
Interactive arcade game development
in a reconfigurable platform with
hand motion recognition feature

Delacoura Angeliki

A Thesis presented for the degree of

Diploma of Science in
Computer and Communication Engineering

Supervisors: Nikolaos Bellas, Associate Professor
Christos Sotiriou, Associate Professor

University of Thessaly
Volos, Greece

September 2014





Dedicated to
My parents.



Interactive arcade game development in a
reconfigurable platform with hand motion

recognition feature

Ανάπτυξη διαδραστικού arcade παιχνιδιού σε
επαναπροσδιοριζόμενη πλατφόρμα με

δυνατότητα αναγνώρισης κίνησης χεριού

by
Delacoura Angeliki

Submitted to

the Department of Electrical and Computer Engineering

University of Thessaly, Volos, Greece

for the degree of Diploma of Sience in

Computer and Communication Engineering
September 2014



Acknowledgements

I would like to thank my advisors Dr. Nikolaos Bellas and Dr. Christos Sotiriou for

the great collaboration, the ideas, the inspiring discussions and for their guidance.

I would also like to thank specifically my good friend and colleague Michalis Spyrou

for all his help, insight and support during the development of my thesis.

In conclusion, I would like to thank my parents for the support they provided me

through my entire life, for all the sacrifices they made on my behalf and for believing

in me.



Abstract

Video games always fascinated people of all ages. In recent years, a very large in-

dustry has been developed that aims to create video games, which simultaneously

has pushed the hardware industry to manufacture more and more specialized com-

ponents for their reproduction. As a consequence, the handling of video games has

escaped conventional ways, for example gamepads, and has progressed to more so-

phisticated and interactive media, such as Nintendo Wii, Xbox Kinect and more.

The purpose of this thesis is the development of an interactive arcade game in a

reconfigurable platform, with hand motion recognition feature using an accelerom-

eter. The game we implemented is Tetris, one of the earliest and most famous

arcade video games. The game was implemented in Verilog Hardware Description

Language.



Περίληψη

Τα ηλεκτρονικά παιχνίδια πάντα συναρπάζουν ανθρώπους κάθε ηλικίας. Τα τελευταία

χρόνια έχει αναπτυχθεί μία πολύ μεγάλη βιομηχανία που έχει σκοπό τη δημιουργία

ηλεκτρονικών παιχνιδιών, η οποία παράλληλα έχει ωθήσει τη βιομηχανία υλικού να κα-

τασκευάζει ολοένα και πιο εξειδικευμένα εξαρτήματα για την αναπαραγωγή τους. Ως

συνέπεια, ο χειρισμός των ηλεκτρονικών παιχνιδιών έχει ξεφύγει από τους κλασικούς

τρόπους, για παράδειγμα gamepads, και έχει προχωρήσει σε πιο εξελιγμένα και δια-

δραστικά μέσα, όπως Nintendo Wii, Xbox Kinect και άλλα.

Στόχος αυτής της Διπλωματικής Εργασίας είναι η ανάπτυξη ενός διαδραστικού ar-

cade παιχνιδιού σε επαναπρογραμματιζόμενη πλατφόρμα, με δυνατότητα αναγνώρισης

κίνησης χεριού για το χειρισμό του, χρησιμοποιώντας αξελερόμετρο. Το παιχνίδι που

υλοποιήσαμε είναι το Tetris R©
, ένα από τα πρώτα και πιο γνωστά arcade ηλεκτρονικά

παιχνίδια. Η υλοποίηση πραγματοποιήθηκε στη Γλώσσα Περιγραφής Υλικού Verilog.



Declaration

The work in this thesis is based on research carried out at the University of Thessaly,

Electrical and Computer Engineering Department, Greece. No part of this thesis

has been submitted elsewhere for any other degree or qualification and it is all my

own work unless referenced to the contrary in the text.

Copyright c© 2014 by Delacoura Angeliki.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

viii



Contents

Abstract vi

Declaration viii

1 Introduction 1

1.1 Purpose of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 ZedBoardTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 VGA Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Arcade Video Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Tetris Game-play . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Design and Implementation 13

3.1 Tetris Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 VGA Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Linear Feedback Shift Register (LFSR) . . . . . . . . . . . . . 23

3.1.4 Score, Completed Lines and Level Display . . . . . . . . . . . 23

3.1.5 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



Contents x

3.2 Summary Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Conclusion and Future Work 29

Bibliography 31

Appendix 33

A Source Code 33



List of Acronyms

CLB Configurable Logic Blocks

DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

FSM Finite-State Machine

HDL Hardware Description Language

LFSR Linear Feedback Shift Register

LUT Look Up Tables

PAR Place and Route

RAM Random Access Memory

RGB Red Green Blue

VGA Video Graphics Array

XST Xilinx Synthesis Tool

xi



List of Figures

2.1 FPGA Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 ZedBoardTM System Architecture Block Diagram . . . . . . . . . . . . 5

2.3 VGA Inversion Process . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 VGA Syncing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 VGA Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Tetriminos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Gravity Feature of Tetris R© . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 First Version of Tetris R© . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 Box of Tetris R© . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.10 Tetris R© on Game Boy . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.11 Pmod 3-axis Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Game’s Master FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Game’s Slave FSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Collision and Frame Buffer . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Tetriminos’ Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Completed Lines Deletion . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Game Over Message . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 Linear Feedback Shift Register . . . . . . . . . . . . . . . . . . . . . . 23

3.9 Score Calculations for Display . . . . . . . . . . . . . . . . . . . . . . 25

3.10 SPI interface’s Master-Slave Communication . . . . . . . . . . . . . . 25

3.11 SPI 8-bit Circular Transfer . . . . . . . . . . . . . . . . . . . . . . . . 26

xii



List of Tables

2.1 7z020 Programmable Logic . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Scoring System of Tetris R© . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 VGA Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 VGA Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Accelerometer Outputs for Movement . . . . . . . . . . . . . . . . . . 26

3.4 Xilinx ISE Summary Report . . . . . . . . . . . . . . . . . . . . . . . 27

xiii



Chapter 1

Introduction

1.1 Purpose of This Thesis

Video games nowadays are more interactive than ever. Game developers take ad-

vantage of every contemporary technological feature in order to make video games

more and more fascinating. There are many games that detect levers in players’

hands, the movement of the hand alone, but some detect players’ entire body and

each and every move they make or even player’s gender. Naturally, all these techno-

logically modern games and features are developed in software, creating impressively

accurate and detailed graphics, displaying even the player himself. We would like

to develop such a modern and interactive game purely in Hardware Design, using

a Hardware Description Language (HDL) to configure a Field Programmable Gate

Array and implement our work. However, such precise graphics are impossible to

be developed in Hardware Design, since a Graphics Processing Unit is needed to

be developed first. Consequently, we chose to recreate an arcade video game in 2D

graphics, Tetris R©. In order for our video game to be more interactive and modern

with a motion recognition feature, we are using accelerometers to control the game,

by recognizing player’s hand’s motion.

1



1.2. Thesis Structure 2

1.2 Thesis Structure

This thesis is divided in three main parts.

The first part discusses background issues regarding every aspect of our work. More

specifically, section 2.1 deals with FPGA devices, describing their architecture, the

way they operate and the technical specifications of the FPGA device we used,

ZedBoardTM . In section 2.2 we analyze VGA protocol and all the information needed

in order to drive a display monitor. section 2.3 talks about the game we developed,

Tetris R©, its game-play and facts regarding its development and licensing history.

Finally, in section 2.4 we explain the way accelerometers work.

In the second part we present our design and its implementation, along with a

summary report of FPGA’s resources that were used and design tools’ execution

time. In subsection 3.1.1 we describe the implementation of the VGA driver and in

subsection 3.1.2 we explain the game algorithm and how it was developed. subsec-

tion 3.1.3 and subsection 3.1.4 analyze the Linear Feedback Shift Register and the

calculations required for displaying the score respectively. SUMMARY

Finally, chapter 4 we describe the conclusions that we came to and discuss pos-

sible future work.



Chapter 2

Background

In this chapter we describe basic information regarding FPGA technology, the VGA

protocol and Arcade Video games for a better understanding of our work.

2.1 FPGA

An FPGA board is an integrated circuit based on tables of configurable logic blocks

and designed to be configured using HDL [1]. Although there is the solution of one

time programmable FPGAs, most common are FPGAs that can be reconfigured

each time the design evolves [2] [3]. It is not restricted to a predetermined hardware

function and allows the user to program applications and product features according

to the needs of each design. Due to their programmability, FPGAs are ideal for a

large variety of markets such as ASIC prototyping, such as Aerospace and Defence,

Automotive, Communications, High Performance Computing, Industrial, Medical

and Video and Image Processing.

2.1.1 Architecture

Most common FPGAs consist of Configurable Logic Blocks (CLBs), routing chan-

nels, SRAMs, Digital Signal Processing (DSP) modules, I/O circuitry and clock

management blocks.

The CLB is the basic logic unit in an FPGA. Their number and size vary from

device to device, but in general a CLB consists of some logical cells. A typical cell

3



2.1. FPGA 4

Figure 2.1: This figure shows a common FPGA’s block structure.

consists of a configurable switch matrix, selection circuitry (Multiplexer (MUX),

etc), Look-Up Tables (LUTs), full adders and flip-flops. Depending on the design

mode,normal or arithmetic, the LUTs are either combined into a larger one or feed

their outputs to the full adder [4] [5].

The routing channels are responsible for routing the signals between the clock, CLBs,

RAMs and I/Os. In order for these routes to be optimal and fast, the routing task is

hidden from the user and is completed solely by the tool, applying any optimization

needed for the design.

The I/O features of an FPGA vary from device to device. Most of them support

USB, video outputs; VGA or/and HDMI, audio lines in and out, Ethernet and con-

nectors for many other features or devices such as cameras, sensors and many more.

Digital clock management provides users the ability to manage the original clock

generated from an oscillator on the FPGA and create new clocks, with lower or

higher frequency.

Most contemporary FPGA devices are equipped with quite powerful processors,

which make them suitable for Embedded Systems and Systems on Chip (SoC) de-

velopment. With these abilities, these devices combine the software programmability

of a Processor with the hardware programmability of an FPGA, resulting in out-

standing system performance, flexibility and scalability, while also providing the

great benefits of power reduction and lower cost.



2.1. FPGA 5

2.1.2 ZedBoardTM

Our work was developed for the ZedBoardTM , which uses Xilinx Zynq R©-7000 All

Programmable SoC 7z020-CLG484. The device is equipped with an ARM R© Proces-

sor of approximately 900 MHz and with a variety of Hardware Programmable Logic,

allowing designers to add peripherals according to the desirable application [6].

Figure 2.2: System architecture’s block diagram for Zynq-7000 AP SoC.

The Zynq-7000 AP SoC provides us with optimized programmable logic and great

computational capabilities. The device’s technical features are provided below.

Device Name Z-7020

Xilinx 7 Series Programmable Logic Equivalent Artix-7 FPGA

Programmable Logic Cells (Approximate ASIC Gates(4)) 85K Logic Cells ( 1.3M)

Look-Up Tables (LUTs) 53,200

Flip-Flops 106,400

Extensible Block RAM (# 36 Kb Blocks) 560 KB (140)

Programmable DSP Slices (18x25 MACCs) 220

Peak DSP Performance (Symmetric FIR) 276 GMACs

Table 2.1: Programmable logic of ZedBoardTM .



2.2. VGA Protocol 6

2.2 VGA Protocol

VGA is a video standard mainly used for computer monitors introduced by IBM in

1987 and has also come to mean the 15-pin VGA connector or the 640x480 resolution

itself, which is most commonly used [7]. VGA video is a stream of frames, where each

frame is consisted of horizontal and vertical series of pixels which are transmitted

from top to bottom and from left to right, like a beam is traveling through each

pixel of the screen.

Figure 2.3: This figure shows the horizontal and vertical inversion process.

Each line of a frame begins with an active display region, in which RGB values are

output for each pixel in the line. Then a blanking region follows in which a horizontal

sync pulse is transmitted in the middle of the blanking interval. The interval before

the sync pulse is known as front porch, after the sync pulse as back porch and the

sync pulse itself as horizontal sync and shows when a full pixel line of the screen

has been scanned. Respectively, each frame begins with an active display region,

followed by the front porch, the vertical sync pulse and the back porch. Image is

only displayed during the active display time and not during the front porch, back

porch nor sync time. Depending on the resolution we want to display, hsync and

vsync have different polarity and there are different pixel clocks, according to which

each region has different timings [8].



2.2. VGA Protocol 7

Figure 2.4: The waveforms of hsync and vsync, which are identical regardless resolution.

Each pixel’s colour is a combination of red, green and blue, the size of which depends

on the output device. When the colour of each pixel and all the other signals are set

properly from the VGA controller, they are driven from the VGA Digital-to-Analog

Converter to the correct pins of the connector. The connector consists of 15 pins.

Six pins are used for the colours (RGB), and their respective ground signals two for

the hsync and vsync signals, two for grounds and the remaining five are not used.

Figure 2.5: The pins of the VGA connector (view from board side).



2.3. Arcade Video Games 8

2.3 Arcade Video Games

An arcade game is a coin-operated entertainment machine, usually installed in pub-

lic businesses, such as restaurants, bars, and particularly amusement arcades. Most

arcade games are video games, pinball machines, electro-mechanical games, redemp-

tion games, and merchandisers. The term "arcade game" is also, in recent times,

used to refer to a video game that was designed to play similarly to an arcade game

with frantic, addictive game-play. The golden age of arcade video games lasted from

the late 1970s to the late 1990s. Arcade games saw a continuous decline in popu-

larity around the world when home-based video game consoles made the transition

from 2D graphics to 3D graphics. [9].

One of the few games that achieved ultimate popularity was Tetris R©.

2.3.1 Tetris Game-play

Tetris R© is a puzzle video game, where the objective is to manipulate random blocks

that fall down the playing field, by moving them sideways and rotating them by 90

degrees, in order to create completed lines at the bottom of the playing field. When

such a line is created, it disappears and all the above blocks fall to the bottom. For

every ten lines that are cleared, the level increases and each new level makes the

blocks fall faster. The game is over when the blocks are stacked up to the top of the

playing field and no new blocks can be created [10].

Figure 2.6: The Tetriminos in their colours.

These blocks, called Tetriminos, are created by four tiles which are combined in

different ways to create each shape. Each Tetrimino is symbolized by a letter from



2.3. Arcade Video Games 9

the English alphabet closer to its shape and has a specific color. Thus, we have I in

cyan, J in blue, L in orange, O in yellow, S in green, T in purple and Z in red, as

shown in Figure 2.5. All Tetriminos are able to clear single and double lines. I, J

and L are able to clear triples and only the I Tetrimino is able to achieve a four-line

clear, which is called "TETRIS". Depending on the level and the number of lines

cleared, different points are awarded to the player.

Level 0 1 2 3 4 5 6 7 8 9

Lines

Single 40 80 120 160 200 240 280 320 360 400

Double 100 200 300 400 500 600 700 800 900 1000

Triple 300 600 900 1200 1500 1800 2100 2400 2700 3000

TETRIS 1200 2400 3600 4800 6000 7200 8400 9600 10800 12000

For each level n greater than 9, the score is: (n + 1)*40, (n + 1)*100,

(n + 1)*300, (n + 1)*1200.

Table 2.2: The scoring system of Tetris R© for each level and number of cleared lines.

When a number of lines are cleared, the above Tetriminos fall down the exact

same distance to the cleared lines height. Contrary to the laws of gravity, this feature

may leave blocks floating above gaps instead of falling all the way to the bottom as

shown in Figure [11].

Figure 2.7: Tiles of Tetriminos floating.



2.3. Arcade Video Games 10

2.3.2 History

Tetris R© was introduced on June 6 1984 by Alexey Pajitnov, an artificial intelligence

researcher working for the Soviet Academy of Sciences at their Computer Center

in Moscow. Being responsible for testing the capabilities of new hardware, Alexey

Pajitnov would create simple games in order to do so. The initial idea of Tetris R©

was the creation of a game around pentominoes [12], like many puzzle games he

enjoyed as a child, but simpler since the variety of the shapes would make the game

very complicated. Thus, instead of pentominoes he switched to tetrominoes, made

of four tiles and creating only seven different shapes. The name of this new game

Tetris, comes from the prefix tetra of the game’s blocks and from tennis, which

was Pajitnov’s favourite sport. Since the Elektronika 60 that he was working on,

supported only text based display, tetrominoes were initially formed of letter char-

acters [13] [14].

Figure 2.8: The very first version of Tetris R©.

Pajitnov’s game was quite popular among his colleagues and along with Dmitry

Pavlovsky and Vadim Garasimov, they ported the game to the IBM PC, which

contained background graphics featuring Russian scenes. This version of the game,

made its way to Budapest, Hungary, where it was ported to many different plat-

forms and was noticed by the British software house Andromeda. While they made

attempts to contact Alexey Pajitnov for acquiring the rights to the PC version of

the game and before the deal was settled, the rights had already been sold to Spec-



2.3. Arcade Video Games 11

trum HoloByte and Andromeda attempted to acquire license of this version from

the Hungarian programmers.

Soon enough the same PC version acquired from Spectrum Holobyte made its way

to the United States, where it became instantly popular and Computer Gaming

World called the game "deceptively simple and insidiously addictive". Although

the licensing issues were still unsolved, many new versions became available from

Andromeda, Microsoft and Spectrum Holobyte. Unsure of how to publish the game,

Pajitnov gave the rights to the Soviet government for ten years, which in 1988 began

to market the rights to Tetris R©.

Figure 2.9: The picture that was on the front side of Tetris R©’s packaging box.

By 1989, many different companies claimed rights to create and distribute the Tetris

software for home computers, game consoles, and handheld systems. In the mean-

time, Elorg organization signed the rights of the arcade version over to Atari and

the non-Japanese console and handheld rights over to Nintendo. Tetris R© was on

show at the January 1988 Consumer Electronics Show in Las Vegas and from then

on, Tetris R© was bundled with every Game Boy.

Tengen, Atari’s console software division, applied for copyright for their Tetris game



2.4. Accelerometers 12

Figure 2.10: Nintendo’s version of Tetris R© for Game boy: (a) The opening screen and

(b) a screen-shot while playing.

for the Nintendo Entertainment System and proceeded to market and distribute it

under the name TETRIS: The Soviet Mind Game, disregarding Nintendo’s license

from Elorg. From then the lawsuits between Tengen and Nintendo over the NES

version carried on until 1993.

2.4 Accelerometers

An accelerometer is an electromechanical device that measures acceleration forces.

These forces may be static, like the constant force of gravity, or they could be dy-

namic caused by moving the accelerometer. There are different types of accelerome-

ters depending on how they work. Some accelerometers use the piezoelectric effect;

they contain microscopic crystal structures that get stressed by accelerative forces,

which cause a voltage to be generated. Others implement capacitive sensing, that

give as output a voltage dependent on the distance between two planar surfaces.

Figure 2.11: The figure shows a Pmod 3-axis accelerometer.



Chapter 3

Design and Implementation

In this chapter we introduce the design and implementation of our work; the im-

plementation of the Tetris R© game in an FPGA device purely in hardware using an

HDL like Verilog. We describe how each module operates and the outputs that each

one provides, but also all the essential optimizations for reducing XST and PAR

execution time and area occupancy. Finally, we present the schematic design of

the project and the summary reports from XST and PAR that the Xilinx ISE Tool

provides.

Figure 3.1: This figure shows the block diagram of the project.

13



3.1. Tetris Game 14

3.1 Tetris Game

The implementation of this project was for ZedBoard Zynq 7z020 and consists of

the VGA driver, the creation of a 50 MHz pixel clock and the main game logic,

which controls the game algorithm, the Linear Feedback Shift Register for generating

random blocks and the drivers for displaying images from block RAM. The game

algorithm contains the movement and collision detection algorithm, the rotation

algorithm and the completed lines detection and delete algorithm.

3.1.1 VGA Driver

For the 800x600 resolution that we used, a 50 MHz pixel clock is required and since

Zynq 7z020 FPGA board oscillator provides an 100 MHz clock, we created a very

simple frequency divider.

The timings for synchronising the display correctly are shown in Table 3.1.

General Timing

Screen refresh rate 72 Hz

Vertical refresh 48.076923076923 kHz

Pixel freq. 50.0 MHz

Horizontal Timing (Line)

Scanline part Pixels Time [μs]

Visible area 800 16

Front porch 56 1.12

Sync pulse 120 2.4

Back porch 64 1.28

Whole line 1040 20.8

Polarity of hsync pulse is positive.

Vertical Timing (Frame)

Frame part Lines Time [ms]

Visible area 600 12.48

Front porch 37 0.7696

Sync pulse 6 0.1248

Back porch 23 0.4784

Whole frame 666 13.8528

Polarity of vsync pulse is positive.

Table 3.1: VGA Timings for 800x600 resolution.



3.1. Tetris Game 15

The VGA driver that we implemented, is composed of two counters, one that

counts the pixels of each line and one that counts the lines of the frame. As we can

see above, the hsync pulse should be asserted 120 pixels after the front porch, that

is including pixel zero (0) at the 975th pixel. Accordingly, the vsync pulse should be

asserted at the 642nd line of the frame. At the end of each line, horizontal counter

is zeroed and at the end of each frame, vertical counter is zeroed.

The Zynq 7z020 FPGA board that we used has an RGB output of 12 bits, that

is 4 bits Red, 4 bits Green and 4 bits Blue, therefore a total of 4095 colours. Each

foursome from each colour, as well as horizontal and vertical sync pulses, are driven

to the corresponding pins of the VGA connector from the appropriate pins of the

FPGA as shown in Table 3.2. In order to obtain a 50 MHz frequency clock from the

VGA Pin Signal Description EPP Pin

1 RED Red video V20, U20, V19, V18

2 GREEN Green video AB22, AA22, AB21, AA21

3 BLUE Blue video Y21, Y20, AB20, AB19

4 ID2/RES formerly Monitor ID bit 2 NC

5 GND Ground (HSync) NC

6 RED_RTN Red return NC

7 GREEN_RTN Green return NC

8 BLUE_RTN Blue return NC

9 KEY/PWR formerly key NC

10 GND Ground (VSync) NC

11 ID0/RES formerly Monitor ID bit 0 NC

12 ID1/SDA formerly Monitor ID bit 1 NC

13 HSync Horizontal sync AA19

14 VSync Vertical sync Y19

15 ID3/SCL formerly Monitor ID bit 3 NC

Table 3.2: VGA Connector and FPGA Pins. [15]



3.1. Tetris Game 16

100 MHz clock of the oscillator we needed a frequency divider. Since the IP-Core

version of Digital Clock Management for the Zynq 7z020 was quite time consuming

during the execution of XST and PAR, reaching almost one hour, we had to find

an alternative solution. The simplest alternative was to create a module, where for

every assert of the 100 MHz clock signal, the signal of the 50 MHz clock toggles.

The source code can be seen in Listing A.1.

3.1.2 Game

Master FSM
The game is controlled by a master FSM consisted of four states as shown in Figure

3.1.

Figure 3.2: This figure shows the master FSM that controls the game.

During each state signals are asserted to control different functionalities and activate

states of other FSMs.

Start

The image for the background is read from the Block RAM and driven to the

monitor to be displayed and signal new_block is asserted in order for a new

Tetrimino to be created. When frame is asserted after one second we move to

state Play.

Play

Signal move is asserted in order to activate movement for the Tetrimino that



3.1. Tetris Game 17

was created and the background image along with the new Tetrimino are driven

to the display. When signal done is asserted we move to state DisplayChanges

DisplayChanges

The background image, the Tetrimino that reached bottom and changes such

as the deletion of a line or lines, are driven to be displayed. When frame is

asserted and game_over is not we return to state Start since we can keep on

playing and the game is not over. If game_over is asserted we move to state

GameOver.

GameOver

If the game is over, a picture with the according message is read from the

Block RAM and driven to be displayed.

The source code can be seen in Listing A.2.

Game Algorithm
The master FSM controls and communicates with a secondary FSM which is the

game algorithm that is responsible for the Tetriminos’ movement and rotation, for

collision detection, for detecting completed lines and deleting them. The same mod-

ule displays the falling Tetrimino and the next one to come.

Figure 3.3: This figure shows the slave FSM that controls the game.

In order to be able to display the Tetriminos, detect collision but also display all the

fallen Tetriminos we needed a collision buffer, a frame buffer and the images of all

Tetriminos in Block RAMs. Since this was not a good design technique, we use only



3.1. Tetris Game 18

one buffer for all the above. The buffer is a register of 368 words of 3 bits and rep-

resents a grid of the playing field surrounded by the walls and bottom that restrict

Tetriminos’ moves. Before the game begins the buffer is initialized to zeroes and to

non-zero values at walls’ and bottom’s positions. Each Tetrimino is created by four

grids, which are represented by four variables; first, sec, third and fourth. When a

Tetrimino is created, its initial positions in the grid are written with its colour code

in order to be displayed. An other optimization that was essential is that the codes

of colours written in the buffer are not the actual hexadecimal colours, but each one

of them correspond to a 3 bit number from one to seven. Thus, the displayed result

and the equivalent state of the 14x23 buffer, are shown in Figure 3.3.

Figure 3.4: This figure shows the displayed image and the actual changes of the buffer.

For Tetriminos’ movement, it is essential first to check that all future positions in

the grid are not occupied by an other fallen Tetrimino or a wall. Therefore, as

Tetriminos’ fall, if the positions they are about to move in are zero then the move is

completed, the previous positions are zeroed and the new ones are written with the

corresponding colour code. This regards all possible movements, that are moving



3.1. Tetris Game 19

left, right, falling down and rotating. All these moves are calculated through the four

position variables first, sec, third and fourth. For left and right movement we have

to check the previous and the next positions of the most left and the most right grids

of moving Tetrimino and add -1 or +1 to the variables. For the falling movement

we have to check the positions located below the bottom Tetriminos’ grids in the

next rows and add +16 for gravity falling or +16 again for moving down, but with

a faster refresh rate of the buffer. Finally, Tetriminos rotate 90 degrees clockwise

and their next positions depend on the Tetrimino and the previous rotation, thus

they are calculated and certain values are added to the variables. Except for O, all

other Tetriminos have four different rotation states as shown in Figure 3.4.

Figure 3.5: This figure shows Tetriminos’ different rotations.

As Tetriminos are created, moved and rotated inside the playing field, they are fi-

nally placed on the bottom of the field. If a line is completed, it must be removed.

Thus, we scan the buffer, from top to bottom and assign to a register of 22 positions

zero if the line is not full and one if the line is full. Subsequently, we check the

register of completed and non-completed lines from top to bottom. When a line is



3.1. Tetris Game 20

full and must be removed, starting from that line and moving to the top of the buffer

we replace the contents of each line with the contents of the previous one. This is

repeated for every completed line in the buffer. Since there are no more completed

Figure 3.6: This figure shows how completed lines are removed and their contents replaced

appropriately.

lines to delete and all necessary changes have been made, a new Tetrimino is created

and the above process is repeated. The game ends when Tetriminos are stacked up

to the top of the playing field and new ones can not be created. The "Game Over"

message is displayed on screen as shown in Figure 3.7.

Figure 3.7: This figure shows the game over message at the end of the game.



3.1. Tetris Game 21

Slave FSM
Each state of the slave FSM executes a specific part of the process described above

as follows:

Start

All signals and buffers are initialized to their initial state.

Idle_1

When a new Tetrimino is created an LFSR determines which one it will be

and also determines which one will come next.

Idle_2

Depending on the Tetrimino, its initial positions and colour code are defined.

Also a variable keeps the initial position in order to detect game over. When

signal move is asserted we move to state BlockMove.

BlockMove

Tetriminos move towards the bottom approximately one row every second.

As level increases, so does the speed of Tetriminos. The calculations for each

movement are activated with a corresponding button. If a button is pushed

and the movement is legitimate, the values of first, sec, third and fourth are

reduced or increased at a certain amount depending on the movement and

the next positions. For moving left and right, all four of them are reduced

by one and increased by one respectively. For simple falling due to gravity,

all four of them are increased by sixteen and that is because the width of the

playing field is fourteen grids but we have to include two more for the walls.

Thus, for moving downwards and not simply falling same distance is covered,

but with a faster rate, so all four of them are increased by sixteen. For the

rotations, each one of the variables is either increased or reduced in order

to achieve the 90 degree rotation according to Figure 3.5.As a better design

technique and since the changes are numerical according to how many grids

does each variable needs to be moved, they are summed up and added to the

four variables. When signal check is asserted, which means that our active

Tetrimino had an impact and is not able to move downwards anymore, it has



3.1. Tetris Game 22

either reached bottom or an other Tetrimino. Therefore, we either resume

the game and check for completed lines or the game is over if Tetriminos are

stacked to the top and the appropriate message appears.

DetectLines

The buffer is scanned for completed lines. For every completed line the cor-

responding location of FilledRows register is assigned to one and for non-

completed rows to zero.

CheckRows

During this state register FilledRows is scanned. When a completed line is

found we move on to the deletion at state DeleteRows. Otherwise, and if we

haven’t reached the end of the register, the scanning continues. Eventually, by

reaching the end of the register and if the last line is not full, we move back

to state Idle_1 and game flow is resumed.

DeleteRow

Since a row is completed, we not only have to delete the whole row, but also

move all the above rows downwards. Hence, the values of our completed row

need to be replaced with the values of the previous row. Each grid of the row

is written with the value of the above grid. At the end of the row we repeat

the process for the previous line in the buffer but actually the next one as we

move to the top. Finally, when we reach the top and we are at row zero, since

there are not other lines above and the values can not be replaced, the whole

row is initialized to zero.

GameOver

Signal game_over is activated and Game Over image is displayed.

The source code can be seen in Listing A.3.

In order for the contents of the buffer to be displayed and using the horizontal

counter of pixels and the vertical counter for lines, we calculated the actual pixel

coordinates of each grid of the playing field and determined a specific address for



3.1. Tetris Game 23

each one. Hence, as the screen display is scanned and an address is assigned, if the

corresponding position of the grid contains one of the colour codes, the appropriate

colour is displayed.

3.1.3 Linear Feedback Shift Register (LFSR)

During the original game Tetriminos are created randomly, without following a

distinctive pattern, but in reality nothing is absolutely random. Thus, in order to

create Tetriminos in a seemingly random way we needed a pseudo-random number

generator. The ideal pseudo-random number generator would use as seed outer

parameters, such as time. Since our work is purely in hardware design and such

parameters is not able to be used, we used an LFSR. LFSR is a shift register whose

input bit is a linear function of its previous state. The most commonly used linear

function of single bits is exclusive-or (XOR), therefore its input is driven by the

XOR of some bits of the overall value of the shift register [16] [17].

Figure 3.8: This figure shows the linear feedback shift register that was used.

Since Tetriminos are seven, we needed to compose three random bits in order to

create all seven types. In order to obtain a less frequent pattern, we used a 16-bit

LFSR with three XORs, which inverted give us our random numbers and a fourth

one that drives the input each time a new Tetrimino is created as we can see in

Figure 3.8. The source code can be found in Listing A.4.

3.1.4 Score, Completed Lines and Level Display

Points are awarded to the player according to the scoring system seen in Table 2.2.

When a number of lines is erased, line counter is increased accordingly and for every



3.1. Tetris Game 24

ten lines erased, level counter is increased by one. Level counter reaches up to

number nine, which means we only need one digit to represent it. Images of the

numbers from zero to nine are loaded in Block RAMs. For the ten possible values of

level, each Block RAM is instantiated and according to the value of level the proper

image is displayed. In order for score and completed lines to be displayed, we needed

seven and five digits respectively. Consequently, from a value of seven or five digits,

we needed to isolate each digit and display each one separately, thus we use variables

to represent each digit. In the end, all together composed, form the entire sum. For

each one of the two parameters there are two counters; one that keeps the total

amount and one that keeps the current amount. When points are awarded or in the

other case lines are erased, the total amount is increased and the difference between

these two counters is not zero and the new sum must be calculated and displayed.

The amount of difference is added to the value of units’ digit and if its value is

greater than nine, it is decreased by ten and dozens’ digit is increased by one. This

process is repeated for every digit and is continued until the digit has a maximum

value of nine. Since we are not able to use one single instantiation of each number

in Block RAM, as it is not possible to access Block RAM by multiple drivers, the

instantiations for each number need to be as many as the digits in use.



3.1. Tetris Game 25

Figure 3.9: This figure shows the way each digit of the score is isolated to be displayed.

3.1.5 Accelerometers

In our implementation we used a 3-axis digital accelerometer, powered by the analog

device ADXL345 and took advantage of the force of gravity on x and y axises,

making Tetriminos move sideways by tilting the accelerometer right or left and

down by tilting the accelerometer towards the floor. We connected the accelerometer

through the SPI interface. SPI operates in full duplex mode and uses four signals:

Slave select (SS), serial clock (SCLK), serial data out (SDO), to the accelerometer

and serial data in (SDI), from the accelerometer. Devices communicate in master-

slave mode, where master initiates the data frame.

Figure 3.10: This figure shows the master-slave communication for the SPI interface.

Our setup contains two shift registers, one in the master and one in the slave and

they are connected as a ring. Data is shifted out with the most significant bit first,

while shifting a new least significant bit into the same register.



3.2. Summary Report 26

Figure 3.11: This figure shows the SPI 8-bit circular transfer between the two shift

registers.

We initialize the transfer with a 5 Hz clock and we transmit and receive data

at 22.4 kHz rate. The accelerometer is configured for +/- 2g operation. To convert

the output to g we have to find the difference between the measured output and

the zero-g offset and divide it by the accelerometer’s sensitivity, which is expressed

in counts/g or LSB/g. For our accelerometer in 2g sensitivity with 10-bit digital

outputs, the sensitivity is 163 counts/g or LSB/g. The acceleration would be equal

to: α = (Aout−zerog)
163

g. However, we did not calculate the acceleration as described

above. We simply used the accelerometer raw output in order to move Tetriminos

according to Table 3.3.

Raw Value

Axis G Value From To Movement & Tilting

+y Axis 0 through +0.5 0 175 Left

-y Axis -0.5 through 0 250 375 Right

+x Axis -0.5 through 0 250 375 Down

Table 3.3: Movements according to accelerometer’s outputs.

3.2 Summary Report

The tool that was used for the development of our work, Xilinx ISE Design Suite,

provides us with a summary report regarding slices, LUTs and generally how much



3.3. Design Issues 27

of the available logic was used. As it is observable in Table 3.4, apart from a small

proportion that used device’s RAMs, the rest of the project is entirely in hardware

logic.

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 3,599 106,400 3%

Number of Slice LUTs 24,988 53,200 46%

Number of occupied Slices 7,855 13,300 59%

Number of RAMB36E1/FIFO36E1s 12 140 8%

Number of RAMB18E1/FIFO18E1s 132 280 47%

Table 3.4: Xilinx ISE summary report.

The above hardware logic that is occupied, corresponds to:

RAMs : 2

Multipliers : 4

Adders/Subtractors : 93

Registers : 1356

Comparators : 102

Multiplexers : 7350

FSMs : 8

Xors : 8

3.3 Design Issues

The basic design issue that we encountered during this project was the creation of

a frame buffer; a buffer that would keep the position and the colours of Tetriminos

that had reached bottom. The initial idea was to use a buffer in order to detect

collision and the frame buffer. Since both of them were registers of more than three

hundred addresses, but also there was the issue of synchronizing them, as when a

Tetrimino reached bottom there should be a signal that activates the frame buffer to

be written. For the frame buffer to be updated, a whole frame of the display should



3.3. Design Issues 28

be scanned. A frame buffer that keeps the RGB value for each pixel of a frame would

be enormous, therefore we needed an optimization. The frame buffer would keep the

RGB values of 26x26 pixel grids by scanning the display and keeping the RGB value

of the center pixel of each grid. Although this was an optimal solution regarding

area, it did not have the expected results, but also combined with the collision buffer

occupied a large proportion of LUTs. An other attempt to solve this issue was the

use of Block RAM instead of register for the frame buffer. Since we wanted at each

frame the frame buffer to be read and displayed, even when its values were updated,

Block RAM was not an efficient solution. Finally, we decided to combine the two

buffers in one, without using Block RAMs for displaying Tetriminos and displaying

them directly from the buffer according to a colour code for each one. Each time the

falling Tetrimino moves, the buffer is updated and the updated values are displayed

instantly on the monitor.



Chapter 4

Conclusion and Future Work

These days video games are developed with great and detailed graphics, requiring

very efficient manipulation of memory and image processing, but also much power

in order to be displayed. More and more technologically improved game consoles

enter the markets, promising highly effective capabilities and the most contempo-

rary interactive features.

We developed an arcade game in an FPGA device, applying many optimizations

in order to occupy minimum area and for the minimum execution time of Synthesis

and Place & Route tools. For our game to be modern and interactive, we used

accelerometers to control the game by recognizing hand motion. In conclusion, our

hardware design implementation in FPGA, requires low power since there are no

cooling issues and the only thing that needs to be supplied with power is the FPGA

chip.

However, there are some more features that we would like to address in the fu-

ture.

Firstly, we would like to add sounds and music feature as the original Tetris R© game

has. Different sounds would be generated when Tetriminos move right, left or down,

rotate and when lines are completed.

29



Chapter 4. Conclusion and Future Work 30

An other feature we would also like to include in our future work is hand gesture

recognition to control the game. This could be achieved using a camera to recognise

the player’s hand gestures, making our game even more interactive.



Bibliography

[1] http://en.wikipedia.org/wiki/Field-programmable_gate_array,

Field-Programmable Gate Array.

[2] http://www.altera.com/products/fpga.html,

Altera R©: What is an FPGA?

[3] http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-

array.htm, Xilinx Inc c©: What is an FPGA?

[4] http://en.wikipedia.org/wiki/Field-programmable_gate_array#Architecture,

Field-Programmable Gate Array: Architecture

[5] http://www.xilinx.com/fpga/index.htm, Xilinx Inc c©: Common FPGA

features.

[6] http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/use-cases-

and-markets/index.htm, Xilinx Zynq R©-7000 All Programmable SoC

[7] http://en.wikipedia.org/wiki/Video_Graphics_Array,

Video Graphics Array.

[8] http://tinyvga.com/vga-timing, VGA Signal Timing

[9] http://en.wikipedia.org/wiki/Arcade_game, Arcade Game.

[10] http://en.wikipedia.org/wiki/Tetris#Gameplay, Tetris: Game-play

[11] http://en.wikipedia.org/wiki/Tetris#Gravity, Tetris: Gravity

[12] http://en.wikipedia.org/wiki/Pentomino, Pentomino

31

http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.altera.com/products/fpga.html
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://en.wikipedia.org/wiki/Field-programmable_gate_array#Architecture
http://www.xilinx.com/fpga/index.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/use-cases-and-markets/index.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/use-cases-and-markets/index.htm
http://en.wikipedia.org/wiki/Video_Graphics_Array
http://tinyvga.com/vga-timing
http://en.wikipedia.org/wiki/Arcade_game
http://en.wikipedia.org/wiki/Tetris#Gameplay
http://en.wikipedia.org/wiki/Tetris#Gravity
http://en.wikipedia.org/wiki/Pentomino


Bibliography 32

[13] http://en.wikipedia.org/wiki/Tetris#History, Tetris: History

[14] http://www.play-tetris.net/tetris-history.html, Tetris History

[15] http://www.zedboard.org/sites/default/files/ZedBoard_HW_UG_v1_1.pdf,

ZedBoard (ZynqTMEvaluation and Development) Hardware User’s

Guide

[16] http://en.wikipedia.org/wiki/Linear_feedback_shift_register,

Linear Feedback Shift Register

[17] http://rijndael.ece.vt.edu/schaum/slides/ddii/lecture6.pdf,

A Random Number Generator in Verilog, A Design Lecture

http://en.wikipedia.org/wiki/Tetris#History
http://www.play-tetris.net/tetris-history.html
http://www.zedboard.org/sites/default/files/ZedBoard_HW_UG_v1_1.pdf
http://en.wikipedia.org/wiki/Linear_feedback_shift_register
http://rijndael.ece.vt.edu/schaum/slides/ddii/lecture6.pdf


Appendix A

Source Code

Listing A.1: 50 MHz Clock

1 module ClkDiv_50MHz(

2 CLK,

3 CLKOUT

4 );

5 input CLK; // 100MHz onboard clock

6 output CLKOUT; // New clock output 50 MHz

7 reg CLKOUT = 1’b0;

8

9 always @(posedge CLK)

10 begin

11 CLKOUT <= ~CLKOUT;

12 end

13

14 endmodule

Listing A.2: Master FSM

1 /* The FSM that controls the main logic of the game */

2 always @( * )

3 begin

33



Appendix A. Source Code 34

4 pixel = pixel_board;

5 NextState = State;

6 move = 1’b0;

7 new_block = 1’b0;

8

9 case (State)

10 /* First the block to be shown is found pseudorandomly, *

11 * we initialize the Collision Buffer correctly and move*

12 * to the next state. */

13 Start :

14 begin

15 new_block = 1’b1;

16 pixel = pixel_grid | pixel_board | frame_pixel | pixel_score;

17 if (frame)

18 begin

19 NextState = Play;

20 end

21 end

22 Play :

23 begin

24 move = 1’b1;

25 pixel = pixel_grid | pixel_board | frame_pixel | pixel_score;

26 if (done)

27 NextState = DisplayChanges;

28 end

29 DisplayChanges :

30 begin

31 pixel = pixel_grid | pixel_board | frame_pixel | pixel_score;

32 if (frame && !game_over)

33 begin

34 NextState = Start;

35 end

36 else if (game_over)



Appendix A. Source Code 35

37 begin

38 NextState = GameOver;

39 end

40 end

41 GameOver:

42 begin

43 pixel = pixel_gameover;

44 end

45 default:;

46 endcase

47 end

Listing A.3: Slave FSM

1 /* FSM for the movement, rotation, completed *

2 * row check and completed row delete */

3 case (State)

4 /* First initialize every signal */

5 Start :

6 begin

7 filled = 1’b0;

8 done = 1’b0;

9 check = 1’b0;

10 new_row = 5’d0;

11 new_col = 4’d1;

12 new_d_row = 5’d0;

13 diff_d = 9’b0;

14 diff_s = 9’b0;

15 color = 3’b000;

16 /* Initialize the CollisionBuf */

17 for (i = 0; i < 23; i = i + 1)

18 begin

19 CollisionBuf_new[i*16] = 1’b1;

20 CollisionBuf_new[i*16 + 15] = 1;

21 for (j = 1; j < 15; j = j + 1)

22 if (i == 22)

23 CollisionBuf_new[i*16 + j] = 3’b111;

24 else

25 CollisionBuf_new[i*16 + j] = 3’b000;

26 end

27 /* Initialize the FilledRows */



Appendix A. Source Code 36

28 for (i = 0; i < 22; i = i + 1)

29 begin

30 FilledRows_new[i] = 1’b0;

31 end

32 NextState = Idle_1;

33 end

34 /* Idle state until a new block is created */

35 Idle_1 :

36 begin

37 if (ok)

38 lines_delfsm = 3’b0;

39 if (new_block)

40 begin

41 tetromino_new = next_tetromino;

42 next_tetromino_new = next_block;

43 NextState = Idle_2;

44 end

45 end

46 /* Depending on the Tetrimino assign the initial *

47 * values of first, sec, third, fourth and colour *

48 * code for the buffer */

49 Idle_2 :

50 begin

51 case(tetromino)

52 S :

53 begin

54 start_n = 9’d8;

55 first_new = 9’d8;

56 sec_new = 9’d9;

57 third_new = 9’d23;

58 fourth_new = 9’d24;

59 color = 3’b001;

60 end

61 J :

62 begin

63 start_n = 9’d7;

64 first_new = 9’d7;

65 sec_new = 9’d23;

66 third_new = 9’d24;

67 fourth_new = 9’d25;

68 color = 3’b010;

69 end

70 T :

71 begin

72 start_n = 9’d8;

73 first_new = 9’d8;

74 sec_new = 9’d23;



Appendix A. Source Code 37

75 third_new = 9’d24;

76 fourth_new = 9’d25;

77 color = 3’b011;

78 end

79 I :

80 begin

81 start_n = 9’d6;

82 first_new = 9’d6;

83 sec_new = 9’d7;

84 third_new = 9’d8;

85 fourth_new = 9’d9;

86 color = 3’b100;

87 end

88 O :

89 begin

90 start_n = 9’d7;

91 first_new = 9’d7;

92 sec_new = 9’d8;

93 third_new = 9’d23;

94 fourth_new = 9’d24;

95 color = 3’b101;

96 end

97 L :

98 begin

99 start_n = 9’d9;

100 first_new = 9’d9;

101 sec_new = 9’d23;

102 third_new = 9’d24;

103 fourth_new = 9’d25;

104 color = 3’b110;

105 end

106 Z :

107 begin

108 start_n = 9’d7;

109 first_new = 9’d7;

110 sec_new = 9’d8;

111 third_new = 9’d24;

112 fourth_new = 9’d25;

113 color = 3’b111;

114 end

115 endcase

116

117 if (move)

118 NextState = BlockMove;

119 end

120 /* Movement of the blocks */

121 BlockMove :



Appendix A. Source Code 38

122 begin

123 if (frame)

124 begin

125 /* When block is falling or is driven down calculate next positions */

126 if (DOWN && (((tetromino == I && (rotate == 0 || rotate == 2)) && !CollisionBuf[first+32] &&

127 !CollisionBuf[sec+32] && !CollisionBuf[third+32] && !CollisionBuf[fourth+32]) ||

128 (((tetromino == T && rotate == 2) || (tetromino == Z && (rotate == 0 || rotate == 2))) &&

129 !CollisionBuf[first+32] && !CollisionBuf[third+32] && !CollisionBuf[fourth+32]) ||

130 ((tetromino == J && rotate == 2) && !CollisionBuf[first+32] && !CollisionBuf[sec+32] &&

!CollisionBuf[fourth+32]) ||

131 ((((tetromino == S || tetromino == L) && (rotate == 0 || rotate == 2)) || ((tetromino ==

J || tetromino == T) && rotate == 0)) &&

132 !CollisionBuf[sec+32] && !CollisionBuf[third+32] && !CollisionBuf[fourth+32]) ||

133 ((tetromino == L && rotate == 3) && !CollisionBuf[first+32] && !CollisionBuf[fourth+32])

||

134 (((tetromino == S && (rotate == 1 || rotate == 3)) || (tetromino == J && rotate == 1) ||

(tetromino == T && rotate == 3)) &&

135 !CollisionBuf[sec+32] && !CollisionBuf[fourth+32]) ||

136 (((tetromino == J && rotate == 3) || (tetromino == T && rotate == 1) || tetromino == O ||

137 (tetromino == L && rotate == 1) || (tetromino == Z && (rotate == 1 || rotate == 3)))

&&

138 !CollisionBuf[third+32] && !CollisionBuf[fourth+32]) ||

139 (tetromino == I && (rotate == 1 || rotate == 3) && !CollisionBuf[fourth+32])))

140 begin

141 diff_d = 9’d32;

142 check = 1’b0;

143 end

144 else if(((tetromino == I && (rotate == 0 || rotate == 2)) && !CollisionBuf[first+16] &&

145 !CollisionBuf[sec+16] && !CollisionBuf[third+16] && !CollisionBuf[fourth+16]) ||

146 (((tetromino == T && rotate == 2) || (tetromino == Z && (rotate == 0 || rotate ==

2))) &&

147 !CollisionBuf[first+16] && !CollisionBuf[third+16] && !CollisionBuf[fourth+16]) ||

148 ((tetromino == J && rotate == 2) && !CollisionBuf[first+16] && !CollisionBuf[sec+16] &&

!CollisionBuf[fourth+16]) ||

149 ((((tetromino == S || tetromino == L) && (rotate == 0 || rotate == 2)) || ((tetromino

== J || tetromino == T) && rotate == 0)) &&

150 !CollisionBuf[sec+16] && !CollisionBuf[third+16] && !CollisionBuf[fourth+16]) ||

151 ((tetromino == L && rotate == 3) && !CollisionBuf[first+16] &&

!CollisionBuf[fourth+16]) ||

152 (((tetromino == S && (rotate == 1 || rotate == 3)) || (tetromino == J && rotate == 1)

|| (tetromino == T && rotate == 3)) &&

153 !CollisionBuf[sec+16] && !CollisionBuf[fourth+16]) ||

154 (((tetromino == J && rotate == 3) || (tetromino == T && rotate == 1) || tetromino ==

O ||

155 (tetromino == L && rotate == 1) || (tetromino == Z && (rotate == 1 || rotate ==

3))) &&

156 !CollisionBuf[third+16] && !CollisionBuf[fourth+16]) ||



Appendix A. Source Code 39

157 (tetromino == I && (rotate == 1 || rotate == 3) && !CollisionBuf[fourth+16]))

158 begin

159 diff_d = 9’d16;

160 check = 1’b0;

161 end

162 else

163 begin

164 diff_d = 9’d0;

165 check = 1’b1;

166 end

167 /* When LEFT or RIGHT button is pushed calculate next positions */

168 if (LEFT && (((tetromino == I && (rotate == 1 || rotate == 3)) && !CollisionBuf[first-1] &&

169 !CollisionBuf[sec-1] && !CollisionBuf[third-1] && !CollisionBuf[fourth-1]) ||

170 (((tetromino == L && rotate == 1) || (tetromino == J && rotate == 3)) &&

171 !CollisionBuf[first-1] && !CollisionBuf[sec-1] && !CollisionBuf[third-1]) ||

172 (((tetromino == S && (rotate == 1 || rotate == 3)) || (tetromino == T &&

173 (rotate == 1 || rotate == 3)) || (tetromino == Z && (rotate == 1 || rotate ==

3))) &&

174 !CollisionBuf[first-1] && !CollisionBuf[sec-1] && !CollisionBuf[fourth-1]) ||

175 (((tetromino == J && rotate == 1) || (tetromino == L && rotate == 3) ) &&

176 !CollisionBuf[first-1] && !CollisionBuf[third-1] && !CollisionBuf[fourth-1])

||

177 (((tetromino == S && (rotate == 0 || rotate == 2)) || tetromino == O ||

(tetromino == Z && (rotate == 0 || rotate == 2))) &&

178 !CollisionBuf[first-1] && !CollisionBuf[third-1]) ||

179 (((tetromino == J && rotate == 0) || (tetromino == L && rotate == 0) ||

(tetromino == T && rotate == 0)) &&

180 !CollisionBuf[first-1] && !CollisionBuf[sec-1]) ||

181 (((tetromino == J && rotate == 2) || (tetromino == L && rotate == 2) ||

(tetromino == T && rotate == 2)) &&

182 !CollisionBuf[first-1] && !CollisionBuf[fourth-1]) ||

183 ((tetromino == I && (rotate == 0 || rotate == 2)) && !CollisionBuf[first-1])))

184 begin

185 diff_s = -9’d1;

186 end

187 else if (RIGHT &&(((tetromino == I && (rotate == 1 || rotate == 3)) &&

!CollisionBuf[first+1] &&

188 !CollisionBuf[sec+1] && !CollisionBuf[third+1] &&

!CollisionBuf[fourth+1]) ||

189 (((tetromino == L && rotate == 1) || (tetromino == J && rotate == 3)) &&

190 !CollisionBuf[first+1] && !CollisionBuf[sec+1] &&

!CollisionBuf[fourth+1]) ||

191 (((tetromino == S && (rotate == 1 || rotate == 3)) || (tetromino == T &&

(rotate == 1 || rotate == 3)) ||

192 (tetromino == Z && (rotate == 1 || rotate == 3))) &&

193 !CollisionBuf[first+1] && !CollisionBuf[third+1] &&

!CollisionBuf[fourth+1]) ||



Appendix A. Source Code 40

194 (((tetromino == J && rotate == 1) || (tetromino == L && rotate == 3) ) &&

195 !CollisionBuf[sec+1] && !CollisionBuf[third+1] &&

!CollisionBuf[fourth+1]) ||

196 (((tetromino == J && rotate == 0) || (tetromino == L && rotate == 0) ||

(tetromino == T && rotate == 0)) &&

197 !CollisionBuf[first+1] && !CollisionBuf[fourth+1]) ||

198 (((tetromino == J && rotate == 2) || (tetromino == L && rotate == 2) ||

(tetromino == T && rotate == 2)) &&

199 !CollisionBuf[third+1] && !CollisionBuf[fourth+1]) ||

200 (((tetromino == S && (rotate == 0 || rotate == 2)) || tetromino == O ||

(tetromino == Z && (rotate == 0 || rotate == 2))) &&

201 !CollisionBuf[sec+1] && !CollisionBuf[fourth+1]) ||

202 ((tetromino == I && (rotate == 0 || rotate == 2)) &&

!CollisionBuf[fourth+1])))

203 begin

204 diff_s = 9’d1;

205 end

206 else

207 begin

208 diff_s = 9’d0;

209 end

210

211 if (ROTATE)

212 begin

213 /* When ROTATE button is pushed, if the rotation can occur *

214 * assign the next positions of first,sec, third and fourth */

215 case (tetromino)

216 S :

217 begin

218 if (rotate == 0 && !CollisionBuf[fourth+1] && !CollisionBuf[fourth+17])

219 begin

220 diff_r_first = 9’d0;

221 diff_r_sec = 9’d15;

222 diff_r_third = 9’d2;

223 diff_r_fourth = 9’d17;

224 rotate_new = rotate + 2’d1;

225 end

226 if (rotate == 1 && !CollisionBuf[fourth-2])

227 begin

228 diff_r_first = 9’d16;

229 diff_r_sec = 9’d1;

230 diff_r_third = 9’d14;

231 diff_r_fourth = -9’d1;

232 rotate_new = rotate + 2’d1;

233 end

234 if (rotate == 2 && !CollisionBuf[first-1] && !CollisionBuf[first-15])

235 begin



Appendix A. Source Code 41

236 diff_r_first = -9’d17;

237 diff_r_sec = -9’d2;

238 diff_r_third = -9’d15;

239 diff_r_fourth = 9’d0;

240 rotate_new = rotate + 2’d1;

241 end

242 if (rotate == 3 && !CollisionBuf[first+2])

243 begin

244 diff_r_first = 9’d1;

245 diff_r_sec = -9’d14;

246 diff_r_third = -9’d1;

247 diff_r_fourth = -9’d16;

248 rotate_new = rotate + 2’d1;

249 end

250 end

251 J :

252 begin

253 if (rotate == 0 && !CollisionBuf[third+16])

254 begin

255 diff_r_first = 9’d1;

256 diff_r_sec = -9’d14;

257 diff_r_third = 9’d0;

258 diff_r_fourth = 9’d15;

259 rotate_new = rotate + 2’d1;

260 end

261 if (rotate == 1 && !CollisionBuf[third-1] && !CollisionBuf[third+1] &&

!CollisionBuf[fourth+1])

262 begin

263 diff_r_first = 9’d15;

264 diff_r_sec = 9’d15;

265 diff_r_third = 9’d1;

266 diff_r_fourth = 9’d1;

267 rotate_new = rotate + 2’d1;

268 end

269 if (rotate == 2 && !CollisionBuf[first+16] && !CollisionBuf[sec+16])

270 begin

271 diff_r_first = -9’d15;

272 diff_r_sec = 9’d0;

273 diff_r_third = 9’d14;

274 diff_r_fourth = -9’d1;

275 rotate_new = rotate + 2’d1;

276 end

277 if (rotate == 3 && !CollisionBuf[sec+1])

278 begin

279 diff_r_first = -9’d1;

280 diff_r_sec = -9’d1;

281 diff_r_third = -9’d15;



Appendix A. Source Code 42

282 diff_r_fourth = -9’d15;

283 rotate_new = rotate + 2’d1;

284 end

285 end

286 T :

287 begin

288 if (rotate == 0 && !CollisionBuf[third+16])

289 begin

290 diff_r_first = 9’d0;

291 diff_r_sec = 9’d1;

292 diff_r_third = 9’d1;

293 diff_r_fourth = 9’d15;

294 rotate_new = rotate + 2’d1;

295 end

296 if (rotate == 1 && !CollisionBuf[sec-1])

297 begin

298 diff_r_first = 9’d15;

299 diff_r_sec = 9’d0;

300 diff_r_third = 9’d0;

301 diff_r_fourth = 9’d0;

302 rotate_new = rotate + 2’d1;

303 end

304 if (rotate == 2)

305 begin

306 diff_r_first = -9’d15;

307 diff_r_sec = -9’d1;

308 diff_r_third = -9’d1;

309 diff_r_fourth = 9’d0;

310 rotate_new = rotate + 2’d1;

311 end

312 if (rotate == 3 && !CollisionBuf[third+1])

313 begin

314 diff_r_first = 9’d0;

315 diff_r_sec = 9’d0;

316 diff_r_third = 9’d0;

317 diff_r_fourth = -9’d15;

318 rotate_new = rotate + 2’d1;

319 end

320 end

321 I :

322 begin

323 if (rotate == 0 && !CollisionBuf[third+16])

324 begin

325 diff_r_first = -9’d30;

326 diff_r_sec = -9’d15;

327 diff_r_third = 9’d0;

328 diff_r_fourth = 9’d15;



Appendix A. Source Code 43

329 rotate_new = rotate + 2’d1;

330 end

331 if (rotate == 1 && !CollisionBuf[sec-2] && !CollisionBuf[sec+1])

332 begin

333 diff_r_first = 9’d14;

334 diff_r_sec = -9’d1;

335 diff_r_third = -9’d16;

336 diff_r_fourth = -9’d31;

337 rotate_new = rotate + 2’d1;

338 end

339 if (rotate == 2 && !CollisionBuf[sec+32])

340 begin

341 diff_r_first = -9’d15;

342 diff_r_sec = 9’d0;

343 diff_r_third = 9’d15;

344 diff_r_fourth = 9’d30;

345 rotate_new = rotate + 2’d1;

346 end

347 if (rotate == 3 && !CollisionBuf[third-1] && !CollisionBuf[third+2])

348 begin

349 diff_r_first = 9’d31;

350 diff_r_sec = 9’d16;

351 diff_r_third = 9’d1;

352 diff_r_fourth = -9’d14;

353 rotate_new = rotate + 2’d1;

354 end

355 end

356 O :

357 begin

358 diff_r_first = 9’d0;

359 diff_r_sec = 9’d0;

360 diff_r_third = 9’d0;

361 diff_r_fourth = 9’d0;

362 rotate_new = rotate + 2’d1;

363 end

364 L :

365 begin

366 if (rotate == 0 && !CollisionBuf[third+16] && !CollisionBuf[fourth+16])

367 begin

368 diff_r_first = -9’d1;

369 diff_r_sec = 9’d1;

370 diff_r_third = 9’d16;

371 diff_r_fourth = 9’d16;

372 rotate_new = rotate + 2’d1;

373 end

374 if (rotate == 1 && !CollisionBuf[sec-1] && !CollisionBuf[third-1] &&

!CollisionBuf[sec+1])



Appendix A. Source Code 44

375 begin

376 diff_r_first = 9’d15;

377 diff_r_sec = 9’d0;

378 diff_r_third = -9’d15;

379 diff_r_fourth = -9’d2;

380 rotate_new = rotate + 2’d1;

381 end

382 if (rotate == 2 && !CollisionBuf[first-16] && !CollisionBuf[sec+16])

383 begin

384 diff_r_first = -9’d16;

385 diff_r_sec = -9’d16;

386 diff_r_third = -9’d1;

387 diff_r_fourth = 9’d1;

388 rotate_new = rotate + 2’d1;

389 end

390 if (rotate == 3 && !CollisionBuf[sec+1] && !CollisionBuf[third+1] &&

!CollisionBuf[third-1])

391 begin

392 diff_r_first = 9’d2;

393 diff_r_sec = 9’d15;

394 diff_r_third = 9’d0;

395 diff_r_fourth = -9’d15;

396 rotate_new = rotate + 2’d1;

397 end

398 end

399 Z :

400 begin

401 if (rotate == 0 && !CollisionBuf[sec+1] && !CollisionBuf[third+16])

402 begin

403 diff_r_first = 9’d2;

404 diff_r_sec = 9’d16;

405 diff_r_third = 9’d1;

406 diff_r_fourth = 9’d15;

407 rotate_new = rotate + 2’d1;

408 end

409 if (rotate == 1 && !CollisionBuf[sec-1] && !CollisionBuf[fourth+1])

410 begin

411 diff_r_first = 9’d14;

412 diff_r_sec = 9’d0;

413 diff_r_third = 9’d15;

414 diff_r_fourth = 9’d1;

415 rotate_new = rotate + 2’d1;

416 end

417 if (rotate == 2 && !CollisionBuf[third-1] && !CollisionBuf[sec-16])

418 begin

419 diff_r_first = -9’d15;

420 diff_r_sec = -9’d1;



Appendix A. Source Code 45

421 diff_r_third = -9’d16;

422 diff_r_fourth = -9’d2;

423 rotate_new = rotate + 2’d1;

424 end

425 if (rotate == 3 && !CollisionBuf[first-1] && !CollisionBuf[third+1])

426 begin

427 diff_r_first = -9’d1;

428 diff_r_sec = -9’d15;

429 diff_r_third = 9’d0;

430 diff_r_fourth = -9’d14;

431 rotate_new = rotate + 2’d1;

432 end

433 end

434 default :

435 begin

436 diff_r_first = 9’d0;

437 diff_r_sec = 9’d0;

438 diff_r_third = 9’d0;

439 diff_r_fourth = 9’d0;

440 end

441 endcase

442 end

443 else

444 begin

445 diff_r_first = 9’d0;

446 diff_r_sec = 9’d0;

447 diff_r_third = 9’d0;

448 diff_r_fourth = 9’d0;

449 end

450

451 CollisionBuf_new[first] = 3’b000;

452 CollisionBuf_new[sec] = 3’b000;

453 CollisionBuf_new[third] = 3’b000;

454 CollisionBuf_new[fourth] = 3’b000;

455

456 CollisionBuf_new[first+ diff_d + diff_s + diff_r_first] = color;

457 CollisionBuf_new[sec + diff_d + diff_s + diff_r_sec] = color;

458 CollisionBuf_new[third + diff_d + diff_s + diff_r_third] = color;

459 CollisionBuf_new[fourth + diff_d + diff_s + diff_r_fourth] = color;

460

461 first_new = first + diff_d + diff_s + diff_r_first;

462 sec_new = sec + diff_d + diff_s + diff_r_sec;

463 third_new = third + diff_d + diff_s + diff_r_third;

464 fourth_new = fourth + diff_d + diff_s + diff_r_fourth;

465

466 /* If the block can’t move down any more */

467 if (check)



Appendix A. Source Code 46

468 begin

469 rotate_new = 2’d0;

470 block_score = 4’d12;

471 /* Detect game over if at the *

472 * initial position. */

473 if (first != start)

474 begin

475 NextState = DetectLines;

476 end

477 else

478 begin

479 done = 1’b1;

480 NextState = GameOver;

481 end

482 end

483 else

484 NextState = BlockMove;

485 end

486 end

487 /* Find all completed rows */

488 DetectLines :

489 begin

490 for (i = 0; i < 22; i = i + 1) //detect filled lines

491 begin

492 filled = 1’b1;

493 for (j = 1; j < 15; j = j + 1)

494 begin

495 if (!CollisionBuf[j + i*16])

496 filled = 1’b0;

497 end

498

499 FilledRows_new[i] = filled;

500 end//for i

501

502 new_row = 5’d0;

503 new_col = 4’d1;

504 NextState = CheckRows;

505 end

506 /* Check if a row is completed */

507 CheckRows :

508 begin

509 /* If at the last row */

510 if (row == 5’d21)

511 begin

512 if (FilledRows[row] == 1’b0)

513 begin

514 new_row = 5’d0;



Appendix A. Source Code 47

515 new_col = 4’d1;

516 lines_delfsm = lines_delcount;

517 lines_delcount_n = 3’d0;

518 done = 1’b1;

519 NextState = Idle_1;

520 end

521 else

522 begin

523 FilledRows_new[row] = 1’b0;

524 new_d_row = row;

525 lines_delcount_n = lines_delcount + 3’d1;

526 NextState = DeleteRow;

527 end

528 end

529 else

530 begin

531 if (FilledRows[row] == 1’b0)

532 begin

533 new_row = row + 5’d1;

534 NextState = CheckRows;

535 end

536 else

537 begin

538 FilledRows_new[row] = 1’b0;

539 new_d_row = row;

540 new_row = row + 5’d1;

541 lines_delcount_n = lines_delcount + 3’d1;

542 NextState = DeleteRow;

543 end

544 end

545 end

546 /* Remove the completed row and replace *

547 * its values with the values of the *

548 * previous row */

549 DeleteRow :

550 begin

551 if (!del_row) //if at row 0

552 begin

553 CollisionBuf_new[col] = 3’b000;

554 if (col == 4’d14) //if at last grid write zero and check rows again

555 begin

556 new_col = 4’d1;

557 NextState = CheckRows;

558 end

559 else

560 begin //assign row 0 with zeroes

561 new_col = col + 4’d1;



Appendix A. Source Code 48

562 NextState = DeleteRow;

563 end

564 end

565 else //at any other row

566 begin

567 CollisionBuf_new[col + del_row*16] = CollisionBuf[col + (del_row-1)*16];

568 if (col == 4’d14) //if at last grid change the value and go to the smaller row

569 begin

570 new_col = 4’d1;

571 new_d_row = del_row - 5’d1;

572 end

573 else //at any other grid change the value and go to next grid

574 begin

575 new_col = col + 4’d1;

576 end

577 NextState = DeleteRow;

578 end

579 end

580 /* The game is over and master FSM *

581 * is informed */

582 GameOver :

583 begin

584 game_over = 1’b1;

585 NextState = GameOver;

586 end

587 default:;

588 endcase

Listing A.4: Linear Feedback Shift Register

1 parameter A = 3’b000, B = 3’b001, C = 3’b010, D = 3’b011,

2 E = 3’b100, F = 3’b101, G = 3’b110, H = 3’b111;

3

4 /* The Linear Feedback Shift register provides *

5 * us with pseudo-randomly generated numbers *

6 * and create pseudo randomly Tetriminos. */

7 always @(posedge vclk or posedge rst)

8 begin

9 if (rst)

10 begin

11 out = 16’b1000_1111_0010_0010;



Appendix A. Source Code 49

12 Random = 3’b0;

13 next_block = 3’d3;

14 count = 1’d0;

15 end

16 else

17 begin

18 if (new_block && !count)

19 begin

20 /* Drive the input at bit 0 and shift the rest */

21 out = {out[14],out[13],out[12],out[11],out[10],

22 out[9],out[8],out[7],out[6],out[5],out[4],

23 out[3],out[2],out[1],out[0],linear_feedback};

24

25 Random = {linear_feedback1,linear_feedback2,linear_feedback3};

26 count = 1’d1;

27 end

28 else if (move)

29 begin

30 count = 1’b0;

31 end

32 case (Random)

33 A : next_block = 3’d4; //I

34 B : next_block = 3’d1; //S

35 C : next_block = 3’d2; //J

36 D : next_block = 3’d3; //T

37 E : next_block = 3’d4; //I

38 F : next_block = 3’d5; //O

39 G : next_block = 3’d6; //L

40 H : next_block = 3’d7; //Z

41 default:;

42 endcase

43 end

44 end



Appendix A. Source Code 50

45 assign linear_feedback1 = !(out[15]^out[13]^out[12]);

46 assign linear_feedback2 = !(out[10]^out[8]^out[7]);

47 assign linear_feedback3 = !(out[5]^out[3]^out[2]);

48 assign linear_feedback =

(linear_feedback1^linear_feedback2^linear_feedback3);


	Abstract
	Declaration
	Introduction
	Purpose of This Thesis
	Thesis Structure

	Background
	FPGA
	Architecture
	ZedBoard™ 

	VGA Protocol
	Arcade Video Games
	Tetris Game-play
	History

	Accelerometers

	Design and Implementation
	Tetris Game
	VGA Driver
	Game
	Linear Feedback Shift Register (LFSR)
	Score, Completed Lines and Level Display
	Accelerometers

	Summary Report
	Design Issues

	Conclusion and Future Work
	Bibliography
	Appendix
	Source Code

