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Περίληψη 
 
Ένα από τα µεγαλύτερα ερευνητικά κέντρα στον τοµέα της Φυσικής Υψηλών 

Ενεργειών (High Energy Physics) είναι ο Ευρωπαϊκός Οργανισµός Πυρηνικής 
Έρευνας (CERN) που έχει σαν κύριο σκοπό να µελετήσει τα θεµελιώδη στοιχεία της 
ύλης καθώς και της δυνάµεις που ασκούνται αναµεταξύ τους επιταχύνοντας 
σωµατίδια µέσα από µια αλληλουχία επιταχυντών (accelerator complex) και 
οδηγώντας τα σε συγκρούσεις. Το CERN χρειάζεται διάφορα διαγνωστικά εργαλεία 
που µετράνε τα χαρακτηριστικά της δέσµης σωµατιδίων προκειµένου να ελέγξει το 
σύµπλεγµα των επιταχυντών του και ένα από αυτά είναι το σύστηµα µέτρησης Fast 
Beam Current Transformer (FBCT), το οποίο µετράει την ένταση της δέσµης.  

Λόγω του ότι το υπάρχον υλικό (hardware) του FBCT συστήµατος δεν έχει 
σχεδιαστεί µε τον καλύτερο δυνατό τρόπο οπότε και δεν εκµεταλλεύεται όλες του τις 
δυνατότητες, χρειάστηκε να αλλάξει. Ως εκ τούτου, το υλικό ξανασχεδιάστηκε και 
απλοποιήθηκε ώστε να αυξήσει τις δυνατότητες του και να αποτελέσει τη βάση ενός 
ενιαίου συστήµατος µέτρησης FBCT, το οποίο θα µπορεί να χρησιµοποιηθεί τόσο 
στις γραµµικές όσο και στις µη γραµµικές (δακτύλιοι) εγκαταστάσεις του 
συµπλέγµατος των επιταχυντών του CERN. Ακολουθώντας αυτές τις αλλαγές, στη 
παρούσα διπλωµατική προτείνουµε την υλοποίηση ενός client-server λογισµικού 
συστήµατος που θα ελέγχει το FBCT σύστηµα που είναι εγκατεστηµένο στον Super 
Proton Synchrotron (SPS) επιταχυντή. Επιπλέον, µελετούµε το σχεδιασµό και την 
υλοποίηση ενός ενιαίου client-server λογισµικού συστήµατος, το οποίο θα 
αντικαταστήσει τα υπάρχοντα στον Large Hadron Collider (LHC) επιταχυντή, καθώς 
και θα συνοδέψει µελλοντικές εγκαταστάσεις του FBCT συστήµατος στο σύµπλεγµα 
των επιταχυντών του CERN. 
  



Abstract 
 
One of the biggest research centers in the domain of High Energy Physics 

(HEP) is the European Organization for Nuclear Research or CERN Laboratory 
whose main goal is to accelerate particles through a sequence of accelerators – 
accelerator complex – and bring them into collision in order to study the fundamental 
elements of matter and the forces acting between them. For controlling the accelerator 
complex, CERN needs several diagnostic tools to provide information about the 
beam’s attributes and one such system is the Fast Beam Current Transformer (FBCT) 
measuring system that provides beam intensity information. 

The current hardware of the FBCT system is not well designed and thus the 
entire system is not benefiting from all of its capabilities and hence, a renovation is 
required. As a result, the hardware was redesigned and simplified in order to increase 
its capabilities and provide the base of a unified FBCT measuring system that could 
be installed in both kinds of the CERN’s accelerator complex’s parts, linear and 
nonlinear (rings). Following the above changes, this Thesis is proposing the 
implementation of an operational client-server software solution to control the FBCT 
installation in the Super Proton Synchrotron (SPS) accelerator, as well as studying the 
design and implementation of a unified client-server software scheme that can replace 
the operational ones in the Large Hadron Collider (LHC) and can accompany further 
installations of the FBCT measuring system, elsewhere in the CERN accelerator 
complex. 
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1 Introduction 
 
The European Organization for Nuclear Research or CERN Laboratory is one of the 

biggest research centers in the domain of particle physics [1]. Its main activity is to accelerate 
ion or proton particles through its accelerator complex to their nominal energies and make 
them collide at one of the four collision points [7] in order to study the fundamental 
constituents of matter as well the forces acting between them. 

The acceleration of the particles can only be achieved if the Radio Frequency (RF) field 
is correctly oriented with the accelerating cavity as they pass through it. Since this happens at 
well specified moments of the RF cycle, particles travel around the accelerator complex at 
well-defined bunches [7]. 

For an accelerator’s control to be effective, numerous of diagnostic tools are needed to 
provide information about the beam’s attributes [8]. Several measurement technics exist 
providing such information and thus making the control of the CERN accelerator complex 
effectively feasible. One such technic uses AC-coupled Fast Beam Current Transformers 
(FBCTs) at first stage to integrate the current of each individual bunch inside a synchronized 
integration window and provide continuously 40MHz bunch charges (in bits) [18], whereas, 
at second stage it implements data treatment in a Field-Programmable Gate Array (FPGA).  

The latter uses its firmware to store and/or reload at any time the device configuration 
in order to implement four acquisition modes, single capture – which measures the intensity 
for the specified bunch slots over a specified number of turns, turn sum – which measures the 
total intensity of all bunch slots available (depending on the accelerator) over one turn, slot 
sum – which measures the total intensity for a given bunch slot over a specified number of 
turns – and sum sum – which measures a turn sum and then sums up these values using the 
slot sum measurement mode in order to produce one total intensity value [16]. 

In addition to the hardware part, there is also the software layer, which is responsible to 
control the device and to implement any data processing required that is not done by the 
firmware. Such data processing may be, averaging, data calibration – the transformation of 
the data from the measured values in number of bins to number of charges – and data 
publishing. 

There is one FBCT system installed in the Super Proton Synchrotron (SPS) accelerator 
and three in the Large Hadron Collider (LHC) that provide both bunch-by-bunch and total 
turn-by-turn beam intensity information. The FBCTs in the SPS ring are widely being used at 
beam’s injection time to observe the beam losses at that critical part of its journey as well at 
the machine protection beam dump occasions in order to analyze the causes of such dumps. 
As for the LHC ring, only two – system A and B – out of the three FBCT installations are 
currently operational and being used by a large number of clients interested in both 
measurement information – bunch-by-bunch and turn-by-turn. 

The original FBCT firmware – FIMDAB – was designed and developed by several 
people using different technologies. As a result, several design errors worsens the mean time 
between failures – MTBF – of the entire measuring system, making the maintenance of the 
latter extremely difficult. Hence, in order to properly develop the FBCT system C, it was 
decided that a cleanup was necessary, moving all the data treatment from the hardware to the 
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software side. Therefore a new version of the firmware was designed and developed 
implementing only the capture acquisition mode leaving the software controlling the FBCT 
installations, responsible for all the data processing. 

The whole idea behind this migration is to implement one data acquisition system – 
both hardware and software – that can be installed in the CERN accelerator complex and will 
be independent of the ring installed, which is not the current case, in order to make it generic 
and more easily maintainable. 

As the new version of the firmware is already implemented, this Thesis is trying to 
describe the software solutions that need to accompany the hardware changes as well to 
propose new ideas as far as the data treatment is concerned. This document is divided in two 
large blocks: the first one introduces the theoretical and technical background whereas the 
second describes the proposed software implementation and outlines its performance 
evaluation. 

In the first part, a brief introduction to the Organization and some fundamental 
knowledge concerning the FBCTs is given in chapter 2.1. In addition, in chapter 2.2 we 
describe the hardware architecture and in chapters 2.3 and 2.4, the existing software 
implementations for the FBCTs in the SPS and LHC accordingly. 

In the second part, we provide our software design in chapter 3.1 and its technical 
implementation in chapter 3.2, along with the results of our proposals in chapter 4. 

Finally, chapter 5 presents the conclusions of this work and directions for future work. 
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2 Background 
 
In the previous section we discussed the need for the software design and 

implementation that controls the FBCT systems at CERN. In order to deploy our suggestion 
though, we need to analyze some basic ideas that are related to the FBCTs. 

Hence, we begin with the general information about CERN and other key aspects 
needed for the rest of this document and we continue with the hardware architecture where all 
the details relative to the hardware are given and finish this section with the description of the 
software implementations for the SPS and LHC rings that used to be or are operational. 
 

2.1 General Background 
In this section we analyze from scratch the basic information about CERN, its structure 

and accelerator complex because we are going to use this information for the deployment of 
our solution. Furthermore, we briefly describe the Control Center and how the particles travel 
through the rings. Subsequently, we analyze the need of measuring the beam’s attributes as 
well the different ways to do it. Lastly, we introduce the design framework that was used for 
the existing and the previous software implementations as well as ours. 

 

2.1.1 CERN 
The Conseil Européen pour la Recherche Nucléaire or European Organization for 

Nuclear Research, well known as CERN Laboratory is one of the biggest scientific research 
centers whose main area of research is particle physics - the study of the fundamental 
constituents of matter and the forces acting between them. 

It was founded in 1954 as one of Europe’s first joint ventures and now it counts 20 
member states. It is placed on the Franco-Swiss border near Geneva and it uses the world’s 
largest and most complex scientific instruments in order to accelerate the particles, almost to 
the speed of light, before cause them to collide and study the fundamental laws of Nature [1]. 

 
 

 
 
 
 
 
 
 
 
 

 
 

2.1.2 CERN’s structure 
The highest authority in the Organization is the CERN Council. It is formed by two 

representatives of each member state, one as his/her government’s administration 

 Figure 2-1: CERN's Logo [22] 



 

representative and one to represent the national scientific interests. Each member state has 
one single vote and in most of the cases a simple majority is needed for a decision to be 
taken. 

The Council is responsible for all the important decisions that have to do with 
scientific, administrative and technical matters. It is it that appoints the 
manages the CERN Laboratory through a structure of Departments
fig.2-2. [2] 

 

Figure 2-2: CERN's structure (source: Laura Saulnier, TECH induction 2012

 
The author belongs to Beams Department (BE)

will be given to it and its structure. The BE is responsible for everything that has to do with 
the beam of particles and its control 
(see chapter: 2.1.3). In order to do that it is divided into six groups as it is visible in fig. 2

 

Figure 2-3: Beams Department's Structure

Each group is subdivided into 
Instrumentation (BI). The BI group is responsible 
instruments that allow the observation of the particle beams and its 
important for its normal behavior 
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seen in fig. 2-4.The author belongs to the Software section (SW), the section responsible for 
providing the software needed for developing, testing, diagnosing, maintaining and 
controlling all the instruments provided by the group. [5] 

 

Figure 2-4: Beam Instrumentation’s structure 

2.1.3 The CERN accelerator complex 
The accelerator complex at CERN is a succession of linear and circular particle 

accelerators which can reach increasingly higher energies. Each accelerator receives the beam 
of particles from the previous in the complex chain, boost its speed and finally inject it to the 
next one in the sequence. 

 

 

Figure 2-5: CERN Accelerator Complex [6] 
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There are two types of particles that travel through the CERN accelerator complex, 
protons and ions. 

The protons are obtained by stripping orbiting electrons from hydrogen atoms. They are 
accelerated in the linear accelerator (LINAC2) before they are injected into the PS Booster. 
After Booster they are transferred to the Proton Synchrotron (PS) which is before Super 
Proton Synchrotron (SPS) in the complex sequence. Finally they are injected into the Large 
Hadron Collider (LHC) both in a clockwise and anticlockwise direction where they are 
accelerated to their nominal energy of 7 TeV before they start collide at one of the four 
collision points. [7] 

The ions on the other hand, start from a source of vaporized lead and enter their own 
linear accelerator (LINAC3) before they are injected into the Low Energy Ion Ring (LEIR) 
from which they follow the same root as the protons to reach their maximum acceleration. 

The complex also includes the Antiproton Decelerator (AD) which separates the 
antimatter particles while they are still in low energies, and the On-Line Isotope Mass 
Separator (ISOLDE) facility which is used as a unique source of low-energy beams of 
radioactive isotopes. The complex also feeds the CERN neutrinos to Grand Sasso (CNGS) 
project which creates and sends neutrino beams to Grand Sasso National Laboratory (LNGS) 
in Italy in order to detect the so called neutrino “oscillation”, the transformation from one 
type of neutrino to another. Last but not least is the Compact LInear Collider (CLIC) study, 
an international project working on a machine to collide electrons and positrons (anti-
electrons). [6] 
 

2.1.4 Control Center 
The CERN Control Center (CCC) combines all the control rooms for the accelerator 

complex as well as the technical infrastructure under one roof. It consists of 39 operation 
stations organized in four different areas, the Large Hadron Collider, the Super Proton 
Synchrotron, the Proton Synchrotron complex and the technical infrastructure. [3] 

 
 

2.1.5 Bunches 
The particles travel around the CERN accelerator complex in well-defined bunches. 

That is because they can only be accelerated if the Radio Frequency (RF) field has a correct 
orientation when they pass through an accelerating cavity and that happens at well specified 
moments during the RF cycle. [7] 

Under nominal operation, each LHC’s proton beam has 3564 bunches and SPS’s 924, 
with each bunch containing about 1011 protons. 
 

2.1.6 Beam Charge Measurements [8] 
An effective accelerator’s control requires numerous types of diagnostic tools which 

provide information about the beam’s attributes and they are commonly known as beam 
diagnostics. There are several measurement techniques which can be divided in two large 
categories, the intercepting and the non-intercepting measurements. 
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The first group, as it is revealed by its name, intercepts with the beam in order to 
achieve the measurements and thus cause the destruction of the beam or a significant loss of 
its energy, whereas the second group bases its measurements in the electric or magnetic field 
coupling of the beam to the measuring instrument. 

The charge measurement, often called beam intensity measurement, is a process which 
integrates the actual measured quantity, the beam current, over a specific area of interest 
(ROI) and divides that integral, the beam charge as it is called, by the elementary charge to 
result in the number of particle beam’s charges. 

The beam intensity measurement is very useful to determine the intensity loss at 
injection, acceleration and extraction time or even the beam’s lifetime while circulating in the 
accelerator. Furthermore, it enters the luminosity equation. 

What is important in this kind of measurements is the device that couples to the beam 
and provides the approximation of the beam’s current. There can be several different such 
devices. The most used of the intercepting DC devices are the Faraday cups. The non-
intercepting AC devices are the electrostatic pickups, the Wall Current Monitors (WCMs) 
and the Fast Beam Current Transformers (FBCTs). The non-intercepting DC devices are the 
DC Current Transformers (DCCTs), the Superconducting QUantum Interference Devices 
(SQUIDs) and the Cryogenic Current Comparators (CCCs). 

In this document we will focus only on the FBCTs, the devices that function in a 
bandwidth of few Hz up to GHz and on the contrary with all the other similar devices, can be 
absolutely calibrated. For more information see chapter 2.2 where the hardware is analyzed in 
more detail. 

2.1.7 FESA Framework 
“The Front-End Software Architecture (FESA) is a comprehensive framework for 

designing, coding and maintaining LynxOS/Linux equipment-software that provides a stable 
functional abstraction of accelerator device.” [9] 

The Model of a FESA class is encoded as an XML Schema which enforces a specific 
grammar for the design of the class providing a partial yet generic solution for the equipment 
specialist. In this way and after the design of the class is well defined, the FESA user can 
generate a large part of the C++ code for his equipment saving a lot of time and effort. The 
FESA classes are identified by the combination of their name and version. 
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Figure 2-6: FESA's service supplies [9] 

 

The Interface is a list of so-called Properties that defines the services that are available 
to the outside world and are remotely accessible by the clients of the FESA class, for example 
clients from the control room as well as middle-tier software layer. The Properties should be 
attached to a server action (request) which can be of type GET or SET and either default, 
meaning that the code for that actions is auto generated, or complex for which the equipment 
specialist must provide the code himself. 

The Data, the Device-Data and Global-Data, are defined in such a way that provide at 
any given time, a concrete snapshot of the device state. The data can be of any standard type 
that can be supported from both C++ and Java, scalars or arrays up to two dimensions. There 
is also the possibility for the equipment specialist to define his own types, the persistency of 
the data or any multiplexing criterion for them. 

 
C++ Scalar type   Array type 
bool  bool 
signed char (byte)  signed char 
short  char 
long  short 
longlong  long 
float  long long 
double  float 
  double 
 Table 2-1: FESA's data types [9] 

 

Persistency  Purpose Multiplexing  Purpose 
FINAL  database constant NONE  not multiplexed 
PERSISTENT  periodic backup into 

persistent storage 
USER  cycle user 

VOLATILE  RAM data PARTICLE  particle-type 
   DESTINATION  beam-target 
Table 2-2: FESA's data attributes [9] 
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The basic work-units of a FESA class are called actions and can be either of real-time 
or server type. The real-time actions are triggered by events which are synchronized with the 
CERN’s central timing system or by interrupts and they implement most of the equipment’s 
functionality. They can also be attached to properties so that the latter can be notified at any 
update of the device’s state. On the other hand, the server actions implement the client’s 
request-handling and they are mostly responsible for the communication between the outside 
world and the device and that is exactly why they are attached most of the times with a 
property. For both real-time and server actions the equipment specialist must provide the C++ 
code himself, except for the default GET/SET server actions. 

Once one has finished with his FESA design, should declare all the instances his class 
would have. This is a very important part of the design procedure since lot of work and 
duplicated code can be avoided. One instance means one module with its own initial values. 
All the instances (the modules the device can handle) are accessible inside the FESA class by 
iterating the deviceCollection, an array accessible everywhere in the class. 

A FESA class, to which we will refer as ‘server’ from now on, is organized after its 
generation, in five files as follows: COMMON, GENERATED CODE, REALTIME, 
SERVER and TEST. 

The REALTIME and the SERVER files are used to store and distinguish the actions 
based on their type as described above. 

The GENERATED CODE file holds all the declaration of the fields that describe the 
device. Furthermore, all the generated code for the simple GET/SET actions is stored here. 

The COMMON file is used to store any custom made class that could be used by both 
real-time and server actions. 

Last but not least is the TEST file. In there, some diagnostic tests are stored as well as 
the executable files that would start the server. There may be more than one executable file 
depending on how many instances of the server there are, which depend on how many 
different places in the Ring, the device is placed.  
 

2.2 Hardware Architecture 
After giving the general information that is going to be needed in next sections, we are 

describing the hardware installation for the FBCTs. The latter consists of a detailed 
description of the ring installation as well as the one on the surface. Furthermore, we analyze 
the firmware – original and newer version – along with the driver needed to access it since 
they are widely used by the software and lots of the changes imposed to it derives from the 
changes of the firmware. 
 

2.2.1 Fast Beam Current Transformer (FBCT) measurement system 
The figure 2-7 depicts a simplified block schematic of the FBCT measurement system 

which consists of a Bergoz type transformer with a bandwidth from 400Hz to 1.2GHz (on the 
left). This transformer is followed by an RF front-end which consists of an analogue 
integrator, a Beam Circulating Flag (BCF) detector which detects the presence of the beam in 
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the ring and an RF distributor which is responsible to split the analog signal into two dynamic 
ranges, high and low gain and each dynamic range into two bandwidths, High (HBW) and 
Low (LBW). Finally there is a 14bit acquisition system that digitizes and process the signal. 
[10] 

 

Figure 2-7: Block schematic of the FBCT measurement system [10] 

 
The latter consists of aDigital Acquisition Boards (DABs), a VME64x standard board 

developed by TRIUMF (Canada) for the LHC orbit and trajectory acquisition system [11]. It 
is equipped with two Individual Bunch Measurement System (IBMS) mezzanine cards [12]. 
Each mezzanine card uses a 40MHz integrator ASIC developed for the LHC-b preshower 
detector by the Laboratoire de Physique Corpusculaire, UniversitéBlaise Pascal, Clermont-
Ferrand [13], in order to integrate the incoming signal before pass it to the DAB that digitizes 
and process it to produce bunch-by-bunch intensity values. All the logic of the DAB control 
is implemented in a large FPGA that can be reprogrammed at any time and its firmware is 
being discussed at chapter 2.2.2. 

These DAB cards are installed on a VME64x crate along with the Beam Synchronous 
Timing Receiver Interface for the Beam Observation System (BOBR) – another VME format 
card that provides all the timing signals required to synchronize the different beam 
instrumentation systems [19]. What is more, all the cards installed in the VME64x crate are 
controlled by the Crate Central Processing Unit (CPU) – Front-End Computer (FEC) – an 
Intel® Core™ 2 Duo CPU board with 1.5GHz clock frequency, 4MB cache and no hard disc 
[20] that runs Scientific Linux CERN SLC release 5.7 (Boron) [21] and boots via network. 

The following figure 2-8 depicts the VME64x crate installation for the SPS FBCT. The 
FEC is visible on the left of the crate with the green lights, whereas the DAB is just on the 
right of it and lastly, the BOBR in the middle of the crate. 
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Figure 2-8: SPS FBCT's VME64x crate – on the left with green lights is the FEC, on the right of the FEC the 
DAB is installed and in the middle of the crate the BOBR is visible 

As far as the SPS is concerned there is only a single DAB connected to the SPS type 
front-end amplifier. The former uses an external signal to switch between high and low gain 
measurements which is provided by the sensitivity output of each IBMS mezzanine. 

In the LHC, things are different. There are two DABs per a measurement system used, 
one for HBW and one for LBW measurements. Each DAB provides two dynamic range 
measurements using its different IBMS mezzanine and more specifically high gain (top 
mezzanine) and low gain (bottom mezzanine) measurements. 

There are three such systems in the LHC, system A, B and C of which only A and B are 
operational while system C is now being developed with different technologies and with a 
different approach in the process of the data. Further discussion about this system will follow 
in chapter 3. 

The FBCT measurement system is calibrated by a pulse of 25µs. The amplitude of this 
pulse differs from SPS – 128mA – and LHC which can be programmed. For the latter case 
though, the currently used system doesn’t use direct calibration due to the fact that the LHC 
toroid exhibit beam position dependency and this can affect the transfer ratio between beam – 
measurement turn and calibration turn – measurement turn. Instead an indirect calibration is 
achieved by using DC current transformers (DCCTs) installed in the LHC [17]. 

2.2.2 Firmware 
The Stratix FPGA stores the device configuration during operation at volatile SRAM 

cells, which must be reconfigured each time the device powers up. This is accomplished by 
its firmware (FIMDAB), which is stored as a raw binary file (RBF) in the EPM 3256 
Complex Programmable Logic Device (CPLD). Software start-up scripts handle the FPGA 
start-up process and hence the FPGA is left un-programmed after power up until the software 
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layer is loaded. After the initial power-up process is complete, new configuration data can 
also be loaded at any time. [14] 

The original FBCTR firmware, used in system A and B was developed by several 
people using different technologies. As a result the mean time between failures (MTBF) of 
the entire system is worsened by several design errors. Hence, in order to properly develop 
FBCTR system C, it was decided that a cleanup was necessary. The new firmware was also 
used for the FBCTR in SPS. The firmware registers migration is summarized in table 2-3, 
which uses the following colors to describe the state of the registers after the completion of 
the migration [15]. 

 

Figure 2-9: table's 2-3 Legend 
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Table 2-3: Original firmware register map [15] 
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Table 2-3: Continue from previous page 

 
Following the table 2-3, table 2-4 summarize the minimum set of registers for the new 

proposed memory map. The table is organized in three categories. First group consists of the 
registers read directly from the DAB external static memories. Second one groups all the 
registers that are not specific to capture mode and third contains registers only specific to 
capture mode. The latter two are separated by an address space, which makes a potential 
insertion of new registers simple. All registers are 4-byte aligned and accessed by A32D32 
transfer. Lastly, for non-single transfer registers, block transfer can be used improving the 
latency added when transferring huge amount of data. [15]Error! Bookmark not defined. 

 

 

Table 2-4: New firmware register map [15] 
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Table 2-4: Continue from previous page 

 
From the latter table, 6 major changes at the registers can be pointed out. 
Firstly is the capture data organization. Using 32-bit storage, two 14-bit ADC samples 

can be stored per entry. Unfortunately this is not enough since additional information is 
needed to be stored with the stream, information about what integrator was used for acquiring 
the sample – the most significant bit of the sample (31 and 15) reveals the appropriate 
integrator (0 or 1) –, about whether the sample was saturated – bits 30 and 14 – and finally, 
about where the turn clock starts. Since there is no space left to store the latter information 
with the stream, a convention had to be declared: the turn always starts at the memory start 
address – 0x000000 for top mezzanine and 0x200000 for bottom. Hence, next turn can be 
easily calculated as following: <start_address> + (<number_of_bunches> / 2). 

Such memory organization decreases the amount of external memories read from three 
to two, since the information stored in mezzanine three are now coded with the samples. It 
also increases the number of samples per mezzanine by factor of two, enabling at the same 
time the use of fast block transfer of the data, from the external memories to the CPU. 

Furthermore, changes in register bit positions should also borne in mind. The original 
information of the Turn Clock Delay register is migrated from address 0x600022 to 
0x600040, bits 12…0, whereas the information of the Phase Delay register from address 
0x600021 to 0x610000, bits 7…0. As for the Front Panel Selection register, information 
about MUXA originally located at bits 7…4 is extended into bits 31…16, whereas 
information about MUXB, originally at bits location 3…0 is extended into bits 15…0. As far 
as the IRQ register is concerned, it behaves as Interrupt Enable register when written and 
returns the Interrupt Status register when read. 

Last but not least is the Command register which combines the original locations at 
0x600005, 0x600006 and 0x68000c and acts as Command register when written, keeping all 
the original properties and as Status register when read. The meaning of all bits read is 
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changed though, due to the differences between the two versions of the firmware and for a 
full description of this meaning refer to full technical documentation [14]Error! Bookmark 
not defined.. 

2.2.3 Driver Background  
There are more than one ways to access the device’s register and hence, we had to find 

which one is more suitable for us. The most common way is to use the ioctl module-specific 
library that comes with the driver and is automatically generated from the description of the 
module in the CO Data Base. This is a simple library that uses only one method to access the 
hardware, IOCTL. This library is good for individual values or short amount of data, since it 
is already high leveled and not that slow. 

If the performance is one of the main characteristics of the project, one should consider 
another library that comes with the same auto generated driver and that is dal (Driver Access 
Library). The dal library has three ways of accessing the hardware and these are IOCTL, 
same as before, IOMMAP and IODMA. Now as for the last two, the IOMMAP method uses 
the CPU to access the hardware while the IODMA does this directly. 

We have been experimenting with these three ways, only to find out that there is a 
significant difference between IODMA and the other two. Generally we could summarize our 
conclusions as this: faster: IODMA < IOMMAP < IOCTL. As we saw in chapter 2.2.2, only 
three of our registers are a considerable amount of data (512.00 KiB) and from those, only 
two are being currently used. All the others are either single valued or short amount of arrays. 
Thus we’ve decided to use the ioctl library for all the registers but the two mezzanines for 
which we’ve used the dal library with the IODMA method. 
 

2.3 The FBCTs in the SPS 
As described in the previous sections there is only one FBCT system installed in the 

SPS and this consists of only one DAB card on the VME crate, which used to operate with 
the original version of the device’s firmware (FIMDAB). 

In the following sections, we will describe how the server used to be organized and 
which were its basic functionalities that made it operational. 

2.3.1 Software Architecture 
The server was designed 1  to operate a full acquisition (1-924 bunches) for every 

different active cycle – approximate cycle’s length is 20sec. Different sequence of real-time 
actions used to accomplish that by preparing the device, starting the acquisition, reading back 
the acquired data, processing them, storing them temporarily, starting the acquisition again 
and repeating this sequence until the cycle was over. 

All these functionalities were implemented in different real-time actions, rtPrepare, 
rtStart, endCapture and rtStop whose technical specifications will be discussed in the 
following chapter 2.3.2. The scheduling of these actions was the key for the proper operation 
of the server. 

                                                           
1 The server was created by Lars Jensen 



 

A warning of the beam’s injection was used as an event that comes 20 msec before 
every different cycle’s injection. This event was being used by the rtPrep
appropriate settings to the device as well as calibrate it, before the acquisition

Another event, specifying the beam’s injection
the rtStart to initially start the acquisition.
being used by the endCapture to read back the acquired data, process and store them in 
temporary buffers and finally start the acquisition again
as many times as it could fit in every cycle’s lifetime.

Lastly, an event specifying the cycle’s end was being used by the rtStop to gather all 
data from the temporary buffers and store them in the shared memory of the server so that it 
could be fetched to the users. 

 

Figure 2-10: FESA Framework Interface

 
The FESA properties that used to interface the server were Setting 

could enter the settings relative to the acquisition
specify the settings relative to the calibration of the device, Acquisition 
could see the desired data after 
see the intermediate steps of the processed data
and set the calibration factors 
ones by rtPrepare. No external application interface (such as Expert GUI) was used for 
visualizing the above properties, and thus the FESA inter
can be seen in figure 2-10. 

 

2.3.2 Previous Implementation
The previous implementation of the server used to access the device directly from its 

classes using the IOCTL library.
More specifically the rtPrepare

to the device as well as the number of turns for the acquisition which was always 1. After 
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A warning of the beam’s injection was used as an event that comes 20 msec before 
every different cycle’s injection. This event was being used by the rtPrep
appropriate settings to the device as well as calibrate it, before the acquisition

Another event, specifying the beam’s injection – cycle’s beginning, was being used by 
the rtStart to initially start the acquisition. After that, an event coming every 
being used by the endCapture to read back the acquired data, process and store them in 
temporary buffers and finally start the acquisition again. This procedure was being repeated 

in every cycle’s lifetime. 
Lastly, an event specifying the cycle’s end was being used by the rtStop to gather all 

data from the temporary buffers and store them in the shared memory of the server so that it 
 

: FESA Framework Interface 

The FESA properties that used to interface the server were Setting 
could enter the settings relative to the acquisition, Expert Setting – where the user could 

the settings relative to the calibration of the device, Acquisition 
could see the desired data after all steps of their process, User Data – where the user could 
see the intermediate steps of the processed data and Calib Data – where the 

 of the data, either on his own or with respect to the calculated 
No external application interface (such as Expert GUI) was used for 

visualizing the above properties, and thus the FESA interface was used for that purpose

Implementation 
implementation of the server used to access the device directly from its 

the IOCTL library. 
More specifically the rtPrepare action used to set the full bunch range (bunches 1

to the device as well as the number of turns for the acquisition which was always 1. After 

A warning of the beam’s injection was used as an event that comes 20 msec before 
every different cycle’s injection. This event was being used by the rtPrepare to set the 
appropriate settings to the device as well as calibrate it, before the acquisition could start. 

, was being used by 
event coming every 40msec, was 

being used by the endCapture to read back the acquired data, process and store them in 
. This procedure was being repeated 

Lastly, an event specifying the cycle’s end was being used by the rtStop to gather all 
data from the temporary buffers and store them in the shared memory of the server so that it 

 

The FESA properties that used to interface the server were Setting – where the user 
where the user could 

the settings relative to the calibration of the device, Acquisition – where the user 
where the user could 

where the user could see 
either on his own or with respect to the calculated 

No external application interface (such as Expert GUI) was used for 
face was used for that purpose as it 

implementation of the server used to access the device directly from its 

action used to set the full bunch range (bunches 1-924) 
to the device as well as the number of turns for the acquisition which was always 1. After 
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that, it would start an acquisition along with a calibration pulse in order to calibrate the 
device. This is achievable due to the fact that the rtPrepare operates when there is no beam. In 
this way and by firing a calibration pulse, whose current is known in advance, the appropriate 
calibration factors could be specified to take away all the additional noise that is being added 
to the data by the electronic equipment. Following the calibration, the rtPrepare would reset 
all the intermediate temporary buffers that were going to be used by the endCapture. 

For the rtStart action, things used to be much simpler, since its only responsibility was 
to start a normal acquisition which means without the calibration pulse. 

Furthermore, the endCapture action was the most critical one as far as the time 
constrains is concerned. In this action, the data would be fetched from the device and be 
processed before been stored to the temporary buffers. By processing the data, we mean to 
restore their base line as well as apply the calibration factors that were calculated before by 
the rtPrepare. The base line restoration is by far the most difficult stage of their process since 
its main goal is to take away the beam’s position dependency with the measuring device, 
restoring the level of the acquired noise to 0 in the y (intensity) axe, and this procedure is 
non-trivial at all. 

The existing implementation was using the Magic Imperial algorithm to restore the 
data’s base line. This algorithm was based on the statistics from previous operational 
experience and its basic idea was the following: 

• Iterate the acquired data and find minimum and maximum value. 
• Using this information, determine the noise region as the (minimum value + 

(0.05 * maximum value)). 
• Iterate again the acquired data and find a mean value for any sample that is 

below the just specified threshold. 
• Finally iterate all the acquired data and take away this just calculated mean 

value. 

In this way, all the noise samples would reach the 0 area in the y axis, while the original 
shape of the data would stay unchanged. 

Last but not least, the rtStop action stored the intermediate buffers to the shared 
memory (device fields). This was accomplished by declaring the above buffers with the C++ 
key word extern and hence they were visible by more than one C++ class in the server. 

The server actions that served the Setting and Expert Setting interfaces were 
implemented as simple actions. What is more and only for the Setting property, partial setting 
was allowed. As for the Calib Data property complex GET/SET actions were implemented 
with the partial setting enabled. Lastly, for the Acquisition and User Data, complex GET 
actions copied the contexts of the shared memory (fields) to the interface memory in order to 
be properly presented. 

At this point, it’s worth mentioning few words about the buffers holding the data, 
intermediate and final. The acquisition data were stored in two dimensional arrays; first 
dimension for the different measurements made by the endCapture and second dimension for 
the acquisition itself –intensity values for bunch slots 1-924. Unfortunately, there was no 
useful way to present these values with FESA interface and thus filters were being used. 



28 
 

Hence, under User Data property, the user had to specify in the filter which measurement 
desired to observe. Using this filter in the server action, only one raw of the 2D arrays was 
returned (924 values in total). In this way, data were quite uncomfortable to be studied, since 
the filters apply in the acquired data only once and thus one should wait for the next 
acquisition to see another measurement. One such example can be seen at Figure 2-10. 

 

2.4 The FBCTs in the LHC 
In the LHC ring there are three FBCT systems, each consisting of 4 DABs as described 

in chapter 2.2.1. System A and B use the original version of the FBCT’s firmware which used 
to have 4 measurement modes [16]: 

• Capture – the intensity measurement in each bunch slot for a specified number 
of turns 

• Turn Sum – a total intensity measured from a full bunch acquisition (3564 
bunches) over a single turn 

• Slot Sum – a total intensity measured for a specified bunch slot over specified 
number of turns 

• Sum Sum – the combination of Turn Sum and Slot Sum. By this we mean to 
make a Turn Sum for each acquired turn and then, sum all these sums as they 
were a single bunch slot measurement 

 

2.4.1 Software Architecture 
The FESA class that serves LHC’s A and B FBCT measurement systems is 

BCTFRLHC v312. The server of both systems is identical and has two instances, serving the 
FBCT installation for each circulating beam. 

The version 31 of the BCTFRLHC FESA class is designed to provide LBW total 
intensities averaged over 225 consecutive turns at 1Hz. In addition, it provides HBW total 
intensities per turn with time resolution up to one turn (89µs) as well as HBW individual 
bunch intensities averaged over 900 turns as input for the post-mortem system for analyzing 
the causes of machine protection beam dumps. [18]  
 

2.4.2 Existing Implementation 
The server uses the LBW channel to make full bunch acquisitions over 225 consecutive 

turns – to suppress the noise at 50 Hz – using  firmware’s Sum Sum measurement method and 
it continuously updates them every second for operational displays. Additionally, it keeps the 
values from the last 30 seconds in a rolling data buffer, which also updates every second. 

As for the HBW channel, the server uses the firmware’s Turn Sum measurement mode 
to produce and publish the turn intensities – the total intensities per turn – and the Slot Sum 
measurement for the average individual bunch intensities. Both measurements are updated 
every second. 
                                                           
2 Created by Michael Ludwig 
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In order to suppress errors in the calculation of the noise mean value at the baseline 
restoration (BLR) procedure, the summing of empty buckets must be avoided. This is 
achieved by applying a minimum beam threshold set by the user. The BLR is based on the 
presence of empty buckets in each turn at least at the 3µs abort gap and hence, the calculation 
of the minimum integrated value of one turn can be used as offset correction for the next one. 
Subsequently, the lowest measurable turn-sum and bunch-average intensity is given by the 
noise suppression peak threshold – 108 number of charges for high gain and 5*108 number of 
charges for low gain for both bandwidths. [18] 

 

Figure 2-11: Total Intensity History from beam1 of the LHC, System B 

The above figure 2-11 depicts the rolling data buffer of the total intensity of beam 1 as 
it was measured by the FBCT in the system B. This buffer holds the calculated total 
intensities of the last 30 seconds – 1 acquisition over 225 turns takes 20ms hence 50 values 
per second and 1500 per 30 seconds. As there is no expert GUI developed, the client 
application that is being used to control the servers is the FESA interface. 
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3 Our Implementation 
 
In the previous section we described all the theoretical and technical background 

needed to better understand the previous software implementation for the FBCTs in the SPS 
and the existing one for the LHC. In this section we analyze our proposal for both systems 
separating the design from the technical part. 
 

3.1 High level 
As the developing of the two systems was ongoing, we came across several decisions 

that needed in order to proceed. This chapter is dedicated to such decisions that helped us to 
structure better our work and provide us useful tools for our implementations. 

 

3.1.1 Wrapper - Design 
Since the firmware changed, a new way of accessing the device was needed. As the 

new firmware was to be deployed in both SPS and LHC FBCTs, we decided to create a 
common wrapper class, DABBFCTSRWrapper, which abstracts the device communication 
with the server. Additionally, such class is ideal for implementing functionalities irrelevant 
with the accelerator that hosts the FBCTs. 

The DABBFCTSRWrapper is designed to have public methods for accessing all the 
device’s registers using the IOCTL library, as well as processing some of the data that need 
to be read from or written to it, while there are also some other private methods for that scope 
as well. 

Finally the header file of the wrapper seemed the perfect place for implementing the 
hash table with the different commands that the device can handle since it is imported every 
time we want to use it in the project for accessing the hardware and hence to instruct it to do 
something. In this way we’ve implemented it once being sure that is always visible in our 
general implementation. 

 

3.1.2 Tester - Design 
Another decision that was taken in the early days of our implementation was to create 

an additional tester class for testing the proper communication with the device. This class 
used to do nothing else but trying and write all the writable registers of the device and then 
read them back. In this way, several errors in the firmware were revealed when it was easy to 
be spotted and fixed. 

While progressing with our implementation, the tester was changed to fit our testing 
needs. Hence, the tester ended up asking the user to select the bunches and the number of 
turns for acquisition, then firing the acquisition, reading back the data and printing them in 
the console as raw ADC values, just as they were read from the device. This procedure was 
found incredibly useful for studying, testing and assuring the decoding process of the data 
(look at chapter 2.2.2 – last paragraph / change of the data capture organization). 

Furthermore, additional timing routines were added in order to study the different 
driver solutions for fetching the data from the device to the CPU, as well as some 
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performance issues, especially as the server in LHC is concerned. These issues are being 
discussed in greater detail in chapter 3.2.5. 

 

3.1.3 DabInfo - Design 
As described in chapter 2.2.2 and table 2-4, there are some registers in firmware related 

to the DAB’s information such as serial numbers and so on. Hence, it was found useful to 
have a console application that would retrieve and present this information. In this way, we 
were able to check the identification of the firmware, the mezzanines as well as the DABs 
themselves installed in the SPS, the LHC or the lab. 
 

3.1.4 SPS 
Our implementation is based on the existing one. We used this version and updated it 

so that it can access the new hardware and have one different acquisition mode the 
TURN_BY_TURN as we called it, as well as improving some troublesome behavior relative 
to base line restoration. Our main goal, beside the proper functionality of the server of course, 
was to keep as much backwards compatibility as we could by changing the design as less as 
possible. 

Hence, a new real time action was introduced; the rtTurnAcq which implements the 
new acquisition mode, while the rtPrepare remained the same, at least as far as the design is 
concerned.  

The main difference to the existing classes was at the rtStart and endCapture class 
which were not needed if the acquisition mode was TURN_BY_TURN, and thus should exit 
immediately. The same idea was introduced to the new rtTurnAcq class but the other way 
round, it would exit if the acquisition mode was REPETITVE. The event that wakes the 
rtTurnAcq is a warning of the beam’s injection which come 20msec in advance. The new 
class is responsible to start the acquisition with 18msec delay, read the data, process them, 
transform them from ADC bins to number of charges, restore their baseline and finally save 
them to the appropriate buffers. 

We kept the rtStop class the same which only copies the data from the buffers to the 
shared memory when the cycle is over. This is common for both acquisition modes and so, it 
made sense to try and keep it the same. In order to do that though, we had to change the 
buffers visibility through the server classes. In that sense, the variables that should be 
common to both acquisition modes and thus the appropriate classes, are now being created 
and initialized in the rtPrepare class and are visible by the endCapture, rtTurnAcq and rtStop 
by using again the keyword extern. 

3.1.4.1 Baseline Restoration 
The existing algorithm that used to correct the baseline was working quite well but 

unfortunately not always. It was observed that whenever there was a negative spike quite 
bigger than expected the algorithm didn’t work. Since the algorithm was taking into account 
the ratio between the minimum and maximum value within an acquisition to determine the 
noise region, in case of this so called “undershoot” this region would include only one point, 
the minimum. As a result the minimum would be considered as noise and thus, after the BLR 
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it would end up to be 0 and everything, including the actual noise, to be in the positive side of 
the graph. This can be easily seen at the following graphs: 

 

Figure 3-1: ROSALI plot with error in BLR 

 

 

Figure 3-2: ROSALI plot with correct BLR 

These “undershoots” won’t come often and for every cycle, but when they come the 
BLR doesn’t work as it should be. That is why we considered changing the existing algorithm 
for restoring the BLR to another one much simpler and more stable.  

We’ve decided not to take into account the min – max difference to specify the noise 
region, since this can change from cycle to cycle and from time to time. The hard coding 
percentage of that difference wasn’t flexible enough when those differences appeared. Hence, 
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we search only for the minimum value of an acquisition and noise area is determined by a 
user setting. In this way, the BLR is much more flexible and dynamic. 

Of course this does not erase the “undershoot” problem, since they don’t come in a 
deterministic way and thus one cannot specify a well-defined noise area and trust that would 
work for a longer period of time. In addition, an “undershoot” identifier had to be designed in 
order to help us ignore this kind of extreme values. To do that though, the user should 
provide another setting specifying the distance between two consecutive points that would 
identify the most negative as an “undershoot”. 

 

3.1.4.2 TURN_BY_TURN acquisition mode 
The most important change to the server was to add the new acquisition mode. As it 

was mentioned before, a full bunch acquisition (bunches: 1-924) over one turn, is repeated 
every 40msec until the end of every cycle. This mode of acquisition, REPETETIVE, covers 
the whole cycle and it was being used until now. 

The new acquisition mode, TURN_BY_TURN, is again a full bunch acquisition but for 
as many consecutive turns as the data storage permits. This limitation comes from our effort 
to keep the backwards compatibility and hence by the fact that we use the same intermediate 
buffers in software as the REPETETIVE mode. For more details about the implementation of 
these buffers and their limitations please refer to chapter 3.2.4. 

 

3.1.4.3 Client – Interface 
The BFCTSR_ExpertGUI was developed in Java and is organized in 5 packets for 

clearer separation of its classes. The Constants packet hosts all the classes that consist of 
constant data such as enumerations, names and converters. In the expertGUI packet, all the 
classes that implement the application interface are stored. Furthermore, there are the 
factories and listeners packets which host the homonyms classes. Last but not least is the 
Data packet where all the classes that are data specific are stored. 

For the communication with the server, we used the communication library that was 
developed from our group and establishes a communication flow per device. We kept the 
communication and subscription mechanism over the network separated to one class called 
DataProvider and the data storage per FESA property to another called Property. Both 
classes are abstract since only few methods are domain specific and had to be separated. 

The general idea of the design is the following: the DataProvider communicates via 
subscription to the server that runs on the front-end. Each time new data are produced, the 
DataProvider informs the Properties which process them if needed and store them to buffers. 
Then, they inform their interfaces to update their view with the new data. This data flow is 
depicted in the following figure: 
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Figure 3-3: Data flow between front-end server and GUI client 

 We decided to split the frame into three areas. The top one hosts the TimingPanel 
component which shows which cycle is active per accelerator so that the users can choose an 
appropriate one. The left one hosts the setting and expert setting panels as tabs while the right 
one hosts the acquisition, UserData and BunchAcquisition panels as tabs. The representation 
of the data is on the right area of the frame and more specifically the acquisition tab is a 
graph of the total intensities as acquired and calculated from BFCTSR as well as two more 
devices for cross-checking, BCTDC3 and BCTDC4. The UserData tab hosts a graph of the 
individual bunch intensity measurements – one measurement at a time, while the 
BunchAcquisition tab hosts a 3D graph of the individual bunch intensity measurements – all 
together. 

In figure 3-4 the Unified Modeling Language (UML) class diagram of our expert GUI 
is depicted according to entity separation of figure 3-3. The communication between two 
classes from a different group (Communication Manager, Intermediate Data Storage and 
GUI) is achieved with separated interfaces. 
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Figure 3-4: BFCTSR_ExpertGUI UML Class Diagram 

 



 

3.1.5 LHC 
In order to improve the performance of the FBCT measurements in the LHC

keeping the same frequency 1Hz (new values every second)
another approach as for the acquisition and calibration of the data using system C FBCT’s 
new firmware. In this way, the acquisition is a simple 
of bunches for a specified number of turns) and all the computations for their process is done 
in the software. This approach allows us a degree of freedom in choosi
we use for the BLR, trying to achieve better accuracy when comparing this system with the 
other two. 

The main idea of this approach is to make a full bunch acquisition for 25 turns 
turn interval. This means acquire 3564 bunch s
seen in figure 3-5 and leads to a 25mA sampling over half a second

Figure 3-5: Acquisition schedule in respect with number of turn and turn interval

Since we have 4 cards and each one measures data for half a second, it would be 
impossible to implement a sequential scheduling
the other hand, having one VME bus for communicating with all four cards makes it 
impossible to parallelize the parts of the process that consists of any kind of communication 
with the cards. 

Hence, we decided to start the acquisition to all four cards almost at the same time and 
benefit of the acquisition’s parallel nature. In this way, w
acquiring the data to all cards and keep the other half for processing them before publishing 
the total intensities. The process sequence of the data depicts in figure 3

Figure 3-6: Data Process Sequence 

3.1.5.1 Look Up Tables (LUT)
The integrator itself as well as the difference between 

is the main source of the overall 
and treat both integrators as a black box, we performed a set of measurements in the 
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In order to improve the performance of the FBCT measurements in the LHC
keeping the same frequency 1Hz (new values every second), it was decided to implement 
another approach as for the acquisition and calibration of the data using system C FBCT’s 
w firmware. In this way, the acquisition is a simple Capture of the requested data (number 

of bunches for a specified number of turns) and all the computations for their process is done 
in the software. This approach allows us a degree of freedom in choosing which algorithms 
we use for the BLR, trying to achieve better accuracy when comparing this system with the 

The main idea of this approach is to make a full bunch acquisition for 25 turns 
quire 3564 bunch slots every 224 turns for 25 times

5 and leads to a 25mA sampling over half a second [17]. 

 

: Acquisition schedule in respect with number of turn and turn interval 

Since we have 4 cards and each one measures data for half a second, it would be 
impossible to implement a sequential scheduling and keep the 1 Hz publishing frequency. On 
the other hand, having one VME bus for communicating with all four cards makes it 

ossible to parallelize the parts of the process that consists of any kind of communication 

Hence, we decided to start the acquisition to all four cards almost at the same time and 
benefit of the acquisition’s parallel nature. In this way, we spend half of a second for 
acquiring the data to all cards and keep the other half for processing them before publishing 
the total intensities. The process sequence of the data depicts in figure 3-6. 

Look Up Tables (LUT) 
The integrator itself as well as the difference between the two integrators in the system 

the overall non-optimal performance. In order to comprehend with this 
and treat both integrators as a black box, we performed a set of measurements in the 

In order to improve the performance of the FBCT measurements in the LHC while 
, it was decided to implement 

another approach as for the acquisition and calibration of the data using system C FBCT’s 
of the requested data (number 

of bunches for a specified number of turns) and all the computations for their process is done 
ng which algorithms 

we use for the BLR, trying to achieve better accuracy when comparing this system with the 

The main idea of this approach is to make a full bunch acquisition for 25 turns with 224 
turns for 25 times as it can be 

Since we have 4 cards and each one measures data for half a second, it would be 
and keep the 1 Hz publishing frequency. On 

the other hand, having one VME bus for communicating with all four cards makes it 
ossible to parallelize the parts of the process that consists of any kind of communication 

Hence, we decided to start the acquisition to all four cards almost at the same time and 
e spend half of a second for 

acquiring the data to all cards and keep the other half for processing them before publishing 
 

 

the two integrators in the system 
In order to comprehend with this 

and treat both integrators as a black box, we performed a set of measurements in the 
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laboratory analyzing the linearity of the data. The results of this analysis can be summed as 
follows [17]Error! Bookmark not defined.: 

• All measured integrators exhibit non-linear behavior, which is not the same for 
each one and thus if corrected, it should be corrected per integrator 

• An additional non-linear behavior is exhibited in between each two integrators, 
due to the difference of their individual non-linear behavior 

• A linear approximation of the integrators’ output is not enough to erase these 
non-linear components and thus higher order polynomial must be used instead  

We decided that a reasonable approximation that would correct the non-linear behavior 
quite decently – relative to the other two systems – is a polynomial of degree 5. Of course 
this would impose further delay in the process of the data and hence we decided to measure 
each ADC approximation for each integrator and store these values to a unique comma-
separated values (CSV) text file. Each file is unique per mezzanine and is named out of its 
serial number. It consists of 16384 text lines – the possible ADC values since they are 14 bits 
long – and each line consists of one integer – raw ADC value – and two floating values –
corrected value for integrator 0 and 1 accordingly. Lastly, all LUTs are stored in our NFS 
section’s directory so that they can be accessible from any FEC. 

3.1.5.2 Averaging and Base Line Restoration (BLR) 
Averaging the samples per bunch slot, as they come out of the LUTs, reduces the 

fluctuation of the signal caused by noise dramatically; this is due to the fact that the useful 
signal – beam – always comes at well specified moments during the RF cycle [7]. Hence, the 
more data we have to average, the clearer the result is. 

Furthermore and for restoring the data’s base line, we introduce a new algorithm based 
on the measurement of pure noise in the 3µs abort gap3 as well of the noise at each empty 
bunch slot. Hence, we can summarize the algorithm for the BLR as follows: 

• Find minimum after the LUT correction and averaging 
• Specify the noise samples out of the 3564 which satisfy the following criteria: 

o The measured value falls in the interval of <min; min + TH>, where TH 
is a threshold value specified by the user 

o The position – bunch slot – of the measured sample is at least VS 
samples away from a non-noise sample, where the VS value is set by the 
user including 0 

• Calculate the mean value of the selected noise samples 
• Take away the calculated mean value from all the 3564 samples 

An example of the above algorithm is depicted in figure 3-7. For this example the VS is 
3, while the TH is of no significance. The samples that are considered as noise and thus are 
used for the calculation of their mean value are specified by the yellow regions. 

                                                           
3 This is not actually true, since a limited amount of particles is always present and this can disturb the 
measurement [17] 
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Figure 3-7: An example of the BLR algorithm with VS=3. Only the yellow region is considered as noise [17] 

 

3.1.5.3 Calibration of the data 
Calibration of the data is called the transformation of the ADC corrected values to the 

number of charges. This is done by applying a simple linear equation to the measured data: 
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�� � � 
 

(3.1) 

where k is the calibration coefficient and q is the calibration offset, which both are normally 
found by calibration [2.2.1]. 
 

3.1.5.4 Gain Switching 
As explained in chapter 2.2.1 both bandwidth channels provide two dynamic range 

measurements. Our software is responsible for the proper and automatic setting of the correct 
dynamic range, which depends on whether a bunch slot measurement exceeded a defined 
threshold. In order to avoid switching between gains when a measurement approaches the 
threshold we implemented a hysteresis in the switching thresholds. Hence, instead of one, we 
introduce two switching thresholds, settable by the user in ADC bins: 

• CHTH(high) – this threshold is applied when the current measurement was 
performed by high gain measurement channel to switch to the low one, if at 
least one of the measured data exceeded it 

• CHTH(low) – this threshold is applied when the current measurement was 
performed by low gain measurement channel to switch to the high one, if none 
of the measurement data exceeded it 

 

3.1.5.5 Phase Scan 
Phase scan is the observation of one bunch intensity – the maximum one – with its four 

neighbors (two from each side) when applying by brute force all 16 possible values for the 
phase delay expert setting. By changing the phase delay, the user can change the signal’s 
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amplitude and that is why this procedure is very important. The graph that comes out of this 
procedure can help the user to determine the appropriate phase delay setting in order to 
maximize the signal’s amplitude. The following figure depicts one example of such a 
procedure that was performed4 at system C, using a python script. 

 

Figure 3-8: phase scan 

 

3.1.5.6 Server Architecture 
There are four DAB cards in LHC system C that measure the intensity of the beams 

using the FBCTs, one for the High and one for the Low Bandwidth measurements for each 
beam. Hence, we created a FESA class, BCTFRLHC v6, with four instances – one per card. 

This server has two real-time actions: 

• Acquire – where all the functionality of the server is implemented, such as data 
acquisition, process, BLR and storage. It operates every second. 

• XpocAction – which is responsible to copy the history of the last 1000 total 
intensities as calculated by Acquire, as well as their time stamps to a different 
server at any beam dump event for diagnosing a possible reason for it 

The properties that interface the server are:  

• Setting – where the user can specify/observe the settings relative to the 
acquisition 

• CalibrationSetting – where the user can specify/observe all the settings which 
are not relative to the acquisition 

• LoadLUT – where the user can upload and clear the LUT for each mezzanine 
• Acquisition – where the user can observe the total, bunch and history intensities 

for both mezzanines as well as the selected ones 

                                                           
4 Performed by D. Belohrad 
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• ExpertAcquisition – where the user can observe the intermediate values before 
reaching the desired total intensities, such as the data after the LUT and BLR 

• XpocData – where the user can observe the data copied from the XpocAction 
before being transferred to the server 

 

3.1.5.7 Client – Interface 
We developed the BCTFRLHC_v6 expert GUI in Java and organized it in five 

packages just as the BFCTSR_ExpertGUI [3.1.4.3], figure 3-3. The class diagram of the main 
part of the expert GUI is depicted in figure 3-9. This is the part that interfaces the server’s 
properties Setting, CalibrationSetting, LoadLUT, Acquisition and ExpertAcquisition as well 
the graph from Phase Scan. These properties are organized in two areas – left and right. All 
the setting related panels – Setting, CalibrationSetting and LoadLUT – are placed at the left 
area as tabs whereas all the graph related panels – Acquisition, ExpertAcquisition and Phase 
Scan – are placed at the right side again as tabs. 
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Figure 3-9: BCTFRLHC_v6 expert GUI UML class diagram (without comparison window) 
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In addition, we implemented a comparison window among the three systems – A, B 
and C – comparing the bunch intensities among the FBCTs of these systems and the total 
intensities among the FBCTs of these systems as well as the DCCTs of system A and B. Due 
to the lack of the calibration mechanism, we decided to implement this comparison window 
as part of the expert GUI for the FBCTs in system C, in order to ease the setting of the 
calibration coefficients and their monitoring. This comparison window’s main purpose is to 
calibrate our FBCT’s implementation of system C, relative to the existing implementations in 
system A and B, as well to cross check the accuracy of the data that our implementation 
provides. The class diagram of this comparison window is depicted in figure 3-10. 



 

Figure 3-10: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert GUI)
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: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert GUI)

 

: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert GUI) 
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3.2 Technical Implementation 
After analyzing the high level of our implementation for both systems – FBCTs in the 

SPS and LHC – we will try and give all the technical details that concern the implementation 
of the common tools – such as the rapper, tester and dabInfo – used by both systems 
independently as well the specific details by both systems individually. 
 

3.2.1 Wrapper – Common Implementation 

3.2.1.1 Constructor 
Since we are using two libraries to access our hardware, they should be initialized 

somehow and this is done in the constructor of the wrapper class of our implementation. 
There, the ioctl‘s function to open the device driver node is being called with two arguments, 
the Logical Unit Number (lunLogical Unit Number assigned to the module) and the Minor 
Device Number (chanN -- Minor Device Number. There can be several entry points for 
current Logical Unit Number (ChannelNumber).). It returns the file descriptor with whom all 
the library’s functions are called. 

The dal’s function to enable the access to the device is being called with four 
arguments, the name of the device (as specified in the Data Base), the method that will be 
used for the access (IOCTL, IOMMAP and IODMA), the LUN and chanN. It returns as well 
a file descriptor which is used when any of the library’s methods are called. 

3.2.1.2 Single-value Registers 
For reading the single-value registers one can call the appropriate wrapper’s method 

and pass a pointer to an integer as argument. The method is calling the ioctl’s function to get 
the register’s value which returns a result of that action, if succeeded or failed. This result is 
stored in the address that was passed as argument to the wrapper’s method, while the value of 
the register is being returned as unsigned long at the end of the method. 

For writing a value to the single-value registers, the mechanism is quite similar with the 
above, with the difference that the value to be set is passed as an unsigned long argument 
along with a pointer to an integer. The method is using the ioctl’s function to write the value 
to the register and stores the result of that action (succeeded or failed) in the address passed 
as argument. The method doesn’t return anything. 

 

3.2.1.3 Multiple-value Registers 
As for the multiple-value registers, we’ve implemented two ways of reading them. First 

is the type of methods that expect two arguments, one pointer to unsigned long and second to 
integer. This type of methods read the whole register and store it to the memory where the 
first pointer points and the result of that action to the second one. 

The other type of methods that reads multiple values, take three arguments. One pointer 
to unsigned long for the result, one to an integer for the action’s result as before and one 
additional integer to specify how many values to be read. 
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For writing this kind of registers, we’ve used the exact same implementation as above, 
with the only difference that we’ve used the appropriate libraries’ functions for writing 
instead. Of course now, the first pointer points to the address where the values would be read 
and not written, meaning that became the source from destination. 

 

3.2.1.4 Setting processing 
There are also some methods to process the data that need to be set to the device before 

any action. These are the bunch selection which comes as a string from user’s input. A parser 
was needed to be implemented in order to transform the user-friendly string to the array of 
hexadecimals that the device can take as setting through the CBunchSelector register. 

The parser takes the string as argument and splits it to ‘ ’ and ‘,’ to find different 
selections. Then, it calls a private method to define if there is a region requested or a single 
bunch by searching the ‘-’ character. And finally another private method is called to do the 
appropriate calculation and set the corresponding hexadecimals to the CBunchSelector 
register. The procedure is repeating itself until it reaches the end of the string. 

 

Figure 3-11: Bunch Selection Transformation from string to a set of hexadecimal 

 

3.2.2 Tester – Common Implementation 
The tester class was created at first to test the communication with the device. At those 

days, it did nothing more but to read and write the registers in order to make sure that every 
one of them behaves the way it should. 

In the meanwhile, and as the project evolved, we found the need to develop new tests 
more relative to the acquisition behavior of the device. Hence we implemented a loop that 
asks the user to enter the number of bunches and turns for acquisition while checking if this 
input is reasonable – no zero bunch selection for example. As it was described in the previous 
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chapter, setting the bunch selector register is something that has to be done with great care, 
since errors in that procedure can mess the data and are extremely difficult to be spotted. That 
is why we implemented a CBunchSelector “parser” in the tester (which was moved later on 
to the wrapper). This parser is iterating the CBunchSelector memory (128 of doubles) and 
prints them as hex, so that we can debug its setting procedure. 

Furthermore, the acquisition starts in a loop so that we can simulate real time conditions 
and the data are fetched from the device before passed to a method that decodes and prints 
them. The selection of the data is usually big enough and thus very uncomfortable to be 
printed in the console, hence the routine that does this job can take two arguments that 
specify two limits in order to print only the specified first and last samples. 

The decoding of the data, which was moved to the wrapper later on, has to split the data 
as it was read from the device in the middle. Take the left part first (16 MSB) and apply a 
sign correction after striping the 14 less significant bits as follows: 

 

Figure 3-12: Sign correction of the data in the code 

The same procedure must be followed to the right sample as well (16 LSB) before 
moving to the next element in the CBunchSelector memory. Special care should be taken 
when the number of samples – number of bunches * number of turns – is odd, in the sense 
that we keep only the desired and correct data. We achieved that by repeating the above 
procedure of splitting, striping and correcting the sign of the data one time less than is needed 
and taking modulo of the number of samples with 2 into account. In this way, we repeat the 
procedure for the left sample (16 MSB) and the right one (16 LSB) only if the modulo is 0. 
 

3.2.3 DabInfo – Implementation 
For the implementation of the dabInfo utility, we need the user to specify the LUN 

number of the DAB that he wishes to retrieve the information. After taking our Hardware 
expert’s request under consideration, we agreed on having two ways to do that. If no 
argument was passed while running the application, a loop would ask the user to provide an 
appropriate LUN number. On the other hand, the user can directly pass this information with 
the running command. 

DabInfo does nothing more than reading directly (without using the wrapper class) 9 
registers relative to the firmware, serial numbers and the status of the device – FWCodename, 
FWRevision, FWDate, SNDAB, SNTop, SNBottom, SNPIM, Command and Debug – and 
present their contexts in a meaningful way after processing them if needed. 
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For example, for printing in ASCII format the firmware codename, we split every 
element of the register at 4 pieces of 8 bits each and print each one of them as character. A 
code example is the following: 

 

 

Figure 3-13: example code for ASCII parsing 

In a similar way, the FWDate has to be processed in order to extract the information 
about the day, month, year and time of the firmware compilation. Furthermore, and for the 
status (Command) and debug register we had to implement two hash tables, one for each 
register, with the possible status and debug states and print the corresponding message 
depending on the contexts of the appropriate register. An example of the output information 
when running dabInfo at the lab is the following: 

 



 

Figure 3-14: example run of the dabInfo in the lab

 

3.2.4 SPS 
In this section we are focusing on the technical implementation details of the FBCTs in 

the SPS ring. We describe what changed in the software and in what way. Finally we describe 
the expert GUI that did not exist
 

3.2.4.1 Baseline Restoration (BLR)
The implementation of the new algorithm for the baseline resto

acquired data for the minimum value. In order to detect and ignore extreme values, this is not 
enough. Hence, in the same loop, the minimum neighbor is determined so that its dis
with the currently examined value can be tested and then decided if it will be considered as 
valid value or an extreme one.

In this way and within a single loop the minimum value of an acquisition, ignoring any 
“undershoots” is determined. Then the u
in order to create a threshold that determines the samples below it to be considered as noise. 
Continuing in the second loop 
then removed from any sample in the acquisition. In this way, what is considered as noise 
moves to the zero area of the y 
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: example run of the dabInfo in the lab 

In this section we are focusing on the technical implementation details of the FBCTs in 
the SPS ring. We describe what changed in the software and in what way. Finally we describe 

did not exist before. 

Baseline Restoration (BLR) 
implementation of the new algorithm for the baseline restor

acquired data for the minimum value. In order to detect and ignore extreme values, this is not 
enough. Hence, in the same loop, the minimum neighbor is determined so that its dis
with the currently examined value can be tested and then decided if it will be considered as 
valid value or an extreme one. 

In this way and within a single loop the minimum value of an acquisition, ignoring any 
“undershoots” is determined. Then the user setting that specifies the noise area is added to it 
in order to create a threshold that determines the samples below it to be considered as noise. 
Continuing in the second loop the average value of these noise samples is calculated, 

from any sample in the acquisition. In this way, what is considered as noise 
to the zero area of the y axis. Figure 3-2 shows such case. 

 

In this section we are focusing on the technical implementation details of the FBCTs in 
the SPS ring. We describe what changed in the software and in what way. Finally we describe 

ration searches the 
acquired data for the minimum value. In order to detect and ignore extreme values, this is not 
enough. Hence, in the same loop, the minimum neighbor is determined so that its distance 
with the currently examined value can be tested and then decided if it will be considered as 

In this way and within a single loop the minimum value of an acquisition, ignoring any 
ser setting that specifies the noise area is added to it 

in order to create a threshold that determines the samples below it to be considered as noise. 
is calculated, which is 

from any sample in the acquisition. In this way, what is considered as noise 
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3.2.4.2 TURN_BY_TURN acquisition 
For the implementation of the new real time action rtTurnAcq, we basically combined 

the rtStart and endCapture into one new real time action with different settings. The main 
idea is the same; the rtTurnAcq starts the acquisition with the settings that are already in the 
device, reads the data back, decodes and calibrates them before exiting. 

This acquisition mode acquires a full bunch selection for 500 consecutive turns (instead 
of 1 for the REPETIVE mode). This number is the limit of the first dimension of the 
intermediate and final buffers (number of measurements for the REPETIVE mode) which we 
also use in rtTurnAcq but storing the turn instead of the measurement in their first dimension. 
For the REPETIVE mode, 500 measurements every 40msec is more than enough and is never 
actually reached. As for the TURN_BY_TURN mode though, this number is really limiting 
the amount of data acquired, hence the precision of the measurement, when the capacity of 
the device storage exceeds this limitation by a factor of 2. 

The main compatibility problem about this issue comes from our clients, people in the 
CCC who develop their own GUI applications to interface our servers. Their main request is 
to change their applications as less as possible to preserve stable releases of their software 
solutions. That is why we decided not to increase the maximum number of 
measurements/turns at developing time, but later on in the future and after we assure that the 
new version of the server works fine and stably. 

Another implementation issue that appeared was the synchronization of the starting 
point of the real time action. The warning that starts the rtTurnAcq is 20msec earlier than the 
beam’s injection. If we started the acquisition at this moment, we would acquire mostly noise 
and only a small fracture of the actual beam’s intensity. Taking the limitation in our 
acquisition data that was introduced before under consideration, this would turn our new 
acquisition mode useless. To make things worse, this is the same event that wakes rtPrepare 
and serious problems would appear if both real time actions tried to communicate with the 
device since there is only one bus for this communication. 

To avoid these problems, we had to wait some time – 18msec – just to assure the non-
simultaneous device access as well as the acquisition of meaningful data. We implemented 
this delay using another FESA class that was created by our group for abstracting the global 
timing events, named LTIM, which gives us the opportunity to specify such settings as delay. 
We choose to implement this mechanism rather than using simple sleep commands, in order 
to reduce the useless CPU usage as well as preserving the wright synchronization among the 
real time actions. 
 

3.2.4.3 Client – Interface 
For the implementation of the expert GUI, we used the BasicFrameBuilder which was 

created from our section for abstracting the creation of certain useful toolkits such as the 
RBA toolbar as well as the device iterator. The latter – visible on the left side of figure 3-15 – 
creates a thread of the application for each device (instance of a FESA class) whiles the 
former – visible on the right side of the same figure – takes care of the privileges each user 
has for accessing each server. 
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Figure 3-15: Upper part of the BFCTSR_EpertGUI 

The TimingPanel is implemented by our section and its main purpose is to abstract the 
cycle multiplex for each accelerator. In this panel and at the right side, the user can see which 
cycle is active at any moment as well as the sequence of all active cycles for a given 
accelerator. At the left side of this panel, the user can choose by a simple click, which cycle’s 
intensities he wants to observe. This information, as well as the type of the action the user 
requested (GET, SET, SUBSCRIBE and UNSUBSCRIBE), is visible in every panel of our 
application since things can complicate quite fast, if more than one cycle are observed at the 
same time. 

In the figure 3-16 the cycle selection is visible inside the green box, where the green 
arrow points, while the sequence of the active cycles are inside the light blue box, pointed by 
the light blue arrow. Inside that box and with a green color is the active cycle for that specific 
moment while the red numbers on the right side of each active cycle is its duration in 
seconds. Lastly and inside the purple boxes is the last action as well as the cycle for which it 
was operated. In the same figure the Setting as well as the Acquisition panel is visible. 

 

Figure 3-16: BFCTSR Expert GUI – Acquisition Tab 

The UserData panel hosts a plot with the individual bunch intensities per measurement. 
There is also a scroll bar to iterate the different measurements as well as a text-field where 
the measurement offset in milliseconds is indicated. For example in figure 3-17 we can see 
the second measurement for the SFTLONG2 cycle with 41msec offset. 
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Figure 3-17: BFCTSR Expert GUI – UserData Tab 

Lastly, the BunchAcquisition panel hosts two 3-Dimensional plots, one for each 
mezzanine. These 3D graph components were experimentally created by our group and found 
to be quite useful in our case, since we can have a global idea of the individual bunch 
intensity measurements in time at once. The data that are being presented by both 
BunchAcquisition and UserData panels are the same – the two dimensional arrays from the 
server – only with a different representation. The UserData panel is very useful for the 
individual study of the measurements whereas the BunchAcquisition is ideal for the whole 
picture of the measurement. An example of the latter panel can be seen in figure 3-18 along 
with the 3D pop-up graph. 



 

Figure 3-18: BFCTSR Expert GUI 

   
 

 

3.2.5 LHC 
For the server implementation in the LHC ring, we decided to keep the four pointers to 

the wrapper class – one per DAB card 
that either way, we iterate through the device collection 
acquisition, read back the data, set the settings and so on. This iteration is done always in the 
same order and it starts from the device in lun 0 
device in lun 3 – LBW for beam2. Hence, we create and initialize these four pointers to the 
wrapper class in the constructor of the real time 
storing them to an array in the same order of the devices,
classes using the keyword extern

3.2.5.1 Look Up Tables 
As described in chapter 3.1.5.1, there are two LUTs per DAB card 

mezzanine. The LUTs contain the signed corrected ADC values (
corrected values – one for each integrator.
arrays of floats per LUT – one for integrator 0 and one for 1. We used the ADC values as 
indexes to each corrected floating value for each integrator’s array, after eliminati
correction by subtracting the constant value 8192, in order to have proper positive array 
indexes. These arrays are stored in the device shared memory, so that they can be accessed by 
any server class at any time. 

The implementation of the soft
by any class of our server. This class has hardcoded the path where the LUTs are placed and 
takes a pointer to a BCTFRLHC device as a constructor’s argument. The array of the wrapper 
pointers is also visible in that class using the key word 
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: BFCTSR Expert GUI – BunchAcquisition Tab 

For the server implementation in the LHC ring, we decided to keep the four pointers to 
one per DAB card – apart from the shared memory. The design is such, 

through the device collection – four DABs – in order to start the 
acquisition, read back the data, set the settings and so on. This iteration is done always in the 
same order and it starts from the device in lun 0 – HBW for beam1 – and it goes up to the 

LBW for beam2. Hence, we create and initialize these four pointers to the 
wrapper class in the constructor of the real time classes, BCTFRLHCRealtime and
storing them to an array in the same order of the devices, we access them through our server 

extern. 

As described in chapter 3.1.5.1, there are two LUTs per DAB card 
The LUTs contain the signed corrected ADC values (-8192 – 

one for each integrator. We implemented the LUTs in software in two 
one for integrator 0 and one for 1. We used the ADC values as 

indexes to each corrected floating value for each integrator’s array, after eliminati
correction by subtracting the constant value 8192, in order to have proper positive array 

These arrays are stored in the device shared memory, so that they can be accessed by 

The implementation of the software LUTs is done in a custom class that is accessible 
by any class of our server. This class has hardcoded the path where the LUTs are placed and 
takes a pointer to a BCTFRLHC device as a constructor’s argument. The array of the wrapper 

isible in that class using the key word extern. 

 

For the server implementation in the LHC ring, we decided to keep the four pointers to 
apart from the shared memory. The design is such, 

in order to start the 
acquisition, read back the data, set the settings and so on. This iteration is done always in the 

and it goes up to the 
LBW for beam2. Hence, we create and initialize these four pointers to the 

classes, BCTFRLHCRealtime and after 
we access them through our server 

As described in chapter 3.1.5.1, there are two LUTs per DAB card – one for each 
 8191) and the two 

We implemented the LUTs in software in two 
one for integrator 0 and one for 1. We used the ADC values as 

indexes to each corrected floating value for each integrator’s array, after eliminating the sign 
correction by subtracting the constant value 8192, in order to have proper positive array 

These arrays are stored in the device shared memory, so that they can be accessed by 

ware LUTs is done in a custom class that is accessible 
by any class of our server. This class has hardcoded the path where the LUTs are placed and 
takes a pointer to a BCTFRLHC device as a constructor’s argument. The array of the wrapper 
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Furthermore, this class has to methods: 

• clearLUT(int) – which clears the software LUTs for the specified mezzanine (0 
for both, 1 for the top and 2 for the bottom) 

• updateLUT() – which loads or reloads the LUTs according to the settings the 
user has provided in loadLUT property 

By clearing the LUTs, we mean to make them (1:1) transparent in order to avoid our 
server from crashing. In other words, the LUTs return the same value that was used for 
indexing, without any non-linear correction. This is also very important to check the raw 
ADC values as they are read from the DABs, since they are not published at all to avoid 
making our properties “heavy”. 

Updating the LUTs at runtime, is a feature much appreciated by the users, since they 
can change them (clearing/updating) in order to observe, as said, the raw values if needed. In 
addition and if it is found that they need to be changed in the future, this can be done on the 
fly without spending too much time rebooting the server. 

The LUTs are loaded for the first time to the shared memory at BCTFRLHCRealtime 
class which is responsible for any kind of initialization of the real-time classes when the 
server starts. If by any reason this operation fails, the ones that failed are being cleared. 
 

3.2.5.2 Averaging, Base Line Restoration (BLR) and Calibration of the Data 
Since there is the 1 second time restriction, we tried to condense as many of the data 

process steps as possible. Hence, when we iterate the acquired values <number_of_turns * 
number_of_bunches> and parse them through the appropriate LUTs, we also sum the 
corrected values per bunch slot. Furthermore, in a second iteration <number_of_bunches> we 
divide every sum with the <number_of_turns> to get the average bunch intensities after LUT 
correction. In this iteration, we also specify the minimum average bunch values to be used 
from the next steps of the data process. 

For implementing the BLR as described in chapter 3.1.5.2, we decided to use two 
arrays of shorts – one per mezzanine – that we called bitmaps and specify if a bunch slot 
contains noise or beam signal – 1 or 0 accordingly. Obviously, these arrays’ length is the 
maximum number of the bunch slots that can be acquired – 3564. In addition, these bitmaps 
are initialized with 1, assuming that every single bunch slot contains noise measurement 
which is the case when the beam is not present. 

Subsequently, we iterate the averaged LUT corrected values from <VS> (see chapter 
3.1.5.2) to <number_of_bunches – VS> checking if the value is above <min + TH>. If it is, 
then it means that this bunch slot measurement should be considered as beam signal and 
hence the corresponding entry of the bitmap is changed to 0. Then, we check the measured 
values just before and after the current one, to specify if this bunch slot is at the beginning –
the previous value should be below <min + TH>, end – the next value should be below <min 
+ TH> – or in the middle of the beam. If any of the two former cases appear, we also change 
the bitmap for the according bunch slots – previous or next – to 0. This is done for both top 
and bottom mezzanines. 
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Furthermore, we iterate the first VS values as well as the last ones in case there is beam 
signal at these bunch slots, in which case we change the bitmap for these bunch slots to 0. By 
the end of these iterations, we have all the information needed to calculate the mean value of 
the noise in the bitmaps. 

Thus, we iterate once more the averaged LUT corrected values <number_of_bunches> 
and we sum the values that have 1 at the corresponding index of the bitmaps, increasing also 
a counter for every noise sample. In this way we specify the mean value per mezzanine by 
dividing the sum with the counter. 

Lastly, we take away the just calculated noise mean value from every sample at the 
same time we transform them to number of charges by applying the calibration components. 
Hence, the equation 3.1 is transformed to the following: 
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(3.2) 

In addition, this is the iteration where we sum the calibrated values – number of charges – 
and calculate the average total intensity for both mezzanines, that one of which will be 
published. We also find the maximum value as well its bunch slot that will potentially be 
used by the phase scan actions. 
 

3.2.5.3 Gain Switching 
In order to implement the gain switching in software, the user provides two switching 

thresholds in ADC bins. But these thresholds are applied to the data after their calibration – in 
number of charges – and thus, the same transformation (equation 3.2) must be applied to 
them. 

After transforming the thresholds, we read back from the shared memory which was the 
previous selected gain, and apply the thresholds accordingly. If it was the top mezzanine, 
then we iterate the averaged calibrated values and if we find at least one value that exceeds 
the threshold, we break and we switch the gain to the bottom mezzanine. On the other hand, 
if the previous gain selection was the bottom mezzanine, we simply check if the maximum 
value that was already found from the calibration-BLR iteration exceeds the according 
threshold and if it does not, we switch to the top one. 

 

3.2.5.4 Phase Scan 
For the implementation of the phase scan, we use the settings that the user has provided 

at CalibrationSetting property and more specifically the phase scan action selection and the 
bunch slot. We support two actions and thus the phaseScanAction field has three possible 
states: 

• DO_NOTHING – is the default state of that field and as its name reveals, is 
used for doing nothing as far as the phase scan procedure is concearned 

• FIND_MAX_BUNCH_SLOT – is the state of that field that instructs the real-
time action to store at bunchSlot field the bunch slot with the maximum value of 
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the selected gain, as found from the calibration-BLR iteration, from the current 
measurement 

• DO_PHASE_SCAN – is the state of that field that instructs the real-time action 
to apply the phase scan at the specified bunch slot, given by the bunchSlot field 

The latter, needs 16 acquisitions – 16 seconds – to be completed. We keep the phase 
delay that was last used for the phase scan, in a private field so that it doesn’t mess up with 
the phase delay the user provided in the CalibrationSetting property. The values of the 5 
bunch slot measurements are stored in different 2D buffers whose first dimension is the 5 
different bunch slots whereas the second one is the 16 values according to the 16 possible 
values of the phase delay. Each second, we increase the private phase delay by one and check 
if we reached the end, where we set it to its initial value (0) and the phaseScanAction field to 
its default value (DO_NOTHING). 

 

3.2.5.5 Client – Interface 
 We implemented the BCTFRLHC_v6_ExpertGUI, using the basic frame builder just 

as for the BFCTSR_ExpertGUI (see chapter 3.2.4.3) in order to take advantage of the 
automatic implementation of the device list as well as the RBAC toolbar. 

The expert GUI consists of two main tabs: 

• Comparison Window – which interfaces the comparison application described in 
chapter 3.1.5.7 – figure 3-10 

• Device Window – which interfaces our expert GUI per device instance as it was 
described in chapter 3.1.5.7 – figure 3-9 

The Comparison Window consists of a row of buttons on top – Start / Stop, and two 
tabs – one per beam. Each beam tab consists of two tabs as well – one for the history of the 
total intensities and one for the average bunch intensities. The latter two tabs consist of a 
toolbar on top and a graph at the remaining area. The toolbar is different per tab and that is 
because there are different settings depending on the type of the graph. 
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Figure 3-19: Comparison Window - total intensity history for beam 1 

Hence, the toolbar for the total intensities tab consists of a group of checkboxes where 
the user can specify the visibility of the available plots – these are the history of the total 
intensity as calculated from DCCTA and DCCTB as well from FBCTs in all three systems. 
Next to these checkboxes, lie a text-field and a button that allows the user to specify the depth 
of the history he desires. This is achieved by changing accordingly the length of the First-In-
First-Out (FIFO) queues we use to create the history plots from all devices. In addition, a 
reset button clears these queues, in case the user wants to restart the history monitoring. 
Furthermore, we state which mezzanine was used to provide the total intensity as far as our 
server is concerned in the next component which consists of a label and a combo box. 
Subsequently, three sets of radio buttons lie next to the selected mezzanine that group the 
settings related to the graph. The first of these sets specifies which bandwidth to plot from 
each device – High or Low. The second set specifies the graph format – absolute, absolute 
difference and relative difference – and the third one the references – DCCTA, DCCTB and 
FBCTC.  



 

Figure 3-20: Comparison Window - total intensity history 

By absolute, we mean that we plot the total intensity histories as we get them from 
devices. For the other two form
one device as reference – the user specifies which one he wants from the third set of radio
buttons – and we calculate the difference of the visible plots relative to the reference 
the absolute difference format, we just subtract the reference values from the visible ones. On 
the other hand and for the relative difference format, we use the following equation to 
calculate the percentage difference between two systems:
  

 
 

The result of the absolute difference 
visible systems relative to the spe
relative difference is the percentage of this difference. In addition and only for the relative 
difference format, if there is only one visible plot and at least one of the two settings 
and relative – is system C but without being the same to both settings, we make visible 
another component which consists of a text
calculate and apply the corresponding calibrating coefficient for system C in a 
eliminate the difference as much as possible. This is achieved by calculating the next 
equation using the values retrieved by equation 3.3 and the most recently used calibration 
coefficient: 
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total intensity history - absolute difference - for beam 1 

By absolute, we mean that we plot the total intensity histories as we get them from 
devices. For the other two formats – absolute and relative difference – we use 

the user specifies which one he wants from the third set of radio
and we calculate the difference of the visible plots relative to the reference 

the absolute difference format, we just subtract the reference values from the visible ones. On 
the other hand and for the relative difference format, we use the following equation to 
calculate the percentage difference between two systems: 

of the absolute difference format is a graph of the difference between the 
visible systems relative to the specified one in number of charges, whereas in the case of 
relative difference is the percentage of this difference. In addition and only for the relative 
difference format, if there is only one visible plot and at least one of the two settings 

is system C but without being the same to both settings, we make visible 
another component which consists of a text-field and two buttons. This component is used to 

corresponding calibrating coefficient for system C in a 
eliminate the difference as much as possible. This is achieved by calculating the next 

using the values retrieved by equation 3.3 and the most recently used calibration 

 

By absolute, we mean that we plot the total intensity histories as we get them from the 
we use the values from 

the user specifies which one he wants from the third set of radio 
and we calculate the difference of the visible plots relative to the reference ones. In 

the absolute difference format, we just subtract the reference values from the visible ones. On 
the other hand and for the relative difference format, we use the following equation to 

 (3.3) 

is a graph of the difference between the 
cified one in number of charges, whereas in the case of 

relative difference is the percentage of this difference. In addition and only for the relative 
difference format, if there is only one visible plot and at least one of the two settings – visible 

is system C but without being the same to both settings, we make visible 
field and two buttons. This component is used to 

corresponding calibrating coefficient for system C in a way to 
eliminate the difference as much as possible. This is achieved by calculating the next 

using the values retrieved by equation 3.3 and the most recently used calibration 

 (3.4) 



 

Figure 3-21: Comparison Window - total intensity history 

As for the toolbar of the average bunch intensities ta
consists only by a smaller group of checkboxes 
checkboxes are again to allow the user to specify which available plots he wishes to make 
visible – these are the average bunch intensities as calculated fro
This is because the DCCTs do not provide bunch
are again to specify the graph settings as in the total intensity history tab’s toolbar but this 
time without the bandwidth chooser nor the ad
lack of the former is due to the fact that system A and B do not provide bunch
measurements for the LBW whereas the coefficient calculator 
values which are the total intens

Figure 3-22: Comparison Window - average bunch intensity for beam 1
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total intensity history - relative difference for beam 1 

As for the toolbar of the average bunch intensities tab, things are 
consists only by a smaller group of checkboxes and two sets of radio buttons. The 

to allow the user to specify which available plots he wishes to make 
these are the average bunch intensities as calculated from the three FBCT systems. 

This is because the DCCTs do not provide bunch-to-bunch measurements.
are again to specify the graph settings as in the total intensity history tab’s toolbar but this 
time without the bandwidth chooser nor the additional coefficient calculator component. 
lack of the former is due to the fact that system A and B do not provide bunch
measurements for the LBW whereas the coefficient calculator is focused 
values which are the total intensities. 

average bunch intensity for beam 1 

 

b, things are simpler since it 
and two sets of radio buttons. The 

to allow the user to specify which available plots he wishes to make 
m the three FBCT systems. 

bunch measurements. The radio buttons 
are again to specify the graph settings as in the total intensity history tab’s toolbar but this 

ditional coefficient calculator component. The 
lack of the former is due to the fact that system A and B do not provide bunch-to-bunch 

is focused on the published 

 



 

Figure 3-23: Comparison Window - average bunch intensity 

The Device Window consists 
LoadLUT – panels on the left of the GUI, 
and the graphics area on the right with acquisition panels 
and PhaseScan. In this way, the user is able to spot immediately the reaction of his settings to 
the data acquired. 

 

Figure 3-24: BCTFRLHC_v6_ExpertGUI 
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average bunch intensity - absolute difference for beam 1 

consists of an area of setting – Setting, ExpertSetting
on the left of the GUI, that interface the corresponding FESA properties

and the graphics area on the right with acquisition panels – Acquisition, 
. In this way, the user is able to spot immediately the reaction of his settings to 

: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Bunch Intensity - Expert Settings Panel

 

 

Setting, ExpertSetting and 
that interface the corresponding FESA properties 

Acquisition, ExpertAcquisition 
. In this way, the user is able to spot immediately the reaction of his settings to 

 

Expert Settings Panel 
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Figure 3-25: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Turn Intensity History - Settings Panel 

The history tab of the average turn intensities under the Acquisition panel is exactly the 
same graph with the total intensity history tab in the Comparison Window if the user selects 
the appropriate settings from its toolbar. In the example shown in figure 3-25, one should 
choose to plot the BCTFRC values at the beam 2 tab with HBW and absolute graph format as 
graph settings. And this is true, only if the currently selected mezzanine (GAIN) from FBCT 
in system C is bottom (Low). 

The next two figures (3-26 and 3-27) depicts the impact of the LUTs at the data. For 
this reason we plot the data as soon as they are parsed from the LUTs in the Expert 
Acquisition panel, Data After LUT tab. In the first figure we cleared (1:1) the LUT for the top 
mezzanine only so that the difference between the actual and the cleared LUTs can be spotted 
easily. The second figure depicts the data after updating “on the fly” the top mezzanine’s 
LUT. 



61 
 

 

Figure 3-26: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - cleared LUT for top 
mezzanine 

 

Figure 3-27: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - updated LUT for top 
mezzanine 

 
In the average bunch intensity graphs in the Expert Acquisition panel, we plot the data 

after averaging them and before restoring their baseline or calibrate them. In addition we also 
plot the BLR components as they are calculated from the real-time action, in order to follow 
the BLR procedure and have a visual and immediate clue of the impact of our Expert Settings 
(figure 3-28). This is true only if the user chooses to plot one of the two plots (top/bottom 
mezzanine) since these components are specified per mezzanine. 
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Figure 3-28: BCTFRLHC_v6_Epxert Acquisition / Average Bunch Intensities in ADC bins - Expert Settings 

In figure 3-29 a zoom of the same graph depicts the details of the BLR components for 
better understanding. In this figure the minimum value as it was calculated by Acquire real 
time action is visible with the yellow line as well the user setting TH with red. In addition the 
area that is considered to have useful signal is painted blue for better visualization. 

 

 

Figure 3-29: BCTFRLHC_v6_EpxertGUI - Zoom at the Expert Acquisition panel / Average Bunch Intensity in ADC 
bins tab 

 
Lastly, in figure 3-30 the phase scan procedure is depicted for the bunch slot that was 

found to have the maximum value. 
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Figure 3-30: BCTFRLHC_v6_ExpertGUI - Phase Scan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 Results 
 
Having deployed our suggestions of the FBCT servers for both SPS and LHC rings is 

time to present and analyze the results of our 
that and is divided in two subsections, one per server. This is important since, the requirement 
for an operational FBCT system in the SPS ring was critical and hence, we couldn’t wait in 
order to develop a unified system as it was first foreseen. Therefore, we developed this server 
first and in parallel we studied the ways 
order to achieve the implementation of a unique FBCT measuring system.
 

4.1 SPS 
The FESA class BFCTSR v210

ring, was deployed and is operational since 22/05/2012. Until now no problems had occurred. 
On the contrary the CCC operators were quite happy to finally see this TURN_BY_TURN 
acquisition mode as well that 
properly. 

Figure 4-1: Total Intensity Measurement 
previous version of the server 

Until now, the operators were only able to see the whole history of the beam’s intensity 
during a cycle apart from the first injection, since the acquisition started the moment the 
beam was already present (see Figu
wants to observe the behavior of the beam’s intensity at the injection time.

And that is what is renovating with our implementation, for the first time, the operators 
can see the intensity of the bea
easily calculate the additional intensity that actually took place during the injection. This is 
very important for the smooth operation of the SPS ring since several unpredicted behaviors 
of the beam can be detected before they can cause its dump. 
the delay of the execution of the acquisition in milliseconds, the operators (users) can actually 
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Having deployed our suggestions of the FBCT servers for both SPS and LHC rings is 
time to present and analyze the results of our implementations. This section is dedicated to 
that and is divided in two subsections, one per server. This is important since, the requirement 
for an operational FBCT system in the SPS ring was critical and hence, we couldn’t wait in 

fied system as it was first foreseen. Therefore, we developed this server 
first and in parallel we studied the ways – as it was described in the previous sections 
order to achieve the implementation of a unique FBCT measuring system. 

BFCTSR v210, our implementation of the server for the FBCT in SPS 
was deployed and is operational since 22/05/2012. Until now no problems had occurred. 

On the contrary the CCC operators were quite happy to finally see this TURN_BY_TURN 
that the new implementation of the baseline restoration 

: Total Intensity Measurement with FBCT for the SPS, CNGS1 cycle, REPETETIVE mode
 

Until now, the operators were only able to see the whole history of the beam’s intensity 
during a cycle apart from the first injection, since the acquisition started the moment the 

(see Figure 4-1). Having this history is useful but not if anyone 
wants to observe the behavior of the beam’s intensity at the injection time. 

And that is what is renovating with our implementation, for the first time, the operators 
can see the intensity of the beam on the injection moment in great detail and thus they can 
easily calculate the additional intensity that actually took place during the injection. This is 
very important for the smooth operation of the SPS ring since several unpredicted behaviors 

beam can be detected before they can cause its dump. What is more, and by specifying 
the delay of the execution of the acquisition in milliseconds, the operators (users) can actually 

Having deployed our suggestions of the FBCT servers for both SPS and LHC rings is 
implementations. This section is dedicated to 

that and is divided in two subsections, one per server. This is important since, the requirement 
for an operational FBCT system in the SPS ring was critical and hence, we couldn’t wait in 

fied system as it was first foreseen. Therefore, we developed this server 
as it was described in the previous sections – in 

 

our implementation of the server for the FBCT in SPS 
was deployed and is operational since 22/05/2012. Until now no problems had occurred. 

On the contrary the CCC operators were quite happy to finally see this TURN_BY_TURN 
baseline restoration is working 

 

REPETETIVE mode with the 

Until now, the operators were only able to see the whole history of the beam’s intensity 
during a cycle apart from the first injection, since the acquisition started the moment the 

. Having this history is useful but not if anyone 
 

And that is what is renovating with our implementation, for the first time, the operators 
m on the injection moment in great detail and thus they can 

easily calculate the additional intensity that actually took place during the injection. This is 
very important for the smooth operation of the SPS ring since several unpredicted behaviors 

, and by specifying 
the delay of the execution of the acquisition in milliseconds, the operators (users) can actually 



 

choose how far they want to look in the cycle’s lifetime. In this way the
second, third, nth injection during a cycle’s lifetime in great detail.

Figure 4-2: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle, TURN_BY_TURN mode

Last but not least, the baseline restoration is now dynamically adjusted and thus is more 
precise and correct. This fact satisfied the users a lot, since they had many problems in the 
past with the reliability of the server 

4.2 LHC 
The large number of the client programs (Expert GUI and FESA) requesting data from 

the FBCT system C, requires an intermediate proxy software layer controlling the data flow 
between the server and the clients. In this way, low
the system’s stability was gained.

In the following figures 4
was measured from system 
measurement and although the curves seem to foll
– system C – exhibits higher noise in terms of sigma than the other 
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choose how far they want to look in the cycle’s lifetime. In this way they can see a potential 
second, third, nth injection during a cycle’s lifetime in great detail. 

: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle, TURN_BY_TURN mode

, the baseline restoration is now dynamically adjusted and thus is more 
This fact satisfied the users a lot, since they had many problems in the 

past with the reliability of the server and as a result they had to dump the beam sev

large number of the client programs (Expert GUI and FESA) requesting data from 
the FBCT system C, requires an intermediate proxy software layer controlling the data flow 
between the server and the clients. In this way, low-level system load was

stability was gained. 
In the following figures 4-3 and 4-4 a comparison of the beam’s 2 total intensity as it 

 A and C is depicted. The first figure shows a 
and although the curves seem to follow each other quite nicely, the yellow one 
exhibits higher noise in terms of sigma than the other system.

y can see a potential 

 

: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle, TURN_BY_TURN mode 

, the baseline restoration is now dynamically adjusted and thus is more 
This fact satisfied the users a lot, since they had many problems in the 

beam several times. 

large number of the client programs (Expert GUI and FESA) requesting data from 
the FBCT system C, requires an intermediate proxy software layer controlling the data flow 

was minimized while 

4 a comparison of the beam’s 2 total intensity as it 
is depicted. The first figure shows a low gain 

ow each other quite nicely, the yellow one 
. 



 

Figure 4-3: Beam's 2 low gain total intensity comparison among system A, B and C

The next figure 4-4 is an enlargement of a small part of the previous measurement 
visible in figure 4-3 as a brown box

Figure 4-4: Beam's 2 high gain total intensity comparison among system A, 

Already by the above figure, we observe that although the new system
follows quite nicely the already operational one, is still noisier
number of turns both systems are acquiring data for and henc
having a 224 turn interval in order to suppress the white noise at system C, doesn’t change 
much. The main difference as for the noise suppression comes from the averaging samples 
and therefore, system A provides smoother 
acquires and averages over 900 turns 
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gain total intensity comparison among system A, B and C in the LHC

is an enlargement of a small part of the previous measurement 
3 as a brown box. 

: Beam's 2 high gain total intensity comparison among system A, B and C in the LHC

Already by the above figure, we observe that although the new system
follows quite nicely the already operational one, is still noisier. This is mainly due to the 
number of turns both systems are acquiring data for and hence averaging over. It appears that 
having a 224 turn interval in order to suppress the white noise at system C, doesn’t change 
much. The main difference as for the noise suppression comes from the averaging samples 
and therefore, system A provides smoother measurements than system C
acquires and averages over 900 turns whereas the latter over 25. 

 

in the LHC 

is an enlargement of a small part of the previous measurement 

 

B and C in the LHC 

Already by the above figure, we observe that although the new system’s measurement 
This is mainly due to the 

e averaging over. It appears that 
having a 224 turn interval in order to suppress the white noise at system C, doesn’t change 
much. The main difference as for the noise suppression comes from the averaging samples 

than system C since the former 
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5 Conclusions and Future Work 
 
After the presentation of our implementation of the two servers controlling the FBCTs 

in the SPS and LHC ring and analyzing the results of these implementations, in this final 
section, we restate our observations, we propose future work and we conclude. 

 

5.1 Conclusions 
As we mentioned in chapter 2.1.6, out of the several technics that measure the beam’s 

attributes, the FBCT measuring system is a very important one since it provides with great 
precision both bunch-by-bunch and total turn-by-turn intensity measurements. Additionally, 
it is the only system that can be absolutely calibrated although this is not the current state. In 
order to benefit the most out of this system though, several significant changes should be 
made and hence, new implementation solutions for the controlling software should be given. 

 

5.1.1 SPS 
In this direction the first contribution of this Thesis is the delivery of a complete 

software client-server scheme for the FBCT in the SPS ring. The server side of that scheme 
follows its predecessor’s outline while benefiting from the new firmware’s design and adding 
a complete new and renovating functionality – TURN_BY_TURN acquisition mode – that is 
proven very useful. In addition, it corrects former malfunctions as for the data treatment, 
making the server more dynamically adjustable to different use cases. 

Furthermore, the client side of that scheme provides a different and more user-friendly 
interface for the server introducing new ways of presenting the data, such as 3D-graphs and 
2D-graphs that can be easily scrolled at the same measurement, on the contrary of the 
graphical solutions that the previously used FESA interface provided. 

 

5.1.2 LHC 
An additional contribution of this Thesis is the study of another complete software 

client-server scheme for the FBCTs in the LHC ring that will be able to be used in any 
circulating beam installation in the future, including the already existing one of the SPS 
accelerator. The results of this study as they were presented in the previous section reveal that 
although this approach seems very promising, further work should be done in order to 
implement a unified FBCT measuring system. This matter will be explained in more details 
in chapter 5.2 but we can summarize here that only the averaging part of the data treatment 
was found insufficient and hence needs improving, whereas the LUTs, BLR and Gain 
Switching worked perfectly. 

What is more, the client side of that scheme was found very helpful for the fast 
development of this system since it provided the direct comparison among the other systems 
of the same kind, in different ways. In addition and due to the lack of the calibration 
procedure of the system, the ability of setting directly the calibrating coefficients such that 
the measurements match the ones from the operational systems, improved the development 
speed as well. 
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5.2 Future Work 
As an enhancement of this work we need to improve the averaging procedure of the 

data process in software. In order to do that, we will have to reduce dramatically the turn 
interval – even to 0 – since it doesn’t contribute much as it was expected to the noise 
suppression but impose a great delay in the acquisition time – a 224 turn interval impose 
approximately 20msec delay at every acquired turn. And this is actually the limiting factor to 
the number of turns acquired at our implementation since we agreed to perform a half second 
acquisition in order to have enough time to process the data, hence 25 acquired turns with a 
224 turn interval. 

On the other hand, performing a full bunch acquisition that would fill the memory – 
294 consecutive turns lead to 1047816 acquired samples at almost 25msec – hits again the 
1Hz restriction as it may take 25msec to make the acquisition but it takes almost 400msec to 
read the data from the DAB since there is only one VME bus of 1Gbit. 

As a result, we intent to move the averaging part of the data process to the hardware by 
changing the firmware again and adding a summing mode that would allow us to perform full 
bunch acquisitions for a large number of consecutive turns removing the huge transfer delay 
in a sense that we will always be fetching 3564 values from memory. All the functionalities 
of the recently changed firmware – as they were analyzed in chapter 2.2.2 – should remain 
unchanged if it is going to be used in other parts of the CERN’s infrastructure such as linear 
accelerators and/or dump and transfer lines. 

In addition, since we will be fetching averaged data from the DAB and not the integer 
acquired values, the parsing through the LUTs should be transformed to a linear 
approximation of LUT as it is described in chapter 3.1.2 of [17]. 

Last but not least, the proper calibration technic should be implemented in order to 
achieve the maximum of the FBCT measuring system performance. 
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