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SUMMARY

This thesis focuses on the optimal design of structures under the influence of
stochastic dynamic loads, with applications to the sizing and topology

optimization of truss structures. Furthermore, the study investigates the fatigue
lifetime prediction of structures under stochastic dynamic loading. Finally, the

design optimization framework is extended to incorporate performance functions
related to fatigue lifetime of structures subject to stochastic dynamic loading.

Specifically, an innovative methodology for optimizing structures under
stochastic dynamic excitations is proposed. The objective function related to the
performance of the structure is constructed as a weighted sum of the variance of
the structural response quantities of interest. Such response quantities are selected
to be the displacements at the nodes of the system, stresses or strains developed in
the structural parts, drift ratios etc. The excitations are modeled by white noise or
filtered white noise processes. The variance of the response quantities are very
efficiently estimated by solving the Lyapunov equation for the system. The
adjoint method is developed to analytically estimate the sensitivities of the
objective function with respect to the design parameters. This substantially
increases the computational efficiency of the proposed methodology. The required
computational effort for estimating the derivatives of the objective function is
shown to be independent of the number of the design variables. Furthermore, the
proposed methodology is extended to handle in the optimization the formulation
of the response in the modal space. This exploits the benefits of using limited
number of modes for the estimation of the system response

The proposed design optimization of dynamic systems is applied for addressing
the problem of size and topology optimization of truss structures. A specific class
of two dimensional truss structure subject to Gaussian white noise excitation is
considered to demonstrate the theoretical developments. Using different types of
performance functions, such as the weighted sum of the nodal displacements and
the weighted sum of the stresses developed in the truss members, the structures is
optimized in size and topology in order to find the optimal configuration that
optimizes the performance. The results are compared to available design
optimization results of the truss structures subject to deterministic static loading.
The analysis in modal space is also applied on the truss structure, in order to
explore the effect of using limited number of contributing modes in the estimation
of the response and finally investigate their effect on optimal design.
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A novel methodology for the fatigue reliability assessment of randomly vibrating
multi-degree of freedom systems is also proposed within the coupled response-
degradation model. The fatigue process in the system components is quantified by
the fatigue crack growth equations which - via the stress range - are coupled with
the system response. Simultaneously, the system dynamics are affected by the
fatigue process through its stiffness degradation, so that it provides the actual
stress values to the fatigue crack growth equation. In addition to the general
coupled response-degradation analysis, its special case of non-coupled fatigue
crack growth is treated as well, for the wide-band stationary applied stress by the
use of its first four spectral moments and the approximate, empirically motivated,
Dirlik’s probability distribution for the stress range. The proposed methodology is
applied on multi degree of freedom spring mass chain like structure and the
results for the different approaches are compared. Both, the general analysis and
the illustrating examples elaborated provide the route to the fatigue reliability
estimation in complex—hierarchical vibratory systems under random loading.

Finally, the proposed methodologies for optimal design and fatigue lifetime
prediction for structure subjected to stochastic dynamic excitations are combined,
in order to form an innovative framework for design optimization of structures
based on fatigue lifetime related performance function. In particular, the
performance function for the optimization problem is defined as the weighted sum
of the fatigue lifetimes of the structural parts. The adjoint method is extended to
handle the new performance function for the computationally efficient and
accurate estimation of the sensitivities of the objective function with respect to the
design variables. The proposed methodology is applied for addressing the
problem of size and topology optimization of truss structures subjected to
stochastic dynamic loads. The optimal configurations obtained are compared to
the results of the design optimization based on displacement and stress related
performance functions. Similarities and differences between the fatigue-based and
stress-based performance functions are discussed.
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IIEPIAHYH

H mapodoo S1d0KTOptkn OaTpifny €MKEVIPOVETOL OTO PEATIOTO GYEOOGUO
KATOOKEVDV LTO TNV EMPPON GTOYAUCTIKAOV SVVUUIK®OV QOPTI®OV, UE EPAPUOYES
ot Peitiotomoinon ™G TOMOAOYING OIKTVOUATOV KOl TOV OlUCTACE®V TOV
dwtopdv TV ped®v. EmmAéov, pedetdtor m mpoPreyn g dudpkelag Cong
KOTOOKELVDV 0 KOTMOY VIO OTOYooTIKEG Ovvapukés Oeyépoets. Téhog, 1
pebodoroyia.  PéATIoTOL  OYEOIOUOD  KOTOOKELAOV  EMEKTEIVETAL YOO Vo
EVOOUATMOGEL CLVOPTNOELS amddoonNg mov oyetilovtal pe TN HEYIOTN OBPKELD
{ong KataoKeLdV o6& KOTMWoT, LTOPOAAOUEVOV GE GTOYOUOTIKEG OUVVOUIKES
QOpPTIGELC.

Yuykekpluéva, mpoteivetal o Kowvotopa pebodoroyior yioo T PeAtiotomoinon
KATOOKEVDV 7OV  VTOPAAAOVTOL ©E OTOYOOTIKEG Ovvapikés oleyépoels. H
OVTIKEWWEVIKT] OLVAPTNON OYETLOUEV HE TNV amOd00N NG KOTAOKEVLNG
emMAEyeTOL G €va oTOOGHEVO dOpotopa TG HeTAPANTOTTOS TG amOKPIoNG.
Yav amokpicelg Bewpovvtal ot petatomicel TV KOUPOV TOL GLGTHWATOG, Ol
TACELS KOl Ol TOPOUOPPAOCEL OV OVOTTOGGOVIOL GTO OOUIKA ototyeia. Ot
OlEYEPOELG LOVTEAOTOIOVVTOL oV ALKOG BOpLPOS 1| ooV PIATPUPICUEVOS AEVKOG
080pvPoc. H petafAntomra tov anokpicewv vmwoloyiletol TOAD amOTEAECUATIKA
puéow g emilvong g e&iowong Lyapunovywa to ovotnua. H pébodog adjoint
OVOTTOGGETOL Y10, TOV OVOAVTIKO VTOAOYICUO TOV TAPUYDY®V TNG OVTIKELLEVIKNG
CLVAPTNONG MG TPOS TIG TOPUUETPOVS  oyedaopoy. Avtd av&dver v
VTOAOYIOTIKT]  OMOTEAECUATIKOTNTO TG  TPOTEWOUEVNC  pebBodoroyiog.
AmodekvheTonl OTL 1 OTOLTOVUEVT] VTOAOYIOTIKY 1oYOG Yo TNV EKTIUNCN TOV
TOPAYDYOV TNG AVIIKEYLEVIKTG CLVAPTNONG Elvat aveEAPTNTn Ao TOV apPOUd TV
oYEOOTIKOV TTapapétpov. EmmAéov, n mpotetvopevn pebodoroyio emekteiveTon
wote vo dtoyelpiletal ToV VTOAOYIGUO TG OMOKPLONG TV KATUOKEVDV GTOV YDPO
TOV W10HopPIK®OV cuvtetoyuévov. 'Etotl aglomotobvtal ta o@éAn amd tn ypnon
TEPLOPICUEVOD  OPOHOD  1OI0HOPP®V Yoo TNV EKTIUNON NG OamOKPIoNG TOV
GUGTNLOTOG.

H mpotevopevn pebodoroyia yia tnv BeAtiotonoinom Tov 6yedlocol SLVVOUIKOV
cvoTNUAtOV eQaprdletor otn PeATioTonoinon ¢ TomoAoyiog SIKTVOUAT®VY Kot
TOV JOCTACEDV TOV JUTOUDV TOV HUEADV XPNCILOTOLEiTAL Yoo TNV EMidEEN TV
BeopnTikdV peElET®V. Zvykekpluéva o €WK kotnyopio  dididotatmv
SIKTLOUATOV, VToBaALOLEVOV 68 T'Kaovooiovo Aevkd B6pufo. Xpnoipomoidvtag
SPOPETIKOVG TOTOVG GLVOPTHCEMY OTOd00MG, ON®G £ivol TO GTOOUGUEVO
dOpotopa TOV HETOTOTICEMY GTOVG KOUPOLS Kot TO oTOOGHEVO GBpolGHa TV
TACEMV OV OVOTTUOOOVIOL OTO OTOUYElM, Ol KATOOKELN PeATioTomoleiton o€
péyebog kot tomoAoywkd mpokewévov va Bpebel n PérTiom didtaln, ®ote va
BeAtiotomoteitar 1 ovvdptnon anddoone. Ta amoteAécpata cvykpivovior pe
owbéopa amoteléopota PEATIOTONOMONG TOL GYESWIGUOV TOV OIKTVOUAT®V

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



VTOPAALOUEVOV OE VIETEPUIVIOTIKA otatikd @optic. H 1dtopopeikny avaivon
emiong epapuoletar omn PertioTonoinomn ¢ €WOIKNG Katnyopiog SIKTV®UAT®V,
TPOKEEVOL Vo dlepevvnbel 1 emidpacT TG YPNONS TEPLOPIGUEVOL OPLOLOV
WOOUOPP®VY OV GUVEIGPEPOVV GTNV EKTIUNOT TNG ATOKPLONG TOL GUGTHUOTOG KoL
TEAOG O1EPELVATOL 1) EMPPOT) OTOV PEATIOTO GYESAGUO.

[Ipoteiveron emiong o peBodoroyio yi tnv extiunon g owapkewng LoNg
KATOOKELOV TOAL®DV Babudv edevbepiog o€ KOTWGOT, VIO GTOYOCTIKEG OVVOUIKES
oeyépoetg, Aappavoviag vmoéywy v oxéon omdkpiong — vrofabuong tov
kataokevwyv. H  dwdwosio t™¢ KOM®ONG 0T KOTOUOKELOOTIKG — UEPT
TOGOTIKOTOLEITAL HECH TMV EEICMCEMV AVATTVENG TOV POYUDV Ol OTOTESG - HECM
TOV PACUOTOC TOV TACEWMV - £ivat GLLEVYUEVES LE TNV ATTOKPIGT TOV GLGTHLOTOG.
Tavtoypova, 1 SLVOUKT TOV GLOTAUATOS ENNPEALETAL AmO TNV SlOdOIKAGIN TNG
KOémwong, péow g vmoPdOuiong ¢ akapyiog Tov, MOTE VO TOPEYOVTIOL Ol
TPOYUOTIKEG TIWEG TV TAcE®V oty &&lomon  ovamTuENG TG POYUNG.
EmnpocBeta pe ™ ovlevyuévn yevikn avdivon amdkpiong-vmofdduions, m
€101KN TTEPITTOON TG UN GVEEVYUEVNC OVATTTLENG POYUNG avTipeTOTIlETOL EMioNC,
Y0 OTAGLUES, EVPEMS PAGUATOS TAGELS, UE TN XPNOTN TOV TPAOTOV TEGGAP®V
QOCUATIKOV POTTMV, KOl TNG TPOCGEYYIOTIKNG, EUTEIPIKNG KATOVOUNG THOVOTHTOV
tov Dirlik yio t0 €0pog Twv tdoewv. H mpotevopuevn pebodoroyia epappoletol
o€ ovotuato TOADV Pabudv elevbepiog kol To OMOTEAECUOTO YO TIC
OlPopeTIKEG TpooeYYioels ovykpivovtal petald tovg. Té6co N yevikn avdivon,
0G0 Kol o Topadelypata Tov mapovclalovtal, TapEYOLV £vo TAAIGLO Yol TNV
extiunon ¢ a&lomotiag KoTaoKEL®V G6€ KOM®GYN YL TO TOAVTAOKEG
KOTOOKEVEG VIO GTOYUCTIKA SVVOUIKE POPTia.

Téhog, ot mpotewoueveg pebodoroyieg yw to PEATIOTO OYEdCUO KOL TNV
extiunon g dapkelag {oNg o KOTMON Y10, TO GLOTHUATO VITOPOAAOUEV GE
OTOYOOTIKEG OVVOUIKEG Oleyépoelg ouvovdlovtal Yia va  Jtopopembel Eva
KOWVOTOUO TAOIG10 Yo TN BEATIGTOTOINGN TOV GYESIAGHOD TOV KATAGKELMOV Y10l
™ péyotn odpkeln {ong oe koOmwon vnd v emppon afePforotitov. H
ocuvéptnon amddoonc v 10 TPOPAnuUa  Pertiotomoinong opiletor ¢ TO
otafcpévo abpotcpa g duapketa (NG TV doKdV otoryeiov og kémwon. H
uébodog adjoint emexteivetan mote vo.  Slayepiletar TV VITOAOYIOTIKA
OTOTEAECUATIKY EKTIUNGCT TOV TOPAYDY®V TNG OVIIKEWUEVIKNG GLVAPTNONG MG
pog TG petaPfintég oyedoopov. H mpotevopevn pebodoroyia epapuodletar ot
BeAtiotomoinon ¢ Tomoloyiog SIKTVOUAT®V KOl TOV OUCTACE®Y TOV JLUTOUDV
TOV PEADV, VIOPBOALOUEV®V GE GTOYOOTIKA duvapkd eoptic. Ot BEATIOTEG OOUES
OV amoKTHONKAV cvykpivovtal pe to amoteléopato TG PeATioTonoinong TOv
oYEOOGLOV POCIGUEVOL GE GLUVOPTHGELS OTOO00TG OYETILONEVESG UE LETUTOMIGELS
N téoelg. Opoldtntec Kot OPOPES HETOEL T®V  CLVOPTHCEMV  ATOOOCNG
Boaciopéveg o€ KOTMOT Kot TAGELS avOADOVTOL.
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1.Introduction 1

CHAPTER 1 Introduction

1.1 Research Context

1.1.1 Design Optimization of Structures

Design optimization of structures is a powerful tool for discovering new solutions
for engineering problems. This tool can be used to optimize the size and/or the
shape of a structure, which is subjected to different kinds of loads and support
boundary conditions, within a given domain.

In engineering design, the knowledge about a planned system is never complete
and it is not known in advance which design will lead to the optimal performance.
Therefore, it is desirable to optimize the performance measure over the space of
design variables that define the set of acceptable designs. Additionally, modeling
uncertainty arises because no mathematical model can capture perfectly the
behavior of a real system and its environment. In practice, a model is used that is
most likely to adequately represent the behavior of the system, as well as its
imposed excitation. However, there is always uncertainty about which values of
the model parameters will give the best representation of the system, so this
uncertainty of the parameters should be quantified. Furthermore, whatever model
Is chosen, there will always be an uncertain prediction error between the model
and system responses. For an efficient engineering design, all these uncertainties,
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1.Introduction 2

associated with future excitation events, as well as the modeling of the system,
must be explicitly accounted for.

Consequently, in modern research, it is widely accepted that the analysis of
structures for structural safety and security should be based on stochastic dynamic
methods, because they provide the desired accuracy of predicting the construction
and security against different limit states such as direct functionality, crash
prevention and total dynamic instability. It is also gradually recognized that the
safety of construction is best valued using a stochastic (probabilistic) approach.
Therefore, the stochastic system design is the most logical approach to planning,
but implementation has been limited by the fact that the computational time
required is prohibitively large.

1.1.2 Topology Optimization

Computer aided topology optimization of structures is a relatively new but rapidly
expanding field of structural mechanics. Topology optimization is used in an
increasing rate by, for example the car, machine and aerospace industries as well
as in materials, mechanism and Micro Electro Mechanical Systems (MEMS)
design. The reason for this is that it often achieves greater savings and design
improvements than shape optimization.

The topology optimization problem solves the basic engineering problem of
distributing a limited amount of material in a design space, where a certain
objective function has to be optimized. The research in the structural topology
optimization field is mainly focused on the solution of the determinist static case
(Bendsoe and Sigmund 2002, Sigmund 1997, Bendsoe and Kikuchi 1988, Zhou
and Rozvany 1991, Rozvany et. al. 1992, Sigmund and Petersson 1998, Xie and
Steven 1993 and 1997, Wang et. al. 2003, Yang et. al. 1999), neglecting the
dynamics and uncertainty which stems from the nature of the structure and the
imposed excitation. A common objective in static problems is to minimize the
compliance of the system (maximum global stiffness).

In the topology optimization of dynamic systems, the objective is usually related
to eigenvalue optimization (Tenek and Hagiwara, 1994, Ma et. al., 1995, Kosaka
and Swan, 1999, Pedersen, 2000, Du and Olhoff, 2007, Xie and Steven, 1997,
Zhao et. al. 1997, Yang et. al. 1999). These problems are relevant for the design
of machines and structures which are subjected to a dynamic load. A possible
motivation for this type of problems is, for example, to keep the eigenfrequency
of a structure away from the driving frequency of an attached vibrating machine
with a given frequency of vibration. A common objective in dynamic topology
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1.Introduction 3

optimization is to maximize the fundamental eigenfrequency, for example to shift
the fundamental eigenfrequency away from certain disturbing frequencies.
Moreover, structures with a high fundamental frequency tend to be reasonable
stiff for static loads.

1.1.3 Stochastic Fatigue Prediction

In the last years an increasing amount of research efforts has been directed
towards stochastic modeling of various deterioration (or degradation) processes in
mechanical/structural components. Because of the practical importance of fatigue
damage and fracture in various engineering structures, stochastic models of
fatigue accumulation have been a subject of special interest (Sobczyk and Spencer
1992 and references therein). It should be underlined, however that though the
fatigue process is inherently associated with vibrations of mechanical/structural
systems, the research in random vibration theory and in modeling of fatigue has
been conducted without a proper mutual coupling. Stochastic analysis of
dynamics of mechanical/structural systems has been focused on the
characterization of the response (and its unsafe states, e.g. instability regions,
first-passage probabilities), whereas the analysis of fatigue deterioration has been
concentrated on the fatigue crack growth analysis assuming that the characteristics
of the response (e.g. stresses) are given.

The problem of fatigue of materials subjected to time-varying loads is old, the
first comprehensive treatment by Woehler (1870) who introduced the curves SN,
stress (S) - lifetime (N), for alternating loads with fixed amplitude. But from the
very beginning the great dispersion of the S-N curves was recognized due to the
stochastic nature of fatigue, resulting in the adoption by Ravilly (1938) S-N-P
families of curves with the survival probability parameter P. Weibull (1939)
proposed the use of a probabilistic approach to model the distribution of cycles to
fatigue failure of metal specimens, while Miner (1945) used statistical variation
diagrams of cycles of failure to describe the failure of metal specimens in the
presence of holes under fixed amplitude loads. Theories for describing the fatigue
gradually evolved from models of linear accumulation of damage type Palmgren-
Miner in nonlinear models, e.g. equations Marco-Starkey, Henry, modified Miner,
Morrow (1986), and empirical crack propagation models as well, eg Paris-
Erdogan equation and Forman (Sobczyk and Spencer, 1992). Subsequent
developments included the influence of the plasticity of materials, application of
multiaxial stress situation, and apparently the effect of memory during the
enforcement of load cycles of varying amplitude (Sobczyk and Spencer, 1992).
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1.Introduction 4

Traditionally, to introduce the stochastic nature of the phenomenon of fatigue, two
methods used in newer models are used (Bogdanoff and Kozin, 1985). Usually,
the randomization of the basic differential equations governing the problem of
fatigue is selected, considering the parameters of equations as random variables,
independent or not. Recently, the a-priori stochastic foundation of the problem of
fatigue using purely stochastic equations is gaining ground. Generally, the field of
stochastic fatigue is evolving rapidly in recent years (Sobczyk and Spencer,
1992). Among other things, a variety of models of failure and spread of cracks in
complex, heterogeneous, anisotropic and classic metal material have been
proposed by Krajcinovic (1986), Shlyannikov and Braude (1992), Liou et al
(1999), Sobczyk ( 1987), Sobczyk and Trebicki (1995).

An important element in the application of stochastic models of fatigue in real
structures is the influence of uncertainties due to incomplete knowledge of the
system and/or the excitation. Specifically, studies and analysis of reliability
usually do not take into account the incomplete knowledge of the nature of the
material, the actual size of the structure and the shape of the road profile that will
truly address the vehicle, but also the imperfections of the analytical methods and
models. Recently, it has been internationally recognized and documented (eg
Baker and Cornell, 2003; Porter et al., 2002) the need to incorporate these
uncertainties and to develop methods of analysis and design under their influence
(Au, Papadimitriou and Beck, 1999; Papadimitriou, Katafygiotis and Au, 1997,
Beck et al., 1999).

It is clear that a more adequate approach should account for the joint (coupled)
treatment of both the system dynamics and deterioration process (e.g. fatigue
accumulation). Such an analysis allows to account the effect of stiffness
degradation during the vibration process on the response and, at the same time,
gives the actual stress values for estimation of fatigue. It seems that in stochastic
dynamics the coupled analysis of the response and degradation had been treated
first in the context of elasto-plastic (hysteretic) systems (Roberts 1978, Wen
1986). In the articles cited a degradation of the system is defined in terms of the
hysteretic energy dissipation. As far as the joint analysis of random vibrations and
fatigue degradation is concerned, one should mention the paper (Grigoriu 1990)
containing the model in which fatigue crack growth equation is coupled with the
equation for the amplitude of the response (obtained via the averaging method —
Sobczyk 1991, Soong and Grigoriu 1993), and more extensive studies published
in papers (Sobczyk and Trebicki 1999, Sobczyk and Trebicki 2000).
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1.Introduction 5

In the papers cited above the analysis was presented for the Gaussian response
and specific calculations were performed for a single degree of freedom system.
one of the objectives of this thesis is to treat the response-degradation problem of
random vibration in a more general setting for multi degree of freedom systems
and multidimensional nature of degradation process. Such an analysis is inspired
by the recently growing industrial interest in prediction of the response and
degradation of large scale mechanical and structural systems; an important class
of such systems includes an “hierarchy” of oscillatory subsystems with different
fatigue degrading stiffnesses.

1.2 Organization of this Thesis

The research work presented in the thesis contributes to the design optimization
and fatigue of structures subjected to uncertain dynamic loads. This uncertain
variability of the dynamic loads is modeled using stochastic processes. The
performance measures needed in the design of the structures are related to the
second — order statistics of various response quantities, such as displacements,
velocities, accelerations, strains, stresses, drift and fatigue lifetime. In particular,
novel methods developed in this thesis for fatigue lifetime predictions of
structures subjected to stochastic loads are conveniently incorporated in the design
optimization framework. For demonstration purposes, the proposed framework is
applied to the design of a class of two — dimensional truss structure.

Methodologies for design optimization of structures under stochastic dynamic
excitations are presented in Chapter 2. Specifically, after a brief presentation of
methodologies for optimizing systems under static deterministic and uncertain
loading, an innovative methodology for design optimization of structures
subjected to stochastic dynamic loading is presented. The design optimization is
formulated as a constrained optimization problem with the objective function
related to the structural performance measure, the inequality constrains related to
cost measures and the equality constrains related to the governing equations of
motion of the system. Specifically, for the stochastic excitation case the response
is also stochastic and the performance measures are associated with the second —
order statistics (e.g. variance) of various response quantities of interest, such as
displacements and stresses. Assuming white noise or filtered white noise
excitation models, these second order statistics of the response are conveniently
obtained by solving the Lyapunov (differential or algebraic) matrix equations. The
cost function is related to the total volume of the structure which is restricted to
remain within a specified volume. An adjoint method is developed for the
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1.Introduction 6

calculation of the gradients of the objective function, in order to increase the
computational efficiency of the proposed methodology for the case of large
number of design variables. The proposed design optimization methodology is
also extended to handle the case of estimating the response using modal
coordinates, thus further reducing the computational effort by exploiting the fact
that only a small fraction of modes in relation to the large number of DOFs
contribute to the response. This analysis, in conjunction with the adjoint method
for the calculation of the gradients of the objective function, substantially
increases the efficiency of the proposed methodology.

In Chapter 3, the proposed methodologies are implemented on two — dimensional
truss structures, for different performance functions such as the weighted sum of
the nodal displacements and the weighted sum of the stresses, in order to
demonstrate their applicability. The obtained results are compared to available
design optimization results for truss structures subjected to deterministic static
loads. Furthermore, the modal space approach for the design optimization is also
applied on truss structures in order to investigate the effect of using limited

number of contributing modes in the estimation of the response and therefore
explore their effect on the optimal response.

In Chapter 4, an innovative methodology for the fatigue reliability assessment of
randomly vibrating multi-degree of freedom systems is presented within the
coupled response-degradation model. The fatigue process in the system
components is quantified by the fatigue crack growth equations, which - via the
stress range - are coupled with the system response. Simultaneously, the system
dynamics are affected by fatigue process via its stiffness degradation (so, it
provides the actual stress values to the fatigue growth equation). In addition to the
general coupled response-degradation analysis, its special case of non-coupled
fatigue crack growth is treated as well for the wide-band stationary applied stress
by the use of its first four spectral moments and the approximate, empirically
motivated, probability distribution. Both, the general analysis and the illustrating
exemplary problems elaborated in this chapter provide the route to the fatigue
reliability estimation in complex — hierarchical vibratory systems under random
loading.

In Chapter 5, the aforementioned methodologies developed in Chapter 2 and 4 are
combined in order to establish a framework for fatigue — based design
optimization of structures subjected to stochastic excitations. The objective
function is selected to maximize the expected fatigue lifetime of the system.
Using the methods developed in Chapter 4, the expected fatigue lifetime is
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1.Introduction 7

calculated very efficiently using only the spectral moments of the stresses
developed in the structure. Certain similarities between the fatigue — based
performance function and the stress — based performance function in Chapter 2
are revealed. The proposed methodology is used for size and topology
optimization of two — dimensional truss structures in order to demonstrate its

applicability. The optimal designs obtained from the fatigue — based design

optimization methodology are compared to the optimal designs obtained from the
stress — based design optimization methodology in order to identify the

differences in the final designs.
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2. Optimization of Structures under Stochastic Excitations 8

CHAPTER 2 Optimization of  Structures under

Stochastic Excitations

2.1 Introduction

In the present chapter, the problem of the design optimization of dynamic systems
under stochastic excitations is addressed. First, a short description is given for the
methodologies used up to now, such as the “minimum compliance” method,
which are mainly applied to structures subjected to static loads. Next, an
innovative methodology is presented for the optimization of the performance of
multi-degree-of-freedom, under stochastic excitations. The performance of the
system response is quantified by using different measures of the response, such as
the weighted sum of the nodal displacements or the weighted sum of the
developed stresses in the structural parts. Additionally, the adjoint method is used
in order to efficiently calculate the sensitivities of the objective function with
respect to the design variables. Next, the proposed methodology is extended to
incorporate in the design optimization, the formulation of the response in the
modal space, in order to take advantage of the fact that only a few modes in
relation to the number of DOFs of the structure contribute to the response. The
adjoint method is also used in this case in order to calculate the derivatives of the

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



2. Optimization of Structures under Stochastic Excitations 9

objective function. Finally, a very simple illustrative example is given, where the
proposed methodology is applied on a 2-DOF bar — mass system.

2.2 Optimization of Structures under Static Loads

Consider a structural model with DOFs and a vectof 1 ", where N, is the
number of the parameters i@, of the design variables associated with
geometrical properties, material properties as well as variables accounting for the
layout of the structure, such as nodal coordinates in a truss structur_é.el[eT

be the vector of external static loads applied to the structuraiand” be the
vector of displacements.

2.2.1 Minimum Compliance Method

The optimization of the geometry and topology of structures can conveniently be
formulated using the “minimum compliance” method (Bendsoe and Sigmund
2002, Sigmund 1997). In this approach the layout of a structure is found by
allowing a certain set of connections between a fixed set of nodal points as
potential structural or vanishing members. The minimum compliance method
minimizes the compliance of the structure subject to weight or volume constrains.
The problem of minimum compliance design is formulated as follows. Find

that minimizes

J(@)= f'u(g) (2.1)

subject to
Ku= f (2.2)
VEY, (2.3)

where K is the stiffness matrix of the system agg and g, are the lower and

upper boundaries of the design parametérgs the volume of the structure and
V, is a constant defining the maximum volume allowed for the optimal structure.

Note thatJ(q) is the norm ofK * or compliance.

The design optimization problem is thus formulated as a constrained optimization
problem, involving equality constrains (2.2) and inequality constrains (2.3), along

with constrains (2.4) on the upper and lower boundaries of the design variables.
Gradient-based optimization algorithms can be applied to numerically solve the
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2. Optimization of Structures under Stochastic Excitations 10

constrained optimization problem. Such algorithms require the analytical
evaluation of the gradients of the objective function in (2.1) and the gradient of
the equality constraints in (2.2). The first derivatives of the objective function
with respect to the design variabl@s, j =1,...N, are given by

W _

= (2.5)
Tq T,
whereas taking the first derivatives of the constraints in (2.2) lead to
Lo TRy =12, (2.6)
Ta, Tq

Thus the calculation of the derivatives of the objective function and the
constraints require the numerical solution f+ 1 linear algebraic systems of

dimensionn.

The adjoint method can be used to reduce the number of linear algebraic systems
to two, independently of the number of the design variables. The adjoint method
is an efficient way for calculating the sensitivities for this type of constrained
optimization problems, even for very large dimensional design space. According
to the adjoint method, the objective function is augmented by the constraints
equations (2.2) as follows

J(©)= fTu@- 1" (Ku- f) (2.7)

where the arbitrary vectat is to be selected conveniently. Given the constraints
in (2.2) the functiond™ () is the same ad(d) for admissibled.

The derivatives of the new objective function with respect to the design variables
@, are now given by

ai:fTﬂ_/lT 6_KH+KQ :(fT_gTK)ﬂ_/_ﬂa_Kg (2.8)
060, — 06, 060,~ 06, 06, = o6,

The idea in the adjoint method is to eliminate the terms involxé%rg so that the
i
estimation of these derivatives is avoided. This is done by selettitmysatisfy

the adjoint equation
ATK-f"=0o0r Ki=f (2.9)

where use was made of the fact tKais symmetric K = KT).
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2. Optimization of Structures under Stochastic Excitations 11

Using the adjoint equation (2.9) the equation (2.8) yields
ai = _/’LT a_K u

= 2.10
00, = 06~ (2.10)

which is computed for allj = 1,2,...N, by solving the adjoint equation (2.9) for
4, independently of the numbé\, of the design variables.

It should be noted that for the special case of linear dependence between the
global mass and stiffness matrices on the parameters in the thett is, and

Ny
M@= M,+g M6

=1

Ny
K(@)= K, +¢ K6,

j=1

(2.11)

the gradients oM (g) and K(q) are easily computed from the constant matrices

My, Ko, M; and K, j=1,--,N,. In order to save computational time, these
constant matrices are computed and assembled once and, therefore, there is no
need this computation to be repeated during the iterations involved in

optimization algorithms. For the general case of nonlinear dependence between
the global mass and stiffness matrices on the parameters in thhetbetmatrices

M; and K; involved in the formulation can be obtained numerically at the

element level and assembled to form the global matrices.

After the derivation of the equation (2.11), the derivatives of the stiffness matrix

appearing in (2.10) can be readily obtained by
K K; (2.12)
00,

Also, note that the stiffness matric&s and K, are only computed once before

the optimization process and therefore the derivatives of the objective function
given in (2.10) can be calculated directly by

ai:_&TKjg (2.13)

00,
avoiding the necessity of solving the system several times at each iteration of the
optimization algorithm. This leads to a significant reduction of the computational
cost of the methodology, simply by using the advantages of the adjoint method
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2. Optimization of Structures under Stochastic Excitations 12

and the fact that the stiffness matrix of the system is given by the representation
(2.112).

Note that the Hessian of the objective function can also be computed analytically
by differentiating equation (2.10)
* T
o _ o4 U - ou
06,00, o0 T ~ 0000, — el

2
oK ok A (2.14)

where use was made of the symmetryofind K; matrices.

For the special case of representation (2.11), the second term in (2.14) is equal to
zero. Also, using the equations (2.2) and (2.9) one nast. Therefore the

second derivative of the objective function yields

* T
6 __ou Ku—u }(,‘9_9:_41T K o4 (2.15)
0000, 06, Py 196

Additionally, by differentiating the equation (2.2) one has

Pk X g M 198y kK (2.16)
26, 50, 80, 26,

J J

Using (2.6), solving forS—g and substituting in (2.15), the Hessian of the

objective function takes the form

By substituting (2.16) in (2.15) Hessian of the objective function takes the form

(v ] N ~2u" KKK, u (2.17)
i 0600,

Introducing the matrices
Y=[y,y, vl (2.18)
A:[él ézén] (2-19)

where

v, =K (2.20)
0, = K‘lzgj (2.21)

the components of the Hessikh can equivalently be written in matrix form

H=V2]=29"A (2.22)
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2. Optimization of Structures under Stochastic Excitations 13

2.2.2 Generalized Method

In general, the design optimization problem can be formulated as a constrained
optimization. The objective and the constraints are associated with performance

and cost-related criteria. Specifically, the design optimization problem is
formulated as follows. Find th@ values that minimize the objective

J(@)= F(u(a) (2.23)
subject to
Ku= f (2.24)
VEV, (2.25)
Gin £ O£ G (2.26)

Herein, J(q) is a general objective that relates to the performance of the system
as this is measured by the respongg) or functions of the responségu(q)) .

The function of the responses can be associated with strength and safety criteria of
the structure. Examples of performance functig) are given next. For design

objectives related to the displacement, drift or stresses of the structure, one can
define the objective to be

J@=|s|’ (2.27)

where|[[] is a specific norm of the vecter and o is a vector of responses that is
related to the displacement response vector oy X'u. For the norm
Is||= s"W's, the objective is written as

J(@)=u'Su (2.28)
whereX = S'WE . For the nornjul| = maxu|, the objective is written as

J(6) = max(o;| (2.29)
which is C° continuous.

For the general case of (2.23) the derivatives of the objective function can be
efficiently computed using the adjoint formulation. The objective function is
augmented by the constrains equation (2.24) as follows

I =u'su-2"(Ku- f) (2.30)

where the arbitrary vectot is to be selected conveniently.
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2. Optimization of Structures under Stochastic Excitations 14

The derivatives of the new objective function with respect to the design variables
in @, are now given by

ﬂzyzp(g)ﬁ_f KQJF%H =
00. - 00. 00. 06

J J J J (231)
T A (O
00. B 00

i j

Selecting 4 to eliminate the last term, the adjoint equation takes the form
Ki=V,F(u) (2.32)

and the derivative of the objective function simplifies to
ai — _/’LT a_K u

= 2.33
00, = 26~ (2:33)

which is qualitatively the same as in equation (2.10). The only difference is the

right hand side vector (RHS) of the adjoint equation which affects the value of the
vector 4. Note that for the special case of objective function (2.28), the RHS of

the adjoint equation takes the for‘fﬂF(g) =2>U. Also it is worth noting that for

the special case of objective function (2.29) which 8° continuous, the
derivatives contain jumps at some valueg/of

2.2.3 Method Accounting for Static Loading Uncertainties

Uncertainties in a variable are quantified by a probability distribution as means of

specifying the plausibility of each possible value of the variable. In the case that
the static load vectorf is considered to be uncertain and a distribution with

probability density functionp( f) is introduces to quantify the uncertainty. The
minimum compliance method can be formulated as follows. Fhdthat
minimizes

J(@) = ELITu©@) (2.34)
where E[[] denotes mathematical expectation.

This case has been formulated and presented in the work by Christiansen et.al.
(2001). In this study the mathematical modeling and solution of robust structural
optimization of linear elastic structures, under uncertainty in the data describing
the loading conditions and the material properties, is considered. This work has
been extended by Guest and Igusa (2008) to handle the uncertainty in the nodal
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2. Optimization of Structures under Stochastic Excitations 15

coordinates of the system, demonstrating that the load and nodal uncertainties can
have dramatic impact on the optimal design of the structures. Furthermore,
Evgrafov et. al. (2003a and 2003b) have considered structural topology
optimization problems including unilateral constraints arising from non-
penetration conditions in contact mechanics or non-compression conditions for
elastic ropes, whereas parameters such as loads are allowed to be stochastic in
order to construct more realistic models and to hedge off possible failures or an
inefficient behavior of optimal structures.

2.3 Optimization of Structures under Stochastic Dynamic
Loads

The formulation for the design optimization of structures under static loads in next
extended to handle the case of uncertain dynamic loads. The excitation of the
structure is considered to vary with time and the value of the excitation at each
time instant is uncertain. In fact, it is assumed that the uncertain excitation can be
modeled by zero-mean Gaussian stochastic processes so that the second-order
statistics of these processes fully describe the characteristics of the excitations
(Lutes and Sarkani 2003). In addition, the structure is assumed to be linear so that
the responses to Gaussian zero-mean excitations are also Gaussian zero-mean
processes that are described by the second-order statistics. Herein, attention will
be given to the covariance response at zero lag. Such response covariances are
readily obtained by solving the Lyapunov matrix equations (Lutes and Sarkani
2003).

2.3.1 General Formulation

Similar to the static case, the design optimization problem can be formulated as a
constrained optimization problem. The objective is related to the performance of

the structure which is evaluated by the covariance of the response at zero lag. The
constraints are associated as before with governing equations of motion of the

system and the cost of the design. Specifically, the design optimization problem is
formulated as follows. Find th@ values that minimize the objective

J(@)= F(Q(9)) (2.35)

subject to constraints
g(Q(@)=0 (2.36)
V(@£ V, (2.37)
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gnin £ g £ gnax (238)
Herein, Q(q) is the covariance of response quantities of interest such as
displacements, velocities, acceleration, stresses, fatigue,Jét).,is a general

objective that relates to the performance of the system as this is measured by the
function of the covariance responséy-), and g(-) indicates the set of

equations that the covariance response satisfies based on the governing equations
of motion of the system. The covariance responseQ(of) are associated with

second-order statistics of performance, strength and safety criteria of the structure.

2.3.2 Performance Functions

Examples of performance functions(Q(g)) are given next. For design

objectives related to the displacement, drift or stress responses of the structure and
for the case of Gaussian response, one can define the objective to be a measure of
the intensity of the response. In the analysis that follows, the variances of the
responses are considered as adequate measures of the intensity of the responses.

Let Q,=Q,(0)= E[_)(tQ)_Q(tQ)] be the covariance matrix of the Gaussian
stochastic response vectg(t) . For stationary response the covariance matrix is

constant, independent of tinte The performance function is defined to be

F(Q®)=tr(W Q) (2.39)

whereW is a weight matrix. A special case is to select

W, 0
W= 0 =diag(w) eR™™ (2.40)
0 W,

Ny

to be a diagonal matrix of weighting factovg= (V\i,m,V\(]y )', chosen so that

w =1. The performance function in this case takes the form
i=1

FQU)=YWE[Q®]=3 wH §(10)] (2.41)

which represents a weighted sum of the variances of the response quantities of
interest. Using this general formulation, one can control the responses of the
system that are needed to be optimized, separating the most important quantities
from the less important by assigning higher or lower values to the corresponding
weighting factors.
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2. Optimization of Structures under Stochastic Excitations 17

An alternative and equally important choice of the performance function is related
to the response quantity of maximum intensity or variance, that is, to choose the
performance to be

F(Q(9)) = max[diag{ Q(9)}] =max[q,(&)] (2.42)

where g, (0) =diad Q(9]=[ Q, (9. L, Qyny,y(g)]T contains the diagonal
elements of the covariance matdx (¢) . The performance function is this case is
C° continuous.

2.3.3 Covariance Response Formulation
The covariance response mat (9) is readily obtained from the equation of

motion of the linear structure subjected to zero-mean Gaussian excitations. The
formulation for the covariance response is next presented and is used to define the
constraint equations given by (2.36).

The equation of motion of a linear structure is

M+ Co+ Ku= RF()= ) (2.43)

where u(t) el " is the displacement vectoM ¢ ™", Ke” ™ andCe™ ™"
are the mass, stiffness and damping matrices respect@’égf," " is the vector

nxng

of the independent excitations applied on the structure Rand IS a matrix
that defines the degrees of freedom on which the excitation is applied. Introducing
the state vector

X = [ﬂ e (2.44)

and the observation vectoye” ™ to contain all the response quantities of

interests that may depend linearly on the states of the system and the excitation,
the equation of motion (2.43) can be written in state vector form

o AAQ(S i Bs_f (2.45)
y=Cx+ Df
where A, and B, are the system matrices that depend on the matdce&, C,
R as follows
Al o] 28
-M7K -MTC
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2. Optimization of Structures under Stochastic Excitations 18

O,
B, = MR (2.47)

andC and D define the dependence of the observation vegton the state and
excitation vectors. For the case for which the vegtoincludes displacement,

velocity, strain and stress quantities, the observation vector depends only on the
state vectorx and the matrixD =0 in (2.45). In this case, the response vector is

given by
y= ég( (2.48)

n,xn,

Using (2.48) the covariance matri (¢) e[l » of the observation matriy is
related to the covariance respor@gd) of the state vectok as follows

Q@ =E[ ¥y y(9]=CH ) X()] C="cQe)C (2.49)

The covariance respongg, (¢) of the state vectox(t) can readily be obtained

from the aforementioned formulation as a function of the covariance of the
excitation vector and the properties of the linear system (Lutes and Sarkani 2003).
Two special cases are next considered depending on the type of the excitation
used. The first case assumes that the excitation is white noise and the second case
assumes that the excitation is filtered white noise generated by passing white
noise through a filter described by a set of linear differential equations. In both
cases, the covariance response can be obtained in the time domain by solving the
Lyapunov system of differential equations. In the stationary case, the Lyapunov
system is a system of linear algebraic equations. More general types of Gaussian
stochastic excitations that are specified in the frequency domain by power spectral
densities can also be handled. Specifically, the variances of the responses are
obtained in the frequency domain by one-dimensional integrals involving as
integrands the product of transfer functions of the linear system and the power
spectral density of the excitation processes.

Next, the formulation for the covariance response for the white noise and the
filtered white noise excitations are presented.

2.3.3.1 White noise excitations

For the case for which the components of the excitation vejét@tre white noise
processes, the covariance respoi@®) = Q,(0) = HXt0) X (10)] el *™*" of
the state vector satisfies the Lyapunov system of equations, given by
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2. Optimization of Structures under Stochastic Excitations 19

&= AQ+ QA + BS B (2.50)
where

A=A, B=B and S=§ f{] (2.51)

Since the input excitation is considered to be stationary, the transient term of the
Lyapunov equation is equal to zero

&=0 (2.52)
In this case for the stationary response, the Lyapunov equation takes the form:
AQ+QA + BSB=0 (2.53)

which consists of2nx 2n linear algebraic equations. Taking advantage of the

symmetry ofQ, the number of equations is reduced1(d!n+ 1)

2.3.3.2 Filtered white noise excitations

It is next assumed that the excitation vec[o*r is generated by passing white

noise through e filter. The filter equations are written in state space form
®=Ax+Bw

. (2.54)
i =Cix + Dy w

where x, e[] ™ is the filter state vector ang/ is a Gaussian white noise vector
process with PSD equal 8, .
The filter equations can be solved simultaneously with the system equation for the

system given in (2.45), simply by augmenting the states of the system to include
the states of the filter. Specifically, introducing the augmented state vector

5:{&}em%mf (2.55)
X

consisting of the system states and the input filter states, using the system and
filter state space formulations (2.45) and (2.54), the state space equations for the
augmented state vector are given by

(%] [Ax+BCx+BDW [A BG|[_A [ BD
5:{&}:{ AX+BW ?{0 AfH_XfH B, }V‘V (2:50)

or alternatively
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X= Ax+ Bw (2.57)
where
_|A BC
A_[ 0 A (2.58)
and
B 5D 2.59
- & (2.59)

The response quantity of interegt may be related to both the system state
and the filter state, through the observation equation
y= ésl(s-i- @f_xf = E:_) (2.60)
where
c=[C, C] (2.61)
The covarianceQ, of the response vectoy is given by (2.49) withC is given
by (2.61),Q, is given by (2.50) andA and B are given by (2.58) and (2.59).

2.3.3.3 Second-order filter dynamics

A special case of a stochastic model of dynamic excitation is the uni-modal
second-order filter white-noise excitation. The characteristics of this type of
excitation are given by the second order filter equation

G ()+ 2z, w ¢, ()+ W g (= aw() (2.62)
()= 6, ()= - 2z, w0 (- W o ()+ aw(} (2.63)

The characteristics of the excitation depend on the values of the filter parameters:
the dominant frequency, and the damping ratid, . Alternatively, introducing

the filter state vector

X = [;J (2.64)
the second order filter equation can be expressed in state space (2.54), where
0 1
: :[_a)fz _zé/fa)f:| (2:69)
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B, = m (2.66)

a
C =[-0f -2 0] (2.67)
D, =0 (2.68)

If needed, the Lyapunov equation for the filter is given by

AQ+QA+B§B=0
Qf*:CfoCfT

(2.69)

where S, is the power spectral density of the Gaussian white nejge

Introducing the augmented state vector

X= (2.70)

the state space equations are given by (2.57) with the ma&i@sl B given by
(2.58) and (2.59), while the observation matfixis given by (2.61). Specifically,
using the state space description of the system dynamics given by (2.45) with

and B, given by (2.46) and (2.47), respectively, the matrideand B are readily

obtained by
Onn | nn Onl Onl
-M7K -M7'C —cogzM’lR ~24 0, M™'R
A= (2.71)
Oln Oln O 1
Oln Oln _a)f2 _Zé/f or
Oy
aM 'R
B= (2.72)
0
(24
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2.3.4 Objective Function

Using the performance function (2.39) and relation (2.49) the objective function
in (2.35) can be written in the form

J(@) =tr (wéQ(Q) o] ) (2.73)
Noting thattr (AB) = tr (BA), the objective function takes the form
J(9) = tr (ZQ(9)) (2.74)
Where
>=C"WC (2.75)

Which depending on the definition d, it may also depend of.

At this point, it should be stressed that the choice of the matiwan control the
optimization process by defining the nature of the objective function. That is, one
can control whether the quantity to be optimized would be the variance of the
displacement in one node or the sum of the displacement variance in all the nodes
or any other combination of the response quantities.

Apart from the general formulation for the matiix, one can use more specific
formulation in order to define different objective functions. A very simple case is
to choose

T=1 eR™ (2.76)

then the initial objective function turns to
E[¢]+

that is the objective function is equal to the sum of the variances of the
displacements and the velocities of the system. Another very simple case is to
choose

J=tr(2Q)= E §] (2.77)

n n
i=1 i=1

2=W=diag(w) eR*™*" (2.78)
In this case, the initial objective function turns to

J:tr(ZQ):iZZl:V\{E[Lf]JriZ;:wE[&] (2.79)

that is the objective function is equal to the weighted sum of the variances of the
displacements and the velocities of the system.
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2.3.4.1 Similarity with minimum compliance method

Following the minimum compliance method in the case of white noise excitation,
the objective function can be defined in a similar fashion as in (2.34) by

JO)=E[v(©)]=H ()uo)] (2.80)

The difference with (2.34) is that in (2.80) the variancefdfi instead of the

mean is used. For zero-mean white noise excitation the mearnsofero, so an
estimate of the response intensity is given by the variance of the response.

The objective function can also be expressed as
3(0) = E[(_ngﬂ: e fud )= g t( fud 9] (2.81)
Noting thattr (AB) = tr (BA),
tr(£7xx" £)=tr{ 17X ) =tr (17X )= tr{ f7207) (2:82)
The objective function simplifies to
3©)=E|tr(fTud" f)|= g o fud)|= v{ § ffud]) (283

Approximating the last equation, one can introduce the objective function

J(Q):tr(E[jT] E[gﬁ]): tr(ZQ) (2.84)
Where
Z{E[_fq Onn}:{ R}E[f*f*TJ[R 0 ] (2.85)
0, 0. |On] "=~

R defines the degrees of freedom on which the excitation is applied and
S = E f f7] is the power spectral density of the Gaussian white noise input.

This formulation bears great resemblance to the minimum compliance
formulation for the deterministic static case given in (2.1).

2.4  Optimization Using the Adjoint Formulation

The design optimization problem under stochastic excitations was formulated as a
constrained optimization problem, involving equality constrains (2.53) and
inequality constraints (2.37), along with constraints (2.38) on the upper and lower
boundaries of the design variables. Gradient-based optimization algorithms can be
applied to numerically solve the constrained optimization problem. Such
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algorithms require the analytical evaluation of the gradients of the objective
function in (2.35) and the gradient of the equality constraints in (2.53). Using the
form (2.74), the first derivatives of the objective function with respect to the
design variable® ,, j =1,... N, are given by

0 | = QO
20 _tr(aej Q(Q)JH{Z 0 J (2.86)

J

whereas taking the first derivatives of the constraints in (2.53) lead to the

aQ

following system of equations fGél?
j

\[ T
ASQ , 0Q xr, aAQ QaA aBS 8+ BSE 0 (2.87)
00, 06, 6, 06,
j=1---,N,. Thus, taking advantage of the symmetry of the matri@esnd
%, the calculation of the derivatives of the objective function and the

i
constraints require the numerical solution df+ 1 linear algebraic systems of
dimensionn(2n+1).

The adjoint method can be used to reduce the number of linear algebraic systems
to only two, independently of the numbhy, of the design variables. The adjoint

method is an efficient way for calculating the sensitivities for this type of
constrained optimization problems, even for very large dimensional design space.
According to the adjoint method, the objective function is augmented by the
constraints equations (2.36) as follows

2n 2n

J(0)=3(0)-tr(A¥Y)=3(0)- DD Av, (2.88)

i=1 j=1

where the arbitrary matrix\ is to be selected conveniently, and the new matrix
Y has been introduced to denote the right hand side of (2.53) as follows

¥Y=AQ+QA + BS B (2.89)

Given the constraints in (2.53) the functiah(d) is the same asl)(§) for
admissibled.

The derivatives of the new objective function with respect to the design variables
@, are now given by
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2 =1r {a—EQ}rtr { 8Q}
o0; 00 00,

J J

(2.90)
\ T
—tr| A A6Q+8QAT+ aAQ+Q6A +@S B+ BS—aB
00, 00, 00, o6, 06 o0
The gradient can be simplified to
* T
ai:tr ZaQ—AAaQ—AaQAT —tr Q QaA
00, 00, 00, 00,
(2.91)

_tr(A(aBSBT BsaBTD {G_ZQJ
06, 06,

Noting thattr (AB) = tr(BA) then one has that
tr A@ A’ rl ATA Q (2.92)
00, 00,
and the derivative of the objective function becomes

ol naB] ({0 )

J J

—w|a| Bsgs BS B, 2= g
26, 0, aaj

The idea in the adjoint method is to eliminate the terms involggg, so that the
i
estimation of these derivatives for eaéh is avoided. This is achieved by

(2.93)

selectingA to satisfy the adjoint equation
T-AA-AA=0

(2.94)
AA+ AA=3=BS B

Using the adjoint equation (2.94) the formulation for the derivative of the

objective function becomes
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35[0, )| u[a[ Bs . as® )
20, 80, 20 80 80
oz
+tr| —
(aain

Note that the second term in (2.95) is equal to zero if the mBtis independent
of the parameterg. Similarly, for matrixX that is independent of the parameters

(2.95)

g, the first term is equal to zero. In this case, the gradients of the objective

function are given by the first term of the equation, that is

oJ’ oA oA
—=—tr| A| —Q+ 2.96
o0, ( {86?]. Q+Q 00, N ( )

Thus, the gradient of the objectivé" is computed for allj=1,2,..N, by

solving a simple adjoint equation (2.94) féxr and the equation (2.53) for the
covariance matrixQ.

2.4.1 Implementation Issues

The gradient of the objectivd” requires the estimation of the derivative of the
matrices A and B. In the case of white noise excitatio®= A and the

derivatives are given by

0 0
A oMt oK oM™ oC (2.97)
0. K+M™*t— C+M*T—= '
j 06, 26, 06, 06,
0
%: oM™ R (2.98)
j 00,
Noting that
-1
M~ My (2.99)
00, o6

i

the equations (2.97) and (2.98) become
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0 0
A _ oM oK oM oC
00 M —MK+M'— —-M'—MC+M*T—=|"
) 00, 00, 00, 0,
(2.100)
M2 0 0 0
=— oM ., oK oM . . 0OC
o Mt|l-—MK+— —M C+—
00, 00, 00, 00,
oB 0
5 Mfla—MMflR (2.101)
I 00,
Assuming Rayleigh damping, the damping matrix can be written as
C=aM+bK (2.102)

The derivative of the damping matrix, which appears in (2.97) and (2.100), can be
calculated by the expression

oC _o0a\, M, b, oK (2.103)
06, 06 20, 06 0.

J J J

The parameters and b are chosen so that the damping coefficients forrthe
and s eigenmodes of the system are given y and ¢, respectively. These

parameters can be computed by solving the linear system
a+o’b=2{ o
\ (2.104)
a+wb=24 w,

where @, and w; is ther ands eigenfrequencies of the system. The derivatives of
these parameters can be easily computed by solvingpi2elinear system

2

oa . ob o o, _baa)r

00, 00, 00, 00,
o 5 a2 (2.105)

8a+w828 o, @, | 0w

00, 00, 00 060

j j i j
Finally, using Nelson method (Nelson, 1976), the derivatives of the natural
frequency appearing in (2.105) can be computed by the relationships

2
g | X T, (2.106)
00, — | 00, o0, |~

J
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ow 1 ow?
849r = > 86; (2.107)
) ) j

J

where g, is ther eigenmode of the system.

Finally, in the case of filtered white noise excitation the derivativé adind B
with respect tog; are readily obtained from (2.71) and (2.72) in the form

Onn Onn Onl Onl
oA My My, a)gﬁM‘lR 2gga)g@M-1R
=M o0, 00, 00, 00, a0, a0,
: 0, 0, 0 0
i 0y, 0, 0 0 ]
(2.108)
i 0. ;
oB |—aM M g
= 00, (2.109)
a0,
0
0

2.5 Optimization of Structures under Stochastic Dynamic
Excitation: Modal Space Approach

For structures with large number of degrees of freedom, the response quantities of
interest are often estimated accurately using only the contribution of the lowest
modes. In this section, the design optimization problem is formulated in the modal
space, considering the contribution of a number of modes in the response. In order
to complete this formulation, one only needs to define the matAges, C that

define the state space form of the governing equations of motion in the modal
0 oA 0B
00, ’ 00, ’ 00,
objective function and estimating the gradient of the objective with respect to the
design variables.

space, as well as the matricEs that are used in defining the
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2.5.1 Formulation of Response in Modal Space

In the analysis that follows it is assumed tKatand M are symmetric matrices.
Let »’, r=12...n be the eigenvalues an@, r=12,...n be the

corresponding modeshapes obtained by solving the eigenvalues problem

(K-oM)g =0 (2.110)

Let also ®=|¢ 4,...4,| be the matrix of modeshapes containing the first
m(m< n) modeshapes of the structure. The respay(¢e of the structure in the
modal space is given by

a=24& () =D& (2.111)

where £=[¢,¢,... &, ]T and & (t), r=1,2,.. m are the modal coordinates of
the structure, satisfying the modal equations

& +26me +a’s =4"RE(Y) (2.112)
whered,, r=1,2,.. m are the modal damping ratios of the structure.

Let x, €[] ™ be the state vector given by

X = {é} (2.113)
g
Using (2.112), the state vector satisfies the state space equation
X =AXx+ Bu (2.114)
where A and B, are given respectively by
A= Orn ! (2.115)
|- 270 '
Ornn,
B, = (2.116)
'R

where Q° and Z are the diagonal matrices of the eigenvalues and the modal
damping ratios

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



2. Optimization of Structures under Stochastic Excitations 30

! 0
Q? = (2.117)
0 w?
1 0
Z= (2.118)
0 Cm

where 0., denotes anmxn zero matrix andl,, denotes anmxn identity
matrix.

Let y be a response quantity of interest that relateg tand g through the
observation equation

q
y=Ro+ Ro=[ R Fﬂ{a} (2.119)
Using the transformation in (2.111), the vecjocan be written as
® O N
y=[R Pz]{o C'I';mHg}ﬂRi@ R®] x= C» (2.120)

whereC is given by
C=[R® R®] (2.121)

Thus, the matriceg\, B, C that are needed in the state space formulation are
given by (2.115), (2.116) and (2.121) respectively.

2.5.2 Gradient Estimation

Since the matrixC is given by (2.121), then the matrix, given in (2.75), can be
calculated by

| 'R _|®"R'WR® " R WRD
RTINS MR

Therefore the gradient &f can by calculated by
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op’

oDb’

" WR®D RW
s |ag RWA® o RWR
— +
00, | o’ oD’
) " WR® w
og VRO o BWRD
- - (2.123)
oD oD
®'RWR— &' R WR—
RWR -, @ RWR
+
oo oD
®'RWR— &' B WR—
RWR ;@ BWR
Introducing the new matriN by
O RWR 2 o7 R WRES
N = ‘gg Sg (2.124)
O'RWR— &' B WR—
R,WR 20 R Ba 7
one has
a_z: N' + N (2.125)
00
Substituting in (2.90), the gradients of the objective function are given by
* T T
ai:—tr A(%Q+Q8A +ES*E§+ BSaB J +
00, 00, 00, 00, 00, (2.126)
+tr((N+NT)Q)

For the case of white noise excitatioh= A, B = B, and the derivatives of the
matricesA and B can be obtained by (2.115) and (2.116) in the form

Omm Omm
OA _ | 502 o0 (2.127)
00. 27—
j 26, 26,
Om
B | (2.128)
00, R '
Y.

i
The gradient of the modal frequencies and modeshapes can be calculated using
Nelson’s method (Nelson, 1976), specialized for symmetric mass and stiffness
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matrices. This methodology computes the derivatives of ttie eigenvalue and
eigenvector with respect to a parametgr in the parameter sef from the

following formulas (Ntotsios and Papadimitriou, 2008)

aa)rz_ T 2
a—gj—zfr (K, —a'M; )¢ (2.129)
oo, _ 1 ow? (2.130)
06, 2w, 26,
and
0
4 (I -g g M)AE -2 ¢ Y (2.131)
00, == 224 1L
where
A =K-o'M (2.132)
Fy =0 =(1-M g #)K, ~ M, )g (2133)
i
_ _oM (@)
M; =M; (@)= 20 (2.134)
K =K; (9 =%@ (2.135)

For notational convenience, the dependence of several variables on the parameter
set @ has been dropped. For an n matrix A referring to the formulation for

the r -th mode, A is used to denote the modified matrix derived from the matrix

A by replacing the elements of tiketh column and the -th row by zeroes and

the (k,k) element of A by one, wherek denotes the element of the modeshape
vector ¢, with the highest absolute value. Also, the ved®pris used to denote

the modified vector derived frorf, replacing thek -th element of the vectoF,

by zero. More details can be found in the work by Nelson (Nelson, 1976).

For the case of filtered white noise excitation, the matrideand B are given

with respect to the system and filter matrices by (2.58) and (2.59). For the case of

second order filterA and B are given by (2.71) and (2.72). Thus, using (2.115)
and (2.116), the matriceA and B take the form
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Omm | mm Oml Oml
A -0 220 -O'Rw; -O'RX o, 2 136
1o, O, 0 1 (2.136)
Olm O1m _a)z —é/g[() g
Oml
ad'R
B= (2.137)
0
a
The derivatives ofA and B can thus be obtained in the form
i Omm Omm Oml Oml |
2 T T
A oQ o7 oQ od Ra)s oD R, 0,
—=-| 06, o0, 00, 00, (2.138)
00.
: Olm Olm 0 O
| Oy O 0 0 |
_ 0. _
.
B aa<I> R
—=| 00 (2.139)
00,
0
— O -

2.6 lllustrative Example: 2-DOF System

In this section the sizing optimization of a two degrees of freedom bar - mass

system is considered. A schematic diagram of such a system is shown in Figure
2.1. The equations of motion for the 2-DOF system is given by (2.43), where the

mass and stiffness matricé and K are given by

M =[ml+ m 0 } (2.140)
0 m,+m
K {kﬁ % _kz} (2.141)
_kz kz
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Xz
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—r X4
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Figure 2.1: Two degrees of freedom bar — mass system

and C is the damping matrix, which is assumed to be given by Rayleigh damping.
Note that the quantitym,, j=1,2 denotes the mass of the two bars which is

lumped at the two nodes and are equal to
m=pAL (2.142)

where p is the density of the materiah\ is the cross sectional area ahds the

length of the bar. Furthermore, additional massesan be added to the nodes of
the structure. The quantities, j=1,2 are the axial stiffnesses of the trusses,

given by
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K = A (2.143)

where E is the Young modulus of the material. In order to investigate the
response of this simple system and find the optimum distribution of the material at
the two bars, the following assumptions are considered. The length and the
material of the trusses are considered to be the same, whereas the cross sectional
areasA, are the structural parameters to optimize. Since the only parameters that
define the volume (mass) distribution are the cross sectional &reasd A,, the

constrain given in (2.37) can be replaced by the constrain
A+A=c (2.144)
where ¢ is constant which for the specific case is chosen to be equal to one.

Furthermore, the value of the material densityis chosen to be equal to 7850

kg/m?®, the length of the trusk is chosen to be 1m, the Young modulus is equal
to 2-10* and the damping ratio is chosen to be 2%.

In order to solve the optimization problem stated in equations (2.74), (2.53) and
(2.144), the simple method of exhaustive search is used. That is, since there is a
relationship between the two optimization parametgrand A,, given in (2.144)

, then one can evaluate the objective functionwith respect to the optimization
parameterA and consequently find the optimum values of the parameters that

minimize the value of the objective function.

Results are next presented separately for the static and dynamic case. Two
performance functions are considered, one related to the edge displacement and
one related to the stresses in the two bar elements.

2.6.1 Displacement — Based Optimal Design under Static Loads

The solution of the case that the excitation of the system is a static load at the
second mass and the quantity to be minimized is the displacement of the second
mass, is trivial. That is the values of the optimization parameters for the optimal
solution are equal to 0.5, result which is clearly depicted in Figure 2.3.
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Figure 2.2: Displacement with respect 1.

Next, the case that the loading is static and the quantity to be minimized is the
weighted sum of the displacements of both masses is considered. As it shown in
Figure 2.3, the optimal value for the cross sectional area of the first member is
equal to A =0.585¢€ and therefore the value of the cross sectional finethe

second member is equal f§ =0.4144.
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Figure 2.3: Displacement with respect 1.

2.6.2 Displacement — Based Optimal Design under Stochastic Dynamic
Loads

In Figure 2.4 the results of the exhaustive search for the optimization problem are
presented for the dynamic case, and for nodal masses selecteohtotherlhat is

the value of the covariance of the mass displacement, as well as the value of the
objective function are calculated with respect to the optimization parameter

order to evaluate the objective function for the case of minimum nodal
displacements, the matric€& andW are given by

10
C {o J (2.145)
{0.5 o}
W = (2.146)
0 05

It is observed that the optimal value of the optimization parametéy=<.513
and using (2.144) one has, =0.487. Next, in Figure 2.5, the same results are
presented but for nodal masses selected tmbe80p AL, where A and L are

equal to one. It is seen that a 3% difference appears at the optimal solution, as the
optimum value of the optimization parameteris= 0.52€.
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Figure 2.4: Covariance with respect #§ for m
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Figure 2.5: Covariance with respect t4 for m
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Finally, in Figure 2.6, the optimal value & and A, as a function of the value of

the nodal massm. The parametero denotes the factor that multiplies the
quantity pAL so that

m=ap AL (2.147)

It is observed that as the mass increases from 0 to 30, the optimal solution
tends to increase the cross sectional area of the first Ausshereas the cross

sectional area of the second trugs decreases equivalently, following the
relationship (2.144).
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Figure 2.6: Optimal value ofA and A, with respect tax .

2.6.3 Stress — Based Optimal Design under Stochastic Dynamic Loads

In Figure 2.7 the results of the exhaustive search for the optimization problem are
presented for the dynamic case, andrfor 0. That is the value of the variance of

the stresses, as well as the value of the objective function are calculated with
respect to the optimization parametéy. In order to evaluate the objective
function for the case of minimum truss stresses, the maticaedW are given

by
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C:E{1 O} (2.148)
Li1 -
{0.5 o}
W = (2.149)
0 05

where E is the Young modulus of the material. It is observed that the optimal
value of the optimization parameter ¥ =0.477 and using (2.144) one has

A, =0.52Z. Next, in Figure 2.8, the same results are prederet for
m=30p AL, where A and L are equal to one. It is seen that the optimal solution
changes about 9%, as the optimum value of the optimization parameter is
A =0.52€, whereasA, =0.474.

Finally, in Figure 2.9, the optimal values of the cross sectional aeasd A, as

a function of the parametexr are shown. It is observed that as the mass
decreases towards zero, the optimal solution tends to decrease the cross sectional
area of the first trus$\, whereas the cross sectional area of the secondAuiss

increasing.

Stress Covariance

Figure 2.7:Variance with respect téy for m=0.
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30p AL.

Figure 2.8: Variance with respect t8, for m

0.53

Figure 2.9: Optimal valueA with respect tax .
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2.7 Conclusions

In this chapter, an innovative methodology for the optimization of the
performance of multi-degree-of-freedom systems, under stochastic dynamic
excitations has been presented. The performance of the system response is
guantified by using different measures of the response, such as the weighted sum
of the variance of the nodal displacements or the weighted sum of the variance of
the developed stresses in the structural parts. The variance of the response
quantities have been estimated very efficiently by solving the Lyapunov equation
of the system. Additionally, the adjoint method is used in order to efficiently and
accurately estimate the sensitivities of the objective function with respect to the
design variables, thus minimizing the computational effort needed to estimate the
derivatives of the objective function numerically. The formulation of the
optimization problem has been presented for both Gaussian white noise excitation
and filtered white noise excitation.

Next, the proposed methodology has been extended to the modal space, in order
to take advantage of the efficiency of modal analysis, by using a limited number
of contributing modes for the estimation of the system response. The adjoint
method is also used in this case of modal analysis in order to calculate the
derivatives of the objective function with respect to the design variables.
Similarly, the proposed methodology has been formulated for white and filtered
noise excitation. Finally, the proposed methodology has been applied on the
sizing optimization of a simple 2DOF bar — mass system in order to illustrate its
applicability. It has been shown that the optimal results for different cases of
performance functions are slightly different for this simple one dimensional
system.
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CHAPTER 3 Size and Topology Optimization of Truss

Structures

3.1 Introduction

The design optimization methodologies proposed in Chapter 2 are applied in the
sizing and topology optimization of truss structures. Such problems are stated as
follows. Given a set of loads, static or dynamic, find the topology and size of a
truss structure to withstand these loads, so that the performance is optimum and
the constrains are not violated. The effectiveness of the proposed design
methodology is demonstrated using a specific class of two dimensional truss
structures.

In this chapter, results for all the cases of loading on a two-dimensional truss
structure are presented. The truss structure consists of base parts, as the one
shown in Figure 3.2. The final truss structure is built by several connecting base
parts together. The total length of the system is considered to be fixed, and equal
to 4m, whereas the total height is also fixed and equal to 2m. The three nodes at
the left side of the structure are considered to be pinned and the loading is
considered to be applied on the middle node at the right edge of the structure at
distance 4m from the left end. Furthermore, the value of the material denssty

chosen to be equal to 7850 kd/rthe Young modulus is equal ®103* Pa and
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the Rayleigh damping matrix is chosen such that the damping ratio is equal to 2%
at the first and the fifth mode in the case of dynamic loading. The set of the

optimization parameteré is chosen to be the cross-section area of each truss of

the structure. The configurations of the truss with one, two, four, and six base
parts are shown in Figure 3.2.

First, after a short description of the truss structure, an iterative process for the
size and topology optimization of such systems is described. Next, the
methodology for the deterministic static case is applied on the truss structure,
using as performance function a combination of the displacement at the nodes and
thus obtaining the optimal configurations for the structure. Subsequently, results
for the case of stochastic dynamic loading are presented using the output
displacements as performance function. The optimal configurations are presented
and compared with the optimal results for the case of deterministic static loading.
Stress-base design optimization applied on the truss structures for both
deterministic static and stochastic dynamic loading follows. The optimal
configurations are presented, along with a comparison between the static and
dynamic case, as well as between the stress-based and displacement-based design
optimization. Finally, the design optimization using the modal space approach is
applied on the aforementioned truss structures, along with the displacement-based
performance function. The results using limited amount of modes are presented
and the effect of modal contribution in the optimal results is discussed.

3.2 lIterative Process for Size and Topology Optimization of
Trusses

From the topology optimization point of view, the objective is to find the optimal
number of base parts needed for the truss to curry the static or dynamic load.
From the sizing optimization point of view, the objective is to find the optimal
values of the cross-sectional areas for the optimal number of base parts selected.
This sizing and topology optimization problem is solved as follows. First, the
sizing optimization problem is solved for a truss structure corresponding to a
selected numben, of base parts. Then the procedure is repeated by varying

from one up to a selected number. Finally, the objective values of the optimal
structures for different number of base parts are compared and the optimal truss
structure is the one corresponding to the number of base parts with the minimum
objective value. If N, is the maximum number of base parts used, then the

process requires the solution Nf constrained optimization problems.
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In order to find the final optimal shape of each structure, an iterative process is
applied. At the first step of this process, the vector of the design parameters
contains all the cross sectional areas of the initial structure, as shown in Figure
3.2. A gradient-based optimization algorithm is the used in order to find the
optimal values of the parameters. At the next step, the parameters with optimal
values that are close to zero are removed from the design set, thus changing the
shape of the structure. Note that if the value of the cross sectional area of the truss
becomes equal to zero during the optimization process, the stiffness matrix
becomes singular, causing problems to the optimization process. To overcome
such problems, lower bounds are introduced for the design parameters associated
with the cross sectional area. Such lower bound is denotedy fand is taken to

be the same for design parameterginGiven the volume/,, the value of the

lower bound A, is selected to be a very small percentage of the average cross
sectional area corresponding ) for the n active members of the truss

structure. Note that the total volume of the structure is given by
N
Vo= AL (3.1)
i=1

Under the assumption that all the cross sectional areas of all the members are

n
equal toA, one has/, = AY_ L, , resulting in

i=1

(3.2)

Therefore, a good estimation of the average cross sectional area of the members of
the truss structure can be the total volume divided by the total length of the
members of the structure. The lower valuefgfis selected to be
V,
A=a—2 (3.3)
2L

i=1

where « is the fraction of the average cross sectional area, chosen to be equal to
103, Consequently, the members of the optimal solution that have cross sectional
area close to the lower value are removed, and the process progresses to the next
step, where the optimization procedure continues using the new reduced
parameters set. If the optimal result of this iteration contains no truss members
with cross sectional areas close to the lower bound, then the iterative process stops
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and the result is accepted as the optimum structure. If the optimal result contains
truss members with cross sectional areas close to the lower bound the iteration
process continues.

Figure 3.1: Schematic diagram of a base part.

Figure 3.2: Ground structures of (a) one, (b) two, (c) four and (d) six base parts.
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3.3 Displacement — Based Optimal Design under Static Loads

Two cases, denoted as Case A and Case B are considered. In the Case A, the
performance function is selected to be the variance of the displacement of the
truss along the degree of freedom on which the load is applied. In Case B, the
performance function is selected to be the weighted sum of the variances of the
displacements at all degrees of freedom, with all weights chosen to be equal. For
static loads Case A is the most commonly used in the bibliography.

In Case A of static loading, the optimization problem is stated in (2.1) - (2.4). In
Case B of static loading, the optimization problem is stated in (2.23) - (2.26). For
both cases the volume constafjtis chosen to be equal fid°*m°® and the value

of the static force is considered to be 1000N.

The optimal truss structures that consist of one up to ten base artze

presented in Figure 3.3 to Figure 3.12. The Figures denoted with (a) refer to Case
A, whereas the Figures denoted with (b) refer to Case B. The number next to each
truss member is the ratio of the truss member’s volume over the total volume of
the structure. Additionally, in Table 3.1 and in Table 3.2 are shown the optimal
values of the objective functiod for the different structures of one up to ten base
parts, information which also plotted in Figure 3.13 and Figure 3.14 for Case A
and B respectively. Note that in Table 3.2 an additional column with the values of
the objective function)” is shown for the Case B. The objective functidnis
chosen to be equal to the objective functibrdefined for Case A. This definition

is very useful when one needs to compare the optimal solutions of structures with
different number of base parts. This comparison is impossible using the objective
function J for Case B, as the degrees of freedom at the optimal solution change
with respect to the number of base parts, thus the number of terms in the
summation is also different. Therefore, in order to define the optimal solution
between the optimal solutions with different number of base parts, the objective
function J° should be used. It is observed that the structure with the minimum
value of the objective function for both cases, consists of two base parts, that is
the optimal structure for static loading for these specific dimensions is the
structure that is shown in Figure 3.4a and in Figure 3.4b for the Case A and B
respectively.

For Case A, it is observed that the optimization trend is to eliminate all the
vertical members, except for the cases of two base parts in Figure 3.4, where two
vertical members are not eliminated. Furthermore, the middle horizontal members
are also eliminated, whereas the bottom and top edge horizontal members are kept
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in place. In addition, a symmetric, with respect to the middle horizontal axis,
optimal truss is obtained, as it should be expected, due to the overall truss
configuration and the symmetry of the applied load. It should be noted that for all
the base parts considered, the values of the top and bottom horizontal members
are decreasing, as one moves from the left towards the right side of the structure.
In contrast, the diagonal members that are maintained during the optimization
process, do not show this decreasing behavior. Specifically, the cross sectional
area and thus the volume ratio remains constant.

Figure 3.16 shows an additional optimal solution for two base parts, which
corresponds to a local optimum in the optimization process, in relation to the
global optimum presented in Figure 3.4a. This is confirmed by noting that the
value of the objective function for the optimal solution in Figure 3.16 is equal to
162, which is significantly larger than 112.5, the value of the objective function
for the global optimal solution in Figure 3.4a. It should be noted, however, that
the local optimal solution in Figure 3.16 has topology that is consistent with the
global optimal solutions obtained for all trusses with numbers of parts different
from two.

Also, it is worth pointing out interesting results that are obtained for the structure
that consists of four base parts. In this case, several global/local optima are
obtained. Two such optimal solutions are presented in Figure 3.17 and in Figure
3.18. The values of the objective function are 128.015 and 128 for the first and the
second optimal solution respectively, whereas the value for the global solution is
127.99. From the practical point of view and considering numerical errors in the
optimization process, these three optimal solutions can be all considered to be
global optimal solutions. The optimal solutions in Figure 3.17 and in Figure 3.18
for four base parts are similar in topology with the optimal solution in Figure 3.4a.
An exhaustive search has not been undertaken in this study to verify the existence
of multiple global solutions for other cases of one to ten base parts of the truss
structure. However, the local optimal solution in Figure 3.16 provides clear
evidence that if such multiple optimal truss topologies exist, then these solutions
are not necessarily global solutions.

For Case B, it is observed that the optimization trend is also to eliminate all the
vertical members, except for the cases of two base parts. Furthermore, the middle
horizontal members are also eliminated, whereas the top and bottom edge
horizontal members are kept in place. Also, as expected, all the optimal structures
are symmetric with respect to the middle horizontal axis. It should be noted that
for all base parts considered, the values at the top and bottom horizontal members
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are decreasing as one moves from the left towards the right side of the structure.
Additionally, the values of the cross sections of the diagonal members that are
kept in place also show this decreasing behavior, from the left towards the right
side of the structure, in contrast to the case of the edge displacement.

Similar to Case A, a local optimal solution also exists for Case B for four base
parts. This suboptimal topology is presented in Figure 3.19. The value of the
objective function is equal to 0.00264 for the local optimal solution, whereas the
value for the global solution is equal to 0.00255. The difference between the value
of the objective function for the local and the global solution is less than 4%. This
local optimal solution is similar in topology to the optimal solutions shown in
Figure 3.4a and in Figure 3.18.
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(b)

Figure 3.3: Optimal solution for one base part, (a) Case A, (b) Case B.
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0.133

0.133

(@)

0.122

0.122

(b)

Figure 3.4: Optimal solution for two base parts, (a) Case A, (b) Case B.
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(b)
Figure 3.5: Optimal solution for three base parts, (a) Case A, (b) Case B.
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0.125 0.0625 0.0625

0.125 0.0625 0.0625

(@)

0.132  0.060 0.058

0.132 0.060 0.058

(b)

Figure 3.6: Optimal solution for four base parts, (a) Case A, (b) Case B.
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0.081 0.081 0.040 0.040

0.081 0.081 0.040 0.040

(@)

0.084 0.084 0.037 0.036

0.084 0.084 0.037 0.036

(b)

Figure 3.7: Optimal solution for five base parts, (a) Case A, (b) Case B.
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0.080 0.053 0.0530.027 0.027

0.080 0.0530.0530.027 0.027

(@)

0.086 0.054 0.053 0.024 0.023

0.086 0.054 0.053 0.024 0.023

(b)

Figure 3.8: Optimal solution for six base parts, (a) Case A, (b) Case B.
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0.0570.0570.0380.0380.0190.019

0.0570.0570.0380.0380.019 0.019

(@)

0.060 0.060 0.038 0.037 0.017 0.016

0.060 0.060 0.038 0.037 0.017 0.016

(b)

Figure 3.9: Optimal solution for seven base parts, (a) Case A, (b) Case B.
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0.056 0.0420.0420.0280.0280.0140.014

0.056 0.0420.0420.028).0280.014 0.014

(@)

0.060 0.0430.043 0.0270.026 0.0120.011

0.060 0.0430.043 0.0270.026 0.0120.011

(b)
Figure 3.10: Optimal solution for eight base parts, (a) Case A, (b) Case B.
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0.0420.042 0.0320.0320.0210.021 0.011 0.011

0.042 0.0420.0320.0320.0210.0210.011 0.011

(@)

0.0450.045 0.0320.0320.0200.0190.009 0.008

0.045 0.0450.0320.0320.0200.019 0.0090.008

(b)

Figure 3.11: Optimal solution for nine base parts, (a) Case A, (b) Case B.
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0.041 0.033).0330.0240.024.0160.016.008 0.008

0.041 0.033.0330.0240.0240.0160.016.008 0.008

(@)

0.0440.0340.0340.024.0240.0150.0150.0060.006

0.044 0.0340.0340.024).0240.0150.0150.0060.006

(b)
Figure 3.12: Optimal solution for ten base parts, (a) Case A, (b) Case B.
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Table 3.1: Values of the objective function for one to ten base parts, for Case A.

Parts J

144.5
112.5
119.3
128.0
126.1
138.9
146.6
162.0
174.5
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Figure 3.13: Optimal values of the objective functidnwith respect to the
number of the base parts of the structure, for Case A.
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Table 3.2: Values of the objective function for one to ten parts for Case B.

Parts J J

1 0.01044 1445

2 0.00221 114.9

3 0.00248 121.4

4 0.00255 131.1

5 0.00222 129.6

6 0.00258 143.5

7 0.00273 152.1

8 0.00326 168.8

9 0.00367 182.4

10 0.00439 201.6
11“0731 | | | | | | {
¢ | | | | | | | |
e T
O
L 0
L T
g O
5 S
R VI A B B
I
N R T A T R

Number of parts

Figure 3.14: Optimal values of the objective functidnwith respect to the
number of the parts of the structure, for Case B.
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Figure 3.15: Optimal values of the objective functidn with respect to the
number of the parts of the structure for, Case B.

0.222

0.222

Figure 3.16:Local optimal solution for two base parts, for Case A.
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0.0938 0.0625 0.0625

0.0937  0.0625 0.0625

Figure 3.17: Optimal solution for four base parts, for Case A.

0.0937 0.0938 0.0312

0.0937 0.0937 0.0312

Figure 3.18: Optimal solution for four base parts, for Case A.
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0.097 0.096 0.023

0.097 0.096 0.023

Figure 3.19:Local optimal solution for four base parts, for Case B.

3.4 Displacement-Based Optimal Design under Stochastic
Dynamic Loads

Results for the case of stochastic dynamic loading on a truss structure are
presented. The excitation is considered to be white noise, with power spectral
density equal to 1000. The performance function is related to the displacements.
First, the performance function is selected to be the variance of the displacement
of the truss along the degree of freedom on which the load is applied, multiplied
by the power spectral density of the white noise excitation. In this case, the
optimization problem is stated in (2.35) - (2.38) and the mdrixs given by

(2.85). The total volume of the structusg is chosen equal t@0”° m>. For this

specific case, an additional nodal mass equal to 5kg divided by the degrees of
freedom of each system is added at all the nodes of the truss structure. The
aforementioned study case is denoted as Case C.

In Figure 3.20 and in Figure 3.21 are presented the optimal structures for one and
two base parts respectively. The results for these two cases are quite similar to the
results obtained for the static loading (Case A and Case B). On the other hand, the
results for three base parts are unexpected. This is due to fact that the optimal
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structure obtained is asymmetrical as shown in Figure 3.22(a), and consequently
the mirrored structure with respect to the horizontal middle axis is also a solution
of the topology optimization as shown in Figure 3.22(b). The value of the
objective function is equal to 2.43 for these two topologies. The value of the
objective function for the symmetrical solution was found to be equal to 3.60,
which is more than 50% higher than the asymmetrical solution. The symmetrical
optimal solution was obtained by imposing the cross sectional areas of the truss
members that are symmetric with respect to the horizontal middle axis to be equal.
The solution of this case is presented in Figure 3.23.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



3. Size and Topology Optimization of Truss Structures

66

Figure 3.20: Optimal solution for one base part, for Case C.

0.146

0.146

Figure 3.21: Optimal solution for two base parts, for Case C.
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0.123 0.125

0.131 0.129
(@)
0.131 0.129

0.123 0.125
(b)
Figure 3.22: Asymmetrical local optimal solutions (a) and (b) for three base parts,
for Case C.
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0.126 0.126

0.126 0.126

Figure 3.23: Symmetrical local optimal solution for three base parts, for Case C.

Next, the performance function is selected to be the weighted sum of the variances
of the displacements at all the degrees of freedom of the structure, with all the
weights chosen to be equal. In this case, the optimization problem is stated in
(2.35) - (2.38), the matrixz is given by (2.75). Two cases are considered,
denoted by Case D and Case E. In case D an additional nodal mass equal to 1kg is
added at all the nodes of the truss structure. On the other hand, in Case E, an
additional nodal mass equal to 5kg divided by the degrees of freedom of each
system is added at all the nodes of the truss structure. For both cases, the volume
constantV, is chosen to be equal i@ m?® and the value of the power spectral

density of the white noise excitation is chosen to be equal to 1000.

The optimal truss structures that consist of one up to ten base parese

presented in Figure 3.24 to Figure 3.33. The Figures denoted with (a) refer to
Case D, whereas the Figures denoted with (b) refer to Case E. Additionally, in
Table 3.3 and in Table 3.4 are shown the optimal values of the objective function
J for the different structures of one up to ten base parts, information which is
also plotted in Figure 3.34 and in Figure 3.36, for Case D and E respectively. Note
that in Table 3.3 and in Table 3.4 an additional column with the values of the
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objective functionJ” are shown. The objective functiah is chosen to be equal

to the objective function] defined for Case C. This definition is very useful
when one needs to compare the optimal solutions of structures with different
number of base parts. This comparison is impossible using the objective function
J for the cases D and E, as the degrees of freedom at the optimal solution change
with respect to the number of base parts, thus the number of terms in the
summation is also different. Therefore, in order to define the optimal solution
between the optimal solutions with different number of base parts, the objective
function J° should be used. It is observed that the structure with the minimum
value of the objective function for both cases, consists of two base parts, that is
the optimal structure for static loading for these specific dimensions is the
structure that is shown in Figure 3.25a and in Figure 3.25b for the Case D and E
respectively.

It is observed that the optimal configurations for the two cases are exactly the
same. For both cases, it is observed that the optimization trend is to eliminate all
the vertical members, except for the cases of two base parts in Figure 3.25, where
two vertical members are not eliminated. Furthermore, the middle horizontal
members are also eliminated, whereas the bottom and top edge horizontal
members are kept in place. In addition, a symmetric, with respect to the middle
horizontal axis, optimal truss is obtained, as it should be expected, due to the
overall truss configuration and the symmetry of the applied load. It should be
noted that for all the base parts considered, the values of the top and bottom
horizontal members are decreasing, as one moves from the left towards the right
side of the structure. Additionally, the values of the cross sections of the diagonal
members that are kept in place also show this decreasing behavior, from the left
towards the right side of the structure, in contrast to the case of the edge
displacement. It is therefore observed that the optimal results show similar trends
with the optimal configurations obtained in Case B of static loading. Nevertheless,
there are differences in the size of the corresponding truss members (values of the
volume ratio), that is some truss members are reinforced, whereas others are
weakened.

Also, it is worth pointing out interesting results that are obtained for the structure
that consists of four base parts, similarly to the Case A and B. In these cases,
several global/local optima are obtained. Two such optimal solutions are
presented in Figure 3.38 and in Figure 3.39. In Case D, the values of the objective
function are 0.0011 and 0.0012 for the first and the second optimal solution
respectively, whereas the value for the global solution is 0.00109. On the other
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hand, in Case E, the corresponding values of the objective function are 0.0019 and
0.0021 for the first and the second optimal solution respectively, whereas the
value for the global solution is 0.0017. From the practical point of view and
considering numerical errors in the optimization process, these optimal solutions
can be all considered to be global optimal solutions.
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(b)
Figure 3.24: Optimal solution for one base part, (a) Case D, (b) Case E.
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0.125

0.125

(@)

0.125

0.125

(b)
Figure 3.25: Optimal solution for two base parts, (a) Case D, (b) Case E.
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0.115 0.114

0.115 0.114
(@)
0.115 0.114

0.115 0.114

(b)
Figure 3.26: Optimal solution for three base parts, (a) Case D, (b) Case E.
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0.130 0.061 0.060

0.130 0.061  0.060

(@)

0.130 0.061 0.060

0.130 0.061  0.060

(b)
Figure 3.27: Optimal solution for four base parts, (a) Case D, (b) Case E.
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0.083 0.083 0.039 0.038

0.083 0.083 0.039 0.038

(@)

0.083 0.083 0.039 0.038

0.083 0.083 0.039 0.038

(b)
Figure 3.28: Optimal solution for five base parts, (a) Case D, (b) Case E.
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0.079 0.052 0.052 0.025 0.024

0.079 0.052 0.052 0.025 0.024

(@)

0.079 0.052 0.052 0.025 0.024

0.079 0.052 0.052 0.025 0.024

(b)

Figure 3.29: Optimal solution for six base parts, (a) Case D, (b) Case E.
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0.056 0.056 0.0360.036 0.017 0.017

0.056 0.056 0.036 0.036 0.0170.017

(@)

0.056 0.056 0.0360.036 0.017 0.017

0.056 0.056 0.036 0.036 0.0170.017

(b)

Figure 3.30: Optimal solution for seven base parts, (a) Case D, (b) Case E.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



3. Size and Topology Optimization of Truss Structures 78

0.055 0.0400.040 0.026 0.026 0.012 0.012

0.055 0.0400.040 0.0260.026 0.0120.012

(@)

0.055 0.0400.040 0.0260.026 0.012 0.012

0.055 0.0400.040 0.0260.026 0.0120.012

(b)
Figure 3.31: Optimal solution for eight base parts, (a) Case D, (b) Case E.
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0.0420.0420.0310.030 0.0190.0190.0090.009

0.042 0.042 0.0310.030 0.0190.019 0.0090.009

(@)

0.0420.0420.0310.030 0.0190.0190.0090.009

0.042 0.042 0.0310.030 0.0190.019 0.0090.009

(b)

Figure 3.32: Optimal solution for nine base parts, (a) Case D, (b) Case E.
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0.0410.0320.0320.0230.0230.0140.0140.0060.006

0.0410.0320.0320.0230.0230.0140.0140.0060.006

(@)

0.0410.0320.0320.0230.0230.0140.0140.0060.006

0.0410.0320.0320.0230.0230.0140.0140.0060.006

(b)
Figure 3.33: Optimal solution for ten base parts, (a) Case D, (b) Case E.
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Table 3.3: Values of the objective function for one up to ten base parts, for Case

D.
Parts J J
1 0.00357 21.43
2 0.00148 8.957
3 0.00118 10.49
4 0.00109 10.18
5 0.00092 9.101
6 0.00095 9.605
7 0.00088 9.131
8 0.00109 11.35
9 0.00118 12.40
10 0.00134 13.94

Table 3.4: Values of the objective function for one up to ten base parts for Case

E.
Parts J J
1 0.00228 13.66
2 0.00187 11.28
3 0.00166 14.77
4 0.00183 16.93
5 0.00173 17.12
6 0.00199 19.92
7 0.00149 15.38
8 0.00266 27.45
9 0.00306 31.90
10 0.00364 37.89
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x 10°
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Number of parts

Figure 3.34: Optimal values of the objective functidnwith respect to the
number of base parts of the structure, for Case D.

Number of parts

*

Figure 3.35: Optimal values of the objective functidn with respect to the

number of base parts of the structure, for Case D.
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x 10°
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Number of parts

Figure 3.36: Optimal values of the objective functidnwith respect to the
number of base parts of the structure, for Case E.

Number of parts

*

Figure 3.37: Optimal values of the objective functidn with respect to the

number of base parts of the structure, for Case E.
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0.095 0.061 0.060

0.095 0.061 0.060

(@)

0.095 0.061 0.060

0.095 0.061 0.060

(b)

Figure 3.38:Local optimal solutions for four base parts, (a) Case D, (b) Case E.
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0.096 0.095 0.027

0.096 0.095 0.027

(@)

0.096 0.095 0.027

0.096 0.095 0.027

(b)

Figure 3.39:Local optimal solution for four base parts, (a) Case D, (b) Case E.
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3.5 Stress-Based optimal Design under Static and Stochastic
Dynamic Loads

Next, two cases are considered, denoted as Case F and Case G. In Case F, the
performance function is selected to be the weighted sum of the variances of the
stresses developed in the truss members of the structure, with all the weights
chosen to be equal, under static deterministic loading. In this case, the
optimization problem is stated in (2.23) - (2.26), the malrixs given by (2.75).

In Case G, the performance function is selected to be the weighted sum of the
variances of the stresses developed in the truss members of the structure, with all
the weights chosen to be equal, under stochastic dynamic loading. In this case, the
optimization problem is stated in (2.35) - (2.38), the malrixs given by (2.75).
Additionally, an additional nodal mass equal to 5kg divided by the degrees of
freedom of each system is added at all the nodes of the truss structure. For both
cases, the volume constavif is chosen to be equal i °m®. The value of the

power spectral density of the white noise excitation in Case G is chosen to be
equal to 1000, whereas the value of the static load in Case F is chosen to be 1000.

It should be noted that in the case that the output state vgci®iconsidered to

be the stresses at the elements of the system, then the malrieesl D in the
observation equation (2.45) are given by

C=[R,n Oy (3.4)
D=0,,, (3.5)

where N, is the number of the elements of the system, BRntb a matrix that

each row corresponds to an element of the system and has only four non-zero
elements which correspond to the four degrees of freedom of the truss elements
edge nodes. The non-zero elementfRirare obtained by developing the relation
between the stress in a truss member and the displacements of the elements nodes.
Let x, ¥y, andX;, y; be the coordinates of the nodes of a given truss element and

the corresponding displacements. The uniaxial stress

u, v and U, Vv,

component of this element is given by

Ojj t= Equ :Eé‘ij

i L, (3.6)
L5 0-uw)coss +(y -y @) sim ]

)
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where L; is the length,E; is the elasticity moduluss; is the uniaxial strain and
o, is the elongation of the truss element. The adples given by

0, —tantdiT % (3.7)
X, — X%
whereas the length can be calculated using
2 2
L= =)+ (¥ ) 58

The optimal truss structures that consist of one up to ten base Martze

presented in Figure 3.40 to Figure 3.49. The Figures denoted with (a) refer to
Case F, whereas the Figures denoted with (b) refer to Case G. Additionally, in
Table 3.5 and in Table 3.6 are shown the optimal values of the objective function
J for the different structures of one up to ten base parts, information which is
also plotted in Figure 3.50 and in Figure 3.52, for Case F and G respectively. Note
that in Table 3.5 and in Table 3.6 an additional column with the values of the
objective functionJ” is shown. The objective functiod is chosen to be equal to

the maximum stress across the stresses developed at the truss elements for the
Case F, whereas it is equal to the maximum variance of the stresses developed at
the truss members. This definition is very useful when one needs to compare the
optimal solutions of structures with different number of base parts. This
comparison is impossible using the objective functiofor the cases F and G, as

the number of the truss members at the optimal solution change with respect to the
number of base parts, thus the number of terms in the summation also changes.
Therefore, in order to define the optimal solution between the optimal solutions
with different number of base parts, the objective functidnshould be used.

Also, note that, for computational issues, the estimation of the néthix(3.4) is
performed by choosing the Young’s modulus to be equal to one. The values of the
objective functionJ’ that correspond to the optimal solutions are presented in
Figure 3.51 and in Figure 3.53, for Case F and G respectively. It is observed that
the structure with the minimum value of the objective function for Case F,
consists of two base parts, that is the optimal structure for static loading is the
structure that is shown in Figure 3.41a. On the other hand, the structure with the
minimum value of the objective function for Case G consists of one part, that is
the optimal structure for stochastic dynamic loading is shown in Figure 3.40b.

For Case F, it is observed that the optimization trend is similar to the optimization
trend observed in Case A. That is to eliminate all the vertical members, except for

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



3. Size and Topology Optimization of Truss Structures 88

the cases of two and four base parts, as shown in Figure 3.41a and Figure 3.43a,
where two vertical members are not eliminated in each case. Furthermore, the
middle horizontal members are also eliminated, whereas the bottom and top edge
horizontal members are kept in place. In addition, a symmetric, with respect to the
middle horizontal axis, optimal truss is obtained, as it should be expected, due to
the overall truss configuration and the symmetry of the applied load. It should be
noted that for all the base parts considered, the values of the top and bottom
horizontal members are decreasing, as one moves from the left towards the right
side of the structure. In contrast, the diagonal members that are maintained during
the optimization process do not show this decreasing behavior. Specifically, the
cross sectional area and thus the volume ratio remains constant.

Additionally, it is worth pointing out interesting results that are obtained for the
structure that consists of four base parts. In this case, several global/local optima
are obtained, as in previous cases. Two such optimal solutions are presented in
Figure 3.54 and in Figure 3.55. The values of the objective function are
2.49x 10° and 2.5x 10° for the first and the second optimal solution respectively,
whereas the value for the global solutiorig5x 10°. From the practical point of

view and considering numerical errors in the optimization process, these three
optimal solutions can be all considered to be global optimal solutions.

For Case G, it is observed that the optimization trend is also to eliminate all the
vertical members, except for the cases of two base parts. Furthermore, the middle
horizontal members are also eliminated, whereas the top and bottom edge
horizontal members are kept in place. It should be noted that for all base parts
considered, the values at the top and bottom horizontal members are decreasing as
one moves from the left towards the right side of the structure. Additionally, the
values of the cross sections of the diagonal members that are kept in place also
show this decreasing behavior, from the left towards the right side of the structure,
until a minimum value is reached and then they increase, in contrast to the static
case.

Similar to Case F, local optimal solutions also exist for Case G for four base parts.
These local optimal topologies are presented in Figure 3.56 and in Figure 3.57.
The values of the objective function are equaktd7x 10° and 3.27x 10° for

the local optimal solutions respectively, whereas the value for the global solution
is equal t03.27x 10°.

It is also worth noting that the configurations of the optimal structures for seven to
ten base parts for Case G are not presumable. This is due to fact that the optimal

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



3. Size and Topology Optimization of Truss Structures 89

structures obtained are asymmetrical. Consequently, the mirrored structure with
respect to the horizontal middle axis is also a solution of the topology
optimization. One such mirrored optimal structure is shown in Figure 3.59 for the
case of eight base parts, noting that the value of the objective function is equal to
the initial solution shown in Figure 3.85b. On the other hand, optimal symmetrical
solution can be obtained by imposing the cross sectional areas of the truss
members that are symmetric with respect to the horizontal middle axis to be equal.
One such solution is shown in Figure 3.58 for the case of seven base parts. The
value of the objective function in this case is equalt@0x 10°, whereas the
value of the objective function for the asymmetrical solution is equal to
2.65x 10°.
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(b)
Figure 3.40: Optimal solution for one base part, (a) Case F, (b) Case G.
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0.134

0.134

(@)

0.126

0.126

(b)

Figure 3.41: Optimal solution for two base parts, (a) Case F, (b) Case G.
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0.110 0.110

0.110 0.110
(@)
0.103 0.101

0.103 0.101

(b)
Figure 3.42: Optimal solution for three base parts, (a) Case F, (b) Case G.
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0.083 0.083 0.040

0.083 0.083  0.040

(@)

0.095 0.062 0.062

0.095 0.062 0.062

(b)
Figure 3.43: Optimal solution for four base parts, (a) Case F, (b) Case G.
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0.072 0.072 0.045 0.045

0.072 0.072 0.045 0.045

(@)

0.066 0.065 0.043

0.066 0.065 0.043 0.043

(b)
Figure 3.44: Optimal solution for five base parts, (a) Case F, (b) Case G.
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0.067 0.051 0.051 0.032 0.032

0.067 0.051 0.051 0.032 0.032

(@)

0.060 0.047 0.047 0.032 0.031

0.060 0.047 0.047 0.032 0.031

(b)

Figure 3.45: Optimal solution for six base parts, (a) Case F, (b) Case G.
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0.0510.051 0.0390.039 0.024 0.024

0.0510.0510.0390.0390.024 0.024

(@)

0.046 0.046 0.033 0.033 0.025 0.025

0.042 0.042 0.0350.035 0.021 0.021

(b)

Figure 3.46: Optimal solution for seven base parts, (a) Case F, (b) Case G.
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0.047 0.0390.039 0.0300.030 0.0190.019

0.047 0.0390.039 0.0300.030 0.019 0.019

(@)

0.040 0.0360.036 0.0250.025 0.0200.020

0.042 0.0320.032 0.0280.028 0.016 0.016

(b)
Figure 3.47: Optimal solution for eight base parts, (a) Case F, (b) Case G.
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0.0380.0380.0310.0310.0240.0240.0150.015

0.0380.0380.0310.0310.0240.0240.015 0.015

(@)

0.03%.035 0.0250.0250.0230.022 0.0130.014

0.0320.0320.0300.030 0.0210.0200.0160.016

(b)

Figure 3.48: Optimal solution for nine base parts, (a) Case F, (b) Case G.
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0.0360.0310.0310.0250.0250.0190.0190.0120.012

0.036 0.0310.0310.025%).0250.0190.0190.0120.012

(@)

0.0330.0270.0270.0240.0240.0170.017 0.0130.013

0.0300.0280.0280.0210.0210.0190.0180.0110.011

(b)
Figure 3.49: Optimal solution for ten base parts, (a) Case F, (b) Case G.
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Table 3.5: Values of the objective function for one to ten base parts, for Case F.

Parts J (x10%) J" (x10°)
1 2.890 1.7000
2 2.055 1.4069
3 2.373 1.5393
4 2.447 1.5519
5 2.472 1.5670
6 2.700 1.6354
7 2.852 1.6806
8 3.134 1.7594
9 3.367 1.8225
10 3.686 1.9045

Table 3.6:Values of the objective function for one to ten base parts, for Case G.

Parts J (x10°) J (x10°)
1 0.859 4.727
2 2.961 7.402
3 2.890 8.382
4 3.269 8.868
5 3.495 9.125
6 3.684 9.377
7 2.654 6.634
8 4.350 1.073
9 4.781 1.167
10 5.240 1.269
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10

Number of parts

Figure 3.50: Optimal values of the objective functidnwith respect to the

number of base parts of the structure, for Case F.

10b - - L L Ll __4____d____d____J____$2

1'6,,,,,L,,,,L,,,,L,,,,L, oS | |

1'5,,, P L - - - - __°r____ 4 __d____d____d_____

10

Number of parts

*

Figure 3.51: Optimal values of the objective functidn with respect to the

number of base parts of the structure, for Case F.
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Number of parts

Figure 3.52: Optimal values of the objective functidnwith respect to the

number of base parts of the structure, for Case G.

Number of parts

*

Figure 3.53: Optimal values of the objective functidn with respect to the

number of base parts of the structure, for Case G.
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0.105 0.066 0.066

0.105 0.066 0.066

Figure 3.54: Optimal solution for four base parts, for Case F.

0.083  0.063 0.063

0.083 0.063 0.063

Figure 3.55: Optimal solution for four base parts, for Case F.
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0.075 0.056 0.058

0.075 0.056 0.058

Figure 3.56:Local optimal solution for four base parts, for Case G.

0.075 0.073 0.046

0.075 0.073 0.046

Figure 3.57:Local optimal solution for four base parts, for Case G.
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0.045 0.045 0.035 0.035 0.024 0.023

0.045 0.045 0.035 0.035 0.024 0.023

Figure 3.58: Symmetrical solution for seven base parts, for Case G.

0.042 0.0320.032 0.028 0.028 0.016 0.016

0.040 0.0360.036 0.0250.025 0.0200.020

Figure 3.59: Asymmetricabolution for eight base parts, for Case G.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



3. Size and Topology Optimization of Truss Structures 106

3.6 Optimal Design under Dynamic Loads Using Limited
Number of Contributing Modes

In this section, results for the case of stochastic dynamic loading using the modal
space approach are presented. The case under investigation is Case E, with the
difference that the contribution oh (m< n) modes is considered for estimating

the dynamic response of the system. Four cases, denoted as Case E1, Case E2,
Case E10 and Case En are considered. In Case E1, only the lowest mode is
considered h=1), whereas in Case E2 and E10 the first two and ten modes are
considered, respectivelyn=2, m=10). Finally, in Case En, all the modes of

each system are considered for the estimation of the dynamic response. For these
cases, the optimization problem is stated in (2.35) - (2.38), and the rhaisx

given by (2.75). Additionally, the volume constawt is chosen to be equal to

10°m?® and the value of the power spectral density of the imposed white noise
excitation is considered to be 1000.

It should also be noted that the values of the objective fundtidor the optimal
structure are presented. This objective function is defined equivalently as in Case
E, that is it is chosen to be equal to the objective funcliotefined for Case C.

This definition is very useful when one needs to compare the optimal solutions of
structures with different number of base parts. This comparison is impossible
using the objective functiod, as the degrees of freedom at the optimal solution
change with respect to the number of base parts, thus the number of terms in the
summation is also different. Therefore, in order to define the optimal solution
between the optimal solutions with different number of base parts, the objective
function J° should be used.

3.6.1 Optimal Design Using the Lowest Mode

In the following paragraph the optimal topologies of the multi-base truss structure
are presented using only the first mode=1) of each structure in order to
calculate the covariance of the response. In Figure 3.60 up to Figure 3.63 are
shown the optimal structures for one up to four base parts. It is observed that the
results for one up to three base parts are quite satisfactory compared to the results
obtained on the equivalent Case E of time domain approach. The difference at the
volume percentage of each truss member is less than 5%. But, as the number of
the base parts increases, and therefore the number of the degrees of freedom of the
system increases, it becomes obvious that the information acquired by only the
lowest mode is not enough to satisfactorily estimate the system response. This fact
can be observed at Figure 3.63 up to Figure 3.65, where the optimal and the local
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optimal solutions for the structure that consists of four base parts are presented.
Note that the structure in Figure 3.63 is asymmetrical, something that stems from
the lack of information in using only the lowest mode. The values of the objective
function J for the two local optimal solutions are 0.00187 and 0.002,
respectively, whereas the value of the objective function for the asymmetrical
optimal solution is equal to 0.00155. It also becomes clear that for higher number
of base parts, it is impossible for the algorithm to converge, due to this lack of
information. Finally, in Table 3.7 and in Table 3.8 are shown the values of the
objective functionsJ and J° for the optimal structures and the corresponding
eigenfrequencies respectively.
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Figure 3.60: Optimal solution for one base part, for Case E1.

0.130

0.130

Figure 3.61: Optimal solution for two base parts, for Case E1.
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0.118 0.116

0.118 0.116

Figure 3.62: Optimal solution for three base parts, for Case E1.

0.166 0.056 0.053

0161  0.063 0.062

Figure 3.63: Optimal solution for four base parts, for Case E1.
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0.098 0.062 0.061

0.098 0.062 0.061

Figure 3.64:Local optimal solution for four base parts, for Case E1.

0.099 0.098 0.025

0.099 0.098

Figure 3.65:Local optimal solution for four base parts, for Case E1.
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Table 3.7: Values of the objective function for one up to four base parts, for Case

El.
Parts J J
1 0.00228 13.661
2 0.00163 9.8117
3 0.00161 14.558
4 0.00155 8.6572

Table 3.8: Eigenfrequencies of the optimal structure (Hz), for Case E1.

mode| 2 3 4 5 6 7 8 9 10
parts

1 | 8.330| 33.32

2 | 14.74] 2793 3684 5382 6759 71)86 8784 995

3 | 14.99] 17.07 4210 4815 68.76 7812 8499 101.2 137.1 1383
4 | 13.40] 16.89 33.08 39.05 61.86 6892 71.13 82.02 1032 1105
4 | 16.10] 2074 3659 4274 6890 72]37 79.91 82.06 8568 1065
4 | 14.71] 2410 36.42 41.07 5851 6172 76.44 76.86 97.26 1056

3.6.2 Optimal Design Using the Lowest Two and Ten Modes

In the following paragraph the optimal topologies of the multi-base truss structure
are presented using only the first two and ten modes Z, m=10) of each
structure in order to calculate the covariance of the response. The case of two
modes is denoted as Case E2 and the case of ten modes is denoted as Case E10. In
Figure 3.66 to Figure 3.75 are shown the optimal structures for one up to ten base
parts. It is observed that the structure with the minimum value of the objective
function for both cases, consists of two base parts, as expected in comparison with
the results obtained in Case E. That is the optimal structure is the structure that is
shown in Figure 3.67 for both Case E2 and Case E10.

As far as the Case E2 is concerned, it is observed that all the results are quite
satisfactory compared to the results obtained on the equivalent case of time
domain approach (Case E). The difference at the volume percentage of each truss
member between these two cases is less than 3%. Finally, in Table 3.9 and in
Table 3.11 are shown the values of the objective functibnand J° for the
optimal structures and the corresponding eigenfrequencies, respectively.
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Similarly, for Case E10, it is observed that all the results are even closer to the
results obtained on the equivalent case of time domain approach (Case E), due to
the fact that more modes are used to describe the system response and therefore
the estimation is better. It should be stressed that for the cases of one and two base
parts the modes of the optimal structure is less than ten, therefore the results have
been obtained using all the available modes for each structure. The difference at
the volume percentage of each truss member between these two cases is less than
2%. Finally, in Table 3.10 and in Table 3.12 are shown the values of the objective
functions J and J° for the optimal structures and the corresponding
eigenfrequencies respectively.

Also, it is worth pointing out interesting results that are obtained for the structure
that consists of four base parts, similarly to the Case E. Two such optimal
solutions are presented in Figure 3.80 and in Figure 3.81 for both Case E2 and
Case E10. For the Case E2 the values of the objective function are 0.00187 and
0.002 for the first and the second local optimal solution respectively, whereas the
value for the global solution is 0.00178. For the Case E10 the values of the
objective function are 0.00194 and 0.0021 for the first and the second local
optimal solution respectively, whereas the value for the global solution is 0.00182.
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(b)
Figure 3.66: Optimal solution for one base part, (a) Case E2, (b) Case E10.
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0.126

0.126

(@)

0.127

0.127

(b)
Figure 3.67: Optimal solution for two base parts, (a) Case E2, (b) Case E10.
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0.118 0.116

0.118 0.116
(@)
0.116 0.115

0.116 0.115

(b)
Figure 3.68: Optimal solution for three base parts, (a) Case E2, (b) Case E10.
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(@)

0.130 0.061 0.060

0.130 0.061 0.060

(b)
Figure 3.69: Optimal solution for four base parts, (a) Case E2, (b) Case E10.
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0.085 0.084 0.039  0.038

0.085 0.084 0.039 0.038

(@)

0.083 0.083 0.039 0.038

0.083 0.083 0.039 0.038

(b)
Figure 3.70: Optimal solution for five baser parts, (a) Case E2, (b) Case E10.
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0.085 0.055 0.055 0.025 0.024

0.085 0.055 0.055 0.025 0.024

(@)

0.084 0.054 0.054 0.025 0.024

0.084 0.054 0.054 0.025 0.024

(b)
Figure 3.71: Optimal solution for six base parts, (a) Case E2, (b) Case E10.
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0.061 0.061 0.039 0.039 0.017 0.016

0.061 0.061 0.039 0.039 0.017 0.016

(@)

0.060 0.060 0.038 0.038 0.018 0.017

0.060 0.060 0.038 0.038 0.018 0.017

(b)
Figure 3.72: Optimal solution for seven base parts, (a) Case E2, (b) Case E10.
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0.060 0.0440.044 0.0280.027 0.0120.011

0.060 0.0440.044 0.028 0.027 0.0120.011

(@)

0.058 0.0430.043 0.0270.027 0.012 0.012

0.058 0.0430.043 0.0270.027 0.0120.012

(b)
Figure 3.73: Optimal solution for eight base parts, (a) Case E2, (b) Case E10.
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0.0450.045 0.0330.033 0.0210.020 0.009 0.008

0.0450.0450.0330.0330.0210.020 0.009 0.008

(@)

0.0440.044 0.0320.032 0.0200.0200.0090.009

0.0440.0440.0320.0320.0200.0200.0090.009

(b)
Figure 3.74: Optimal solution for nine base parts, (a) Case E2, (b) Case E10.
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0.044 0.039.0350.0250.0250.0160.019.0070.006

0.0440.0350.0350.0250.0250.0160.0150.0070.006

(@)

0.0430.0340.0340.0250.0240.0160.0150.0070.007

0.0430.0340.0340.0250.0240.0160.0150.007.007

(b)
Figure 3.75: Optimal solution for ten base parts, (a) Case E2, (b) Case E10.
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Table 3.9: Values of the objective function for one to ten base parts, for Case E2.

Parts J J
1 0.00228 13.661
2 0.00181 10.961
3 0.00161 14.558
4 0.00177 16.627
5 0.00168 16.808
6 0.00192 19.364
7 0.00137 14.156
8 0.00236 24.272
9 0.00261 27.007
10 0.00299 30.871

Table 3.10:Values of the objective function for one to ten base parts, for Case

E10.
Parts J J
1 0.00228 13.661
2 0.00182 10.959
3 0.00166 14.725
4 0.00182 16.905
5 0.00173 17.123
6 0.00199 19.706
7 0.00142 14.418
8 0.00245 24.825
9 0.00271 27.685
10 0.00312 31.734
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Figure 3.77: Optimal values of the objective functidn with respect to the

number of base parts of the structure, for Case E2.
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Number of parts

Figure 3.78: Optimal values of the objective functidnwith respect to the

number of the parts of the structure, for Case E10.

Number of parts

*

Figure 3.79: Optimal values of the objective functidn with respect to the

number of base parts of the structure, for Case E10.
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Table 3.11: Eigenfrequencies of the optimal system (Hz), for Case EZ2.

mode |, 2 3 4 5 6 7 8 9 10

parts
1 8.330 | 33.32
2 1487 | 27.79| 36.33 52.81 6883 71.21 8727 9791
3 1499 | 17.07| 42.10 48.15 68.76 78.13 8499 101.2 187.1 138.3
4 15.24 | 17.73| 3496 4198 69.04 69.36 7928 7959 106.1 112.3
5 16.13 | 17.08| 33.25 42.19 60.98 74.47 8394 8515 105.6 110.3
6 15.33 | 15.64| 33.15 40.983 45.79 71.26 8122 8282 96.48 101.2
7 9.153 | 10.40| 21.71 26.60 26.70 45.Y9 4634 53.80 57.05 71.71
8 12.07 | 14.90| 2994 37.32 38.21 53.64 6546 7796 79.89 103.8
9 10.69 | 1451 27.38 35.29 36.81 46.68 6272 6845 7491 79.20
10 9.42 13.88| 24.87 32.80 3541 4224 5589 5936 72.12 74.55

Table 3.12: Eigenfrequencies of the optimal system (Hz) , for Case E10.

mode |, 2 3 4 5 6 7 8 9 10

parts
1 8.331| 33.32
2 14.87| 27.80 36.3¢6 52.80 6881 7123 87,25 97.87
3 14.99| 17.05 42.28 48.22 69.49 7905 8487 101.2 136.3 137.6
4 15.23| 17.77) 349% 4223 69.18 6921 8114 81.61 1058 111.7
5 16.12| 17.16| 33.22 4242 6111 74,04 86,54 87.12 1058 111.6
6 15.41| 15.62 33.26 41.11 4581 7104 8398 84.31 97.68 103.5
7 9.204| 10.40 21.92 26.63 26.76 46.22 46,38 54.43 58.45 7257
8 12.15| 14.89) 30.41 37.11 38.39 54711 6531 7895 81.94 105.3
9 10.75| 14,50 27.89 3512 37.04 47,00 6269 69.28 75.81 80.64
10 9.468| 13.87 25.37 32.79 35.63 42,53 56.22 59.36 73.04 75.81
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0.098 0.062 0.061

0.098 0.062 0.061

(@)

0.095 0.061 0.060

0.095 0.061

(b)

Figure 3.80:Local optimal solution for four base parts, (a) Case E2, (b) Case
E10.
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0.099 0.098 0.025

(@)

0.096 0.096 0.026

0.096 0.096 0.026
(b)
Figure 3.81:Local optimal solution for four base parts, (a) Case E2, (b) Case
E10.
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3.6.3 Optimal Design Using Contribution from All Modes

In the following paragraph the optimal topologies of the multi-base truss structure
are presented using all the modes=(n) of each structure in order to calculate

the covariance of the response. This case is denoted as (Césd-igure 3.82 to
Figure 3.86 are shown the optimal structures for one up to ten base parts. It is
observed that the structure with the minimum value of the objective function for
Case E, consists of two base parts, as expected in comparison with the results
obtained in Case E. That is, the optimal structure is the structure shown in Figure
3.82(b).

It is also observed that all the results are almost identical to the results obtained on
the equivalent Case E of time domain approach. Specifically, for the case of one
base part, the results are identical due the fact that the systems are exactly the
same. As far as all the other systems are concerned, the very small differences at
the truss volume percentage stem from the difference at the damping of the
system. In the case of the analysis in modal space the damping ratio is equal to
2% at all modes, whereas in the previous analysis, Rayleigh damping was
assumed, with damping ratio equal to 2% at the first and the fifth mode, less than
2% at the second, third and fourth mode, and higher than 2% at all the higher
modes. In Table 3.13 and in Table 3.14 are shown the values of the objective
functions J and J° for the optimal structures and the corresponding
eigenfrequencies, respectively.

Also, it is worth pointing out interesting results that are obtained for the structure
that consists of four base parts, similarly to the Case E. Two such optimal
solutions are presented in Figure 3.89 and in Figure 3.90. The values of the
objective function are 0.00194 and 0.0021 for the first and the second local
optimal solution respectively, whereas the value for the global solution is 0.00182.
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(@)

0.127

0.127

(b)

Figure 3.82: Optimal solution for (a) one and (b) two base parts, for Gase E
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(@)

0.095 0.061 0.060

0.095 0.061 0.060

(b)
Figure 3.83: Optimal solution for (a) three and (b) four base parts, for Gase E
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0.083 0.083 0.039 0.038

0.083 0.083 0.039 0.038

(@)

0.084 0.054 0.054 0.025 0.024

0.084 0.054 0.054 0.025 0.024

(b)
Figure 3.84: Optimal solution for (a) five and (b) six base parts, for Case E
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0.060 0.059 0.038 0.038 0.0180.017

0.060 0.059 0.038 0.038 0.018 0.017

(@)

0.058 0.0430.043 0.0270.027 0.013 0.012

0.058 0.0430.043 0.0270.027 0.0130.012

(b)

Figure 3.85: Optimal solution for (a) seven and (b) eight base parts, for Gase E
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0.0440.0440.0320.0320.0200.020 0.009 0.009

0.0440.044 0.0320.0320.0200.020 0.009 0.009

(@)

0.0430.0340.0340.0250.0240.0160.0150.0070.007

0.0430.034.0340.029%.0240.016 0.0150.0070.007

(b)

Figure 3.86: Optimal solution for (a) nine and (b) ten base parts, for Gase E
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Table 3.13: Values of the objective function for one up to ten base parts, for Case

En.
Parts J J
1 0.00228 13.661
2 0.00182 10.959
3 0.00166 14.724
4 0.00182 16.905
5 0.00173 17.124
6 0.0019 19.740
7 0.00142 14.469
8 0.00246 24.938
9 0.00272 27.842
10 0.00314 31.884

Table 3.14: Eigenfrequencies of the system (Hz)

mode | 2 3 4 5 6 7 8 9 10

parts
1 |8331| 33.32
2 | 1487 | 27.80| 36.36 52.80 6841 71.23 8725 97.87
3 | 14.99| 17.05 4228 4822 6949 7904 8488 101L.2 186.2 137.6
4 | 15.23| 17.76] 34.95 4223 69.18 6921 8114 8161 1058 111.7
5 | 16.12| 17.15 33.22 4242 61.11 7404 86,53 87.12 1058 1116
6 | 15.41| 1563 3328 4114 4580 71006 8359 84.17 9749 103.2
7 | 9.210| 10.39 21.92 2668 26./5 4626 46,40 5447 5855 712.68
8 | 12.14| 14.89 3046 37.10 3842 5409 6537 7897 8195 1054
9 | 10.75| 14.49 27.93 3510 37.02 47005 6267 6934 7588 80.87
10 | 9.472| 13.86 2548 32.79 3561 42)58 56.27 59.33 73.10 76.08
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Number of parts

Figure 3.87: Optimal values of the objective functidnwith respect to the

number of base parts of the structure, for Case E

Number of parts

*

Figure 3.88: Optimal values of the objective functidn with respect to the

number of base parts of the structure, for Case E
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0.130 0.061 0.060

0.130 0.061 0.060

Figure 3.89:Local optimal solution for four base parts, for Cage E

0.096 0.096 0.026

0.096 0.096 0.026

Figure 3.90:Local optimal solution for four base parts, for Cage E
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3.7 Conclusions

In this chapter, the proposed methodology for design optimization of structures
under stochastic dynamic excitations has been applied on the sizing and topology
optimization of two dimensional truss structures. An iterative method for the
simultaneous optimization of the size and the topology of trusses has been
described. Different types of performance functions have been used, such as the
weighted sum of the variance of the nodal displacements or the weighted sum of
the variance of the developed stresses. The design variables have been chosen to
be the cross sectional areas of the truss member, the location and number of nodes
o the structure. First, the methodology of design optimization under deterministic
static load has been considered using as performance functions the displacement
of the system along the degree of freedom on which the loading is imposed and
the weighted sum of the displacements at all the degrees of freedom. The optimal
results have been presented and discussed, showing similar trends with slight
differences between the two cases, as far as the cross sectional areas are
concerned. It has also been shown that local optimal solutions may appear for
specific cases, which complicate the search for the global optimal solution using
gradient — based optimization algorithms.

Next, the sizing and topology optimization of the structure under white noise
dynamic excitations has been considered. First, the variance of the displacement
across the degree of freedom on which the loading is imposed, has been chosen as
performance function. It is shown that as the degrees of freedom of the system is
increasing, the information needed for the design optimization is insufficient and
therefore the results are inaccurate. Next, the performance function has been
considered the weighted sum of the variance of the displacements at the degrees
of freedom. The optimal results have been presented and compared to the results
obtained for the deterministic static case, showing similar trends, but quantitative
differences between the two cases, as far as the cross sectional areas of the
optimal solutions are concerned. Similarly to the previous case, it has been shown
that local optimal solutions may appear for specific cases, complicating the search
for the global optimum.

Additionally, the weighted sum of the variance of the of the developed stresses at
the truss members has been chosen as performance function for the dynamic case.
The results have been compared with the static load case for which the
performance function is also chosen to be the weighted sum of the of the
developed stresses. The optimal results for these two cases have been presented
and compared with the results obtained for the displacement based optimization.
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The optimal configurations show similar trends, but the stress — based optimal
structures have shown a slight reinforcement at the truss members close to the
location where the dynamic loading is imposed.

The modal space approach has also been applied on the sizing and topology
optimization of the truss structure, in order to examine how the use of limited
number of contributing modes in the estimation of the variance of the response
affects the optimal solutions. It has been shown that, in some cases, a small
fraction of contributing modes in relation to the degrees of freedom of the
structure can lead to quite satisfactory results compared to the optimal results
obtained in the previous cases. In particular, for the example case considered, for
ten contributing modes, the optimal results are almost identical to the optimal
structures obtained at the previous case. This fact can lead to a significant
reduction of the computational cost of the optimization in many cases. Finally, it
has been shown that if all the modes of each system contribute to the estimation of
the variance of the response, the results are identical to the results obtained for the
time domain method, with minor differences been attributed to the different
models used for of the system damping.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



4. Fatigue of Multi-Dimensional Vibratory Systems under Stochastic Loading 140

CHAPTER 4 Fatigue of Multi-Dimensional Vibratory
Degrading Systems under Stochastic

Loading

4.1 Introduction

In this chapter the basic methodology for the fatigue reliability assessment of
randomly vibrating multi-degree of freedom systems is presented within the
coupled response-degradation model. The fatigue process in the system
components is quantified by the fatigue crack growth equations, which - via the
stress range - are coupled with the system response. Simultaneously, the system
dynamics are affected by fatigue process via its stiffness degradation so that it
provides the actual stress values to the fatigue growth equation. In addition to the
general coupled response-degradation analysis, its special case of non-coupled
fatigue crack growth is treated as well for the wide-band stationary applied stress
by the use of its first four spectral moments and the approximate, empirically
motivated, Dirlik’'s (Dirlik 1985) probability distribution for the stress range.
Both, the general analysis and the illustrating exemplary problems elaborated in
the paper provide the route to the fatigue reliability estimation in complex—
hierarchical vibratory systems under random loading.
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First, the general stochastic differential equations, as well as the equations of the
specific case of stiffness degrading systems, are presented. Next, the fatigue
induced stiffness degradation is described, along with two ways of characterizing
the random stress range: using second order moments and using a spectrum
distribution. Three methodologies for crack growth prediction for hierarchical
systems are proposed next. First a methodology that takes into account the
stiffness degradation of the system along with the crack length growth, second a
method that uses the second order spectral moments and assumes that the
response is uncoupled from the degradation and finally a non-coupled response-
degradation method using a spectrum distribution. Specifically, the spectrum
distribution used is the empirical approximation proposed by Dirlik. Finally, the
proposed approaches of the stochastic fatigue problem are applied on two
hierarchical systems, first a single degree of freedom system and subsequently a
three degrees of freedom system. lllustrative results of all the cases are shown and
compared for the different approaches.

4.2 Response-Degradation Models

4.2.1 General Governing Stochastic Differential Equations

Stochastic governing equations for many engineering dynamical systems should
be represented in the form, which accounts for both — the system dynamics and
degradation process, taking place in the system. In the case of
mechanical/structural systems these are, above all, the elastic-plastic vibratory
systems (under severe random loadings) in which the restoring force has a
hereditary nature (Lin and Cai 1995, Wen 1986) and elastic systems with stiffness
degradation due to fatigue damage.

In general, a coupled response-degradation model for nonlinear vibratory systems
with random excitation (parametric and/or external) can be formulated in the
following vectorial form:

My (t) +Cy(t) + R Y1), t), db), X(t.»)]= PX(t,») (4.1)
F{ND, (Y, dt), X(t,»)}=0 (4.2)
y(to): Yo y(to): Yo d(to): do (4-3)

where M andC represent the constant mass and damping matrices, respectively,
y(t) =[y,(D, Y,(1),..., % ()] is an unknown response vector procesR,

characterizes a nonlinear restoring force dependingyoand y, and on the
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process d(t) =[d,(t), d,(1),...,d, ()], M < N, which characterizes a process
responsible for degradation phenomeng(t,), X,(t,y) are given random

processes symbolizing parametric and external excitations, respectively. The
variable y is an element of the space of elementary events in the basic scheme

(T,F,P) of probability theory (Sobczyk 1991)F{-} denotes a relationship

between degradation and response processes; its specific mathematical form
depends on the particular physical/mechanical situation. It is cleayhgt,, d,

are given initial values of the respongeg(t), ¥(t)] and degradationd(t)
processes, respectively.

It should be noted, that in the cases when the original system is of a continuous
type (e.g. beam, plate, shell) governed by partial differential equations, the model
(4.1)—(4.3) is a spatially discretized version (e.g. via Galerkin or finite element
methods) of the original equations and it describes the system response-
degradation as a function of time at fixed spatial points. It is also worth noticing
that the meaning oﬂ:{-} in (4.2) can be quite different in specific situations; it
can be a differential operator, and also a functional definefly¢, y(t)]. It is
natural to assume thad(t,) =0. During the dynamical process vectdit)

approaches, as time increases, the unsafe state symbolized by the bdindary

Eachd e B denotes a critical level of degradation. Bebf the admissible values
of d(t) — being a part of the first quadrant — constitutes a quality space. Therefore,

the reliability of the system in question is defined as the probability that process
d(t) will belongtoB i.e.

R (t)=Pr{d(t) e B, 7e[t,t]} (4.4)

4.2.2 Specific Vibratory Systems with Stiffness Degradation

An important class of vibration-degradation model (4.1) has the form:
My(t)+Cy+ Ry Kdl= PXt ) (4.5)

where M =diag(m)ed ™", p=12,..N, CeO™", k(d)=[k(d), -,

ky(d)]" 0™, with k,(d,) be a function (empirically identified) characterizing

dependence op -th stiffness element on the degradation mdge(e.g. it can be

fatigue crack size, amount of wear, etcH, is the nonlinear restoring force
depending ony and the degrading stiffneds(d), P <™ is a matrix that

associates the external loads X(t, y) =[X,(t,7), X, (t,7),... X, )] 0™ to
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the degrees of freedom of the structure. In the linear case, the vector function
Rly, k(d)] is a linear combination of the componemtsof y(t).

In particular, model (4.5) includes the special class of multi DOF hierarchical
system, shown in Figure 4.1. This class consists of a “perpendicular chain” of
oscillatory systems axially subjected to random loading. The system in Figure 4.1
consists ofN bodies with thep—th body having mass, . The p—1 and thep

bodies are connected by elastic plate elements which provide the stitfpéss

the system. It is assumed that in each plate element a fatigue crack develops
perpendicular to the direction of the motion as shown in Figure 4.1. The initial
crack size of the plate elemept is 2L . In general, it can be assumed that the

axial stiffness provided by each plate depends on the crack LsizeThis
dependence is introduced by letting the stiffniegd_)) be a function of the crack
size L,. The model in Figure 4.1 can be used as a simplified modelgdetary

shear building subjected to some lateral external excitation such as wind forces or
base earthquake acceleration (with various rates of damage growth at each level).
Also, the two degree of freedom version of Figure 4.1 can be used to represent the
dynamics of quarter car models with linear or nonlinear stiffness and damping
characteristics (Papalukopoulos and Natsiavas 2007). Therefore, in what follows,
such “hierarchical” systems will be of our main concern.

To represent Eqgs. (4.5) in the state space form we defin@Nhelimensional
state vector:

2(t) =[Ya(0, Yo, i (0, X (0, B (D, OT =B ¥'T (4.6)

Equations (4.5) can now be written in the form of a systen2if equations of
first order. This system can be written in the vectorial form as

. { L }{0}
2= o +4 MM LX (4.7)
-M7*[0, C]z-M*RzKJg]| (M7P

where0, ,, e] ™ is a matrix of zeroes ani, , 1 ™" is the identity matrix.
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Figure 4.1: MDOF system with cracks

Let us confine our analysis in this paper to the linear relationships between the

system components. In this situation, system (5) is linear, with
Ry, k(d)]= K K d] y, where K[k(d)] is the stiffness matrix of the structure

that depends on the individual degrading stiffneddel , the equations (4.5) and
(4.7) are linear, and the general vectorial equation of motion is:

7t) = Az(t) + BX(t,y) (4.8)

where the matrixA is composed of the constant damping mattixand the
degrading stiffness vectd(d), as follows
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ON,N IN,N
A= A(C’k(d)):{—MlK[k(d)] —MIC} (4.9)
and B is the matrix
0N,M
B {M _lp} (4.10)

As a specific case, assuming linear elastic behavior of the plate elements in Figure
4.1, the stiffness matrix is

k(d)+k(d)  -k(d) 0

K (d)  k(d)+ k(d)

K(d) = (4.11)

: : _kN.(dN)
0 —ky(dy)  ky(dy)

The stiffness elements ik(d) are varying in time due to variability af(t) in

time. The analysis of the systems (4.8) - (4.11) depends crucially on the
mechanisms of degradationt). Therefore, the considered vibrating system

governed by equations (4.8) - (4.11) is a time-variant and, in general, the response
z(t) is a non-stationary random process, even wbemn y (s 3tationary. It

should be noted, however, that the stiffness degradation is a process much slower
than that of the system dynamics. In what follows we assume that stiffness
degradation is due to fatigue taking place in the system elements and manifesting
itself in fatigue crack growth during the vibration process. Functiqiid,) are

assumed to be non-increasing functions known from the empirical data (Sobczyk
and Trebicki 1999).

4.3 Fatigue-Induced Degradation
In the analysis of response of vibrating systems with stiffness degradation due to
fatigue it is natural to quantify the process i0)(4.1) by scalar processes(t)

which are deliverable from the “kinetic” crack growth equations. These equations
contain the stress intensity factor rangk =K . —K..,. A wide class of the

fatigue crack growth models can be represented by the Paris equation (Sobczyk
and Spencer 1992) governing the evolution of the crack lebgff) at the plate

p as

dL “ “
=GR =B [a8]" (4.12)
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where x,, C, are empirical constants3 (L,) is the factor which accounts for

the crack length and shape of the specimen and crack geometry. In the problem
considered here the “specimens with cracks” are the finite rectangular plates, so
B,(L,) can be taken in the form (Miannay 1998)

-1
L L

B,(L,)~——fzL,| Joos" = | , —P< 0. (4.13)
20, b, b,

where b, is the width of thep-th plate element. The second factor in equation

(12) is the stress range (generated in the vibrating element), i.e.
A % = %,max - Sp,min (414)

which has to be evaluated as a result of solving multidimensional vibration
problem for y(t)=[y,(t)...., vy ()], since equations foy, t ()p=1,2,-,N are

coupled.

4.3.1 Characterization of Random Stress Range Using Second Moments

Characterization of the random stress range (4.14) constitutes a crucial part of the
analysis. In the existing works, most ofta§ was characterized by the envelope

of the stress generated by the response process and (for linear systems) the
Rayleigh probability distribution. However, the concept of the envelope itself can
not be defined for all random processes. Only for stationary narrow-band
processes it has clear meaning, and when process in question is Gaussian, the
probability density function of the envelope has the Rayleigh distribution. These
are serious restrictions if one has in mind a wider class of practical applications.
Due to these reasons our analysis here will rely on a simple characterization of the
random stress range, which, although not completely satisfactory, seems to
constitute an acceptable approximation and enhances the effectiveness of the
analysis of real engineering problems. The characteristic which we have in mind
is the mean rang§,, :

Smr :<A3:< §m>_< §in> (415)
where S _,=m+ F, S,=m-F and P is a random height of peaks.

Therefore the mean range iSmr:2<P>. For the stationary and Gaussian
processes it is as follows (Sobczyk and Spencer 1992):
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S, =20 %(1—52) (4.16)

where o is the root mean square 8{t) and¢ is the spectral width parameter

& :(1—0(2); L a= & (4.17)

S,

and 4y, 4,, 4, are the spectral moments 8(9) and o =./4, . If the process is
a narrow band one, then—0 and S, =+/2705.

The spectral moment, are defined as an integral of the productdfand the
spectral densityg, (@) of the stress proces3(1):

['e]

k
A = J-|a)| 0s(w)dw (4.18)
over infinite range. Thus, the spectral moments may not be finite. The moment
A, is finite if and only if the correlation functioK (z), 7 =t,—t,, possesses a

derivative of orderk at r =0 (Cramer and Leadbetter 1967).

4.3.2 Characterization of Random Stress Range Using Spectrum
Distribution

The averaged characteristics of the stress field @k themselves do not reflect

specific features of the stress spectrum (e.g. bi-modal spectral densities) nor the
properties of the probability distribution oAS, (for wide-band processes).

However, as it has recently been shown by Dirlik (1985) (see also Bishop 1994;
Benasciutti and Tovo 2005), the spectral mometysi,,1,,4, can constitute a

base for construction of the approximate closed-form formula for the probability
density of the stress range (in the rain-flow cycle analysis). This semi-empirical
probability density being a mixture of one exponential and two Rayleigh

distributions has been derived by fitting the shape of a rain-flow range distribution
via minimizing the normalized error between the rain-flow ranges and the above
density model. Its form is as follows

_Z(A9) _Z2(AS) _Z*(a9)
gle N +DZZR(2AS)e ® +DZAS e 2

p(A S) = 2\/Z

(4.19)

where
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AS
2

and D, D,, D;, R and Q are specific algebraic functions of the spectral
momentsi,, 4,, 4,, given by

Z(AS) = (4.20)

2(x,—& —a, - 2
Dl:(xm_fz), D2:1 %-D+D; D,=1-D,-D, (4.21)
1+a, 1-R
D - 2
Q=1.25(a2 D3 (DZR)), R= & — X, - Dl . (4_22)
D, 1-a,-D,+ D;
1
_A| A __A __ A 4.23
Xn /10{/14} sy, a, /—10/12’ a, /—20/14 (4.23)

This formula can be interpreted as “empirical” or simulation — inspired extension
of the Rayleigh distribution to non-narrow band processes. It can be viewed as an
effective tool for fatigue crack estimation under wide-band stationary applied
stress. It will be shown in Sec. 4.3 that it can be used for fatigue predictions in the
case of non-coupled response-degradation problem.

4.4  Crack Growth Prediction for Hierarchical Systems

The equations for the evolution of the crack length are given by the Paris law
(4.12). Thus, the evolution of the crack length depends on the description of the
stress rang@S, . In the uncoupled case — when the stiffnesgem the vibratory

components are regarded to be constant and the load is a stationary random
process — the stress rangeS, will be described in terms of spectral moments by
(4.16) or by making use of the Dirlik's formula for the probability densith§f.

The required spectral moments are calculated from the solution of the governing
vibratory equations.

Although characterization of fatigue loads/applied stress is usually based on
stationary random processes, in the coupled response-degradation problem the
response of vibratory system (due to variability of the stiffness) is generally non-
stationary. So, instead of spectral moments, the stress range will be characterized
by the time-varying root mean square, i.e. in equation (4AB] 1) :\/Eap(t).

In the coupled problem the standard deviatiengt) occurring in fatigue crack
growth equations (4.12) are coupled with the moment equations for the system
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response, e.g. with the equations for the covariaQug) = E[z(t)zT (t)] of the

state vector governed by the system of first order equations (4.7).

In what follows, Section 4.1, presents the analfmishe prediction of fatigue for

the coupled response — degradation case. Sections 4.2 and 4.3 present the analysis

for the prediction of fatigue for the non — coupled response — degradation case via
spectral moments and Dirlick’s approximation of the stress range, respectively.

4.4.1 A Coupled Response-Degradation Problem

When stiffness degradation takes place during the vibration process, the linear
system (8) has a time varying mateix= A(t) since

k(d) = k(o (1) (4.24)

and thus, using (4.9)
A(t) = A(Usp (1) (4.25)

Assuming that the stress rang& (1) is characterized by the time varying root

mean square as&Sp(t):\/Zap(t), the evolution of the crack length(t)
obtained by solving (4.12) is a deterministic function of time. TH\($) is also a
deterministic function of timé.

Let us consider the situation when the vectorial load prodessy i6,a)white
noise with intensityG, t( ) i.e. X(t,y)=W(t,y), whereW {( y ) has zero mean
and covariance

Ry (t,s)= EW(OW' (9] = G(}o( t $= EA )2 ()i (4.26)

In this case, the covariance mat@x t 0f the state vector t ( Jor s=t is given

by the following system of equations (called sometimes the Lyapunov equations)
(Soong and Grigoriu 1993; Lutes and Sarkani 2003)

% = A(L(£)Q, (1) +Q,(t) A(L(t))" + BG,(t) BT (4.27)

Q,(t)) =Q,
where Q, is the covariance of stationary response matrix of the initial non-

degraded state obtained by solving the system (4.27) for constant stiffness matrix
Ko = K[k(L,)]. As it is seen from (4.25), the system (4.27) is coupled with the
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system of degradation equations (4.12) for phthn component,p=12,...,N.
The initial conditions for the equatio(#.12) are:L (t,)=L,,, p=12...,N.

It should be noticed that for the case of filtered white-noise excitation that can be

modeled as the output of a system of linear differential equations to white noise
input, the state vectok(t) can be augmented to include the states of the linear

differential equations describing the non-white noise input and thus a similar
Lyapunov set of equations of the form (4.27) holds for the combined system with
states describing the structural response states and the filter states associated with
the input.

The information required in equation (4.12) is the axial stress range perpendicular
to the crack inp-th plate element, which for the linear hierarchical structure in

Figure 4.1, can be written in the forr§ () = k (L))[ ¥,()— Y,.(}] . In compact
form, the axial stres$ () can be written in terms of the response vegtt) as
Sp(t)z(ég —5;1))’, where ¢, is a vector that has thp element equal to one
and all other elements equal to zero. Lett®@) =[S()--- S,(}]" be the vector

of axial stresses in the elastic plate elements, one can relate the axial stress vector
to the response vector(t) from the compact relationship

S(t)=F(L)y (4.28)
where
F (L) =diagk (L)I(1 w0 (4.29)
Is a matrix that for stiffness degradation problems depends on the vector of the
crack lengthsL(t), I\ =[d,,:-, 0y 1" is the identity matrix of dimensioN and
lyn =00, 0y_1]" €0 ™" is a matrix having the entries immediately below the
diagonal equal one and all other entries equal to zero. 3iBg) in eq. (12) is

characterized by the root mean square of the random stress, i.e.
AS,(Y)=v27o,(1), we need to obtain a direct relationship betweent aQl

the components of the covariance mat@xt . (This is achieved by using (4.28)
and noting thabf)(t), p=1...,,N, are the diagonal elements of the matrix

E[S() S'(9] = Q(Y) (4.30)
whereQ, (t) is Nx N upper left partition of the matri®, (t) .
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It should be noted that for time varying(t) the equation (4.18) for computing
4,,(t) can still be used by replacing the spectral dengitfw) by the time

varying spectral densityg (@,t). This can be accurate, provided thaft) is
slowly varying compared to the variation of the staté€y .

The system ofN crack growth equations (4.12) and the system (4.27) of the

response covariance form a system of coupled nonlinear differential equations that
have to be solved simultaneously since the crack length increase affects the
stiffness of each element and therefore the covariance of the response. The set of
equations (4.30) are auxiliary equations needed to compute the mean square of
af(t) used in the characterization of the random stress range processes

ASp(t)zx/Zﬁap(t), involved in (4.12), in terms of the covariance response
matrix Q,(t) derived from (4.27).

The system of coupled differential equations is stiff due to the slow evolution
process associated with the crack growth and the fast evolution process associated
with the dynamics of the structure. Thus, the solution of the system of coupled
differential equations is obtained using the Gear numerical differentiation formula
(Gear 1971) suitable for solving stiff differential equation problems.

4.4.2 Non-Coupled Response-Degradation Problem; via spectral moments

Next, it is assumed that crack growth does not significantly affect the axial
stiffness of the plate elements so that the stiffnesses remain constant, independent
of the crack size, that i& (L ) =k,,= consl or, equivalently,k(L) =k, is a
constant vector independent of the evolution of the vec{oy of crack lengths.

In this case the state space mathixd =(A, as well as the matrifF L(3F is
constant, independent of the crack siteft), p=1--,N. Simply, it is assumed

that the stress rangeS, in each plate element (in degradation equation (4.12)) is

specified by (4.16) and (4.17). That is, the stress range is completely specified by
the spectral moments of the stress process within each plate.

In this case, the equations (4.27) for the covariance response of the state vector of
the system are uncoupled from the crack growth or degradation equations (4.12).
Specifically, the solution for the crack growth proceeds as follows. The linear
equations of motion in the state space form are used to obtain the covariance
matrix Q,=E[Zt)Z(t)| of the state vector by solving the corresponding

Lyapunov system of equations:
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Q,= AQ,+ QA +27BG () B (4.31)

with constant matrixA(L(t))zA corresponding to the constant non-degrading
stiffness propertiex,,, p=1---,N, of the elastic plate elements. The solution
can be carried out numerically using a differential equation solver. Noting that
S(t)=F(L)y and

§(t) = F(L(t))y = F(L®)[-M K (L(t)y =M Cy + M "PX ()] (4.32)
the elements of the covariance matrix are used to find the cova@g(ieof the

vector (t) =[ST(t) S'(t) S(1)]" of the stress responses within each plate from
the relationship

Q,(1)=H(L)Q,MH"(L) (4.33)
where H (L) is given by
F(L) Oy O\ m
H(L)= Onn F(L) O (4.34)

FLMK FLME€ F(M P

The second momentg, ;(t), i =0,2,4 of the stress process involved@)(t) are

then obtained and used in equations (4.tR2)Jndependently solve the crack
growth equations.

For stationary response, the second momeajs(t)=4,,, i1=0,2,4 are

independent of time and the solution for the crack growth letgif) as a

function of time can be straightforward computed by numerically solving the first
order differential equations (4.12). Alternatively, for the stationary response, the

equations for the spectral momeuits (t)=4,;, i =0,2,4 can be computed from

the one dimensional integrals (4.18). This requires numerical integration to be
carried out over an infinite domain of» and is usually more tedious
computationally.

It should be emphasized that the formulation in (4.33) - (4.34) is applicable for the
case for which the excitatiow (t) is a filtered white noise excitation given by a

system of ordinary deferential equations in which cgsey and y are part of
the state vectoe. For the white noise excitatio/V (t) the spectral moment, |

takes infinity values. The formulation still holds if the contribution of the spectral
width parameters(t) is ignored in (4.12) and (4.16) by settiagt) =0. Finite
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values of the spectral moment, / can be obtained by using a process
resembling white noise with constant spectral density in the interegl »,] and

zero spectral values outside this interval. This truncated white noise process is
often used to carry out the integration in (4.18) with bounded lifnits, ]

without affecting the values of the spectral densifigs, provided thatw, is high
enough.

For stationary response, the second momeafs(t)=4,;, 1=0,2,4 are
independent of time and the solution for the crack growth lengift) as a

function of time can be straightforward computed by solving (4.12) to obtain:
) 12 (1 12) |47 2"
L,() =L, (t:As,) =[(1— u, 12)d, (as,)"" t+ 1 } (4.35)
whered is given by
d,=Cy(8,)" (Vz)" (4.36)
for p=1..,N, and As, =274, ,(1- gf)). The above derivation assumes that

L
b_p <<1, so that the geometry fact@, is approximated by

P
1/7sz
Bp(Lp) ~ T (4.37)

p

4.4.3 Non-Coupled Response-Degradation Problem; via Dirlik’s
Approximation of Stress Range

Let us consider now the fatigue crack growth prediction making use of Dirlik’s
formula (4.19) for the probability density function a5,. For convenience, it is

assumed that crack growth does not significantly affect plate element stiffness so
that the stiffnesses remain constant and equél o) = k,,. The pdfs forAS,
are completely defined from the spectral moments, 4, ,, 4, , and 4, , of the

axial stress response and its derivatives. These moments can also be computed by
the integral in (4.18)vhich can be used with bounded limfitsy,, »,] to compute
4, in the case of white noise input. Alternatively, the spectral moments

A, =42,;, 1=0,2,4 involved in Q, can be directly computed by solving the

p.i?

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



4. Fatigue of Multi-Dimensional Vibratory Systems under Stochastic Loading 154

Lyapunov equation (4.31) for the covariance respd@s®f the state vector and
then using the relationship (4.33).

Given the pdfs forAS; from the Dirlik formula, the predictions of the pdfs of the
crack sizel, (t)z L,(t;AS,) are obtained from the equations (4.12). These pdfs

can then be used to obtain the characteristics of failure, such as the mean and the
variance of failure time, the probability of failure at a given time, etc. For

demonstration purposes, failukg (t) in the plate is defined as the state in which
the crack Iength_p(t;ASp) exceeds a critical value in a given time interval

[0,t], that is,

p,crit

F(0)={L, (AS,)> L, o (4.38)

The probability of failure Pr[F (t)] in the plate elementp is given by the
integral

PIF,01= [ p@AS)dAS)= [ p(AS)dAS)

ap(GASy)2a p orit ASZA S, i () (4 39)
- Asp‘cm(t) p ASP ﬂ A % )

where p(AS,) is the probability density function given by (4.5 AS, ; (9 is
the value of the stress range (“design point” in reliability terminology) that can be
calculated for given time instantby solving the equation

L, (6AS,)= L, o (4.40)

with respect toAS,. A numerical scheme can be used to obtain the solution of
equation (4.40) for each timewith L (t;AS)) given by the solution of (4.12).

The integration in (4.39) is one-dimensional and can be carried out efficiently
using available numerical algorithms.

: . L .
Finally, it should be noted that for the case wh%£e<<1 (assumption of small
p
crack compared to the width of plate) the geometry fa&gil ) is given by

(4.37) and the evolution equation of the crack lerigfft;As ) , given by (4.35)

and the equation (4.40), can be solved analytically to yield
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2

o) PR 78
ASp,crit(t) = t2/ﬂp ,c2rit - I't) 2 (441)

wherec, is a constant and is given by

Cl :[ﬂ(l—ﬂp /2)2/,”p C;Z/!lp BpZ]—l (442)

4.5 Applications - Numerical Results

The methods proposed for the fatigue life predictions are applicable fay the
degree of freedom system shown in Figure 4.1. For demonstration purposes, the
system is subjected to a base acceleradi@h. The base excitation is assumed to
be stationary white noise, 1.€i(t) = W(t), with power spectral density equal to

1072. In this case, the matri® relating the excitation forces to the degrees of
freedom of the systems takes the foRa —M 1, while the input excitation vector
X (t) takes the formX (t) = &(t) = w(t), wherel is defined to be a vector with all

elements equal to one. For this mathematically defined white noise, the spectral
parameteri, is infinite.

From the computational point of view, the random excitation is considered to
have a constant power spectral density over the frequency framges,] which
contains the values of the frequencies of the main contributing modes of the
system. The spectral moments are then computed (i) with the domain of

the integration to b¢-w,, »,] for sufficient high value ofw,. The results from

the integration for4,, 4, and A, are same as the ones obtained by solving the

Lyapunov equation for the covariance response. The results of the integration for
computing 4, depend on the value ofy, indicating the range of spectral

frequencies with significant energy.

In the numerical results presented, the methodologies used are termed “constant
stiffness - SM” method referring to the non-coupled response-degradation
problem in Section 4.2 using spectral moments (SM), “constant stiffness - SD”
method referring to the non-coupled response-degradation problem based on
Dirlik’'s formula for the spectrum distribution (SD) of the stress in Section 4.3,
and “stiffness degradation” method referred to the coupled response-degradation
problem in Section 4.1.
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4.5.1 Single Degree of Freedom System

The case of a single oscillatoN(=1) is first considered. The initial crack length
is assumed to be equal tg =107. Also the values ofc’ and u, defining the

degradation equations, are assumed t€be1.03 10**, 1 =3.89. The mass and

the plate properties without the crack are selected so that the natural frequency of
the system is 10 Hz. The damping coefficient is selected so that the damping ratio
of the system is 5%. The value ef,, defining the domain of integration of the

spectral moments in (4.18), is taken todye= 30 Hz.

a) Constant Stiffness — Spectral Moments (SM)

Results for the crack length growth are first obtained for the “constant stiffness —
SM” method. The evolution of the crack growth is obtained from (4.12),
considering that the response has reached stationary state due to stationary white
noise excitation. The results for the crack length growth predictions in the system
are shown in Figure 4.2 for the cases of spectral width paramet@rande = 0.

It can be seen that the inclusion of spectral width parametaignificantly

affects the predictions of failure, prolonging the time of failure.
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Figure 4.2: Crack size growth with respect to time fiof =107 using the
“constant stiffness — SM” methddr the systemN =1.
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b) Constant Stiffness — Spectrum Distribution (SD)

Next, results for the “constant stiffness — SD” method are presented using Dirlik’s
formula (4.19) for the probability density function of the stress ran§e This
probability density function for theN =1 system is shown in Figure 4.3. Using
this pdf, the probability of failure of the system is calculated for a certain critical
value of L, ., =10" as shown in Figure 4.4 for different values of the initial crack

size L,. The results are also compared to the deterministic lifetime predictions
provided by the “constant stiffness — SM” method £6£ 0 and& = 0.
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0.15

pdf

0.1

0.05

Figure 4.3: Probability density function of the stress range.
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Figure 4.4: Probability of failure versus time for different initial crack sizes,
along with comparisons of deterministic lifetime predictions from the “constant
stiffness — SM” method foe =0 and & = 0.

For demonstration purposes, consider the case in Figure 4.4 for which the initial
crack size equals toL,=107°. It can be seen that the failure time
t., =1.26x 10°sec predicted from the “constant stiffness — SM” method with
& # 0 corresponds to very high failure probabil®y(F )= 0.93¢ predicted by the
“constant stiffness — SD” method. Moreover, the “constant stiffness — SD”

method predicts that the time of failure that corresponds to a smaller failure
probability, sayPr(F)=10°, equals tot_, = 7x10sec. Similar interpretations

fail

can be inferred comparing the other cases shown in Figure 4.4.

c) Stiffness Degradation
Finally, the stiffness degradation method is considered for which the crack length
affects the stiffness of the structure, i.e. the case wk{th depends orlL. This

effect can be introduced by employing the following empirical stiffness
degradation function available in the literature (Sobczyk and Trebicki 1999)
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Ko(Lp) =k o Bi+ BrexpEp (2L, /b, Y+ 1] (4.43)

whereb, is the width of thep plate. The values of the coefficients are selected to
be p,=0.5, §,=0.5, f;=1and g, =1 such thatk (0)=K,,, wherek, is the
initial stiffness of the uncracked plate.

Numerical results are presented assuming that the initial crack size equals to
Lo, =107. The crack growth predictions in this case are shown in Figure 4.5 for

the case ot =0 and are compared to the corresponding crack growth predictions
obtained from the “constant stiffness — SM”. As expected, lifetime reduces when
the effect of stiffness degradation due to crack growth is taken into account in the
formulation. Results for the case ot 0 are not presented since they require the
evaluation of 4,(t) from the integral (4.18with finite limits [-w,, ®,] . This
numerical evaluation has to be performed for each time stepsed to integrate

the coupled system of equations (4.12) and (4.27). This procedure is
computationally time consuming due to the numerical integration involved.
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Figure 4.5: Comparison of crack growth prediction obtained from the “stiffness
degradation” and the “constant stiffness — SM” methads(@).
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The ratio o3/oc%, of the variancecZ(t) of the axial stress responsg({)
obtained from the stiffness degradation method to the constant vargnce

obtained from the “constant stiffness — SM” method (non-degrading structure) is
given in Figure 4.6 as a function of time. Also, the stiffness redudt{dt))

with respect to time due to degradatib(t) is shown in Figure 4.7. It can be seen

that the variance ratio increases, indicating that the response of the structure
increases due to degradation. This increase has a result of accelerating failure
which, as shown in Figure 4.5, occurs earlier than the time expected for non-
degrading constant stiffness structures.
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Figure 4.6: Variance ratiwé/aéo of the stress response with respect to time.
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Figure 4.7: Stiffness decreadq L(t)) with respect to time.

4.5.2 Multi Degree of Freedom System

The methodology is next applied to a three degree of freedom hierarchical system
(N =3), shown in Figure 4.1. The initial crack length is assumed to be equal to
Lo, =107 for the three subsystems. Also the valueCpfand x, are assumed

to beC, =1.03 10" and x, =3.89, p=1,2,3. For the mass and plate properties

selected, the natural frequencies of the three degree of freedom system without
cracks are 4.45 Hz, 12.47 Hz and 18.02 Hz. The damping matrig chosen
assuming that the system is classically damped at its initial non-degrading state.
Specifically, the damping matriC is selected so that the values of the modal
damping ratios corresponding to the un-cracked structure are 5% for all three
modes. The value of the upper frequergyneeded in computing, using (4.18)

is taken to bey, =30 Hz.

a) Constant Stiffness — Spectral Moments (SM)

Results for the crack growth at each plate element as a function of time for
the “constant stiffness — SM” method are shown in Figure 4.8 for the three
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subsystems and for the caseseof 0 and £ #0. It can be seen that the crack
grows faster on the first plate since the stresses in this plate takes higher values
than the stresses in the other two plates. Also, the inclusion of the spectral width
parameters (& #0) in the formulation significantly affects predictions of failure,
prolonging the time of failure for the first and third subsystem and accelerating
the time of failure for the second subsystem.

10—

|

10

10°

Crack Growth L

10'3 ,,,,,,,,,,,,,,,

10 =

Time (sec)

Figure 4.8: Crack size growth with respect to time for the three-DOF system
(N =3) using the “constant stiffness - SM” method.

b) Constant Stiffness — Spectrum Distribution (SD)

Finally, results for the “constant stiffness — SD” method are presented using

Dirlik's formula (4.19) for the probability density functions of the stress ranges
AS. The probability density functions for all axial stress rang8s(f) are shown

in Figure 4.9. Using these pdfs, the probabilities of failure for the first, second and
third subsystems are calculated for a certain critical valuel gf, =10,

p=12,3, as shown in Figure 4.10 for initial crack size vallgg =1072. The

results are also compared to the deterministic lifetime predictions provided by the
“constant stiffness — SM” method fer=0 and & = 0.
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Figure 4.9: Probability density functions of the stress ranggs at the three
subsystems.
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Figure 4.10: Probability of failure versus the time of failure for the three
subsystems, along with comparison of deterministic lifetime prediction from the
“constant stiffness — SM” method fer=0 ande = 0.
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For the predictions provided by the “constant stiffness — SD” method, it can be
seen that for probability of failure of the system is controlled by the failure of the
first subsystem since the time of failure for any probability level is is smaller than
the time of failure for the other two subsystems. Also, it can be seen that the
failure time t, =5.7x10 sec predicted from the “constant stiffness — SM”

method with ¢ #0 corresponds to very high failure probabili®r(F)= 0.7¢

predicted by the “constant stiffness — SD” method. Moreover, the “constant
stiffness — SD” method predicts that the time of failure that corresponds to a
smaller failure probability, sar(F )= 10°, equals ta,, =1.95x< 10 sec. Similar

interpretations can be inferred comparing the other cases shown in Figure 4.10.

fail

c) Stiffness Degradation

Next, results are presented for the “stiffness degradation” method for which the

crack length affects the stiffness of the structure. This effect is introduced by

employing the empirical stiffness degradation function (4.43) for each of the three

plate elements. Numerical results are presented using that the initial crack sizes
are all equal tol, , =107, p=1,2,3. The crack growth predictions in this case

are shown in Figure 4.11 for the cases«f 0 and are compared to the crack
growth predictions obtained from the “constant stiffness — SM” method. As
expected, it can be seen that the lifetime reduces when the effect of stiffness
degradation due to crack growth is taken into account in the formulation.

The ratio 0 ,/0g 9, P=1,2,3, of the variancec? (t) of the axial stress
responseS, (1) obtained from the “stiffness degradation” method to the constant
variance o ,, obtained from the “constant stiffness — SM” method (non-

degrading structure) are shown in Figure 4.12 as a function of time. Also, the
stiffness reductionk(L,(t)) with respect to time due to degradatidy(t) is

shown in Figure 4.13. It can be seen that the variance ratios increases for all axial
stresses, indicating that degradation affects the response of the structure. The most
pronounced increase is manifested in the first subsystem. This increase has a
result of accelerating failure which occurs earlier for the first subsystem as
compared to the time of failure expected for non-degrading structure.

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 06:32:16 EEST - 18.191.238.119



4. Fatigue of Multi-Dimensional Vibratory Systems under Stochastic Loading

0
0 e

,,,,,,,,,,,,,,,

[ — =1 k=K(L)
|| e p=2 k=K(L)
|| - =3 k=K(L)
p=1, ¢=0
p=2, &=0
p=3, ¢=0

Crack Growth L

10

(Tl ER—

Time (sec)

165

Figure 4.11: Comparison of crack growth prediction obtained from the “stiffness

degradation” and the “constant stiffness — SM” methads@).
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4.6 Conclusions

In this Chapter, a general formulation and an effective method for predicting the
fatigue lifetime in randomly vibrating linear multi-degree-of-freedom
systems/structures have been presented. The analysis is based on the coupled
response-degradation model and it takes into account a wide-band spectrum of the
stress process.

The fatigue process is characterized by crack growth in the structural components
and is represented by Paris equation in which the stress range is evaluated form
the multi-dimensional random response of the system. Both the stiffness
degradation due to fatigue during the vibration, and non-degrading case are
considered. The stress range was approximated by either the spectral moments or
the empirically motivated and widely used Dirlik’'s probability distribution. The
prediction capabilities of the proposed analyses were demonstrated using special
classes of single and multi-degree of freedom structural systems. For the
formulation based on spectral moments in the non-degrading case, it was
demonstrated that the inclusion of the spectral width parameter in the model
prolongs the time of failure of the system. For the formulation based on Dirlik’s
formula in the non-degrading case, more conservative estimates of failure times
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corresponding to small failure probabilities were obtained than the estimates
provided by the spectral moments which correspond to failure probabilities very
close to one. Finally, it was demonstrated that stiffness degradation accelerates
failure due to fatigue in the various structural components.
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CHAPTER 5 Fatigue-Based Design Optimization of

Truss Structures

5.1 Introduction

In this Chapter, a methodology for design optimization of truss structures taking
into account the fatigue lifetime, is proposed. Combining the methodology for
system design optimization presented in Chapter 2 and the methodology for
fatigue lifetime prediction presented in Chapter 4, one can optimize a dynamic
system for maximum lifetime under the influence of loading uncertainties. The
proposed methodology takes advantage of the simplicity of the solution for the
crack length growth given in (4.35), assuming stationarity of the response and
independence of the shape facBifrom the crack length, in order to construct an
efficient objective function needed in formulating the performance function for
the fatigue — based design optimization.

This Chapter is organized as follows. First, the general governing equations for
the fatigue crack length growth in the case of stationary and broad band response
are presented, along with the formulation of the design optimization problem
based on fatigue. The similarities and differences with the case of stress — based
design optimization presented in Chapter 3 are also underlined. Next, the
sensitivities of the objective function with respect to the design variables are
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obtained, using the adjoint method, in order to efficiently and accurately estimate
the derivatives for the optimization problem. Finally, the proposed methodology is
applied on the sizing and topology optimization of a two dimensional truss
structure. The optimal configurations are presented and compared with the
optimal configurations obtained for Case G of the stress — based performance
function in Chapter 3.

5.2 Optimization Based on Fatigue

For the optimization of a structure for maximum fatigue lifetime, an efficient
expression for the prediction of this lifetime has to be obtained. In order to
achieve this, the following assumptions are be made. First, one assumes that the
response is stationary and therefore the second momént)=1,, are

independent of time. Second, independence of the shape &dtom the crack
length is assumed, which is valid for crack lengths that are relatively small
compared to the width of the member.
Under these assumption, the crack growth lerigfft) as a function of time
can be straightforward computed by solving (4.12) to obtain:

(-2

2

Hp p (1%]
L, ()= ( —7Jdp(Asp) "+ L, (5.1)
whered, is given by

’ 7 p/2
d, =C, B 7" (5.2)

for p=1,...,N, andAs, is given by

As, = 272, (1-€2) (5.3)

where ¢, is the spectral width parameter= (l—az)m, a=24,1\JiA, and 4,
A,, 4, are the spectral moments the stress process(df for the memberp.
Equivalently, the timet, corresponding to crack growth length,(t;As;) of
member p is given by:

Hp

t, = (1—%)1 d,*(as,) {[ Lp(tAsp)](lﬂzp] -[ LM}@Z]} (5.4)
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The time of failuret, , is computed as the time for whidh, (t;As) approaches

p.cr

the critical crack length- Under the assumption that the initial crack length

p,cr*

L, and the critical crack length . are analogous to the width of the plate, and

p,cr

therefore the cross sectional ar,e,afor constant thickness, that is
L,o=2aA, (5.5)
Locit = bAb (5.6)

the equation (5.4) yields
-1 Hp Hp Hp
AR I 4
%“:[_éq d,'(As,) ( f Zq 2 (5.7)

and by substitutingAs, by the equation (5.3) one derives that the critical time for

failure is given by
te :( —7j d, (272') 2 Ao 2 (1—gp) 2| g _b

Given a and b, the critical time for failure of a membep depends on the
second — order statisticg,, 4, and 4, of the stress response process and the
cross — sectional ared, of the membermp .

$5J (5.8)

5.2.1 Objective Function

After obtaining a suitable expression for the prediction of fatigue lifetime, an

equivalent objective function for the optimization of the lifetime of the structure

can be formulated as the weighted sum of the inverse of the lifetime of the
structural members, normalized by typical lifetimes of these member.
Specifically, the design optimization problem is formulated as follows. Find the

values that minimize the objective

Ny t
J@=;%§§5 (5.9)
subject to
AQ+QA + BSB=0 (5.10)
VEY, (5.11)
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gnin £ g £ gnax (512)
wheret ; is a typical time of failure for each membpr of the structure and can

be chose as the critical time of failure that corresponds to all members of the truss
structure to have a pre-selected cross — sectional area eqygl.tdhat is

o ‘%jld'%zﬂ)% sy ?[ A

where ﬁﬂvp and £, are the second moment and spectral width parameters that
correspond to cross sectional aregs .

By substituting the equations (5.8) and (5.13) in (5.9), the objective function

yields
“o o #p2
N, A (@))2[1=-£%)2 P2l 2
J(0) = ZJ ©) =z [ O;P(—)] ( 83} (A’(—)] (5.14)
p=1 p=1 lo,p 1—8p Ab,p
Selecting the weights/, in the form
M /‘p _Hp—2
W, =W,y 2 (1-22) 2 A2 (5.15)
the objective function takes the form
Ny Hp My Hp2
IO =D W42 (1-£2) 2 A2 (5.16)
p=1

that is the objective function for maximizing the fatigue lifetime of a structure is
only a function of the variance of the stresses developed on each truss member,
and the cross sectional area.

It is observed that, since the value of the constan$ equal to 3.89 for steel, the
exponent of the spectral momeht is close to two. Additionally, the exponent of

the cross sectional area is close to unity. Therefore, the objective function for the
fatigue optimization problem is a generalization of the objective function
developed for the case of the optimization for the stresses in a dynamic system. In
particular, the objective function for the design optimization based on the stresses
iIs a special case of the objective function for the design optimization based on
fatigue with ¢, — 0, the exponentu/2 selected to be equal to one and the

exponent(u—2)/ 2 selected to be equal to zero.
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5.2.2 Derivatives of the Objective Function

The sensitivities of the objective function for theh member of the structure,
assuminge, — 0, with respect to thpth design variable is given by

03, u A= TN
P_pwa 2 + wWA2A2 —2 5.17
ag] 2 p pr Ap PﬂoypAp ae] ( )

Therefore, the derivative of the objective function is given by adding uiNthe
terms of (5.17)

Ny 5J ”p’z Hp  pp—h
2Dy z’upwp Ao.p —W%ZAZ -
00, +100, 2 ’ 89
(5.18)
oQ -2 4 ”124
=tr|E—= |+ w; 4,
( o0 j 2 01
where E is a diagonal matrix with thieth diagonal element given by
#o2 M2
E; :%V\Mo,i2 A? (5.19)
Q. . . , . .
and —< is the gradient of the matrix of the stresses in each member with respect

i
to the paramete#, . Noting that the covariance matrix of the stresses is connected

to the covariance matrix of the displacements through the relationship

Q, =CQC (5.20)
the derivative of the stress covariance matrix is given by
Q = C@ o (5.21)
00, 00,

By introducing the equation (5.21) in (5.18) one has

—2 momh
Ny Ec@d}—ﬂ’ Wi A? =
26, 26, 2
_2  H A
—tr CTEC%}FMTW]%O?] A? = (5.22)
i
oQ )| u—2 A 4
=tr Z@]—FITW])“O,Z]A‘] 2
]
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where
>=C'EC (5.23)

Following adjoint method presented in Chapter 2, the derivatives of the
augmented objective functiod (4) with respect to the design variablés are

given by
. . ;
ﬂ:_tr{A(%QJrQaA D—tr{/\(@s’* g +B8sS N+
20, 80, 80, 80, 80, (5.24)
Y
LA w12 A 2

where A satisfies the adjoint equation
AA+ AA-3=0 (5.25)
defined in Chapter 2.

5.3 Design Optimization of Truss Structures under Stochastic
Fatigue

In the following paragraph results for the case of design optimization under
fatigue on truss structures, are presented. The structure that is optimized is the
truss structure described in Chapter 3. In order to apply the proposed
methodology, it is assumed that the width of each truss member is much greater
than the thickness, and therefore each member behaves as plate. For
demonstrating the effectiveness of the methodology, failure due to buckling of the
members is neglected in the design optimization. However, such failure criteria
could be introduced in the optimization. The performance function is selected to
be the weighted sum of the expected fatigue lifetime of the truss members of the
structure, with all the weights chosen to be equal. In this case, the optimization
problem is stated in (5.9) - (5.12), Additionally, an additional nodal mass equal to
5kg divided by the degrees of freedom of each system is added at all the nodes of
the truss structure. The volume consteptis chosen to be equal i@ °m°. The

value of the power spectral density of the white noise excitation is chosen to be
equal to 1000. For simplicity and illustration purposes, results are presented in for
the case ine, — 0 in (5.3). Also, the value of the Young’s modulus is considered

to be equal to one, when used in the estimation for the m@atiix(5.20).
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The optimal truss structures that consist of one up to ten base artze

presented in Figure 5.1 to Figure 5.10. Additionally, in Table 5.1 are shown the
optimal values of the objective functiah for the different structures of one up to

ten base parts, information which is also plotted in Figure 5.11. Note that in Table
5.1 an additional column with the values of the objective funcfioris shown.

The objective functionJ” is chosen to be equal to the maximum fatigue lifetime
across the lifetimes calculated at the truss elements. This definition is very useful
when one needs to compare the optimal solutions of structures with different
number of base parts. This comparison is not useful using the objective function
J, as the number of the truss members at the optimal solution change with respect
to the number of base parts, thus the number of terms in the summation of the
objective functionJ also changes. Therefore, in order to define the optimal
solution between the optimal solutions with different number of base parts, the
objective functiond” should be used. The values of the objective funcliothat
correspond to the optimal solutions are presented Figure 5.12. It is observed that
the structure with the minimum value of the objective functionconsists of one

base part, that is the optimal structure for loading is the structure that is shown in
Figure 5.1.

It is observed that the optimization trend is similar to the optimization trend
observed in Case G of the optimization using as performance function the
weighted sum of the stresses in the truss members. That is all vertical members
are eliminated, except for the case of two base parts, where two vertical members
are not eliminated. Furthermore, the middle horizontal members are also
eliminated, whereas the bottom and top edge horizontal members are kept in
place. It should be noted that for all base parts considered, the values at the top
and bottom horizontal members are decreasing as one moves from the left towards
the right side of the structure. Additionally, the values of the cross sections of the
diagonal members that are kept in place also show this decreasing behavior, from
the left towards the right side of the structure. Similarly to the case of stress —
based performance function, the cross sections of the diagonal elements close to
the right end tend to increase.

Similar to Case G, local optimal solutions also exist for this case and for four base
parts. These local optimal topologies are presented in Figure 5.13 and in Figure
5.14. The values of the objective function are equal0t6664% 10° and
0.06186¢< 1@ for the local optimal solutions respectively, whereas the value for
the global solution shown in Figure 5.4 is equadi05739% 1C°.
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It is also worth mentioning that up to six base parts the optimal structure is, as
should be expected, symmetric with respect to the middle horizontal axis.
However, for seven up to ten base parts such symmetry did not arise in the
numerical optimization. In fact, an asymmetric structure was obtained, which is
contrary to the expectations. The asymmetric solution can be considered to be a
local solution. The global symmetric solution for such problems was not predicted
numerically. In such cases of asymmetrical solutions, the mirrored structure with
respect to the horizontal middle axis is also a solution of the topology
optimization is also a local solution. One such mirrored optimal structure is shown
in Figure 5.15 for the case of seven base parts, noting that the value of the
objective function is equal to the initial solution shown in Figure 5.7.
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Figure 5.1: Optimal solution for one base part.

0.126

0.126

Figure 5.2: Optimal solution for two base parts.
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0.106 0.105

0.106 0.105

Figure 5.3: Optimal solution for three base parts.

0.102 0.064 0.064

0.102 0.064 0.064

Figure 5.4: Optimal solution for four base parts.
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0.071 0.071 0.045 0.045

0.071 0.071 0.045 0.045

Figure 5.5: Optimal solution for five base parts.

0.066 0.050 0.050 0.033 0.033

0.066 0.050 0.050 0.033 0.033

Figure 5.6: Optimal solution for six base parts.
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0.043 0.043 0.037 0.037 0.022 0.022

0.051 0.051 0.032 0.032 0.027 0.027

Figure 5.7: Optimal solution for seven base parts.

0.045 0.0410.041 0.027 0.027 0.021 0.022

0.049 0.034 0.034 0.0290.0290.016 0.018

Figure 5.8: Optimal solution for eight base parts.
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0.0400.040 0.0270.0270.0230.023 0.013 0.014

0.037 0.0370.0340.0340.0230.0230.0170.018

Figure 5.9: Optimal solution for nine base parts.

0.036 0.032.0320.0220.022 0.0200.0200.011 0.012

0.040 0.0310.0310.0270.0270.0190.0190.0140.014

Figure 5.10: Optimal solution for ten base parts.
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Table 5.1: Values of the objective function for one to ten base parts.

Parts J (x10°) J" (x10°)
1 0.02489 0.00995
2 0.05866 0.2201
3 0.05417 0.1762
4 0.05739 0.2172
5 0.05764 0.2129
6 0.05840 0.2678
7 0.06008 0.3237
8 0.06425 0.3276
9 0.06775 0.3358
10 0.07160 0.3489
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x 10°

8,,,,,L,,,,L,,,,L,,,,L,,,,J,,,,J,,,,J,,,,,

Number of parts

Figure 5.11: Optimal values of the objective functidnwith respect to the

number of base parts of the structure.

x 107

3,,,,,L,,,,L,,,,L,,,,L,,,,J,, g [

3.5

2
15

10

Number of parts

*

Figure 5.12: Optimal values of the objective functidn with respect to the

number of the parts of the structure.
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0.080 0.059 0.059

0.080 0.059 0.059

Figure 5.13:Local optimal solution for four base parts.

0.077 0.077 0.045

0.080 0.079 0.048

Figure 5.14:Local optimal solution for four base parts.
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0.051 0.051 0.0320.032 0.027 0.027

0.043 0.043 0.037 0.037 0.022 0.022

Figure 5.15: Asymmetricakolution for seven base parts.

5.5 Conclusions

A methodology is proposed for design optimization taking into account the
fatigue lifetime of the system under the influence of stochastic dynamic loadings.
Assuming independence of the shape fa@®ofrom the crack length, an simple

and efficient objective function for the optimization problem is constructed.
Certain similarities between the fatigue — bases performance function and the
stress — based performance function are revealed. It is shown that the stress —
based performance function is a special case of the fatigue — based performance
function, resulting by appropriately choosing the exponents arising in the
formulation for the fatigue — based performance function. The derivatives of the
objective function with respect to the design variables are shown that can be
effectively estimated using the adjoint method. The proposed methodology is
applied on the sizing and topology optimization of two dimensional truss
structures, constructed with different number of base parts, under white noise
excitation.

It is shown that the optimal configurations obtained for the truss structures are
quite similar to the results obtained for Case G of the stress — based performance
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function in Chapter 3, as expected, due to the fact that the performance functions
for these two cases are proven to be similar. It is also shown that the optimal
configuration in this case consists of one base part, as in Case G, despite the slight
differences at the formulation of the objective function. Also, multiple local and
global solutions may arise, as it was shown in the case of the structure that
consists of four base parts. Such local solutions complicate the optimization
problem and the search for the global optimum using gradient — based
optimization algorithms. Additionally, asymmetrical solutions may also arise,
along with the mirrored asymmetrical solution. These asymmetrical solutions
were at first considered to be local optimal solutions. However, extensive
numerical search using different initial values of the design variables has not
yielded better symmetrical solutions. Therefore, these asymmetrical solutions
where accepted as global optimal solutions.
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CHAPTER 6 Conclusions — Future Work

6.1 Conclusions

The problem of design optimization of dynamic systems under stochastic
excitations was addressed in this thesis. Methodologies for design optimization of
structures under stochastic dynamic loadings, were proposed. In addition,
methodologies for the estimation of fatigue lifetime and reliability of structures
were developed. The methodologies use second moments of the output stress
process in order to efficiently estimate the fatigue lifetime, in a coupled or non —
coupled response degradation framework. Finally, the fatigue lifetime prediction
methodologies were incorporated into the design optimization methodology based
on fatigue lifetime performance indices as well.

An innovative methodology for the optimization of the performance of multi-
degree-of-freedom systems, under stochastic dynamic excitations was presented.
The design optimization was formulated as a constrained optimization problem,
with the objective function related to structural performance measures, the
inequality constrains related to cost measures and the equality constrains related
to the governing equations of motion of the system. The performance measures
were associated with the second order statistics (e.g. variance). The performance
of the system response was quantified by different measures of the response, such
as the weighted sum of the variance of the nodal displacements or the weighted
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sum of the variance of the developed stresses in the structural parts. The variance
of the response quantities was conveniently obtained by solving the Lyapunov
equation for the system. The adjoint formulation was used in order to efficiently
and accurately estimate the derivatives of the objective function with respect to
the design variables, thus minimizing the computational effort needed to estimate
the derivatives numerically. The formulation of the optimization problem was
presented for both Gaussian white noise excitation and filtered white noise
excitation. The proposed methodology has been extended to the modal space, in
order to take advantage of the efficiency of modal analysis, by using a limited
number of contributing modes for the estimation of the system response, under
white and filtered noise excitation. Finally, the proposed methodology was
applied on the sizing optimization of a simple 2DOF bar — mass system in order to
illustrate its applicability. It was shown that the optimal results for different cases
of performance functions are slightly different.

The proposed methodology for design optimization of structures under stochastic
dynamic excitations was applied on the sizing and topology optimization of truss
structures. An iterative method for the simultaneous optimization of the size and
the topology of trusses was developed. Different types of performance functions
were used, such as the weighted sum of the variance of the nodal displacements or
the weighted sum of the variance of the developed stresses in the structural
members. The cross sectional areas of the truss members, as well as the location
and the number of nodes were chosen as the design variables. First, the
methodology of design optimization under deterministic static load was
considered, using as performance function the displacement of the system along
the degree of freedom on which the loading is imposed, and the weighted sum of
the displacements at all the degrees of freedom. The optimal results presented,
showed similar trends with slight differences between the two cases, as far as the
optimal cross sectional areas are concerned. It has also been shown that local
optimal solutions may appear for specific cases, that complicate the search for the
global optimal solution using gradient based optimization algorithms.

The modal space approach was also applied on the sizing and topology
optimization of truss structures, in order to examine how the use of limited

number of contributing modes in the estimation of the variance of the response
affects the optimal solutions. It was shown that, in many cases, a small fraction of
contributing modes in relation to the DOF of the structure can lead to quite

satisfactory results compared to the optimal results obtained in the previous cases.
In particular, for the example case considered, for ten contributing modes, the
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optimal results are almost identical to the optimal structures obtained at the

previous case. This fact can lead to a significant reduction of the computational

cost of the optimization in many cases. Finally, it was shown that if all the modes

of each system contribute to the estimation of the variance of the response, the
results are identical to the results obtained for the time domain method, with

minor differences been attributed to the different models used for of the system

damping.

A general formulation and an effective method for predicting the fatigue lifetime

in randomly vibrating linear multi-degree-of-freedom systems/structures was also
proposed. The analysis is based on the coupled response-degradation model and it
takes into account a wide-band spectrum of the stress process. The fatigue process
is characterized by crack growth in the structural components and is represented
by Paris equation in which the stress range is evaluated form the multi-
dimensional random response of the system. Both the stiffness degradation due to
fatigue during the vibration, and non-degrading case were taken under
consideration. The stress range was approximated by either the spectral moments
or the empirically motivated and widely used Dirlik’s probability distribution. The
prediction capabilities of the proposed analyses were demonstrated using special
classes of single and multi-degree of freedom structural systems. For the
formulation based on spectral moments in the non-degrading case, it was
demonstrated that the inclusion of the spectral width parameter in the model
prolongs the time of failure of the system. As far as the formulation based on
Dirlik’'s formula in the non-degrading case is concerned, more conservative
estimates of failure times corresponding to small failure probabilities were
obtained, than the estimates provided by the spectral moments, which correspond
to failure probabilities very close to one. Finally, it was shown that stiffness
degradation accelerates failure due to fatigue in the various structural components.

Finally, a methodology for design optimization taking into account the fatigue
lifetime of the system under the influence of stochastic dynamic loadings, was
proposed. Assuming stationary, broad - band response, a simple objective
performance function for the optimization problem was constructed. The
sensitivity of the objective function with respect to the design variables was
shown that can be very effectively estimated using the adjoint formulation. The
proposed methodology was also applied on the sizing and topology optimization
of truss structures, under white noise excitation. As far as the sizing problem is
concerned, it was shown that the optimal configurations obtained by optimizing
the fatigue lifetime of the structure are quite similar to the optimal configurations
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obtained minimizing the stresses. This is due to the fact that the performance
functions for these two cases are proven to be closely related.

6.2

Future Work

In the future, this work can be extended to address the following issues:

Include the uncertainty of the structural parameters. The problem of the
uncertainty at the nodal coordinates can be addressed, as well as the
uncertainty of the material properties, such as the Young’s modulus and/or
the density of the material. Both these cases require the calculation of the
expected value of the stiffness and mass matrices of the system, as well as
their sensitivities to the design variables in order to take advantage of the
adjoint formulation for more efficient optimization.

Extend the applications to optimize two or three-dimensional truss structures
or general two or three-dimensional probabilistic systems, such as plates,
shell, beams or solid finite element models.

Extend the optimization framework to account for non stationary stochastic
excitations models. Existing models which simulate ground motion could be
used, such as the general non-stationary model proposed by Atkinson and
Silva (2000).

Generalize the fatigue lifetime prediction problem to account for biaxial and
multi-axial stress states. In order to achieve this, a different measure of the
stress range should be used. Such a measure could be the covariance of an
equivalent stress, such as the Tresca or Von Misses equivalent stress.
Additionally, structural uncertainty can also be included in the
methodologies, such as uncertainty in the material properties.

Apply all the aforementioned extensions in the design optimization under
fatigue. Specifically, as a first step, broad band stochastic excitations can be
included in the model, simply by allowing non-zero spectral width
parameters and recalculating the sensitivities of the objective function with
respect to the design parameters. Furthermore, the fatigue-induced stiffness
degradation of the structural parts that contain the crack can be introduced
into the objective function. Additionally, the methodology can be augmented
to include structures, that two or three dimensional stress fields are
developed, by using as a measure of the stress range, the covariance of an
equivalent stress, as discussed previously. On the other hand, in order to
evaluate the expected fatigue lifetime for the optimization, available
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frequency domain stochastic fatigue methods based on Palmgren-Miner
damage rule, S-N fatigue curves can be used (Palmgren, 1924, Miner, 1945).

o Extend the performance function to account for failure probability instead of
second order statistics.

o Incorporate in the design optimization framework, component mode
synthesis techniques. Using such methodologies, one could optimally design
a component of a complex structure, given the design of the other
components.
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