens 35
Figure 3-5: Acquisition schedule in respect with number of turn and turn interval 36
Figure 3-6: Data Process SEQUENCE......c..evutiriiiiiriiiiieienieerieete sttt sttt 36
Figure 3-7: An example of the BLR algorithm with VS=3. Only the yellow region is
considered as NOISE [17] ..cccuuiiiiieiiie et e e e e e e e e eaa e e e e anaeas 38
Figure 3-8: Phase SCAN....c...oiiuiiiiiiiiiieeteee ettt 39
Figure 3-9: BCTFRLHC v6 expert GUI UML class diagram (without comparison window)
... 41
Figure 3-10: Comparison Window UML class diagram (part of the BCTFRLHC v6 expert
GUI et st 43
Figure 3-11: Bunch Selection Transformation from string to a set of hexadecimal................ 45
Figure 3-12: Sign correction of the data in the code...........cooeeriiiiiiniiiiiiniiee, 46
Figure 3-13: example code for ASCII parsing.........c.coveeeieeniiiiieinienieeieeeeeeseeeee e 47
Figure 3-14: example run of the dabInfo in the lab.............coccoo, 48
Figure 3-15: Upper part of the BFECTSR_EpertGUI...........oociiiiiiiiniicecceee, 50
Figure 3-16: BFCTSR Expert GUI — Acquisition Tabcc.ccceceevieniiiniiniiiieiicceeieeee, 50
Figure 3-17: BFCTSR Expert GUI — UserData Tab.........ccccccevieviiiiniininiiniceeicnecienns 51
Figure 3-18: BFCTSR Expert GUI — BunchAcquisition Tab.........cccccoceeveriiniininicniinicnnns 52
Figure 3-19: Comparison Window - total intensity history for beam 1.........c.ccccccociniininins 56
Figure 3-20: Comparison Window - total intensity history - absolute difference - for beam 1
... 57
Figure 3-21: Comparison Window - total intensity history - relative difference for beam 1 . 58
Figure 3-22: Comparison Window - average bunch intensity for beam 1............ccccocceeenen. 58
Figure 3-23: Comparison Window - average bunch intensity - absolute difference for beam 1
... 59

Figure 3-24: BCTFRLHC v6 ExpertGUI - Acquisition Panel / Average Bunch Intensity -

Expert Settings Paneloooouiiiiiiiiii et e 59
Figure 3-25: BCTFRLHC v6 ExpertGUI - Acquisition Panel / Average Turn Intensity
History - Settings Panel.........cc.coiuiiiiiiiiiiiiiiee et 60
Figure 3-26: BCTFRLHC v6 ExpertGUI - Expert Acquisition Panel / Data after LUT -
cleared LUT fOr tOP MEZZANINE........ccueeruiieiieriiieiieeiieeieeeiieeiee ettt aeeseaeeseesaeeenseesnseeneees 61
Figure 3-27: BCTFRLHC v6 ExpertGUI - Expert Acquisition Panel / Data after LUT -
updated LUT fOr tOP MEZZANINE.........ccccuieeiiieeiiieeiieeeieeeeieeeeieeeeiteeeseaeeeeseeesaeeesneessseeesnneens 61
Figure 3-28: BCTFRLHC v6 Epxert Acquisition / Average Bunch Intensities in ADC bins -
EXPETt SETHINES ..vveevvieeiiieeiieeeiee ettt e et eette e et e e et e e sateeesssaeessaeesnsseeensseessseesnseeensseeenns 62
Figure 3-29: BCTFRLHC v6 EpxertGUI - Zoom at the Expert Acquisition panel / Average
Bunch Intensity in ADC BiNs tabc.cooieiiiiiiiiiieee e 62
Figure 3-30: BCTFRLHC v6 ExpertGUI - Phase Scanccccooveeiiieniiniieenieeiieieeeeee, 63
Figure 4-1: Total Intensity Measurement with FBCT for the SPS, CNGSI cycle,
REPETETIVE mode with the previous version of the Server.........c.ccoceveviniiiinicnecncnnns 64
Figure 4-2: Total Intensity Measurement with the FBCT in the SPS, CNGSI1 cycle,
TURN _BY TURN MOGE....cuiiuiiiiiiiiiiiiiiieieiesientestesttee ettt ettt s 65
Figure 4-3: Beam's 2 low gain total intensity comparison among system A, B and C in the

L HC .ttt ettt ettt benae s 66
Figure 4-4: Beam's 2 high gain total intensity comparison among system A, B and C in the
LHC ettt et 66

Table of Tables

2-1: FESA'S data tyPes [9]..eecveeeeeeiieeieeitieeie ettt ettt ettt et et esste et e snseenseesnseenseas 17
2-2: FESA's data attributes [9]cooviiieeeeeieeeeee ettt et et e e 17
2-3: Original firmware re@ister Map [15]..c.oeeoiiieiiiieiie ettt e 22
2-4: New firmware regiSter Map [15]....ccovciiiiiiiieiieeiieete et 23

1 Introduction

The European Organization for Nuclear Research or CERN Laboratory is one of the
biggest research centers in the domain of particle physics [1]. Its main activity is to accelerate
ion or proton particles through its accelerator complex to their nominal energies and make
them collide at one of the four collision points [7] in order to study the fundamental
constituents of matter as well the forces acting between them.

The acceleration of the particles can only be achieved if the Radio Frequency (RF) field
is correctly oriented with the accelerating cavity as they pass through it. Since this happens at
well specified moments of the RF cycle, particles travel around the accelerator complex at
well-defined bunches [7].

For an accelerator’s control to be effective, numerous of diagnostic tools are needed to
provide information about the beam’s attributes [8]. Several measurement technics exist
providing such information and thus making the control of the CERN accelerator complex
effectively feasible. One such technic uses AC-coupled Fast Beam Current Transformers
(FBCTs) at first stage to integrate the current of each individual bunch inside a synchronized
integration window and provide continuously 40MHz bunch charges (in bits) [18], whereas,
at second stage it implements data treatment in a Field-Programmable Gate Array (FPGA).

The latter uses its firmware to store and/or reload at any time the device configuration
in order to implement four acquisition modes, single capture — which measures the intensity
for the specified bunch slots over a specified number of turns, turn sum — which measures the
total intensity of all bunch slots available (depending on the accelerator) over one turn, slot
sum — which measures the total intensity for a given bunch slot over a specified number of
turns — and sum sum — which measures a furn sum and then sums up these values using the
slot sum measurement mode in order to produce one total intensity value [16].

In addition to the hardware part, there is also the software layer, which is responsible to
control the device and to implement any data processing required that is not done by the
firmware. Such data processing may be, averaging, data calibration — the transformation of
the data from the measured values in number of bins to number of charges — and data
publishing.

There is one FBCT system installed in the Super Proton Synchrotron (SPS) accelerator
and three in the Large Hadron Collider (LHC) that provide both bunch-by-bunch and total
turn-by-turn beam intensity information. The FBCTs in the SPS ring are widely being used at
beam’s injection time to observe the beam losses at that critical part of its journey as well at
the machine protection beam dump occasions in order to analyze the causes of such dumps.
As for the LHC ring, only two — system A and B — out of the three FBCT installations are
currently operational and being used by a large number of clients interested in both
measurement information — bunch-by-bunch and turn-by-turn.

The original FBCT firmware — FIMDAB — was designed and developed by several
people using different technologies. As a result, several design errors worsens the mean time
between failures — MTBF — of the entire measuring system, making the maintenance of the
latter extremely difficult. Hence, in order to properly develop the FBCT system C, it was
decided that a cleanup was necessary, moving all the data treatment from the hardware to the

10

software side. Therefore a new version of the firmware was designed and developed
implementing only the capture acquisition mode leaving the software controlling the FBCT
installations, responsible for all the data processing.

The whole idea behind this migration is to implement one data acquisition system —
both hardware and software — that can be installed in the CERN accelerator complex and will
be independent of the ring installed, which is not the current case, in order to make it generic
and more easily maintainable.

As the new version of the firmware is already implemented, this Thesis is trying to
describe the software solutions that need to accompany the hardware changes as well to
propose new ideas as far as the data treatment is concerned. This document is divided in two
large blocks: the first one introduces the theoretical and technical background whereas the
second describes the proposed software implementation and outlines its performance
evaluation.

In the first part, a brief introduction to the Organization and some fundamental
knowledge concerning the FBCTs is given in chapter 2.1. In addition, in chapter 2.2 we
describe the hardware architecture and in chapters 2.3 and 2.4, the existing software
implementations for the FBCTs in the SPS and LHC accordingly.

In the second part, we provide our software design in chapter 3.1 and its technical
implementation in chapter 3.2, along with the results of our proposals in chapter 4.

Finally, chapter 5 presents the conclusions of this work and directions for future work.

11

2 Background

In the previous section we discussed the need for the software design and
implementation that controls the FBCT systems at CERN. In order to deploy our suggestion
though, we need to analyze some basic ideas that are related to the FBCTs.

Hence, we begin with the general information about CERN and other key aspects
needed for the rest of this document and we continue with the hardware architecture where all
the details relative to the hardware are given and finish this section with the description of the
software implementations for the SPS and LHC rings that used to be or are operational.

2.1 General Background

In this section we analyze from scratch the basic information about CERN, its structure
and accelerator complex because we are going to use this information for the deployment of
our solution. Furthermore, we briefly describe the Control Center and how the particles travel
through the rings. Subsequently, we analyze the need of measuring the beam’s attributes as
well the different ways to do it. Lastly, we introduce the design framework that was used for
the existing and the previous software implementations as well as ours.

2.1.1 CERN

The Conseil Européen pour la Recherche Nucléaire or European Organization for
Nuclear Research, well known as CERN Laboratory is one of the biggest scientific research
centers whose main area of research is particle physics - the study of the fundamental
constituents of matter and the forces acting between them.

It was founded in 1954 as one of Europe’s first joint ventures and now it counts 20
member states. It is placed on the Franco-Swiss border near Geneva and it uses the world’s
largest and most complex scientific instruments in order to accelerate the particles, almost to
the speed of light, before cause them to collide and study the fundamental laws of Nature [1].

Figure 2-1: CERN's Logo [22]

2.1.2 CERN?’s structure
The highest authority in the Organization is the CERN Council. It is formed by two
representatives of each member state, one as his/her government’s administration

12

representative and one to represent the national scientific interests. Each member state has
one single vote and in most of the cases a simple majority is needed for a decision to be
taken.

The Council is responsible for all the important decisions that have to do with
scientific, administrative and technical matters. It is it that appoints the Director General who
manages the CERN Laboratory through a structure of Departments which can be seen at
fig.2-2. [2]

— 3
Administration Research &
ik Accelerators &
& General Scientific
Technology

Infrastructure Computing

Human Finance &
Resources Procurement

Engineering
(EN)

(HR) (FP) Services (GS) it

General Phveics
Infrastructure M
(IT)

Information Beams Technology
Technology (BE) (TE)

Figure 2-2: CERN's structure (source: Laura Saulnier, TECH induction 2012)

The author belongs to Beams Department (BE) [3] and hence a little more emphasis
will be given to it and its structure. The BE is responsible for everything that has to do with
the beam of particles and its control while circulating through the CERN accelerator complex
(see chapter: 2.1.3). In order to do that it is divided into six groups as it is visible in fig. 2-3.

Accelerators and Administration, Beam e ;
Operation Radio-Frequency

(OP) (RF}

Beams Physics Safety and Instrumentation
(ABP) Resources (ASR) (BI)

Figure 2-3: Beams Department's Structure

Each group is subdivided into sections. Again we will focus in our group, Beam
Instrumentation (BI). The BI group is responsible to study, design, build and maintain all the
instruments that allow the observation of the particle beams and its parameters which are
important for its normal behavior in the CERN accelerator complex. [4] Its structure can be

13

seen in fig. 2-4.The author belongs to the Software section (SW), the section responsible for
providing the software needed for developing, testing, diagnosing, maintaining and
controlling all the instruments provided by the group. [5]

Beam

Instrumentation
(BI)

Beam Loss Experimental Tune and Mechanics Position and Profile

Monitoring Areas Position and Logistics Intensity Measurements
(BLM) (EA) (ar) (ML) () (PM)

Figure 2-4: Beam Instrumentation’s structure

2.1.3 The CERN accelerator complex
The accelerator complex at CERN is a succession of linear and circular particle

accelerators which can reach increasingly higher energies. Each accelerator receives the beam
of particles from the previous in the complex chain, boost its speed and finally inject it to the
next one in the sequence.

CERN Accelerator Complex

ALICE

LIMED 3 ; L

LINAC 3
kons

» P {proton L[]y * neutrons » P lantiprotan) » neutrinos » electron
= protonfantiproton conversion

LHC Large Hadron Collider SPS Super Proton Synchrotron PS5 Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility
CHMGS Cern Meutrinos to Gran Sassa 50L0E lsotope Separator Online DEvice

LEIR Low Energy lon Rimg LINAC UNear ACcelerator n-ToF Meutrons Tinne OF Flight

Figure 2-5: CERN Accelerator Complex [6]

14

There are two types of particles that travel through the CERN accelerator complex,
protons and ions.

The protons are obtained by stripping orbiting electrons from hydrogen atoms. They are
accelerated in the linear accelerator (LINAC2) before they are injected into the PS Booster.
After Booster they are transferred to the Proton Synchrotron (PS) which is before Super
Proton Synchrotron (SPS) in the complex sequence. Finally they are injected into the Large
Hadron Collider (LHC) both in a clockwise and anticlockwise direction where they are
accelerated to their nominal energy of 7 TeV before they start collide at one of the four
collision points. [7]

The ions on the other hand, start from a source of vaporized lead and enter their own
linear accelerator (LINAC3) before they are injected into the Low Energy Ion Ring (LEIR)
from which they follow the same root as the protons to reach their maximum acceleration.

The complex also includes the Antiproton Decelerator (AD) which separates the
antimatter particles while they are still in low energies, and the On-Line Isotope Mass
Separator (ISOLDE) facility which is used as a unique source of low-energy beams of
radioactive isotopes. The complex also feeds the CERN neutrinos to Grand Sasso (CNGS)
project which creates and sends neutrino beams to Grand Sasso National Laboratory (LNGS)
in Italy in order to detect the so called neutrino “oscillation”, the transformation from one
type of neutrino to another. Last but not least is the Compact LInear Collider (CLIC) study,
an international project working on a machine to collide electrons and positrons (anti-
electrons). [6]

2.14 Control Center

The CERN Control Center (CCC) combines all the control rooms for the accelerator
complex as well as the technical infrastructure under one roof. It consists of 39 operation
stations organized in four different areas, the Large Hadron Collider, the Super Proton
Synchrotron, the Proton Synchrotron complex and the technical infrastructure. [3]

2.1.5 Bunches

The particles travel around the CERN accelerator complex in well-defined bunches.
That is because they can only be accelerated if the Radio Frequency (RF) field has a correct
orientation when they pass through an accelerating cavity and that happens at well specified
moments during the RF cycle. [7]

Under nominal operation, each LHC’s proton beam has 3564 bunches and SPS’s 924,
with each bunch containing about 10'" protons.

2.1.6 Beam Charge Measurements [8]

An effective accelerator’s control requires numerous types of diagnostic tools which
provide information about the beam’s attributes and they are commonly known as beam
diagnostics. There are several measurement techniques which can be divided in two large
categories, the intercepting and the non-intercepting measurements.

15

The first group, as it is revealed by its name, intercepts with the beam in order to
achieve the measurements and thus cause the destruction of the beam or a significant loss of
its energy, whereas the second group bases its measurements in the electric or magnetic field
coupling of the beam to the measuring instrument.

The charge measurement, often called beam intensity measurement, is a process which
integrates the actual measured quantity, the beam current, over a specific area of interest
(ROI) and divides that integral, the beam charge as it is called, by the elementary charge to
result in the number of particle beam’s charges.

The beam intensity measurement is very useful to determine the intensity loss at
injection, acceleration and extraction time or even the beam’s lifetime while circulating in the
accelerator. Furthermore, it enters the luminosity equation.

What is important in this kind of measurements is the device that couples to the beam
and provides the approximation of the beam’s current. There can be several different such
devices. The most used of the intercepting DC devices are the Faraday cups. The non-
intercepting AC devices are the electrostatic pickups, the Wall Current Monitors (WCMs)
and the Fast Beam Current Transformers (FBCTs). The non-intercepting DC devices are the
DC Current Transformers (DCCTs), the Superconducting QUantum Interference Devices
(SQUIDs) and the Cryogenic Current Comparators (CCCs).

In this document we will focus only on the FBCTs, the devices that function in a
bandwidth of few Hz up to GHz and on the contrary with all the other similar devices, can be
absolutely calibrated. For more information see chapter 2.2 where the hardware is analyzed in
more detail.

2.1.7 FESA Framework

“The Front-End Software Architecture (FESA) is a comprehensive framework for
designing, coding and maintaining LynxOS/Linux equipment-software that provides a stable
functional abstraction of accelerator device.” [9]

The Model of a FESA class is encoded as an XML Schema which enforces a specific
grammar for the design of the class providing a partial yet generic solution for the equipment
specialist. In this way and after the design of the class is well defined, the FESA user can
generate a large part of the C++ code for his equipment saving a lot of time and effort. The
FESA classes are identified by the combination of their name and version.

16

Device model

Hardware device

Software device
abstraction managament

Real-time handling
SeIvices

Request handling
services

Figure 2-6: FESA's service supplies [9]

The Interface is a list of so-called Properties that defines the services that are available
to the outside world and are remotely accessible by the clients of the FESA class, for example
clients from the control room as well as middle-tier software layer. The Properties should be
attached to a server action (request) which can be of type GET or SET and either default,
meaning that the code for that actions is auto generated, or complex for which the equipment
specialist must provide the code himself.

The Data, the Device-Data and Global-Data, are defined in such a way that provide at
any given time, a concrete snapshot of the device state. The data can be of any standard type
that can be supported from both C++ and Java, scalars or arrays up to two dimensions. There
is also the possibility for the equipment specialist to define his own types, the persistency of
the data or any multiplexing criterion for them.

C++ Scalar type Array type

bool bool
signed char (byte) signed char
short char

long short
longlong long

float long long
double float

double

Table 2-1: FESA's data types [9]

Persistency Purpose Multiplexing ~_ Purpose
FINAL database constant NONE not multiplexed
PERSISTENT periodic backup into | USER cycle user
persistent storage
VOLATILE RAM data PARTICLE particle-type
DESTINATION beam-target

Table 2-2: FESA's data attributes [9]

The basic work-units of a FESA class are called actions and can be either of real-time
or server type. The real-time actions are triggered by events which are synchronized with the
CERN’s central timing system or by interrupts and they implement most of the equipment’s
functionality. They can also be attached to properties so that the latter can be notified at any
update of the device’s state. On the other hand, the server actions implement the client’s
request-handling and they are mostly responsible for the communication between the outside
world and the device and that is exactly why they are attached most of the times with a
property. For both real-time and server actions the equipment specialist must provide the C++
code himself, except for the default GET/SET server actions.

Once one has finished with his FESA design, should declare all the instances his class
would have. This is a very important part of the design procedure since lot of work and
duplicated code can be avoided. One instance means one module with its own initial values.
All the instances (the modules the device can handle) are accessible inside the FESA class by
iterating the deviceCollection, an array accessible everywhere in the class.

A FESA class, to which we will refer as ‘server’ from now on, is organized after its
generation, in five files as follows: COMMON, GENERATED CODE, REALTIME,
SERVER and TEST.

The REALTIME and the SERVER files are used to store and distinguish the actions
based on their type as described above.

The GENERATED CODE file holds all the declaration of the fields that describe the
device. Furthermore, all the generated code for the simple GET/SET actions is stored here.

The COMMON file is used to store any custom made class that could be used by both
real-time and server actions.

Last but not least is the TEST file. In there, some diagnostic tests are stored as well as
the executable files that would start the server. There may be more than one executable file
depending on how many instances of the server there are, which depend on how many
different places in the Ring, the device is placed.

2.2 Hardware Architecture

After giving the general information that is going to be needed in next sections, we are
describing the hardware installation for the FBCTs. The latter consists of a detailed
description of the ring installation as well as the one on the surface. Furthermore, we analyze
the firmware — original and newer version — along with the driver needed to access it since
they are widely used by the software and lots of the changes imposed to it derives from the
changes of the firmware.

2.2.1 Fast Beam Current Transformer (FBCT) measurement system

The figure 2-7 depicts a simplified block schematic of the FBCT measurement system
which consists of a Bergoz type transformer with a bandwidth from 400Hz to 1.2GHz (on the
left). This transformer is followed by an RF front-end which consists of an analogue
integrator, a Beam Circulating Flag (BCF) detector which detects the presence of the beam in

18

the ring and an RF distributor which is responsible to split the analog signal into two dynamic
ranges, high and low gain and each dynamic range into two bandwidths, High (HBW) and
Low (LBW). Finally there is a 14bit acquisition system that digitizes and process the signal.
[10]

RFE distributor }
NN H LUTs 1
oo 250 H 2 2 X
I_hA)Lf—" S O00ATH Application | el EEC
! CEALH FPGA
LM H=
< LUTs T
B 1
i |
I i RF front —end J‘

Figure 2-7: Block schematic of the FBCT measurement system [10]

The latter consists of aDigital Acquisition Boards (DABs), a VME64x standard board
developed by TRIUMF (Canada) for the LHC orbit and trajectory acquisition system [11]. It
is equipped with two Individual Bunch Measurement System (IBMS) mezzanine cards [12].
Each mezzanine card uses a 40MHz integrator ASIC developed for the LHC-b preshower
detector by the Laboratoire de Physique Corpusculaire, UniversitéBlaise Pascal, Clermont-
Ferrand [13], in order to integrate the incoming signal before pass it to the DAB that digitizes
and process it to produce bunch-by-bunch intensity values. All the logic of the DAB control
is implemented in a large FPGA that can be reprogrammed at any time and its firmware is
being discussed at chapter 2.2.2.

These DAB cards are installed on a VME64x crate along with the Beam Synchronous
Timing Receiver Interface for the Beam Observation System (BOBR) — another VME format
card that provides all the timing signals required to synchronize the different beam
instrumentation systems [19]. What is more, all the cards installed in the VMEG64x crate are
controlled by the Crate Central Processing Unit (CPU) — Front-End Computer (FEC) — an
Intel® Core™ 2 Duo CPU board with 1.5GHz clock frequency, 4MB cache and no hard disc
[20] that runs Scientific Linux CERN SLC release 5.7 (Boron) [21] and boots via network.

The following figure 2-8 depicts the VME64x crate installation for the SPS FBCT. The
FEC is visible on the left of the crate with the green lights, whereas the DAB is just on the
right of it and lastly, the BOBR in the middle of the crate.

19

«SVE 4. 99V n

Figure 2-8: SPS FBCT's VMEG64x crate — on the left with green lights is the FEC, on the right of the FEC the

DAB is installed and in the middle of the crate the BOBR is visible

As far as the SPS is concerned there is only a single DAB connected to the SPS type
front-end amplifier. The former uses an external signal to switch between high and low gain
measurements which is provided by the sensitivity output of each IBMS mezzanine.

In the LHC, things are different. There are two DABs per a measurement system used,
one for HBW and one for LBW measurements. Each DAB provides two dynamic range
measurements using its different IBMS mezzanine and more specifically high gain (top
mezzanine) and low gain (bottom mezzanine) measurements.

There are three such systems in the LHC, system A, B and C of which only A and B are
operational while system C is now being developed with different technologies and with a
different approach in the process of the data. Further discussion about this system will follow
in chapter 3.

The FBCT measurement system is calibrated by a pulse of 25us. The amplitude of this
pulse differs from SPS — 128mA — and LHC which can be programmed. For the latter case
though, the currently used system doesn’t use direct calibration due to the fact that the LHC
toroid exhibit beam position dependency and this can affect the transfer ratio between beam —
measurement turn and calibration turn — measurement turn. Instead an indirect calibration is
achieved by using DC current transformers (DCCTs) installed in the LHC [17].

2.2.2 Firmware

The Stratix FPGA stores the device configuration during operation at volatile SRAM
cells, which must be reconfigured each time the device powers up. This is accomplished by
its firmware (FIMDAB), which is stored as a raw binary file (RBF) in the EPM 3256
Complex Programmable Logic Device (CPLD). Software start-up scripts handle the FPGA
start-up process and hence the FPGA is left un-programmed after power up until the software

20

layer is loaded. After the initial power-up process is complete, new configuration data can
also be loaded at any time. [14]

The original FBCTR firmware, used in system A and B was developed by several
people using different technologies. As a result the mean time between failures (MTBF) of
the entire system is worsened by several design errors. Hence, in order to properly develop
FBCTR system C, it was decided that a cleanup was necessary. The new firmware was also
used for the FBCTR in SPS. The firmware registers migration is summarized in table 2-3,
which uses the following colors to describe the state of the registers after the completion of
the migration [15].

register or memory address range is deleted and in a new firmware
associated function will not be available

register or memory address is migrated into the new firmware without
changes

register or memory address is migrated into the new firmware, but in
phase 2 the information contained will be changed

Figure 2-9: table's 2-3 Legend

21

| Address Hex | Size | Type | RW | - Designation
0x000000 | 512 KiB | LW R | Top mezzanine Capture Data
0x200000 512 KiB | LW R | Bottom mezzanine capture data
0x400000 512 KiB | LW R | PM Status -> Reserved memory location
0x600000 1 LW R | Firmware Compilation Date
0x600005 1 B W | Global command register
0x600006 1 W R | Global status register
0x600010 1 B RW | VME Interrupt Status
0x600011 1 B RW | VME Interrupt Enable register
0x600014 1 LW RW | Debug register
0x600020 1 B RW | Clock source selection and Status
0x600021 1 B RW | Phase Delay Register
0x600022 1 W RW | Turn Clock Delay Register
0x600024 1 B RW | Top/Bottom mezzanine ADC filter selection
0x600030 1 Lw R | Global turn count register
0x600034 1 W RW | Capture turn interval
0x600036 1 W RW | Capture turn number
0x600038 1 LW | RW | Summing turn number
0x600040 1 LW R | Last Capture Start TurnCount
0x600044 1 LW R | Last Sum A Start TurnCount
0x600048 1 LW R | Last Sum B Start TurnCount
0x60004C 1 LW R | Last PM Start TurnCount
0x600050 ¥ LW R | Last PM freeze TurnCount
0x600054 1 LW R | Top/bottom mezzanine PM acquisition pointer
0x600060 1 W RW | PO Capture Start Selection Mask
0x600062 1 W RW | PO Summing A Start Selection Mask
0x600064 il W RW | PO Summing B Start Selection Mask
0x600066 1 W RW | PO PM Start Selection Mask
0x600068 1 W RW | PO PM Freeze Selection Mask
0x60006A 1 wW RW | PO Global Turn Count Reset Selection Mask
0x60006C 1 B RW | Front panel selection register
0x600070 1 W R | Stratix temperature register
0x600072 1 W R | Module power supplies status
0x600100 2 Lw R | DAB serial number
0x600108 2 LW R | Top mezzanine serial number
0x600110 2 LW R | Bottom mezzanine serial number
0x600118 2 LW R | DIDT mezzanine serial number
0x600200 1 W R | Raw Data from top mezzanine
0x600202 1 W R | Raw Data from bottom mezzanine
0x600300 1 LW R | Base line calculation results for top mezzanine
0x600304 1 LW R | Base line calculation results for bottom mezzanine
0x600310 1 W RW | Top mezzanine validity level
0x600312 1 W RW | Bottom mezzanine validity level
0x600314 1 W RW | Top mezzanine FIR threshold
0x600316 1 W RW | Bottom mezzanine FIR threshold
0x610000 16 KiB W RW | Top mezzanine LUT for INTO
0x618000 16 KiB W RW | Top mezzanine LUT for INT1
0x620000 16 KiB W RW | Bottom mezzanine LUT for INTO
0x628000 16 KiB W RW | Bottom mezzanine LUT for INT1
0x630000 7128 LW R | Buffer A of top mezzanine
0x638000 2 KiB LW R | Buffer A of top mezzanine turn sum

Table 2-3: Original firmware register map [15]

22

| Address Hex | Size | Type | RW Designation
0x63C000 | 4 LW R | Sum of Sum buffer A of top mezzanine
0x640000 7128 LW R | Buffer A of bottom mezzanine
0x648000 2 KiB LW R | Buffer A of bottom mezzanine
0x64C000 4 LW R | Sum of Sum buffer A of bottom mezzanine
0x650000 7128 Lw R | Buffer B of top mezzanine
0x658000 | 2 KiB Lw R | Buffer B of top mezzanine
0x65C000 4 LW R | Sum of Sum buffer B of top mezzanine
0x660000 7128 LW R | Buffer B of bottom mezzanine
0x668000 | 2 KiB LW R | Buffer B of bottom mezzanine
0x66C000 4 LW R | Sum of Sum buffer B of bottom mezzanine
0x670000 2 KiB LW R | Turn summing of top mezzanine channel data
0x672000 2 KiB LW R | Turn summing of bottom mezzanine channel data
0x674000 1 Lw R | Firmware revision
0x680000 1 LW | RW | BCF threshold register
0x680004 1 LW R | BCF INTO min/max register
0x680008 L LW | R | BCF INT1 min/max register
0x68000C 1 LW R | Extended status register
0x680010 1 Lw R | BCF difference register
0x680014 1 LW R | Turn Clock Watchdog

Table 2-3: Continue from previous page

Following the table 2-3, table 2-4 summarize the minimum set of registers for the new
proposed memory map. The table is organized in three categories. First group consists of the
registers read directly from the DAB external static memories. Second one groups all the
registers that are not specific to capture mode and third contains registers only specific to
capture mode. The latter two are separated by an address space, which makes a potential
insertion of new registers simple. All registers are 4-byte aligned and accessed by A32D32
transfer. Lastly, for non-single transfer registers, block transfer can be used improving the
latency added when transferring huge amount of data. [15]Error! Bookmark not defined.

Address Hex | Size | Type | RW | Name | Designation
External sampled data memories
0x000000 512 KIB | LW R CTopData Top mezzanine Capture Data
0x200000 FI2 KiB | LW R CBottomData Bottom mezzanine capture data
0x400000 512 KiB | LW R ExtendedData PM Status -> Reserved memory location
Global registers

0x600000 1 LW R FWDate Firmware Compilation Date
0x600004 1 LW R FWRevision Firmware revision
0x600008 1 Lw R TClkWd Turn Clock Watchdog
0x60000c 2 LW R SNDAB DAE serial number
0x600014 2 LW R SNTop Top mezzanine serial number
0x60001c 2 LW R SNBottom Bottom mezzanine serial number
0x600024 2 LW R SNPIM PIM mezzanine serial number
0x60002c 1 LW | RW Debug Debug register
0x600030 T W | RW | FPMux | Front panel selection register

Table 2-4: New firmware register map [15]

23

Address Hex Size Type | RW Name Designation
0x600034 1 LW | RW Command Extended/Global command /status register
0x600038 1 LW | RW IRQ VME Interrupt enable/status register
0x60003¢ 1 LW | R | GlobalTurnCount | Global turn count regl'léte'r' -
0x600040 1 W | RW TClkDelay Turn Clock Delay Register
0x600044 = LW R FWCodename | Firmware codename ASCI| string
0x600054 1 LW R PSStatus Power supplies status
0x600100 128 LW R Debughlem General purpose debugging memory
Capture related registers
0x610000 1 LW | RW ClkPhase Phase Delay Register
0x610004 1 W | RW CTurnlnterval Capture turn interval
0x610008 1 LW | RW CTurnNumber Capture turn number
0xH1000c 1 LW R CStartingTurn | Last Capture Start TurnCount
0x610200 128 LW | RW | CBunchSelector | Bunch selection memory
0x610400 1 LW R CRollPointer Rolling pointer
0x610404 1 LW R CCurrentBSlots | Mumber of currently selected bunch slots

Table 2-4: Continue from previous page

From the latter table, 6 major changes at the registers can be pointed out.

Firstly is the capture data organization. Using 32-bit storage, two 14-bit ADC samples
can be stored per entry. Unfortunately this is not enough since additional information is
needed to be stored with the stream, information about what integrator was used for acquiring
the sample — the most significant bit of the sample (31 and 15) reveals the appropriate
integrator (0 or 1) —, about whether the sample was saturated — bits 30 and 14 — and finally,
about where the turn clock starts. Since there is no space left to store the latter information
with the stream, a convention had to be declared: the turn always starts at the memory start
address — 0x000000 for top mezzanine and 0x200000 for bottom. Hence, next turn can be
easily calculated as following: <start address>+ (<number of bunches>/ 2).

Such memory organization decreases the amount of external memories read from three
to two, since the information stored in mezzanine three are now coded with the samples. It
also increases the number of samples per mezzanine by factor of two, enabling at the same
time the use of fast block transfer of the data, from the external memories to the CPU.

Furthermore, changes in register bit positions should also borne in mind. The original
information of the Turn Clock Delay register is migrated from address 0x600022 to
0x600040, bits 12...0, whereas the information of the Phase Delay register from address
0x600021 to 0x610000, bits 7...0. As for the Front Panel Selection register, information
about MUXA originally located at bits 7...4 is extended into bits 31...16, whereas
information about MUXB, originally at bits location 3...0 is extended into bits 15...0. As far
as the IRQ register is concerned, it behaves as Interrupt Enable register when written and
returns the Interrupt Status register when read.

Last but not least is the Command register which combines the original locations at
0x600005, 0x600006 and 0x68000c and acts as Command register when written, keeping all
the original properties and as Status register when read. The meaning of all bits read is

24

changed though, due to the differences between the two versions of the firmware and for a
full description of this meaning refer to full technical documentation [14]Error! Bookmark
not defined..

2.2.3 Driver Background

There are more than one ways to access the device’s register and hence, we had to find
which one is more suitable for us. The most common way is to use the ioct/ module-specific
library that comes with the driver and is automatically generated from the description of the
module in the CO Data Base. This is a simple library that uses only one method to access the
hardware, IOCTL. This library is good for individual values or short amount of data, since it
is already high leveled and not that slow.

If the performance is one of the main characteristics of the project, one should consider
another library that comes with the same auto generated driver and that is da/ (Driver Access
Library). The dal library has three ways of accessing the hardware and these are IOCTL,
same as before, [IOMMAP and IODMA. Now as for the last two, the IOMMAP method uses
the CPU to access the hardware while the IODMA does this directly.

We have been experimenting with these three ways, only to find out that there is a
significant difference between IODMA and the other two. Generally we could summarize our
conclusions as this: faster: [IODMA < IOMMAP < IOCTL. As we saw in chapter 2.2.2, only
three of our registers are a considerable amount of data (512.00 KiB) and from those, only
two are being currently used. All the others are either single valued or short amount of arrays.
Thus we’ve decided to use the ioct/ library for all the registers but the two mezzanines for
which we’ve used the dal library with the IODMA method.

2.3 The FBCTs in the SPS

As described in the previous sections there is only one FBCT system installed in the
SPS and this consists of only one DAB card on the VME crate, which used to operate with
the original version of the device’s firmware (FIMDAB).

In the following sections, we will describe how the server used to be organized and
which were its basic functionalities that made it operational.

2.3.1 Software Architecture

The server was designed' to operate a full acquisition (1-924 bunches) for every
different active cycle — approximate cycle’s length is 20sec. Different sequence of real-time
actions used to accomplish that by preparing the device, starting the acquisition, reading back
the acquired data, processing them, storing them temporarily, starting the acquisition again
and repeating this sequence until the cycle was over.

All these functionalities were implemented in different real-time actions, rtPrepare,
rtStart, endCapture and rtStop whose technical specifications will be discussed in the
following chapter 2.3.2. The scheduling of these actions was the key for the proper operation
of the server.

1
The server was created by Lars Jensen

25

A warning of the beam’s injection was used as an event that comes 20 msec before
every different cycle’s injection. This event was being used by the rtPrepare to set the
appropriate settings to the device as well as calibrate it, before the acquisition could start.

Another event, specifying the beam’s injection — cycle’s beginning, was being used by
the rtStart to initially start the acquisition. After that, an event coming every 40msec, was
being used by the endCapture to read back the acquired data, process and store them in
temporary buffers and finally start the acquisition again. This procedure was being repeated
as many times as it could fit in every cycle’s lifetime.

Lastly, an event specifying the cycle’s end was being used by the rtStop to gather all
data from the temporary buffers and store them in the shared memory of the server so that it
could be fetched to the users.

L sabsee |

| @views| BH ® B8 3 D@ Mo | A8

Rviews | BRI = BH| 3| TS More | 1B
i g e3| Genencoraph [90/04/12084536] o e

Generic Graph [30/04/12 0945:36] ¢

v
: 1200 e
1000 \,ﬂ 1000
o0 L
= [‘, 500
a0
2

00
200

200
400,

M/’vmw/ \”\

\

100 200 00 400

s00

Rvews | HR = 2o 30 | TE More 38
188,04/ 12 080536 L

Tavews, SR s 5 DE M S8
Genenic Graph [30/04/12 09536~ -

700,
600
s00.
400
00
200

100

/mwwf \ﬂ\

700

800

200

Figure 2-10: FESA Framework Interface

The FESA properties that used to interface the server were Setting — where the user
could enter the settings relative to the acquisition, Expert Setting — where the user could
specify the settings relative to the calibration of the device, Acquisition — where the user
could see the desired data after all steps of their process, User Data — where the user could
see the intermediate steps of the processed data and Calib Data — where the user could see
and set the calibration factors of the data, either on his own or with respect to the calculated
ones by rtPrepare. No external application interface (such as Expert GUI) was used for
visualizing the above properties, and thus the FESA interface was used for that purpose as it
can be seen in figure 2-10.

2.3.2 Previous Implementation
The previous implementation of the server used to access the device directly from its
classes using the IOCTL library.

More specifically the rtPrepare action used to set the full bunch range (bunches 1-924)

to the device as well as the number of turns for the acquisition which was always 1. After

26

that, it would start an acquisition along with a calibration pulse in order to calibrate the
device. This is achievable due to the fact that the rtPrepare operates when there is no beam. In
this way and by firing a calibration pulse, whose current is known in advance, the appropriate
calibration factors could be specified to take away all the additional noise that is being added
to the data by the electronic equipment. Following the calibration, the rtPrepare would reset
all the intermediate temporary buffers that were going to be used by the endCapture.

For the rtStart action, things used to be much simpler, since its only responsibility was
to start a normal acquisition which means without the calibration pulse.

Furthermore, the endCapture action was the most critical one as far as the time
constrains is concerned. In this action, the data would be fetched from the device and be
processed before been stored to the temporary buffers. By processing the data, we mean to
restore their base line as well as apply the calibration factors that were calculated before by
the rtPrepare. The base line restoration is by far the most difficult stage of their process since
its main goal is to take away the beam’s position dependency with the measuring device,
restoring the level of the acquired noise to 0 in the y (intensity) axe, and this procedure is
non-trivial at all.

The existing implementation was using the Magic Imperial algorithm to restore the
data’s base line. This algorithm was based on the statistics from previous operational
experience and its basic idea was the following:

e [terate the acquired data and find minimum and maximum value.

e Using this information, determine the noise region as the (minimum value +
(0.05 * maximum value)).

e [terate again the acquired data and find a mean value for any sample that is
below the just specified threshold.

e Finally iterate all the acquired data and take away this just calculated mean
value.

In this way, all the noise samples would reach the 0 area in the y axis, while the original
shape of the data would stay unchanged.

Last but not least, the rtStop action stored the intermediate buffers to the shared
memory (device fields). This was accomplished by declaring the above buffers with the C++
key word extern and hence they were visible by more than one C++ class in the server.

The server actions that served the Setting and Expert Setting interfaces were
implemented as simple actions. What is more and only for the Setting property, partial setting
was allowed. As for the Calib Data property complex GET/SET actions were implemented
with the partial setting enabled. Lastly, for the Acquisition and User Data, complex GET
actions copied the contexts of the shared memory (fields) to the interface memory in order to
be properly presented.

At this point, it’s worth mentioning few words about the buffers holding the data,
intermediate and final. The acquisition data were stored in two dimensional arrays; first
dimension for the different measurements made by the endCapture and second dimension for
the acquisition itself —intensity values for bunch slots 1-924. Unfortunately, there was no
useful way to present these values with FESA interface and thus filters were being used.

27

Hence, under User Data property, the user had to specify in the filter which measurement
desired to observe. Using this filter in the server action, only one raw of the 2D arrays was
returned (924 values in total). In this way, data were quite uncomfortable to be studied, since
the filters apply in the acquired data only once and thus one should wait for the next
acquisition to see another measurement. One such example can be seen at Figure 2-10.

2.4 The FBCTs in the LHC

In the LHC ring there are three FBCT systems, each consisting of 4 DABs as described
in chapter 2.2.1. System A and B use the original version of the FBCT’s firmware which used
to have 4 measurement modes [16]:

e Capture — the intensity measurement in each bunch slot for a specified number
of turns

e Turn Sum — a total intensity measured from a full bunch acquisition (3564
bunches) over a single turn

e Slot Sum — a total intensity measured for a specified bunch slot over specified
number of turns

e Sum Sum — the combination of Turn Sum and Slot Sum. By this we mean to
make a Turn Sum for each acquired turn and then, sum all these sums as they
were a single bunch slot measurement

2.4.1 Software Architecture

The FESA class that serves LHC’s A and B FBCT measurement systems is
BCTFRLHC v317 The server of both systems is identical and has two instances, serving the
FBCT installation for each circulating beam.

The version 31 of the BCTFRLHC FESA class is designed to provide LBW total
intensities averaged over 225 consecutive turns at 1Hz. In addition, it provides HBW total
intensities per turn with time resolution up to one turn (89us) as well as HBW individual
bunch intensities averaged over 900 turns as input for the post-mortem system for analyzing
the causes of machine protection beam dumps. [18]

2.4.2 Existing Implementation

The server uses the LBW channel to make full bunch acquisitions over 225 consecutive
turns — to suppress the noise at 50 Hz — using firmware’s Sum Sum measurement method and
it continuously updates them every second for operational displays. Additionally, it keeps the
values from the last 30 seconds in a rolling data buffer, which also updates every second.

As for the HBW channel, the server uses the firmware’s Turn Sum measurement mode
to produce and publish the turn intensities — the total intensities per turn — and the Slot Sum
measurement for the average individual bunch intensities. Both measurements are updated
every second.

? Created by Michael Ludwig

28

In order to suppress errors in the calculation of the noise mean value at the baseline
restoration (BLR) procedure, the summing of empty buckets must be avoided. This is
achieved by applying a minimum beam threshold set by the user. The BLR is based on the
presence of empty buckets in each turn at least at the 3us abort gap and hence, the calculation
of the minimum integrated value of one turn can be used as offset correction for the next one.
Subsequently, the lowest measurable turn-sum and bunch-average intensity is given by the
noise suppression peak threshold — 10° number of charges for high gain and 5*10® number of
charges for low gain for both bandwidths. [18]

® sppications_Paces_sysum RBEBS s @
. 210

File Window * RBA notaken

] Warkspacel - BCTFRLHC ver, 31 i i 4 g 3 ® Cacs

N 20 iew on LNCRCTTRAGRAL]

Evews | S & m B ®W| 0| DE More |58
Genenc Graph _(26/09/12 18:11:57) e
10569

Lo oy S|

Cydle Selection 5 1E9:

Daw
) LHC USER LHe

.‘
Mavigation Context

RO0 1000 1200 1400

I

Figure 2-11: Total Intensity History from beam1 of the LHC, System B

The above figure 2-11 depicts the rolling data buffer of the total intensity of beam 1 as
it was measured by the FBCT in the system B. This buffer holds the calculated total
intensities of the last 30 seconds — 1 acquisition over 225 turns takes 20ms hence 50 values
per second and 1500 per 30 seconds. As there is no expert GUI developed, the client
application that is being used to control the servers is the FESA interface.

29

3 Our Implementation

In the previous section we described all the theoretical and technical background
needed to better understand the previous software implementation for the FBCTs in the SPS
and the existing one for the LHC. In this section we analyze our proposal for both systems
separating the design from the technical part.

3.1 High level

As the developing of the two systems was ongoing, we came across several decisions
that needed in order to proceed. This chapter is dedicated to such decisions that helped us to
structure better our work and provide us useful tools for our implementations.

3.1.1 Wrapper - Design

Since the firmware changed, a new way of accessing the device was needed. As the
new firmware was to be deployed in both SPS and LHC FBCTs, we decided to create a
common wrapper class, DABBFCTSRWrapper, which abstracts the device communication
with the server. Additionally, such class is ideal for implementing functionalities irrelevant
with the accelerator that hosts the FBCTs.

The DABBFCTSRWrapper is designed to have public methods for accessing all the
device’s registers using the IOCTL library, as well as processing some of the data that need
to be read from or written to it, while there are also some other private methods for that scope
as well.

Finally the header file of the wrapper seemed the perfect place for implementing the
hash table with the different commands that the device can handle since it is imported every
time we want to use it in the project for accessing the hardware and hence to instruct it to do
something. In this way we’ve implemented it once being sure that is always visible in our
general implementation.

3.1.2 Tester - Design

Another decision that was taken in the early days of our implementation was to create
an additional tester class for testing the proper communication with the device. This class
used to do nothing else but trying and write all the writable registers of the device and then
read them back. In this way, several errors in the firmware were revealed when it was easy to
be spotted and fixed.

While progressing with our implementation, the tester was changed to fit our testing
needs. Hence, the tester ended up asking the user to select the bunches and the number of
turns for acquisition, then firing the acquisition, reading back the data and printing them in
the console as raw ADC values, just as they were read from the device. This procedure was
found incredibly useful for studying, testing and assuring the decoding process of the data
(look at chapter 2.2.2 — last paragraph / change of the data capture organization).

Furthermore, additional timing routines were added in order to study the different
driver solutions for fetching the data from the device to the CPU, as well as some

30

performance issues, especially as the server in LHC is concerned. These issues are being
discussed in greater detail in chapter 3.2.5.

3.1.3 Dablnfo - Design

As described in chapter 2.2.2 and table 2-4, there are some registers in firmware related
to the DAB’s information such as serial numbers and so on. Hence, it was found useful to
have a console application that would retrieve and present this information. In this way, we
were able to check the identification of the firmware, the mezzanines as well as the DABs
themselves installed in the SPS, the LHC or the lab.

3.14 SPS

Our implementation is based on the existing one. We used this version and updated it
so that it can access the new hardware and have one different acquisition mode the
TURN BY TURN as we called it, as well as improving some troublesome behavior relative
to base line restoration. Our main goal, beside the proper functionality of the server of course,
was to keep as much backwards compatibility as we could by changing the design as less as
possible.

Hence, a new real time action was introduced; the rtTurnAcq which implements the
new acquisition mode, while the rtPrepare remained the same, at least as far as the design is
concerned.

The main difference to the existing classes was at the rtStart and endCapture class
which were not needed if the acquisition mode was TURN BY TURN, and thus should exit
immediately. The same idea was introduced to the new rtTurnAcq class but the other way
round, it would exit if the acquisition mode was REPETITVE. The event that wakes the
rtTurnAcq is a warning of the beam’s injection which come 20msec in advance. The new
class is responsible to start the acquisition with 18msec delay, read the data, process them,
transform them from ADC bins to number of charges, restore their baseline and finally save
them to the appropriate buffers.

We kept the rtStop class the same which only copies the data from the buffers to the
shared memory when the cycle is over. This is common for both acquisition modes and so, it
made sense to try and keep it the same. In order to do that though, we had to change the
buffers visibility through the server classes. In that sense, the variables that should be
common to both acquisition modes and thus the appropriate classes, are now being created
and initialized in the rtPrepare class and are visible by the endCapture, rtTurnAcq and rtStop
by using again the keyword extern.

3.1.4.1 Baseline Restoration

The existing algorithm that used to correct the baseline was working quite well but
unfortunately not always. It was observed that whenever there was a negative spike quite
bigger than expected the algorithm didn’t work. Since the algorithm was taking into account
the ratio between the minimum and maximum value within an acquisition to determine the
noise region, in case of this so called “undershoot” this region would include only one point,
the minimum. As a result the minimum would be considered as noise and thus, after the BLR

31

it would end up to be 0 and everything, including the actual noise, to be in the positive side of
the graph. This can be easily seen at the following graphs:

csnen remeruis @ i Eminausos
s sl ==
@)
et
o)
| ,’
A
Pl il
| "l]l-‘ r M |r
n‘f‘w T ‘f-”"'IN |
L] L | il Il
s - | L
I HE
s
o
o0
En
100 | 1
\ \
(V A g Aot A o NI i 0 -1—{ R A it A P g A e e b A e A s A A
»
100 200 00 400 800 L] 00 a0l 400 s
Bton it
FEsA Commanicaton Desase Communicaaon] Wamemata s Sasats Deshama al Resulishavs Fopton Somanca 1 Gonirrwingon.

vereisot Qb) | Emoyoueus

SMEREIN TG ~THE o]
- M 22,7017 1 205748 P |

]

M‘lf‘\‘ll‘li‘l‘i
,-‘-'W’w‘l By {r'lmlj’m W

I
I

|

1o

1 \
;

Brton Panst

FEsA Cammancstan] 1 Fasuts Wstematea) et s Tl iz sacnes] conwan

Figure 3-2: ROSALI plot with correct BLR

These “undershoots” won’t come often and for every cycle, but when they come the
BLR doesn’t work as it should be. That is why we considered changing the existing algorithm
for restoring the BLR to another one much simpler and more stable.

We’ve decided not to take into account the min — max difference to specify the noise
region, since this can change from cycle to cycle and from time to time. The hard coding
percentage of that difference wasn’t flexible enough when those differences appeared. Hence,

32

we search only for the minimum value of an acquisition and noise area is determined by a
user setting. In this way, the BLR is much more flexible and dynamic.

Of course this does not erase the “undershoot” problem, since they don’t come in a
deterministic way and thus one cannot specify a well-defined noise area and trust that would
work for a longer period of time. In addition, an “undershoot” identifier had to be designed in
order to help us ignore this kind of extreme values. To do that though, the user should
provide another setting specifying the distance between two consecutive points that would
identify the most negative as an “undershoot”.

3.1.4.2 TURN _BY TURN acquisition mode

The most important change to the server was to add the new acquisition mode. As it
was mentioned before, a full bunch acquisition (bunches: 1-924) over one turn, is repeated
every 40msec until the end of every cycle. This mode of acquisition, REPETETIVE, covers
the whole cycle and it was being used until now.

The new acquisition mode, TURN BY TURN, is again a full bunch acquisition but for
as many consecutive turns as the data storage permits. This limitation comes from our effort
to keep the backwards compatibility and hence by the fact that we use the same intermediate
buffers in software as the REPETETIVE mode. For more details about the implementation of
these buffers and their limitations please refer to chapter 3.2.4.

3.1.4.3 Client — Interface

The BFCTSR ExpertGUI was developed in Java and is organized in 5 packets for
clearer separation of its classes. The Constants packet hosts all the classes that consist of
constant data such as enumerations, names and converters. In the expertGUI packet, all the
classes that implement the application interface are stored. Furthermore, there are the
factories and listeners packets which host the homonyms classes. Last but not least is the
Data packet where all the classes that are data specific are stored.

For the communication with the server, we used the communication library that was
developed from our group and establishes a communication flow per device. We kept the
communication and subscription mechanism over the network separated to one class called
DataProvider and the data storage per FESA property to another called Property. Both
classes are abstract since only few methods are domain specific and had to be separated.

The general idea of the design is the following: the DataProvider communicates via
subscription to the server that runs on the front-end. Each time new data are produced, the
DataProvider informs the Properties which process them if needed and store them to buffers.
Then, they inform their interfaces to update their view with the new data. This data flow is
depicted in the following figure:

33

g9 Communication

I

|

I
e

cannection Manager \\
_’_____:-H"'_ | _"“H-h
/--/ —1 _, BFCTSR v210
- ey ({FESA server}
DataProvider |
l
! / K_
e rece:-.-ed.nda&e[] ,/'
extends Subscriber H‘H-_H | g
i .-H"'Im,_‘ o ==
—_— —
g I .
: updateata) \ Front-end
\ ' \
\ S __ _____________
\\ N
‘-\ registerListensri;
————————————————— == \
; [\property
é User interface 1\ I
ek l""' __-‘"‘---H_‘
(GUI) P
e —— implements
/ YabiodRanet) DataProviderlistener
I
PropertyPanel T | ot
| 7
: updateiiew) = ,/
implerments Pmpertyliste'llul_ N J|_ H#/-_{,f
I
| Data
I 9 intermediate
: storage
!

Figure 3-3: Data flow between front-end server and GUI client

We decided to split the frame into three areas. The top one hosts the TimingPanel
component which shows which cycle is active per accelerator so that the users can choose an
appropriate one. The left one hosts the setting and expert setting panels as tabs while the right
one hosts the acquisition, UserData and BunchAcquisition panels as tabs. The representation
of the data is on the right area of the frame and more specifically the acquisition tab is a
graph of the total intensities as acquired and calculated from BFCTSR as well as two more
devices for cross-checking, BCTDC3 and BCTDC4. The UserData tab hosts a graph of the
individual bunch intensity measurements — one measurement at a time, while the
BunchAcquisition tab hosts a 3D graph of the individual bunch intensity measurements — all
together.

In figure 3-4 the Unified Modeling Language (UML) class diagram of our expert GUI
is depicted according to entity separation of figure 3-3. The communication between two
classes from a different group (Communication Manager, Intermediate Data Storage and
GUI) is achieved with separated interfaces.

34

“<Java Casa= <clava Class>>
@ DataProviderBFCTSR ?MPW:::‘:CTW
58 fesa expenz BFCTER paperty Dats L e iztina iT'] Communication
i & e Manager
S il <<lava Cossrs & makeCommunicationt)veid
@ receiveUpdaie¢Updateinto, Databiap) void Gmm receiveiipdsieiUpdaisinto Dataltap).vod
\ eomm Communiaton /
“dava Cassrr © astaviep: Datoltap
@ DataProviderBCTSDCI her. Datalisp
o 45 sxper BECTSR. prepenyDats device Strng
& DalaProvierBCTSOCUSirng, Strng, Catalisg) = en ""“";:""'
& makeCommunicationt}-void i
v o BCTSDCH
© geataliap) Latallap 3
© seatabzp(DotaMap) void
° er(DataProvidertistener) void
© unRegsierLisienenDataProsider steass) void |
vigRrBFCTSR|0. 1 $dataProviderBCTSOC 0,1
sl <slava Classen
~<lava niacer> AcquisitionProperty
@ DataProviderListener o fasa arpend BFCTSR provery D
cen fess eoen2 BFCTSR sty GatalagBCTEDCS, Datablap Data
5 © datalapBCTSOCA: Datall 5 3
@ updsteDta Datakap) vod s — 9 intermediate
& updaleDataBCTSOCI Dataliag)void R e Sto
& updaleDatsBCTSOCH Datahaz) void @ totalntensky: doublel] orage
v o tolalntensiyFast Goube]]
A @ bunchArmay'tValues: doublel]
~<lava Clsen o dmsFast]
@ ExpertSettingProperty o gmsSow.
cbt Tess expan BFCTSR prosartyDats = bunchintensktyFast20: sharil
o doCaliraton ot “<clava Casar> o bunchintenstyShw20: sherilll
o bunchDeiny: short o messSiampECTECY: doubie]
& phaseSiow: shart v Casses S ik phae2 P CITSP gt © otalntenskyBETOCS: doublel)
& drocpRangeLBVY; float (3 SettingProperty ¢ GmahapSFCTSR: Datahtap & measSiampBCTDCH: doublel]
¥ oo fesn exper | propenyDu = propertyHame: strg. = iotalntznstyBCTOC doutle]
5 droopRANGSHENY: foat © tumécalelsy: nt SIS & AcausonProperty(Siring)
o bassLineRangeHEN foat = acalfode; it o Propenty(String Strng) @ peataProviderBCTSOCA fvoid
FexpensenngPropenyising) S Mescredt st geCatsFrover Dstaltas] void 8 g DatoProviderBCTSOCH vt
R ———" HRSSLIIOR Aot Sgeirimitélvort K | setreespves
@ setFieds()vels mﬁr__f———- esholdlowB¥i foat £ § getFrapertyliamet):String 8 0EFRISBCTOC V00
e 1 ° B 0EFieksBCTOCA() void
© getBunchDelayi)String & senmgPropertyiString) /JP‘ © geiCyche() Strng. @ pEBUnCAIntengIyF ASEDDMEL) AL
© getPhaseSiow(String © getriens() void @ registaristenerPropertyListenor):vod @ DeNeasStEmp(FBoubie]
@ peiDronpRangel BW(Y String @ seFices ol © utRegsterLstener(ProperyListenerbookan & petTotaintansty() doubiel
pe ® & nformiLstenersivoid @ gefTotalnienstyFast() doutiel]
@ petDroopRangeNEYI() Siring © getfumAacaDelayi) Strng © updsteData(Dataiag) vokd @ galfunichArayValimad)-doobisl]
b ® © UpdaleDataBCTSOCUDAaMSP) okt @ getBunchintersityFast() Soublel]
@ semoCatbraton(it)vold © gerPnasefasti)Sing # UpdaieDataBCTSOCADatabsp) vok! ® pelBunchintensityShow () doublel]
@ seBunenOeley(Strng) voie ® petimenstyThreshoi Stmg = @ geiBunchintensiyFstZD0): shorl]
© sePhaseSow(String) vor ° @ QetBunchintznsRySW2D() Sherll
° ® © petieasSmEBCTOCI) doublell
® © ge(TotatenstyBCTOCH) double] e e e e
= ° © gelMleasStampaCTOCA() doublel]
° & @ gefTotantensbyBCTDCA(| doule)
© senmenstyTeshonstrng) o . @ regaterL nteneriPropertyLatenarvoid
-expensenngPrapeny 0.1 ® setitenstyThreshoaLowBW(Strng) v i =lwmCisne=
© sersenstuty(ntyvon <Javs bierace © updateDataBCTSDCA(Datallap) void
€ PropertyListener
-seftingPraperty [0.1 " ~acqProperty(0 1 ~acaProperty 0.1 doubiel]
& myBuncharmay: doublel]
@ vpdateView (Simg)vod myBunchiniensiyFost doutie
& myBunchinleasitySkow: daubiel]
pa
& nungvod
@ PropertyPanel <JevaCaner
Som fe53 sxpan BFCTSR mrpardiyl @ BunchAcquisitionPanel
AT S s fesn e BFCTER e
<<lava Chse Java Cesarr * TowAzion, RowFane! ' lanbeaPanet TTabbedPans
Bution: ButtonPanel
ExpertSettingPanel @ settingPanel rowCycie: RaviPanel o o
m@ i S roEmpiy: fowPamal & subscripdnaFiag: boolsan
- - - - myDatatig: otalian | i seosemenin g |
& rowBunchDalay: Row Panel # rowAcalode: RowCombeBaxPanel B ; L S & BunchicquaiionPanelBasicFrame)
© rowPnaseFast RowPans! 9700 OuRagCanatra o © TomintenstyBECTSR. doute] & rewScrok Rowanel el
a coom. Shng. o totalintensiyF a81BFCTSR. doublel] @ bunchinienstyFast: sho] o GefneActionsi) vodd
a AT == string ko ubie] © bunchintensiySow: short] 8 ORIt Yol
= i 7 & anibier B sher] @ updaleVewiSting) void
= <A dafinePaneif) void. & MeasSIBMPACTDCA. G0 & burichintenstySiowCurrent: shor
o frsiGeiFiag. booiean AoefineAciions()vold "0 & totaimznseyBCTOCH doubie] — nul”“”".;»s‘h 0.1 -graphFast b1
5 serialVersionliD. keng & updsteViewSiring) void 5 acqWodeCurrent int s
& . Strng) it s © mutiper: int <<iava Clase>>
s © oetSsecteaCycis() Sim % o subscriplionFiag: booksan @ChartGraph3D
o & o] totaintenseyBFCTSRCUMent doutie]] = o U] 3
» defineansi(} vod : cetneActons()vod s E
& defmesctions(}vod ® & geiKay(String Strng) Sting 5 ey PP
L3 @ totalotenstyBCTOCICurent deubie] & changsScroTTexiintivod o serversond long
“settngeanel 'y 1 ~panelf0.1 & messSImpBCTDCACUNEnt doubiel] &
“<<lave Ciass=r o Soublel] & defneictions()vold @ seiGraphTiieStrng) vold
@ 5 suvscrptonFleg bocken & gstvales()vox @ setXLabeStrng) voud
et *f garuversoovD: iong °
P i = drawPota(void @ geirapnCycle() Siring
il isuaen e + defnefanci(fvoid & seGraphParams(}: @ addPotsiSiring duubiel] doublel doublel)-void
o rewint
o r—— Fane) 2 3 ,‘/ T l
gt er(PrapertyRanel - S
i glassr
-‘.\«wn.m o g @ Myadiu "'E,.“’.':% o e
e isteneri) int a0
e s i yadyai er) ! i
& t
‘o adustme angedidgjustmentiventvod | | s
/ S mcammar o]
Class>> & MyEveniDispatchThrend(doublel]doublel))
@MyEventDispatchTread © run{) void
e il e ~oroth, 0-graghcain |01
MeasStampaFCTSR: doutie] <<Jav Casers
FCTSR: doublei] @chanGraph
e sl e s azoend BECTER axzertGUl
& mylidqaSiampaCTOCS doute] * sariaVeraontiD. ang
tenstyBCTDC: double] o cycl: Siring
MPBCTOCH: doubied & chanGeapniStrig Stmgj
doublel] @ guBraghCych(}String
I
! 0
| @ selLabeliSirmg) vod

© addPiots(String doublef] String, doublel]) void
© 04dPols(String I String,nil}-vold

<<ava Class>>
(@ BICTSRExpertGUl
cam fea3 en BFCTER anpenc

User interface
(Gun)

@

4 geeFrame: GrBagConsirants|
o BFCTSRExpertGU)

w defnelienuAction () vod

= a0dVntagePanel():vod

@ stari) void

@

Figure 3-4: BFCTSR_ExpertGUI UML Class Diagram

35

3.1.5 LHC

In order to improve the performance of the FBCT measurements in the LHC while
keeping the same frequency 1Hz (new values every second), it was decided to implement
another approach as for the acquisition and calibration of the data using system C FBCT’s
new firmware. In this way, the acquisition is a simple Capture of the requested data (number
of bunches for a specified number of turns) and all the computations for their process is done
in the software. This approach allows us a degree of freedom in choosing which algorithms
we use for the BLR, trying to achieve better accuracy when comparing this system with the
other two.

The main idea of this approach is to make a full bunch acquisition for 25 turns with 224
turn interval. This means acquire 3564 bunch slots every 224 turns for 25 times as it can be
seen in figure 3-5 and leads to a 25mA sampling over half a second [17].

2 3 4 225226 227

——-

time

Figure 3-5: Acquisition schedule in respect with number of turn and turn interval

Since we have 4 cards and each one measures data for half a second, it would be
impossible to implement a sequential scheduling and keep the 1 Hz publishing frequency. On
the other hand, having one VME bus for communicating with all four cards makes it
impossible to parallelize the parts of the process that consists of any kind of communication
with the cards.

Hence, we decided to start the acquisition to all four cards almost at the same time and
benefit of the acquisition’s parallel nature. In this way, we spend half of a second for
acquiring the data to all cards and keep the other half for processing them before publishing
the total intensities. The process sequence of the data depicts in figure 3-6.

Gain

Averaging Calibration ST Storage

Figure 3-6: Data Process Sequence

3.1.5.1 Look Up Tables (LUT)

The integrator itself as well as the difference between the two integrators in the system
is the main source of the overall non-optimal performance. In order to comprehend with this
and treat both integrators as a black box, we performed a set of measurements in the

36

laboratory analyzing the linearity of the data. The results of this analysis can be summed as
follows [17]Error! Bookmark not defined.:

e All measured integrators exhibit non-linear behavior, which is not the same for
each one and thus if corrected, it should be corrected per integrator

e An additional non-linear behavior is exhibited in between each two integrators,
due to the difference of their individual non-linear behavior

e A linear approximation of the integrators’ output is not enough to erase these
non-linear components and thus higher order polynomial must be used instead

We decided that a reasonable approximation that would correct the non-linear behavior
quite decently — relative to the other two systems — is a polynomial of degree 5. Of course
this would impose further delay in the process of the data and hence we decided to measure
each ADC approximation for each integrator and store these values to a unique comma-
separated values (CSV) text file. Each file is unique per mezzanine and is named out of its
serial number. It consists of 16384 text lines — the possible ADC values since they are 14 bits
long — and each line consists of one integer — raw ADC value — and two floating values —
corrected value for integrator 0 and 1 accordingly. Lastly, all LUTs are stored in our NFS
section’s directory so that they can be accessible from any FEC.

3.1.5.2 Averaging and Base Line Restoration (BLR)

Averaging the samples per bunch slot, as they come out of the LUTs, reduces the
fluctuation of the signal caused by noise dramatically; this is due to the fact that the useful
signal — beam — always comes at well specified moments during the RF cycle [7]. Hence, the
more data we have to average, the clearer the result is.

Furthermore and for restoring the data’s base line, we introduce a new algorithm based
on the measurement of pure noise in the 3us abort gap® as well of the noise at each empty
bunch slot. Hence, we can summarize the algorithm for the BLR as follows:

¢ Find minimum after the LUT correction and averaging
e Specify the noise samples out of the 3564 which satisfy the following criteria:
o The measured value falls in the interval of <min; min + TH>, where TH
is a threshold value specified by the user
o The position — bunch slot — of the measured sample is at least VS
samples away from a non-noise sample, where the VS value is set by the
user including 0
e C(Calculate the mean value of the selected noise samples
e Take away the calculated mean value from all the 3564 samples

An example of the above algorithm is depicted in figure 3-7. For this example the VS is
3, while the TH is of no significance. The samples that are considered as noise and thus are
used for the calculation of their mean value are specified by the yellow regions.

* This is not actually true, since a limited amount of particles is always present and this can disturb the
measurement [17]

37

Vs Meazured beam Vs

zamples
1 (] (] (] i (]] (] i (] 1 i i 1 1 i
WALID NTESE SAMPLE ATTEIN WALID MORSE LAMPLE AFGEIN

C1|2)3|#|5[6| 7|8 |F LOMLLITAIILA5T617| 18152021 TN 302752613728 30 3113 33)3435) I6{I Y38 320181 21183 1284145) 26 ra

—— 1 FHIN

— B

Bunch slot Measured noise Droop due o Measured noisz + droop
number zmples FECT LF cuc-off zamplas

Figure 3-7: An example of the BLR algorithm with VS=3. Only the yellow region is considered as noise [17]

3.1.5.3 Calibration of the data
Calibration of the data is called the transformation of the ADC corrected values to the
number of charges. This is done by applying a simple linear equation to the measured data:

NP =k x ADCcorrected + q (3.1

where k is the calibration coefficient and q is the calibration offset, which both are normally
found by calibration [2.2.1].

3.1.5.4 Gain Switching

As explained in chapter 2.2.1 both bandwidth channels provide two dynamic range
measurements. Our software is responsible for the proper and automatic setting of the correct
dynamic range, which depends on whether a bunch slot measurement exceeded a defined
threshold. In order to avoid switching between gains when a measurement approaches the
threshold we implemented a hysteresis in the switching thresholds. Hence, instead of one, we
introduce two switching thresholds, settable by the user in ADC bins:

e CHTH(high) — this threshold is applied when the current measurement was
performed by high gain measurement channel to switch to the low one, if at
least one of the measured data exceeded it

e CHTH(low) — this threshold is applied when the current measurement was
performed by low gain measurement channel to switch to the high one, if none
of the measurement data exceeded it

3.1.5.5 Phase Scan

Phase scan is the observation of one bunch intensity — the maximum one — with its four
neighbors (two from each side) when applying by brute force all 16 possible values for the
phase delay expert setting. By changing the phase delay, the user can change the signal’s

38

amplitude and that is why this procedure is very important. The graph that comes out of this
procedure can help the user to determine the appropriate phase delay setting in order to
maximize the signal’s amplitude. The following figure depicts one example of such a
procedure that was performed” at system C, using a python script.

Amplitude vs phase top mezzanine
200 T T T T T

Bunch slot 3267

Bunch slet 3290

150 Bunch siot 3391

100 — ; _

measured value [-]
(%)
o
|
]

0 2 4 3] g 10 12 14 16
Phase [-]

Figure 3-8: phase scan

3.1.5.6 Server Architecture
There are four DAB cards in LHC system C that measure the intensity of the beams
using the FBCTs, one for the High and one for the Low Bandwidth measurements for each
beam. Hence, we created a FESA class, BCTFRLHC v6, with four instances — one per card.
This server has two real-time actions:

e Acquire — where all the functionality of the server is implemented, such as data
acquisition, process, BLR and storage. It operates every second.

e XpocAction — which is responsible to copy the history of the last 1000 total
intensities as calculated by Acquire, as well as their time stamps to a different
server at any beam dump event for diagnosing a possible reason for it

The properties that interface the server are:

o Setting — where the user can specify/observe the settings relative to the
acquisition

e CalibrationSetting — where the user can specify/observe all the settings which
are not relative to the acquisition

e LoadLUT — where the user can upload and clear the LUT for each mezzanine

e Acquisition — where the user can observe the total, bunch and history intensities
for both mezzanines as well as the selected ones

* performed by D. Belohrad

39

e FExpertAcquisition — where the user can observe the intermediate values before
reaching the desired total intensities, such as the data after the LUT and BLR

e XpocData — where the user can observe the data copied from the XpocAction
before being transferred to the server

3.1.5.7 Client — Interface

We developed the BCTFRLHC v6 expert GUI in Java and organized it in five
packages just as the BFECTSR ExpertGUI [3.1.4.3], figure 3-3. The class diagram of the main
part of the expert GUI is depicted in figure 3-9. This is the part that interfaces the server’s
properties Setting, CalibrationSetting, LoadLUT, Acquisition and ExpertAcquisition as well
the graph from Phase Scan. These properties are organized in two areas — left and right. All
the setting related panels — Setting, CalibrationSetting and LoadLUT — are placed at the left
area as tabs whereas all the graph related panels — Acquisition, ExpertAcquisition and Phase
Scan — are placed at the right side again as tabs.

40

a Communication
S Manager

& woiegater stenec(DatabroviterL e Siogvats
@ recenelipdie pasiehto Datalag Fvod

—_—— e — e ———— —— e ——

Data
= e
e storage

propenty
oo a3 exgar BETF MG ey

s Seias
»esecyhane: s
 sovowang sray
& g St
© earedrt o
A getPreicistyvord
@ gutin wOatatlagi) vodt
<chas Casses ® repaterListeneriPropertyL stemer) vt
e LB @ gt e e
L e PR e,
Ecln ot g
i i
et sivy Srloed il
% Ay Bl = totainien sty
Fiormsmeeg - i
Erlpaiiing o e = pafichirtenstyBot doutrell
@ setfekislivod @ settingProperty <]
: e ek M O
o = creBunsety. doas
 stoceLut somg < it o Lot v
P © O ot i i
b r; -
P bl i
sy e ot
o
L .
[
& gauRCs Ao S0y © cercacimtsuste fosl
scsngProperiy 0.1 © GetCalbContbcariOaaaty Sty e ————
@ et) © camaseScinaet it
@ eSS Stma © gtheont eat
" © gaan) o
P onsThmeTn o
sragivos © omtncsmione e
stttk Senurvod P
© petitoryimensayBat ydoutiel] it 3 .
P i =
o
@ simpieQueue<t>
e e e PR eyt
Vrcatireott oy
]
o . ——
T 2
! s
| gyl
[| X
=,
e (SRS SRS T PSS S ——— L - e
R
o Grakasenarae
= bncncut anon
1 g b
et T P & St
: ExpartSattngPans!
oo s o ETTRE 5 i) of e o o
 rowhbOTams: Aowhane! et =
= kst umarat FoPel el || Pttt . s
= rontuncrsw oy [| = owTeakienaty: el 5 i
R
= romtuses Bummsoanet W i . - T
. o = rowtomsusshoo Rt | tinescan
T serarainio g pessiainior vt R | 5
@ LoadLUTRanel), - =
s e e BETPRLAG 50 detnepaoet; o4 e T
et T RowPanel defneicionsd) 1ol o
o ,
A2 Boween i E,Zfis pe
J— cxcon dousel
= Sttt o | iy
i tgintan o e
i o -
o ryiea
Vit I i e Vay
e e & RowComboBaxf
o ity
oy et
T fouaded % vt ooy 4 Pt sl |
e T w
& gefinesciona(yvod bl JLabel
* Smamiros St ot e
somaranat vt F
. et et
f st
cormectedtainieapn 4 1 / ot
et
o Pl e | [
@ tchThread vl @ addAnoiherPASirng, foe] Lot @ run)vod
e e mper BOYERLMC_vE GUI ' glratversosi® g
Teeitieesencne o1 7 A
S st rriagom
st gor srng
& cocrsamcupec
& bty
s ety tovsel
= sy SechPt i T
£ epmsmaaog dmi]

= natoryniansaySor doubied

Uyt venOupa T[S Sy w P S0aell 8
o rungvoer

@ User interface
(Gun

Figure 3-9: BCTFRLHC _v6 expert GUI UML class diagram (without comparison window)

41

In addition, we implemented a comparison window among the three systems — A, B
and C — comparing the bunch intensities among the FBCTs of these systems and the total
intensities among the FBCTs of these systems as well as the DCCTs of system A and B. Due
to the lack of the calibration mechanism, we decided to implement this comparison window
as part of the expert GUI for the FBCTs in system C, in order to ease the setting of the
calibration coefficients and their monitoring. This comparison window’s main purpose is to
calibrate our FBCT’s implementation of system C, relative to the existing implementations in
system A and B, as well to cross check the accuracy of the data that our implementation
provides. The class diagram of this comparison window is depicted in figure 3-10.

42

oty
e el Commumication
e S e
=
el
Data

e Intermediate

storage

Usar interface
(=)

e s s

|

i

|

(3 et 8 1 naae Y
s e
T r——EETA N e
o
= e F B ot
- R p— P 8L ki)
g g
- my——TTR_§1 S
ity
- e ——rri B S

|

!

il
il‘g
i

|

*i
Ez

|

|

B

T Gy
ke
e e et e 4 8
Vet =y
- S
- e .
2 e S
]
= et

/

o

Figure 3-10: Comparison Window UML class diagram (part of the BCTFRLHC _vé6 expert GUI)

43

3.2 Technical Implementation

After analyzing the high level of our implementation for both systems — FBCTs in the
SPS and LHC — we will try and give all the technical details that concern the implementation
of the common tools — such as the rapper, tester and dabInfo — used by both systems
independently as well the specific details by both systems individually.

3.2.1 Wrapper — Common Implementation

3.2.1.1 Constructor

Since we are using two libraries to access our hardware, they should be initialized
somehow and this is done in the constructor of the wrapper class of our implementation.
There, the ioct/‘s function to open the device driver node is being called with two arguments,
the Logical Unit Number (lunLogical Unit Number assigned to the module) and the Minor
Device Number (chanN -- Minor Device Number. There can be several entry points for
current Logical Unit Number (ChannelNumber).). It returns the file descriptor with whom all
the library’s functions are called.

The dal’s function to enable the access to the device is being called with four
arguments, the name of the device (as specified in the Data Base), the method that will be
used for the access (IOCTL, IOMMAP and IODMA), the LUN and chanN. It returns as well
a file descriptor which is used when any of the library’s methods are called.

3.2.1.2 Single-value Registers

For reading the single-value registers one can call the appropriate wrapper’s method
and pass a pointer to an integer as argument. The method is calling the ioct/’s function to get
the register’s value which returns a result of that action, if succeeded or failed. This result is
stored in the address that was passed as argument to the wrapper’s method, while the value of
the register is being returned as unsigned long at the end of the method.

For writing a value to the single-value registers, the mechanism is quite similar with the
above, with the difference that the value to be set is passed as an unsigned long argument
along with a pointer to an integer. The method is using the ioctl’s function to write the value
to the register and stores the result of that action (succeeded or failed) in the address passed
as argument. The method doesn’t return anything.

3.2.1.3 Multiple-value Registers

As for the multiple-value registers, we’ve implemented two ways of reading them. First
is the type of methods that expect two arguments, one pointer to unsigned long and second to
integer. This type of methods read the whole register and store it to the memory where the
first pointer points and the result of that action to the second one.

The other type of methods that reads multiple values, take three arguments. One pointer
to unsigned long for the result, one to an integer for the action’s result as before and one
additional integer to specify how many values to be read.

44

=)
=)
=)
=)
=
=}
o
o
o
=)
=)
=)
=)
=)
=)
o
o
o
o
=)
=)
=)
=)
=
=)
=)
o
o
o
=)
=)
=)

=}
=
=
=
=)
=
o
o
=)
=)
=)
=)
=
=)
=)
=)
o
o
=)
=)
=)
=}
=
=
=
=
o
o
=)
=)
=)
=}

=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1

N
[0}
%
o]
o]
8’
)
~
™~
S
=
i
Al

There are also some methods to process the data that need to be set to the device before

any action. These are the bunch selection which comes as a string from user’s input. A parser
The parser takes the string as argument and splits it to © * and °,” to find different

For writing this kind of registers, we’ve used the exact same implementation as above,
selections. Then, it calls a private method to define if there is a region requested or a single

with the only difference that we’ve used the appropriate libraries’ functions for writing
instead. Of course now, the first pointer points to the address where the values would be read

and not written, meaning that became the source from destination.
was needed to be implemented in order to transform the user-friendly string to the array of

hexadecimals that the device can take as setting through the CBunchSelector register.
bunch by searching the ‘-’ character. And finally another private method is called to do the

appropriate calculation and set the corresponding hexadecimals to the CBunchSelector

register. The procedure is repeating itself until it reaches the end of the string.

3.2.1.4 Setting processing

User's input

45

register organization

CBunchSelector
Figure 3-11: Bunch Selection Transformation from string to a set of hexadecimal

Tester — Common Implementation
The tester class was created at first to test the communication with the device. At those

days, it did nothing more but to read and write the registers in order to make sure that every

one of them behaves the way it should.
In the meanwhile, and as the project evolved, we found the need to develop new tests

more relative to the acquisition behavior of the device. Hence we implemented a loop that
asks the user to enter the number of bunches and turns for acquisition while checking if this
input is reasonable — no zero bunch selection for example. As it was described in the previous

3.2.2

chapter, setting the bunch selector register is something that has to be done with great care,
since errors in that procedure can mess the data and are extremely difficult to be spotted. That
is why we implemented a CBunchSelector “parser” in the tester (which was moved later on
to the wrapper). This parser is iterating the CBunchSelector memory (128 of doubles) and
prints them as hex, so that we can debug its setting procedure.

Furthermore, the acquisition starts in a loop so that we can simulate real time conditions
and the data are fetched from the device before passed to a method that decodes and prints
them. The selection of the data is usually big enough and thus very uncomfortable to be
printed in the console, hence the routine that does this job can take two arguments that
specify two limits in order to print only the specified first and last samples.

The decoding of the data, which was moved to the wrapper later on, has to split the data
as it was read from the device in the middle. Take the left part first (16 MSB) and apply a
sign correction after striping the 14 less significant bits as follows:

temp = sample & 0x3FFF; //keep only the 14 LSB
if{temp < 0x2000) Y/

data = temp ; // sign correction
else /4

data = temp - 0x4000; y/4

integrator = (temp & 0x8000) >> 15 //MSB of the sample
saturation = (temp & 0x4000) >> 14 //2nd MSB of the sample

Figure 3-12: Sign correction of the data in the code

The same procedure must be followed to the right sample as well (16 LSB) before
moving to the next element in the CBunchSelector memory. Special care should be taken
when the number of samples — number of bunches * number of turns — is odd, in the sense
that we keep only the desired and correct data. We achieved that by repeating the above
procedure of splitting, striping and correcting the sign of the data one time less than is needed
and taking modulo of the number of samples with 2 into account. In this way, we repeat the
procedure for the left sample (16 MSB) and the right one (16 LSB) only if the modulo is 0.

3.2.3 Dablnfo — Implementation

For the implementation of the dabInfo utility, we need the user to specify the LUN
number of the DAB that he wishes to retrieve the information. After taking our Hardware
expert’s request under consideration, we agreed on having two ways to do that. If no
argument was passed while running the application, a loop would ask the user to provide an
appropriate LUN number. On the other hand, the user can directly pass this information with
the running command.

DabInfo does nothing more than reading directly (without using the wrapper class) 9
registers relative to the firmware, serial numbers and the status of the device — FWCodename,
FWRevision, FWDate, SNDAB, SNTop, SNBottom, SNPIM, Command and Debug — and
present their contexts in a meaningful way after processing them if needed.

46

For example, for printing in ASCII format the firmware codename, we split every
element of the register at 4 pieces of 8 bits each and print each one of them as character. A
code example is the following:

charc; // temporary variable for printing
for (inti=0; i < 4; i++) { // register's length is 4 long words
for (int j=0; j<4; j++) { // 4 sets of 8 bits for every ASCII character
¢ = FWCodeName[i] & OxFF; // keep only the 8 LSB of every long word
printf ("%c", c); // print them as character

FW(CodeName[i] = FWCodeName][i] >> 8; // move to the next set of 8 bits

Figure 3-13: example code for ASCII parsing

In a similar way, the FWDate has to be processed in order to extract the information
about the day, month, year and time of the firmware compilation. Furthermore, and for the
status (Command) and debug register we had to implement two hash tables, one for each
register, with the possible status and debug states and print the corresponding message
depending on the contexts of the appropriate register. An example of the output information
when running dablnfo at the lab is the following:

47

atopalou@cs-ccr-abbid:~

Fle Edit View Terminal Tabs Help

[cfv-86B6-bidevl2] fuser!atopalou!fesafBFCTSR!vZlafCOHMON > ./dabInfo.L865 @ Z;
LUN: © opened with fd: 3

__FwCodeName
FIMDABE
_FwRevision
0x165
_FwDate |

Compilation Date: 4/9/2012 at approximately: 11:20

_SNDAB
0xT9000080e
0x320daadl

_SNTop
Bx5600000e
Bx322fe201

_SNEBottom
0x4800008e
0x322a7e0l

_SNPIM
OxTFFFFFre
OXTFFFFFFF

Status:
LHC TIMING: LHC timing detected
PLL LOCKED: PLL is locked and produces 128MHz system clocks
POWER SUPPLY IS OK: all necessary power supplies are ok
TIMING IS VALID: STATUS IS LHC TIMING is walid
Command Register: Bx5f200

Debug
Reload Number For Comparison: 0x@
Debug Register: 8x20

[cfv-866-bidevl12] /user/atopalou/fesa/BFCTSR/v210/COMMON = I

Figure 3-14: example run of the dabInfo in the lab

3.24 SPS

In this section we are focusing on the technical implementation details of the FBCTs in
the SPS ring. We describe what changed in the software and in what way. Finally we describe
the expert GUI that did not exist before.

3.2.4.1 Baseline Restoration (BLR)

The implementation of the new algorithm for the baseline restoration searches the
acquired data for the minimum value. In order to detect and ignore extreme values, this is not
enough. Hence, in the same loop, the minimum neighbor is determined so that its distance
with the currently examined value can be tested and then decided if it will be considered as
valid value or an extreme one.

In this way and within a single loop the minimum value of an acquisition, ignoring any
“undershoots” is determined. Then the user setting that specifies the noise area is added to it
in order to create a threshold that determines the samples below it to be considered as noise.
Continuing in the second loop the average value of these noise samples is calculated, which is
then removed from any sample in the acquisition. In this way, what is considered as noise
moves to the zero area of the y axis. Figure 3-2 shows such case.

48

3.2.4.2 TURN BY TURN acquisition

For the implementation of the new real time action rtTurnAcq, we basically combined
the rtStart and endCapture into one new real time action with different settings. The main
idea is the same; the rtTurnAcq starts the acquisition with the settings that are already in the
device, reads the data back, decodes and calibrates them before exiting.

This acquisition mode acquires a full bunch selection for 500 consecutive turns (instead
of 1 for the REPETIVE mode). This number is the limit of the first dimension of the
intermediate and final buffers (number of measurements for the REPETIVE mode) which we
also use in rtTurnAcq but storing the turn instead of the measurement in their first dimension.
For the REPETIVE mode, 500 measurements every 40msec is more than enough and is never
actually reached. As for the TURN_BY TURN mode though, this number is really limiting
the amount of data acquired, hence the precision of the measurement, when the capacity of
the device storage exceeds this limitation by a factor of 2.

The main compatibility problem about this issue comes from our clients, people in the
CCC who develop their own GUI applications to interface our servers. Their main request is
to change their applications as less as possible to preserve stable releases of their software
solutions. That is why we decided not to increase the maximum number of
measurements/turns at developing time, but later on in the future and after we assure that the
new version of the server works fine and stably.

Another implementation issue that appeared was the synchronization of the starting
point of the real time action. The warning that starts the rtTurnAcq is 20msec earlier than the
beam’s injection. If we started the acquisition at this moment, we would acquire mostly noise
and only a small fracture of the actual beam’s intensity. Taking the limitation in our
acquisition data that was introduced before under consideration, this would turn our new
acquisition mode useless. To make things worse, this is the same event that wakes rtPrepare
and serious problems would appear if both real time actions tried to communicate with the
device since there is only one bus for this communication.

To avoid these problems, we had to wait some time — 18msec — just to assure the non-
simultaneous device access as well as the acquisition of meaningful data. We implemented
this delay using another FESA class that was created by our group for abstracting the global
timing events, named LTIM, which gives us the opportunity to specify such settings as delay.
We choose to implement this mechanism rather than using simple sleep commands, in order
to reduce the useless CPU usage as well as preserving the wright synchronization among the
real time actions.

3.2.4.3 Client — Interface

For the implementation of the expert GUI, we used the BasicFrameBuilder which was
created from our section for abstracting the creation of certain useful toolkits such as the
RBA toolbar as well as the device iterator. The latter — visible on the left side of figure 3-15 —
creates a thread of the application for each device (instance of a FESA class) whiles the
former — visible on the right side of the same figure — takes care of the privileges each user
has for accessing each server.

49

B erCisR ExpertGUI (=] B3 |

File [Devices | Configuration Help “[E ~ RBA: atopalou

Z BECTSR| 210% civhadbetir b GDOODODOODOO0O0O000D0D0O003H73 I
TSI TR SPS-BC IR 1450

Figure 3-15: Upper part of the BFECTSR_EpertGUI

The TimingPanel is implemented by our section and its main purpose is to abstract the
cycle multiplex for each accelerator. In this panel and at the right side, the user can see which
cycle is active at any moment as well as the sequence of all active cycles for a given
accelerator. At the left side of this panel, the user can choose by a simple click, which cycle’s
intensities he wants to observe. This information, as well as the type of the action the user
requested (GET, SET, SUBSCRIBE and UNSUBSCRIBE), is visible in every panel of our
application since things can complicate quite fast, if more than one cycle are observed at the
same time.

In the figure 3-16 the cycle selection is visible inside the green box, where the green
arrow points, while the sequence of the active cycles are inside the light blue box, pointed by
the light blue arrow. Inside that box and with a green color is the active cycle for that specific
moment while the red numbers on the right side of each active cycle is its duration in
seconds. Lastly and inside the purple boxes is the last action as well as the cycle for which it
was operated. In the same figure the Setting as well as the Acquisition panel is visible.

B BFCTSR Fqerd GLIT

Seiting | Dxpan Setting

~
: : ENOS
Last Action: GET e . i
GET SUBSCHIBE UMSUISSCRIBE
Last Action's Cvche: CHGE1 |

| ¥ Ag._n = FR x| [& ENEEYER
| Acquisition CNGS1 - Sep 7, 2012 11:50:41 AM

©r

| totalirtemsity and totatietensitytast Acquisition CIGS1

Tiam Acquisiion Delay: |0

Acquission Mode: REPETITIVE - || |

Phase Fast: 4 | i \
|

taneny Thrass: 0.2 15004

Mtensly Thiess LERAE (02 | v | \

Sansimang LOW - |1 i

GET SET

Qs mearStamp

SPSHCTRLINSD

Figure 3-16: BFCTSR Expert GUI — Acquisition Tab

The UserData panel hosts a plot with the individual bunch intensities per measurement.
There is also a scroll bar to iterate the different measurements as well as a text-field where
the measurement offset in milliseconds is indicated. For example in figure 3-17 we can see
the second measurement for the SFTLONG?2 cycle with 41msec offset.

50

BN BFCTSR ExpertGUL

File Devices Configuration Help

. [@ + RBA:atopalou

| Setting | Expert Setting : | Actuisition \ User DataExt | Bunch Acquisition Panel
Last Actior: fGEﬂ
I . l -
Last Action: |GET : Last Action's Cycla: E_T'FTLDNL 2
I 3
Last Action’s Cycle: lenast ;i GET SUBSCRIBE | UNSUBSCRIBE

| |-11 [«

(BRI E L EaEE e -

.|| UserDataCalib SFTLONG2 - Sep 7, 2012 1:58:36 PM &2
P

Turn Acquisition Delay: 0

r - 3 futensity Calibrated UserData
Bequisition Mode: IREPETITIVE !v| :

— e
Phase Fast; 4 :ann- II% | |,|I'. "

Intensity Thress: |ﬁ 7 | /[I W Hu\maw%

300 1
1

i 4 |
Intensity Thress LBW: (0.2 [
ntensity Thress o 1 z00- g: \I
Sensitivity: Low !v|] .I i

— 1 U \

| GET | SET | (] o ey g
0 100 200 300 400 500 500 700 800 900
— oW —— ® cursor BancEN

SPSBCTFR31450

Figure 3-17: BFCTSR Expert GUI — UserData Tab

Lastly, the BunchAcquisition panel hosts two 3-Dimensional plots, one for each
mezzanine. These 3D graph components were experimentally created by our group and found
to be quite useful in our case, since we can have a global idea of the individual bunch
intensity measurements in time at once. The data that are being presented by both
BunchAcquisition and UserData panels are the same — the two dimensional arrays from the
server — only with a different representation. The UserData panel is very useful for the
individual study of the measurements whereas the BunchAcquisition is ideal for the whole
picture of the measurement. An example of the latter panel can be seen in figure 3-18 along
with the 3D pop-up graph.

51

Figure 3-18: BFCTSR Expert GUI — BunchA cquisition Tab

3.25 LHC

For the server implementation in the LHC ring, we decided to keep the four pointers to
the wrapper class — one per DAB card — apart from the shared memory. The design is such,
that either way, we iterate through the device collection — four DABs — in order to start the
acquisition, read back the data, set the settings and so on. This iteration is done always in the
same order and it starts from the device in lun 0 — HBW for beam1 — and it goes up to the
device in lun 3 — LBW for beam?2. Hence, we create and initialize these four pointers to the
wrapper class in the constructor of the real time classes, BCTFRLHCRealtime and after
storing them to an array in the same order of the devices, we access them through our server
classes using the keyword extern.

3.2.5.1 Look Up Tables

As described in chapter 3.1.5.1, there are two LUTs per DAB card — one for each
mezzanine. The LUTs contain the signed corrected ADC values (-8192 — 8191) and the two
corrected values — one for each integrator. We implemented the LUTs in software in two
arrays of floats per LUT — one for integrator 0 and one for 1. We used the ADC values as
indexes to each corrected floating value for each integrator’s array, after eliminating the sign
correction by subtracting the constant value 8192, in order to have proper positive array
indexes. These arrays are stored in the device shared memory, so that they can be accessed by
any server class at any time.

The implementation of the software LUTs is done in a custom class that is accessible
by any class of our server. This class has hardcoded the path where the LUTs are placed and
takes a pointer to a BCTFRLHC device as a constructor’s argument. The array of the wrapper
pointers is also visible in that class using the key word extern.

52

Furthermore, this class has to methods:

e clearLUT(int) — which clears the software LUTs for the specified mezzanine (0
for both, 1 for the top and 2 for the bottom)

e updateLUT() — which loads or reloads the LUTs according to the settings the
user has provided in loadLUT property

By clearing the LUTs, we mean to make them (1:1) transparent in order to avoid our
server from crashing. In other words, the LUTs return the same value that was used for
indexing, without any non-linear correction. This is also very important to check the raw
ADC values as they are read from the DABs, since they are not published at all to avoid
making our properties “heavy”.

Updating the LUTs at runtime, is a feature much appreciated by the users, since they
can change them (clearing/updating) in order to observe, as said, the raw values if needed. In
addition and if it is found that they need to be changed in the future, this can be done on the
fly without spending too much time rebooting the server.

The LUTs are loaded for the first time to the shared memory at BCTFRLHCRealtime
class which is responsible for any kind of initialization of the real-time classes when the
server starts. If by any reason this operation fails, the ones that failed are being cleared.

3.2.5.2 Averaging, Base Line Restoration (BLR) and Calibration of the Data

Since there is the 1 second time restriction, we tried to condense as many of the data
process steps as possible. Hence, when we iterate the acquired values <number of turns *
number_of bunches> and parse them through the appropriate LUTs, we also sum the
corrected values per bunch slot. Furthermore, in a second iteration <number of bunches> we
divide every sum with the <number of turns> to get the average bunch intensities after LUT
correction. In this iteration, we also specify the minimum average bunch values to be used
from the next steps of the data process.

For implementing the BLR as described in chapter 3.1.5.2, we decided to use two
arrays of shorts — one per mezzanine — that we called bitmaps and specify if a bunch slot
contains noise or beam signal — 1 or 0 accordingly. Obviously, these arrays’ length is the
maximum number of the bunch slots that can be acquired — 3564. In addition, these bitmaps
are initialized with 1, assuming that every single bunch slot contains noise measurement
which is the case when the beam is not present.

Subsequently, we iterate the averaged LUT corrected values from <VS> (see chapter
3.1.5.2) to <number of bunches — VS> checking if the value is above <min + TH>. If it is,
then it means that this bunch slot measurement should be considered as beam signal and
hence the corresponding entry of the bitmap is changed to 0. Then, we check the measured
values just before and after the current one, to specify if this bunch slot is at the beginning —
the previous value should be below <min + TH>, end — the next value should be below <min
+ TH> — or in the middle of the beam. If any of the two former cases appear, we also change
the bitmap for the according bunch slots — previous or next — to 0. This is done for both top
and bottom mezzanines.

53

Furthermore, we iterate the first VS values as well as the last ones in case there is beam
signal at these bunch slots, in which case we change the bitmap for these bunch slots to 0. By
the end of these iterations, we have all the information needed to calculate the mean value of
the noise in the bitmaps.

Thus, we iterate once more the averaged LUT corrected values <number of bunches>
and we sum the values that have 1 at the corresponding index of the bitmaps, increasing also
a counter for every noise sample. In this way we specify the mean value per mezzanine by
dividing the sum with the counter.

Lastly, we take away the just calculated noise mean value from every sample at the
same time we transform them to number of charges by applying the calibration components.
Hence, the equation 3.1 is transformed to the following:

NP =k * (ADCcorrected — noiseMeanValue) + q (3.2)

In addition, this is the iteration where we sum the calibrated values — number of charges —
and calculate the average total intensity for both mezzanines, that one of which will be
published. We also find the maximum value as well its bunch slot that will potentially be
used by the phase scan actions.

3.2.5.3 Gain Switching

In order to implement the gain switching in software, the user provides two switching
thresholds in ADC bins. But these thresholds are applied to the data after their calibration — in
number of charges — and thus, the same transformation (equation 3.2) must be applied to
them.

After transforming the thresholds, we read back from the shared memory which was the
previous selected gain, and apply the thresholds accordingly. If it was the top mezzanine,
then we iterate the averaged calibrated values and if we find at least one value that exceeds
the threshold, we break and we switch the gain to the bottom mezzanine. On the other hand,
if the previous gain selection was the bottom mezzanine, we simply check if the maximum
value that was already found from the calibration-BLR iteration exceeds the according
threshold and if it does not, we switch to the top one.

3.2.5.4 Phase Scan

For the implementation of the phase scan, we use the settings that the user has provided
at CalibrationSetting property and more specifically the phase scan action selection and the
bunch slot. We support two actions and thus the phaseScanAction field has three possible
states:

e DO NOTHING - is the default state of that field and as its name reveals, is
used for doing nothing as far as the phase scan procedure is concearned

e FIND MAX BUNCH_SLOT - is the state of that field that instructs the real-
time action to store at bunchSlot field the bunch slot with the maximum value of

54

the selected gain, as found from the calibration-BLR iteration, from the current
measurement

e DO PHASE SCAN - is the state of that field that instructs the real-time action
to apply the phase scan at the specified bunch slot, given by the bunchSiot field

The latter, needs 16 acquisitions — 16 seconds — to be completed. We keep the phase
delay that was last used for the phase scan, in a private field so that it doesn’t mess up with
the phase delay the user provided in the CalibrationSetting property. The values of the 5
bunch slot measurements are stored in different 2D buffers whose first dimension is the 5
different bunch slots whereas the second one is the 16 values according to the 16 possible
values of the phase delay. Each second, we increase the private phase delay by one and check
if we reached the end, where we set it to its initial value (0) and the phaseScanAction field to
its default value (DO_NOTHING).

3.2.5.5 Client — Interface

We implemented the BCTFRLHC v6 ExpertGUI, using the basic frame builder just
as for the BFCTSR ExpertGUI (see chapter 3.2.4.3) in order to take advantage of the
automatic implementation of the device list as well as the RBAC toolbar.

The expert GUI consists of two main tabs:

o Comparison Window — which interfaces the comparison application described in
chapter 3.1.5.7 — figure 3-10

e Device Window — which interfaces our expert GUI per device instance as it was
described in chapter 3.1.5.7 — figure 3-9

The Comparison Window consists of a row of buttons on top — Start / Stop, and two
tabs — one per beam. Each beam tab consists of two tabs as well — one for the history of the
total intensities and one for the average bunch intensities. The latter two tabs consist of a
toolbar on top and a graph at the remaining area. The toolbar is different per tab and that is
because there are different settings depending on the type of the graph.

55

WwyWedemlt ek e -

ekl ety s by s et

——DCCTA — DCCTS — BCTFRAHEW — BOTFRCHEW @ cursor time f5]

Figure 3-19: Comparison Window - total intensity history for beam 1

Hence, the toolbar for the total intensities tab consists of a group of checkboxes where
the user can specify the visibility of the available plots — these are the history of the total
intensity as calculated from DCCTA and DCCTB as well from FBCTs in all three systems.
Next to these checkboxes, lie a text-field and a button that allows the user to specify the depth
of the history he desires. This is achieved by changing accordingly the length of the First-In-
First-Out (FIFO) queues we use to create the history plots from all devices. In addition, a
reset button clears these queues, in case the user wants to restart the history monitoring.
Furthermore, we state which mezzanine was used to provide the total intensity as far as our
server is concerned in the next component which consists of a label and a combo box.
Subsequently, three sets of radio buttons lie next to the selected mezzanine that group the
settings related to the graph. The first of these sets specifies which bandwidth to plot from
each device — High or Low. The second set specifies the graph format — absolute, absolute
difference and relative difference — and the third one the references — DCCTA, DCCTB and
FBCTC.

56

| BTV | | i/ .y
w4 CAA MY A S L

N AN A A A AL AN A A A A \“

Y o T JAN TREAAN

——DCCTA — DCCTS — BCTFRAHEW — BOTFRCHEW @ cursor time 5]

Comparison Window 1| LHCBCTFRC4.B1HBW.

[
Figure 3-20: Comparison Window - total intensity history - absolute difference - for beam 1

By absolute, we mean that we plot the total intensity histories as we get them from the
devices. For the other two formats — absolute and relative difference — we use the values from
one device as reference — the user specifies which one he wants from the third set of radio
buttons — and we calculate the difference of the visible plots relative to the reference ones. In
the absolute difference format, we just subtract the reference values from the visible ones. On
the other hand and for the relative difference format, we use the following equation to
calculate the percentage difference between two systems:

(3.3)

The result of the absolute difference format is a graph of the difference between the
visible systems relative to the specified one in number of charges, whereas in the case of
relative difference is the percentage of this difference. In addition and only for the relative
difference format, if there is only one visible plot and at least one of the two settings — visible
and relative — is system C but without being the same to both settings, we make visible
another component which consists of a text-field and two buttons. This component is used to
calculate and apply the corresponding calibrating coefficient for system C in a way to
eliminate the difference as much as possible. This is achieved by calculating the next
equation using the values retrieved by equation 3.3 and the most recently used calibration
coefficient:

(3.4)

57

st oy

sty Wandess [3E s wes Cakcudaln seicsene
bamdwn i o reterence
B0gh O Lew O obwekas abmshdn 8 elsie O DCCTA O DECTE ® BCTIRC St S L.]

L e

time 5]

Figure 3-21: Comparison Window - total intensity history - relative difference for beam 1

As for the toolbar of the average bunch intensities tab, things are simpler since it
consists only by a smaller group of checkboxes and two sets of radio buttons. The
checkboxes are again to allow the user to specify which available plots he wishes to make
visible — these are the average bunch intensities as calculated from the three FBCT systems.
This is because the DCCTs do not provide bunch-to-bunch measurements. The radio buttons
are again to specify the graph settings as in the total intensity history tab’s toolbar but this
time without the bandwidth chooser nor the additional coefficient calculator component. The
lack of the former is due to the fact that system A and B do not provide bunch-to-bunch
measurements for the LBW whereas the coefficient calculator is focused on the published
values which are the total intensities.

[T S — B+ ik stmpaen

e
1okt ey antery | v e s ey

A |- »EEIERER
s ety o e - Sep 24, 712 L2000 W -

tewasty 0 pambar of coarpn b by e

| sen

Figure 3-22: Comparison Window - average bunch intensity for beam 1

58

Tin Dwices Comfiguation liely

i | eat

1ot wperiaty viory | v e bmsch infemdy.

i A - *NEIEEER
b kil compea v - Sep 24, 2017 (20810 PR
sutnanity 1w wambee of chargr

s phoes

¥ ncTrm

st oy

araph sating
bt Pt
nskn & sircte o et

SR BT Ietermnce

BeTiwe BCTPRA I BETIRE & BCTTRC

b ety ssmpairen

B~ ok oo

o

£
1568
1E8
7
it il TR L A it At A bl

oo N ‘\\‘m“\‘ i i

567

..\lw‘m i

Mml“ﬂ“ LL\IHJ i ! ”. t

vk w TV WH

"le”w‘w Al b

1000

1500 2000

3500

bunchsiot 1

Comparison Window /| LHCBCTFRC4.B1HBW.

Figure 3-23: Comparison Window -

average bunch intensity - absolute difference for beam 1

The Device Window consists of an area of setting — Setting, ExpertSetting and
LoadLUT — panels on the left of the GUI, that interface the corresponding FESA properties
and the graphics area on the right with acquisition panels — Acquisition, ExpertAcquisition
and PhaseScan. In this way, the user is able to spot immediately the reaction of his settings to

the data acquired.

Tin Dwices Comfiguation liely

| Setegs | Feperd Settign. | 10sd LTS

B~ o oo

ot s s cmE
% faie Samplens
Tttty Lo Sotected Merzain BOTTON - Total nemdy Dutlome+2 TTHE
P O Dok L |
| [
Phiase Scan Setmmge: ez
W Don Tep Betioem
ase scan action pomonms - - =
A e AEEEER
i sty - e 24, T012 BAL 0 L]
trch uet P
R Pt bty
s Doty
Ty s
Mosse i esvn
cotratincontcon: 2000 |
comcontome: 0 \
P \
Bottom Mezzanine:
Nosotmestat: 100 \
Ctbraton Concio: 1090120 \
comcuntorse: 0 \
swachtwesnoe 00 \
1000 1500 2000 2500 3000 3500
unchsiot
ComparisonWindow _LHCBCTFRC4B1HBW | LHCBCTFRCAB2HBW | LHCBCTFRCAB2LBW.

Figure 3-24: BCTFRLHC_vé6_ExpertGUI -

Acquisition Panel / Average Bunch Intensity -

59

Expert Settings Panel

.........

Figure 3-25: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Turn Intensity History - Settings Panel

The history tab of the average turn intensities under the Acquisition panel is exactly the
same graph with the fotal intensity history tab in the Comparison Window if the user selects
the appropriate settings from its toolbar. In the example shown in figure 3-25, one should
choose to plot the BCTFRC values at the beam 2 tab with HBW and absolute graph format as
graph settings. And this is true, only if the currently selected mezzanine (GAIN) from FBCT
in system C is bottom (Low).

The next two figures (3-26 and 3-27) depicts the impact of the LUTs at the data. For
this reason we plot the data as soon as they are parsed from the LUTs in the Expert
Acquisition panel, Data After LUT tab. In the first figure we cleared (1:1) the LUT for the top
mezzanine only so that the difference between the actual and the cleared LUTs can be spotted
easily. The second figure depicts the data after updating “on the fly” the top mezzanine’s
LUT.

60

T Dedces Comfigmation ety [S]ER TP
Seftiogy | Expert Seftings Losd LETY J Brouiion Panel | Fpart Acneiiion Passl | Phass Scan
ot sucio s CmE
st ofter LUT | ves e Burnch sty m AL s
[rerm—
Dom C Tep) Bettom
A e NS EEEE
Commeched Data . Sop 75, 012 %1750 AM o
traney or A Corseated Dats
Actien LT CLERR LT -
1 moos
e o =
e LIT: |
e d--—H-—H-H -
|
GET ST
EEL| 5000
4000
Directory Top:
JuseriswopisatacTeRLHCH noo000E32208701_d | (| 3000
Directory Bottom:
2000
[usermvopiaascrsHGABO00MGE 32281401
1000
o
0 10000 20000 30000 40000 50000 60000 70000 80000
— CorectedDataTop — CorrectedDataatiom ® cursor ltocat pmmctes
Comparison Window LHC.BCTFR.C4.B1HBW LHCBCTFR.C4B1.LBW LHCBCTFRC4.B2HBW /| LHCBCTFRC4.B2.LBW

I

Figure 3-26: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - cleared LUT for top
mezzanine

Tie Dedces Comfmration Hislp T
[ettmgs | Expert Setmgs | LosdLET | Wcousiion Panel | [xpert Acqeisiion Pasel | Phiass Scan
ot sucio s CmE
Disa after LUT | Aves g Biumsch Wsiaity i ALSC b
[
Dom C Tep) Bettom
A e NS EEEE
Conrected Dafa . Sap 25, 2012 S350 AM k]
Ietnany e A [——
Bction LT WOATE WY |-
- o >
s LUT:
_— 6000

Directory Top:

userbiswopidatalBCTFRLHC/ 000000E 32208701 _dq

Directory Bottom:

0 10000 20000 30000 40000 50000 60000 70000 80000

DstsTop — ComactedDtaBiottom @ cursor total bunches

Comparison Window LHC.BCTFR.C4.B1HBW LHCBCTFRC4.B1.LBW LHCBCTFRC4B2HBW [LHCBCTFRCAB2LBW |

f

Figure 3-27: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - updated LUT for top
mezzanine

In the average bunch intensity graphs in the Expert Acquisition panel, we plot the data
after averaging them and before restoring their baseline or calibrate them. In addition we also
plot the BLR components as they are calculated from the real-time action, in order to follow
the BLR procedure and have a visual and immediate clue of the impact of our Expert Settings
(figure 3-28). This is true only if the user chooses to plot one of the two plots (top/bottom
mezzanine) since these components are specified per mezzanine.

61

" Seftegy | Expen Settegs | Losd LuTs 11 Acrmantion Paet | [xpart Acerstion el | Phase Scan

ot s s I
TR S Diatia ftos LUT | Bvsinges s Wtervsiny i AL s
Len—
Torm O Dk
ot Top ® stiom
Phiane Scan Semgs: A e e EeEE
ADC Sep 25, b
pusescanacior DOMOTIENG v itnsny in AT [————
et et |
1o
Priase Detne
ot s vooe |
N e estmat san
—— 800
Calibration Coeficent: 1.0
Callb Coef Offset: 00
- 600
Switch Threshod:)
Bottom Mezzanine:
400
Naise Threshold: 500
Calibration Coefficent: |5.499267 200
Calib Coef Offset:)
o
Switch Threshold: oo
SET] 500 1000 1500 2000 2500 3000 3500
— recalcusadDsEt M Bt — Niss Teestld St @ cursor oy
ComparisonWindow | LHC.BCTFR.C4.B1.HBW. LHCBCTFR.C4B1.LBW LHCBCTFRC4.B2HBW /| LHCBCTFRC4.B2.LBW

Figure 3-28: BCTFRLHC_v6_Epxert Acquisition / Average Bunch Intensities in ADC bins - Expert Settings

In figure 3-29 a zoom of the same graph depicts the details of the BLR components for
better understanding. In this figure the minimum value as it was calculated by Acquire real
time action is visible with the yellow line as well the user setting TH with red. In addition the
area that is considered to have useful signal is painted blue for better visualization.

Seftegs | Expert Settiegs | Losd LETs 11 Acueution Paset | Fxpart Acqustion Pasel | Piass Scan
ot S mmSCi
TR S Dita afves LT | v inges Bnchy et eevsny i AL s
Jreee—
Yo 1 Doy
s Boin Tep ® Bettom
Phane Scan Sesmmgn: A e NE RN
v mge Trsch W onssy i ADKC . Sep 25, T 52517 WM ™
ase scan action pomonms v Ietnanty in ADE [——
[em—— " 12004
Phase Dy
To M i e | !i
Mot Tiwestat | |
. 00 |
Calibration Coefficient: |1.0 |
Calib Coef Offset: oo |
600
Switch Threshold: oo |
Bottom Mezzanine:
a00
Noise Threshold: 500 |
e (N ||| o
Calib Coef Offset: oo |
‘Switch Threshold: 0o ‘ o T e e e e e e e e
1760 7 1780 179 1800 1810
— recaloustedouta Bt MinBt — Noise Treshold Bt @ cursor [

ComparisonWindow | LHCBCTFRCABIHBW | LHCBCTFRCABILBW LHCBCTFRCAB2HBW | LHCBCTFRCAB2LBW |

Figure 3-29: BCTFRLHC_v6_EpxertGUI - Zoom at the Expert Acquisition panel / Average Bunch Intensity in ADC
bins tab

Lastly, in figure 3-30 the phase scan procedure is depicted for the bunch slot that was
found to have the maximum value.

62

VS ne Sarplens
Form O Dk wg
Phane Scan Seftage:
pase scan acton D PYASE S0 '-_
[-
L 0
Top Mo s
Merie Fle eatuad 100

Calibration Coefficient: 1.0

—re s

A [B [

Piuase S 9ot Top smmEranins - Sep 15, FI12 901556 AM

frtpents in pembar ot dharEer

Phuase faan fow Fop s s

— TurChSIOES — TurcSorssn

— CUNNSST — bUNCHSIOESZ — buNCHSIOESS ® curser

intensity in mumber of charges

Phase Scan for Bottom mezzanine

Calib Coef Offset: 00

Switch Threshold: 00
Bottom Mezzanine:

Noise Threshold: 500

Calibration Coefficient: 6.4992E7
00

Switch Threshold: oo |

Calib Coef Offset:

8E10

7E10

6E10

SE10

4E10

310

210

1E10

ComparisonWindow | LHCBCTFR.C4B1HBW

4 6

—— BURSNSIot833 — BURSRSISA0 — bURGKSIoIS31 — bunchSIolSS2 — bunchSIotSs3 @ oursor

LHCBCTFRCABILBW LHCBCTFRCAB2HBW | LHCBCTFRC4B2LBW |

Figure 3-30: BCTFRLHC_v6_ExpertGUI - Phase Scan

63

(O]

4 Results

Having deployed our suggestions of the FBCT servers for both SPS and LHC rings is
time to present and analyze the results of our implementations. This section is dedicated to
that and is divided in two subsections, one per server. This is important since, the requirement
for an operational FBCT system in the SPS ring was critical and hence, we couldn’t wait in
order to develop a unified system as it was first foreseen. Therefore, we developed this server
first and in parallel we studied the ways — as it was described in the previous sections — in
order to achieve the implementation of a unique FBCT measuring system.

4.1 SPS

The FESA class BFCTSR v210, our implementation of the server for the FBCT in SPS
ring, was deployed and is operational since 22/05/2012. Until now no problems had occurred.
On the contrary the CCC operators were quite happy to finally see this TURN BY TURN
acquisition mode as well that the new implementation of the baseline restoration is working

properly.

FESA Enell version 210

Figure 4-1: Total Intensity Measurement with FBCT for the SPS, CNGS1 cycle, REPETETIVE mode with the

previous version of the server

Until now, the operators were only able to see the whole history of the beam’s intensity
during a cycle apart from the first injection, since the acquisition started the moment the
beam was already present (see Figure 4-1). Having this history is useful but not if anyone
wants to observe the behavior of the beam’s intensity at the injection time.

And that is what is renovating with our implementation, for the first time, the operators
can see the intensity of the beam on the injection moment in great detail and thus they can
easily calculate the additional intensity that actually took place during the injection. This is
very important for the smooth operation of the SPS ring since several unpredicted behaviors
of the beam can be detected before they can cause its dump. What is more, and by specifying
the delay of the execution of the acquisition in milliseconds, the operators (users) can actually

64

choose how far they want to look in the cycle’s lifetime. In this way they can see a potential
second, third, nth injection during a cycle’s lifetime in great detail.

Safinn | Expent Swing [Rcwenmen | User Do | e et Paret

rrrrrrr

SPSACTIRI1ASD

Figure 4-2: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle, TURN_BY_ TURN mode

Last but not least, the baseline restoration is now dynamically adjusted and thus is more
precise and correct. This fact satisfied the users a lot, since they had many problems in the
past with the reliability of the server and as a result they had to dump the beam several times.

4.2 LHC

The large number of the client programs (Expert GUI and FESA) requesting data from
the FBCT system C, requires an intermediate proxy software layer controlling the data flow
between the server and the clients. In this way, low-level system load was minimized while
the system’s stability was gained.

In the following figures 4-3 and 4-4 a comparison of the beam’s 2 total intensity as it
was measured from system A and C is depicted. The first figure shows a low gain
measurement and although the curves seem to follow each other quite nicely, the yellow one
— system C — exhibits higher noise in terms of sigma than the other system.

65

Chart between 2012-09-30 00:34:00.000 and 2012-10-01 14:34:00.285 (UTC_TIME)

UTC_TIME

Figure 4-3: Beam's 2 low gain total intensity comparison among system A, B and C in the LHC

The next figure 4-4 is an enlargement of a small part of the previous measurement
visible in figure 4-3 as a brown box.

[Timesaries Chart between 20170930 00:500,000 and 2012.10.8% 14:M4:00 785 (FTC_TWME]

Figure 4-4: Beam's 2 high gain total intensity comparison among system A, B and C in the LHC

Already by the above figure, we observe that although the new system’s measurement
follows quite nicely the already operational one, is still noisier. This is mainly due to the
number of turns both systems are acquiring data for and hence averaging over. It appears that
having a 224 turn interval in order to suppress the white noise at system C, doesn’t change
much. The main difference as for the noise suppression comes from the averaging samples
and therefore, system A provides smoother measurements than system C since the former
acquires and averages over 900 turns whereas the latter over 25.

66

5 Conclusions and Future Work

After the presentation of our implementation of the two servers controlling the FBCTs
in the SPS and LHC ring and analyzing the results of these implementations, in this final
section, we restate our observations, we propose future work and we conclude.

5.1 Conclusions

As we mentioned in chapter 2.1.6, out of the several technics that measure the beam’s
attributes, the FBCT measuring system is a very important one since it provides with great
precision both bunch-by-bunch and total turn-by-turn intensity measurements. Additionally,
it is the only system that can be absolutely calibrated although this is not the current state. In
order to benefit the most out of this system though, several significant changes should be
made and hence, new implementation solutions for the controlling software should be given.

5.1.1 SPS

In this direction the first contribution of this Thesis is the delivery of a complete
software client-server scheme for the FBCT in the SPS ring. The server side of that scheme
follows its predecessor’s outline while benefiting from the new firmware’s design and adding
a complete new and renovating functionality — TURN BY TURN acquisition mode — that is
proven very useful. In addition, it corrects former malfunctions as for the data treatment,
making the server more dynamically adjustable to different use cases.

Furthermore, the client side of that scheme provides a different and more user-friendly
interface for the server introducing new ways of presenting the data, such as 3D-graphs and
2D-graphs that can be easily scrolled at the same measurement, on the contrary of the
graphical solutions that the previously used FESA interface provided.

5.1.2 LHC

An additional contribution of this Thesis is the study of another complete software
client-server scheme for the FBCTs in the LHC ring that will be able to be used in any
circulating beam installation in the future, including the already existing one of the SPS
accelerator. The results of this study as they were presented in the previous section reveal that
although this approach seems very promising, further work should be done in order to
implement a unified FBCT measuring system. This matter will be explained in more details
in chapter 5.2 but we can summarize here that only the averaging part of the data treatment
was found insufficient and hence needs improving, whereas the LUTs, BLR and Gain
Switching worked perfectly.

What is more, the client side of that scheme was found very helpful for the fast
development of this system since it provided the direct comparison among the other systems
of the same kind, in different ways. In addition and due to the lack of the calibration
procedure of the system, the ability of setting directly the calibrating coefficients such that
the measurements match the ones from the operational systems, improved the development
speed as well.

67

5.2 Future Work

As an enhancement of this work we need to improve the averaging procedure of the
data process in software. In order to do that, we will have to reduce dramatically the turn
interval — even to 0 — since it doesn’t contribute much as it was expected to the noise
suppression but impose a great delay in the acquisition time — a 224 turn interval impose
approximately 20msec delay at every acquired turn. And this is actually the limiting factor to
the number of turns acquired at our implementation since we agreed to perform a half second
acquisition in order to have enough time to process the data, hence 25 acquired turns with a
224 turn interval.

On the other hand, performing a full bunch acquisition that would fill the memory —
294 consecutive turns lead to 1047816 acquired samples at almost 25msec — hits again the
1Hz restriction as it may take 25msec to make the acquisition but it takes almost 400msec to
read the data from the DAB since there is only one VME bus of 1Gbit.

As a result, we intent to move the averaging part of the data process to the hardware by
changing the firmware again and adding a summing mode that would allow us to perform full
bunch acquisitions for a large number of consecutive turns removing the huge transfer delay
in a sense that we will always be fetching 3564 values from memory. All the functionalities
of the recently changed firmware — as they were analyzed in chapter 2.2.2 — should remain
unchanged if it is going to be used in other parts of the CERN’s infrastructure such as linear
accelerators and/or dump and transfer lines.

In addition, since we will be fetching averaged data from the DAB and not the integer
acquired values, the parsing through the LUTs should be transformed to a linear
approximation of LUT as it is described in chapter 3.1.2 of [17].

Last but not least, the proper calibration technic should be implemented in order to
achieve the maximum of the FBCT measuring system performance.

68

Bibliography

[1] CERN, CERN in a Nutshell, http:/public.web.cern.ch/public/en/About/About-
en.html

[2] CERN, CERN Structure, http:/www-dev.web.cern.ch/about/structure-cern

[3] CERN, Beams Department (BE), https://espace.cern.ch/be-dep/default.aspx

[4] CERN, Beams Department — Beam Instrumentation (BE-BI),
https://espace.cern.ch/be-dep/Bl/default.aspx

[5] CERN, Beams Department — Beam Instrumentation — Software Section (BE-BI-
SW), http://project-beam-instr-sw.web.cern.ch/project-beam-instr-sw/Welcome.php

[6] CERN, The Accelerator Complex,
http://public.web.cern.ch/public/en/Research/Accel Complex-en.html

[7] CERN, “CERN LHC: the guide”, Geneva : CERN, 2006

[8] Belohrad, D, “Beam Charge Measurements”, Geneva : CERN, 2011

[9] the FESA team, “FESA Essentials”, Geneva : CERN, 2004 (http://project-
fesa.web.cern.ch/project-fesa/binaries/documents/FesaEssentialsBundle.pdf)

[10] D. Belohrad, R. Jones, M. Ludwig, J. Savioz, S. Thoulet, “Implementation of
the Electronics Chain for the Bunch by Bunch Intensity Measurement Devices
for the LHC”, DIPAC’09, Basel, Switzerland, 2009

[11] D. Bishop, C. Boccard, E. Calvo-Giraldo, D. Cocq, L. Jensen, R. Jones, J.
Savioz, G. Waters, “The LHC Orbit and Trajectory System”, DIPAC’03,
Mainz, Germany, 2003

[12] H. Jakob, L. Jensen, R. Jones, J. Savioz, “A 40MHz Bunch by Bunch Intensity
Measurement for CERN SPS and LHC”, DIPAC’03, Mainz, Germany, 2003

[13] G. Bohner, A. Falvard, J. Lecoq, P. Perret, C. Trouilleau, “Very front-end
electronics for the LHCbpreshower”, LHCb-2000-047, CERN, 2000

[14] D. Belohrad, Technical Documentation “Digital Acquisition Firmware For

The LHC Fast Beam Current Monitors,
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/fimdab_technical_specifica
tion.pdf

[15] D. Belohrad, Development Documentation “Migration Guide”,
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/migration_guide.pdf

[16] D. Belohrad, L. Jensen, R. Jones, M. Ludwig, J. Savioz, “The LHC Fast BCT
system: A comparison of Design Parameters with Initial Performance”,
BIW’10, Santa Fe, New Mexico, United States of America, 2010

[17] D. Belohrad, Technical Documentation “On the Fast Beam Intensity
Measurements Algorithms and Correction Methods”,
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/on_the beam_intensity me
asurement_algorithms.pdf

[18] D. Belohrad, J. Gras, L. Jensen, R. Jones, M. Ludwig, P. Odier, J. Savioz, S.
Thoulet, “Commissioning and First Performance of the LHC Beam Current
Measurement Systems”, [IPAC’10, Kyoto, Japan, 2010

69

http://public.web.cern.ch/public/en/About/About-en.html
http://public.web.cern.ch/public/en/About/About-en.html
http://www-dev.web.cern.ch/about/structure-cern
https://espace.cern.ch/be-dep/default.aspx
https://espace.cern.ch/be-dep/BI/default.aspx
http://project-beam-instr-sw.web.cern.ch/project-beam-instr-sw/Welcome.php
http://public.web.cern.ch/public/en/Research/AccelComplex-en.html
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/FesaEssentialsBundle.pdf
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/FesaEssentialsBundle.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/fimdab_technical_specification.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/fimdab_technical_specification.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/migration_guide.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/on_the_beam_intensity_measurement_algorithms.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/on_the_beam_intensity_measurement_algorithms.pdf

[19] Jean-Jacques Savioz “Engineering Specifications BOBR The Beam
Synchronous Timing Receiver Interface For The Beam Observations”,
http://www.cern.ch/TTC/BOBRspec.pdf

[20] MEN Mikro Electronic GmbH A19/A20,
http://www.men.de/products/01A020-.html#t=overview

[21] CERN, Scientific Linux CERN 5 (SLCs),
http://linux.web.cern.ch/linux/scientific5/

[22] CERN, Design-Guidelines, logo-badge, http://design-

guidelines.web.cern.ch/fr/logo-badge

70

http://www.cern.ch/TTC/BOBRspec.pdf
http://www.men.de/products/01A020-.html#t=overview
http://linux.web.cern.ch/linux/scientific5/
http://design-guidelines.web.cern.ch/fr/logo-badge
http://design-guidelines.web.cern.ch/fr/logo-badge

