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NUMERICAL SIMULATION OF STEEL MEMBER RESPONSE 

 UNDER STRONG CYCLIC LOADING 

by 

GEORGIOS Ε. VARELIS 

University of Thessaly, Department of Mechanical Engineering, 2013 

Abstract 

The present study examines the behavior of steel structures subjected to 

strong cyclic loading, associated with severe plastic deformations at critical 

locations. In particular, it aims at the detailed examination of mechanical 

behavior of tubular members and welded tubular joints, using numerical 

simulation tools, with emphasis on the constitutive model. It should be noted 

though that the numerical models described within this study can be applied to 

any type of steel members, regardless the geometry. 

A key feature of this study is the theoretical formulation and the 

numerical implementation of the Tseng-Lee model (Tseng & Lee, 1983). This 

model is considered as an advanced plasticity model, representative of the 

models adopting the “bounding surface” concept. The theoretical formulation 

and the numerical integration scheme are described in detail. The material 

model is implemented in ABAQUS, developing a user-material subroutine UMAT. 

Finally, modifications of the model that enhance its predicting capabilities are 

presented. The capabilities of this model are also presented through the use of 

illustrative examples. 

In the first part of the study, the mechanical behavior of tubular members 

subjected to cyclic bending is examined. A set of experiments conducted on high-

strength steel tubular members conducted in Centro Sviluppo Materiali (CSM) is 

presented and numerical models are developed for the simulation of the tests. 

Emphasis is given on the buckling phenomena that take place due to the 

accumulation of local plastic deformations (ratcheting effect) in combination 

with the evolution of initial geometrical imperfections in the form of wrinkles.

 The behavior of steel elbows subjected to strong in-plane cyclic loading is 

also examined. Cyclic loading pressurized and non-pressurized tests have been 

conducted in the laboratories of TU Delft and CSM in order to evaluate the 

elbows capacity of undergoing severe bending loading associated with extensive 

plastic deformations and cross-sectional distortion in terms of flattening. 

Advanced numerical models have been developed for the simulation of this 

behavior adopting both the nonlinear kinematic hardening and the bounding 
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surface cyclic plasticity material models. Based on the analysis results, low-cycle 

fatigue design curves are also developed and an integrated fatigue design 

methodology accounting for the pressure effects is introduced. Finally, issues 

related to relevant design code provisions are discussed. 

The behavior of tubular joints made of high-strength steel and subjected 

to severe in-plane, out-of-plane bending and axial loading is studied in the last 

chapter of the present study. A set of experiments has been conducted in the 

Laboratory of Concrete Technology and Reinforced Concrete Structures of the 

Civil Engineering Department of the University of Thessaly on welded tubular X-

connections and the experimental results are compared with the corresponding 

numerical results provided by detailed numerical models. The overall structural 

behavior of the joints under monotonic and cyclic loading conditions, as well as 

stress and strain concentrations at the weld toe area of the joint, are studied 

thoroughly through a parametric analysis. An attempt to extend the currently 

available fatigue curves from the high-cycle fatigue range to the low-cycle fatigue 

regime is also presented.  
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ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΟΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ 

ΜΕΤΑΛΛΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΣΕ ΙΣΧΥΣΡΗ ΚΥΚΛΙΚΗ ΦΟΡΤΙΣΗ 

υπό 

ΓΕΩΡΓΙΟΥ Ε. ΒΑΡΕΛΗ 

Πανεπιστήμιο Θεσσαλίας, Τμήμα Μηχανολόγων Μηχανικών, 2013 

 

Περίληψη 

  Ο σκοπός της παρούσας εργασίας είναι η λεπτομερής εξέταση της 

δομικής συμπεριφοράς και η εκτίμηση της οριακής αντοχής (σχετικά 

λεπτότοιχων) επιμηκών μεταλλικών κελυφών (π.χ. δομικών στοιχείων ή 

τμημάτων αγωγών) που υπόκεινται σε έντονη κυκλική φόρτιση συσχετισμένη 

με ανελαστική συμπεριφορά του υλικού. Η έρευνα διεξάγεται με αριθμητικά 

εργαλεία που βασίζονται στη μη-γραμμική ανάλυση των κατασκευών με τη 

χρήση πεπερασμένων στοιχείων. Ο κύριος στόχος της εργασίας είναι η ανάπτυξη 

ενός καταστατικού μοντέλου κυκλικής πλαστικότητας που περιγράφει επαρκώς 

τη συμπεριφορά του υλικού στην ανελαστική περιοχή, καθώς και η 

ενσωμάτωση του μοντέλου αυτού σε έναν μη-γραμμικό κώδικα πεπερασμένων 

στοιχείων.  

 Στη συνέχεια, τα αριθμητικά εργαλεία που έχουν αναπτυχθεί 

χρησιμοποιούνται για την επίλυση τυπικών προβλημάτων που σχετίζονται με τη 

δομική συμπεριφορά και αστοχία μεταλλικών στοιχείων υπό κυκλική φόρτιση. 

Παρά το γεγονός ότι η μεθοδολογία αντιμετώπισης των προβλημάτων κυκλικής 

καταπόνησης μεταλλικών στοιχείων που εξετάζεται μπορεί να εφαρμοστεί σε 

δομικά στοιχεία τυχαίας γεωμετρίας, στην παρούσα εργασία δίνεται έμφαση 

στη μελέτη επιμηκών κυλινδρικών στοιχείων κυκλικής διατομής. Τέτοια 

στοιχεία χρησιμοποιούνται ευρέως σε δικτυωτές κατασκευές που 

χρησιμοποιούν σωληνωτά στοιχεία (θαλάσσιες πλατφόρμες, ιστοί κ.τ.λ.), σε 

κτηριακές κατασκευές όπου χρησιμοποιούνται κυκλικά υποστυλώματα ή 

κυκλικοί σύνδεσμοι δυσκαμψίας, σε βιομηχανικά στοιχεία σωληνώσεων καθώς 

και χαλύβδινα στοιχεία αγωγών (επίγειων και υποθαλάσσιων).  

 Κομβικό σημείο της παρούσας διατριβής αποτελεί η αναλυτική εξέταση 

του καταστατικού μοντέλου κυκλικής πλαστικότητας Tseng-Lee. Το 

συγκεκριμένο μοντέλο αποτελεί χαρακτηριστικό δείγμα των καταστατικών 

μοντέλων που υιοθετούν την έννοια της «οριακής επιφάνειας». Οι καταστατικές 

σχέσεις με βάση τις οποίες περιγράφεται η συμπεριφορά του υλικού υπό 

συνθήκες έντονης κυκλικής φόρτισης στην πλαστική περιοχή παρουσιάζονται 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:43:48 EEST - 3.145.36.43



x 
 

λεπτομερώς. Ακολούθως παρουσιάζεται αναλυτικά η διαδικασία ενσωμάτωσης 

του μοντέλου σε πηγαίο κώδικα πεπερασμένων στοιχείων και στο πρόγραμμα 

ABAQUS. Τέλος, προτείνεται μια σειρά τροποποιήσεων που ενισχύουν την 

ικανότητα του μοντέλου να προβλέπει με ακρίβεια την συμπεριφορά του υλικού 

υπό τις παραπάνω συνθήκες. Με βάση το παραπάνω καταστατικό μοντέλο 

διεξάγεται η μελέτη μιας σειράς προβλημάτων που σχετίζονται με φαινόμενα 

κυκλικής πλαστικότητας μεταλλικών στοιχείων έχοντας ως βάση προγενέστερα 

πειραματικά και αριθμητικά αποτελέσματα. 

 Αναλυτικότερα, το πρώτο πρόβλημα υπό εξέταση αφορά τη δομική 

συμπεριφορά σωληνωτών στοιχείων από χάλυβα υψηλής αντοχής σε συνθήκες 

κυκλικής φόρτισης. Η έρευνα βασίζεται σε μια σειρά πειραμάτων που 

διεξήχθησαν στα εργαστήρια του CSM σε σωληνωτά στοιχεία από χάλυβα 

υψηλής αντοχής. Λεπτομερή μοντέλα πεπερασμένων στοιχείων που υιοθετούν 

το καταστατικό μοντέλο υλικού που αναπτύχθηκε χρησιμοποιούνται για την 

αριθμητική προσομοίωση των πειραματικών αποτελεσμάτων. Ακολούθως 

πραγματοποιείται περαιτέρω αριθμητική ανάλυση της συμπεριφοράς των 

παραπάνω στοιχείων υπό συνθήκες κυκλικής κάμψης. Έμφαση δίνεται στο 

φαινόμενο του τοπικού λυγισμού υπό την παρουσία σημαντικών πλαστικών 

παραμορφώσεων και στην επιρροή των αρχικών γεωμετρικών ατελειών στο 

φαινόμενο του κυκλικού λυγισμού.  

 Μελετάται επίσης η συμπεριφορά καμπύλων στοιχείων σωληνώσεων 

(elbows) υπό την επίδραση κυκλικής κάμψης με ή χωρίς την παρουσία 

εσωτερικής πίεσης. Η μελέτη διεξάγεται με τη χρήση λεπτομερών μοντέλων 

πεπερασμένων στοιχείων στα οποία υιοθετείται το μοντέλο κυκλικής 

πλαστικότητας με μη-γραμμική κινηματική κράτυνση καθώς και το μοντέλο 

υλικού που αναπτύχθηκε στα πλαίσια της παρούσας διατριβής. Τα αριθμητικά 

αποτελέσματα συγκρίνονται με αντίστοιχες πειραματικές μετρήσεις από 

πειράματα που διεξήχθησαν στα εργαστήρια του Πανεπσιτημίου Delft και του 

CSM, στα οποία εξετάστηκε η συμπεριφορά των στοιχείων αυτών σε συνθήκες 

έντονης κυκλικής κάμψης που έχει ως συνέπεια σημαντικές πλαστικές 

παραμορφώσεις. Ακολούθως, με βάση τα πειραματικά και αριθμητικά 

αποτελέσματα, προτείνεται μια ολοκληρωμένη μεθοδολογία πρόβλεψης 

αστοχίας των εν λόγω στοιχείων από ολιγοκυκλική κόπωση.   

 Στο τελευταίο μέρος της παρούσας διατριβής εξετάζεται η δομική 

συμπεριφορά σωληνωτών κόμβων από χάλυβα υψηλής αντοχής υπό την 

επίδραση ισχυρών κυκλικών φορτίων κάμψης εντός και εκτός επιπέδου, καθώς 

και αξονικής φόρτισης. Η συγκεκριμένη μελέτη βασίζεται σε μια σειρά 

πειραμάτων σε σωληνωτούς κόμβους μορφής Χ (X-joints) που διεξήχθησαν στο 

Εργαστήριο Τεχνολογίας και Κατασκευών Οπλισμένου Σκυροδέματος του 

Τμήματος Πολιτικών Μηχανικών του Πανεπιστημίου Θεσσαλίας. Για την 

αριθμητική προσομοίωση των πειραμάτων δημιουργήθηκαν λεπτομερή μοντέλα 

πεπερασμένων στοιχείων στο πρόγραμμα ABAQUS.  Το καταστατικό μοντέλο 

που αναπτύχθηκε στα πλαίσια της παρούσας διατριβής χρησιμοποιείται στις 
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προσομοιώσεις και τα αποτελέσματά του συγκρίνονται με τα αντίστοιχα 

πειραματικά. Έμφαση δίνεται στη συνολική συμπεριφορά των κόμβων, στα 

φαινόμενα τοπικής συγκέντρωσης τάσεων και παραμορφώσεων καθώς και στα 

φαινόμενα ολιγοκυκλικής κόπωσης στις περιοχές συγκέντρωσης τάσεων. 

Επίσης, χρησιμοποιώντας λεπτομερή αριθμητικά μοντέλα πεπερασμένων 

στοιχείων, πραγματοποιείται μια παραμετρική μελέτη της επιρροής των 

γεωμετρικών χαρακτηριστικών των σωληνωτών κόμβων στη δομική τους 

συμπεριφορά. Τέλος, επιχειρείται η επέκταση των διαθέσιμων καμπύλων 

κόπωσης από την πολυκυκλικλή στην ολιγοκυκλική περιοχή.  
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Chapter 1 

Introduction 
 

1.1 Severe cyclic loading of steel tubular members and pipe 

components 

 A wide range of applications from the structural and mechanical 

engineering field involve cyclic loading of metal structures and components well 

beyond the elastic regime. Even in structures that are designed to perform 

elastically, cyclic plastic actions often occur due to local discontinuities. This 

necessitates the prediction of metal cyclic behavior in the inelastic range through 

simple and robust cyclic plasticity models. Some indicative engineering problems 

associated with cyclic plasticity will be briefly discussed in the following 

paragraphs, to provide a framework for the present study. 

 In particular, applications where steel tubular members and pipes are 

subjected to severe cyclic loads are quite common in engineering practice. Severe 

cyclic loading induces repeated yielding of the steel material in the most strained 

locations. Typical examples are the response of tubular structures under strong 

earthquake action [Zayas et al.  (1982)], offshore tubular platforms in extreme 

weather conditions [Bea & Young  (1993), Schmucker and Cornell  (1994)], 

nuclear reactor piping components under shut-down conditions [Shmnomura et 

al. (2002),] or hot hydrocarbon pipelines under significant variations of pressure 

and temperature [Klever et al. (2002)].  Those cyclic excursions into the inelastic 

range can lead to degradation and failure of structures due to accumulation of 

deformations and fatigue fracture, especially when they are combined with the 

presence of geometrical imperfections.  

 Failure due to cyclic loading, in the form of fatigue cracking is a well-

known engineering problem related to the important issue of structural 

integrity. Many engineering failures of metal structures have been attributed to 

this phenomenon over the years. Depending on the number of cycles, fatigue is 

categorized into high or low-cycle fatigue. For loading cycles up to about 104, the 

structural problem is in the range of low-cycle fatigue, while for loading cycles 

exceeding this nominal limit, the problem is referred to as high-cycle fatigue 

problem.  

High-cycle fatigue is associated with varying loads significantly lower than 

the elastic limit. Of course, due to material defects, geometrical discontinuities 

(e.g. sharp edges and cuts, welds or cracks) the material may be plasticized 

locally. The local cyclic loading induces material deterioration which causes 

crack initiation and propagation until total failure. However, the stresses in high-
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cycle fatigue are generally low and below the yield limit of the material. On the 

contrary, low and ultra-low cycle fatigue is associated with a small number of 

cycles of intense loading and repeated excursions of stresses and strains in the 

inelastic range. The maximum number of cycles that a structure can sustain is 

related directly to the ability of the material to maintain its strength and ductility 

under strong cyclic loading conditions. For understanding low-cycle fatigue, the 

accurate description of metal behavior in the inelastic range under repeated 

loading is necessary, motivating the development of efficient cyclic plasticity 

constitutive models. 

In addition to low-cycle fatigue problems, a significant motivation for 

developing cyclic plasticity models is the simulation of metal forming. In the 

mechanical engineering field, simulation of metal forming has significant 

applications in the oil & gas, pipeline, aerospace and automobile industry. In 

particular, numerous metal components such as industrial pressure vessels and 

pipeline components used to transmit or distribute hydrocarbon or other 

energy/water resources, widely used in the chemical, petrochemical and power 

plant facilities, are the outcome of similar forming processes.  The cyclic loading 

of the material of these products during their fabrication process causes 

geometric imperfections, as well as fields of residual stresses and strains. As a 

consequence, the structural behavior of the final product is highly influenced by 

the manufacturing procedure and should be taken into account for the accurate 

assessment of their structural strength and integrity. Towards this purpose, the 

development and use of plasticity models, capable of describing metal behavior 

in the inelastic range under repeated loading is a key issue.  

 

1.1.1 The mechanical behavior of steel pipe elbows 

 The behavior of steel pipe elbows which constitute key components of 

industrial piping systems is an important issue for understanding the structural 

response of industrial facilities under strong cyclic loading. Pipe elbows, 

sometimes referred to as “bends”, are curved tubular elements that facilitate the 

change of the piping route direction, but because of their flexible structural 

response, they are capable of accommodating expansions and contractions of the 

piping system assembly due to severe variations of pressure and temperature. 

On the other hand, their initial curvature, the ensuing large ovalization of their 

cross-section and the presence of significant internal (or sometimes external) 

pressure significantly are responsible for their unique structural behavior. 

Failure of the elbows may occur in many different forms, with local or global 

buckling and fracture being the most critical ones.  Their performance under 

monotonic and cyclic loading due to operational and seismic actions has 

attracted the scientific interest.  

 Significant contributions on the experimental investigation of the 

behavior and strength of steel elbows under monotonic loading conditions have 
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been reported by Sobel and Newman (1980, 1986), Dhalla (1987), Gresnigt et al. 

(1986, 1995), Greenstreet (1978) and more recently by Hilsenkopf et al.(1988), 

Suzuki and Nasu (1989) and Tan et al. (2002). In addition, notable numerical 

works on steel elbows have been reported by Shaleby and Younan (1998), 

Mourad and Younan (2001), and Chattopadhyay et al. (2000). More recent works 

by the research group of the University of Thessaly [Karamanos et al. (2003, 

2006)] reported extensive numerical studies of steel elbow response under in-

plane and out-of-plane bending, which were extended by Pappa et al. (2008), to 

include the effects of external pressure. 

 The above works have focused on monotonic loading. In the course of a 

strong loading event (e.g. a strong earthquake), the elbows are subjected to 

strong repeated cyclic structural loading, associated with deformation of the 

steel material in the inelastic range, so that the elbow exhibits significant 

accumulation of plastic strain (often referred to as “ratcheting”), which 

eventually may lead to failure. Extensive experimental work on the ratcheting 

behavior of pressurized 2-inch carbon and stainless steel pipe elbows has been 

reported by Yahiaoui et al. (1996a), under an “increasing input displacement 

amplitude” loading. This work was continued in the study of Yahiaoui et al. 

(1996b) for out-of-plane bending, whereas Moreton et al. (1996) attempted to 

predict analytically the ratcheting rate and ratcheting initiation. Slagis (1998) 

reported an EPRI/NRC experimental testing program on carbon/stainless steel 

pipe elbows, through a shaking-table apparatus, for both component tests and 

piping system tests. Extensive experimental work was presented by Fujiwaka et 

al. (1999), through a series of material tests, pipe component tests and piping 

system tests (bent pipes, tees, and straight pipes).   

 Notable works on the analytical investigation of elbows under cyclic 

loading have been reported by Degrassi et al. (2003) and Balan & Redektop 

(2004). More recently, Rahman and Hassan (2009) presented an extensive 

analytical work on cyclic behavior of steel elbows, supported by small-scale 

experiments, focusing at the capabilities of several cyclic plasticity models in 

predicting ratcheting. All the above works demonstrated that when steel elbows 

are subjected to strong repeated loading, they exhibit failure associated with 

material degradation and eventually fatigue cracking. In many instances, the 

elbow cross-section distorted or bulged with increasing number of cycles. The 

analysis of steel elbows constitutes a significant application, to be examined in 

the present study. 

 

1.1.2 Tubular steel members under cyclic loading 

 In tubular steel structures, such as offshore platforms, mast, towers or 

cranes, the individual tubular members can be often subjected to strong cyclic 

loading and it is required that they have adequate resilience and a significant 

absorption capacity. At large deformations, the capacity of tubular members is 
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significantly affected by the ovalization of their cross-section and, eventually, the 

formation of a localized deformation pattern in the form of a “kink” or “local 

buckle”. Previous attempts to analyze this phenomenon for structural tubular 

steel members have been reported by a series of papers by Popov and his 

associates describing experimental work on scaled tubular structural systems 

under cyclic loading [Popov et al. (1980), Mahin et al. (1980), Zayas et al. (1982)] 

and by Sohal & Chen (1988), using a simplified beam-type model, enhanced for 

taking into account the effects of cross-sectional distortion and buckling. More 

recent research on the cyclic bending performance of tubular structural 

members under cyclic loading has been reported by Gao et al. (1998) and by 

Elchalakani et al. (2004), describing an experimental programs aimed at re-

examining bending ductility or slenderness limits for the case of cyclic loading. 

In the energy related industry, apart from the behavior of steel elbows, 

understanding the behavior of straight tubular members such as piping systems 

and pipelines is also considered very important. These members, when subjected 

to strong loading conditions, may undergo repeated yielding of the steel material 

in the most strained locations. The structural behavior of tubes under cyclic 

bending loading has been examined experimentally by Shaw & Kyriakides 

(1985) and Kyriakides & Shaw (1987), and this work has been extended by 

Corona & Kyriakides (1991) to include the effects of external pressure. Notable 

works on the cyclic bending response of tubular members and pipes have been 

also reported in Lee et al. (2001), Chang & Pan (2009) using an experimental set-

up very similar to the one in Corona & Kyriakides (1991), supported by 

analytical predictions based on a visco-plastic material model.  

 In addition to bending loading, described above, most recently, Jiao & 

Kyriakides (2009, 2010) have investigated meticulously the cyclic behaviour of 

steel pipes with respect to initial wrinkle imperfection. These studies indicated 

that there exist a strong interaction between the elastic-plastic behavior of the 

steel material and the geometric nonlinearities induced by initial wrinkles and 

the ovalization phenomenon, resulting in an accumulation of deformation at the 

critical region which leads to the formation of local buckling after a number of 

loading cycles. This is a situation that implies failure of the pipe; moment 

capacity is decreased abruptly and under continuing cyclic loading, the buckled 

area of the pipe may exhibit low-cycle fatigue due to strain concentration and, 

eventually, fracture [Dama et al. (2007)]. Nevertheless, the interaction between 

initial wrinkles and cyclic bending loading is still an open issue that requires 

further rigorous investigation. 

 

1.1.3 Cyclic loading of welded tubular connections 

 In the case of steel tubular structures, separate tubular members are 

welded together forming tubular joints, often with complex multi-planar 

geometries. Even in the simplest tubular joints, due to the particular local joint 
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geometry, the developing local stress fields are significantly complex. The 

presence of welds introduces local stress risers, which are responsible for the 

development of very high local stresses even for moderate levels of externally 

applied loading, the so-called “hot spot” stresses. Under cyclic loading conditions, 

excessive plastic deformations appear at these regions constituting the tubular 

joints prone to fatigue failure. 

 The research on the performance of tubular joints has initiated back from 

the late 1960s, as described in Beale & Torpac (1967) or in the paper by Marshall 

(1974). Many empirical equations were developed for the design of tubular 

joints subjected to monotonic and cyclic loading and analytical model methods 

have also been developed [Wardenier (1982), Hoadley & Yura (1983), Swenson 

& Yura (1987), Romeijn (1994)] offering a rather simplified approach to the 

complicated design problem of tubular joints for static loading and fatigue. On 

the other hand, the vast majority of reported studies on fatigue loading of welded 

tubular connections refer to high-cycle fatigue, i.e. cyclic loading associated with 

relative low nominal stresses and a large number of loading cycles. On the other 

hand, under extreme cyclic loading conditions, stresses are quite high, usually 

beyond the yield limit of the steel material and fatigue failure occurs with a 

relatively small number of cycles, referred to as “low-cycle fatigue”. This type of 

failure has received much less attention. To the author’s knowledge, the only 

works on this issue have been published by Baba et al. (1981) and by van der 

Vegte et al. (1989), requiring further investigation, both experimentally and 

numerically.  

 

1.1.4 High-strength steel in tubular members  

 In the recent years the advances in the available metallurgical techniques 

resulted to high-strength steel alloys which gained an important part in the 

everyday design practice, also in the field of tubular steel structures. The 

enhanced material properties are expected to result into higher load resistance 

of the members and their joints, as well as into more economical design in terms 

of steel weight consumption. In addition, new welding technologies were 

developed allowing for the development of more time-effective welded joint 

production with highly accurate local weld geometries.  

 The benefits of using high-strength steel on the static strength of welded 

tubular structures have been reported by Noordhoek & Verheul (1998) and in a 

relatively recent HSE report (HSE, 1999), which describes the results of a Joint 

Industry Program.  Recently, in a series of papers, Choi et al (2012a, 2012b) the 

static performance of tubular T and K-joints has also been investigated. On the 

other hand, the fatigue performance of high-strength steel tubular joints has not 

been extensively examined, especially in terms of low-cycle fatigue.  

In current design practice, from all existing design standards and 

guidelines for the design of welded tubular connections, the only standard the 
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can used for high-strength steel tubular members and joints is EN 1993-1-12, but 

its relevant provisions are rather conservative for static loading (requiring a 

reduction factor equal to 0.8 with respect to steel grades up to 460 MPa), 

whereas the fatigue provisions simply extent the corresponding rules for steel 

grades up to 460 MPa. In any case, low-cycle fatigue performance of welded 

tubular joints is still an open research issue and constitutes a primary motivation 

for the present study. 

  

1.2. Scope of the present dissertation 
The present study refers to the structural performance of steel structures 

subjected to strong cyclic loading, associated with severe plastic deformations at 

critical locations. In particular, it aims at the detailed examination of mechanical 

behavior of tubular members and welded tubular joints, using numerical 

simulation tools, with emphasis on the constitutive model. It sould be noted 

though that the numerical models described within this study can be applied to 

any type of steel member, regardless its geometry. 

The study starts with the presentation of cyclic plasticity issues and the 

related phenomena in Chapter 2. The most popular plasticity models are briefly 

presented. A key feature of this study is the theoretical formulation and the 

numerical implementation of the Tseng-Lee model (Tseng & Lee, 1983). This 

model is considered as an advanced plasticity model, representative of the 

models adopting the “bounding surface” concept. The theoretical formulation 

and the numerical integration scheme are described in detail in Chapter 2. The 

material model is implemented in ABAQUS, developing a user-material 

subroutine UMAT. In the same chapter, the capabilities of this model are also 

presented through the use of illustrative examples. Finally, modifications of the 

model that enhance its predicting capabilities are presented. In addition to the 

Tseng-Lee model, the nonlinear kinematic hardening cyclic plasticity model, 

proposed by Armstrong & Frederick (1966) is presented, and its formulation and 

implementation are described in the Appendix. It is a popular plasticity model 

that constitutes the basis for the development of other more elaborate models 

with multiple back stresses, proposed during the last years.  

The mechanical behavior of tubular members subjected to cyclic bending 

is examined in Chapter 3. A set of experiments conducted on high-strength steel 

tubular members is presented and numerical models are developed for the 

simulation of the tests. Emphasis is given on the buckling phenomena that take 

place due to the accumulation of local plastic deformations (ratcheting effect) in 

combination with the evolution of initial geometrical imperfections in the form of 

wrinkles.  

In Chapter 4, the behavior of steel elbows subjected to strong in-plane 

cyclic loading is examined. Cyclic loading pressurized and non-pressurized tests 

have been conducted in order to evaluate the elbows capacity of undergoing 
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severe bending loading associated with extensive plastic deformations and 

cross-sectional distortion in terms of flattening. Advanced numerical models 

have been developed for the simulation of these experiments adopting both the 

nonlinear kinematic hardening and the bounding surface cyclic plasticity 

material models. Based on the analysis results, low-cycle fatigue design curves 

are also developed and an integrated fatigue design methodology accounting for 

the pressure effects is introduced. Finally, issues related to relevant design code 

provisions are discussed. 

The behavior of tubular joints made of high-strength steel and subjected 

to severe in-plane, out-of-plane bending and axial loading is studied in Chapter 5 

of the present study. A set of experiments has been conducted in the Laboratory 

of Concrete Technology and Reinforced Concrete Structures of the Civil 

Engineering Department of the University of Thessaly and the experimental 

results are compared with the corresponding numerical results provided by 

detailed numerical models. The overall structural behavior of the joints under 

monotonic and cyclic loading conditions, as well as stress and strain 

concentrations at the weld toe area of the joint, are studied thoroughly. An 

attempt to extend the currently available fatigue curves from the high-cycle 

fatigue range to the low-cycle fatigue regime is also presented. The experimental 

and numerical findings in terms of ultimate strength capacity and fatigue 

resistance of the welded tubular joints are compared with the corresponding 

provisions of the relevant design codes. 
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Chapter 2 

Constitutive modeling and implementation 

2.1 Introduction to cyclic plasticity 

Metal cyclic plasticity is a unique area of constitutive equations, which 

describes metal material behavior in the plastic range under cyclic (reverse or 

repeated) loading conditions. Several interesting phenomena related to alternate 

plasticity take place under repeated loading in the plastic regime and their 

understanding is of crucial importance for the safe design of metal structures. In 

the following paragraphs the behavior of metal materials under cyclic loading is 

briefly discussed.  

The behavior of metals when subjected to loading cycles exceeding the 

elastic range depends on the micro-structural characteristics of the material. 

Experimental studies have shown that the yield surface of the metal material, 

defining the limit of the elastic regime, may translate, change size and possibly 

change shape during plastic loading. Each stress state is history-dependent; this 

implies that the stress path followed to reach the current state is needed for the 

accurate prediction of any subsequent change in the stress state. Several 

important phenomena are strictly related to the plastic behavior of the metal 

material under cyclic loading, and are briefly presented below: 

(a) A well-known phenomenon related to cyclic loading is the Bauschinger 

effect (Bauschinger, 1881). This effect occurs when a metal is loaded past 

its elastic limit followed by plastic loading in the opposite direction. 

During reverse loading, plastic deformation begins at a significantly lower 

stress level, with a gradual reduction of the post-yielding or hardening 

modulus.  

(b) Cyclic hardening or cyclic softening may also take place under symmetric 

strain-controlled loading. In general, initially soft or annealed metals tend 

to harden toward a stable limit, whereas initially hard metals tend to 

soften.  

(c) When a metal is subjected to unsymmetrical stress-controlled cycles, this 

causes progressive “creep” in the direction of the mean stress, a 

phenomenon often reported as “ratcheting”. As with repeated, each 

consecutive hysteresis loop translates in this direction in a varying rate 

due to the fact that the cycles do not have complete closure of each loop. 

This phenomenon will be extensively discussed in the following Chapters 

of the present study.  
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2.2 Brief overview of cyclic plasticity models 

 Significant research effort has been devoted in the formulation of 

phenomenological plasticity models to predict the behavior of materials 

subjected to cyclic loading. These models have a different performance for a 

specific material and their efficiency in predicting cyclic loading effects has been 

extensively analyzed in previous publications [Corona et al.(1996), Bari and 

Hassan (2000)]. The models are based on the same basic principles, which stem 

from the classical theory of plasticity. In particular these characteristics are:  

(a) the additive decomposition of total strain in an elastic and a plastic part 

(b) the existence of a yield criterion in the form of a yield surface in the stress 

space 

(c) the flow rule that determines the increment of plastic deformation 

(d) the hardening rule which defines the post elastic increase of the stresses 

due to increasing strains 

(i) The total strain decomposition 

 When loading takes place elastically, then the total strain is elastic and 

fully recoverable. When the elastic limit is exceeded, then the loading is 

elastoplastic. In this case we assume that the total strain has an elastic and a 

plastic part: 

 e p
ε ε ε          (2.1) 

The elastic part is recoverable when the loading is removed, while the plastic 

part is permanent.  The above equation is also used in its rate form. 

(ii) The yield criterion 

The yield criterion defines whether at every stress increment the material 

behavior is elastic or inelastic and for classical metal plasticity it has the 

following general form  , , 0qF σ α  , where σ  is the stress tensor, α  is the 

tensor that describes the position of the center of the yield surface sometimes 

referred to as “backstress” and q is the equivalent plastic strain.  

For metal materials, it has been proven that the plastic deformation is not 

affected by the hydrostatic part of the stress tensor. Therefore, the initial yield 

criterion function depends only on the second and third deviatoric stress tensor 

invariants.  2 3, 0F J J  .  The most popular initial yield criterion for metal 

plasticity is the von Mises yield criterion described by the following equation:  
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 2

23 0F J k     

also written as   

 
21

0
2 3

k
F    s s         (2.2) 

where k is the size of the yield surface which can be assumed to be constant or a 

general function of the equivalent plastic strain qe , so that  qk k e .  

(iii) The flow rule 

 The flow rule governs the plastic strain rate increment through the use of 

a plastic multiplier . In general, it is assumed that the increment of plastic strain 

can be written as follows 

 

p Q
ε

σ





         (2.3) 

where Q is the so-called plastic potential function that depends on ( , , )qσ α  . In 

the case of associated plasticity for metals Q F , therefore: 

 

p F
ε

σ





         (2.4) 

For the case of 2J -plasticity, with a yield surface of equation (2.2), the flow rule 

takes the following form: 

 p
ε s          (2.5) 

(iv) The hardening rule 

 The hardening rule describes the evolution of the “backstress” tensor α  in 

the stress space, which defines the center of the yield surface. Hardening rule can 

take several forms. In the following paragraphs the cases of Linear, Multilinear 

and Nonlinear hardening rules for cyclic plasticity are briefly discussed.  

 

2.2.1 Models using kinematic hardening rules 

The simplest way to describe plasticity is the Perfect Plasticity model 

(sometimes refer to as Prandt- Reuss model). According to this model, the center 

of the yield surface is fixed in the origin of the stress space and its size is 

constant. An advancement of the above model is the plasticity model that uses 

the isotropic hardening rule. In that case, the yield surface is assumed to remain 
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fixed in the stress space and change size according to the magnitude of the 

equivalent plastic strain q defined as 

 

2

3

P P

q  ε ε        (2.6) 

so that the size of the yield surface k  is a function of q . These models can be 

used for cyclic plasticity problems, not providing though reliable simulation 

results in many cases. 

In cyclic plasticity, the use of kinematic hardening rule constitutes a 

starting point for the development of the constitutive model. In particular, it can 

take the form of Linear, Multilinear or Nonlinear kinematic hardening. According 

to this concept, the yield surface size can be assumed constant while its position 

described by the “backstress” tensor α  (defined at the center of the surface) 

varies within the stress space. Moreover, some changes of size of the yield 

surface can be also taken into consideration combined with the kinematic 

hardening rule in any of the aforementioned forms.  In the following paragraph 

the general features of von Mises plasticity model with the kinematic hardening 

rule are discussed.  

 

Von Mises plasticity with kinematic hardening  

The von Mises  2J  plasticity models employing the kinematic hardening 

rule have the following characteristics: 

(a) The von Mises yield criterion:  

21
( ) ( ) ( ) 0

2 3

k
F σ α s a s a            (2.7) 

(b) The flow rule, written in a more general form: 

 
1p F F

H
σ

σ σ

 
 

 
        (2.8) 

which is equivalent to Eq. (2.4) for associated plasticity. 

(c) The kinematic hardening rule, which is a function of the state parameters 

and the plastic strain: 

 ( , , , , , )p pg etca σ ε a σ ε       (2.9) 

In the above equations (2.7), (2.8) and (2.9), σ  is the stress tensor, p
ε  is the 

plastic strain tensor, s  is the deviatoric stress tensor defined as ps σ I   ( p  is 
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the equivalent pressure stress and I  is the identity tensor), α is the back stress 

tensor (current center of the yield surface), a is the current center of the yield 

surface in the deviatoric space, k  is the size of the yield surface (constant for a 

cyclically stable material), and H  is the hardening modulus. Also, indicates 

the MacCauley bracket and the dot express the inner product of two tensors. 

 The models discussed in the following paragraphs are distinguished in 

two groups, based on the way that the hardening modulus H  is defined. This 

affects the translation of the yield surface in the stress space in each plastic 

stress increment. More specifically, the hardening modulus H  can be defined in 

two different ways. The first way is through the consistency condition 0F  , 

which couples the hardening modulus with the kinematic hardening rule, as 

described in the classical model proposed by Prager (1956). The models falling 

into this category are called “coupled models”. The second category comprises 

the so-called “uncoupled” models. 

In the uncoupled models the plastic modulus is defined directly and it is 

influenced only indirectly by the kinematic hardening rule. For a given hardening 

rule, the movement of the yield surface along the specified direction of the rule is 

determined using the consistency condition. Examples of plasticity models that 

belong to this class are the so-called “two-surface” models proposed by Dafalias 

and Popov (1976), Drucker and Palgen (1981) and Tseng and Lee (1983).  

2.3 Coupled models for cyclic plasticity 

In those models the kinematic hardening rule can take several forms. A 

short description for some characteristic coupled models is given in the 

following paragraphs.  

2.3.1 Linear and multilinear kinematic hardening rule 

The linear kinematic hardening rule is the simplest model for cyclic 

plasticity modeling. Prager (1956) was the first to introduce the linear kinematic 

hardening model which employs a linear form of the kinematic hardening rule:  

 pCa ε         (2.10) 

where C is a constant. The development of such a model is rather standard and it 

is described in several textbooks [e.g. Dunne and Petrinic (2005)]. 

Improvement to the linear kinematic hardening model was proposed by 

Mroz (1967) as a multi-surface model, where each surface represents a constant 

work hardening modulus in the stress space.  
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2.3.2 The nonlinear kinematic hardening rules 

From the large number of models that fall into this category, only the 

most representative ones are reported in the following paragraphs starting from 

the Armstrong - Frederic model.  

 

 

i. The Armstrong and Frederic model 

The first nonlinear kinematic hardening model has been proposed by 

Armstrong and Frederick (1966), who introduced a kinematic hardening rule for 

the “backstress” containing a “recall” term, which incorporates the fading 

memory effect of the strain path and essentially makes the rule nonlinear in 

nature. The kinematic hardening rule in this model is given in the form:  

 p

i qCa ε α          (2.11) 

where C ,   are parameters calibrated from cyclic test data. More specifically, 

C is the initial kinematic hardening modulus, and  determines the rate at which 

the kinematic hardening modulus decreases with increasing plastic deformation. 

More details about this model, as well as its numerical integration and 

implementation scheme in finite element codes are presented in the Appendix. 

The Armstrong - Frederick nonlinear kinematic hardening model was a 

breakthrough at the time it was introduced. Its advantages and capabilities were 

well appreciated by other researchers. Several of them applied improvements on 

its original form in order to improve its deficiencies and introduced new 

advanced models based on the same nonlinear hardening rule.  

Other models that employ the nonlinear kinematic hardening rule 

concept have also been proposed. They have some important similarities with 

the Armstrong – Frederick model, which are obvious through the equations 

formulation. The most characteristic models of this type are briefly presented 

and discussed in the following. 

ii. The Chaboche model 

Chaboche and his co-workers in their relevant publications [Chaboche et 

al. (1979), Chaboche (1986)] proposed a model based on the decomposition of 

the nonlinear kinematic hardening rule proposed by Armstrong and Frederick in 

the form:  
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 1

,
M

i

i

p

i i i i qC

a a

a ε a





 



 

       (2.12) 

Compared to the original basic Armstrong-Frederick model, the main advantage 

of the Chaboche model is that the hysteresis curve can be divided into i  

segments, where each segment can described quite efficiently adopting an 

appropriate pair of ,i iC  .  

iii. The Ohno and Wang model 

The Ohno-Wang (1993) model is also a superposition of several kinematic 

hardening rules. It was introduced in the form: 

 

 

1

2

2

,
M

i

i

p p i i
i i i i i

i

C
C H

f a

a a

a
a ε a ε a





   
     

   








   (2.13) 

and H  here stands for the Heaviside step function. This modification allows for 

better simulation of the ratcheting (accumulation of plastic deformations) 

response of the material under uniaxial or multiaxial stress-controlled cyclic 

loading conditions. 

iv. The Guionnet model 

Guionnet (1992) proposed a model which uses some parameters, 

determined from biaxial ratcheting experiments. The Guionnet model basically 

modifies the original Armstrong - Frederick hardening rule by incorporating the 

effect of accumulated plastic strain in it. For cyclically stabilized material, the 

kinematic hardening rule in this model is reduced to the form: 

 

   -1

1 1 2

2
,

3

2

3

m p

p

mp C a dp

d

dp

a a n ε a 

ε
n

  
     

  

 
  

 

 

    (2.14) 

where the coefficient a takes the following form: 
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

  

 
  

 

  



     (2.15) 

Here, 
1p  is the accumulated plastic strain between the last reversal (

kI  

and the current loading point ( Q ), and 
1Mp  is the accumulated plastic strain 

between the last two reversals ( 1kI  and kI ). The parameters C  and   are 

similar to those in the Armstrong and Frederick model and are determined from 

a uniaxial stable hysteresis curve. Two ratcheting parameters, 2 and are 

determined using a biaxial ratcheting response. No clear guidelines are provided 

by Guionnet (1992) to determine m  and n . 

  

2.4 Uncoupled models for cyclic plasticity 

In the case of the uncoupled models, the plastic modulus is defined 

directly by an expression and it is only indirectly influenced by the kinematic 

hardening rule. Three representative models of this category will be presented 

briefly in the following paragraphs. 

i. The Drucker - Palgen model 

According to the Drucker – Palgen (1982) model, the plastic modulus H  

is assumed to be strictly a function of the second invariant of the deviatoric 

stress tensor J2 of the following form: 

  
1

2

NH AJ


         (2.16) 

where A  and N  are material constants evaluated from a segment of a stable 

hysteresis loop. 

ii. The Dafalias - Popov model 

The Dafalias & Popov (1976) model constitutes one of the most effective 

models to describe complex loading histories including cyclic plasticity. In this 

model, in addition to the yield surface the concept of a “Bounding Surface” is 

introduced, which obeys kinematic hardening. The yield surface is free to 

translate within the bounding surface describing any possible stress state. 

During excessive loading these two surfaces may come in contact at a unique 

point that describes the current stress state. If loading continuous into the plastic 
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regime, then the two surfaces translate together, so that an intersection may not 

occur. 

Special attention is also paid on the definition of the plastic modulus in 

order to achieve a smooth transition from the elastic to the fully-plastic state 

which is also compatible with experimental observations. The model accounts 

for the gradual decrease of the value of  H as hardening proceeds, and this 

evolution is of great importance for the successful modeling of a complex loading 

history associated with reverse plastic loading, especially in cases where 

Bauschinger effects are important. 

The basic idea of this model is that the current tangent modulus depends 

on the "distance"    in stress space of the current stress state and of that 

representing the immediately previous elastic stress state from a bounding 

surface. The plastic modulus H is described as follows:

                         

 

 0( , ) ( )p

in in

in

H h
 

   
 


   

 
     (2.17) 

where 0

p  is the (final) constant value of the plastic modulus tends to after 

sufficient plastic strain, in  is the distance of the last elastic state point from the 

bound and ( )inh  is a model parameter function of in which controls the 

“steepness” of the stress-strain curve and is defined as follows:     

 ( )

1
2

in m

in

b

h

b


 

  
 








       (2.18) 

In the above equation  , b  and m are model constants and b  is the size of the 

Bounding Surface.

 

Function h is calibrated through an experimental stress-strain 

curve. 

iii. The Tseng – Lee model 

The model proposed by Tseng & Lee (1983) is similar to the model 

outlined above, except that the bounding surface is replaced by the so-called 

“memory surface”. This surface is centered at the origin and hardens isotropically 

every time its stress level is exceeded. Thus, it represents the biggest state of 

stress developed in the loading history. During initial loading, since the two 

surfaces are in contact, the flow rule is based on the memory surface. During the 

loading phase the yield surface stays attached to the memory surface at the 

current stress point. It detaches on the first reverse loading that includes plastic 

deformation. Then the plastic modulus is described as follows: 
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 ˆ( , ) 1in

in

H H h
  

   
  


 

 
     (2.19) 

where Ĥ  is the plastic modulus of the memory surface after sufficient plastic 

strain. Similarly in is the value of  at the last elastic state. This is a model that 

combines simplicity of formulation with the features of bounding surface 

plasticity, and will be used in the present dissertation as a basis for the 

description of cyclic behavior of steel material in the inelastic range. In the 

following paragraphs of this chapter, a detailed presentation of this model ad its 

numerical implementation is offered. 

2.5 Description of the Tseng - Lee model 

In the plasticity models where the so-called “Bounding Surface” concept is 

adopted, the hardening modulus is defined by a given expression, not through 

the consistency condition.  The Tseng – Lee (1983) model is an effective model to 

describe loading histories including cyclic plasticity adopting the “Bounding 

Surface” concept. In this model, in addition to the yield surface, a “memory 

surface” is introduced, which plays the role of a bound and obeys isotropic 

hardening (Figure 2.1). The yield (inner) surface (Y.S.) is free to translate and 

change shape within the memory surface (M.S.) through a mixed (combined) 

hardening rule. The memory surface is centered at the origin and hardens only 

isotropically every time its stress level is exceeded. Thus, it represents the 

highest level of stress developed in the loading history. 

 
Figure 2.1: A schematic view of the two-surface model 
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During initial plastic loading, the flow rule is based on the yield surface 

and the hardening modulus depends on the relative distance of the current stress 

on the yield surface and an appropriately chosen stress point on the memory 

surface. When the yield surface reaches the memory surface during further 

loading, it stays attached to the memory surface at the specific stress point. The 

two surfaces lose contact when the first reverse loading occurs associated with 

plastic deformation. The expressions describing the yield surface 0F=  and the 

memory surface 0F=  are respectively: 

   
2 ( )1

0
2 3

    s a s a
qK ε

F      (2.20) 

 
 

2 ( )1
0

2 3
   s s

qK ε
F       (2.21) 

where s  is the deviatoric part of the stress tensor σ , a is the deviatoric part of 

backstress tensor α , s  is the deviatoric stress on the memory surface and 

( )qK ε , ( )qK ε  are functions of equivalent plastic strain qε , representing the  size 

of the yield and the memory surfaces respectively.  The rate of equivalent plastic 

strain is defined as follows:  

 

2

3

P P

qε  ε ε         (2.22) 

The flow rule is generally expressed as: 

  

 
 

1p

H
N s N         (2.23) 

where N is normal to the yield surface. If the two surfaces are not in contact, the 

normal vector N is the outward normal on the yield surface expressed as 

follows: 

 
 

3 1

2
N s a

s a
 


       (2.24) 

If the two surfaces are in contact, the normal vector N  is common for both 

surfaces and has the following form: 

 
3 1

2
N s

s
        (2.25) 
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Note that N and N  are not unit vectors; their magnitude is equal to 3 2 . 

In this model, similar to all uncoupled models, the hardening modulus H  
is defined directly through an appropriate function. Motivated by experimental 

observations this definition of plastic modulus should account for the smooth 

transition from the elastic to the inelastic stage. The model accounts for the 

gradual decrease of the value of H as hardening proceeds, which is of particular 

importance for the successful modeling of strong low-cycle loading conditions 

associated with reverse plastic loading, the Bauschinger effect and subsequent 

inelastic loops. 

The basic concept of this model is that the value of the hardening modulus 

H depends on the "distance"    in stress space between the points   and   

(Figure 2.1). Point   represents the current stress state on the yield surface, 

while point   is its “congruent point”, defined as the point on the memory 

surface which has the same outward normal unit vector N , as shown in Figure 

2.1 ( N N ). More specifically H is described as follows: 

 

1in

in

ˆH( , ) h


  
 

 
  

      

  (2.26) 

where ̂  is the hardening modulus of the memory surface when the two 

surfaces get in contact. As a first approximation, the value of Ĥ  can be 

considered as constant, but Ĥ  could also be a function of equivalent plastic 

strain, as discussed in the following paragraphs. Parameter h  affects the 

steepness of the strain-strain curve during plastic deformation. In the initial 

formulation of the Tseng – Lee model, h  is assumed to be constant. Nevertheless, 

h  can be also a function of plastic deformation, to be discussed next. 

The evolution of backstress tensor is described using the Mroz (1967) 

rule and has the following rate form: 

 μa v         (2.27) 

where v is the unit vector along the direction of segment AB shown in Figure 2.1, 

written as follows:  

 

 
1

 


v s s
s s

       (2.28) 

where s  is the deviatoric stress tensor and s is the congruent point on the 

memory surface, and μ  is a multiplier defined by the consistency condition. It 

should be noted that the adopted rule for the evolution of the yield surface is not 

the same as the one originally proposed by Tseng –Lee, but the assumption of the 
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Mroz rule results to a more robust numerical implementation of the model 

[Kyriakides and Corona (2008)].  

2.6 Numerical integration of the constitutive model 

A numerical integration scheme of the Tseng-Lee model is proposed 

based on an “Elastic predictor – Plastic corrector” method. The fundamental 

problem that needs to be solved at each iteration cycle can be briefly stated as 

follows: 

“At a given stress state, denoted as state n , the stress tensor n , the 

backstress tensor na , the equivalent plastic strain 
qnε , the sizes of the yield and 

memory surface nK ,
nK  respectively, the distance nδ  between the two surfaces, 

and the initial distance between the two surfaces inδ  are known. Given the strain 

incrementΔε , evaluate the state parameters at 1n . “ 

This problem is tackled by integrating numerically the constitutive 

equations of the Tseng-Lee model and it is described in the following paragraphs. 

The numerical integration procedure starts with the computation of an 

elastic trial step, so that  

 e

n  σ σ D ε         (2.29) 

where D  is the fourth-order elastic rigidity tensor and e
σ  is the trial elastic 

stress. If the trial stress e
σ  falls within the yield surface, i.e. 

    
1

0
2 3

2
e e n

n n

K
F      s a s a       (2.30) 

where e
s  is the deviatoric part of e

σ , then the assumption of elastic behavior is 

correct and the final stress is equal to the trial stress 
1

e

n σ σ . If the above 

criterion is violated, then elastic-plastic behavior occurs, and the corresponding 

equations are considered. 

 The plastic correction step starts with the calculation of factor γ , defined 

as the elastic fraction of the total strain increment which, upon application, it will 

result to the maximum possible elastic stresses. This stress state corresponds to 

a point on the yield surface and it is achieved by applying a strain increment 

equal to γΔ . In detail: 

  YS

n n γ   s s D        (2.31) 

The factor γ is calculated as follows:  
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        
 
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3

2

n n n nk
γ

   

 

        




ξ s ξ s s s ξ ξ

s s
 (2.32) 

where  

n n n ξ s a          (2.33) 

and  

e

n  s s s .         (2.34) 

The definition of this stress state is necessary for the evaluation of the distance 

 as it is described in the following paragraphs. The remaining strain increment 

is equal to  1  ε  and should be applied in order to complete the step. 

Considering the decomposition of the strain increment in an elastic and a plastic 

component, the new stress state can be described by the following equation: 

  1 1e p p

n n          σ σ D ε σ D ε D ε    (2.35) 

The above equation, assuming isotropic material behavior, can be written in the 

deviatoric form as follows: 

 1 2e p

n Gs s ε           (2.36) 

 During plastic strain increments, the hardening modulus  H δ  is defined 

as in Eq. (2.26), according to the relative distance in the stress space of the 

current stress point on the YS to its congruent point on the memory surface. The 

congruent point is defined as the point on the MS having the same outward unit 

vector as the point that represents the current stress state and lays on the YS. 

Using this definition and considering that the two surfaces are geometrically 

similar (Figure 2.1), the congruent point is uniquely defined as: 

 
   

K K

K K
    σ σ α s s a      (2.37) 

The distance between the current stress point and its congruent point is then 

calculated as follows:  

 
   

1
2

n n n n      s s s s       (2.38) 
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The hardening modulus  H δ  is also a function of in  calculated through Eq. 

(2.26) as the initial distance of the two surfaces at the beginning of the loading 

sequence. The correct definition and update of the in  value is a critical 

procedure for obtaining accurate predictions from this model. More details for 

this issue are presented in the following paragraph. 

The relative distance of the two surfaces indicated by the value of   

defines the way that the plastic loading will take place. Two cases are considered: 

 

Case 1: If the distance between the two surfaces is zero ( 0n  ), then ˆH H  

and the increment of plastic strain pε  is calculated from the integration of Eq. 

(2.23). Using a Forward-Euler scheme,   

 
 1

1

ˆ 
     ε N s s N

p

n n n n
H  

     (2.39) 

 

3 1

2
n n

n

 N s
s

       (2.40) 

Inserting equation (2.40) into equation (2.36), one obtains the following explicit 

expression for the deviatoric stress at the final state 1n : 

 
1

1ns A b


          (2.41) 

where 

 
 

ˆ n n

2G

H

 
   
 

A I N N       (2.42) 

and  

 
 

ˆ
e

n n n

2G

H
  b s N N s       (2.43) 

The new size of the memory surface at state 1n  is  

 
1 1 1

3

2
n n nK     s s        (2.44) 

and the new size of the yield surface is given by the corresponding function as 

follows: 

 
 1 1n qnK K          (2.45) 

The equivalent plastic strain is updated as follows: 

 1qn qn q            (2.46) 
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where  

 

2

3

p p

q ε ε           (2.47) 

and finally, the backstress tensor at 1n  is given by the following expression: 

 1
1 1

1

1 n
n n

n

K

K


 



 
  
 

a s         (2.48) 

Case 2: If the distance between the two surfaces is nonzero ( 0n  ), then  

 
  ˆ 1n

in

H H H h



 

 
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 
     (2.49) 

and the increment of plastic strain pε  is calculated from the integration of 

equation (2.23). Using a Forward-Euler scheme,  

 
 1

1p

n n n n
H


     ε N s s N       (2.50) 

where 

 
 

3 1

2
n n n

n n

 


N s a
s a

      (2.51) 

Inserting Eq. (2.50) into Eq. (2.36), one obtains the following equation for the 

final deviatoric stress 

 
1

1ns A b


          (2.52) 

where 

 
 n n

2G

H

 
   
 

A I N N       (2.53) 

and  

 
 e

n n n

2G

H
  b s N N s       (2.54) 

At this point the size of the MS should be checked. If the application of the 

strain increment results to a stress point inside the MS, then the MS size should 

be unchanged. However, if the resulting stress state falls outside the MS, then the 

MS should expand in order to coincide with the YS at the point that refers to the 

current stress state. In this case the new size of the yield surface is given by Eq. 
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(2.45). In addition, the increment of plastic strain and the equivalent plastic 

strain at state 1n  are given by Eq. (2.46) and (2.47). Finally, the backstress 

tensor (position of the yield surface center) at 1n  is given by the integration of 

expression (2.27) with an Euler-forward scheme: 

 1n n na a ν          (2.55) 

where  

 
1

n n n

n n

 


ν s s
s s

       (2.56) 

The quantity   is calculated from the consistency condition: 

 
   

2

1
1 1 1 1

1
0

2 3

n
n n n n

K
F s a s a 

             (2.57) 

Inserting Eq. (2.55)  into Eq. (2.57), one obtains 

 
   

2 2

1

2

3
n n nKc v c v c c        

    (2.58)
 

where  

 1n n c s a         (2.59) 

Finally, the new congruent point is computed  

 
 1 1 1n n n

Κ

Κ
s s a           (2.60) 

and distance between the two surfaces in the stress space is calculated: 

 
   

1
2

1 1 1 1 1n n n n ns s s s    
           (2.61) 

The calculated distance 1n   is compared with the initial distance 

in which is defined as the distance in the stress space of the current and the 

congruent point measured at the initiation of plastic deformation of the material, 

either under monotonic loading or after a load reversal. The correct update 

procedure of in plays a significant role in the accuracy of the model, especially in 

the case of arbitrary changing loading directions.  More details on this are 
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reported in the following section. It is important to note that this parameter has 

to be stored along with other key parameters during the numerical analysis. 

Once the new stresses, backstress and sizes of YS and MS are calculated, 

the elastoplastic rigidity tensor has to be defined. The formulation adopted is 

using the “tangent stiffness” tensor defined as: 

 

 

 

2

1 1

2

9

3

n nep
G

K H G

 
 



ξ ξ
D D       (2.62) 

The integration scheme described above is used for the numerical 

implementation of the constitutive plasticity model into a finite element code for 

the general 3D case and for the plane-strain case. Towards this purpose, two 

user-subroutines (UMAT) for the commercial finite element code ABAQUS have 

been developed and implemented into the code for the plane-strain case and the 

general 3D case respectively.  

2.7 Prediction of ratcheting rate 

 The performance of the Tseng-Lee model for predicting uniaxial 

ratcheting behavior is examined. A complete stress-controlled cycle of a metal 

material is considered under uniaxial loading conditions between two stress 

levels denoted as max and min  with max 0  , and min 0  . Furthermore max
 

exceeds the initial yield stress. The stress variation is non-symmetric with 

positive mean stress ( max min 0   ) as illustrated in Figure 2.2. It is further 

assumed that max
 
is on the memory surface and that the size of the yield (inner) 

surface is assumed constant, representing a stabilized material. An analytical 

solution for the residual strain r  accumulated in this cycle is sought. 
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Figure 2.2: Stress-controlled cyclic loading 

 The stress cycle assumed for this example consists of two plastic loading 

steps of opposite signs under uniaxial loading conditions. Starting from a stress 

level equal to max , the first plastic deformation occurs during the unloading 

phase, at region  1 . The second phase consists of reloading the material from 

min  until the max stress is reached again to complete the load cycle. In this 

phase, plastic deformation occurs at region  2 . For uniaxial loading conditions 

the plastic strain increment in regions  1 and  2  is equal to: 

    
1 1p

x xε = σ δ
H δ H δ

        (2.63) 

where H(δ) is defined in Eq. (2.26). Equation (2.63) is a function of the stress 

distance δ and can be integrated from an initial stress distance in to a final stress 

distance T , resulting in the plastic strain p

j associated with each plastic 

loading region  1 or  2 : 

  
     2

1
1 ln ln 1 1,2

ˆ 1

p

j inj Tj inj inj inj Tj= δ δ h +δ h δ h δ +δ h , j=
H h

             


          

(2.64) 
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where the value 1j=  corresponds to unloading/reverse loading in region  1 and 

the value 2j=  corresponds to re-loading in region  2 . Parameters 

1 2 1 2, , ,in in T T   
 can be expressed with the use of Figure 2.2 as follows: 

 

 

 

1 max min

2 max

1 max min

2

2

2

0

in

in

T

T

 K

K

 

  

 

  



  

 

  



      (2.65) 

Moreover, the following expressions are also valid from Figure 2.2: 

 1 1 2 2 min max 2in T in T    K               (2.66) 

The accumulated plastic strain at the end of the cycle r  
is equal to the 

difference of plastic strain during unloading 1
p

 and reloading 2
p . Using 

equations(2.64), (2.65) and(2.66), and denoting max min        the following 

expression for the accumulated plastic strain can rε  can be derived: 

         

 

            
 

2

2 ln 2 ln 2 1 2

ˆ 1

2 ln 2 ln 2 1 2 2 2

ˆ 1

r

2

h σ Κ h σ Κ + σ Κ + h K σ
=

H h

h h K K K K + h ( K σ) K K + h 1 K σ K K
+

H h


   



 

      
 



               



           

          (2.67) 

From Eq. (2.67), one readily obtains that 0rε =  for 0h  . Furthermore the limit 

value of r  in Eq. (2.67) when 1h  is: 

 

  
 

2 2
, 1

ˆ4
r

K K
 h

H K K

 


 


 
 


     (2.68) 

It is interesting to note that for the type of problems considered in this 

case, the ratcheting rate predicted by the Tseng – Lee model depends on the 

applied stress range and the relevant sizes of the yield and memory surfaces. 

Moreover, for given values of max min, , , K  K   and h , the predicted ratcheting 

rate is constant. Note that for h=0 , the model has a constant hardening modulus 

equal to Ĥ and predicts zero ratcheting ( 0r= ), since it becomes identical to 

the linear kinematic hardening model.  
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Introducing the non-dimensional parameters 2K  , =K K  , 

ˆ 2H K  , a parametric analysis is conducted to examine the ratcheting 

predictions of the constitutive model. In Figure 2.3 the ratcheting rate prediction 

of the model for 1h  is shown in terms of the normalized stress amplitude. The 

ratcheting rate is zero when 1  , which corresponds to elastic cyclic loading 

( 2K  ), or when   , where the stress variation  is equal to the size of 

the memory surface 2K . This corresponds to symmetric loading, which has been 

experimentally shown not to cause ratcheting.  It is also worth mentioning that 

the ratcheting rate increases as the   parameter increases. Moreover, for a 

given value of  , the ratcheting rate in terms of   maximizes when 

 1 2   . 

 

 
Figure 2.3: Parametric ratcheting predictions for h=1, =2.5  

 If  0h > , Eq. (2.67) can be rewritten with the use of the non-dimensional 

parameters ,  and   as follows: 

 

      
 

 

 
2

1
1 ln 1 ln

1 1

1
r

h
h h

h h

h



 

 




 
     

   
 


  (2.69) 

This form is used for a parametric study that shows the effect of parameter h  on 

the ratcheting rate, as illustrated in Figure 2.4. In this graph there is a general 

increase of ratcheting rate due to an increase of the parameter h . This increase is 

more significant for values of h  up to 0.2, especially for lower values of   

[Figure 2.4(b)]. As   increases and approaches the value of  , the effect of 

parameter h  becomes less significant. 
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The effect of parameter   on the ratcheting predictions of the model for 

the loading case under consideration is presented in Figure 2.5. It is observed 

that lower   values, (i.e. lower constant values of the hardening parameter Ĥ ), 

result in higher ratcheting rates. As the value of   increases, the predicted 

ratcheting rates decrease drastically. Finally, for the specific values of   and , 

the ratcheting rate maximizes when  0.5h   as shown in Figure 2.5(b). 

  
(a) 

 
(b) 

Figure 2.4: The effect of the parameter h  on the ratcheting rate, 1.4, 2.5    : 

(a) General behavior, (b) Graph detail. 
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(a) 

 
(b) 

Figure 2.5: The effect of the parameter h  on the ratcheting rate, 1.4, 1.1    : 

(a) General behavior, (b) Graph detail. 

In the following paragraphs, the ratcheting capabilities of the Tseng-Lee 

model are compared with the corresponding capabilities of other plasticity 

models where only one surface is used. The ratcheting rate according to these 

models can be zero if the linear kinematic hardening rule is used or constant if 

the nonlinear kinematic hardening rule is used. It can only vary if an isotropic 

term is combined with the nonlinear kinematic hardening rule [Varelis (2010)].  

The Tseng-Lee model allows for varying ratcheting rate simulations as 

shown in the example presented in Figure 2.6(a) and (b). In Figure 2.6(a), the 
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unsymmetrical cyclic stress-strain curves resulting using the Tseng-Lee model 

are presented. In these simulations the material is loaded up to a maximum 

stress level and then unloaded until the minimum stress level is achieved. 

Moreover, the size of the yield surface is assumed as constant, shrinking or 

expanding.  

As presented in Figure 2.6(b), depending on the assumption adopted, the 

ratcheting rate can be constant but nonzero if the yield surface is assumed to be 

stable, it can increase if the yield surface shrinks with increasing plastic 

deformation or it can decrease if the yield surface expands with increasing 

plastic deformation. In addition, when the yield surface stabilizes after a few 

plastic loading cycles, the ratcheting rate becomes constant, as the material 

follows the same stress-strain curve as shown in Figure 2.2.  

The increasing ratcheting rate when the yield surface shrinks as plastic 

deformation increases is attributed to the fact that, upon several loading 

reversals in the plastic regime, the plastic deformation will initiate at stress 

levels having greater distance from the maximum/minimum value, therefore the 

final stress level will be reached at increased strain value. On the contrary, when 

the yield surface expands as plastic deformation increases, upon several loading 

reversals, plastic deformation will initiate at a stress level which is closer to the 

maximum stress of the load cycle. This will result to reduced plastic 

deformations for each subsequent cycle and consequently to a decreasing 

ratcheting rate. The proper calibration of the model parameters allows for 

precise ratcheting simulations. 

 
(a)  
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(b) 

Figure 2.6: (a) Stress-strain loops, (b) Ratcheting evolution 

The ratcheting performance of the Tseng-Lee model under biaxial loading 

is also examined through an illustrative example. Biaxial ratcheting can take 

place when the material is stressed in one direction while plastic deformation 

takes place in the orthogonal direction. A characteristic example of such loading 

scenario is the application of internal pressure to a pipe which is also subjected 

to cyclic bending in the plastic regime. To simulate the biaxial ratcheting effect, a 

“one element” model is assumed that is first subjected to a constant stress load in 

the y-direction. Subsequently the element is subjected to symmetric strain-

controlled cyclic loading which results to plastic deformation, keeping the stress 

in the y-direction constantly applied. This load pattern will result to 

accumulation of plastic deformation in the y-direction, even if the load at this 

direction does not change. The Tseng-Lee model predicts a constant ratcheting 

rate in the y-direction if the yield surface is assumed to be constant, also verified 

by Hassan et al. (1994). If the yield surface is assumed to expand or shrink, the 

ratcheting rate remains constant but its absolute value is smaller or higher that 

the corresponding value predicted when the yield surface is constant as shown in 

Figure 2. 7.  
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Figure 2. 7: Biaxial ratcheting evolution 

2.8 Proposed modifications of the Tseng–Lee constitutive model 

2.8.1 Criteria for the update of the in value  

 In the original formulation of the Tseng-Lee model described in Tseng and 

Lee (1983), it is stated that during uniaxial cyclic loading the length of the elastic 

unloading chord between the current load point on the YS and the previous 

position at which the elastic unloading initialized can be used as a criterion of 

updating the value of in . Furthermore, sudden directional change of s  during 

the loading process may result in a distance between the two surfaces  greater 

than the initial distance in  which means that under these circumstances the 

value of in  should be updated by  . However, no additional information has 

been provided by Tseng & Lee (1983) on this matter. 

A systematic approach on the update procedure of in  was presented 

recently by Lee et al. (2007) where the “overshooting” behavior of the model is 

discussed. This problem was first addressed by Khan and Huang (1995) and it is 

observed when the material is elastically unloaded with limited plastic 

deformation before it is reloaded to the original stress state (the last state before 

the unloading) following plastic deformation, as illustrated in the following 

figure. 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:43:48 EEST - 3.145.36.43



34 

 

 
Figure 2. 8: The overshooting problem in the two-surface model. 

The early work by Tseng and Lee (1983) and Dafalias and Popov (1976) 

suggested the use of the previously defined value of in  without any update to 

overcome this problem, but this is in contradiction with the updating procedure 

used in the model. Lee et al. (2007) suggested that the value of in  should be only 

updated for loading scenarios whose stress directions are different for more than 

180 degrees. The change of loading direction is monitored using the angle 

between the stresses on the loading surface for two subsequent steps. In this 

case, the new in  should be a linear combination of the newly evaluated stress 

distance and the former value of in . 

In the integration scheme presented in the previous section, the “angle-

change” update criterion is adopted: at each loading step, the loading direction in 

the previous and the new load step is monitored using the ,old new v v tensors 

respectively, defined as: 

 

1 1

1 1

,n n n n
old new

n n n n

  

 

 
 

 

s a s a
v v

s a s a
     (2.70) 

The angle   between ,old new v v
 is defined using the inner product rule: 

 
1cos ( )old new   v v        (2.71) 
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and it is compared to a limit angle value lim . The limit angle does not have to be 

180 degrees as suggested by Lee et. al. (2007). If a smaller value is adopted, the 

results improve considerably, especially in the case of abrupt change of loading 

directions, as for example when buckling takes place.  

2.8.2 Treatment of the yield plateau and the strain hardening region 

 Most structural steels exhibit a plastic plateau region on the stress-strain 

curve for structural steels after the initial material yielding. This region, also 

known as the Lüders region, is extended up to a certain strain level until the 

material stress-strain curve enters the strain hardening region. The most 

commonly used classical plasticity models are not able to capture this behavior. 

For example, the perfect plasticity model assumes that the hardening value is 

equal to zero. Nonlinear kinematic models cannot describe the abrupt change of 

the stress-strain curve after the initial yielding, nor can it describe the yield 

plateau regions. This deficiency has been well recognized by many researchers 

and modifications of the aforementioned plasticity models have been proposed.  

 For the case of nonlinear kinematic hardening models, Ucak and Tsopelas 

(2011) have proposed a modified model defining a critical plastic strain level is 

defined as the point where the plastic plateau region ends. For the models using 

more than one surface, the equivalent plastic strain limit and the plastic work are 

used to define the end of the plateau region as in the works of Shen et al. (1992) 

and Usami et al. (2000).  

 In the original description of the Tseng-Lee model, the plastic plateau is 

treated by assuming that the yield and the memory surface coincide before 

loading and by adopting a function to describe the hardening modulus for the 

memory surface. The proposed function depends on the equivalent plastic strain 

and it is calibrated accordingly based on experimental monotonic curves. In the 

present study this formulation is adopted. More specifically, the parameter Ĥ  
found in the general description of the hardening modulus as given in Eq. (2.26) 

is substituted by a function of the equivalent plastic strain ( )qH  , described in 

Eq. (2.72). This function can take the value of zero (or a very small value to avoid 

possible numerical convergence problems) if the equivalent plastic strain is less 

than a critical value qcr
 
defined as the equivalent plastic strain at the end of the 

plastic plateau (Figure 2. 9). At this range the model reduces to a perfect 

plasticity model. When the critical value qcr
 
is exceeded, the function ( )qH 

 
can 

take a linear or a nonlinear form, allowing for better simulation of the material 

behavior in the strain hardening region.  

 Such a nonlinear form has been also adopted by Usami et al. (2000) where 

the plastic work is used instead of the equivalent plastic strain. In this study, the 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:43:48 EEST - 3.145.36.43



36 

 

plastic work is replaced by the equivalent plastic strain for simplicity and the 

adopted formula is presented in Eq. (2.72):  

( ) 0,

ˆ
( ) ,

1

q q qcr

q q qcr

q

H  

H
H  

  

  


 

 


      (2.72) 

 In this equation, ω  is a material parameter that can be calibrated using a 

monotonic loading material stress-strain curve, as for example the curve 

resulting from a tensile test. Note that by varying the value of the parameter ω , 

the stress-strain curve can simulate linear or nonlinear hardening after the yield 

plateau, as well as the reduction of the hardening modulus near the area of the 

ultimate stress. 

  

 

óx

åqåqcr

Ê (åq)

åq

strain-softening

stable size

strain-hardening

K 0

K 0+Q

K 0-Q

 
(a)     (b) 

Figure 2. 9: (a) Plastic plateau, (b) Yield surface size variation 

Moreover, the size of the yield surface can be assumed as a function of the 

equivalent plastic strain, introducing mixed (isotropic and kinematic) hardening. 

This formulation allows for simulating accurately cyclic hardening or softening of 

the material inside or outside the plateau region. An exponential function for 

determining the size of the yield surface of the following form is adopted: 

  
 0( ) 1 qb

qK K Q e


         (2.73) 

The function enables the control of the yield surface change rate, as well the 

prediction of stabilization phenomena. In Eq. (2.73) 0K  is the initial yield stress, 

Q  is the total change of the initial yield stress until a saturation value sK is 

reached ( 0sK Q K  ) and b  is a term that defines the rate at which the 

saturated values are reached. Positive values of the parameter Q  refer to cyclic 
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hardening conditions, while negative values of  Q  refer to cyclic softening 

conditions [Figure 2. 9(b)]. The calibration of the parameters 0K , Q  and b  is 

performed with the use of experimental material curves. Including this function 

in the model to describe the changing size of the yield surface does not modify 

the methodology described in a previous section for its numerical integration. 

An example is presented in Figure 2.10 concerning the precise simulation 

of plastic plateau in the material stress-strain curve of many structural steels, as 

well as the Bauschinger effect that appears at load reversals. In particular, a 

characteristic uniaxial cyclic loading test example from a coupon test on a TS590 

high-strength steel specimen is presented, reported in Bursi (2012). The 

predictions of the Armstrong-Frederick (1966) model denoted as “A-F”, as well 

as the predictions of a simple linear kinematic hardening model denoted as 

“LKH” are compared with the predictions provided by the Tseng-Lee model. The 

efficient description of initial yielding and the Bauschinger effect is a basic 

advantage of bounding surface models, with the respect to nonlinear kinematic 

hardening models. 

 

 
Figure 2.10:  Plastic plateau and Bauschinger effect simulation. 

 

2.8.3 Modifications for improved ratcheting performance 

2.8.3.1 The hardening modulus function formulation  

 The form of hardening modulus expression in Eq. (2.26) may result to 

unrealistic ratcheting predictions, especially when the actual stress-strain 
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material curve under stress-controlled cyclic loading presents sharp edges near 

the location of the maximum stress level. The reason is that Eq. (2.26) implies a 

hardening modulus equal to ̂  when the two surfaces get in contact ( 0 ). 

Note that ̂  is the hardening modulus of the outer surface and its value is rather 

small. Experimental results from cyclic material testing, have demonstrated that 

this smooth transition is not encountered in actual material curves, as for 

example in high-strength steel specimens presented in Figure 2.11.  

 To account for this phenomenon, an additional term is added to the 

expression of the hardening modulus, so that the hardening modulus when the 

two surfaces get in contact ( 0 ) is greater than ̂ . Taking into consideration 

the modification for  introduced in Eq. (2.72) and Eq.(2.26), the following 

equation is proposed for the hardening modulus: 

 1 *

in

c
H( ) h

 
  

 


 

 
       (2.74) 

where c  is a constant affecting the hardening modulus for 0  and *h  is a 

parameter to be discussed in the next section.  

2.8.3.2 The effect of parameter “ h ” on ratcheting performance 

 In the initial formulation of the Tseng – Lee model, parameter h  is 

assumed constant. Nevertheless, in various ratcheting simulation problems 

presented in the literature [e.g. Shen et al. (1992)], it has been demonstrated that 

this assumption may not be necessarily true. Several expressions have been 

proposed for this parameter in order to overcome the inaccuracies observed in 

the simulation results. 

In the work of Shen et al. (1992), a linear function of the parameter h  is 

introduced, that employs the distance δ  of the two surfaces to describe the 

evolution of the parameter h in the form: 

 h=aδ+b         (2.75) 

where the material parameters a,b  are calibrated from appropriate 

experimental stress-strain curves, like the one presented in Figure 2.11(a).  

Another approach to define an equation for parameter h  is to adopt the 

nonlinear equation available in the work of Dafalias & Popov (1976). Equation 

(2.26) is the original equation that defines the hardening modulus and is quite 

similar to the corresponding equation proposed by Dafalias & Popov (1976). 

More specifically, in the Dafalias & Popov model, parameter h  is a function of the 

ratio of the initial distance between the yield and memory surfaces at the current 

stress state and it is given by the following nonlinear equation: 
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       (2.76) 

where , ,a b m  are material parameters calibrated from the experimental stress-

strain curve.  

The ratcheting rate predicted by the aforementioned expressions of h  is 

compared with material test data derived for TS590 high-strength steel grade. A 

cyclic stress-controlled test on this material between two stress levels with non-

zero mean stress ( max 739  MPa, min 587   MPa), presented in Figure 2.11. 

The test has been conducted by CSM, Italy, and it is reported in Bursi (2012). In 

Figure 2.11(a) the first cycles of this test are presented, where the ratcheting rate 

observed is almost linear for the first 30 cycles, as shown in Figure 2.11(b).  

 
(a) 
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(b) 

Figure 2.11: Cyclic stress-controlled material test; (a) Stress-strain curve, (b) 

Evolution of maximum strain 

 

 The two expressions of parameter h  have been implemented in the 

developed UMAT. Since the specific material test presented in Figure 2.11(a) 

does not result into strain levels outside the limit of the yield plateau in the 

strain hardening region, initially it is assumed that the initial size of the Y.S. 

coincides with the size of the M.S., both equal to 738 MPa. The almost horizontal 

part of the stress-strain curve before the first unloading takes place is captured 

assuming a small value for the hardening modulus Ĥ  equal to 100 MPa. 

Furthermore, the size of the Y.S. is assumed to decrease as plastic deformation 

takes place until it reaches the value of 430 MPa, in order to simulate accurately 

the Bauschinger effect observed in the first load reversal, and the closed loops in 

the subsequent loading cycles.  

The parameters described in Eq. (2.75) and Eq. (2.76) are properly 

calibrated to provide the best possible description of the predicted stress-strain 

curve to the test data and acceptable ratcheting rate predictions. The predicted 

stress-strain curve and the corresponding ratcheting evolution are presented in 

Figure 2.12. 
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(a) 

 

(b) 
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(c)  

Figure 2.12: Numerical simulation of the cyclic stress-controlled material test. (a) 

Stress-strain curve for constant value and linear function for h , (b) Stress-strain 

curve for nonlinear and proposed function for h , (c) Evolution of maximum 

strain. 

 

Figure 2.12 shows that the three assumptions made for the parameter h , 

namely constant value, linear function and nonlinear function, fail to describe 

accurately both the experimental stress-strain curve and the ratcheting rate. 

When h  is assumed to be constant, denoted as “ h  const.”, the resulting 

ratcheting rate is extremely over estimated. Similar results are obtained 

assuming a linear function for h , as described in Eq.(2.75), denoted as “ h  lin. 

fun.”, while the ratcheting rate predicted is much closer to the experimental rate. 

Adopting the nonlinear function of Eq.(2.76) for h , denoted as “ h nonlin. fun.”, 

one results to slightly improved predictions in terms of the stress-strain curve 

and satisfactory ratcheting rate predictions.  

In summary, poor fitting is obtained by all of the above expressions; one 

should notice that, upon the stabilization of the Y.S. size in this stress-controlled 

test, the values of , in   are the same at each load cycle. This results to a constant 

value of h  throughout the simulation. When unloading takes place and plastic 

deformation occurs toward the unloading stress direction until min is reached, 

the Y.S. detaches from the bound of the M.S. and moves within the M.S. covering a 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:43:48 EEST - 3.145.36.43



43 

 

distance δ  which is less than the initial distance defined at the initiation of the 

plastic deformation (initial loading phase). When reloading takes place, the two 

surfaces finally get in contact again at max . Following the loading path described 

above and especially in the case where the hardening modulus of the M.S. is 

small enough, in order the transition to be smooth, the slope of the stress-strain 

curve decreases significantly and reaches the almost horizontal part of the curve 

in an almost asymptotic manner at increased strain levels. 

This response is not matching the response observed experimentally; the 

steepness of the plastic part of the stress-strain curve is almost the same during 

loading or reverse loading, which implies that a constantly changing value of h  

has to be used, regardless the size of the yield surface or the distances δ and inδ  

accounted on their own.  

In order to account for the aforementioned observations, a new function 

is introduced for parameter h  expressed by the following equation: 

 *

m

in

h A B




 
   

 
       (2.77) 

The new value of  h  is denoted as *h , and depends of the ratio of δ  and inδ . At 

the beginning of plastic loading ( 1in   ), *h  is equal to A+B . The benefit of 

this expression is that the ratio in  becomes less than unity with increasing 

plastic loading, and this results to a constantly varying  value of *h  between the 

A+B  and A , i.e. for 1in    and 0in    respectively . The exponent “ m ” 

controls the effect of the ratio on the *h  value.  

The proposed expression for *h  has been implemented in the developed 

UMAT and the resulting stress-strain curve and ratcheting evolution curve after 

the proper selection of the parameters A,B  are presented in the same graphs 

Figure 2.12(b) and (c). The shape of the predicted stress-strain curve is in better 

agreement to the experimental material curve. In addition, the ratcheting rate 

predictions are sufficiently close to the experimentally measured values. 

2.9 Numerical example: buckling of thick-walled cylinder under 

external pressure 

In the present section, the present constitutive model is employed for the 

simulation of a specific numerical example concerning buckling of pressurized 

cylindrical steel shells (pipes). In this example, the capabilities of the model are 

compared with the capabilities of other plasticity models and its specific benefits 

are highlighted. 
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 More specifically, the structural behavior of relatively thick-walled pipes 

subjected to external pressure loading is presented. The prediction of the 

collapse or ultimate pressure is of great interest for the off-shore pipeline 

industry. The pipes used in deep-water pipeline applications are thick-walled in 

order to withstand high levels of external pressure. The collapse pressure is 

significantly affected by the presence of residual stresses and initial 

imperfections. For such pipes, a common manufacturing method for line pipe 

fabrication is the UOE process. Previous publications [e.g. Herynk et al. (2007) 

and Varelis et al. (2009)] have shown that the UOE process introduces significant 

plastic deformations in the pipe-wall, resulting in residual stresses, as well as 

geometrical imperfections (out-of-roundness, thickness variations). In particular, 

the final expansion phase of the UOE process affects significantly the final 

distribution of residual stresses and initial geometrical imperfections [Varelis et 

al. (2009)].  

Herein, a thick-walled pipe is considered, with outer diameter of 609.4 

mm (24 inches) and thickness equal to 32.3 mm ( D/t= 18.87).  Motivated by the 

UOE pipe forming process, a generic problem is considered. The pipe is subjected 

first to internal pressure that causes plastic deformation on the pipe wall, 

resulting in pipe expansion. Then the internal pressure load is removed so that 

the pipe undergoes elastic unloading, causing a residual stress/plastic 

deformation field in the pipe. Subsequently, at the final unloading phase, uniform 

hydrostatic external pressure is gradually increased until buckling of the pipe 

takes place. The first two loading steps (internal pressure and unloading) refer to 

the expansion phase of the UEO process, whereas the third loading step refers to 

deep water conditions. 

The finite element model developed is shown in Figure 2.13 in its original 

and deformed (buckled) configuration. Taking advantage of the double 

symmetry of the problem, only the one quarter of the pipe is modeled. The 

appropriate boundary conditions are introduced into the model and a sufficient 

number of eight-node reduced integration solid elements (C3D8R) are employed 

along the circumference and the thickness of the pipe. A very small geometrical 

imperfection is introduced as a small thickness reduction equal to 1% of the 

nominal thickness located at the upper part of the pipe. 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:43:48 EEST - 3.145.36.43



45 

 

 
(a)     (b) 

Figure 2.13: The numerical model: (a) original configuration, (b) deformed 

configuration 

The steel pipe material is P355 grade, which is equivalent to API 5L X52 

grade. In Figure 2.14 the uniaxial material stress-strain curve obtained 

experimentally is shown for monotonic loading up to about 500 MPa stress and, 

subsequently reverse loading well into the plastic range. The material exhibits an 

abrupt transition from the elastic to the plastic region at initial plastic loading at 

about 400 MPa, and Bauschinger effect upon reverse plastic loading at a stress of 

about -100 MPa. 

In the present simulation, several von Mises plasticity models have been 

adopted, namely the isotropic hardening rule (ISO), the linear kinematic 

hardening rule (LKH) and the nonlinear kinematic hardening rule (NLKH). All 

these models are already implemented in the ABAQUS FE code. In addition, the 

present constitutive model, denoted as “TL” (Tseng-Lee) model has been also 

used through the developed material user-subroutine (UMAT) described in the 

previous section. 

In Figure 2.14, the fitting of the test data using the plasticity models 

reported above is also presented. The abrupt change of the curve slope at the 

initiation of the plastic deformations part of the curve can be predicted by the 

ISO and LKH models. It is evident that this part of the curve cannot be simulated 

precisely by the NLKH model. On the contrary, the Bauschinger effect upon load 

reversal can be captured by the NLKH model, which is not possible using the ISO 

and the LKH models. This is because the ISO model assumes a constantly 

increasing yield surface size as the equivalent plastic strain increases, therefore 

it overestimates the elastic range of the stress-strain curve when reverse loading 
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takes place, and the LKH model assumes a constant size of the yield surface, 

therefore it predicts the initiation of plastic deformations at a lower stress level 

upon reverse loading.  

The key benefit of the TL constitutive model is that it is capable of 

predicting accurately the material behavior in all parts of the displayed curve. In 

more detail, the predictions of the TL model coincide with those of the ISO and 

the LKH models up to the point where the maximum stress level is achieved. 

Upon load reversal, the Bauschinger effect can be predicted accurately and the 

results are very close to the reciprocal results of the NLKH. 

 

 
Figure 2.14: P355 steel material curve and predictions of constitutive models. 

Following the three-step loading pattern described above, a parametric 

analysis is conducted aiming at the examination of the effect of pipe expansion 

due to internal pressure, on the maximum external pressure the pipe can 

withstand. A characteristic value of internal pressure is the one causing yielding 

of the pipe wall material. This “yield pressure”, denoted as yp , is defined as: 

 2y y

t
p

D
         (2.78) 

where yσ is the yield stress of the material used and t, D  are the thickness and 

diameter of the pipe respectively. Using the actual yield stress of the steel 

material (401.2 MPa), the corresponding value of yield pressure yp  is equal to 
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42.53 MPa. For the purposes of the present parametric study, the internal 

pressure varies from yp up to 1 35 y. p .  

In Figure 2.15 and Table 2. 1 the parametric analysis results are 

presented. The maximum external pressure values are also normalized by the 

value of yp . The ISO, LKH, NLKH and TL models have all been used in the 

numerical simulations. The graph in Figure 2.15 can be divided in three regions. 

The first part corresponds to low internal pressure levels up to 1 125 y. p , the 

second part contains the intermediate internal pressure levels (between 

1 125 y. p and 1 25 y. p ) and the final part corresponds to high pressure levels from 

1 25 y. p up to 1 35 y. p . The main observation from the numerical results in Figure 

2.15 and Table 2. 1 is the remarkably different predictions of the TL model with 

respect to the other models. The different predictions of the other three models 

are due to their inadequacy in describing accurately the cyclic stress-strain curve 

(loading and reverse loading) of the steel material. A more detailed discussion of 

those differences is offered below. 

 

Table 2. 1: Parametric analysis results.  

 
max yp /p  

int yp /p  ISO LKH NLKH TL 

1.00 1.10 1.10 0.75 1.10 

1.06 1.10 1.10 0.74 1.10 

1.13 1.08 1.08 0.70 1.10 

1.18 1.05 1.05 0.68 0.96 

1.20 1.03 1.02 0.67 0.86 

1.22 1.03 0.99 0.65 0.72 

1.25 1.03 0.96 0.65 0.65 

1.29 1.06 0.91 0.64 0.64 

1.34 1.09 0.85 0.63 0.63 

1.35 1.10 0.84 0.63 0.63 
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Figure 2.15: The effect of internal pressure on the maximum collapse pressure. 

 

In the first part of the graph for internal pressure levels up to 

about1 25 y. p , the collapse pressure maxp  predicted by the ISO, LKH and the TL 

model is almost constant and equal to 1 10 y. p . The NLKH model is not capable of 

predicting the abrupt change of the material stress-strain curve at the yield 

stress level as depicted in Figure 2.14. This results to significantly lower collapse 

pressure predictions of the NLKH model for this range. The predictions of this 

model are also low for the whole range of the parametric study due to the 

increased plastic deformation this model predicts, even for low levels of internal 

pressure. 

  For internal pressure levels above 1 25 y. p , i.e. for the second and third 

part of the graph, all kinematic hardening models (LKH, MLKH, TL) predict a 

significant reduction of the collapse pressure maxp  with respect to the one in the 

first part of the graph. On the contrary, the ISO model predicts substantially 

higher values of the collapse pressure maxp . The high predictions of the ISO 

model are due to the uniform size increase of the yield surface size due to 

internal pressure expansion, resulting in a higher value of yield stress in both 

tension and compression. Consequently, upon load reversal and buckling, the 

material has an increased elastic stress region in both tension and compression, 

which increases the predicted collapse pressure.  
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For low levels of initial expansion, the TL model predictions for the 

collapse pressure are very close to the predictions of the ISO and LKH models. In 

this range, the initial plastic deformations are rather small, and pipe behavior is 

governed mainly by the yield stress level predicted accurately by those three 

models. On the contrary, at higher levels of initial expansion, i.e. for internal 

pressure values greater than 1 25 y. p , the pipe material exhibits significant plastic 

deformation, and its structural behavior under external pressure is governed by 

the Bauschinger effect. Therefore the predictions of the TL model are identical to 

the predictions of the NLKH model. In the intermediate range of internal 

pressure (i.e. from 1 125 y. p  to 1 25 y. p ) the TL model predicts a transition from 

the  first part of the graph (where the behavior is dominated by initial yield 

stress) to the third part of the graph (where the Bauschinger effect is more 

dominant).  

Detailed numerical results are presented for applied internal pressure 

equal to 51 MPa (1 20 y. p ). Throughout the loading sequence, ovalization (out-of-

roundness) of pipe cross-section is monitored. Cross-sectional ovalization is 

defined as the ratio of the difference between the maximum and minimum pipe 

diameter over their sum. In Figure 2.16 the equilibrium path of external pressure 

with respect to cross-sectional ovalization is plotted for all the plasticity models 

adopted. A summary of the analysis results is provided in Table 2.2. The ISO, 

LKH, NLKH and the Tseng-Lee model provide different predictions for the 

maximum pressure and for the corresponding values of ovalization (i.e. where 

the maximum pressure occurs in the diagram). The pressure-ovalization curves 

predicted by the ISO, LKH and the TL model have a similar form; after the pipe 

reaches the maximum (collapse) pressure, it exhibits a rather smooth post-

buckling load path. On the other hand, the NLKH model predictions are 

significantly different. Due to the increased plastic deformations predicted by the 

model throughout the loading steps, the maximum pressure capacity is reached 

gradually within a region of almost equal pressure levels which extends 

throughout the ovalization range considered (Figure 2.16). 
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Figure 2.16: Collapse pressure versus ovalization curves  

Table 2.2: Collapse pressure and ovalization values for internal pressure equal to 

51 MPa (1 20 y. p ). 

Model maxP  (MPa) Ov(%) at maxP  

ISO 43.95 0.153 

LKH 43.26 0.165 

NLKH 28.39 1.514 

TL 36.68 0.662 

 

Four check points (C.P.) have been introduced at the plastic hinge 

locations of the buckling shape, as shown in Figure 2.17. At these points the 

evolution of stress and strain at the pipe hoop direction is monitored and the 

corresponding stress-strain curves are plotted in Figure 2.18. The corresponding 

curves from the ISO, LKH and the TL model are almost identical for the initial 

loading phase. Differences are observed upon the load direction reversal caused 

due to the geometry change of the pipe during buckling. It can be also observed 

that according to the NLKH model, plastic deformations initiate at lower stress 

levels. This is in accordance with the predicted material curve shown in Figure 

2.14. Due to the increased plastic deformations predicted by this model, the 

maximum pressure resistance is reached at a lower external pressure loading 

level (Figure 2.16). In all cases, the TL model is able to provide smooth transition 

zones from elastic to plastic deformations (Bauschinger effect) and thus more 

realistic stress-strain curves compared to the rest models considered. 
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Figure 2.17: Introduction of check points for stress and strain monitoring. 

 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 2.18: Stress-strain curves: (a) Check point 1, (b) Check point 2,  

(c) Check point 3, (d) Check point 4. 
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Chapter 3 

Buckling of high-strength steel cylinders under 

cyclic bending in the inelastic range 
 

 

3.1. Introduction 
 Steel tubes and pipes subjected to monotonically-increasing longitudinal 

bending, exhibit a moment-curvature response, primarily governed by the 

elastic-plastic characteristics of the steel material. It is also influenced by the 

ovalization phenomenon referred to as “Brazier effect”, induced to the pipe 

cross-section by the bending loading, resulting to a limit moment instability 

[Corona & Kyriakides (1998), Karamanos & Tassoulas (1991), Kyriakides & 

Corona (2007)]. For relatively-thick tubes and pipes, with diameter-to-thickness 

ratio less than 50, the cross-sectional ovalization is rather small with 

insignificant effect on the value of the maximum moment sustained by the 

member. However, with increasing bending into the inelastic regime, the elastic-

plastic behavior assisted by cross-sectional ovalization leads to the development 

of wrinkles on the flattened compression side of the tube wall, which very soon 

localize and the tube eventually fails catastrophically in the form of a sharp 

wrinkle, also referred to as “kink” or “local buckle” [Karamanos & Tassoulas 

(1996), Kyriakides & Ju (1992)]. In the case of thick tubes, with diameter-to-

thickness ratio less than 30, local buckling occurs at a late stage, after a limit 

moment is reached on the moment-curvature diagram [Ju & Kyriakides (1992)]. 

On the other hand, thinner tubes, with diameter-to-thickness ratio between 30 

and 50, exhibit local buckling more suddenly, sometime prior to attainment of 

the theoretical limit moment, due to ovalization [Houliara & Karamanos  (2011)].  

 Initial wrinkles are always present in tubes and pipes and may affect their 

bending response. Nevertheless, in steel pipes with diameter-to-thickness ratio 

less than 50 the effect of initial wrinkling may not be very important in terms of 

the ultimate moment sustained by the tubular member. On the other hand, their 

presence may affect the value of the curvature at which local buckling occurs 

[Kyriakides & Ju (1992), Ju & Kyriakides  (1992), Houliara & Karamanos  (2011)].  

 In many practical applications, steel tubular structures, piping systems 

and pipelines are subjected to severe cyclic loads, which induce repeated 

yielding of the steel material in the most strained locations. Typical examples are 

the response of tubular structures under strong earthquake action [Zayas et al.  

(1982)], offshore tubular platforms in extreme weather conditions [Bea & Young  

(1993), Schmucker and Cornell  (1994)], or nuclear reactor piping components 

and hot hydrocarbon pipelines under shut-down conditions [Shmnomura et al. 

(2002), Klever et al. (2002)]. Those cyclic excursions into the inelastic range can 
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lead to degradation and failure of structures due to accumulation of deformation. 

The structural behavior of tubes under cyclic bending loading has been examined 

experimentally by Shaw & Kyriakides (1985)and Kyriakides & Shaw (1987), and 

this work has been extended by Corona & Kyriakides (1991) to include the 

effects of external pressure. Notable works on the cyclic bending response of 

tubular members and pipes have been also reported in Lee et al. (2001), Chang & 

Pan (2009) using an experimental set-up very similar to the one in Corona & 

Kyriakides (1991), supported by analytical predictions based on a visco-plastic 

material model. Finally, cyclic loading of tubular members has also been 

examined with reference to structural applications and seismic structural design 

[Chang & Pan (2009), Elchalakani et al. (2004), Gao et al. (2004)]. 

 The above works indicated that there exist a strong interaction between 

the elastic-plastic behavior of the steel material and the geometric nonlinearities 

induced by initial wrinkles and the ovalization phenomenon, resulting in an 

accumulation of deformation at the critical region which leads to the formation 

of local buckling after a number of loading cycles. This is a situation that implies 

failure of the pipe; moment capacity is decreased abruptly and under continuing 

cyclic loading, the buckled area of the pipe may exhibit low-cycle fatigue due to 

strain concentration and, eventually, fracture [Dama et al. (2007)].  

 Herein, motivated by experimental evidence, the cyclic bending response 

of tubes and pipes is examined, with special emphasis on the effects of initial 

wrinkles on tube wall. Previous experimental and analytical works on axially-

loaded tubular members have indicated that initial wrinkles may grow under 

repeated axial loading within the inelastic range of the material, leading to 

instability followed by member collapse [Jiao & Kyriakides (2009), Jiao & 

Kyriakides (2010)]. Those works have been extended in Jiao & Kyriakides 

(2011a) and Jiao & Kyriakides (2011b) to examine the effects of internal 

pressure on the structural behavior of axially-loaded tubular members and the 

growth of wrinkles.  

 The present work focuses on seamless tubular members, made of high-

strength steel, subjected to cyclic bending and the formation of a local buckling 

pattern. The tubes have constant thickness, and are initially imperfect, with very 

small wrinkles, The amplitude of those wrinkles is in accordance with reported 

measurements on high-strength steel seamless tubes, which are well below the 

allowable limits of EN 10216. The analysis monitors wrinkle evolution with 

respect to the number of loading cycles and the determination of local buckling 

formation. Towards this purpose, a numerical simulation is employed, modeling 

the tube with nonlinear finite elements. Particular emphasis is given on the 

material model. A cyclic plasticity model introduced elsewhere is employed and 

is enhanced and calibrated for the purposes of describing accurately the 

mechanical behavior of the high-strength steel material. The results are reported 

in “buckling-life” diagrams, which indicate the sensitivity of buckling on the 

amplitude of initial wrinkles. 
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3.2 Experimental data on tubular members 
 In the course of the HITUBES project [Bursi (2012)], sponsored by the 

European Commission, large-scale axial and bending tests on seamless CHS 

tubular members have been conducted in the facilities of CSM in Sardinia, Italy. 

The tubular specimens made of TS590 high-strength steel have been provided by 

Tenaris Dalmine SpA, Italy. A heavy-frame loading device shown in Figure 3. 1 

and presented in Pournara et al. (2012) was used to apply the required loads to 

the specimens. In most of the tests, loading has been applied monotonically, to 

determine the strength of high-strength steel tubular beam-columns [Bursi 

(2012), Pournara et al. (2012), Pappa & Karamanos (2012)]. 

 In the present study, reference is made to two specimens that have been 

tested under cyclic bending loading in the absence of axial force. They are 12-

inch diameter CHS sections of nominal dimensions 323.9×10, subjected to 

constant-amplitude (rotation-controlled) cyclic bending loads until buckling. The 

first specimen has been subjected to symmetric loading, whereas the second 

specimen has been subjected to non-symmetric loading. The tubular specimen 

length is equal to 4.77 meters, capped with thick end plates, which are bolted on 

two rigid parts that connect to the two hinges of the bending apparatus. The 

entire specimen length (hinge-to-hinge) is equal to 7.93 meters. The test set-up is 

shown in Figure 3. 1and the experimental results are briefly reported in Table 3. 

1. 
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Figure 3. 1: Experimental set-up for tube bending [Bursi (2012)]. 

Table 3. 1: Summary of cyclic loading tests 

Test  

Actual Cross-

section 

(mm) 

Load 

type 

Hinge 

rotation 

range 

(degrees) 

fN

 

1  323.36×10.89 Symm. ±8.50 10 

2  324.75×10.88 
Non 

Symm. 

+8.40/-

6.10 
11 

  

 Material testing has been conducted in the laboratories of CSM on steel 

coupons extracted from the specimens. Monotonic loading of the coupons 

indicated a yield stress of 735 MPa, significantly higher than the nominal value. 

In addition, cyclic strain-controlled and stress-controlled tests on coupons have 

been performed to determine cyclic properties of the steel material, as shown in 

Figure 3. 2 and Figure 3. 3(a) respectively. The material specimens were 

manufactured according to the ASTM E466-07 standard and an anti-buckling 

device was used to allow the application of compressive loading, in the course of 

symmetric cyclic loading, as presented in Bursi (2012). Under cyclic plastic 

loading conditions the material exhibits slight softening which is soon followed 

by stabilization of its behaviour [Figure 3. 2.(a)], whereas under stress-
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controlled cyclic loading, the material exhibits ratcheting at a constant rate as 

shown in Figure 3. 3(a).   

 Before testing, measurements have been obtained to determine the actual 

geometry of the tubular specimens. The measured mean values of diameter and 

thickness are reported in Table 3. 1. Furthermore, initial wrinkle measurements 

have been performed, and the measured wrinkle amplitudes, expressed as a 

percentage of the tube wall thickness, were found less than 5%, with a 

representative value equal to about 0.8% [Pournara et al. (2012), Pappa & 

Karamanos (2012)]. Residual stress measurements have also been obtained and 

indicated very small residual stresses in the longitudinal direction and residual 

stresses less than 17% of the yield stress in the hoop direction [Pournara et al. 

(2012)]. Given the fact that, in the case of bending loading, the primary stresses 

are in the longitudinal direction, the small residual stresses in the hoop direction 

can be neglected for the purposes of the present analysis. 

 The results are depicted in Table 3. 1. During the first cycles, no tube wall 

wrinkling has been observed in the two specimens, but with continuing repeated 

loading the two specimens failed due to buckling after 10 and 11 loading cycles 

respectively. The buckled shapes are shown in Figure 3. 4. These two tests 

indicate clearly that repeated bending of a tubular member may cause buckling 

failure, despite the fact that the loading range is within the safety margins 

determined by the ultimate strength consideration. This is a key observation to 

be examined in detail in the following sections. 

 

 
(a) 
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(b) 

Figure 3. 2: Cyclic loading material curves for the T590 material and bounding-
surface constitutive model predictions under strain-controlled conditions - 

0.96%    . (a) model with parameter set M1, (b) model with parameter set 
M2. 

 

 
(a) 
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(b) 

Figure 3. 3: Cyclic loading material curves for the T590 material; (a) test results 
and (b) bounding-surface constitutive model M2 predictions under stress-

controlled conditions. 

 

 
(a) 
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(b) 

Figure 3. 4: Local buckling modes: (a) Specimen No. 1, (b) Specimen No. 2 [Bursi 
(2012)]. 

3.3 Finite element model  

 To simulate the cyclic behavior of tubular members, finite element models 

have been developed in the general-purpose program ABAQUS, using eight-node 

reduced integration solid elements (C3D8R). The tubular member is assumed to 

have uniform thickness distribution along its length. The finite element mesh is 

denser at the central part of the tube, where buckling occurs, as shown in Figure 

3. 5. Three elements along the thickness of the tubular member were used. The 

use of more than three elements along the tube thickness did not affect the 

numerical results. To represent the actual conditions of the experiments, two 

rigid parts, modeled with very stiff beam elements (B31), are attached at both 

ends of the tubular member to simulate the rigid parts connected to the hinges of 

the testing apparatus (Figure 3. 5).  
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(a) 

 
(b) 

Figure 3. 5: Numerical model: (a) general view, (b) mesh detail. 

 An initial profile of tube wall wrinkles is also considered. Towards this 

purpose, a linearized buckling (eigenvalue) analysis of the specimen under 

bending loading has been conducted. The corresponding first buckling 

(wrinkling) mode of the tube is obtained, as shown in Figure 3. 6, amplified by a 

factor of 100 for visualization purposes. The half wavelength of the wrinkling 

mode is equal to 73.15 mm, or equivalently, in dimensionless form, equal to

1.23 Dt , which is quite close to the buckling half wavelength values reported in 

Kyriakides & Ju (1992) and Ju & Kyriakides  (1992) for aluminum pipes. This 

wrinkling mode, scaled appropriately to match the desired wrinkling amplitude, 

is used as the initial wrinkling pattern of the tubular member for the nonlinear 

bending analysis.  
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Figure 3. 6: Wrinkling imperfections (amplified). 

3.4 Material modeling and implementation 

 The nonlinear behavior of the steel material is described through the 

cyclic plasticity constitutive model, introduced by Tseng & Lee (1983), which 

adopts the “bounding surface” concept. The reader is referred to Chapter 2, 

where more details about the numerical formulation of the model, as well as its 

numerical implementation, are reported.  

 In the present analysis the material model parameters have been properly 

defined based on the material testing data given in the report of Bursi (2012). 

Two sets of parameters, namely M1 and M2, have been defined in order to 

provide best fit to the strain-controlled and stress-controlled tests respectively. 

The values for each parameter set are reported in Table 3.2.  

 The first set (M1), considers a zero value of c  , as in the original 

formulation of the model (see Chapter 2, Eq. 2.41). The values of the other 

parameters have been selected for simulating accurately the strain-controlled 

loop, as shown in Figure 3. 2 (a). Nevertheless, this model may not provide good 

predictions for the ratcheting rate, also noticed in the studies of Hassan & 

Kyriakides (1992) and Bari & Hassan (2001). In the second set (M2), assuming a 

value of c  equal to 250 MPa, the ratcheting rate is significantly improved and is 

quite close to experimental results, as shown in Figure 3. 3, whereas the 

simulation of the strain-controlled loop is somewhat less accurate. 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:43:48 EEST - 3.145.36.43



64 

 

Table 3. 2: Summary of material parameter values 

Parameter M1 M2 

Ĥ  2300 2300 

  5 5 

c   (MPa) 0 250 

A  80 50 

B  0 10 

m  0 2 

0k  (MPa) 738 738 

Q   (MPa) -350 -350 

b  500 500 

  

  

 
(a) 
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(b) 

Figure 3. 7: Experimental results and numerical predictions for the moment-
rotation loops for (a) Test 1 and (b) Test 2. 

 

3.5 Numerical simulation of the experiments 

 The finite element model presented in the previous section is used to 

simulate the two tests reported in Table 3. 1. The numerical results for both 

parameter sets M1 and M2 coincide. The comparison of the predicted moment-

rotation curves with the corresponding experimental curves shows that the 

adopted model is capable of providing good predictions. In Figure 3. 7 the 

simulation of Test 1 and Test 2 are presented assuming an initial wrinkle 

amplitude equal to 0.8% of the tube wall thickness, which is considered as a 

typical value observed in experiments. The first loading branch of the curves, the 

subsequent hysteretic loops and the number of cycles until buckling are 

predicted accurately, i.e. 10 and 11 cycles for test specimens No.1 and No.2 

respectively. It is worth-noticing that no significant moment degradation is 

observed until buckling of the specimen occurs.  

3.6 Numerical parametric study 

 Using the finite element model, with the steel material model properly 

calibrated, a numerical study is conducted aiming at examining the effects of 

applied rotation range and the influence of initial wrinkling imperfections on the 

“buckling life” of the tubular member, i.e. the number of bending cycles to 

buckling. It should be noted that the range of wrinkle amplitudes measured on 

the tubular specimens [Pournara et al. (2012), Pappa & Karamanos (2012)] are 

significantly lower than the corresponding limits specified in EN 10216. 
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3.6.1 Monotonic loading of tubular members 

 Figure 3. 8 shows the response of a high-strength steel tube subjected to 

monotonically increasing bending, with diameter and thickness equal to 324.75 

mm and 10.88 mm respectively. Bending is applied through a set-up similar to 

the one used in the experiments, until local buckling occurs. Under these loading 

conditions, the predictions of both parameter sets M1 and M2 are identical, since 

the behavior is governed by the hardening modulus of the memory surface which 

is the same in both parameter sets. In this analysis, initial wrinkling amplitudes 

equal to 1%, 10% and 20% of the tube thickness are assumed. In the moment-

rotation diagram of Figure 3. 8(a), the applied rotation is normalized by the value 

of the elastic limit rotation 
y   corresponding to the development of the yield 

moment 
yM  defined as 

y el yM W    , where elW  is the elastic section modulus 

and 
yσ  is the yield strength of the material. Similarly, using the plastic section 

modulus
plW  , a reference plastic moment 

plM   is defined as
pl pl yM W   , and 

the corresponding rotation is denoted as 
p  . Using the actual geometric and 

material properties of the tube, one readily obtains 595.2 yM   kNm and 

785.01plM   kNm, and based on the finite element results, the corresponding 

values of rotation to reach these values are 3.45y    degrees and 11.73p    

degrees respectively. It should be noted that the value of 
p  is not well-defined 

due to the almost flat part of the moment-rotation curve at the plastic moment 

level. Finally, the end rotation corresponding to the formation of local buckling 

b   is defined as the rotation that corresponds to a sudden drop in the moment-

rotation diagram.  

 The above analysis under monotonic bending conditions has been 

repeated for several values of initial wrinkling amplitude, and the results are 

summarized in Figure 3. 9. The numerical results show that the presence of 

initial wrinkles does not affect the value of the ultimate moment. In particular, 

for wrinkling amplitude values less than 9%, the theoretical fully-plastic moment 

plM is reached for the members under examination while for a tube wall 

wrinkling amplitude of 30% of the tube thickness, the corresponding maximum 

moment is equal to 95% of the fully-plastic moment [Figure 3. 9(a)]. On the 

contrary, increasing the size of initial wrinkles, the value of the corresponding 

critical rotation b   is significantly reduced as presented in Figure 3. 9(b). The 

critical rotation b  for initial wrinkling amplitude of 1% is equal to 19.32b   

degrees, a value 5.6 times larger than the value of the yield rotation, whereas for 

wrinkling amplitude equal to 20% the value of b  is only 7.91 degrees (equal to 

2.29 times the value of the yield rotation). In terms of curvature, the numerical 

findings for the critical curvature defined as 2b bk L    are in good agreement 
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with experimental observations for tests on metal tubes in pure bending 

reported by Kyriakides and Ju (1992) for wrinkling amplitudes near the 

characteristic value and for the D/t   very close to the range of interest.   

 

 
(a) 

 
(b) 

Figure 3. 8: Monotonic bending behavior, test No.2 geometry: (a) Moment – 
rotation curves, (b) Ovalization – rotation curves. 
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(a) 

 
(b) 

Figure 3. 9: Effect of the initial wrinkling amplitude on (a) on the maximum 
moment and (b) the critical rotation b  f or monotonic loading. 

 

 Monitoring the distortion of the tube cross-section may offer significant 

information on the structural behavior of the cyclically bent tubular member. As 

a measure of cross-sectional ovalization, the following non-dimensional 

“ovalization” parameter is defined as: 

 max min

max min

D D
ov

D D





        (3.1) 
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where 
maxD  and 

minD  are the maximum and minimum tube diameters in the 

deformed configuration, located in two orthogonal directions, with the minimum 

diameter on the plane of bending. With increasing bending, the initially circular 

cross-section of the tube obtains an oval shape and prior to the development of 

local buckling, the rate of ovalization becomes significant, as presented in Figure 

3. 8(b). 

3.6.2 Cyclic loading of tubular members 

 A tubular specimen with the same geometric and material properties is 

subjected to cyclic bending loading under symmetric and non-symmetric 

rotation-controlled conditions. Considering a suitable scaling of the wrinkling 

mode of the tube shown in Figure 3. 6, initial wrinkling amplitudes of magnitude 

up to 5% of the tube thickness are considered.  

 The range of applied rotation    is such that the maximum absolute 

value does not exceed the buckling rotation b   in each direction of loading. This 

implies that the loading is within the safe (no-buckling) range b   determined 

from monotonic conditions, as defined in Figure 3. 8. In this analysis the gradual 

development of plastic deformation is monitored in terms of cross-sectional 

ovalization and wrinkle size with increasing number of loading cycles for 

different values of initial imperfections.  

 Numerical results for cyclic loading at 2.5 y      are shown in Figure 3. 

10 considering material parameter set M1. The results indicate that the initial 

amplitude of the principal wrinkle is maintained almost constant for a certain 

number of cycles. Subsequently, the principal wrinkle located in the middle of 

the specimen, increases very rapidly. The other wrinkles also increase in size but 

at lower rate, as illustrated in Figure 3. 11 for the characteristic initial wrinkling 

amplitude of 0.8 %. This leads to localization of deformation in the principal 

wrinkle, resulting in buckling of the tubular member in the form presented in 

Figure 3. 13, also observed in the experiments (Figure 3. 4). In Figure 3. 12the 

evolution of the longitudinal tensile strains measured at the inner pipe wall at 

the main buckle location is presented. It is observed that the developing local 

strains increase because of the increasing size of the local wrinkle, and reach 

significantly high values when local buckling takes place.  

 Buckling of the tubular member can be expressed in a diagram form as in 

Figure 3. 14, referred to as “buckling-life” diagram. In this figure, each curve 

represents the relation between the wrinkling imperfection amplitude and the 

corresponding number of cycles fN  until buckling failure of the tube, for a 

specific loading range. In the present analysis the ranges 

 2 ,  2.5y y           and 3 y     have been examined.  For increasing 

initial wrinkling amplitude, the number of cycles to buckling is reduced. It is also 

observed that the effect of the imposed wrinkling imperfection on the buckling 
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life is more significant for smaller end-rotation amplitudes, while it becomes less 

important as the rotation amplitudes increase. For greater values of imposed 

rotation the induced plastic deformations govern the structural behavior, and the 

effects of initial wrinkling become less important. 

 For the particular case of loading range equal to  2.5 y     (also used 

in test No.1) the results obtained from two material parameter sets M1 and M2 

are also compared in Figure 3. 14. The effect of initial wrinkling imperfections is 

dominant in the range of amplitudes less than 2%. It is also worth noticing that 

the predicted number of cycles coincides with the cycles obtained 

experimentally, for wrinkling amplitude equal to about 0.8% for both material 

parameter sets M1 and M2.  

 In general, the resulting curves are very close for both material sets. Some 

differences are observed for wrinkling imperfection values less than 0.5%. For 

these small initial wrinkles, the resulting failure shape is slightly different. Using 

the M1 parameter set, a more localized buckling pattern is observed, which is 

similar to experimental observations. On the contrary, using the M2 parameter 

set, a wider spread of plastic deformations occurs around the main buckle 

resulting at local buckling at a higher value of cross-section ovalization, which 

dominates the deformation of the cylindrical member (Figure 3. 15). Overall, the 

two material parameter sets provide similar predictions in terms of the buckling 

life of the cylindrical member. 

 

 
Figure 3. 10: Evolution of wrinkle height, 2.5 y    , 324.75D  mm, 10.88t  , 

735yσ    MPa.  
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Figure 3. 11: Evolution of the central and the secondary wrinkles under cyclic 

loading; initial wrinkling imperfection 0.8%, 2.5 y    , 324.75D  mm, 

10.88t  , 735yσ    MPa.  

 

 
Figure 3. 12: Evolution of longitudinal tensile strains at central buckle – inner 

pipe side, initial wrinkling imperfection 0.8%, 2.5 y    , 324.75D  mm, 

10.88t  , 735yσ    MPa.  

 

 The curves presented in Figure 3. 14, indicate that for initial wrinkling 

amplitude greater than about 2% of the tube wall-thickness, the number of 

cycles to buckling can be very small. In particular, for applied end-rotation 
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3 y      and for initial wrinkling values at about 5% of the tube thickness, the 

tube is expected to buckle during the first 1-2 complete loading cycles. In 

addition to wrinkle height evolution, a significant increase of ovalization is also 

observed due to the development of plastic deformations on the tube, shown in 

Figure 3. 16 for 2.5 y    . 

 

 

 
Figure 3. 13: Local buckling of cyclically bent cylinder; 1% wrinkling 

imperfection. 

 

  
Figure 3. 14: Initial imperfection effects on the number of cycles to buckling, 

2.5 y    , 324.75D  mm, 10.88t  , 735yσ    MPa.  
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 Previous experimental works on cyclically bent tubes by Kyriakides & 

Shaw (1987) have reported that buckling occurs when the cross-sectional 

ovalization reaches approximately the corresponding critical ovalization for 

monotonic loading. The validity of this observation is examined in the present 

study. Figure 3. 16 shows the evolution of ovalization for a tubular member with 

the mechanical and geometric characteristics of specimen No.1, and initial 

imperfection equal to 1% of the tube wall-thickness, subjected to cyclic loading. 

In addition, the ovalization of this tubular member at local buckling under 

monotonic bending, is also depicted with a horizontal dashed line. This latter 

value is equal to 0.12, as shown in Figure 3. 8(b). The results show that, under 

cyclic loading conditions, buckling of the specimen occurs at a value of cross-

sectional ovalization very close to this value as shown in Figure 3. 14, 

demonstrating the validity of this argument. Similar results have been observed 

in all cases examined in the present study. 

 
(a) 
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(b) 

Figure 3. 15: Local buckling – FE results – 0.1% initial wrinkle amplitude: 
Distribution of plastic deformation (a) M1 set, (b) M2 set. 

 

 
Figure 3. 16: Evolution of cross-sectional ovalization for symmetric cyclic 

bending; initial wrinkling imperfection 1%.  

 

 The effect of non-symmetric cyclic loading on the members under 

consideration has been also examined for the tube under consideration, using 

the M1 material parameter set. The selected loading pattern is 2.5 y      with 

max 3.5 y    and min 1.5 y    . The rotation range is equal to 5 y  similar to the 

one applied in test No.1, but with a non-zero mean rotation, equal to y  .  For 

initial wrinkling amplitude equal to 0.8% the cylindrical member exhibits local 

Buckling 
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buckling after 11 load cycles, very close to the corresponding predicted number 

of cycles for symmetric loading ( 10fN  ), as presented in Figure 3. 17, verifying 

the experimental results. The resulting curve for non-symmetric loading 

conditions is compared with the corresponding curve for symmetric loading 

conditions with the same total rotation amplitude. It can be observed that the 

non-symmetric loading conditions are more severe on the buckling life of the 

member for initial wrinkling amplitudes up to 0.5%. Nevertheless, for higher 

wrinkle amplitudes, the symmetric loading pattern results to somewhat fewer 

cycles until buckling. Results in terms of ovalization evolution under non-

symmetric loading are presented in Figure 3. 18. It is worth noticing that under 

non-symmetric loading conditions local buckling appears when the total 

ovalization value reaches a value of somewhat higher than 0.12, the value 

corresponding to buckling under monotonic loading, a result very similar to the 

one observed in symmetric loading conditions. 

 

 
Figure 3. 17: Wrinkling imperfection effects on the “buckling life” for symmetric 

and non-symmetric loading. 
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Figure 3. 18: Evolution of cross-sectional ovalization for non-symmetric cyclic 

bending; initial imperfection 1%. 

 

3.7 Conclusions 

 A numerical investigation of the behavior of high-strength steel tubular 

members subjected to cyclic bending conditions beyond the elastic behavior 

limit is presented. The investigation is motivated by relevant experimental 

evidence, and employs rigorous finite element simulation tools, that adopt an 

appropriate constitutive cyclic plasticity model.  

 The parametric analysis results have demonstrated that under cyclic 

bending conditions, tubular members are susceptible to buckling, even for 

rotation amplitudes within the rotation limits imposed by monotonic loading 

conditions. The numerical results have also shown significant imperfection 

sensitivity on the “buckling life” of these members (i.e. the number of loading 

cycles to buckling), especially for relatively small rotation amplitudes. It has also 

been observed that for initial wrinkling values greater than 2% of the tube 

thickness, the corresponding number of cycles to buckling for a given value of 

imposed rotation is quite small, but not significantly affected by the amplitude of 

the initial wrinkles. 

 Under both symmetric and non-symmetric cyclic loading conditions, the 

evolution of the cross-sectional ovalization results to buckling of the cylindrical 

member. The numerical results show that buckling occurs at an ovalization value 

very close to the corresponding ovalization under monotonic loading conditions.  
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Chapter 4 

Steel pipe elbows under strong cyclic loading 
 

4.1 Introduction 
 Steel pipe elbows are essential components of industrial piping systems 

and steel pipelines, and their structural performance is critical for the integrity of 

the industrial facility or the pipeline (Suzuki (2006), Paolacci et al. (2011)). 

Under extreme loading conditions (e.g. earthquake), they may exhibit significant 

cross-sectional distortion (ovalization), associated with deformation well beyond 

the elastic limit of the material, which may cause failure of the piping component, 

in the form of excessive cross-sectional ovalization or local buckling. 

 Notable experimental data on the behavior and strength of steel elbows 

under monotonic loading conditions have been reported by Sobel and Newman 

(1980, 1986), Dhalla (1987), Gresnigt et al. (1986, 1995), Greenstreet (1978) and 

more recently by Hilsenkopf et al.(1988), Suzuki and Nasu (1989) and Tan et al. 

(2002). Notable numerical works on steel elbows have been reported by Shaleby 

and Younan (1998), Mourad and Younan (2001), and Chattopadhyay et al. 

(2000). Karamanos et al. (2003, 2006) carried out extensive numerical studies of 

steel elbow response under in-plane and out-of-plane bending, which were 

extended by Pappa et al.(2008), to include the effects of external pressure. 

 The above works focused on monotonic loading. However, in the course 

of a strong seismic event, the elbows are subjected to strong repeated cyclic 

structural loading, associated with deformation of the steel material in the 

inelastic range. Under those cyclic loading conditions, the elbow may exhibit 

significant accumulation of plastic strain (often referred to as “ratcheting”), 

which eventually may lead to failure. Extensive experimental work on the 

ratcheting behavior of pressurized 2-inch carbon and stainless steel pipe elbows 

has been reported by Yahiaoui et al. (1996a), under an “increasing input 

displacement amplitude” loading. This work was continued in the study of 

Yahiaoui et al. (1996b) for out-of-plane bending, whereas Moreton et al. (1996) 

attempted to predict analytically the ratcheting rate and ratcheting initiation. 

Slagis (1998) reported an EPRI/NRC experimental testing program on 

carbon/stainless steel pipe elbows, through a shaking-table apparatus, for both 

component tests and piping system tests. Extensive experimental work was 

presented by Fujiwaka et al. (1999), through a series of material tests, pipe 

component tests and piping system tests (bent pipes, tees, and straight pipes).   

 Degrassi et al. (2003) performed seismic time-history finite element 

analysis of piping system for simulating ratcheting, using the bilinear, multilinear 

and Chaboche models in ANSYS. Balan and Redektop (2004) simulated the 

response of elbow specimen under cyclic bending and internal pressure with 

bilinear plasticity model in the finite element code ADINA. More recently, 

Rahman and Hassan (2009) presented an extensive analytical work on cyclic 
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behavior of steel elbows, supported by 3 experiments on 2-inch SCH10 pipes, 

aiming at determining the capabilities of several cyclic plasticity models in 

predicting the ratcheting rate. All the above works demonstrated that when steel 

elbows are subjected to strong repeated loading, they present failure associated 

with material degradation or cyclic creep. In many instances, the elbow cross-

section distorted or bulged with increasing number of cycles. 

 A joint effort of Delft University of Technology, Centro Sviluppo Materiali 

(CSM) and the University of Thessaly was recently conducted in the framework 

of a large European research program, aimed at investigating the structural 

safety of industrial equipment structures and components under seismic loading 

with emphasis on process piping and elbows. This research focused on the low-

cycle fatigue of pipe elbows and their elastic-plastic behavior under strong cyclic 

bending, and had an experimental and a numerical part. In the followings 

emphasis is given on the numerical part, while the experimental part is briefly 

described herein for the sake of completeness 

4.2 Experiments on steel pipe elbows 
 The elbow experiments conducted in the course of INDUSE project 

[Karamanos (2013)] are presented extensively in Varelis et al. (2013a , 2013b). 

In those experiments 8-inch SCH40 long-radius steel pipe hot bends have been 

tested with nominal diameter and thickness equal to D= 219.1 mm and t= 8.18 

mm respectively, and bend radius R 305 mm under strong cyclic in-plane 

bending. The material of the specimens is P355N, according to EN 10216 

standard, which is the EN equivalent of API 5L X52 steel grade.  

 
Figure 4. 1: Increasing amplitude loading pattern according to the ECCS No 45 

recommendations. 

 

 The first set of experiments took place at Delft University of Technology, 

as presented in [Karamanos (2013), Varelis et al. (2013a)], and consisted of eight 

tests; the seven first tests followed a constant-amplitude end-displacement, 

whereas a constantly increasing-amplitude loading sequence according to the 

ECCS No 45 provisions has been applied to the eight specimen. All eight 
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specimens had a very small internal pressure (0.1 MPa) with negligible effects on 

the overall behavior, applied for the purpose of detecting through-thickness 

crack. In the following, these experiments are referred to as “non-pressurized” 

tests.  

 

 

Figure 4. 2: First load cycle for Test 1 to Test 7 
 

 

Figure 4. 3: The Test 8 – ECCS load cycles 

 The effect of the internal pressure was studied in the second set of 

experiments performed at CSM laboratories, Sardinia [Karamanos (2013), 

Varelis et al. (2013b)]; five pressurized elbows bending tests have been 

subjected to in-plane bending in the presence of various internal pressure load 
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levels. The specimens and the test configuration are identical to the 

corresponding ones employed in the “non-pressurized” elbows. Internal 

pressure has been applied at levels of 3.2MPa, 7MPa, and 12 MPa, corresponding 

to nominal hoop stress equal to 12%, 26% and 45% of the yield stress. Pressure 

has been applied first up to the desired level, then kept constant and cyclic 

loading been applied.  

 The experimental set-up of sets of tests is presented in Figure 4. 5. In both 

experimental series, the instrumentation was very similar; strain gauges were 

used to monitor the evolution of local strains at critical location (elbow “flank”), 

displacement transducers monitored accurately the opening or closing 

displacements of the elbow ends, whereas the change of the elbow vertical 

diameter (referred to as “flattening”) was monitored at the middle cross-section 

of the elbow with the use of special-purpose frame devices attached on each 

specimen.  

 

 
Figure 4. 4: First load cycle for Test 9 to Test 13 

 Before testing the specimens, thickness variation measurements on the 

elbow and the straight pipes have been obtained on each specimen at various 

cross-sections. The measured values differ significantly from the nominal 

thickness value (8.2 mm) up to 1.9 mm at the elbow mid-section with an average 

thickness value of 9.98 mm (21.7 % higher than the mean value), attributed to 

the manufacturing process of the elbows. This variation was taken into 

consideration in the development of the numerical models, as presented in the 

next section. 

 The mechanical properties of the P355N steel grade have been 

determined experimentally [CSM (2011)], conducting several uniaxial and cyclic 

material tests on strip specimens extracted from the longitudinal and hoop 

direction of the elbow. The material test results were employed for the 

calibration of the constitutive material model parameters, to be presented in a 

subsequent section. 

 A summary of the experimental results on the elbow specimens is 
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presented in Table 4. 1. The number of cycles until failure of each specimen 
fN  

corresponds to the development of through-thickness crack and loss of piping 

containment. It is noted that the crack configuration presented in Figure 4. 6 is 

similar for all specimens. 

 

  
(a)  

 

(b) 

Figure 4. 5: Experimental set-up: (a) non-pressurized specimens tested at TU 
Delft, (b) pressurized specimens tested at CSM  
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Figure 4. 6: Crack location at the elbow “flank”. 
 

Table 4. 1: Summary of tests 
Test 
No. 

l

(mm) 
fN  p  

(MPa) 
H,expε

(%) 
Hε (%) Lε (%) 

1 ±25 13160 0.0 0.33 0.33 0.04 
2 ±70 444 0.0 1.23 1.25 0.14 
3 ±100 171 0.0 - 1.59 0.14 
4 ±150 61 0.0 2.61 2.55 0.16 
5 ±200 28 0.0 - 2.77 0.16 
6 ±250 17 0.0 3.84 3.75 0.18 
7 ±300 10 0.0 4.02 4.03 0.30 
8 ECCS 16 0.0 - - - 
9 ±200 26 3.2 3.01 2.89 0.23 

10 ±300 10 3.2 - 2.39 0.97 
11 ±200 27 7.0 - 2.69 0.39 
12 ±300 10 7.0 1.94 2.25 0.98 
13 ±200 22 12.0 - 0.63 1.49 

 

4.3 Finite element modeling of steel pipe elbows 
 

 The experimental work described in the previous section motivated the 

development of rigorous finite element models for simulations. The models have 

been developed in finite element code ABAQUS and employ the dimensions of 

the specimen based on relevant measurements conducted prior to the test 

execution. The elbow part of the specimen and the two straight pipe segments 

have been modeled as three separate parts. Thickness variability of the elbow 

has been taken into account, adopting a uniform thickness equal to the local 

mean measured thickness value. A uniform thickness, equal to the measured 

average value, has also been used for the straight parts. In the weld regions, the 
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weld over-thickness is also modeled appropriately, allowing for a realistic and 

smooth thickness transition between the elbow and the adjacent straight parts. 

 

Figure 4. 7: General view of the finite element model. 

 Eight-node incompatible mode (C3D8I) solid elements are used for the 

numerical simulations. The specific type of elements was selected against the 

eight-node reduced integration elements (C3D8R) because of its ability to 

provide simulation results in better agreement with the experimental 

measurements, without the need of increasing the number of elements. 

Nevertheless, comparison of the simulation results adopting both types of 

elements shows only minor differences, less than 1.5%. The models take into 

account nonlinear geometry and material nonlinearities through a large-strain 

formulation and a von Mises yield surface. A short parametric study was 

conducted for the selection of this type of elements and mesh size in order the 

models to simulate accurately and efficiently the overall behavior of the 

specimen, as well as the local plasticity phenomena. The size of the element in 

the longitudinal direction at mid-height of the pipe section is equal to 12.23 mm, 

i.e. about 1/18 of the pipe diameter. In the hoop direction, it is equal to 17.2 mm 

which is about 1/13 of the pipe diameter. In Figure 4. 7, a general view of the 

numerical model is depicted. 

Special attention is given on the accurate simulation of the material behavior 

under cyclic loading conditions. The nonlinear behavior of the steel material is 

described through the two advanced cyclic material models, namely the 

Armstrong – Frederic nonlinear kinematic/isotropic (combined) hardening 

model, denoted as “NLKH” hereafter, and the Tseng – Lee model, denoted as “TL”, 

presented in the Appendix and Chapter 2 respectively. 
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Figure 4. 8: Material curve and model predictions 

 Both models were calibrated to fit the material cyclic stress-strain curve, 

using the material test results from [CSM (2011)], and the corresponding values 

of k , C   and γ  are taken equal to 300 MPa, 46,000 MPa and 215 respectively. 

Based on the same material test results, the Tseng – Lee model was also 

calibrated. The resulting values of Η̂  and h  are equal to 5,000 MPa, and 10.  In 

addition, the initial size 0k  of the yield surface is equal to 280 MPa, Q  is -50 MPa 

(cyclic softening) and b  is equal to 100. The initial size of the memory surface is 

equal to 430 MPa, allowing for the simulation of the smooth transition from the 

elastic to the plastic regime observed in material testing. Adopting the 

aforementioned material model parameter values, the developed numerical 

model is able to predict accurately the material behavior under cyclic loading 

conditions, as presented in Figure 4. 8. 

4.4 Numerical simulation of experiments  
 

 Based on the calibrated numerical model presented in the previous 

sections, the tests reported in Table 4. 1 have been simulated. The numerical 

results for the non-pressurized and the pressurized tests are compared with the 

corresponding experimental measurements in the following sections.  The 

numerical simulation is aimed at demonstrating that the numerical models are 

capable of simulating accurately the test results in terms of the loading-

displacement curves and flattening-displacement curves for non-pressurized and 

pressurized elbows for various end displacement ranges, even for complex 

loading schemes.  

4.4.1 Numerical simulation of the non-pressurized tests 

 Using the numerical model presented in the previous paragraph, the non-

pressurized tests (Test 1 to Test 9) have been simulated. For each specimen, a 

different finite element model has been developed taking into account the exact 
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geometry of each specimen part, as well as the weld region and the supports. 

Both cyclic plasticity models were employed for the simulations, providing 

similar results in the majority of the cases examined. Apart from the load-

displacement curve, the numerical simulation is capable of predicting accurately 

cross-sectional flattening of each specimen. In all cases examined, the simulation 

results are in very good agreement with the experimental measurements, as 

presented in Figure 4. 9 to Figure 4. 13.  

 

(a) 

 

(b) 

Figure 4. 9: Test 3 100 , 0l  mm  P  MPa    : (a) Load-displacement curve, 

 (b) Flattening-displacement curve 
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(a) 

 

(b) 

Figure 4. 10: Test 4 150 , 0l  mm  P  MPa    : (a) Load-displacement curve, 

 (b) Flattening-displacement curve 
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(a) 

 

(b) 

Figure 4. 11: Test 5 200 , 0l  mm  P  MPa    : (a) Load-displacement curve, 

 (b) Flattening-displacement curve 
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(a) 

 

(b) 

Figure 4. 12: Test 6 250 , 0l  mm  P  MPa    : (a) Load-displacement curve, 

 (b) Flattening-displacement curve 
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Figure 4. 13: Test 8 - ECCS 0P  MPa  : Load-displacement curve 

 The behavior of the elbow under opening and closing bending loads is not 

symmetric, as presented in the previous Figures. This is due to the different 

ovalization shape of the elbow section at its mid-plane, which results to different 

cross-sectional inertia characteristics, and thus different bending behavior under 

opening and closing bending. In Figure 4. 14, the aforementioned different 

ovalization shapes of the elbow are displayed. The depicted shapes indicate a 

severe flattening of the cross-section at opposite planes during the application of 

opening and closing bending loads.  

 The numerical results also verified the location of cracking; the 

concentration of plastic deformations reaches its highest value at about 20 mm 

below the elbow “flank” (at a distance equal to 2.5 times the pipe wall thickness), 

as illustrated in Figure 4. 15, exactly where the crack is developed, as shown in 

Figure 4. 6. Numerical results show that in this position the hoop stress reaches 

its maximum value. Furthermore, at this location, hoop strain is always greater 

than the corresponding longitudinal strain, and this verifies the direction of the 

crack in Figure 4. 6. Finally, it is interesting to note that an elastic analysis of the 

elbow shows a concentration of stresses in almost the same location where the 

cracks appear after excessive plastic deformation.  

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:43:48 EEST - 3.145.36.43



90 
 

    

(a)                                                        (b) 

Figure 4. 14: Ovalization of middle section: (a) Closing and (b) Opening bending 
loads 

 

Figure 4. 15: Concentration of strain at the elbow critical region (elbow “flank”). 

 Experimental results also show that the evolution of strains at the critical 

location with increasing number of loading cycles is characterized by 

accumulation of plastic strain at each cycle and an increase of the mean strain, 

while the total range is nearly constant. In Figure 4. 16 the evolution of hoop 

strain as measured in the non-pressurized case of Test No 4 is compared with the 

corresponding numerical predictions. Both experimental and numerical results 

show a significant accumulation of hoop strain, which leads to member failure 

due to fatigue. Nevertheless, the predictions of the TL model are much closer to 

the experimental measurements, while the NLKH model over predicts the local 

strain evolution rate.  
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Figure 4. 16: Evolution of strains ranges at the critical region; end-displacement 
range 150l=  mm , hoop direction. 

4.4.2 Numerical simulation of the pressurized tests 

 Using detailed numerical models, as those presented in the previous 

paragraph, the rest tests reported in Table 4. 1 on pressurized elbows have been 

simulated. In this set of tests only the TL constitutive material model was 

adopted for the simulations. Indicative simulation results for tests 9 to 13 are 

compared with the corresponding experimental measurements in Figure 4. 17 to 

Figure 4. 21. Apart from load-displacement curves, in some of the reported cases 

the numerically predicted flattening-displacement curves are compared with the 

corresponding experimental measurements. As in the experimental set of the 

non-pressurized elbows reported in the previous section, the developed 

numerical models are able to simulate accurately the tests on pressurized elbows 

as well. 

 The critical position where cracking took place in the experiments is also 

verified by the numerical model. Bellow the elbow mid-axis at the elbow flank 

region, there is a localization of strains mainly in the hoop direction, very similar 

to the one observed in the non-pressurized tests (Figure 4.15). This justifies the 

fact that all specimens exhibited cracks, which opened in the longitudinal 

direction of the elbow, regardless the pressure level applied. 

 The comparison between the flattening curves of the nine tests under 

consideration with the same end-displacement range for various pressure levels 

shows a small dependence of the cross-sectional deformation on the level of 

internal pressure. Figure 4. 22 presents the total cross-sectional flattening D   

during an entire cycle, as obtained from numerical analysis for the tests with 

end-displacement ranges equal to 200l=  mm and 300l=  mm . The 

flattening values are normalized by the elbow diameter D . It can be observed 

that as internal pressure increases, cross-sectional flattening decreases. In other 

words, in the case of pressurized elbows, the elbow cross-section at its mid-plane 
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maintains a more circular shape, and therefore it is capable of sustaining higher 

load level. Nevertheless, internal pressure induces additional stresses on the 

elbow that need to be added to the stress field of the deformed elbow for an 

accurate fatigue assessment. The effects of internal pressure on the fatigue life 

are discussed in a subsequent section. 

 
(a) 

 
(b) 

Figure 4. 17: Test 9, 3.2 200P=  MPa, l=  mm  (a) Load - displacement,  

(b) Ovalization - displacement curve 
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(a) 

 

(b) 

Figure 4. 18: Test 11, 7 200P=  MPa, l=  mm  (a) Load - displacement,  

(b) Ovalization - displacement curve 
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(a) 

 

(b) 

Figure 4. 19: Test 13, 12 200P=  MPa, l=  mm  (a) Load - displacement,  

(b) Ovalization - displacement curve. 
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Figure 4. 20: Test 10, 3.2 300P=  MPa, l=  mm : Load – displacement curve 

 

 

Figure 4. 21: Test 12, 7 300P=  MPa, l=  mm : Load – displacement curve 
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Figure 4. 22: Total cross-sectional flattening for tests with end-displacement 
range 200l=  mm and 300l=  mm . 

4.5 Fatigue analysis 
 The non-pressurized specimens Nos.2-7 have been subjected to constant 

amplitude end-displacement range and failed under a number of cycles below 

the 105 low-cycle-fatigue limit (Table 4. 1).  The results from these six specimens 

are plotted in a log-log scale in Figure 4. 23, in terms of the number of cycles to 

failure
fN  , with respect to the corresponding end-displacement amplitude Δl .  

The data points in Figure 4. 23 are fitted remarkably well with a straight line in 

the log-log scale, with a slope equal to 1 over 2.59, expressed by the following 

equation: 
2.59

1467.8
fN =

l

 
 
 

       (4.1) 

The result of Test No.1 is also plotted on the same graph. The corresponding 

number of cycles (
fN  13,160) can be considered at the transition region 

between low-cycle and high-cycle fatigue regimes. The extension of the straight 

line described by Eq.(4.1), passes close to the aforementioned point.  

 A more rational manner to examine the fatigue behavior of the elbows 

under consideration is to express the number of cycles until failure in terms of 

the hoop strain amplitude at the critical location where cracking takes place. The 

numerical results have been in good agreement with the available measured 

strains. For each test, the hoop strain range ε  at the critical location computed 

from the numerical simulations adopting the two plasticity models (NLKH, TL) is 

shown in the last columns of Table 4. 2. Using these values for the non-

pressurized tests Nos. 2-7, the following equations correlate the number of 

cycles to failure 
fN  with the local hoop strain range ε :   
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 Experimental measured values 

 
3.11

9.124
fN

ε

 
  
 

       (4.2) 

 Numerically predicted values - NLKH model 

 
2.88

9.057
fN

ε

 
  
 

       (4.3) 

 Numerically predicted values - TL model 

 
3.13

8.693
fN

ε

 
  
 

       (4.4) 

and the resulting fatigue curves are presented in Figure 4. 24.  

Table 4. 2: Summary of results on non-pressurized elbows 

Test No. 
Displ. Range 

l  (mm) 

Number of 

cycles until 

failure 
fN  

Local strain 

range * 

(%) (Exp) 

Local strain 

range * 

(%) 

(NLKH) 

Local strain 

range * 

(%) (TL) 

1 ±25 13160 0.33 0.46 0.33 

2 ±70 444 1.23 1.07 1.25 

3 ±100 171 - 1.59 1.59 

4 ±150 61 2.61 2.21 2.55 

5 ±200 28 - 2.66 2.77 

6 ±250 17 3.84 3.30 3.75 

7 ±300 10 4.02 4.29 4.03 

8 ECCS 

protocol 

16 - - - 

*: calculated in the elbow hoop direction at the critical location 

 It is interesting to note that the number of cycles until failure for the 

variable-amplitude loading test No.8 could be accurately predicted by Miner’s 

rule applied to the fatigue curve (4.1) or (4.2) to (4.4). More specifically, using 

the strain-based fatigue curves (4.2) to (4.4), the number of cycles iN  at a 

specific loading range is recorded, and the corresponding number of cycles to 

failure 
fiN  is computed. Summation of the “damage indices” 

i i fiD = N N  

indicates that a value of unity is reached at the end of the 16th cycle as reported 

in Table 4. 3 and Figure 4. 25, which is exactly equal to the number of cycles to 

failure observed in experiments. It should be noted that, despite the fact that 

fatigue curves (4.2) to (4.4) provide very similar predictions, equation (4.4) that 

resulted by using the TL model gives results more closer to unity in terms of the 

damage index. 

Table 4. 3: Summary of damage indices using the Miner’s rule 

ECCS test 

NLKH 

fit TL fit Test fit 

Sum of iD  * 1.088 1.048 0.913 

(*): at the 16th cycle  
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Figure 4. 23: Displacement range versus number of cycles to failure 

 
Figure 4. 24: Local hoop strain range vesus number of cycles to failure 

 
Figure 4. 25: Test 8 - failure prediction using the Miner’s rule 
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 In most tests, it was possible to measure the developing hoop strain range 

in the elbow circumferential direction at the critical region where cracking 

occurred. This strain range is reported in Table 4. 1 as
H,expε . The available 

values measured during testing are compared with the corresponding values 

predicted by the numerical models using the TL plasticity model (denoted as Hε

) and are found to be in good agreement for all specimens. In addition to the 

strain range values in the elbow hoop direction, the corresponding strain ranges 

in the longitudinal direction have been also reported in Table 4. 1 for the critical 

point of the elbow, denoted as Lε . The longitudinal strain range values are 

obtained from the numerical analysis only, since no longitudinal strain 

measurements were taken during the experimental testing procedure. The 

results shown in Table 4. 1indicate that for the first set of tests (Test No. 1 to Test 

No. 7), the longitudinal strain range is small compared to the corresponding 

range in the hoop direction. On the contrary, as internal pressure increases (i.e. 

for Test No. 9 to Test No. 13), the longitudinal strain ranges become comparable 

or even greater than the corresponding hoop strain ranges.  

 Based on the data reported in Table 4. 1, it can be readily concluded that 

the local strain field developed at the critical region is biaxial, especially for the 

pressurized elbows. It is possible to take this biaxial strain field into 

consideration defining an equivalent strain range definition given as:

 2 2

eq H L H Lε ε ε ε ε              (4.5) 

where Hε  and Lε are the corresponding strain ranges in the hoop and 

longitudinal direction respectively. A similar approach has been adopted in Dama 

et al. (2007). The results of this analysis are reported in the relevant column of 

Table 4. 2.  

 The presence of internal pressure results in a decrease of the 

corresponding strain range in the hoop direction Hε , as shown in Figure 4.26, 

compared to the non-pressurized cases.  This can be attributed to the reduced 

cross-sectional flattening associated with the presence of internal pressure, as 

demonstrated by the results reported in Figure 4. 22. On the other hand, internal 

pressure increases the strain range in the longitudinal direction. In addition, the 

increase of the internal pressure level results in higher rate of strain 

accumulation in both directions.  

 Furthermore, no significant bulging of the cross-section has been 

observed prior to fatigue failure, for the levels of internal pressure considered. In 

particular, the experimental measurements for Test No. 13 ( 200l=  mm , 
12P=  MPa ) show a change of the elbow mean-diameter in the range of only 1% 

after 22 load cycles, which is also verified numerically. 
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(a) 

 

(b) 

Figure 4. 26: Evolution of strains ranges at the critical region; end-displacement 
range 200l=  mm : (a) hoop direction, (b) longitudinal direction; numerical 

results. 
 

 Regarding fatigue life, the fatigue results depicted in Table 4. 1 for tests 5, 

9, 11 and 13 indicate a trend of decreasing number of cycles with increasing 

internal pressure level. This trend cannot be explained by the range of hoop 

strain at the critical location. To account for the effect of internal pressure on the 

cyclic response of elbows, an enhanced equivalent strain range *ε  is suggested, 

as defined in Eq.(4.6).  
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* 1

1
eq

y

ε ε
p

p





          (4.6) 

 In this equation, the strain range 
eqε  is multiplied by a “pressure” factor, 

which accounts for the pressure level p  with respect to the yield pressure
yp . In 

other words, this factor is used to account for the case that a specific strain range 

takes place at a mean non-zero stress value. This enhanced strain range for each 

experiment is presented in the last column of Table 4. 4, and the corresponding 

fatigue life points are presented in Figure 4. 27. Following a standard fitting 

procedure, the following equation is proposed that correlates the number of 

cycles until failure with the enhanced strain range as follows: 

 
3.43

8.198
fN

ε*

 
  
 

        (4.7) 

Furthermore, the fatigue curve expressed by Eq.(4.7) is quite similar to the 

fatigue curve given in Eq. (4.4) for the non-pressurized specimens, taking into 

account only the strain range in the hoop direction. Finally, it should be 

underlined that the above curve does not consider the variable amplitude test 

No.8, as well as tests No.1, which falls outside the low-cycle fatigue range. 

Table 4. 4: Analysis of test results 
Test 
No. 

l

(mm) 
fN  

y

p
p

 

eqε

(%) 

*ε

(%) 

1 ±25 13160 0.00 0.35 0.35 

2 ±70 444 0.00 1.32 1.32 

3 ±100 171 0.00 1.66 1.66 

4 ±150 61 0.00 2.63 2.63 

5 ±200 28 0.00 2.85 2.85 

6 ±250 17 0.00 3.84 3.84 

7 ±300 10 0.00 4.19 4.19 

8 ECCS 16 0.00 - - 

9 ±200 26 0.12 3.01 3.42 

10 ±300 10 0.12 3.00 3.41 

11 ±200 27 0.26 2.90 3.94 

12 ±300 10 0.26 2.97 3.90 

13 ±200 22 0.45 1.89 3.45 
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Figure 4. 27: Fatigue life curve and BPVC code predictions. 

4.6 Fatigue life predictions   

 To predict the fatigue life of a cyclically loaded elbow, it is necessary to 

estimate the local strain at the critical location. This can be achieved using an 

appropriate finite element model that accounts for geometric and material 

nonlinearities, as described in the previous sections. Nevertheless, this may not 

always be feasible, especially for design purposes. In the present section, an 

efficient methodology is presented for estimating fatigue life of a cyclically 

loaded elbow, based on Neuber’s equation [Neuber (1961), v.d Vegte et al. 

(1989)]. 

 Neuber’s equation correlates the theoretical elastic stress concentration 

factor SCF
 with the plastic stress concentration factor σK  and the plastic strain 

concentration factor εK as follows: 

 2

σ εSCF =K K         (4.8) 

The value of SCF
 is obtained from the ratio of the local peak stress eσ  

obtained from elastic analysis, over the nominal stress range S : 
eσ

SCF=
S




        (4.9) 

where superscript e refers to elastic analysis. Similarly, if σ  is the local peak 

stress range, ε  is the local peak strain range, both obtained from “elastic-

plastic” analysis, and e  is the nominal strain range, the values of σK and εK  can 

be obtained as follows: 

σ

σ
K =

S




        (4.10) 

and 

ε

ε
K =

e




        (4.11) 

Combining the above equations(4.8), (4.10) and (4.11), one readily obtains 
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 2σ ε=SCF S e           (4.12) 

 The value of eσ  to calculate SCF  may be obtained numerically, using an 

elastic finite element analysis. However, in lieu of such a finite element analysis, 

the stress intensification factor ( SIF ) proposed by available design standards 

can be used as an approximation of the stress concentration factor SCF . For in-

plane bending conditions and 90-degree smooth elbows, the SIF value is equal to 

ASME B31.3, EN 13480-3:  

 
2

3

0.9
SIF

h
         (4.13) 

where h is the flexibility characteristic defined as 2 h=tR r , t  is the elbow 

thickness, r is the elbow cross-sectional radius and R  is the elbow bend radius. 

The nominal stress and strain ranges S  and strain e  can be evaluated using 

elementary mechanics formulae: 

 
M S

S= , e=
Z E

 
         (4.14) 

where M  is the total moment range max minM = M  M  applied on the elbow, 

Z is the section modulus and E  is Young’s modulus. It should be noted that the 

stress and strain ranges defined in Eq.(4.14) are the maximum stress and strain 

according to classical beam theory, located at the points with maximum distance 

from the neutral axis. In the case of elbows under in-plane bending, the most 

stressed location is the elbow flank where cracking takes place due to the cross-

sectional flattening, as discussed previously. The local stress intensification 

factor given in Eq.(4.13) accounts for this effect and correlates the nominal  

stress and strain ranges with the corresponding ranges at the critical region. 

 To employ this methodology and compute the local strain range, the so-

called “cyclic stress-strain curve” is necessary. Connecting the tips of the 

hysteresis loops, as shown in Figure 4. 28, an analytical expression of the cyclic 

material curve can be derived as follows: 

 

1

2 2 2

nε σ σ

E K

 
   

 

  
        (4.15) 

where K , n  are the cyclic stress coefficient and cyclic strain hardening exponent 

respectively, equal to 623.5 MPa and 0.169 respectively. 

 Under cyclic bending loading under moment range M , the nominal 

stress range S and strain range e  are calculated from Eq.(4.14), the local peak 

ranges of stress and strain ( σ , ε ) are defined by the intersection of the cyclic 

material curve with Neuber’s hyperbola expressed in Eq.(4.12), where SCF is 

obtained from Eq. (4.13). Subsequently, the local strain range ε is used to 

calculate the number of cycles to failure 
fN through an appropriate fatigue 

curve.  

 Figure 4. 29 shows graphically the definition of the ( ε, σ  ) pair at the 

intersection of equations (4.12) and (4.15). Subsequently, the fatigue life of the 

elbow 
fN  can be readily calculated from the right vertical axis of the same 

graph, using Eq. (4.7).  
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 This simplified fatigue prediction method has been applied for predicting 

the fatigue life of the tested specimens. For each test conducted, the predicted 

strain range values are presented in the third column of Table 4. 5 adopting the 

actual geometric characteristics of each elbow, denoted as Nε . The resulting 

predictions are consistent with the corresponding strain range predictions 

obtained by the aforementioned methodology. The corresponding predictions of 

the fatigue life through Eq. (4.7) are shown in Table 4. 5 and in Figure 4. 30, and 

are in good agreement with the experimental data. 

 

 

Figure 4. 28: Cyclic material stress-strain curve. 

 

Figure 4. 29: Schematic representation of the fatigue life prediction using the 
simplified method. 
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Table 4. 5: Fatigue predictions using the Neuber’s rule 

Test No. *ε (%) Nε (%) fN  
f,NN  

1 0.35 0.45 13160 20758 

2 1.32 1.35 444 482 

3 1.66 1.80 171 179 

4 2.63 2.15 61 97 

5 2.85 2.50 28 58 

6 3.84 2.85 17 37 

7 4.19 3.25 10 23 

8 - - 16 - 

9 3.42 3.05 26 29 

10 3.41 3.65 10 15 

11 3.94 3.20 27 25 

12 3.90 4.60 10 7 

13 3.45 3.60 22 16 

 

 

Figure 4. 30: Fatigue life predictions using the simplified method. 

4.7 Parametric study 
 The aim of this study is to examine the effects of the variation of the elbow 

geometrical characteristics on its fatigue life. The developed numerical model 

has been modified accordingly in order to be used for the scope of a parametric 

study. The end-supports have been removed and the mesh density has been 

defined through a mesh sensitivity analysis using C3D8I solid elements as in the 

original model. The loading on the elbow is introduced as end-rotations at the 
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ends of its straight parts. A general view of the developed numerical model is 

presented in Figure 4. 31.  

 

Figure 4. 31: Numerical model used for the parametric analysis 
 

Table 4. 6: Parametric analysis – grid of cases examined 

Rotation 
Amplitude 

8-inch SCH20 
Long radius 

8-inch SCH40 
Long radius 

8-inch SCH80 
Long radius 

8-inch SCH40 
Short radius 

±0.02 rad     
±0.04 rad     

±0.08 rad     

±0.12 rad     

 

Table 4. 7: Geometrical characteristics of examined cases 

Geometrical 
Characteristics 

Diameter D

(mm) 
 

Thickness t
(mm) 

Bend radius R

(mm) 
R/D  

8-inch SCH20 
Long radius 

219.1 6.4 304.8 1.391 

8-inch SCH40 
Long radius 

219.1 8.2 304.8 1.391 

8-inch SCH80 
Long radius 

219.1 12.7 304.8 1.391 

8-inch SCH40 
Short radius 

219.1 8.2 203.2 0.927 

 

 A complete list of the cases examined is reported in Table 4. 6 and their 

geometrical characteristics are reported in Table 4. 7. Both the NLKH and the TL 

models have been adopted for the numerical analysis. For each case examined, 

moment-rotation curves where derived and the local strain ranges at the critical 

locations where monitored. Indicative analysis results for the case of case of 8-

inch SCH40 long radius case are reported in Figure 4. 32.  
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In the monotonic loading cases where the elbow is subjected to opening 

or closing moment loading [Figure 4. 32 (a)], the two plasticity models predict 

similar behavior. The differences become evident in the rotation levels where 

significant plastic deformations are involved, due to the different constitutive 

equations formulation of the two models. The same trend is also observed in the 

cyclic loading at different end-rotation levels presented in Figure 4. 32 (b)-(e). 

Despite the fact that the moment-rotation curves from the two models are quite 

close, the measured local strain ranges differ significantly. Consequently, the 

predicted fatigue life for these cases differs as well. The reason for the above 

observations is that under increased plastic deformations, the hardening 

modulus predicted by the NLKH model tends to zero, while the TL model 

provides a more realistic value as shown in the experiments presented in Figure 

2.10 (Chapter 2). 

The results of the parametric analysis are reported in Table 4. 6(a) to (d) 

for the complete set of cases. The local strain ranges at the critical location of the 

elbow are reported for each case. The fatigue life predictions were based on 

Eq.(4.3) and Eq.(4.4) for the NLKH and the TL model respectively. A thorough 

examination of the results shows that increasing the elbow wall thickness results 

to longer fatigue life for the same end-rotation range due to the reduction of the 

strain field range developing locally. In addition, higher R/D ratio results to 

increased fatigue life for the same end-rotation amplitude and schedule. 

 
(a) 
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(b) 

 
 (c) 

 
(d) 
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 (e) 

Figure 4. 32: Parametric analysis results – 8-inch SCH40 long radius: (a) 
Monotonic analysis, (b) 0.02r  rad  , (c) 0.04r  rad  , (d) 0.08r  rad  , (e) 

0.12r  rad   
 

Table 4. 8: Parametric analysis results: a) 8-inch SCH20 long radius, b) 8-inch 
SCH40 long radius, c) 8-inch SCH80 long radius, d) 8-inch SCH40 short radius 

8-inch SCH20 
Long radius 

 %   fN  

Rotation 
Amplitude 

(rad) 
NLKH TL NLKH TL 

0.02  0.69 0.76 1651 1263 
0.04  1.66 1.70 133 123 
0.08  4.87 3.18 5 20 
0.12  7.88 4.47 1 7 

(a) 

8-inch SCH40 
Long radius 

 %   fN  

Rotation 
Amplitude 

(rad) 
NLKH TL 

NLK
H 

TL 

0.02  0.67 0.68 
183

8 
2848 

0.04  1.61 1.58 143 207 
0.08  6.00 2.95 5 29 
0.12  6.70 3.12 2 24 

(b) 
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8-inch SCH80 
Long radius 

 %   fN  

Rotation 
Amplitude 

(rad) 
NLKH TL NLKH TL 

0.02  0.59 0.61 2630 2399 
0.04  1.46 1.56 193 157 
0.08  3.80 1.67 12 130 
0.12  6.99 2.46 2 42 

(c) 

8-inch SCH40 
Short radius 

 %   fN  

Rotation 
Amplitude 

(rad) 
NLKH TL NLKH TL 

0.02  0.77 0.81 1215 1712 
0.04  2.01 1.79 76 141 
0.08  6.02 3.42 3 18 
0.12  9.78 6.42 0 2 

(d) 

 A critical review of the parametric analysis results illustrates that 

increasing the rotation amplitude, the local strain ranges predicted using the 

NLKH model are quite large compared to the corresponding values derived using 

the TL model. This has been also observed during the simulation of elbow 

experiments presented in the previous sections, and is attributed to the very 

small hardening modulus considered by the NLKH model for large plastic 

deformations. On the contrary, the formulation of the TL model allows for better 

control this effect, leading to more accurate and reliable results. 

Regarding the predicted fatigue life of the elbows, the numerical results 

show that increasing elbow wall thickness (higher schedule) results to increased 

fatigue life of the elbow for the same end-rotation range. In addition, long radius 

elbows (higher R/D ratio) showed lower local strain ranges, implying longer 

fatigue life compared to short radius elbows of the same schedule. 

4.8 Design implications  
The extreme loading conditions considered in the present study are 

motivated by earthquake loading and, therefore, they can be treated as 

occasional loading according to the provisions of both ASME B31.3 and EN 

13480-3 standards for process piping. Both standards adopt the “allowable 

stress” concept based on elastic analysis. The present results exceed the limit of 

applicability of elastic analysis, so that an elastic-plastic analysis is necessary, 

and therefore, the predictions from those two standards are expected to be 

conservative. 

 Following the design methodology in ASME B31.3 for occasional loading 

acting on a piping component (paragraph 302.3.6), the sum of longitudinal stress 

LS due to sustained loads (e.g. pressure, self-weight) and of longitudinal stress 
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L,OccS produced by occasional loads (e.g. wind or earthquake), may be as much as 

1.33 times the basic allowable stress, given in the relevant Table of material 

allowable stresses in Appendix A of B31.3. For API 5L X52 material, the allowable 

stress hS  at maximum metal temperature expected during the applied 

displacement cycle is equal to 151.68 MPa (22 ksi). This requirement can be 

expressed as: 

1.33L L,Occ hS S S         (4.16) 

If no pressure or other sustained loads are considered, as in the present 

experimental study, the value of L.S can be assumed equal to zero. Furthermore, 

L,OccS  for in-plane bending can be computed from ASME B31.3 paragraph 319.4.4 

as follows  

L,Occ i iS =i M Z        (4.17) 

where ii  
is the intensification factor given in Appendix D of ASME B31.3 (equal 

to 2.44 in our case), iM  is the bending moment and Z  is the pipe cross-section 

modulus.  

Similar provisions exist in EN 13480-3, where the stresses due to 

occasional loading conditions, given by Eq. (4.17), are limited by the product hk f , 

where k is a coefficient equal to 1.2 for the design basis earthquake and 1.8 for 

the safe shut-down earthquake, and hf  is the allowable stress of the pipe 

material, equal to 163.3 MPa for the present case. It is noticeable that the EN 

13480-3 code considers two seismic levels, allowing for a less conservative 

design under extreme earthquake action.  

For the piping elbows under consideration, according to ASME B31.3, the 

maximum bending moment allowed for occasional loading according to Eq. 

(4.16)and Eq. (4.17) is limited to 24 kNm corresponding to an end-displacement 

equal to 14.8 mm. Furthermore, according to EN 13480-3, the maximum 

allowable moment is equal to 34.9 kNm for the safe shut-down earthquake, 

which corresponds to an end-displacement of the present elbow equal to 21.5 

mm. Considering that the elbow specimen of Test 1 is able to withstand 13,160 

load cycles before failure under an imposed displacement of  25mm, it can be 

concluded that the above provisions in both standards are very conservative for 

this type of loading. This conservativeness is attributed to the fact that both 

design standards follow an “allowable stress design” concept, not accounting for 

the ultimate capacity of the elbow component, which is associated with 

deformations well beyond the elastic limit of the steel material.  

Regarding cyclic loading, both standards adopt a similar approach. The 

allowable local stress amplitude AS  is related to the number of loading cycles fN  

according to the following equations (ASME B31.3, paragraph 302.3.5):  

   0.26 1.25A f C h LS N S S S          (4.18) 

or alternatively  

  0.26 1.25 0.25A f h CS N S S       (4.19) 
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where the first term in the parenthesis of the right-hand-side is limited by the 

value of 1.2 for ferritic steel material, whereas 
CS  and 

hS  are the basic allowable 

stresses at minimum and maximum metal temperature respectively and LS  
is 

the corresponding longitudinal stress due to sustained loading. 

In both standards, equations (4.18) and (4.19) are valid for a number of 

cycles greater than 1,000 corresponding to high-cycle fatigue, and therefore, they 

do not cover the extreme loading conditions of Tests Nos.2-13, where failure 

occurs in the low-cycle fatigue regime with a number of cycles 
fN less than 500. 

For the particular case of Test No.1, setting the number of cycles N  equal to 

13,160 and the value of  LS  equal to zero, one readily obtains a corresponding 

allowable stress amplitude AS  equal to 204.8 MPa and 341.33 MPa, using 

equations (4.18) and (4.19) respectively. The resulting stress amplitude by Eq. 

(4.18) is significantly lower than the calculated maximum stress amplitude 

(350.8 MPa) that this elbow exhibits at the crack location under an imposed 

cyclic displacement of  25mm, indicating the conservativeness of this equation. 

On the other hand, Eq. (4.19) provides a less conservative prediction for the 

stress amplitude, which is quite close to the calculated maximum amplitude at 

the crack location. 

 On the other hand, the ASME BPVC (2010) standard, oriented for the 

design of nuclear piping components, provides design fatigue curves for elbows 

in the low-cycle fatigue regime. The fatigue design curve for carbon steel piping 

components presented in section III of ASME BPVC (2010) and covers quite low 

values of fatigue life up to 10 cycles. In addition, according to BPVC, mean stress 

effects (e.g. internal pressure effects) have already been incorporated in the 

fatigue curve under consideration. 

 The BPVC stress-range fatigue curve can be transformed into a 
fε N  

curve, dividing the stress range by the Young’s modulus E  of the steel material. 

The transformed fatigue curve is plotted in Figure 4. 27, it offers reasonable, yet 

conservative, fatigue life predictions for cyclically loaded elbows in the low-cycle 

fatigue regime, and can be used for design purposes. 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:43:48 EEST - 3.145.36.43



113 

 

Chapter 5 

High-strength steel tubular welded joints under 

extreme loading conditions 

 

5.1 Introduction 
Tubular members are widely used in structural engineering applications 

due to their attractive structural properties such as the high bending capacity to 

weight ratio, their increased stability and strength against compressive loading 

and the enhanced resistance under torsional loads. Moreover, their shape 

provides reduced drag forces when exposed to wind actions. In addition, tubular 

members are highly appreciated in modern architectural design because of their 

attractive from the aesthetical point of view.  

For the formation of a structure using tubular members, the separate 

parts of the structure are usually welded together forming tubular joints, often 

with complex multi-planar geometries. Even in the simplest tubular joint 

configuration, due to the particular joint geometry, the developing local stress 

fields are significantly complex. In particular, the existence of welds introduces 

local effects responsible for the development of very high local stresses, the so-

called “hot-spot” stresses. 

The performance of tubular joints has attracted significant scientific 

interest back from the 1960s. Many empirical equations were developed for the 

design of tubular joints subjected to simple loading conditions and to examine 

the interaction between several loads acting on a joint, as presented for example 

in the work of Swenson & Yura (1987). In addition, analytical model methods 

were also developed offering a rather simplified approach to the complicated 

design problem of tubular joints. Along with the analytical approaches, the finite 

element method was also employed for the simulation of the tubular joint 

behavior. 

In the recent years the advances in the available metallurgical techniques 

resulted to the production of high-strength steel alloys. In addition, new welding 

technologies were developed allowing for the development of more time-

effective welding processes with increased accuracy with respect to the local 

weld geometries. There is a growing demand for the use of high-strength steel 

(yield strength higher than 500MPa) in tubular steel structures. Despite the 

lower ductility of high-strength steel with respect to lower-grade steel (yield 

strength up to 460MPa), this increasing demand is motivated mainly by the static 

strength improvement of both tubular connections and members. The benefits of 

using high-strength steel on the static strength of welded tubular connections 

have been reported in Noordhoek & Verheul (1998) and in a HSE report [HSE 
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(2007)], which describes the results of a joint industry project. Extensive 

experimental testing on steel welded tubular connections has been reported by 

van der Vegte et al. (1989). Recent studies on the static strength of welded 

tubular T-joints and K-joints made of X52 steel (i.e. members’ yield stress up to 

500 MPa) have been reported by Waalen & Berge (2005), Boge et al. (2007), 

Hochman et al. (2010). In more recent publications, Choi et al. (2012a, 2012b) 

reported tests on tubular joints made of HSB 600 steel (members’ yield stress up 

to 590 MPa) and verified the superiority of the these joints on static strength 

capacity.  

Those studies also aimed at examining the applicability of current design 

practice, in tubular joints made of high-strength steel. It is important to note that 

current design standards for tubular structures have been developed for steel 

grades with yield stress up to 460 MPa, and may not cover high-strength steel 

applications. In the studies of Choi et al. (2012a) and (2012b) it was found that 

the existing provisions in AISC (2005) could be used for predicting the ultimate 

strength of tubular connections, but a significant reduction of the safety margin 

was also noticed.  

 To account for the use of high-strength steel in structural applications, the 

new EN 1993-1-12 standard has been developed within the Eurocode 3 (EN 

1993) design framework. The specific standard refers to high-strength structural 

steel and specifies some rules, additional to the existing EN 1993 provisions, for 

grades higher than 460; for the particular case of welded tubular connections 

made of high-strength steel, an additional reduction factor equal to 0.8 is 

specified in the static strength calculation.  

 On the other hand, the use of high-strength steel in structural applications 

associated with cyclic loading and fatigue damage has received less attention 

than static loading. In particular, despite the fact that  fatigue of welded tubular 

connections has been extensively investigated for ordinary steel grades (up to 

460) and there exist quite a few relevant design tools (e.g. CIDECT, EN 1993-1-9), 

there is a lack of information for the fatigue performance of high-strength steel 

tubular joints. Furthermore, EN 1993-1-12 standard does not contain any special 

rules for the fatigue of welded tubular connections, allowing for the use of EN 

1993-1-9 provisions. 

 It is important to notice that most of the existing literature and the 

relevant fatigue design specifications and guidelines focus on high-cycle fatigue 

of tubular connections, whereas limited research efforts have been reported on 

the low-cycle fatigue performance of those joints. In an early publication, Baba et 

al (1984) static and low-cycle fatigue tests on stiffened tubular joints made of  

STK41 steel (ultimate material strength equal to 402 MPa) are reported aiming 

at the definition of an optimum stiffening geometry configuration. Furthermore, 

experimental tests on welded tubular connections have been reported by van der 

Vegte et al. (1989), focusing on the hot-spot stress ranges. In addition, it is found 

that an extrapolation of high-cycle fatigue design equations in the low-cycle 
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fatigue range may provide safe fatigue life predictions and that a fatigue curve 

with a slope equal to -3 in the log-log scale characterizes the low-cycle fatigue 

regime. More recently, in a series of papers, the low-cycle fatigue performance of 

tubular T-joints has been reported under repeated in-plane bending [Waalen et 

al. (2005)] out-of-plane bending [Boge et al. (2007)] and axial loading [Hochman 

et al. (2010)]. Nevertheless, all the above works on low-cycle fatigue of tubular 

joints refer to steel grades up to X52 (yield stress in the range of 500 MPa). To 

the author’s knowledge, no experimental results are available for the low-cycle 

fatigue of tubular joints made of high-strength steel.  

 In the present chapter, the behavior of welded tubular connections made 

of high-strength steel and subjected to strong cyclic loading that leads to low-

cycle fatigue is discussed. The analysis is part of the European research program 

HITUBES (2008-2011), which investigated the structural performance of tubular 

structures made of high-strength steel (grade equal or higher than 590 MPa). 

The work in this project consisted of a first experimental part with 10 tests on 

tubular joints made of high-strength steel, aiming at the examination of the 

behavior of these joints under extreme loading conditions. The second part of the 

research was numerical/analytical with the purpose at supporting the 

experiments, using advanced finite element models, and conducting a parametric 

study for the assessment of low-fatigue fatigue behavior of high-strength steel 

welded tubular connections.   

 The present chapter describes in detail the numerical/analytical work 

conducted in the course of the above research project. For completeness reasons, 

the test set-up and results are briefly described in the next section. Subsequently, 

the rigorous finite element models developed for the simulation of the welded 

tubular joints are described and extensive numerical results are obtained. The 

numerical results are compared with the experimental measurements, and 

special attention is given to the evaluation of the stress and strain fields at the so-

called “hot spot” locations. Finally, an assessment of the low-cycle fatigue 

performance of welded tubular connections is conducted, using the numerical 

results and a simplified methodology based on Neuber’s rule. 

 

5.2 Experiments on tubular joints 
In this paragraph, a short description of the experimental activity is 

offered. The experiments were conducted at the Laboratory of Concrete 

Technology and Reinforced Concrete Structures of the Civil Engineering 

Department of the University of Thessaly, as reported in Bursi (2012). The 

experimental investigation consisted of ten tests on welded tubular connections. 

Four tubular X-joint specimens were tested under in-plane bending (IPB), 

another four X-joints were tested under out-of-plane bending (OPB) and finally 

two X-joints were subjected to axial cyclic loading (AX). The tubular joint 

specimens and set-up configurations for each category of tests are shown in 

Figure 5.1.  
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The steel tubes for the welded tubular joint specimens, i.e. the chord and 

the two braces, were provided by Tenaris Dalmine SpA, Dalmine, Italy. The tubes 

were seamless, and made of high-strength steel (TS590 grade) with a nominal 

yield stress of 590 MPa. The two braces of each specimen were 7-inch-diameter 

CHS tubes (diameter equal to 7.625in or 193.7mm) with 10mm nominal wall 

thickness, whereas the chord was a 14-inch-diameter CHS tube (diameter equal 

to 355.6mm) with a nominal wall thickness of 12.5 mm.  

The welded specimens were manufactured by Stahlbau Pichler SpA, 

Bolzano, Italy. The welds were performed according to the general provisions of 

AWS D1.1 and EN ISO 15609-1. Two different electrodes were used for the 

welds, corresponding to Classes 55 and 79 (i.e. nominal yield strength of 550 

MPa and 790 MPa respectively). The two electrodes are referred to as “weld A” 

and “weld B” respectively in the following paragraphs.  

 
5.2.1 Experimental set up 

The IPB tests were carried out adopting a three-point-bending 

configuration. Both ends of the X-joint specimen braces were hinged, using a 

double-hinge “roller” system that allows for horizontal movement of the two 

ends without introducing axial loading, while keeping the symmetry of the 

specimen set-up at the deformed configuration. The hydraulic jack was 

connected to the top of the joint chord through a specially designed system of 

plates as shown in Figure 5.1(a). The moment lever-arm of by this test set-up 

was equal to 1307.5 mm, and it is used in all calculations thereafter. 

The experimental set-up for the OPB tests consisted of a four-point-

bending loading configuration applied to the joint braces through a steel cross-

beam, and appropriate wooden grips. Two special ball-joint hinges were used for 

connecting the cross-beam with the grips. The joint braces were hinged using the 

same “roller” system as described above. The moment lever-arm created by this 

load-support set-up was equal to 830 mm. Details of the overall geometry, 

loading system for the OPB tests are shown in Figure 5.1 (b). Finally, the AX 

loading tests were conducted by connecting the hydraulic jack at the one brace-

end of the joint and by supporting the joint at the other brace-end, as presented 

in Figure 5.1 (c). 
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Figure 5.1: Schematic representation of the test setup (a) IPB, (b) OPB, (c) AX,  

In all tests, the local strains at the critical parts of the joint were 

monitored through appropriate strain gauges at the top and bottom side of the 

joint. Finally, wire position transducers and DCDT’s were used for recording the 

displacement at the location of load application, and the displacement of the 

support. More details are reported in Varelis et al. (2012) and in the HITUBES 

report [Bursi (2012)]. 

 

5.2.2 Thickness measurements and material characterization 

Prior to test execution, thickness measurements were conducted in 

several cross-sections, on the chord and braces to detect possible deviations 

from the nominal values (12.5 mm and 10 mm respectively). It was found that, 

despite some small variations of the thickness value around the cross-section of 

the tubes, the mean value for the chord thickness was measured equal to 12.49 

mm, practically equal to the nominal value, while the mean measured thickness 

for the brace was measured equal to 10.27 mm, slightly greater than the nominal 

value. The thickness measurements were adopted for the development of the 

numerical models used for the simulation of the experiments. 

The mechanical properties of the steel material were determined through 

tensile tests on steel coupon specimens extracted from the tubes before the 

specimens are manufactured. The tests were conducted by CSM, Rome, Italy and 

are reported in detail in Bursi (2012). According to these tests, it was found that 

the actual yield stress of the TS590 steel material is 746 MPa, significantly higher 

(26.4%) than the nominal value. The stress-strain curve exhibits a small plastic 
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plateau up to 1.5% engineering strain, and the ultimate stress is equal to 821 

MPa, reached at a strain of 7.5%. The corresponding material true stress-strain 

curves derived from cyclic tests on steel coupon specimens are presented in 

Chapter 3, and in particular in Figure 3.2 and in Figure 3.3.   

The mechanical properties of welds A and B were also examined through 

tensile testing, by ITMA, Spain. It was found that the actual material properties of 

weld A material were 866 MPa and 900 MPa for the yield stress and the ultimate 

stress respectively, whereas the corresponding actual material properties of 

weld B material were 961 MPa and 1078 MPa. Both weld materials had values of 

yield and ultimate stress higher than those of the tube steel base material (746 

MPa and 821 MPa), so that both welds can be considered as “overmatched”. 

Moreover, fracture toughness tests were also conducted. The specimens 

examined using the weld A presented increased fracture toughness (136 KJ/m2) 

compared to the specimens using the weld B (89 KJ/m2).  

In addition, in order to characterize the fatigue behavior of TS590 base 

material and of the welds A and B, fatigue tests on specimens made of the TS590 

material as well as specimens containing both types of welds were conducted in 

the facilities of ITMA, Spain following the ASTM E466 standard, as presented in 

Bursi (2012). The specimens were extracted from two aligned and full-

penetration butt-welded tubes with nominal dimensions of CHS355.6×12.5, 

same as those used for the chord members of the X joints under consideration. 

The strip specimens were subjected to fatigue loading with a load ratio R=0.1 . 

The resulting fatigue endurance limit (referring to 2×106 cycles) for the base 

material was found equal to 693 MPa, while the corresponding limits for the 

specimens using the weld A and B were found equal to 135 MPa and 98 MPa 

respectively. Based on the above test results on small scale specimens, it became 

evident that weld A had lower yield and ultimate stress compared to weld B, but 

better fatigue behavior.  

 

5.2.3 Monotonic and cyclic IPB tests of tubular joints 

Two specimens were subjected to monotonic IPB loading, one for each 

weld type. The specimen with weld type A failed at a Mmax=267.8 kNm 

corresponding to a load-point displacement (LPD) equal to 159.3 mm and the 

specimen with weld type B at Mmax=251.5 kNm corresponding to a LPD equal to 

111.5 mm. Failure occurred at the chord crown location of the weld toe of the 

joint in the form a sudden crack. This type of failure indicates a “punching shear” 

mode of failure, to be examined in subsequent paragraphs. The test configuration 

is presented in Figure 5.2. Another two specimens, one for each weld type, were 

tested under IPB low-cycle fatigue. These specimens were subjected to fatigue 

loading with a Mmin=21.3 kNm and Mmax=213.1 kNm (load ratio, 

R=Mmin/Mmax=0.1). The specimen with weld type A failed after 976 loading cycles 

and the specimen with weld type B after 669 cycles. Both specimens failed due to 
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fatigue at the chord crown region of the joint, at the same location as in the tests 

under monotonic loading. 

 

Figure 5.2: Test configuration for IPB loading. 

5.2.4 Monotonic and cyclic OPB tests on tubular joints 

Two specimens were subjected to monotonic OPB loading, one for each 

weld type. The bending moment capacity Mmax of the specimen with weld type A 

was equal to 121.4 kNm reached at a LPD of 107.5 mm. The corresponding 

values for the specimen with weld type B were 115.4 kNm and LPD=78.5 mm, 

respectively. Both specimens failed at the chord saddle region of the weld toe of 

the joint. The test configuration is presented in Figure 5.3. The remaining two 

OPB specimens were tested under low-cycle fatigue, one with weld type A and 

one with weld type B. After an initial applied bending moment of 100 kNm to 

both specimens, they were subjected to fatigue loading with a Mmin=9.3 kNm and 

Mmax=93.4 kNm (load ratio, R=0.1). The specimen with weld type A and that with 

weld type B failed after 240 and 200 cycles, respectively. Both failed due to low-

cycle fatigue at the chord saddle location. 
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Figure 5.3:  Test configuration for OPB loading. 

5.2.5 Cyclic axial fatigue (AX) tests 

 Two X-joint specimens, one for each weld type, were subjected to low-

cycle fatigue under cycling axial loading. The test set-up is presented in Figure 

5.4(a). Both specimens were subjected to fatigue loading with a Fmin=75 kN and 

Fmax=750 kN (load ratio, R=Fmin/Fmax=0.1) and failed due to through-thickness 

fatigue cracking at the chord saddle, as shown in Figure 5.4(b). The specimens 

were able to sustain the applied load for more than 1,000 cycles. In the specimen 

with weld type B, after about 750 loading cycles the rate of increase of overall 

axial deformation (axial stiffness loss) became quite significant and this could be 

considered as “structural failure”. The weld type A specimen had better 

performance in terms of maintaining its axial stiffness. All experimental results 

discussed in the previous sections for the three types of applied loading are 

summarized in Table 5.1. 

 
(a) 
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(b) 

Figure 5.4: Tested specimen under axial cyclic loading; (a) general set-up, (b) 

failed specimen with fatigue crack at weld toe (chord saddle location). 

Table 5.1: Summary of test results. 

Test No. Type of 

specimen 

and 

loading 

type 

Weld 

type 

Type of 

loading 

Applied 

moment Mmax 

(kNm) and 

axial force 

Fmax (kN) 

R 

ratio 

Loading 

cycles to 

failure, Nf 

1  

IPB 

 

A monotonic 267.8 - - 
2 B monotonic 251.5 - - 
3 A cyclic 21.3 to 213.1 0.1 976 
4 B cyclic 21.3 to 213.1 0.1 669 
5 

OPB 
A monotonic 121.4 - - 

6 B monotonic 115.4 - - 
7 A cyclic 9.3 to 93.4 0.1 240 
8 B cyclic 9.3 to 93.4 0.1 200 
9 AX A cyclic 75 to 750 0.1 1,000 (*) 

10 B cyclic 75 to 750 0.1 750 (*) 
(*) approximate values, corresponding to loss of axial stiffness 

5.3 Static design provisions 
 

5.3.1 Static strength design provisions 

 Design provisions for the ultimate resistance of the joints under 

examination have been proposed by EN 1993-1-8, which are identical to those 

proposed by CIDECT Guidelines No.1 for the static strength for welded tubular 

connections. The provisions are used herein for predicting the joint capacity 
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under IPB and OPB loading conditions and comparing with the experimental 

findings. For the joint configuration of interest, neglecting all safety factors and 

simplifying the formulae for the joint geometry under consideration (chord-to-

brace angle equal to 90⁰), the resistance against the aforementioned types of 

loading can be evaluated using Eq. (5.1): 

 

2

0 0 1

2

0 0 1

4.85

2.7

1 0.81

IPB y

OPB y

M t d

M t d






  




       (5.1) 

where 0y  is the yield strength of the chord material, 0t is the chord thickness, 

1d is the brace diameter and β is the ratio of the chord diameter 0d over the brace 

diameter 1d . In addition, when the condition 1 0 02d d t   is satisfied, the joints 

should be checked against punching shear failure, which can be described by the 

following equations: 

 
2

0 0 1

3

y

IPB,PS OPB,PS

t d
M M


         (5.2) 

 

It should be noted that the EN 1993 design tools for welded tubular connections 

have been developed for ordinary steel grades up to 460 MPa.  

Similar design formulae are available in the API RP 2A (2000) design 

standard for steel grades up to 500 MPa. According to this standard, the moment 

resistance of the tubular joints under consideration is defined as: 

2

0 0 1IPB OPB u yM M Q t d         (5.3) 

where the parameter uQ is defined differently for IPB and OPB as given below: 

 

 

1.2

2.6

5 0.7

2.5 4.5 0.2

u

u

Q  

Q  

 

 

 

  
       (5.4) 

The reported experimental results in in terms of maximum load capacity 

of the joints, are compared with the corresponding code predictions in Table 5.2 

without taking into consideration any safety factors. The available design code 

predictions given in CIDECT No. 1/ EN 1993-1-8 are very close to the maximum 

loads that the joints can withstand, as recorded in the corresponding 

experiments. The predicted difference is up to 11.2%. On the contrary, in the 

case of IPB, there is a significant underestimation of the maximum load up to 

32.7% between the predicted values and the experimental results. The 

provisions of API RP 2A are significantly more conservative compared to the 

experimental values and the CIDECT No. 1/ EN 1993-1-8 provisions both for IPB 
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and OPB. The comparison with the experimental data shows differences varying 

from +27% up to +64.6% for OPB and IPB respectively. 

It should be noted that the EN 1993-1-12 provisions for the ultimate 

strength of high-strength-steel welded tubular connections introduces a 

reduction factor equal to 0.8. This factor has been introduced in EN 1993-1-12 

because of the reduced ductility of the high-strength steel in comparison with 

ordinary carbon steel, in connection with the lack of adequate test data. This 

factor is not considered in the present comparison. More experimental data are 

required before reaching to a safe conclusion regarding the necessity of using the 

0.8 reduction factor. Nevertheless, the experimental results reported in the 

present study indicate that, for the joints under consideration and the specific 

type of welds, the use of this reduction factor is not necessary. Based on the 

above comparisons, it can be concluded that the static strength equations 

provided by the aforementioned specifications can be also applied safely to the 

specific steel grade for design purposes.  

As far as the deformation capacity of the joints is concerned, the present 

results indicate that – for welds of type A and B within the range considered in 

the present investigation – the increase of the weld metal grade results in a 

reduction of the deformation capacity of the tubular joints under monotonic 

loading conditions. More elaborate results and relevant deformation capacity 

criteria will be presented in a following section. 

Table 5.2: Comparison of experimental results and predictions using the CIDECT 

No. 1/ EN 1993-1-8 and the API RP 2A provisions. 

Type of 

loading 

Weld 

type 

Applied 

moment 

Mmax 

(kNm)  

CIDECT  

No. 1 

/EN1993-

1-8 * 

(kNm) 

API 

RP 2A 

(kNm) 

Difference 

CIDECT  

No. 1 

/EN1993-

1-8 

API RP 

2A 

 

IPB 

(monotonic) 

A 267.80 201.84 162.7 +32.7% +64.6% 
B 251.50 201.84 162.7 +25.1% +54.6% 

OPB 

(monotonic) 

 

A 121.44 108.92 90.5 +11.2% +34.2% 

B 115.42 108.92 90.5 +6.0% +27.5% 
*: Not accounting for the 0.8 factor (EN 1993-1-12) 

5.4 Finite element modeling 
Detailed numerical models have been developed for the simulation of the 

experiments, considering the actual dimensions of the welded joints for each 

case under examination.  The weld geometry has been modeled in detail, 

according to the provisions of the American Structural Welding Code AWS D1.1. 

The models are developed in ABAQUS using 8-node, reduced integration solid 

elements (C3D8R) for the chord, the brace and the weld region of the joint. Only 
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half of the joint is modeled, taking advantage of symmetry and applying the 

appropriate symmetry conditions. The mesh size is denser near the weld region 

in order to provide accuracy in the simulation results and time-effective 

simulations. 

 A mesh sensitivity analysis was conducted in order to define an optimum 

mesh for the numerical model in terms of efficiency and accuracy of the results 

with respect to the value of the local stress at the weld toe, as well as the overall 

behavior. The resulting mesh configuration adopts 96 elements along the 

circumference of the brace and the chord parts of the joint, and is properly 

modified near their connection area. For the simulation of the IPB tests, 

following this parametric study, four elements along the thickness of the joint 

chord were sufficient to describe accurately the deformed shape; further 

increase of the element number resulted in non-significant changes of the 

numerical results. On the contrary, a finer mesh consisting of eight elements 

through the chord thickness has been necessary for the simulation of the OPB 

tests and AX tests. This result is in accordance with the predicted stress and 

strain concentration factors for these two types of loading. More specifically, the 

stress concentration factors due to OPB and AX loading schemes are 

considerably higher than the corresponding stress concentration factors for IPB 

loading, implying that the chord wall undergoes significant bending even for low 

externally applied loads. The difference in the number of elements through the 

chord thickness is the only one among all the models adopted for the analysis. 

Along with the above, it has been also decided that in all cases, four elements are 

used through the thickness of the brace. The developed model is shown in Figure 

5.5.  

      

(a) 
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(b) 

Figure 5.5: Numerical finite element model: (a) General view (b) Weld region. 

 For the description of the nonlinear material behavior, the constitutive 

bounding surface model presented in Chapter 2 has been employed. The material 

model parameters have been properly defined based on the material testing data 

given in the report by Bursi (2012). The parameter values reported in Table 5.3 

have been defined in order to provide best fit to the strain-controlled and stress-

controlled tests respectively, and are the same as those adopted for the analysis 

conducted in Chapter 3. 

Table 5.3: Summary of material parameter values 

Parameter Ĥ    c (MPa) A  B  m  0k  (MPa) Q (MPa) b  

Value 2300 5 250 50 10 2 746 -350 500 

 

5.5 Numerical results and comparison with experimental data 

 The numerical models developed allow for the detail examination of the 

behavior of each joint. The global strength and deformation characteristics have 

been monitored and the simulation results are compared with the experimental 

measurements. In addition, several local strain measurements have been 

recorded at strain gauge locations, as described in a previous section. 

 More specifically, based on local strain measurements, the strain 

concentration factor ( SNCF ) for each test specimen has been evaluated. For 

each joint, an extrapolation zone normal to the weld toe has been defined near 

the weld-toe area according to the provisions of CIDECT Guidelines No. 8, as 
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presented in Figure 5.6. The limits of the extrapolation zone (
min maxL ,L ) have 

been defined based on the geometrical properties of the joint at the location of 

interest (chord, saddle). By limiting the extrapolation zone it is assured that the 

highly localized effects of the weld notch are alleviated while the size of the zone 

is such that the stress rise is described sufficiently.  

 Inside the extrapolation zone, strain values have been monitored in 

several points from experimental measurements and numerical calculations. The 

evaluation of the SNCF  has been conducted based on a linear extrapolation of 

those values. Apart from the specific locations of strain measurements, with the 

use of the developed models the local strain field along the circumference of the 

weld has been evaluated as well.  Finally, using the numerical models, the 

corresponding stress concentration factor ( SCF ) has been also evaluated and 

compared with the predictions of CIDECT Guidelines No. 8 and the results 

according to the Wordsworth and Smedley (1978) formula. A quadratic 

extrapolation scheme has been adopted for the evaluation of the SCF , as 

suggested by CIDECT Guidelines No. 8, which is found to describe better the local 

stress gradient. More details are presented in the following sections for each 

loading scheme. 

 
Figure 5.6: Extrapolation zone near the weld toe area. 

 

5.5.1 Simulation of IPB tests 

 In the numerical models developed for the simulation of the IPB tests 

(monotonic and cyclic), the joint geometry was modeled according to the 

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 09:43:48 EEST - 3.145.36.43



128 

 

measured dimensions of the tubular members, which are very close to the 

nominal ones, considering a uniform thickness of the chord and the brace. The 

predictions of the model are in good agreement with the experimental 

measurements for monotonic and cyclic loading in terms of the moment-

displacement diagram, as shown in Figure 5.7. Based on experimental 

measurement, the strain concentration factor ( SNCF ) ranges from 2.70 to 3.68 

for specimens T1 to T4, as reported in Table 5.4. The numerical model prediction 

for the strain concentration factor is very close to the corresponding 

experimental values and equal to 2.51. The stress concentration factor ( SCF ) 

has been evaluated equal to 3.48 using the CIDECT Guidelines No. 8 provisions, 

while it is equal to 3.22 according to W/S. The numerical model predicts a stress 

concentration factor equal to 3.57. Finally, based on the numerical model, the 

local strain values at the chord saddle weld toe position at the displacement 

where failure of the specimens was observed experimentally are equal to 6.9% 

and 5.1% for the weld A and the weld B specimens respectively. 

 The distribution of local tensile strains along the weld toe path on the 

joint chord r , calculated perpendicular to the weld toe tangent in the brace 

radial direction (normal to the weld) are plotted in Figure 5.8 for several loading 

levels. The same linear extrapolation technique for the evaluation of the 

SNCF has been adopted. The strain value is normalized by the yield strain y .  

The chord saddles are positioned at 0 and 180 degrees, while the chord crown is 

positioned at 90 degrees. The results show that hot spot strain values maximize 

at the chord crown location and that for a range of ±45 degrees at both sides of 

the crown, relatively high strains extend over a significant part of the weld toe 

about the hot spot location. This results to a distribution of plastic deformations 

along a significant part of the circumference of the weld (Figure 5.9), which has a 

small gradient and justifies the shear dominant failure observed during the 

execution of the tests. It should be noted that according to the provisions of EN 

1993-1-8 for this particular joint, the joint resistance under IPB is equal to 202 

KNm and the predicted failure mode is punching shear, which is compatible with 

the calculated strain distribution around the hot spot location. The predicted 

resistance value is significantly lower than the experimentally measured 

resistance (32.6% and 24.5% for weld conditions A and B respectively), but lays 

on the safe side. 
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(a) 

 
(b) 

Figure 5.7: In-plane bending test and numerical simulation results: (a) Static 

loading, (b) Cyclic loading. 
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Figure 5.8: Distribution of local strain along the weld toe, on the joint chord along 

the weld toe (chord saddle at 0 and 180 degrees, chord crown at 90 degrees). 

 

(a) 
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(b) 

Figure 5.9: In-plane bending test simulation. (a) Distribution of equivalent plastic 

strain at the weld-toe area, (b) Deformed chord geometry at mid-span section. 

5.5.2 Simulation of OPB tests 

For the simulation of the OPB tests, similar models with the IPB case have 

been employed. As displayed in Figure 5.10, the experimental measurements in 

terms of the moment-displacement diagram can be numerically reproduced 

quite accurately for monotonic and cyclic loading conditions.  

The numerical results indicate that joint behavior is sensitive to rather 

small variations of the chord thickness value, especially for higher applied load-

point displacement values. This is attributed to the reduced joint resistance 

when chord thickness is reduced. The results show that the numerical model is 

capable of simulating accurately the experimental procedure and representing 

the experimental results.  

The distribution of the hot spot strains along the weld toe path on the 

joint chord r , are plotted in Figure 5.11 at several loading levels, normalized by 

the yield strain y .  The chord saddle is positioned at zero degrees. In the OPB 

case, there is a dominant concentration of local strains at the chord saddle weld 

to area where the test specimens failed, which is reduced towards the chord 

crowns. The deformed geometry of the joint chord presented in Figure 5.12(a) 

indicates the severe chord wall local bending and the localization of the 
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developing plastic strains at the chord saddle weld toe [Figure 5.12(b)]. The 

numerical model is able to verify the fracture locus observed experimentally. 

The SNCF  and SCF values have been also evaluated numerically, using 

the extrapolation method described in the previous section. Based on 

experimental measurements, the estimated SNCF  value ranges between 5.06 

and 5.51 for the specimens T5 to T8 (Table 5.4). The numerical prediction for 

the SNCF is equal to 6.81, higher than the experimentally evaluated values. 

According to CIDECT No. 8 guidelines, the corresponding SCF for the joint under 

consideration is equal to 8.94, the (W/S) prediction is equal to 8.26, whereas the 

numerical model results to a SCF value equal to 8.19. The above differences are 

attributed to the sensitivity of the strain/stress field near the weld toe due to the 

local geometric conditions (notch effect).  Finally, the corresponding hot spot 

strain values at the chord crown weld toe position measured at the load-point 

displacements where failure of the specimens was observed are equal to 10.74% 

and 8.14% for the weld A and weld B specimens respectively. These values are 

different than the corresponding values predicted for the IPB tests.  

 

 

(a) 
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(b) 

Figure 5.10: Comparison of the numerical and experimental load vs. 

displacement curves: (a) Monotonic, (b) Cyclic loading. 

 

Figure 5.11: Distribution of the hot spot strains on the joint chord along the weld 

toe (chord saddle at 0 degrees, chord crown at ±90 degrees). 
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(a) 

 

(b) 

Figure 5.12: Mid-span section (a) Deformed chord geometry (b) Equivalent 

plastic strain distribution at the weld-toe area 
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5.5.3 Simulation of the AX loading tests 

The axial cyclic loading tests have been also simulated using the 

developed numerical model. The simulation results are presented in Figure 5.13 

and are in good agreement with the experimental measurements in terms of the 

load-displacement curve. In addition, the joint behavior under monotonic 

compressive and tensile loading is significantly different. In Figure 5.16, the 

deformed geometry configurations are depicted. 

In addition, the distribution of the local strains r  along the weld toe on 

the chord side of the weld, are plotted in Figure 5.11 at several loading levels for 

the joint under tension loads, normalized by the yield strain  y .  Following the 

pattern used in the OPB case, the two chord crowns are positioned at 0 and 180 

degrees, while the chord saddle is positioned at 90 degrees. A significant 

concentration of local strains occurs at the chord saddle weld toe area, where the 

test specimens failed, which is reduced towards the chord crowns.  

The analysis also computed the SNCF and the SCF  values. The 

SNCF value is measured equal to 5.68 and 6.34 for the specimens T9 and T10 

respectively, as presented in Table 5.4. The numerical model prediction for the 

strain concentration factor is equal to 8.78. The stress concentration factor has 

been evaluated according to the provisions of CIDECT No. 8 equal to 18.35, and 

equal to 17.15 according to the W/S formula. The numerical model predicts a 

stress concentration factor equal to 13.31. Similarly to the case of OPB, the 

difference between the aforementioned values can be attributed to the 

sensitivity of the numerical predictions on the local weld effects, which can affect 

the predictions drastically especially where the stress/strain local risers are very 

high, as in the current case. Besides these differences, plastic strain 

concentration coincides with the crack location observed experimentally. It 

should be also noted that joint behavior under compressive and tensile axial 

loading may not be the same.  

To illustrate this observation, the monotonic compressive and tensile 

load-displacement curves are reported in Figure 5.14, while the resulting 

deformed shapes are presented in Figure 5.16. Under tensile loads, the joint 

presents increase load resistance associated with severe deformation of its 

chord, as presented in Figure 5.16(a) and eventually membrane action effects 

that result to a further increase of its stiffness (Figure 5.14 ). On the contrary, the 

application of compressive loads may result in flattening and crushing of the 

chord, as shown in Figure 5.16(b), and thus the overall load-displacement curve 

exhibits a limit point and a descending branch after that point. 
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Figure 5.13: Numerical simulation of high-strength steel X-joint subjected to 

cyclic axial loading; load-displacement curves. 

 

Figure 5.14: Numerical simulation of an X-joint subjected to monotonic tensile 

and compressive axial loading; load-displacement curves. 
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Figure 5.15: Distribution of the hot spot strains on the joint chord along the weld 

toe (chord saddle at 0 and 180 degrees, chord crown at ±90 degrees). 

 

 

(a) 
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(b) 

Figure 5.16: Deformed joint geometry under axial loading: (a) tensile forces, (b) 

compressive forces. 

Table 5.4: Experimental and numerical SNCF . 

Test No. 

Type of specimen  

and loading type 
SNCF  exp SNCF FEA 

1  

IPB 

 

2.82 

2.51 
2 2.91 

3 2.70 

4 3.68 

5  

OPB 

 

5.34 

6.81 
6 5.06 

7 5.31 

8 5.51 

9 AX 5.68 
8.78 

10 6.34 
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5.6 Fatigue design 

5.6.1 Fatigue design based on elastic hot spot stresses 

The fatigue design of welded tubular connections can be conducted either 

with the “classification of details” method, adopted in EN 1993-1-9, section 8 

(referring to a limited number of joint geometries), or through the “hot spot 

stress” method. It has been widely recognized that the use of the classification 

method is rather inappropriate for the fatigue design of welded tubular 

connections. It is also noticed that EN 1993-1-9 covers only a small range of 

possible joint geometries, not including the X-joints under consideration. On the 

other hand, the hot spot stress method is the most efficient method for the 

fatigue design of such joints, also adopted by CIDECT No.8 Guidelines. There is no 

special provision in EN 1993-1-12 for the fatigue design of welded tubular 

connections made of high-strength steel. 

The hot spot method requires the calculation of the hot spot stress, which 

is the maximum geometric elastic stress at the vicinity of the weld. Subsequently, 

the fatigue design life is calculated though an appropriate fatigue S-N curve. The 

CIDECT guidelines present a complete procedure for hot spot stress fatigue 

design, and propose a concise methodology for the calculation of the hot spot 

stress at a specific welded tubular joint, either through special-purpose 

parametric equations for stress concentration factors or an elastic finite element 

analysis and appropriate extrapolation of the computed stress to the weld toe. 

Upon calculation of the hot spot stress, a fatigue curve is used to estimate the 

fatigue life of the connection, expressed as follows: 

For 3 610 5 10fN    

  
 12.476 3 log

log
16

1 0.18 log

hs

f

S
N

t

 


 
   

 

     (5.5) 

For 6 85 10 10fN    

   
16

log 16.327 5 log 2.01 log ,f hsN S
t

 
      

 
   (5.6) 

The above fatigue curve is applicable for high-cycle fatigue, i.e. for number of 

cycles greater than 103.  

The DNV–RP–C203 standard for the fatigue design of offshore steel 

structures also contains a fatigue design methodology for welded tubular joints. 

According to this standard, the basic fatigue design equation is given as follows: 

For 4 710 10fN   
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  log 12.164 3logf hsN S         (5.7) 

For 710fN   

 log 15.606 5 logf hsN S        (5.8) 

The applicability of this design curve is intended for fatigue loading that 

exceeds 104 cycles. Fo2r low-cycle fatigue assessment, a linear extrapolation of 

the curve can be adopted, as suggested in Appendix D of the standard. The linear 

extrapolation of the high-cycle fatigue curve into the low-cycle fatigue regime has 

also been proposed by Ballio & Castiglioni (1995), following extensive fatigue 

experiments of plated connections. 

 Apart from the aforementioned fatigue design curves, Hochman et al. 

(2010) proposed a fatigue design curve covering both high-cycle and low-cycle 

fatigue ranges as well. This curve is based on a series of tests including low-cycle 

fatigue tests, as well as an extensive test database on tubular joints made of steel 

material of ordinary grade (ultimate stress not exceeding 580 MPa). The fatigue 

design curve proposed by Hochman et al. (2010) is given in the following 

equation: 

 

For 31 10fN   

  log 13.386 3.336 logf hsN S         (5.9) 

For 3 710 10fN   

 log 12.476 3 logf hsN S         (5.10) 

For 710fN   

  log 16.127 5 logf hsN S         (5.11) 

The methodology of using the elastic hot spot stress together with a linear 

extrapolation of a fatigue curve in the low-cycle fatigue regime is applied in the 

following. The CIDECT and DNV design curves are extended in the low-cycle 

fatigue range, plotted with dashed lines as presented in Figure 5.17. In this 

figure, the results from the tests on the tubular joints in terms of the developing 

hot spot stresses are also plotted. These hot spot stresses are derived by 

multiplying the nominal stress ranges by the SCF  as given in the CIDECT 

specifications. No correction for local plastic deformation in the ultra-low cycle 

fatigue range is considered at this stage. The value of this elastic hot spot stress is 

very high, significantly higher than the yield stress of the material and, therefore, 

it is not a real stress, but a conventional stress only for design purposes. 
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From the comparison of the design curves with the experimental data, it 

can be observed that near the high-cycle fatigue range, all the curves can provide 

safe fatigue life predictions. In the low-cycle fatigue range, the linearly 

extrapolated CIDECT and DNV curves can provide safe predictions but only for a 

number of cycles in the range of 100. The fatigue design curve proposed by 

Hochman et al. (2010) is very close to the CIDECT/DNV curve both in the high-

cycle regime, as well as in the low-cycle fatigue regime. Nevertheless, all of the 

aforementioned curves fail to cover the hot spot stress evaluated for the 

monotonic loading cases. 

Table 5.5: Fatigue design results 

Test No. Loading cycles  

to failure  

fN   

M  (KNm) 

or  

  (ΚΝ) 

nom  SCF  

(CIDECT) 
HS  (MPa) 

1 0.5 * 267.8 813.90 3.48 2832.36 
2 0.5 * 251.5 764.36 3.48 2659.97 
3 976 191.8 582.92 3.48 2028.56 
4 669 191.8 582.92 3.48 2028.56 
5 0.5 * 121.4 482.41 8.94 4312.78 
6 0.5 * 115.4 458.57 8.94 4099.63 
7 240 84.1 334.19 8.94 2987.68 
8 200 84.1 334.19 8.94 2987.68 
9 1,000  675 116.96 18.35 2146.25 

10 750 675 116.96 18.35 2146.25 

(*): monotonic test. 

 

Figure 5.17: Hot spot-stress method fatigue curve and experimental data. 
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5.6.2 Fatigue design considering elastic-plastic material behavior.  

 To predict the fatigue life of cyclically loaded tubular welded joints under 

low-cycle fatigue conditions, it is necessary to estimate the local strain at the 

critical location. The fatigue design curves proposed by the CIDECT Guidelines 

No.8 and DNV-RP-C203 standards, as well as the curve proposed by Hochman et 

al. (2010) presented in the previous section, can be used to estimate the fatigue 

life of a tubular connection using an “elastic hot spot stress”, calculated from a 

linear elastic analysis of the joint under consideration. Moreover, the fatigue 

curves of CIDECT and DNV are proposed for number of cycles higher than 103 or 

104 cycles respectively, and therefore, an extrapolation is necessary into the low-

cycle fatigue regime. 

 On the other hand, the above fatigue methodology does not take into 

account the real material behavior at the hot spot. Under severe cyclic loading, 

this behavior is not elastic, and the inelastic cyclic behavior of steel material 

needs to be accounted for.  

The NORSOK N-006 standard for the assessment of the load-bearing 

capacity of offshore structures, provides a complete fatigue design curve 

covering both high-cycle and low-cycle fatigue ranges. In particular, the NORSOK 

N-006 fatigue curve has the following form: 

For 51 10fN   

  log 19.405 5.834logf hsN S        (5.12) 

 

For 510fN   

 log 12.164 3 logf hsN S         (5.13) 

It is interesting to note that the NORSOK N-006 standard uses the same equation 

for the fatigue life curve for number of cycles more than 105 as the DNV–RP–

C203 standard.  

 The key difference between NORSOK N-006 and the other standards 

presented in the previous section refers to the definition of the hot spot stress. 

According to NORSOK N-006 the evaluation of the hot spot stress range should 

consider the actual elastic-plastic behavior of the material. This can be achieved 

either by using appropriate finite element models that account for geometric and 

material nonlinearities, or alternatively using simplified methodologies such as 

Neuber’s equation [Neuber (1961)], as presented in Chapter 4 for the design of 

elbows. The main issue in Neuber’s methodology is the relation between the 

elastic SCF  value with the inelastic stress and strain concentration factors. 

 In addition, to employ the Neuber’s methodology and compute the local 

strain range, the knowledge of the so-called “cyclic stress-strain curve” is 

necessary. Based on material testing data on the high-strength steel grade under 
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consideration, as presented in Figure 5.18 [Bursi (2012)], an analytical 

expression for the cyclic material curve can be considered in the form: 

 

1

2 2 2

nε σ σ

E K

   
   

 
        (5.14) 

where K , n  are the cyclic stress coefficient and cyclic strain hardening exponent 

respectively, which can be readily computed equal to 778.94 MPa and 0.146 

respectively, using a fitting procedure.  

 Under cyclic bending with moment range M , the nominal stress and 

strain ranges ( S , e ) are calculated from simple mechanics equations, whereas 

the hot spot strain range according to this methodology, denoted as Nε , is 

defined by the intersection of the cyclic material curve with Neuber’s hyperbola. 

Subsequently, according to NORSOK provisions, the local strain range Nε is 

multiplied by Young’s modulus, in order to define a pseudo-elastic hot spot 

stress pseudoσ , which can be compared directly with the available fatigue design 

curve.   

 

Figure 5.18: Cyclic material stress-strain curve. 

 Calculation of the SCF  value, can be performed either numerically, as 

presented in the previous paragraphs using a finite element model or, in lieu of 

detailed finite element analysis, through available SCF  formulae, such as the 

ones suggested in CIDECT No.8 Guidelines.  
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 This simplified fatigue methodology has been applied for the fatigue 

analysis of the tested specimens. For each test conducted, the values of the 

predicted strain range are presented in Table 5.6. In the same table, the 

corresponding strain-range values predicted by the numerical models, denoted 

as HS, FEA ε , are also presented. By comparing the two sets of strain ranges, it is 

observed that apart from the monotonic tests, in all the rest cases under 

examination the adoption of the Neuber’s rule results to an overestimation of the 

locally developing strain range. 

 Subsequently, the above strain ranges, which account for inelastic 

material behavior, are multiplied by Young’s modulus to define the pseudo-

elastic stress ranges, denoted as pseudoσ  and pseudo FEσ  respectively (Table 5.6). 

These stress values are plotted in Figure 5.19 along with he NORSOK design 

curve. Comparison of the these two hot spot stress ranges shows that, except for 

the monotonic loading cases, in all other cases the application of the Neuber’s 

rule results to an overestimation of the hot spot stress range. It can be also 

observed that the comparison between the resulting stress ranges and the 

NORSOK fatigue design curve implies a conservative design. The over-

conservatism of the specific deign curve would result in a prediction of zero load 

cycles for all the tests conducted  

 
Figure 5.19: Application of the Neuber’s equation for the fatigue design of the 

joints.  
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Table 5.6: Hot spot stress and strain ranges using the Neuber’s rule and FE data 

Test No. Loading cycles  

to failure fN   
HS, FEA    

(%) 

N   

(%) 

pseudo FE  

[MPa] 

pseudo  

[MPa] 

1 0.5 * 9.50 7.20 19000 14400 
2 0.5 * 7.01 6.60 14020 13200 
3 976 0.72 4.10 1440 8200 
4 669 0.72 4.10 1440 8200 
5 0.5 * 10.40 9.5 20800 19000 
6 0.5 * 8.10 8.60 16200 17200 
7 240 1.37 5.10 2740 10200 
8 200 1.37 5.10 2740 10200 
9 1,000  0.69 2.90 13180 5800 

10 750 0.69 2.90 13180 5800 
(*): monotonic test. 

 

5.7 Parametric analysis 
The effects of geometrical parameters on the structural behavior of the X 

joint have been examined through a parametric analysis of seven models. 

Loading is considered in a set-up identical to the one used in the experiments. 

The tube material is high-strength steel (746 MPa), same to the one of the 

tubular specimens. The numerical models developed for the parametric analysis 

are similar to those used for the simulation of the experiments, with the same 

mesh configuration presented in Figure 5.5 has been adopted. In addition, the 

material behavior is described adopting the bounding surface plasticity model 

calibrated through appropriate test results, as reported in Table 5.3. In Table 5.7, 

a summary of the joint geometries examined in the present parametric study is 

presented. 

Table 5.7: Parametric analysis geometries 

Model No. 
0D  0t  1D  1t  β  γ  τ  

1 355.6 10 193.7 10 0.545 17.78 1 

2 355.6 12.5 193.7 10 0.545 14.224 0.8 

3 355.6 16 193.7 10 0.545 11.113 0.625 

4 355.6 12.5 193.7 6.3 0.545 14.224 0.504 

5 355.6 12.5 193.7 14.2 0.545 14.224 1.136 

6 355.6 12.5 139.7 10 0.393 14.224 0.8 

7 355.6 12.5 244.5 10 0.688 14.224 0.8 

 
5.7.1 Numerical results for ultimate loading 

 At each model, monotonic IPB, OPB and AX (tensile) loading schemes 

have been applied. A summary of the load – deflection curves obtained from the 

finite element models is presented for all three loading conditions.  
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Numerically, it is possible to extend those curves up to large deformation of 

the joint. However, from experimental observations, those curves are 

interrupted due to weld failure. The exact point on each curve corresponding to 

weld failure, requires a different analysis than the one presented herein, with a 

refined description of the crack opening area. Nevertheless, it is possible to 

consider an estimate the location of this point, assuming that the weld will fail 

when the local geometric strain reaches the corresponding value calculated 

when test specimens fail. This consideration may provide a rough approximation 

of the ultimate capacity and the deformation capacity of each tubular joint.  

In each curve depicted in Figure 5.22 for IPB and OPB, the joint 

deformation corresponding to the stage where local maximum strain at the weld 

toe reaches the critical value for weld failure is depicted. Two points on each 

curve are identified, corresponding to failure of weld A and weld B respectively. 

For the case of axial loading, the corresponding points are obtained using the 

local strain limit values for the OPB case, based on the fact that both loading 

types are associated with failure at the chord saddle location.  

In all graphs of Figure 5.22, the prediction for the ultimate load/moment of 

each joint calculated from CIDECT Guidelines No.1 (identical to EN 1993-1-8 

provisions), is also indicated, as “EC3 limit” and compared with the 

corresponding load/moment corresponding to the weld A and weld B failure.  

Yura et al. (1980) also proposed a formula for the deformation capacity of 

tubular X joints under bending loads. The formula proposed by Yura (1980) is 

based on the evaluation of the so-called “useful rotation” of the joint: 

8
4

3

y

u y

L

E D


 

 
   

 
       (5.15) 

and is based on the assumption that the joint configuration can be approximated 

by a simply supported tubular beam with the geometrical characteristics of the 

brace member, subjected to uniformly-distributed load. The joint configuration 

considered in the present analysis has an L/D  ratio equal to 6.75. Consequently, 

Eq.(5.15) reduces to: 

18
y

u
E


          (5.16) 

 Finally, the deformation capacity of those joints can be evaluated in terms 

of the ductility   of the joint, defined as the ratio of the ultimate displacement 

u over the yield displacement y : 

  u

y





        (5.17) 
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To define the yield displacement 
y  of the load-displacement curve, the ECCS 

No.45 publication is employed. In particular, y is defined at the intersection 

point of the elastic slope with the slope equal to 1/10 of the initial elastic slope, 

as shown graphically in Figure 5.20. Motivated by Yura’s assumption, a 

representative value   is equal to 4, so that: 

 4u y          (5.18) 

  

Figure 5.20: Graphical representation of the ductility limit. 

 In Table 5.8 the predicted deformation capacity using the above 

methodologies is summarized. The  specific case of model No.2 corresponds to 

the nominal geometry of the joints used in the experiments. The deformation 

predictions from Yura’s criterion, as well as from Eq.(5.18) are in fairly good 

agreement with the deformation limits corresponding to failure of the welds. 

Moreover, for model No. 4 geometry and both IPB and OPB loading conditions, 

no deformation values for weld A and B strain limits are reported. In this case, 

due to the small thickness of the brace, local buckling occurs at the brace prior to 

the development of high local strains at the weld toe and weld fracture. The 

resulting deformation modes for IPB and OPB are presented in Figure 5.22.  
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(a) 

 

(b) 

Figure 5.21: Model No.4 deformation modes: (a) IPB, (b) OPB. 
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(a) 
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(b) 
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(c) 

Figure 5.22: Parametric analysis – monotonic loading: (a) IPB, (b) OPB, (c) AX. 
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Table 5.8: Deformation capacity of the joints: (a) IPB, (b) OPB, (c) AX. 

Model 

No. 

IPB - Deformation capacity (mm) 

Weld A limit Weld B limit EC 3 limit 
Yura et al. 

(1980) 
4u y   

1 128.59 97.0 53.0 260.0 107.2 
2 161.00 112.4 64.4 142.5 105.2 
3 483.71 337.8 107.0 295.7 168.2 
4 - - 145.0 300.5 160.0 
5 131.44 102.5 55.0 269.5 104.2 
6 175.88 148.1 73.7 334.3 160.0 
7 122.26 104.8 48.0 251.3 104.4 

(a) 

 

Model 

No. 

OPB - Deformation capacity (mm) 

Weld A limit Weld B limit EC 3 limit 
Yura et al. 

(1980) 
4u y   

1 121.6 90.6 69.8 106.8 88.0 
2 108.5 79.5 109.1 107.9 84.0 
3 162.0 102.4 178.7 107.7 92.0 
4 - - 109.1 103.6 88.0 
5 75.0 61.3 109.1 108.4 64.0 
6 122.1 98.1 64.5 146.1 105.2 
7 77.1 53.2 173.7 85.9 66.6 

(b) 

 

Model No. 
AX - Deformation capacity (mm) 

Weld A limit Weld B limit EC 3 limit 4u y   

1 29.7 23.1 5.5 27.6 
2 20.2 16.0 4.5 20.0 
3 18.9 14.7 5.5 22.0 
4 30.0 23.7 10.4 27.6 
5 28.8 22.3 8.3 21.6 
6 29.8 26.5 5.3 28.4 
7 20.7 16.5 3.8 20.4 

(c) 

  

A review of the results presented in Table 5.8 shows that the predicted 

deformation capacity of the joint accounting for weld A and B local strain limits is 

higher than the deformation capacity corresponding to EC3 limits for all the 

loading types considered. Yura’s criterion results in similar predictions for the 

case of OPB, while it provides unreasonably high deformation capacity for the 

case of IPB. On the contrary, the ductility criterion in Eq.(5.18) provides more 

reasonable results.  
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 Apart from the overall behavior of the joints, for each model the 

corresponding SCF  has been evaluated at the chord saddle weld toe area and 

the numerically predicted value is compared with the corresponding values 

derived using the CIDECT and W/S formulae. The results are presented in Table 

5.9 and show that the numerical SCF  predictions are in good agreement with 

the corresponding predictions adopting the CIDECT Guidelines No. 8 and 

Wordsworth & Smedley (1978) formulae (W/S). It should be noted that the 

geometrical characteristics of model No.5 are outside application range of 

CIDECT and W/S are valid. Nevertheless, their predictions are generally in 

reasonable accordance with the numerical findings. 

  

Table 5.9: Parametric analysis results - SCF   

Model 

No. 

SCF  - FEA SCF  – W/S SCF  - CIDECT 

IPB OPB AX(a) IPB OPB AX(a) IPB OPB AX(a) 

1 5.53 16.71 26.28 4.30 12.61 26.19 4.84 13.97 28.67 

2 3.57 8.19 13.31 3.22 8.26 17.15 3.48 8.94 18.35 

3 2.34 5.30 8.00 2.33 5.15 10.70 2.41 5.46 11.20 

4 2.86 4.60 6.81 2.23 5.20 10.81 2.60 5.63 11.56 

5 3.82 7.91 18.64 4.26* 11.72* 24.36* 4.68* 12.69* 26.06* 

6 3.04 4.28 11.14 3.20 6.18 14.45 3.30 6.83 15.81 

7 3.22 5.35 14.59 3.10 9.34 16.89 3.39 9.86 17.88 

*: Out of dimensional application limits, (a): Chord saddle location 

 

 In addition to the SCF values, the elastic strain concentration factor 

SNCF has been evaluated for each model for the three loading actions (IPB, OPB, 

AX) and the results are reported in Table 5.10. The comparison with the 

corresponding SCF shows some differences in the resulting values which can be 

attributed to the extrapolation method followed for each parameter. More 

specifically, as suggested by CIDECT Guidelines No.8, a linear extrapolation 

method has been adopted for the evaluation of the SNCF values, while quadratic 

extrapolation curve has been used for the evaluation of the SCF . 
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Table 5.10: Evaluation of the SNCF for the parametric analysis models 

Model No. 
SNCF  - FEA 

IPB OPB AX(a) 

1 3.65 14.45 10.55 

2 2.51 6.81 8.78 

3 1.69 2.85 6.37 

4 2.39 3.73 5.52 

5 3.14 3.14 14.81 

6 2.34 3.77 9.31 

7 2.45 4.55 11.13 
(a): Chord saddle location 

 

 An overview of the numerical results in terms of the evaluated SCF  and 

SNCF shows that for joints with the same brace geometry and chord diameter, 

but with different chord thickness (models No. 1, 2, 3), the increase of the chord 

thickness results to a decrease of both SCF  and SNCF . In addition, for joints 

with the same chord geometrical characteristics and same brace diameter, but 

with different brace thickness (models No. 2, 4, 5), the increase of the brace 

thickness results to a decrease of the resulting SCF  and SNCF . Finally, the 

comparison of models No. 2, 6 and 7 shows that for joints with the same chord 

geometry and brace thickness, but with different brace diameter, the increase of 

the brace diameter within the considered range, does not have a significant effect 

on the resulting SCF  and SNCF values under IPB, while it results to an increase 

of the resulting values under OPB and AX loading. 

 

5.7.2 Numerical results for cyclic loading 

 The set of geometries depicted in Table 5.7 adopted for the parametric 

analysis has also been subjected to cyclic bending loads (IPB and OPB). Following 

the provisions of Eurocode 3, part 1-8 (EN 1993-1-8), the design resistance for 

each joint geometry has been evaluated using the actual yield stress of the TS590 

grade (746 MPa).  

The joints where subjected to cyclic IPB and OPB loading with a maximum 

loading moment equal to 80% of the ultimate joint resistance under monotonic 

loading. This loading scheme is similar to the one followed during the cyclic 

experiments. Two loading ratios were adopted, namely R=0.1 and R=-1, resulting 

to two different minimum loading values for each joint. Characteristic bending 

moment – load-point deflections curves are presented in Figure 5.23 for Model 3. 

It can be observed that for the same maximum loading level (80% of the 

geometry capacity) the OPB loading results to a more pronounced nonlinear 

overall behavior of the joint, indicating increased plastic deformations at the 

critical regions. In particular, for the case of R=-1, the resulting hysteresis loop is 
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quite substantial, indicating presenting higher energy dissipation through plastic 

deformations, during cyclic loading.  

 For all loading schemes and load ratios examined for cyclic loading, the 

local strain range for the critical location was recorded or each joint 

configuration. The resulting ranges are reported in Table 5. 11. The results show 

that the local strain ranges for the joints subjected to OPB loads are higher than 

the corresponding ranges for the same joints subjected to IPB loads at the 

maximum load levels equal to 80% of their predicted capacity. As a result, the 

expected fatigue life of these joints under OPB would be lower than their fatigue 

life for IPB, which is in accordance with the corresponding experimental findings 

as well. 

  

 
(a) 
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(b) 

Figure 5.23: Model 3 – cyclic loading: (a) IPB, (b) OPB. 

 Based on the local strain range values and following the fatigue design 

methodology presented in the previous paragraph, the pseudo-elastic hot spot 

stress range was evaluated. Subsequently, the fatigue design equation proposed 

by Hochman et al. (2010) and presented in Eq. (5.9) was adopted in order to 

estimate the fatigue life of each joint, i.e. the number of cycles that the joint can 

sustain. A summary of the results is presented in Table 5. 11. The increase of 

loading ratio from R=0.1 to R=-1 results to a substantial reduction of the fatigue 

life of the joint due to the fully alternating loading moments and the increased 

resulting local strain range values. It should be also noted that for the specific 

case of model No. 4, the fatigue life is governed by the expected cracking at the 

brace side of the saddle weld toe area where the strain ranges are significantly 

higher than the corresponding ranges at the chord saddle weld toe. 
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Table 5. 11: Evaluation of hot-spot strain range   for the parametric analysis 

models  

Model 
No. 

 (%)  - FEA fN (a) 

IPB OPB IPB OPB 
R=0.1 R=-1 R=0.1 R=-1 R=0.1 R=-1 R=0.1 R=-1 

1 0.53 1.88 0.95 4.45 2512 28 280 1 
2 0.54 1.77 1.37 7.32 2375 35 82 0 
3 0.45 1.36 1.27 8.17 4104 84 106 0 

4 
0.47/ 
0.89* 

1.56/ 
3.59* 

0.83 2.73 348* 3* 440 8 

5 0.51 1.54 0.44 3.94 2819 56 4390 2 
6 0.55 4.1 1.21 4.57 2248 2 125 1 
7 0.48 1.54 1.13 3.22 3382 56 157 4 

*: values refer to the weld toe on the joint brace location, 
(a): Fatigue life predictions according to Hochman et al. (2010) 

 

5.8 Conclusions 
 The behavior of high-strength steel tubular joints subjected to extreme 

loading conditions has been presented in the previous paragraphs. The 

experimental results of tests on 10 tubular X-joints conducted in the University 

of Thessaly, as reported in Bursi (2012), have been presented. The joints were 

subjected to in-plane bending, out-of-plane bending as well as axial loading 

schemes. Their behavior under both monotonic and strong cyclic loads was 

examined. In the case of strong cyclic loading, due to the high magnitude of the 

applied loads, failures occurred in the low-cycle fatigue regime. 

 The main part of the present analysis is numerical and consists of the 

development of detailed numerical finite element models used for the 

verification of the experimental results. The nonlinear material behavior is 

described through the use of the material plasticity model, presented in Chapter 

2. A very good agreement between the test results and the numerical predictions 

has been achieved in terms of the description of the overall load-displacement 

behavior of the joints, as well as in the estimation of the local strain fields at the 

critical locations. Moreover, an insight in the behavior of these joints under 

various loading types has been provided by monitoring the development of the 

local strains along the weld toe circumference. The similarities of out-of-plane 

bending and axial loading effects on the development of local strains are 

addressed, in contradiction to the more acute strain field at hot spot location 

resulting from in-plane bending loads.  

 Based on the experimental observations and the numerical results, design 

issues are discussed both for monotonic and cyclic loading conditions. It is found 

that the available design provisions of CIDECT Guidelines No.1 (similar to EN 

1993-1-8 provisions) and those of API RP 2A for ultimate load capacity, 
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originally developed for tubular joints made of ordinary steel grades, can be 

applied for the design of high-strength steel joints as well.  

Two methodologies for fatigue design of tubular joints into the low-cycle 

fatigue range have also been presented, and their capability of predicting the 

experimental data has been examined. The first methodology refers to the elastic 

hot spot stress, whereas the second methodology accounts for the inelastic 

behavior of the material at the hot spot location. The two methodologies are 

presented in terms of the available provisions of various standards and 

recommendations (e.g. CIDECT Guidelines No. 8, DNV–RP–C203 NORSOK N-006).  

A parametric analysis has been conducted on various geometries of steel 

joints. Special attention has been given on the effects of the joint geometrical 

characteristics on the overall predicted behavior as well as the predicted local 

stress and strain fields at the hot spot locations for each loading type. Using 

various deformation criteria, the deformation capacity of the joints has been also 

estimated.  

The maximum capacity of each joint configuration under in-plane and out-

of-plane loading has been compared with available design equations. It was 

found that the 0.8 reduction factor proposed by EN1993-1-12 penalizes 

significantly the predicted ultimate capacity of the joints under consideration. 

Subsequently, the joints are analyzed under cyclic loading schemes at a 

maximum loading level equal to 80% of their capacity and two different loading 

ratios R equal to 0.1 and -1. For each case, the local strain range has been 

evaluated and correlated to a predicted fatigue life using available design 

equations.  
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Chapter 6 

Conclusions 
  

The present dissertation is aimed at detailed investigation of the 

performance of steel members subjected to strong cyclic loading associated with 

severe plastic deformations, leading to failure in the form of low-cycle fatigue or 

local buckling. In particular, steel tubular members are examined and 

characteristic engineering applications are presented, showing the correlation of 

cyclic plasticity with low-cycle fatigue phenomena. Despite the fact that the study 

concerns tubular members and pipes, as well as on tubular joints, the developed 

methodologies can also be applicable to steel members of any cross-sectional 

geometry.  

For the accurate description of steel members under severe cyclic loading 

using the finite element method, proper simulation of cyclic plasticity related 

phenomena, such us the Bauschinger effect and the accumulation of plastic 

deformations, is necessary. Towards this purpose, advanced constitutive material 

models need to be employed. A key feature of the present study is the adoption 

and enhancement of cyclic-plasticity constitutive material model, which follows 

the “bounding surface” concept. The theoretical formulation and the numerical 

integration scheme of the model are described in detail in Chapter 2. In the same 

chapter, the capabilities of this model are also presented through the use of 

illustrative examples. Enhancements and modifications of the model that improve 

its predicting capabilities are also presented. The proposed model formulation is 

able to describe accurately the behavior of steels in terms of their stress-strains 

curve under monotonic or cyclic loading conditions. More specifically, under 

monotonically increasing plastic deformations, smooth elastic-plastic stress-

strain curves or curves containing a yield plateau after the initial yielding point 

and a strain hardening region can be accurately described. In addition, under 

cyclic loading in the plastic range, the Bauschinger effect and the accumulation of 

plastic deformations can be represented. The plasticity model is implemented in 

ABAQUS, in a user-material subroutine UMAT, and it is employed for the analysis 

of several engineering problems related to severe cyclic loading, presented in 

Chapters 3 to 5. 

 The numerical investigation of the mechanical behavior of high-strength 

steel tubular members subjected to cyclic bending conditions beyond the elastic 

behavior limit is presented in Chapter 3. The investigation is motivated by 

relevant experimental evidence conducted at Centro Sviluppo Materiali SpA (CSM) 

in the framework of European research project HITUBES, and employs rigorous 

finite element simulation tools, which adopt the bounding-surface constitutive 

cyclic plasticity model, presented in Chapter 2.  
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 A set of numerical models has been developed for the simulation of cyclic 

bending experiments on the tubular members. The numerical models account for 

diameter and thickness measurements of the specimens, obtained prior the test 

execution, and for the actual test loading conditions. The numerical findings 

compare very well with the experimental results both in terms of the resulting 

moment-rotation behavior, as well as in the prediction of the number of cycles to 

buckling, referred to a “buckling life” (i.e. the number of loading cycles to 

buckling).  

 A parametric analysis is also conducted focusing on the effect of the 

geometrical imperfections on the “buckling life” of the tubes under consideration. 

The results demonstrate that under rotation-controlled cyclic bending conditions, 

tubular members are susceptible to buckling, even for rotation amplitudes well 

below the rotation limits imposed by monotonic loading conditions. The results 

also show significant imperfection sensitivity on the “buckling life” of these 

members, especially for relatively small rotation amplitudes; for initial wrinkling 

values greater than 2% of the tube thickness, the corresponding number of cycles 

to buckling for a given value of imposed rotation is quite small, but not 

significantly affected by the amplitude of the initial wrinkles. Under both 

symmetric and non-symmetric cyclic loading conditions, the evolution of the 

cross-sectional ovalization contributes to the formation of local buckling of the 

cylindrical member. It is interesting to note that buckling under cyclic loading 

conditions occurs at an ovalization value very close to the ovalization value that 

corresponds to buckling under monotonic loading conditions.  

 The behavior of steel elbows subjected to strong cyclic in-plane bending in 

the presence of internal pressure is examined thoroughly in Chapter 4. The 

analysis is supported by experimental results from two different set of tests 

conducted at TU Delft and CSM laboratories, within European research project 

INDUSE. The tests were conducted in a constant amplitude displacement-

controlled mode resulting to failures in the low-cycle fatigue range. Different 

internal pressure levels were used in order to examine their effect on the fatigue 

life of the specimens, up to 45% of yield pressure.  

The work presented in Chapter 4 mainly focuses on the development of 

rigorous finite element models for the support of the above experimental 

investigation. Using detailed dimensional measurements and material testing 

obtained prior to specimen testing, detailed numerical models have been 

developed to simulate the conducted experiments. The advanced cyclic plasticity 

material model presented in Chapter 2 has been employed for simulation of the 

tests. Emphasis is given on the local strain development at the critical part of the 

elbow where cracking occurs. The numerical results are reported in the form of 

load-displacement and flattening-displacement curves, and also refer to the 

evolution of local strain at the critical elbow location, showing good agreement 

with the test data.  
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An alternative and efficient methodology for estimating local strain ranges of 

cyclically loaded elbows developed at the critical location is also presented. This 

method is based on Neuber’s equation and the cyclic stress-strain curve of the 

material and allows for safe strain-range estimations without requiring the use of 

finite element analyses. In addition, a numerical study is conducted examining the 

effects of the variation of geometrical characteristics of the elbow on its 

mechanical behavior and the local strains at critical locations. 

The currently available design provisions of the EN 13480 and ASME B31.3 

standards for the estimation of the ultimate capacity of steel pipe elbows and their 

fatigue life are discussed in detailed. The lack of adequate design provisions of 

these standards for the low-cycle fatigue design of piping components is 

highlighted. The ASME BPVC standard for nuclear piping components is the only 

standard that covers the low-cycle fatigue regime. The aforementioned design 

provisions are critically assessed.  

Based on the available experimental and the numerical results of the 

proposed model, an efficient fatigue design methodology is presented. The local 

strain-ranges measured at the elbow critical location are correlated with the 

fatigue life of the elbow, also accounting for the presence of internal pressure in a 

rigorous manner.  

In Chapter 5 the behavior of high-strength steel tubular joints subjected to 

extreme loading conditions is presented. As part of European research project 

HITUBES, ten tubular X-joints were tested at the laboratory facilities of the Civil 

Engineering Department of the University of Thessaly under in-plane bending, 

out-of-plane bending and axial loading schemes. Those tests constitute the 

motivation of the present investigation.  

The behavior of high-strength steel tubular joints under both monotonic and 

cyclic loading schemes were examined and emphasis was given on their low-cycle 

fatigue performance. A set of detailed numerical finite element models have been 

developed for the simulation of the full scale tests. The nonlinear material model 

that uses the bounding surface concept (presented in Chapter 2) is used to 

describe material behavior. A very good agreement between the test results and 

the numerical predictions has been achieved in terms of the description of the 

overall load-displacement behavior of the joints, and a fairly good agreement has 

been obtained in terms of local strain at the critical locations. Furthermore, based 

on the available experimental and the numerical results of the proposed model, 

design implications are discussed both for monotonic and cyclic loading 

conditions. It is found that the currently available design provisions of EN 1993-

1-8/ CIDECT No.1 for the joint ultimate load capacity, originally developed for 

tubular joints of ordinary steel grades, can be applied for the design of high-

strength steel joints as well, without the reduction factor suggested by EN 1993-

1-12. For fatigue loading, the NORSOK design code provisions, are the only 

available provisions for the low-cycle fatigue range, and can be rather 

conservative in the low-cycle fatigue range. A linear extrapolation of the CIDECT 
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No8 and DNV-RP-C203 design equations, originally issued for the description of 

high-cycle fatigue phenomena, in the low-cycle fatigue range has been attempted 

based on the concept of pseudo-elastic stresses. This approach is found to result 

in safe and reasonable estimates of the fatigue life of welded tubular joints in the 

low-cycle fatigue region. Furthermore, a very similar equation proposed by 

Hochman et al. (2010) is found to be in good agreement with the present analysis 

results. 

The numerical results are also compared with the predictions obtained from 

Neuber’s criterion in terms of local strain range. The predicted strain values are 

found in good agreement with the corresponding values derived numerically for 

the monotonic loading cases. Nevertheless, for the cyclic loading cases examined, 

Neuber’s approach results to overestimation of local strains, thus penalizing the 

fatigue design of the joints under consideration. 

 Numerical models of tubular X-joints with varying geometrical 

characteristics have also been developed and a parametric numerical analysis has 

been conducted. Special attention has been given on the effects of joints 

geometrical characteristics on the overall joint performance under consideration 

when subjected to monotonic and cyclic loading. The resulting local strain fields 

have been examined in detail and an attempt to estimate the deformation capacity 

of each joint based on different limit criteria has been conducted. Finally, under 

cyclic loading conditions, the resulting local strain ranges at the critical regions 

were correlated to the expected fatigue life of the joints under consideration.  
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