
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ,

ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ & ΔΙΚΤΥΩΝ

Σχεδίαση και υλοποίηση
συστήματος client-server για τη

συλλογή δεδομένων από
πειραματικές διατάξεις

επιταχυντών σωματιδίων του CERN

 Επιβλέποντες:

επίκουρος καθηγητής
 Συγγραφέας: Χρήστος

ΑΝΤΩΝΟΠΟΥΛΟΣ
Αθανάσιος ΤΟΠΑΛΟΥΔΗΣ

 Αναπληρωτής καθηγητής
Νικόλαος ΜΠΕΛΛΑΣ

5 Οκτωβρίου 2012

Acknowledgements

By the end of this Thesis, I would like to thank the section leader of BE-BI-SW section
at CERN and my personal supervisor Lars Jensen for the professional guidance and
the confidence he showcased in my skill set during my studentship at CERN.

I would also like to thank the project leader of the fast beam intensity measurements
(FBCT) for the LHC, Dr. David Belohrad for his guidance and excellent cooperation
on the FBCT project for the LHC.

Furthermore, I would like to thank Michael Ludwig for the time he spent talking with
me about the existing implementation of the FBCT servers in the LHC – system A and
B – along with other general matters that helped me evolve personally.

In addition, I would like to thank my supervisors of this Thesis Christos D.
Antonopoulos and Nikolaos Bellas for taking over the difficult part of the remote
supervision of this Thesis, their excellent cooperation and their suggestions and
corrections on this work.

Last but not least, I would like to thank my family, Theodoros, Chrysi, Christos and
Alexandros who helped me form a solid ground to evolve my personality and Eirini
who showed me how to do it.

Περίληψη

Ένα από τα µεγαλύτερα ερευνητικά κέντρα στον τοµέα της Φυσικής Υψηλών

Ενεργειών (High Energy Physics) είναι ο Ευρωπαϊκός Οργανισµός Πυρηνικής
Έρευνας (CERN) που έχει σαν κύριο σκοπό να µελετήσει τα θεµελιώδη στοιχεία της
ύλης καθώς και της δυνάµεις που ασκούνται αναµεταξύ τους επιταχύνοντας
σωµατίδια µέσα από µια αλληλουχία επιταχυντών (accelerator complex) και
οδηγώντας τα σε συγκρούσεις. Το CERN χρειάζεται διάφορα διαγνωστικά εργαλεία
που µετράνε τα χαρακτηριστικά της δέσµης σωµατιδίων προκειµένου να ελέγξει το
σύµπλεγµα των επιταχυντών του και ένα από αυτά είναι το σύστηµα µέτρησης Fast
Beam Current Transformer (FBCT), το οποίο µετράει την ένταση της δέσµης.

Λόγω του ότι το υπάρχον υλικό (hardware) του FBCT συστήµατος δεν έχει
σχεδιαστεί µε τον καλύτερο δυνατό τρόπο οπότε και δεν εκµεταλλεύεται όλες του τις
δυνατότητες, χρειάστηκε να αλλάξει. Ως εκ τούτου, το υλικό ξανασχεδιάστηκε και
απλοποιήθηκε ώστε να αυξήσει τις δυνατότητες του και να αποτελέσει τη βάση ενός
ενιαίου συστήµατος µέτρησης FBCT, το οποίο θα µπορεί να χρησιµοποιηθεί τόσο
στις γραµµικές όσο και στις µη γραµµικές (δακτύλιοι) εγκαταστάσεις του
συµπλέγµατος των επιταχυντών του CERN. Ακολουθώντας αυτές τις αλλαγές, στη
παρούσα διπλωµατική προτείνουµε την υλοποίηση ενός client-server λογισµικού
συστήµατος που θα ελέγχει το FBCT σύστηµα που είναι εγκατεστηµένο στον Super
Proton Synchrotron (SPS) επιταχυντή. Επιπλέον, µελετούµε το σχεδιασµό και την
υλοποίηση ενός ενιαίου client-server λογισµικού συστήµατος, το οποίο θα
αντικαταστήσει τα υπάρχοντα στον Large Hadron Collider (LHC) επιταχυντή, καθώς
και θα συνοδέψει µελλοντικές εγκαταστάσεις του FBCT συστήµατος στο σύµπλεγµα
των επιταχυντών του CERN.

Abstract

One of the biggest research centers in the domain of High Energy Physics

(HEP) is the European Organization for Nuclear Research or CERN Laboratory
whose main goal is to accelerate particles through a sequence of accelerators –
accelerator complex – and bring them into collision in order to study the fundamental
elements of matter and the forces acting between them. For controlling the accelerator
complex, CERN needs several diagnostic tools to provide information about the
beam’s attributes and one such system is the Fast Beam Current Transformer (FBCT)
measuring system that provides beam intensity information.

The current hardware of the FBCT system is not well designed and thus the
entire system is not benefiting from all of its capabilities and hence, a renovation is
required. As a result, the hardware was redesigned and simplified in order to increase
its capabilities and provide the base of a unified FBCT measuring system that could
be installed in both kinds of the CERN’s accelerator complex’s parts, linear and
nonlinear (rings). Following the above changes, this Thesis is proposing the
implementation of an operational client-server software solution to control the FBCT
installation in the Super Proton Synchrotron (SPS) accelerator, as well as studying the
design and implementation of a unified client-server software scheme that can replace
the operational ones in the Large Hadron Collider (LHC) and can accompany further
installations of the FBCT measuring system, elsewhere in the CERN accelerator
complex.

5

Table of Contents

Table of Figures .. 7

Table of Tables .. 9

1 Introduction .. 10

2 Background .. 12

2.1 General Background ... 12

2.1.1 CERN .. 12

2.1.2 CERN’s structure .. 12

2.1.3 The CERN accelerator complex .. 14

2.1.4 Control Center ... 15

2.1.5 Bunches ... 15

2.1.6 Beam Charge Measurements [8] ... 15

2.1.7 FESA Framework .. 16

2.2 Hardware Architecture ... 18

2.2.1 Fast Beam Current Transformer (FBCT) measurement system........................ 18

2.2.2 Firmware ... 20

2.2.3 Driver Background .. 25

2.3 The FBCTs in the SPS .. 25

2.3.1 Software Architecture ... 25

2.3.2 Previous Implementation... 26

2.4 The FBCTs in the LHC .. 28

2.4.1 Software Architecture ... 28

2.4.2 Existing Implementation ... 28

3 Our Implementation ... 30

3.1 High level ... 30

3.1.1 Wrapper - Design .. 30

3.1.2 Tester - Design .. 30

3.1.3 DabInfo - Design ... 31

3.1.4 SPS .. 31

3.1.5 LHC ... 36

3.2 Technical Implementation .. 44

6

3.2.1 Wrapper – Common Implementation .. 44

3.2.2 Tester – Common Implementation .. 45

3.2.3 DabInfo – Implementation .. 46

3.2.4 SPS .. 48

3.2.5 LHC ... 52

4 Results .. 64

4.1 SPS ... 64

4.2 LHC .. 65

5 Conclusions and Future Work ... 67

5.1 Conclusions .. 67

5.1.1 SPS .. 67

5.1.2 LHC ... 67

5.2 Future Work .. 68

Bibliography .. 69

7

Table of Figures

Figure 2-1: CERN's Logo [22] .. 12
Figure 2-2: CERN's structure (source: Laura Saulnier, TECH induction 2012) 13
Figure 2-3: Beams Department's Structure ... 13
Figure 2-4: Beam Instrumentation’s structure .. 14
Figure 2-5: CERN Accelerator Complex [6] .. 14
Figure 2-6: FESA's service supplies [9] .. 17
Figure 2-7: Block schematic of the FBCT measurement system [10] 19
Figure 2-8: SPS FBCT's VME64x crate – on the left with green lights is the FEC, on the right
of the FEC the DAB is installed and in the middle of the crate the BOBR is visible 20
Figure 2-9: table's 2-3 Legend ... 21
Figure 2-10: FESA Framework Interface.. 26
Figure 2-11: Total Intensity History from beam1 of the LHC, System B 29
Figure 3-1: ROSALI plot with error in BLR... 32
Figure 3-2: ROSALI plot with correct BLR ... 32
Figure 3-3: Data flow between front-end server and GUI client .. 34
Figure 3-4: BFCTSR_ExpertGUI UML Class Diagram ... 35
Figure 3-5: Acquisition schedule in respect with number of turn and turn interval 36
Figure 3-6: Data Process Sequence ... 36
Figure 3-7: An example of the BLR algorithm with VS=3. Only the yellow region is
considered as noise [17] .. 38
Figure 3-8: phase scan ... 39
Figure 3-9: BCTFRLHC_v6 expert GUI UML class diagram (without comparison window)
 ... 41
Figure 3-10: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert
GUI) .. 43
Figure 3-11: Bunch Selection Transformation from string to a set of hexadecimal 45
Figure 3-12: Sign correction of the data in the code ... 46
Figure 3-13: example code for ASCII parsing .. 47
Figure 3-14: example run of the dabInfo in the lab... 48
Figure 3-15: Upper part of the BFCTSR_EpertGUI ... 50
Figure 3-16: BFCTSR Expert GUI – Acquisition Tab ... 50
Figure 3-17: BFCTSR Expert GUI – UserData Tab ... 51
Figure 3-18: BFCTSR Expert GUI – BunchAcquisition Tab ... 52
Figure 3-19: Comparison Window - total intensity history for beam 1 56
Figure 3-20: Comparison Window - total intensity history - absolute difference - for beam 1
 ... 57
Figure 3-21: Comparison Window - total intensity history - relative difference for beam 1 . 58
Figure 3-22: Comparison Window - average bunch intensity for beam 1 58
Figure 3-23: Comparison Window - average bunch intensity - absolute difference for beam 1
 ... 59

8

Figure 3-24: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Bunch Intensity -
Expert Settings Panel .. 59
Figure 3-25: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Turn Intensity
History - Settings Panel ... 60
Figure 3-26: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT -
cleared LUT for top mezzanine ... 61
Figure 3-27: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT -
updated LUT for top mezzanine.. 61
Figure 3-28: BCTFRLHC_v6_Epxert Acquisition / Average Bunch Intensities in ADC bins -
Expert Settings .. 62
Figure 3-29: BCTFRLHC_v6_EpxertGUI - Zoom at the Expert Acquisition panel / Average
Bunch Intensity in ADC bins tab .. 62
Figure 3-30: BCTFRLHC_v6_ExpertGUI - Phase Scan .. 63
Figure 4-1: Total Intensity Measurement with FBCT for the SPS, CNGS1 cycle,
REPETETIVE mode with the previous version of the server ... 64
Figure 4-2: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle,
TURN_BY_TURN mode .. 65
Figure 4-3: Beam's 2 low gain total intensity comparison among system A, B and C in the
LHC ... 66
Figure 4-4: Beam's 2 high gain total intensity comparison among system A, B and C in the
LHC ... 66

9

Table of Tables

2-1: FESA's data types [9] ... 17
2-2: FESA's data attributes [9] .. 17
2-3: Original firmware register map [15] .. 22
2-4: New firmware register map [15] .. 23

10

1 Introduction

The European Organization for Nuclear Research or CERN Laboratory is one of the

biggest research centers in the domain of particle physics [1]. Its main activity is to accelerate
ion or proton particles through its accelerator complex to their nominal energies and make
them collide at one of the four collision points [7] in order to study the fundamental
constituents of matter as well the forces acting between them.

The acceleration of the particles can only be achieved if the Radio Frequency (RF) field
is correctly oriented with the accelerating cavity as they pass through it. Since this happens at
well specified moments of the RF cycle, particles travel around the accelerator complex at
well-defined bunches [7].

For an accelerator’s control to be effective, numerous of diagnostic tools are needed to
provide information about the beam’s attributes [8]. Several measurement technics exist
providing such information and thus making the control of the CERN accelerator complex
effectively feasible. One such technic uses AC-coupled Fast Beam Current Transformers
(FBCTs) at first stage to integrate the current of each individual bunch inside a synchronized
integration window and provide continuously 40MHz bunch charges (in bits) [18], whereas,
at second stage it implements data treatment in a Field-Programmable Gate Array (FPGA).

The latter uses its firmware to store and/or reload at any time the device configuration
in order to implement four acquisition modes, single capture – which measures the intensity
for the specified bunch slots over a specified number of turns, turn sum – which measures the
total intensity of all bunch slots available (depending on the accelerator) over one turn, slot
sum – which measures the total intensity for a given bunch slot over a specified number of
turns – and sum sum – which measures a turn sum and then sums up these values using the
slot sum measurement mode in order to produce one total intensity value [16].

In addition to the hardware part, there is also the software layer, which is responsible to
control the device and to implement any data processing required that is not done by the
firmware. Such data processing may be, averaging, data calibration – the transformation of
the data from the measured values in number of bins to number of charges – and data
publishing.

There is one FBCT system installed in the Super Proton Synchrotron (SPS) accelerator
and three in the Large Hadron Collider (LHC) that provide both bunch-by-bunch and total
turn-by-turn beam intensity information. The FBCTs in the SPS ring are widely being used at
beam’s injection time to observe the beam losses at that critical part of its journey as well at
the machine protection beam dump occasions in order to analyze the causes of such dumps.
As for the LHC ring, only two – system A and B – out of the three FBCT installations are
currently operational and being used by a large number of clients interested in both
measurement information – bunch-by-bunch and turn-by-turn.

The original FBCT firmware – FIMDAB – was designed and developed by several
people using different technologies. As a result, several design errors worsens the mean time
between failures – MTBF – of the entire measuring system, making the maintenance of the
latter extremely difficult. Hence, in order to properly develop the FBCT system C, it was
decided that a cleanup was necessary, moving all the data treatment from the hardware to the

11

software side. Therefore a new version of the firmware was designed and developed
implementing only the capture acquisition mode leaving the software controlling the FBCT
installations, responsible for all the data processing.

The whole idea behind this migration is to implement one data acquisition system –
both hardware and software – that can be installed in the CERN accelerator complex and will
be independent of the ring installed, which is not the current case, in order to make it generic
and more easily maintainable.

As the new version of the firmware is already implemented, this Thesis is trying to
describe the software solutions that need to accompany the hardware changes as well to
propose new ideas as far as the data treatment is concerned. This document is divided in two
large blocks: the first one introduces the theoretical and technical background whereas the
second describes the proposed software implementation and outlines its performance
evaluation.

In the first part, a brief introduction to the Organization and some fundamental
knowledge concerning the FBCTs is given in chapter 2.1. In addition, in chapter 2.2 we
describe the hardware architecture and in chapters 2.3 and 2.4, the existing software
implementations for the FBCTs in the SPS and LHC accordingly.

In the second part, we provide our software design in chapter 3.1 and its technical
implementation in chapter 3.2, along with the results of our proposals in chapter 4.

Finally, chapter 5 presents the conclusions of this work and directions for future work.

12

2 Background

In the previous section we discussed the need for the software design and

implementation that controls the FBCT systems at CERN. In order to deploy our suggestion
though, we need to analyze some basic ideas that are related to the FBCTs.

Hence, we begin with the general information about CERN and other key aspects
needed for the rest of this document and we continue with the hardware architecture where all
the details relative to the hardware are given and finish this section with the description of the
software implementations for the SPS and LHC rings that used to be or are operational.

2.1 General Background
In this section we analyze from scratch the basic information about CERN, its structure

and accelerator complex because we are going to use this information for the deployment of
our solution. Furthermore, we briefly describe the Control Center and how the particles travel
through the rings. Subsequently, we analyze the need of measuring the beam’s attributes as
well the different ways to do it. Lastly, we introduce the design framework that was used for
the existing and the previous software implementations as well as ours.

2.1.1 CERN
The Conseil Européen pour la Recherche Nucléaire or European Organization for

Nuclear Research, well known as CERN Laboratory is one of the biggest scientific research
centers whose main area of research is particle physics - the study of the fundamental
constituents of matter and the forces acting between them.

It was founded in 1954 as one of Europe’s first joint ventures and now it counts 20
member states. It is placed on the Franco-Swiss border near Geneva and it uses the world’s
largest and most complex scientific instruments in order to accelerate the particles, almost to
the speed of light, before cause them to collide and study the fundamental laws of Nature [1].

2.1.2 CERN’s structure
The highest authority in the Organization is the CERN Council. It is formed by two

representatives of each member state, one as his/her government’s administration

 Figure 2-1: CERN's Logo [22]

representative and one to represent the national scientific interests. Each member state has
one single vote and in most of the cases a simple majority is needed for a decision to be
taken.

The Council is responsible for all the important decisions that have to do with
scientific, administrative and technical matters. It is it that appoints the
manages the CERN Laboratory through a structure of Departments
fig.2-2. [2]

Figure 2-2: CERN's structure (source: Laura Saulnier, TECH induction 2012

The author belongs to Beams Department (BE)

will be given to it and its structure. The BE is responsible for everything that has to do with
the beam of particles and its control
(see chapter: 2.1.3). In order to do that it is divided into six groups as it is visible in fig. 2

Figure 2-3: Beams Department's Structure

Each group is subdivided into
Instrumentation (BI). The BI group is responsible
instruments that allow the observation of the particle beams and its
important for its normal behavior

13

representative and one to represent the national scientific interests. Each member state has
single vote and in most of the cases a simple majority is needed for a decision to be

The Council is responsible for all the important decisions that have to do with
scientific, administrative and technical matters. It is it that appoints the Director General who
manages the CERN Laboratory through a structure of Departments which can be seen at

re (source: Laura Saulnier, TECH induction 2012)

belongs to Beams Department (BE) [3] and hence a little more emphasis
will be given to it and its structure. The BE is responsible for everything that has to do with

and its control while circulating through the CERN accelerator compl
In order to do that it is divided into six groups as it is visible in fig. 2

: Beams Department's Structure

Each group is subdivided into sections. Again we will focus in our group, Beam
Instrumentation (BI). The BI group is responsible to study, design, build and maintain all the

ow the observation of the particle beams and its parameters which are
its normal behavior in the CERN accelerator complex. [4] Its structure can be

representative and one to represent the national scientific interests. Each member state has
single vote and in most of the cases a simple majority is needed for a decision to be

The Council is responsible for all the important decisions that have to do with
Director General who
which can be seen at

and hence a little more emphasis
will be given to it and its structure. The BE is responsible for everything that has to do with

through the CERN accelerator complex
In order to do that it is divided into six groups as it is visible in fig. 2-3.

sections. Again we will focus in our group, Beam
study, design, build and maintain all the

parameters which are
Its structure can be

14

seen in fig. 2-4.The author belongs to the Software section (SW), the section responsible for
providing the software needed for developing, testing, diagnosing, maintaining and
controlling all the instruments provided by the group. [5]

Figure 2-4: Beam Instrumentation’s structure

2.1.3 The CERN accelerator complex
The accelerator complex at CERN is a succession of linear and circular particle

accelerators which can reach increasingly higher energies. Each accelerator receives the beam
of particles from the previous in the complex chain, boost its speed and finally inject it to the
next one in the sequence.

Figure 2-5: CERN Accelerator Complex [6]

15

There are two types of particles that travel through the CERN accelerator complex,
protons and ions.

The protons are obtained by stripping orbiting electrons from hydrogen atoms. They are
accelerated in the linear accelerator (LINAC2) before they are injected into the PS Booster.
After Booster they are transferred to the Proton Synchrotron (PS) which is before Super
Proton Synchrotron (SPS) in the complex sequence. Finally they are injected into the Large
Hadron Collider (LHC) both in a clockwise and anticlockwise direction where they are
accelerated to their nominal energy of 7 TeV before they start collide at one of the four
collision points. [7]

The ions on the other hand, start from a source of vaporized lead and enter their own
linear accelerator (LINAC3) before they are injected into the Low Energy Ion Ring (LEIR)
from which they follow the same root as the protons to reach their maximum acceleration.

The complex also includes the Antiproton Decelerator (AD) which separates the
antimatter particles while they are still in low energies, and the On-Line Isotope Mass
Separator (ISOLDE) facility which is used as a unique source of low-energy beams of
radioactive isotopes. The complex also feeds the CERN neutrinos to Grand Sasso (CNGS)
project which creates and sends neutrino beams to Grand Sasso National Laboratory (LNGS)
in Italy in order to detect the so called neutrino “oscillation”, the transformation from one
type of neutrino to another. Last but not least is the Compact LInear Collider (CLIC) study,
an international project working on a machine to collide electrons and positrons (anti-
electrons). [6]

2.1.4 Control Center
The CERN Control Center (CCC) combines all the control rooms for the accelerator

complex as well as the technical infrastructure under one roof. It consists of 39 operation
stations organized in four different areas, the Large Hadron Collider, the Super Proton
Synchrotron, the Proton Synchrotron complex and the technical infrastructure. [3]

2.1.5 Bunches
The particles travel around the CERN accelerator complex in well-defined bunches.

That is because they can only be accelerated if the Radio Frequency (RF) field has a correct
orientation when they pass through an accelerating cavity and that happens at well specified
moments during the RF cycle. [7]

Under nominal operation, each LHC’s proton beam has 3564 bunches and SPS’s 924,
with each bunch containing about 1011 protons.

2.1.6 Beam Charge Measurements [8]
An effective accelerator’s control requires numerous types of diagnostic tools which

provide information about the beam’s attributes and they are commonly known as beam
diagnostics. There are several measurement techniques which can be divided in two large
categories, the intercepting and the non-intercepting measurements.

16

The first group, as it is revealed by its name, intercepts with the beam in order to
achieve the measurements and thus cause the destruction of the beam or a significant loss of
its energy, whereas the second group bases its measurements in the electric or magnetic field
coupling of the beam to the measuring instrument.

The charge measurement, often called beam intensity measurement, is a process which
integrates the actual measured quantity, the beam current, over a specific area of interest
(ROI) and divides that integral, the beam charge as it is called, by the elementary charge to
result in the number of particle beam’s charges.

The beam intensity measurement is very useful to determine the intensity loss at
injection, acceleration and extraction time or even the beam’s lifetime while circulating in the
accelerator. Furthermore, it enters the luminosity equation.

What is important in this kind of measurements is the device that couples to the beam
and provides the approximation of the beam’s current. There can be several different such
devices. The most used of the intercepting DC devices are the Faraday cups. The non-
intercepting AC devices are the electrostatic pickups, the Wall Current Monitors (WCMs)
and the Fast Beam Current Transformers (FBCTs). The non-intercepting DC devices are the
DC Current Transformers (DCCTs), the Superconducting QUantum Interference Devices
(SQUIDs) and the Cryogenic Current Comparators (CCCs).

In this document we will focus only on the FBCTs, the devices that function in a
bandwidth of few Hz up to GHz and on the contrary with all the other similar devices, can be
absolutely calibrated. For more information see chapter 2.2 where the hardware is analyzed in
more detail.

2.1.7 FESA Framework
“The Front-End Software Architecture (FESA) is a comprehensive framework for

designing, coding and maintaining LynxOS/Linux equipment-software that provides a stable
functional abstraction of accelerator device.” [9]

The Model of a FESA class is encoded as an XML Schema which enforces a specific
grammar for the design of the class providing a partial yet generic solution for the equipment
specialist. In this way and after the design of the class is well defined, the FESA user can
generate a large part of the C++ code for his equipment saving a lot of time and effort. The
FESA classes are identified by the combination of their name and version.

17

Figure 2-6: FESA's service supplies [9]

The Interface is a list of so-called Properties that defines the services that are available
to the outside world and are remotely accessible by the clients of the FESA class, for example
clients from the control room as well as middle-tier software layer. The Properties should be
attached to a server action (request) which can be of type GET or SET and either default,
meaning that the code for that actions is auto generated, or complex for which the equipment
specialist must provide the code himself.

The Data, the Device-Data and Global-Data, are defined in such a way that provide at
any given time, a concrete snapshot of the device state. The data can be of any standard type
that can be supported from both C++ and Java, scalars or arrays up to two dimensions. There
is also the possibility for the equipment specialist to define his own types, the persistency of
the data or any multiplexing criterion for them.

C++ Scalar type Array type
bool bool
signed char (byte) signed char
short char
long short
longlong long
float long long
double float
 double
 Table 2-1: FESA's data types [9]

Persistency Purpose Multiplexing Purpose
FINAL database constant NONE not multiplexed
PERSISTENT periodic backup into

persistent storage
USER cycle user

VOLATILE RAM data PARTICLE particle-type
 DESTINATION beam-target
Table 2-2: FESA's data attributes [9]

18

The basic work-units of a FESA class are called actions and can be either of real-time
or server type. The real-time actions are triggered by events which are synchronized with the
CERN’s central timing system or by interrupts and they implement most of the equipment’s
functionality. They can also be attached to properties so that the latter can be notified at any
update of the device’s state. On the other hand, the server actions implement the client’s
request-handling and they are mostly responsible for the communication between the outside
world and the device and that is exactly why they are attached most of the times with a
property. For both real-time and server actions the equipment specialist must provide the C++
code himself, except for the default GET/SET server actions.

Once one has finished with his FESA design, should declare all the instances his class
would have. This is a very important part of the design procedure since lot of work and
duplicated code can be avoided. One instance means one module with its own initial values.
All the instances (the modules the device can handle) are accessible inside the FESA class by
iterating the deviceCollection, an array accessible everywhere in the class.

A FESA class, to which we will refer as ‘server’ from now on, is organized after its
generation, in five files as follows: COMMON, GENERATED CODE, REALTIME,
SERVER and TEST.

The REALTIME and the SERVER files are used to store and distinguish the actions
based on their type as described above.

The GENERATED CODE file holds all the declaration of the fields that describe the
device. Furthermore, all the generated code for the simple GET/SET actions is stored here.

The COMMON file is used to store any custom made class that could be used by both
real-time and server actions.

Last but not least is the TEST file. In there, some diagnostic tests are stored as well as
the executable files that would start the server. There may be more than one executable file
depending on how many instances of the server there are, which depend on how many
different places in the Ring, the device is placed.

2.2 Hardware Architecture
After giving the general information that is going to be needed in next sections, we are

describing the hardware installation for the FBCTs. The latter consists of a detailed
description of the ring installation as well as the one on the surface. Furthermore, we analyze
the firmware – original and newer version – along with the driver needed to access it since
they are widely used by the software and lots of the changes imposed to it derives from the
changes of the firmware.

2.2.1 Fast Beam Current Transformer (FBCT) measurement system
The figure 2-7 depicts a simplified block schematic of the FBCT measurement system

which consists of a Bergoz type transformer with a bandwidth from 400Hz to 1.2GHz (on the
left). This transformer is followed by an RF front-end which consists of an analogue
integrator, a Beam Circulating Flag (BCF) detector which detects the presence of the beam in

19

the ring and an RF distributor which is responsible to split the analog signal into two dynamic
ranges, high and low gain and each dynamic range into two bandwidths, High (HBW) and
Low (LBW). Finally there is a 14bit acquisition system that digitizes and process the signal.
[10]

Figure 2-7: Block schematic of the FBCT measurement system [10]

The latter consists of aDigital Acquisition Boards (DABs), a VME64x standard board

developed by TRIUMF (Canada) for the LHC orbit and trajectory acquisition system [11]. It
is equipped with two Individual Bunch Measurement System (IBMS) mezzanine cards [12].
Each mezzanine card uses a 40MHz integrator ASIC developed for the LHC-b preshower
detector by the Laboratoire de Physique Corpusculaire, UniversitéBlaise Pascal, Clermont-
Ferrand [13], in order to integrate the incoming signal before pass it to the DAB that digitizes
and process it to produce bunch-by-bunch intensity values. All the logic of the DAB control
is implemented in a large FPGA that can be reprogrammed at any time and its firmware is
being discussed at chapter 2.2.2.

These DAB cards are installed on a VME64x crate along with the Beam Synchronous
Timing Receiver Interface for the Beam Observation System (BOBR) – another VME format
card that provides all the timing signals required to synchronize the different beam
instrumentation systems [19]. What is more, all the cards installed in the VME64x crate are
controlled by the Crate Central Processing Unit (CPU) – Front-End Computer (FEC) – an
Intel® Core™ 2 Duo CPU board with 1.5GHz clock frequency, 4MB cache and no hard disc
[20] that runs Scientific Linux CERN SLC release 5.7 (Boron) [21] and boots via network.

The following figure 2-8 depicts the VME64x crate installation for the SPS FBCT. The
FEC is visible on the left of the crate with the green lights, whereas the DAB is just on the
right of it and lastly, the BOBR in the middle of the crate.

20

Figure 2-8: SPS FBCT's VME64x crate – on the left with green lights is the FEC, on the right of the FEC the
DAB is installed and in the middle of the crate the BOBR is visible

As far as the SPS is concerned there is only a single DAB connected to the SPS type
front-end amplifier. The former uses an external signal to switch between high and low gain
measurements which is provided by the sensitivity output of each IBMS mezzanine.

In the LHC, things are different. There are two DABs per a measurement system used,
one for HBW and one for LBW measurements. Each DAB provides two dynamic range
measurements using its different IBMS mezzanine and more specifically high gain (top
mezzanine) and low gain (bottom mezzanine) measurements.

There are three such systems in the LHC, system A, B and C of which only A and B are
operational while system C is now being developed with different technologies and with a
different approach in the process of the data. Further discussion about this system will follow
in chapter 3.

The FBCT measurement system is calibrated by a pulse of 25µs. The amplitude of this
pulse differs from SPS – 128mA – and LHC which can be programmed. For the latter case
though, the currently used system doesn’t use direct calibration due to the fact that the LHC
toroid exhibit beam position dependency and this can affect the transfer ratio between beam –
measurement turn and calibration turn – measurement turn. Instead an indirect calibration is
achieved by using DC current transformers (DCCTs) installed in the LHC [17].

2.2.2 Firmware
The Stratix FPGA stores the device configuration during operation at volatile SRAM

cells, which must be reconfigured each time the device powers up. This is accomplished by
its firmware (FIMDAB), which is stored as a raw binary file (RBF) in the EPM 3256
Complex Programmable Logic Device (CPLD). Software start-up scripts handle the FPGA
start-up process and hence the FPGA is left un-programmed after power up until the software

21

layer is loaded. After the initial power-up process is complete, new configuration data can
also be loaded at any time. [14]

The original FBCTR firmware, used in system A and B was developed by several
people using different technologies. As a result the mean time between failures (MTBF) of
the entire system is worsened by several design errors. Hence, in order to properly develop
FBCTR system C, it was decided that a cleanup was necessary. The new firmware was also
used for the FBCTR in SPS. The firmware registers migration is summarized in table 2-3,
which uses the following colors to describe the state of the registers after the completion of
the migration [15].

Figure 2-9: table's 2-3 Legend

22

Table 2-3: Original firmware register map [15]

23

Table 2-3: Continue from previous page

Following the table 2-3, table 2-4 summarize the minimum set of registers for the new

proposed memory map. The table is organized in three categories. First group consists of the
registers read directly from the DAB external static memories. Second one groups all the
registers that are not specific to capture mode and third contains registers only specific to
capture mode. The latter two are separated by an address space, which makes a potential
insertion of new registers simple. All registers are 4-byte aligned and accessed by A32D32
transfer. Lastly, for non-single transfer registers, block transfer can be used improving the
latency added when transferring huge amount of data. [15]Error! Bookmark not defined.

Table 2-4: New firmware register map [15]

24

Table 2-4: Continue from previous page

From the latter table, 6 major changes at the registers can be pointed out.
Firstly is the capture data organization. Using 32-bit storage, two 14-bit ADC samples

can be stored per entry. Unfortunately this is not enough since additional information is
needed to be stored with the stream, information about what integrator was used for acquiring
the sample – the most significant bit of the sample (31 and 15) reveals the appropriate
integrator (0 or 1) –, about whether the sample was saturated – bits 30 and 14 – and finally,
about where the turn clock starts. Since there is no space left to store the latter information
with the stream, a convention had to be declared: the turn always starts at the memory start
address – 0x000000 for top mezzanine and 0x200000 for bottom. Hence, next turn can be
easily calculated as following: <start_address> + (<number_of_bunches> / 2).

Such memory organization decreases the amount of external memories read from three
to two, since the information stored in mezzanine three are now coded with the samples. It
also increases the number of samples per mezzanine by factor of two, enabling at the same
time the use of fast block transfer of the data, from the external memories to the CPU.

Furthermore, changes in register bit positions should also borne in mind. The original
information of the Turn Clock Delay register is migrated from address 0x600022 to
0x600040, bits 12…0, whereas the information of the Phase Delay register from address
0x600021 to 0x610000, bits 7…0. As for the Front Panel Selection register, information
about MUXA originally located at bits 7…4 is extended into bits 31…16, whereas
information about MUXB, originally at bits location 3…0 is extended into bits 15…0. As far
as the IRQ register is concerned, it behaves as Interrupt Enable register when written and
returns the Interrupt Status register when read.

Last but not least is the Command register which combines the original locations at
0x600005, 0x600006 and 0x68000c and acts as Command register when written, keeping all
the original properties and as Status register when read. The meaning of all bits read is

25

changed though, due to the differences between the two versions of the firmware and for a
full description of this meaning refer to full technical documentation [14]Error! Bookmark
not defined..

2.2.3 Driver Background
There are more than one ways to access the device’s register and hence, we had to find

which one is more suitable for us. The most common way is to use the ioctl module-specific
library that comes with the driver and is automatically generated from the description of the
module in the CO Data Base. This is a simple library that uses only one method to access the
hardware, IOCTL. This library is good for individual values or short amount of data, since it
is already high leveled and not that slow.

If the performance is one of the main characteristics of the project, one should consider
another library that comes with the same auto generated driver and that is dal (Driver Access
Library). The dal library has three ways of accessing the hardware and these are IOCTL,
same as before, IOMMAP and IODMA. Now as for the last two, the IOMMAP method uses
the CPU to access the hardware while the IODMA does this directly.

We have been experimenting with these three ways, only to find out that there is a
significant difference between IODMA and the other two. Generally we could summarize our
conclusions as this: faster: IODMA < IOMMAP < IOCTL. As we saw in chapter 2.2.2, only
three of our registers are a considerable amount of data (512.00 KiB) and from those, only
two are being currently used. All the others are either single valued or short amount of arrays.
Thus we’ve decided to use the ioctl library for all the registers but the two mezzanines for
which we’ve used the dal library with the IODMA method.

2.3 The FBCTs in the SPS
As described in the previous sections there is only one FBCT system installed in the

SPS and this consists of only one DAB card on the VME crate, which used to operate with
the original version of the device’s firmware (FIMDAB).

In the following sections, we will describe how the server used to be organized and
which were its basic functionalities that made it operational.

2.3.1 Software Architecture
The server was designed 1 to operate a full acquisition (1-924 bunches) for every

different active cycle – approximate cycle’s length is 20sec. Different sequence of real-time
actions used to accomplish that by preparing the device, starting the acquisition, reading back
the acquired data, processing them, storing them temporarily, starting the acquisition again
and repeating this sequence until the cycle was over.

All these functionalities were implemented in different real-time actions, rtPrepare,
rtStart, endCapture and rtStop whose technical specifications will be discussed in the
following chapter 2.3.2. The scheduling of these actions was the key for the proper operation
of the server.

1 The server was created by Lars Jensen

A warning of the beam’s injection was used as an event that comes 20 msec before
every different cycle’s injection. This event was being used by the rtPrep
appropriate settings to the device as well as calibrate it, before the acquisition

Another event, specifying the beam’s injection
the rtStart to initially start the acquisition.
being used by the endCapture to read back the acquired data, process and store them in
temporary buffers and finally start the acquisition again
as many times as it could fit in every cycle’s lifetime.

Lastly, an event specifying the cycle’s end was being used by the rtStop to gather all
data from the temporary buffers and store them in the shared memory of the server so that it
could be fetched to the users.

Figure 2-10: FESA Framework Interface

The FESA properties that used to interface the server were Setting

could enter the settings relative to the acquisition
specify the settings relative to the calibration of the device, Acquisition
could see the desired data after
see the intermediate steps of the processed data
and set the calibration factors
ones by rtPrepare. No external application interface (such as Expert GUI) was used for
visualizing the above properties, and thus the FESA inter
can be seen in figure 2-10.

2.3.2 Previous Implementation
The previous implementation of the server used to access the device directly from its

classes using the IOCTL library.
More specifically the rtPrepare

to the device as well as the number of turns for the acquisition which was always 1. After

26

A warning of the beam’s injection was used as an event that comes 20 msec before
every different cycle’s injection. This event was being used by the rtPrep
appropriate settings to the device as well as calibrate it, before the acquisition

Another event, specifying the beam’s injection – cycle’s beginning, was being used by
the rtStart to initially start the acquisition. After that, an event coming every
being used by the endCapture to read back the acquired data, process and store them in
temporary buffers and finally start the acquisition again. This procedure was being repeated

in every cycle’s lifetime.
Lastly, an event specifying the cycle’s end was being used by the rtStop to gather all

data from the temporary buffers and store them in the shared memory of the server so that it

: FESA Framework Interface

The FESA properties that used to interface the server were Setting
could enter the settings relative to the acquisition, Expert Setting – where the user could

the settings relative to the calibration of the device, Acquisition
could see the desired data after all steps of their process, User Data – where the user could
see the intermediate steps of the processed data and Calib Data – where the

 of the data, either on his own or with respect to the calculated
No external application interface (such as Expert GUI) was used for

visualizing the above properties, and thus the FESA interface was used for that purpose

Implementation
implementation of the server used to access the device directly from its

the IOCTL library.
More specifically the rtPrepare action used to set the full bunch range (bunches 1

to the device as well as the number of turns for the acquisition which was always 1. After

A warning of the beam’s injection was used as an event that comes 20 msec before
every different cycle’s injection. This event was being used by the rtPrepare to set the
appropriate settings to the device as well as calibrate it, before the acquisition could start.

, was being used by
event coming every 40msec, was

being used by the endCapture to read back the acquired data, process and store them in
. This procedure was being repeated

Lastly, an event specifying the cycle’s end was being used by the rtStop to gather all
data from the temporary buffers and store them in the shared memory of the server so that it

The FESA properties that used to interface the server were Setting – where the user
where the user could

the settings relative to the calibration of the device, Acquisition – where the user
where the user could

where the user could see
either on his own or with respect to the calculated

No external application interface (such as Expert GUI) was used for
face was used for that purpose as it

implementation of the server used to access the device directly from its

action used to set the full bunch range (bunches 1-924)
to the device as well as the number of turns for the acquisition which was always 1. After

27

that, it would start an acquisition along with a calibration pulse in order to calibrate the
device. This is achievable due to the fact that the rtPrepare operates when there is no beam. In
this way and by firing a calibration pulse, whose current is known in advance, the appropriate
calibration factors could be specified to take away all the additional noise that is being added
to the data by the electronic equipment. Following the calibration, the rtPrepare would reset
all the intermediate temporary buffers that were going to be used by the endCapture.

For the rtStart action, things used to be much simpler, since its only responsibility was
to start a normal acquisition which means without the calibration pulse.

Furthermore, the endCapture action was the most critical one as far as the time
constrains is concerned. In this action, the data would be fetched from the device and be
processed before been stored to the temporary buffers. By processing the data, we mean to
restore their base line as well as apply the calibration factors that were calculated before by
the rtPrepare. The base line restoration is by far the most difficult stage of their process since
its main goal is to take away the beam’s position dependency with the measuring device,
restoring the level of the acquired noise to 0 in the y (intensity) axe, and this procedure is
non-trivial at all.

The existing implementation was using the Magic Imperial algorithm to restore the
data’s base line. This algorithm was based on the statistics from previous operational
experience and its basic idea was the following:

• Iterate the acquired data and find minimum and maximum value.
• Using this information, determine the noise region as the (minimum value +

(0.05 * maximum value)).
• Iterate again the acquired data and find a mean value for any sample that is

below the just specified threshold.
• Finally iterate all the acquired data and take away this just calculated mean

value.

In this way, all the noise samples would reach the 0 area in the y axis, while the original
shape of the data would stay unchanged.

Last but not least, the rtStop action stored the intermediate buffers to the shared
memory (device fields). This was accomplished by declaring the above buffers with the C++
key word extern and hence they were visible by more than one C++ class in the server.

The server actions that served the Setting and Expert Setting interfaces were
implemented as simple actions. What is more and only for the Setting property, partial setting
was allowed. As for the Calib Data property complex GET/SET actions were implemented
with the partial setting enabled. Lastly, for the Acquisition and User Data, complex GET
actions copied the contexts of the shared memory (fields) to the interface memory in order to
be properly presented.

At this point, it’s worth mentioning few words about the buffers holding the data,
intermediate and final. The acquisition data were stored in two dimensional arrays; first
dimension for the different measurements made by the endCapture and second dimension for
the acquisition itself –intensity values for bunch slots 1-924. Unfortunately, there was no
useful way to present these values with FESA interface and thus filters were being used.

28

Hence, under User Data property, the user had to specify in the filter which measurement
desired to observe. Using this filter in the server action, only one raw of the 2D arrays was
returned (924 values in total). In this way, data were quite uncomfortable to be studied, since
the filters apply in the acquired data only once and thus one should wait for the next
acquisition to see another measurement. One such example can be seen at Figure 2-10.

2.4 The FBCTs in the LHC
In the LHC ring there are three FBCT systems, each consisting of 4 DABs as described

in chapter 2.2.1. System A and B use the original version of the FBCT’s firmware which used
to have 4 measurement modes [16]:

• Capture – the intensity measurement in each bunch slot for a specified number
of turns

• Turn Sum – a total intensity measured from a full bunch acquisition (3564
bunches) over a single turn

• Slot Sum – a total intensity measured for a specified bunch slot over specified
number of turns

• Sum Sum – the combination of Turn Sum and Slot Sum. By this we mean to
make a Turn Sum for each acquired turn and then, sum all these sums as they
were a single bunch slot measurement

2.4.1 Software Architecture
The FESA class that serves LHC’s A and B FBCT measurement systems is

BCTFRLHC v312. The server of both systems is identical and has two instances, serving the
FBCT installation for each circulating beam.

The version 31 of the BCTFRLHC FESA class is designed to provide LBW total
intensities averaged over 225 consecutive turns at 1Hz. In addition, it provides HBW total
intensities per turn with time resolution up to one turn (89µs) as well as HBW individual
bunch intensities averaged over 900 turns as input for the post-mortem system for analyzing
the causes of machine protection beam dumps. [18]

2.4.2 Existing Implementation
The server uses the LBW channel to make full bunch acquisitions over 225 consecutive

turns – to suppress the noise at 50 Hz – using firmware’s Sum Sum measurement method and
it continuously updates them every second for operational displays. Additionally, it keeps the
values from the last 30 seconds in a rolling data buffer, which also updates every second.

As for the HBW channel, the server uses the firmware’s Turn Sum measurement mode
to produce and publish the turn intensities – the total intensities per turn – and the Slot Sum
measurement for the average individual bunch intensities. Both measurements are updated
every second.

2 Created by Michael Ludwig

29

In order to suppress errors in the calculation of the noise mean value at the baseline
restoration (BLR) procedure, the summing of empty buckets must be avoided. This is
achieved by applying a minimum beam threshold set by the user. The BLR is based on the
presence of empty buckets in each turn at least at the 3µs abort gap and hence, the calculation
of the minimum integrated value of one turn can be used as offset correction for the next one.
Subsequently, the lowest measurable turn-sum and bunch-average intensity is given by the
noise suppression peak threshold – 108 number of charges for high gain and 5*108 number of
charges for low gain for both bandwidths. [18]

Figure 2-11: Total Intensity History from beam1 of the LHC, System B

The above figure 2-11 depicts the rolling data buffer of the total intensity of beam 1 as
it was measured by the FBCT in the system B. This buffer holds the calculated total
intensities of the last 30 seconds – 1 acquisition over 225 turns takes 20ms hence 50 values
per second and 1500 per 30 seconds. As there is no expert GUI developed, the client
application that is being used to control the servers is the FESA interface.

30

3 Our Implementation

In the previous section we described all the theoretical and technical background

needed to better understand the previous software implementation for the FBCTs in the SPS
and the existing one for the LHC. In this section we analyze our proposal for both systems
separating the design from the technical part.

3.1 High level
As the developing of the two systems was ongoing, we came across several decisions

that needed in order to proceed. This chapter is dedicated to such decisions that helped us to
structure better our work and provide us useful tools for our implementations.

3.1.1 Wrapper - Design
Since the firmware changed, a new way of accessing the device was needed. As the

new firmware was to be deployed in both SPS and LHC FBCTs, we decided to create a
common wrapper class, DABBFCTSRWrapper, which abstracts the device communication
with the server. Additionally, such class is ideal for implementing functionalities irrelevant
with the accelerator that hosts the FBCTs.

The DABBFCTSRWrapper is designed to have public methods for accessing all the
device’s registers using the IOCTL library, as well as processing some of the data that need
to be read from or written to it, while there are also some other private methods for that scope
as well.

Finally the header file of the wrapper seemed the perfect place for implementing the
hash table with the different commands that the device can handle since it is imported every
time we want to use it in the project for accessing the hardware and hence to instruct it to do
something. In this way we’ve implemented it once being sure that is always visible in our
general implementation.

3.1.2 Tester - Design
Another decision that was taken in the early days of our implementation was to create

an additional tester class for testing the proper communication with the device. This class
used to do nothing else but trying and write all the writable registers of the device and then
read them back. In this way, several errors in the firmware were revealed when it was easy to
be spotted and fixed.

While progressing with our implementation, the tester was changed to fit our testing
needs. Hence, the tester ended up asking the user to select the bunches and the number of
turns for acquisition, then firing the acquisition, reading back the data and printing them in
the console as raw ADC values, just as they were read from the device. This procedure was
found incredibly useful for studying, testing and assuring the decoding process of the data
(look at chapter 2.2.2 – last paragraph / change of the data capture organization).

Furthermore, additional timing routines were added in order to study the different
driver solutions for fetching the data from the device to the CPU, as well as some

31

performance issues, especially as the server in LHC is concerned. These issues are being
discussed in greater detail in chapter 3.2.5.

3.1.3 DabInfo - Design
As described in chapter 2.2.2 and table 2-4, there are some registers in firmware related

to the DAB’s information such as serial numbers and so on. Hence, it was found useful to
have a console application that would retrieve and present this information. In this way, we
were able to check the identification of the firmware, the mezzanines as well as the DABs
themselves installed in the SPS, the LHC or the lab.

3.1.4 SPS
Our implementation is based on the existing one. We used this version and updated it

so that it can access the new hardware and have one different acquisition mode the
TURN_BY_TURN as we called it, as well as improving some troublesome behavior relative
to base line restoration. Our main goal, beside the proper functionality of the server of course,
was to keep as much backwards compatibility as we could by changing the design as less as
possible.

Hence, a new real time action was introduced; the rtTurnAcq which implements the
new acquisition mode, while the rtPrepare remained the same, at least as far as the design is
concerned.

The main difference to the existing classes was at the rtStart and endCapture class
which were not needed if the acquisition mode was TURN_BY_TURN, and thus should exit
immediately. The same idea was introduced to the new rtTurnAcq class but the other way
round, it would exit if the acquisition mode was REPETITVE. The event that wakes the
rtTurnAcq is a warning of the beam’s injection which come 20msec in advance. The new
class is responsible to start the acquisition with 18msec delay, read the data, process them,
transform them from ADC bins to number of charges, restore their baseline and finally save
them to the appropriate buffers.

We kept the rtStop class the same which only copies the data from the buffers to the
shared memory when the cycle is over. This is common for both acquisition modes and so, it
made sense to try and keep it the same. In order to do that though, we had to change the
buffers visibility through the server classes. In that sense, the variables that should be
common to both acquisition modes and thus the appropriate classes, are now being created
and initialized in the rtPrepare class and are visible by the endCapture, rtTurnAcq and rtStop
by using again the keyword extern.

3.1.4.1 Baseline Restoration
The existing algorithm that used to correct the baseline was working quite well but

unfortunately not always. It was observed that whenever there was a negative spike quite
bigger than expected the algorithm didn’t work. Since the algorithm was taking into account
the ratio between the minimum and maximum value within an acquisition to determine the
noise region, in case of this so called “undershoot” this region would include only one point,
the minimum. As a result the minimum would be considered as noise and thus, after the BLR

32

it would end up to be 0 and everything, including the actual noise, to be in the positive side of
the graph. This can be easily seen at the following graphs:

Figure 3-1: ROSALI plot with error in BLR

Figure 3-2: ROSALI plot with correct BLR

These “undershoots” won’t come often and for every cycle, but when they come the
BLR doesn’t work as it should be. That is why we considered changing the existing algorithm
for restoring the BLR to another one much simpler and more stable.

We’ve decided not to take into account the min – max difference to specify the noise
region, since this can change from cycle to cycle and from time to time. The hard coding
percentage of that difference wasn’t flexible enough when those differences appeared. Hence,

33

we search only for the minimum value of an acquisition and noise area is determined by a
user setting. In this way, the BLR is much more flexible and dynamic.

Of course this does not erase the “undershoot” problem, since they don’t come in a
deterministic way and thus one cannot specify a well-defined noise area and trust that would
work for a longer period of time. In addition, an “undershoot” identifier had to be designed in
order to help us ignore this kind of extreme values. To do that though, the user should
provide another setting specifying the distance between two consecutive points that would
identify the most negative as an “undershoot”.

3.1.4.2 TURN_BY_TURN acquisition mode
The most important change to the server was to add the new acquisition mode. As it

was mentioned before, a full bunch acquisition (bunches: 1-924) over one turn, is repeated
every 40msec until the end of every cycle. This mode of acquisition, REPETETIVE, covers
the whole cycle and it was being used until now.

The new acquisition mode, TURN_BY_TURN, is again a full bunch acquisition but for
as many consecutive turns as the data storage permits. This limitation comes from our effort
to keep the backwards compatibility and hence by the fact that we use the same intermediate
buffers in software as the REPETETIVE mode. For more details about the implementation of
these buffers and their limitations please refer to chapter 3.2.4.

3.1.4.3 Client – Interface
The BFCTSR_ExpertGUI was developed in Java and is organized in 5 packets for

clearer separation of its classes. The Constants packet hosts all the classes that consist of
constant data such as enumerations, names and converters. In the expertGUI packet, all the
classes that implement the application interface are stored. Furthermore, there are the
factories and listeners packets which host the homonyms classes. Last but not least is the
Data packet where all the classes that are data specific are stored.

For the communication with the server, we used the communication library that was
developed from our group and establishes a communication flow per device. We kept the
communication and subscription mechanism over the network separated to one class called
DataProvider and the data storage per FESA property to another called Property. Both
classes are abstract since only few methods are domain specific and had to be separated.

The general idea of the design is the following: the DataProvider communicates via
subscription to the server that runs on the front-end. Each time new data are produced, the
DataProvider informs the Properties which process them if needed and store them to buffers.
Then, they inform their interfaces to update their view with the new data. This data flow is
depicted in the following figure:

34

Figure 3-3: Data flow between front-end server and GUI client

 We decided to split the frame into three areas. The top one hosts the TimingPanel
component which shows which cycle is active per accelerator so that the users can choose an
appropriate one. The left one hosts the setting and expert setting panels as tabs while the right
one hosts the acquisition, UserData and BunchAcquisition panels as tabs. The representation
of the data is on the right area of the frame and more specifically the acquisition tab is a
graph of the total intensities as acquired and calculated from BFCTSR as well as two more
devices for cross-checking, BCTDC3 and BCTDC4. The UserData tab hosts a graph of the
individual bunch intensity measurements – one measurement at a time, while the
BunchAcquisition tab hosts a 3D graph of the individual bunch intensity measurements – all
together.

In figure 3-4 the Unified Modeling Language (UML) class diagram of our expert GUI
is depicted according to entity separation of figure 3-3. The communication between two
classes from a different group (Communication Manager, Intermediate Data Storage and
GUI) is achieved with separated interfaces.

35

Figure 3-4: BFCTSR_ExpertGUI UML Class Diagram

3.1.5 LHC
In order to improve the performance of the FBCT measurements in the LHC

keeping the same frequency 1Hz (new values every second)
another approach as for the acquisition and calibration of the data using system C FBCT’s
new firmware. In this way, the acquisition is a simple
of bunches for a specified number of turns) and all the computations for their process is done
in the software. This approach allows us a degree of freedom in choosi
we use for the BLR, trying to achieve better accuracy when comparing this system with the
other two.

The main idea of this approach is to make a full bunch acquisition for 25 turns
turn interval. This means acquire 3564 bunch s
seen in figure 3-5 and leads to a 25mA sampling over half a second

Figure 3-5: Acquisition schedule in respect with number of turn and turn interval

Since we have 4 cards and each one measures data for half a second, it would be
impossible to implement a sequential scheduling
the other hand, having one VME bus for communicating with all four cards makes it
impossible to parallelize the parts of the process that consists of any kind of communication
with the cards.

Hence, we decided to start the acquisition to all four cards almost at the same time and
benefit of the acquisition’s parallel nature. In this way, w
acquiring the data to all cards and keep the other half for processing them before publishing
the total intensities. The process sequence of the data depicts in figure 3

Figure 3-6: Data Process Sequence

3.1.5.1 Look Up Tables (LUT)
The integrator itself as well as the difference between

is the main source of the overall
and treat both integrators as a black box, we performed a set of measurements in the

36

In order to improve the performance of the FBCT measurements in the LHC
keeping the same frequency 1Hz (new values every second), it was decided to implement
another approach as for the acquisition and calibration of the data using system C FBCT’s
w firmware. In this way, the acquisition is a simple Capture of the requested data (number

of bunches for a specified number of turns) and all the computations for their process is done
in the software. This approach allows us a degree of freedom in choosing which algorithms
we use for the BLR, trying to achieve better accuracy when comparing this system with the

The main idea of this approach is to make a full bunch acquisition for 25 turns
quire 3564 bunch slots every 224 turns for 25 times

5 and leads to a 25mA sampling over half a second [17].

: Acquisition schedule in respect with number of turn and turn interval

Since we have 4 cards and each one measures data for half a second, it would be
impossible to implement a sequential scheduling and keep the 1 Hz publishing frequency. On
the other hand, having one VME bus for communicating with all four cards makes it

ossible to parallelize the parts of the process that consists of any kind of communication

Hence, we decided to start the acquisition to all four cards almost at the same time and
benefit of the acquisition’s parallel nature. In this way, we spend half of a second for
acquiring the data to all cards and keep the other half for processing them before publishing
the total intensities. The process sequence of the data depicts in figure 3-6.

Look Up Tables (LUT)
The integrator itself as well as the difference between the two integrators in the system

the overall non-optimal performance. In order to comprehend with this
and treat both integrators as a black box, we performed a set of measurements in the

In order to improve the performance of the FBCT measurements in the LHC while
, it was decided to implement

another approach as for the acquisition and calibration of the data using system C FBCT’s
of the requested data (number

of bunches for a specified number of turns) and all the computations for their process is done
ng which algorithms

we use for the BLR, trying to achieve better accuracy when comparing this system with the

The main idea of this approach is to make a full bunch acquisition for 25 turns with 224
turns for 25 times as it can be

Since we have 4 cards and each one measures data for half a second, it would be
and keep the 1 Hz publishing frequency. On

the other hand, having one VME bus for communicating with all four cards makes it
ossible to parallelize the parts of the process that consists of any kind of communication

Hence, we decided to start the acquisition to all four cards almost at the same time and
e spend half of a second for

acquiring the data to all cards and keep the other half for processing them before publishing

the two integrators in the system
In order to comprehend with this

and treat both integrators as a black box, we performed a set of measurements in the

37

laboratory analyzing the linearity of the data. The results of this analysis can be summed as
follows [17]Error! Bookmark not defined.:

• All measured integrators exhibit non-linear behavior, which is not the same for
each one and thus if corrected, it should be corrected per integrator

• An additional non-linear behavior is exhibited in between each two integrators,
due to the difference of their individual non-linear behavior

• A linear approximation of the integrators’ output is not enough to erase these
non-linear components and thus higher order polynomial must be used instead

We decided that a reasonable approximation that would correct the non-linear behavior
quite decently – relative to the other two systems – is a polynomial of degree 5. Of course
this would impose further delay in the process of the data and hence we decided to measure
each ADC approximation for each integrator and store these values to a unique comma-
separated values (CSV) text file. Each file is unique per mezzanine and is named out of its
serial number. It consists of 16384 text lines – the possible ADC values since they are 14 bits
long – and each line consists of one integer – raw ADC value – and two floating values –
corrected value for integrator 0 and 1 accordingly. Lastly, all LUTs are stored in our NFS
section’s directory so that they can be accessible from any FEC.

3.1.5.2 Averaging and Base Line Restoration (BLR)
Averaging the samples per bunch slot, as they come out of the LUTs, reduces the

fluctuation of the signal caused by noise dramatically; this is due to the fact that the useful
signal – beam – always comes at well specified moments during the RF cycle [7]. Hence, the
more data we have to average, the clearer the result is.

Furthermore and for restoring the data’s base line, we introduce a new algorithm based
on the measurement of pure noise in the 3µs abort gap3 as well of the noise at each empty
bunch slot. Hence, we can summarize the algorithm for the BLR as follows:

• Find minimum after the LUT correction and averaging
• Specify the noise samples out of the 3564 which satisfy the following criteria:

o The measured value falls in the interval of <min; min + TH>, where TH
is a threshold value specified by the user

o The position – bunch slot – of the measured sample is at least VS
samples away from a non-noise sample, where the VS value is set by the
user including 0

• Calculate the mean value of the selected noise samples
• Take away the calculated mean value from all the 3564 samples

An example of the above algorithm is depicted in figure 3-7. For this example the VS is
3, while the TH is of no significance. The samples that are considered as noise and thus are
used for the calculation of their mean value are specified by the yellow regions.

3 This is not actually true, since a limited amount of particles is always present and this can disturb the
measurement [17]

38

Figure 3-7: An example of the BLR algorithm with VS=3. Only the yellow region is considered as noise [17]

3.1.5.3 Calibration of the data
Calibration of the data is called the transformation of the ADC corrected values to the

number of charges. This is done by applying a simple linear equation to the measured data:

�� � � � ���	
���	
�� � �

(3.1)

where k is the calibration coefficient and q is the calibration offset, which both are normally
found by calibration [2.2.1].

3.1.5.4 Gain Switching
As explained in chapter 2.2.1 both bandwidth channels provide two dynamic range

measurements. Our software is responsible for the proper and automatic setting of the correct
dynamic range, which depends on whether a bunch slot measurement exceeded a defined
threshold. In order to avoid switching between gains when a measurement approaches the
threshold we implemented a hysteresis in the switching thresholds. Hence, instead of one, we
introduce two switching thresholds, settable by the user in ADC bins:

• CHTH(high) – this threshold is applied when the current measurement was
performed by high gain measurement channel to switch to the low one, if at
least one of the measured data exceeded it

• CHTH(low) – this threshold is applied when the current measurement was
performed by low gain measurement channel to switch to the high one, if none
of the measurement data exceeded it

3.1.5.5 Phase Scan
Phase scan is the observation of one bunch intensity – the maximum one – with its four

neighbors (two from each side) when applying by brute force all 16 possible values for the
phase delay expert setting. By changing the phase delay, the user can change the signal’s

39

amplitude and that is why this procedure is very important. The graph that comes out of this
procedure can help the user to determine the appropriate phase delay setting in order to
maximize the signal’s amplitude. The following figure depicts one example of such a
procedure that was performed4 at system C, using a python script.

Figure 3-8: phase scan

3.1.5.6 Server Architecture
There are four DAB cards in LHC system C that measure the intensity of the beams

using the FBCTs, one for the High and one for the Low Bandwidth measurements for each
beam. Hence, we created a FESA class, BCTFRLHC v6, with four instances – one per card.

This server has two real-time actions:

• Acquire – where all the functionality of the server is implemented, such as data
acquisition, process, BLR and storage. It operates every second.

• XpocAction – which is responsible to copy the history of the last 1000 total
intensities as calculated by Acquire, as well as their time stamps to a different
server at any beam dump event for diagnosing a possible reason for it

The properties that interface the server are:

• Setting – where the user can specify/observe the settings relative to the
acquisition

• CalibrationSetting – where the user can specify/observe all the settings which
are not relative to the acquisition

• LoadLUT – where the user can upload and clear the LUT for each mezzanine
• Acquisition – where the user can observe the total, bunch and history intensities

for both mezzanines as well as the selected ones

4 Performed by D. Belohrad

40

• ExpertAcquisition – where the user can observe the intermediate values before
reaching the desired total intensities, such as the data after the LUT and BLR

• XpocData – where the user can observe the data copied from the XpocAction
before being transferred to the server

3.1.5.7 Client – Interface
We developed the BCTFRLHC_v6 expert GUI in Java and organized it in five

packages just as the BFCTSR_ExpertGUI [3.1.4.3], figure 3-3. The class diagram of the main
part of the expert GUI is depicted in figure 3-9. This is the part that interfaces the server’s
properties Setting, CalibrationSetting, LoadLUT, Acquisition and ExpertAcquisition as well
the graph from Phase Scan. These properties are organized in two areas – left and right. All
the setting related panels – Setting, CalibrationSetting and LoadLUT – are placed at the left
area as tabs whereas all the graph related panels – Acquisition, ExpertAcquisition and Phase
Scan – are placed at the right side again as tabs.

41

Figure 3-9: BCTFRLHC_v6 expert GUI UML class diagram (without comparison window)

42

In addition, we implemented a comparison window among the three systems – A, B
and C – comparing the bunch intensities among the FBCTs of these systems and the total
intensities among the FBCTs of these systems as well as the DCCTs of system A and B. Due
to the lack of the calibration mechanism, we decided to implement this comparison window
as part of the expert GUI for the FBCTs in system C, in order to ease the setting of the
calibration coefficients and their monitoring. This comparison window’s main purpose is to
calibrate our FBCT’s implementation of system C, relative to the existing implementations in
system A and B, as well to cross check the accuracy of the data that our implementation
provides. The class diagram of this comparison window is depicted in figure 3-10.

Figure 3-10: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert GUI)

43

: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert GUI)

: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert GUI)

44

3.2 Technical Implementation
After analyzing the high level of our implementation for both systems – FBCTs in the

SPS and LHC – we will try and give all the technical details that concern the implementation
of the common tools – such as the rapper, tester and dabInfo – used by both systems
independently as well the specific details by both systems individually.

3.2.1 Wrapper – Common Implementation

3.2.1.1 Constructor
Since we are using two libraries to access our hardware, they should be initialized

somehow and this is done in the constructor of the wrapper class of our implementation.
There, the ioctl‘s function to open the device driver node is being called with two arguments,
the Logical Unit Number (lunLogical Unit Number assigned to the module) and the Minor
Device Number (chanN -- Minor Device Number. There can be several entry points for
current Logical Unit Number (ChannelNumber).). It returns the file descriptor with whom all
the library’s functions are called.

The dal’s function to enable the access to the device is being called with four
arguments, the name of the device (as specified in the Data Base), the method that will be
used for the access (IOCTL, IOMMAP and IODMA), the LUN and chanN. It returns as well
a file descriptor which is used when any of the library’s methods are called.

3.2.1.2 Single-value Registers
For reading the single-value registers one can call the appropriate wrapper’s method

and pass a pointer to an integer as argument. The method is calling the ioctl’s function to get
the register’s value which returns a result of that action, if succeeded or failed. This result is
stored in the address that was passed as argument to the wrapper’s method, while the value of
the register is being returned as unsigned long at the end of the method.

For writing a value to the single-value registers, the mechanism is quite similar with the
above, with the difference that the value to be set is passed as an unsigned long argument
along with a pointer to an integer. The method is using the ioctl’s function to write the value
to the register and stores the result of that action (succeeded or failed) in the address passed
as argument. The method doesn’t return anything.

3.2.1.3 Multiple-value Registers
As for the multiple-value registers, we’ve implemented two ways of reading them. First

is the type of methods that expect two arguments, one pointer to unsigned long and second to
integer. This type of methods read the whole register and store it to the memory where the
first pointer points and the result of that action to the second one.

The other type of methods that reads multiple values, take three arguments. One pointer
to unsigned long for the result, one to an integer for the action’s result as before and one
additional integer to specify how many values to be read.

45

For writing this kind of registers, we’ve used the exact same implementation as above,
with the only difference that we’ve used the appropriate libraries’ functions for writing
instead. Of course now, the first pointer points to the address where the values would be read
and not written, meaning that became the source from destination.

3.2.1.4 Setting processing
There are also some methods to process the data that need to be set to the device before

any action. These are the bunch selection which comes as a string from user’s input. A parser
was needed to be implemented in order to transform the user-friendly string to the array of
hexadecimals that the device can take as setting through the CBunchSelector register.

The parser takes the string as argument and splits it to ‘ ’ and ‘,’ to find different
selections. Then, it calls a private method to define if there is a region requested or a single
bunch by searching the ‘-’ character. And finally another private method is called to do the
appropriate calculation and set the corresponding hexadecimals to the CBunchSelector
register. The procedure is repeating itself until it reaches the end of the string.

Figure 3-11: Bunch Selection Transformation from string to a set of hexadecimal

3.2.2 Tester – Common Implementation
The tester class was created at first to test the communication with the device. At those

days, it did nothing more but to read and write the registers in order to make sure that every
one of them behaves the way it should.

In the meanwhile, and as the project evolved, we found the need to develop new tests
more relative to the acquisition behavior of the device. Hence we implemented a loop that
asks the user to enter the number of bunches and turns for acquisition while checking if this
input is reasonable – no zero bunch selection for example. As it was described in the previous

46

chapter, setting the bunch selector register is something that has to be done with great care,
since errors in that procedure can mess the data and are extremely difficult to be spotted. That
is why we implemented a CBunchSelector “parser” in the tester (which was moved later on
to the wrapper). This parser is iterating the CBunchSelector memory (128 of doubles) and
prints them as hex, so that we can debug its setting procedure.

Furthermore, the acquisition starts in a loop so that we can simulate real time conditions
and the data are fetched from the device before passed to a method that decodes and prints
them. The selection of the data is usually big enough and thus very uncomfortable to be
printed in the console, hence the routine that does this job can take two arguments that
specify two limits in order to print only the specified first and last samples.

The decoding of the data, which was moved to the wrapper later on, has to split the data
as it was read from the device in the middle. Take the left part first (16 MSB) and apply a
sign correction after striping the 14 less significant bits as follows:

Figure 3-12: Sign correction of the data in the code

The same procedure must be followed to the right sample as well (16 LSB) before
moving to the next element in the CBunchSelector memory. Special care should be taken
when the number of samples – number of bunches * number of turns – is odd, in the sense
that we keep only the desired and correct data. We achieved that by repeating the above
procedure of splitting, striping and correcting the sign of the data one time less than is needed
and taking modulo of the number of samples with 2 into account. In this way, we repeat the
procedure for the left sample (16 MSB) and the right one (16 LSB) only if the modulo is 0.

3.2.3 DabInfo – Implementation
For the implementation of the dabInfo utility, we need the user to specify the LUN

number of the DAB that he wishes to retrieve the information. After taking our Hardware
expert’s request under consideration, we agreed on having two ways to do that. If no
argument was passed while running the application, a loop would ask the user to provide an
appropriate LUN number. On the other hand, the user can directly pass this information with
the running command.

DabInfo does nothing more than reading directly (without using the wrapper class) 9
registers relative to the firmware, serial numbers and the status of the device – FWCodename,
FWRevision, FWDate, SNDAB, SNTop, SNBottom, SNPIM, Command and Debug – and
present their contexts in a meaningful way after processing them if needed.

47

For example, for printing in ASCII format the firmware codename, we split every
element of the register at 4 pieces of 8 bits each and print each one of them as character. A
code example is the following:

Figure 3-13: example code for ASCII parsing

In a similar way, the FWDate has to be processed in order to extract the information
about the day, month, year and time of the firmware compilation. Furthermore, and for the
status (Command) and debug register we had to implement two hash tables, one for each
register, with the possible status and debug states and print the corresponding message
depending on the contexts of the appropriate register. An example of the output information
when running dabInfo at the lab is the following:

Figure 3-14: example run of the dabInfo in the lab

3.2.4 SPS
In this section we are focusing on the technical implementation details of the FBCTs in

the SPS ring. We describe what changed in the software and in what way. Finally we describe
the expert GUI that did not exist

3.2.4.1 Baseline Restoration (BLR)
The implementation of the new algorithm for the baseline resto

acquired data for the minimum value. In order to detect and ignore extreme values, this is not
enough. Hence, in the same loop, the minimum neighbor is determined so that its dis
with the currently examined value can be tested and then decided if it will be considered as
valid value or an extreme one.

In this way and within a single loop the minimum value of an acquisition, ignoring any
“undershoots” is determined. Then the u
in order to create a threshold that determines the samples below it to be considered as noise.
Continuing in the second loop
then removed from any sample in the acquisition. In this way, what is considered as noise
moves to the zero area of the y

48

: example run of the dabInfo in the lab

In this section we are focusing on the technical implementation details of the FBCTs in
the SPS ring. We describe what changed in the software and in what way. Finally we describe

did not exist before.

Baseline Restoration (BLR)
implementation of the new algorithm for the baseline restor

acquired data for the minimum value. In order to detect and ignore extreme values, this is not
enough. Hence, in the same loop, the minimum neighbor is determined so that its dis
with the currently examined value can be tested and then decided if it will be considered as
valid value or an extreme one.

In this way and within a single loop the minimum value of an acquisition, ignoring any
“undershoots” is determined. Then the user setting that specifies the noise area is added to it
in order to create a threshold that determines the samples below it to be considered as noise.
Continuing in the second loop the average value of these noise samples is calculated,

from any sample in the acquisition. In this way, what is considered as noise
to the zero area of the y axis. Figure 3-2 shows such case.

In this section we are focusing on the technical implementation details of the FBCTs in
the SPS ring. We describe what changed in the software and in what way. Finally we describe

ration searches the
acquired data for the minimum value. In order to detect and ignore extreme values, this is not
enough. Hence, in the same loop, the minimum neighbor is determined so that its distance
with the currently examined value can be tested and then decided if it will be considered as

In this way and within a single loop the minimum value of an acquisition, ignoring any
ser setting that specifies the noise area is added to it

in order to create a threshold that determines the samples below it to be considered as noise.
is calculated, which is

from any sample in the acquisition. In this way, what is considered as noise

49

3.2.4.2 TURN_BY_TURN acquisition
For the implementation of the new real time action rtTurnAcq, we basically combined

the rtStart and endCapture into one new real time action with different settings. The main
idea is the same; the rtTurnAcq starts the acquisition with the settings that are already in the
device, reads the data back, decodes and calibrates them before exiting.

This acquisition mode acquires a full bunch selection for 500 consecutive turns (instead
of 1 for the REPETIVE mode). This number is the limit of the first dimension of the
intermediate and final buffers (number of measurements for the REPETIVE mode) which we
also use in rtTurnAcq but storing the turn instead of the measurement in their first dimension.
For the REPETIVE mode, 500 measurements every 40msec is more than enough and is never
actually reached. As for the TURN_BY_TURN mode though, this number is really limiting
the amount of data acquired, hence the precision of the measurement, when the capacity of
the device storage exceeds this limitation by a factor of 2.

The main compatibility problem about this issue comes from our clients, people in the
CCC who develop their own GUI applications to interface our servers. Their main request is
to change their applications as less as possible to preserve stable releases of their software
solutions. That is why we decided not to increase the maximum number of
measurements/turns at developing time, but later on in the future and after we assure that the
new version of the server works fine and stably.

Another implementation issue that appeared was the synchronization of the starting
point of the real time action. The warning that starts the rtTurnAcq is 20msec earlier than the
beam’s injection. If we started the acquisition at this moment, we would acquire mostly noise
and only a small fracture of the actual beam’s intensity. Taking the limitation in our
acquisition data that was introduced before under consideration, this would turn our new
acquisition mode useless. To make things worse, this is the same event that wakes rtPrepare
and serious problems would appear if both real time actions tried to communicate with the
device since there is only one bus for this communication.

To avoid these problems, we had to wait some time – 18msec – just to assure the non-
simultaneous device access as well as the acquisition of meaningful data. We implemented
this delay using another FESA class that was created by our group for abstracting the global
timing events, named LTIM, which gives us the opportunity to specify such settings as delay.
We choose to implement this mechanism rather than using simple sleep commands, in order
to reduce the useless CPU usage as well as preserving the wright synchronization among the
real time actions.

3.2.4.3 Client – Interface
For the implementation of the expert GUI, we used the BasicFrameBuilder which was

created from our section for abstracting the creation of certain useful toolkits such as the
RBA toolbar as well as the device iterator. The latter – visible on the left side of figure 3-15 –
creates a thread of the application for each device (instance of a FESA class) whiles the
former – visible on the right side of the same figure – takes care of the privileges each user
has for accessing each server.

50

Figure 3-15: Upper part of the BFCTSR_EpertGUI

The TimingPanel is implemented by our section and its main purpose is to abstract the
cycle multiplex for each accelerator. In this panel and at the right side, the user can see which
cycle is active at any moment as well as the sequence of all active cycles for a given
accelerator. At the left side of this panel, the user can choose by a simple click, which cycle’s
intensities he wants to observe. This information, as well as the type of the action the user
requested (GET, SET, SUBSCRIBE and UNSUBSCRIBE), is visible in every panel of our
application since things can complicate quite fast, if more than one cycle are observed at the
same time.

In the figure 3-16 the cycle selection is visible inside the green box, where the green
arrow points, while the sequence of the active cycles are inside the light blue box, pointed by
the light blue arrow. Inside that box and with a green color is the active cycle for that specific
moment while the red numbers on the right side of each active cycle is its duration in
seconds. Lastly and inside the purple boxes is the last action as well as the cycle for which it
was operated. In the same figure the Setting as well as the Acquisition panel is visible.

Figure 3-16: BFCTSR Expert GUI – Acquisition Tab

The UserData panel hosts a plot with the individual bunch intensities per measurement.
There is also a scroll bar to iterate the different measurements as well as a text-field where
the measurement offset in milliseconds is indicated. For example in figure 3-17 we can see
the second measurement for the SFTLONG2 cycle with 41msec offset.

51

Figure 3-17: BFCTSR Expert GUI – UserData Tab

Lastly, the BunchAcquisition panel hosts two 3-Dimensional plots, one for each
mezzanine. These 3D graph components were experimentally created by our group and found
to be quite useful in our case, since we can have a global idea of the individual bunch
intensity measurements in time at once. The data that are being presented by both
BunchAcquisition and UserData panels are the same – the two dimensional arrays from the
server – only with a different representation. The UserData panel is very useful for the
individual study of the measurements whereas the BunchAcquisition is ideal for the whole
picture of the measurement. An example of the latter panel can be seen in figure 3-18 along
with the 3D pop-up graph.

Figure 3-18: BFCTSR Expert GUI

3.2.5 LHC
For the server implementation in the LHC ring, we decided to keep the four pointers to

the wrapper class – one per DAB card
that either way, we iterate through the device collection
acquisition, read back the data, set the settings and so on. This iteration is done always in the
same order and it starts from the device in lun 0
device in lun 3 – LBW for beam2. Hence, we create and initialize these four pointers to the
wrapper class in the constructor of the real time
storing them to an array in the same order of the devices,
classes using the keyword extern

3.2.5.1 Look Up Tables
As described in chapter 3.1.5.1, there are two LUTs per DAB card

mezzanine. The LUTs contain the signed corrected ADC values (
corrected values – one for each integrator.
arrays of floats per LUT – one for integrator 0 and one for 1. We used the ADC values as
indexes to each corrected floating value for each integrator’s array, after eliminati
correction by subtracting the constant value 8192, in order to have proper positive array
indexes. These arrays are stored in the device shared memory, so that they can be accessed by
any server class at any time.

The implementation of the soft
by any class of our server. This class has hardcoded the path where the LUTs are placed and
takes a pointer to a BCTFRLHC device as a constructor’s argument. The array of the wrapper
pointers is also visible in that class using the key word

52

: BFCTSR Expert GUI – BunchAcquisition Tab

For the server implementation in the LHC ring, we decided to keep the four pointers to
one per DAB card – apart from the shared memory. The design is such,

through the device collection – four DABs – in order to start the
acquisition, read back the data, set the settings and so on. This iteration is done always in the
same order and it starts from the device in lun 0 – HBW for beam1 – and it goes up to the

LBW for beam2. Hence, we create and initialize these four pointers to the
wrapper class in the constructor of the real time classes, BCTFRLHCRealtime and
storing them to an array in the same order of the devices, we access them through our server

extern.

As described in chapter 3.1.5.1, there are two LUTs per DAB card
The LUTs contain the signed corrected ADC values (-8192 –

one for each integrator. We implemented the LUTs in software in two
one for integrator 0 and one for 1. We used the ADC values as

indexes to each corrected floating value for each integrator’s array, after eliminati
correction by subtracting the constant value 8192, in order to have proper positive array

These arrays are stored in the device shared memory, so that they can be accessed by

The implementation of the software LUTs is done in a custom class that is accessible
by any class of our server. This class has hardcoded the path where the LUTs are placed and
takes a pointer to a BCTFRLHC device as a constructor’s argument. The array of the wrapper

isible in that class using the key word extern.

For the server implementation in the LHC ring, we decided to keep the four pointers to
apart from the shared memory. The design is such,

in order to start the
acquisition, read back the data, set the settings and so on. This iteration is done always in the

and it goes up to the
LBW for beam2. Hence, we create and initialize these four pointers to the

classes, BCTFRLHCRealtime and after
we access them through our server

As described in chapter 3.1.5.1, there are two LUTs per DAB card – one for each
 8191) and the two

We implemented the LUTs in software in two
one for integrator 0 and one for 1. We used the ADC values as

indexes to each corrected floating value for each integrator’s array, after eliminating the sign
correction by subtracting the constant value 8192, in order to have proper positive array

These arrays are stored in the device shared memory, so that they can be accessed by

ware LUTs is done in a custom class that is accessible
by any class of our server. This class has hardcoded the path where the LUTs are placed and
takes a pointer to a BCTFRLHC device as a constructor’s argument. The array of the wrapper

53

Furthermore, this class has to methods:

• clearLUT(int) – which clears the software LUTs for the specified mezzanine (0
for both, 1 for the top and 2 for the bottom)

• updateLUT() – which loads or reloads the LUTs according to the settings the
user has provided in loadLUT property

By clearing the LUTs, we mean to make them (1:1) transparent in order to avoid our
server from crashing. In other words, the LUTs return the same value that was used for
indexing, without any non-linear correction. This is also very important to check the raw
ADC values as they are read from the DABs, since they are not published at all to avoid
making our properties “heavy”.

Updating the LUTs at runtime, is a feature much appreciated by the users, since they
can change them (clearing/updating) in order to observe, as said, the raw values if needed. In
addition and if it is found that they need to be changed in the future, this can be done on the
fly without spending too much time rebooting the server.

The LUTs are loaded for the first time to the shared memory at BCTFRLHCRealtime
class which is responsible for any kind of initialization of the real-time classes when the
server starts. If by any reason this operation fails, the ones that failed are being cleared.

3.2.5.2 Averaging, Base Line Restoration (BLR) and Calibration of the Data
Since there is the 1 second time restriction, we tried to condense as many of the data

process steps as possible. Hence, when we iterate the acquired values <number_of_turns *
number_of_bunches> and parse them through the appropriate LUTs, we also sum the
corrected values per bunch slot. Furthermore, in a second iteration <number_of_bunches> we
divide every sum with the <number_of_turns> to get the average bunch intensities after LUT
correction. In this iteration, we also specify the minimum average bunch values to be used
from the next steps of the data process.

For implementing the BLR as described in chapter 3.1.5.2, we decided to use two
arrays of shorts – one per mezzanine – that we called bitmaps and specify if a bunch slot
contains noise or beam signal – 1 or 0 accordingly. Obviously, these arrays’ length is the
maximum number of the bunch slots that can be acquired – 3564. In addition, these bitmaps
are initialized with 1, assuming that every single bunch slot contains noise measurement
which is the case when the beam is not present.

Subsequently, we iterate the averaged LUT corrected values from <VS> (see chapter
3.1.5.2) to <number_of_bunches – VS> checking if the value is above <min + TH>. If it is,
then it means that this bunch slot measurement should be considered as beam signal and
hence the corresponding entry of the bitmap is changed to 0. Then, we check the measured
values just before and after the current one, to specify if this bunch slot is at the beginning –
the previous value should be below <min + TH>, end – the next value should be below <min
+ TH> – or in the middle of the beam. If any of the two former cases appear, we also change
the bitmap for the according bunch slots – previous or next – to 0. This is done for both top
and bottom mezzanines.

54

Furthermore, we iterate the first VS values as well as the last ones in case there is beam
signal at these bunch slots, in which case we change the bitmap for these bunch slots to 0. By
the end of these iterations, we have all the information needed to calculate the mean value of
the noise in the bitmaps.

Thus, we iterate once more the averaged LUT corrected values <number_of_bunches>
and we sum the values that have 1 at the corresponding index of the bitmaps, increasing also
a counter for every noise sample. In this way we specify the mean value per mezzanine by
dividing the sum with the counter.

Lastly, we take away the just calculated noise mean value from every sample at the
same time we transform them to number of charges by applying the calibration components.
Hence, the equation 3.1 is transformed to the following:

�� � � � ����	
���	
�� � �
������������� � �

(3.2)

In addition, this is the iteration where we sum the calibrated values – number of charges –
and calculate the average total intensity for both mezzanines, that one of which will be
published. We also find the maximum value as well its bunch slot that will potentially be
used by the phase scan actions.

3.2.5.3 Gain Switching
In order to implement the gain switching in software, the user provides two switching

thresholds in ADC bins. But these thresholds are applied to the data after their calibration – in
number of charges – and thus, the same transformation (equation 3.2) must be applied to
them.

After transforming the thresholds, we read back from the shared memory which was the
previous selected gain, and apply the thresholds accordingly. If it was the top mezzanine,
then we iterate the averaged calibrated values and if we find at least one value that exceeds
the threshold, we break and we switch the gain to the bottom mezzanine. On the other hand,
if the previous gain selection was the bottom mezzanine, we simply check if the maximum
value that was already found from the calibration-BLR iteration exceeds the according
threshold and if it does not, we switch to the top one.

3.2.5.4 Phase Scan
For the implementation of the phase scan, we use the settings that the user has provided

at CalibrationSetting property and more specifically the phase scan action selection and the
bunch slot. We support two actions and thus the phaseScanAction field has three possible
states:

• DO_NOTHING – is the default state of that field and as its name reveals, is
used for doing nothing as far as the phase scan procedure is concearned

• FIND_MAX_BUNCH_SLOT – is the state of that field that instructs the real-
time action to store at bunchSlot field the bunch slot with the maximum value of

55

the selected gain, as found from the calibration-BLR iteration, from the current
measurement

• DO_PHASE_SCAN – is the state of that field that instructs the real-time action
to apply the phase scan at the specified bunch slot, given by the bunchSlot field

The latter, needs 16 acquisitions – 16 seconds – to be completed. We keep the phase
delay that was last used for the phase scan, in a private field so that it doesn’t mess up with
the phase delay the user provided in the CalibrationSetting property. The values of the 5
bunch slot measurements are stored in different 2D buffers whose first dimension is the 5
different bunch slots whereas the second one is the 16 values according to the 16 possible
values of the phase delay. Each second, we increase the private phase delay by one and check
if we reached the end, where we set it to its initial value (0) and the phaseScanAction field to
its default value (DO_NOTHING).

3.2.5.5 Client – Interface
 We implemented the BCTFRLHC_v6_ExpertGUI, using the basic frame builder just

as for the BFCTSR_ExpertGUI (see chapter 3.2.4.3) in order to take advantage of the
automatic implementation of the device list as well as the RBAC toolbar.

The expert GUI consists of two main tabs:

• Comparison Window – which interfaces the comparison application described in
chapter 3.1.5.7 – figure 3-10

• Device Window – which interfaces our expert GUI per device instance as it was
described in chapter 3.1.5.7 – figure 3-9

The Comparison Window consists of a row of buttons on top – Start / Stop, and two
tabs – one per beam. Each beam tab consists of two tabs as well – one for the history of the
total intensities and one for the average bunch intensities. The latter two tabs consist of a
toolbar on top and a graph at the remaining area. The toolbar is different per tab and that is
because there are different settings depending on the type of the graph.

56

Figure 3-19: Comparison Window - total intensity history for beam 1

Hence, the toolbar for the total intensities tab consists of a group of checkboxes where
the user can specify the visibility of the available plots – these are the history of the total
intensity as calculated from DCCTA and DCCTB as well from FBCTs in all three systems.
Next to these checkboxes, lie a text-field and a button that allows the user to specify the depth
of the history he desires. This is achieved by changing accordingly the length of the First-In-
First-Out (FIFO) queues we use to create the history plots from all devices. In addition, a
reset button clears these queues, in case the user wants to restart the history monitoring.
Furthermore, we state which mezzanine was used to provide the total intensity as far as our
server is concerned in the next component which consists of a label and a combo box.
Subsequently, three sets of radio buttons lie next to the selected mezzanine that group the
settings related to the graph. The first of these sets specifies which bandwidth to plot from
each device – High or Low. The second set specifies the graph format – absolute, absolute
difference and relative difference – and the third one the references – DCCTA, DCCTB and
FBCTC.

Figure 3-20: Comparison Window - total intensity history

By absolute, we mean that we plot the total intensity histories as we get them from
devices. For the other two form
one device as reference – the user specifies which one he wants from the third set of radio
buttons – and we calculate the difference of the visible plots relative to the reference
the absolute difference format, we just subtract the reference values from the visible ones. On
the other hand and for the relative difference format, we use the following equation to
calculate the percentage difference between two systems:

The result of the absolute difference
visible systems relative to the spe
relative difference is the percentage of this difference. In addition and only for the relative
difference format, if there is only one visible plot and at least one of the two settings
and relative – is system C but without being the same to both settings, we make visible
another component which consists of a text
calculate and apply the corresponding calibrating coefficient for system C in a
eliminate the difference as much as possible. This is achieved by calculating the next
equation using the values retrieved by equation 3.3 and the most recently used calibration
coefficient:

57

total intensity history - absolute difference - for beam 1

By absolute, we mean that we plot the total intensity histories as we get them from
devices. For the other two formats – absolute and relative difference – we use

the user specifies which one he wants from the third set of radio
and we calculate the difference of the visible plots relative to the reference

the absolute difference format, we just subtract the reference values from the visible ones. On
the other hand and for the relative difference format, we use the following equation to
calculate the percentage difference between two systems:

of the absolute difference format is a graph of the difference between the
visible systems relative to the specified one in number of charges, whereas in the case of
relative difference is the percentage of this difference. In addition and only for the relative
difference format, if there is only one visible plot and at least one of the two settings

is system C but without being the same to both settings, we make visible
another component which consists of a text-field and two buttons. This component is used to

corresponding calibrating coefficient for system C in a
eliminate the difference as much as possible. This is achieved by calculating the next

using the values retrieved by equation 3.3 and the most recently used calibration

By absolute, we mean that we plot the total intensity histories as we get them from the
we use the values from

the user specifies which one he wants from the third set of radio
and we calculate the difference of the visible plots relative to the reference ones. In

the absolute difference format, we just subtract the reference values from the visible ones. On
the other hand and for the relative difference format, we use the following equation to

 (3.3)

is a graph of the difference between the
cified one in number of charges, whereas in the case of

relative difference is the percentage of this difference. In addition and only for the relative
difference format, if there is only one visible plot and at least one of the two settings – visible

is system C but without being the same to both settings, we make visible
field and two buttons. This component is used to

corresponding calibrating coefficient for system C in a way to
eliminate the difference as much as possible. This is achieved by calculating the next

using the values retrieved by equation 3.3 and the most recently used calibration

 (3.4)

Figure 3-21: Comparison Window - total intensity history

As for the toolbar of the average bunch intensities ta
consists only by a smaller group of checkboxes
checkboxes are again to allow the user to specify which available plots he wishes to make
visible – these are the average bunch intensities as calculated fro
This is because the DCCTs do not provide bunch
are again to specify the graph settings as in the total intensity history tab’s toolbar but this
time without the bandwidth chooser nor the ad
lack of the former is due to the fact that system A and B do not provide bunch
measurements for the LBW whereas the coefficient calculator
values which are the total intens

Figure 3-22: Comparison Window - average bunch intensity for beam 1

58

total intensity history - relative difference for beam 1

As for the toolbar of the average bunch intensities tab, things are
consists only by a smaller group of checkboxes and two sets of radio buttons. The

to allow the user to specify which available plots he wishes to make
these are the average bunch intensities as calculated from the three FBCT systems.

This is because the DCCTs do not provide bunch-to-bunch measurements.
are again to specify the graph settings as in the total intensity history tab’s toolbar but this
time without the bandwidth chooser nor the additional coefficient calculator component.
lack of the former is due to the fact that system A and B do not provide bunch
measurements for the LBW whereas the coefficient calculator is focused
values which are the total intensities.

average bunch intensity for beam 1

b, things are simpler since it
and two sets of radio buttons. The

to allow the user to specify which available plots he wishes to make
m the three FBCT systems.

bunch measurements. The radio buttons
are again to specify the graph settings as in the total intensity history tab’s toolbar but this

ditional coefficient calculator component. The
lack of the former is due to the fact that system A and B do not provide bunch-to-bunch

is focused on the published

Figure 3-23: Comparison Window - average bunch intensity

The Device Window consists
LoadLUT – panels on the left of the GUI,
and the graphics area on the right with acquisition panels
and PhaseScan. In this way, the user is able to spot immediately the reaction of his settings to
the data acquired.

Figure 3-24: BCTFRLHC_v6_ExpertGUI

59

average bunch intensity - absolute difference for beam 1

consists of an area of setting – Setting, ExpertSetting
on the left of the GUI, that interface the corresponding FESA properties

and the graphics area on the right with acquisition panels – Acquisition,
. In this way, the user is able to spot immediately the reaction of his settings to

: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Bunch Intensity - Expert Settings Panel

Setting, ExpertSetting and
that interface the corresponding FESA properties

Acquisition, ExpertAcquisition
. In this way, the user is able to spot immediately the reaction of his settings to

Expert Settings Panel

60

Figure 3-25: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Turn Intensity History - Settings Panel

The history tab of the average turn intensities under the Acquisition panel is exactly the
same graph with the total intensity history tab in the Comparison Window if the user selects
the appropriate settings from its toolbar. In the example shown in figure 3-25, one should
choose to plot the BCTFRC values at the beam 2 tab with HBW and absolute graph format as
graph settings. And this is true, only if the currently selected mezzanine (GAIN) from FBCT
in system C is bottom (Low).

The next two figures (3-26 and 3-27) depicts the impact of the LUTs at the data. For
this reason we plot the data as soon as they are parsed from the LUTs in the Expert
Acquisition panel, Data After LUT tab. In the first figure we cleared (1:1) the LUT for the top
mezzanine only so that the difference between the actual and the cleared LUTs can be spotted
easily. The second figure depicts the data after updating “on the fly” the top mezzanine’s
LUT.

61

Figure 3-26: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - cleared LUT for top
mezzanine

Figure 3-27: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - updated LUT for top
mezzanine

In the average bunch intensity graphs in the Expert Acquisition panel, we plot the data

after averaging them and before restoring their baseline or calibrate them. In addition we also
plot the BLR components as they are calculated from the real-time action, in order to follow
the BLR procedure and have a visual and immediate clue of the impact of our Expert Settings
(figure 3-28). This is true only if the user chooses to plot one of the two plots (top/bottom
mezzanine) since these components are specified per mezzanine.

62

Figure 3-28: BCTFRLHC_v6_Epxert Acquisition / Average Bunch Intensities in ADC bins - Expert Settings

In figure 3-29 a zoom of the same graph depicts the details of the BLR components for
better understanding. In this figure the minimum value as it was calculated by Acquire real
time action is visible with the yellow line as well the user setting TH with red. In addition the
area that is considered to have useful signal is painted blue for better visualization.

Figure 3-29: BCTFRLHC_v6_EpxertGUI - Zoom at the Expert Acquisition panel / Average Bunch Intensity in ADC
bins tab

Lastly, in figure 3-30 the phase scan procedure is depicted for the bunch slot that was

found to have the maximum value.

63

Figure 3-30: BCTFRLHC_v6_ExpertGUI - Phase Scan

4 Results

Having deployed our suggestions of the FBCT servers for both SPS and LHC rings is

time to present and analyze the results of our
that and is divided in two subsections, one per server. This is important since, the requirement
for an operational FBCT system in the SPS ring was critical and hence, we couldn’t wait in
order to develop a unified system as it was first foreseen. Therefore, we developed this server
first and in parallel we studied the ways
order to achieve the implementation of a unique FBCT measuring system.

4.1 SPS
The FESA class BFCTSR v210

ring, was deployed and is operational since 22/05/2012. Until now no problems had occurred.
On the contrary the CCC operators were quite happy to finally see this TURN_BY_TURN
acquisition mode as well that
properly.

Figure 4-1: Total Intensity Measurement
previous version of the server

Until now, the operators were only able to see the whole history of the beam’s intensity
during a cycle apart from the first injection, since the acquisition started the moment the
beam was already present (see Figu
wants to observe the behavior of the beam’s intensity at the injection time.

And that is what is renovating with our implementation, for the first time, the operators
can see the intensity of the bea
easily calculate the additional intensity that actually took place during the injection. This is
very important for the smooth operation of the SPS ring since several unpredicted behaviors
of the beam can be detected before they can cause its dump.
the delay of the execution of the acquisition in milliseconds, the operators (users) can actually

64

Having deployed our suggestions of the FBCT servers for both SPS and LHC rings is
time to present and analyze the results of our implementations. This section is dedicated to
that and is divided in two subsections, one per server. This is important since, the requirement
for an operational FBCT system in the SPS ring was critical and hence, we couldn’t wait in

fied system as it was first foreseen. Therefore, we developed this server
first and in parallel we studied the ways – as it was described in the previous sections
order to achieve the implementation of a unique FBCT measuring system.

BFCTSR v210, our implementation of the server for the FBCT in SPS
was deployed and is operational since 22/05/2012. Until now no problems had occurred.

On the contrary the CCC operators were quite happy to finally see this TURN_BY_TURN
that the new implementation of the baseline restoration

: Total Intensity Measurement with FBCT for the SPS, CNGS1 cycle, REPETETIVE mode

Until now, the operators were only able to see the whole history of the beam’s intensity
during a cycle apart from the first injection, since the acquisition started the moment the

(see Figure 4-1). Having this history is useful but not if anyone
wants to observe the behavior of the beam’s intensity at the injection time.

And that is what is renovating with our implementation, for the first time, the operators
can see the intensity of the beam on the injection moment in great detail and thus they can
easily calculate the additional intensity that actually took place during the injection. This is
very important for the smooth operation of the SPS ring since several unpredicted behaviors

beam can be detected before they can cause its dump. What is more, and by specifying
the delay of the execution of the acquisition in milliseconds, the operators (users) can actually

Having deployed our suggestions of the FBCT servers for both SPS and LHC rings is
implementations. This section is dedicated to

that and is divided in two subsections, one per server. This is important since, the requirement
for an operational FBCT system in the SPS ring was critical and hence, we couldn’t wait in

fied system as it was first foreseen. Therefore, we developed this server
as it was described in the previous sections – in

our implementation of the server for the FBCT in SPS
was deployed and is operational since 22/05/2012. Until now no problems had occurred.

On the contrary the CCC operators were quite happy to finally see this TURN_BY_TURN
baseline restoration is working

REPETETIVE mode with the

Until now, the operators were only able to see the whole history of the beam’s intensity
during a cycle apart from the first injection, since the acquisition started the moment the

. Having this history is useful but not if anyone

And that is what is renovating with our implementation, for the first time, the operators
m on the injection moment in great detail and thus they can

easily calculate the additional intensity that actually took place during the injection. This is
very important for the smooth operation of the SPS ring since several unpredicted behaviors

, and by specifying
the delay of the execution of the acquisition in milliseconds, the operators (users) can actually

choose how far they want to look in the cycle’s lifetime. In this way the
second, third, nth injection during a cycle’s lifetime in great detail.

Figure 4-2: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle, TURN_BY_TURN mode

Last but not least, the baseline restoration is now dynamically adjusted and thus is more
precise and correct. This fact satisfied the users a lot, since they had many problems in the
past with the reliability of the server

4.2 LHC
The large number of the client programs (Expert GUI and FESA) requesting data from

the FBCT system C, requires an intermediate proxy software layer controlling the data flow
between the server and the clients. In this way, low
the system’s stability was gained.

In the following figures 4
was measured from system
measurement and although the curves seem to foll
– system C – exhibits higher noise in terms of sigma than the other

65

choose how far they want to look in the cycle’s lifetime. In this way they can see a potential
second, third, nth injection during a cycle’s lifetime in great detail.

: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle, TURN_BY_TURN mode

, the baseline restoration is now dynamically adjusted and thus is more
This fact satisfied the users a lot, since they had many problems in the

past with the reliability of the server and as a result they had to dump the beam sev

large number of the client programs (Expert GUI and FESA) requesting data from
the FBCT system C, requires an intermediate proxy software layer controlling the data flow
between the server and the clients. In this way, low-level system load was

stability was gained.
In the following figures 4-3 and 4-4 a comparison of the beam’s 2 total intensity as it

 A and C is depicted. The first figure shows a
and although the curves seem to follow each other quite nicely, the yellow one
exhibits higher noise in terms of sigma than the other system.

y can see a potential

: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle, TURN_BY_TURN mode

, the baseline restoration is now dynamically adjusted and thus is more
This fact satisfied the users a lot, since they had many problems in the

beam several times.

large number of the client programs (Expert GUI and FESA) requesting data from
the FBCT system C, requires an intermediate proxy software layer controlling the data flow

was minimized while

4 a comparison of the beam’s 2 total intensity as it
is depicted. The first figure shows a low gain

ow each other quite nicely, the yellow one
.

Figure 4-3: Beam's 2 low gain total intensity comparison among system A, B and C

The next figure 4-4 is an enlargement of a small part of the previous measurement
visible in figure 4-3 as a brown box

Figure 4-4: Beam's 2 high gain total intensity comparison among system A,

Already by the above figure, we observe that although the new system
follows quite nicely the already operational one, is still noisier
number of turns both systems are acquiring data for and henc
having a 224 turn interval in order to suppress the white noise at system C, doesn’t change
much. The main difference as for the noise suppression comes from the averaging samples
and therefore, system A provides smoother
acquires and averages over 900 turns

66

gain total intensity comparison among system A, B and C in the LHC

is an enlargement of a small part of the previous measurement
3 as a brown box.

: Beam's 2 high gain total intensity comparison among system A, B and C in the LHC

Already by the above figure, we observe that although the new system
follows quite nicely the already operational one, is still noisier. This is mainly due to the
number of turns both systems are acquiring data for and hence averaging over. It appears that
having a 224 turn interval in order to suppress the white noise at system C, doesn’t change
much. The main difference as for the noise suppression comes from the averaging samples
and therefore, system A provides smoother measurements than system C
acquires and averages over 900 turns whereas the latter over 25.

in the LHC

is an enlargement of a small part of the previous measurement

B and C in the LHC

Already by the above figure, we observe that although the new system’s measurement
This is mainly due to the

e averaging over. It appears that
having a 224 turn interval in order to suppress the white noise at system C, doesn’t change
much. The main difference as for the noise suppression comes from the averaging samples

than system C since the former

67

5 Conclusions and Future Work

After the presentation of our implementation of the two servers controlling the FBCTs

in the SPS and LHC ring and analyzing the results of these implementations, in this final
section, we restate our observations, we propose future work and we conclude.

5.1 Conclusions
As we mentioned in chapter 2.1.6, out of the several technics that measure the beam’s

attributes, the FBCT measuring system is a very important one since it provides with great
precision both bunch-by-bunch and total turn-by-turn intensity measurements. Additionally,
it is the only system that can be absolutely calibrated although this is not the current state. In
order to benefit the most out of this system though, several significant changes should be
made and hence, new implementation solutions for the controlling software should be given.

5.1.1 SPS
In this direction the first contribution of this Thesis is the delivery of a complete

software client-server scheme for the FBCT in the SPS ring. The server side of that scheme
follows its predecessor’s outline while benefiting from the new firmware’s design and adding
a complete new and renovating functionality – TURN_BY_TURN acquisition mode – that is
proven very useful. In addition, it corrects former malfunctions as for the data treatment,
making the server more dynamically adjustable to different use cases.

Furthermore, the client side of that scheme provides a different and more user-friendly
interface for the server introducing new ways of presenting the data, such as 3D-graphs and
2D-graphs that can be easily scrolled at the same measurement, on the contrary of the
graphical solutions that the previously used FESA interface provided.

5.1.2 LHC
An additional contribution of this Thesis is the study of another complete software

client-server scheme for the FBCTs in the LHC ring that will be able to be used in any
circulating beam installation in the future, including the already existing one of the SPS
accelerator. The results of this study as they were presented in the previous section reveal that
although this approach seems very promising, further work should be done in order to
implement a unified FBCT measuring system. This matter will be explained in more details
in chapter 5.2 but we can summarize here that only the averaging part of the data treatment
was found insufficient and hence needs improving, whereas the LUTs, BLR and Gain
Switching worked perfectly.

What is more, the client side of that scheme was found very helpful for the fast
development of this system since it provided the direct comparison among the other systems
of the same kind, in different ways. In addition and due to the lack of the calibration
procedure of the system, the ability of setting directly the calibrating coefficients such that
the measurements match the ones from the operational systems, improved the development
speed as well.

68

5.2 Future Work
As an enhancement of this work we need to improve the averaging procedure of the

data process in software. In order to do that, we will have to reduce dramatically the turn
interval – even to 0 – since it doesn’t contribute much as it was expected to the noise
suppression but impose a great delay in the acquisition time – a 224 turn interval impose
approximately 20msec delay at every acquired turn. And this is actually the limiting factor to
the number of turns acquired at our implementation since we agreed to perform a half second
acquisition in order to have enough time to process the data, hence 25 acquired turns with a
224 turn interval.

On the other hand, performing a full bunch acquisition that would fill the memory –
294 consecutive turns lead to 1047816 acquired samples at almost 25msec – hits again the
1Hz restriction as it may take 25msec to make the acquisition but it takes almost 400msec to
read the data from the DAB since there is only one VME bus of 1Gbit.

As a result, we intent to move the averaging part of the data process to the hardware by
changing the firmware again and adding a summing mode that would allow us to perform full
bunch acquisitions for a large number of consecutive turns removing the huge transfer delay
in a sense that we will always be fetching 3564 values from memory. All the functionalities
of the recently changed firmware – as they were analyzed in chapter 2.2.2 – should remain
unchanged if it is going to be used in other parts of the CERN’s infrastructure such as linear
accelerators and/or dump and transfer lines.

In addition, since we will be fetching averaged data from the DAB and not the integer
acquired values, the parsing through the LUTs should be transformed to a linear
approximation of LUT as it is described in chapter 3.1.2 of [17].

Last but not least, the proper calibration technic should be implemented in order to
achieve the maximum of the FBCT measuring system performance.

69

Bibliography

[1] CERN, CERN in a Nutshell, http://public.web.cern.ch/public/en/About/About-
en.html

[2] CERN, CERN Structure, http://www-dev.web.cern.ch/about/structure-cern
[3] CERN, Beams Department (BE), https://espace.cern.ch/be-dep/default.aspx
[4] CERN, Beams Department – Beam Instrumentation (BE-BI),

https://espace.cern.ch/be-dep/BI/default.aspx
[5] CERN, Beams Department – Beam Instrumentation – Software Section (BE-BI-

SW), http://project-beam-instr-sw.web.cern.ch/project-beam-instr-sw/Welcome.php
[6] CERN, The Accelerator Complex,

http://public.web.cern.ch/public/en/Research/AccelComplex-en.html
[7] CERN, “CERN LHC: the guide”, Geneva : CERN, 2006
[8] Belohrad, D, “Beam Charge Measurements”, Geneva : CERN, 2011
[9] the FESA team, “FESA Essentials”, Geneva : CERN, 2004 (http://project-

fesa.web.cern.ch/project-fesa/binaries/documents/FesaEssentialsBundle.pdf)
[10] D. Belohrad, R. Jones, M. Ludwig, J. Savioz, S. Thoulet, “Implementation of

the Electronics Chain for the Bunch by Bunch Intensity Measurement Devices
for the LHC”, DIPAC’09, Basel, Switzerland, 2009

[11] D. Bishop, C. Boccard, E. Calvo-Giraldo, D. Cocq, L. Jensen, R. Jones, J.
Savioz, G. Waters, “The LHC Orbit and Trajectory System”, DIPAC’03,
Mainz, Germany, 2003

[12] H. Jakob, L. Jensen, R. Jones, J. Savioz, “A 40MHz Bunch by Bunch Intensity
Measurement for CERN SPS and LHC”, DIPAC’03, Mainz, Germany, 2003

[13] G. Bohner, A. Falvard, J. Lecoq, P. Perret, C. Trouilleau, “Very front-end
electronics for the LHCbpreshower”, LHCb-2000-047, CERN, 2000

[14] D. Belohrad, Technical Documentation “Digital Acquisition Firmware For
The LHC Fast Beam Current Monitors,
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/fimdab_technical_specifica
tion.pdf

[15] D. Belohrad, Development Documentation “Migration Guide”,
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/migration_guide.pdf

[16] D. Belohrad, L. Jensen, R. Jones, M. Ludwig, J. Savioz, “The LHC Fast BCT
system: A comparison of Design Parameters with Initial Performance”,
BIW’10, Santa Fe, New Mexico, United States of America, 2010

[17] D. Belohrad, Technical Documentation “On the Fast Beam Intensity
Measurements Algorithms and Correction Methods”,
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/on_the_beam_intensity_me
asurement_algorithms.pdf

[18] D. Belohrad, J. Gras, L. Jensen, R. Jones, M. Ludwig, P. Odier, J. Savioz, S.
Thoulet, “Commissioning and First Performance of the LHC Beam Current
Measurement Systems”, IPAC’10, Kyoto, Japan, 2010

http://public.web.cern.ch/public/en/About/About-en.html
http://public.web.cern.ch/public/en/About/About-en.html
http://www-dev.web.cern.ch/about/structure-cern
https://espace.cern.ch/be-dep/default.aspx
https://espace.cern.ch/be-dep/BI/default.aspx
http://project-beam-instr-sw.web.cern.ch/project-beam-instr-sw/Welcome.php
http://public.web.cern.ch/public/en/Research/AccelComplex-en.html
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/FesaEssentialsBundle.pdf
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/FesaEssentialsBundle.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/fimdab_technical_specification.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/fimdab_technical_specification.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/migration_guide.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/on_the_beam_intensity_measurement_algorithms.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/on_the_beam_intensity_measurement_algorithms.pdf

70

[19] Jean-Jacques Savioz “Engineering Specifications BOBR The Beam
Synchronous Timing Receiver Interface For The Beam Observations”,
http://www.cern.ch/TTC/BOBRspec.pdf

[20] MEN Mikro Electronic GmbH A19/A20,
http://www.men.de/products/01A020-.html#t=overview

[21] CERN, Scientific Linux CERN 5 (SLC5),
http://linux.web.cern.ch/linux/scientific5/

[22] CERN, Design-Guidelines, logo-badge, http://design-
guidelines.web.cern.ch/fr/logo-badge

http://www.cern.ch/TTC/BOBRspec.pdf
http://www.men.de/products/01A020-.html#t=overview
http://linux.web.cern.ch/linux/scientific5/
http://design-guidelines.web.cern.ch/fr/logo-badge
http://design-guidelines.web.cern.ch/fr/logo-badge

