

University Of Thessaly- Universidad Politecnica de Madrid

Faculty of Computer and Communication Engineering

Study of Short Read Genome

Assemblers for Shared and

Distributed Memory Systems

Vaios Noutsos

Supervisors:

Prof. Panagiota Tsompanopoulou

Prof. Vicente Martin

Madrid - July 2012

 To my family and friends

Acknowledgments

First of all I would like to thank my supervisors because they gave me the opportunity

to go on Erasmus, carry out my thesis, in the new for me field of Genomics, and also

work in an environment like Madrid's supercomputing and visualization Center.

Moreover I would like to thank the people in CeSViMa because they were always

very kind and helpful and without their assistance the completion of the current study

would be almost impossible.

A special thanks goes to my co-worker Nikos for all the moments that we passed

together in this experience and the support that we gave each other.

Last but not least, I would like to thank my parents, my sister, my grandparents and

my friends Dimitris, Emmanouela, Maira, Lefteris, Stavros, Fokion, Christina because

they always support me in these years in the good and the bad moments.

Contents

1 INTRODUCTION ... 6

1.1 WHAT IS A GENOME? ... 6

1.2 WHAT IS GENOME ASSEMBLY? .. 8

1.3 GENOME SEQUENCING ... 9

1.4 ASSEMBLY CATEGORIES .. 12

1.5 WHY IS GENOME ASSEMBLY IMPORTANT ... 13

2. ASSEMBLERS ... 13

2.1 INTRODUCTION ... 13

2.2 ASSEMBLY ERRORS- SHORT DESCRIPTION ... 17

2.3 GREEDY GRAPH ASSEMBLERS... 20

2.5 DE BRUIJN GRAPH ASSEMBLERS (DBG) ... 23

3. ALGORITHMIC DESCRIPTION ... 26

3.1 INTRODUCTION .. 26

3.2 VELVET .. 26

3.2.1 Introduction .. 26

3.2.2 Velvet’s de Bruijn Graph description .. 27

3.2.3 Velvet-Assembly procedure ... 27

3.3 ABYSS ASSEMBLER DESCRIPTION .. 34

3.3.1 Introduction .. 34

3.3.2 Distributed De Bruijn Graph .. 35

3.3.3 ABySS-Assembly Procedure .. 35

4 MAGERIT & SLURM DESCRIPTION .. 41

4.1 INTRODUCTION ... 41

4.2 MAGERIT 2 ... 41

4.3 SIMPLE LINUX UTILITY FOR RESOURCE MANAGEMENT (SLURM) ... 41

4.4 EXECUTING JOBS IN MAGERIT ... 43

5 INSTALLATION IN MAGERIT ... 46

5.1 VELVET INSTALLATION .. 46

5.1.1Requirements ... 46

5.1.2Compilation... 47

5.2 FATSX TOOLKIT ... 48

5.2.1 Introduction-Description .. 48

5.2.2 Installation ... 49

5.3 ABYSS INSTALLATION ... 49

5.3.1 Requierements .. 49

5.3.2 Compilation .. 50

5.4 RUNNING VELVET IN MAGERIT ... 51

5.5 RUNNING ABYSSN IN MAGERIT.. 56

6 EXPERIMENTS ... 60

6.1 INTRODUCTION ... 60

6.2 LIBRARIES .. 62

6.3 STAPHYLOCOCCUS AUREUS .. 64

6. 4 ESCHERICHIA COLI (1) ... 67

6.5 ESCHERICHIA COLI (2) .. 71

6.6 RHODOBACTER SPHAEROIDES ... 74

6.7 RAM CONSUMPTION .. 77

6.8 COMPARISON ... 79

APPENDIX: ... 80

VELVET TESTS ... 80

ABYSS TEST .. 83

BIBLIOGRAPHY .. 86

1 Introduction

1.1 What is a genome?

 Genome specifies life. Genome is the sum of all the biological material that are necessary

to make and maintain alive every organ, cell and tissue of an organism, from a human to a

single celled organism. Almost every cell of a living organism has a copy of the genome.

Some information provided form the genome is used in the same way from all the cells and

some other consist in some characteristic of distinct types of cells.

There are two kinds of genome:

 DNA genome

- Contained in unicellular and multicellular organisms

 RNA genome

-Contained in some virus

The human genome, like all multicellular organisms consists in 2 components:

 The nuclear genome contained in every cell

 the mitochondrial genome contained in the mitochondrion of every cell

 These two kinds of genomes are made from DNA molecules. There are thousands

molecules in the nuclear genome and few molecules in the mitochondrial genome.

 The DNA molecule consists in 4 different nucleotides. These nucleotides consist of a

deoxyribose, a phosphate group attached to it, and a base. The base of a nucleotide

can be one between: Adenine, Thymine, Guanine and Cytosine. Sequences of these

nucleotides form every one of the two complementary DNA strands-helixes.

Adenine’s complementary base is Thymine and Guanine’s complementary base is

Cytosine. Complementary means that if a strand of the DNA has a nucleotide with,

for example, an Adenine base the nucleotide from the opposite strand in the same

position will have as a base a Thymine that will bond with Adenine. The way that is

used to represent them in a graphic or text application is through their abbreviations

A, T, G, and C.

 The nucleotide sequence of the genome is present on each of the two strands of the

double helix of DNA. Given one strand it’s possible to construct the other due to

complementarity. Each of the strands contains the same information.

Organization in a cell:

Figure 1

A prokaryotic cell. All the chromosomes of a living organism are stored in the Nucleus of that cell.

 The nucleus of each cell includes all the chromosomes of the organism. The genome,

as mentioned, contains all the genetic information stored in the DNA sequence

derived from the cells in the way of chromosomes.

 A chromosome is an organized structure of twisted DNA and protein organized in a

three-dimensional structure. A discrete part of this twisted DNA that a chromosome

contains is called gene. A gene is a molecular unit of heredity of a living organism.

The DNA stored in a gene is used to create proteins that give the characteristic of

every individual.

 In other words, the genome of an organism contains both genes and sequences that

apparently don’t have any function, called junk DNA. Junk DNA is also the part of

the DNA that is useless to create proteins.

 Genomes according to their size (number of base pairs) are divided in 3 main

categories :

 Small Genomes: Bacterial genomes containing few Megabases,

 Medius Genomes: Lower plant genomes containing hundreds of Megabases

 Big Genomes: Plants and mammalian genomes: containing Gigabases

Figure 2

Above is shown the nucleus of the cell with the chromosomes. Below is the coiled DNA of a chromosome that is
divided indiscrete parts called genes. The genes contain the information for making proteins that distinguish
every living organism. (Genome n.d.)

1.2 What is Genome Assembly?

 Scientists made significant efforts to create methods that will determine the exact

sequence of the genome in a living organism. These efforts led to the development of

a very interesting sub-field of computation biology called Genome assembly.

Scientists dealing with this field focus on building algorithms and tools that will solve

the genome assembly problem.

All the current solutions to this problem are based on the same process. They start

from multiple segments of the DNA molecule contained in every chromosome. Then

these segments are randomly broken in a big number of short sequences, called reads,

with the help of a shotgun sequencer. A shotgun sequencing project is the process of

breaking the genome of an organism into multiple fragments of a generally small size.

A more extensive explanation of this process is give in the next paragraph. The goal-

job of a genome assembler is to stitch together the data, produced by the sequencer, in

a correct way in order to form the sequence of the genome. In order to achieve this

merge every read is compared with each other, aligned to one another, finding all

places that two or more reads overlap. The reads that overlap can be merged together

and the procedure continues like this till the whole genome is created. The outcome of

an assembly is a collection of big sequences of the genome that are put together

correctly.

Genome assembly it’s a hierarchic structure: the reads forms the contigs, the contigs

form the scaffolds.

 A read is a sequence determined by the sequencer.

 A contig can be seen like a multiple alignment of reads ,is the part that they

overlap without a gap

 A scaffold (or supercontig) is an oriented and ordered sum of two or more

contigs. Usually it contains gaps that are created by errors during the

assembly process.

 The assembly procedure is commonly referred as the process of solving a jigsaw

puzzle. First we put every piece next to its other to check if they fit together and then

we put the bigger pieces that are created into a place.

 The difficult part of this process, even its not visible now, is that the genome

contains over 30 percent of sequence that is repeated lot of times and belongs to

different places of the genome sequence. Thus a repeat overlap can happened between

fragments that are placed in totally different parts of the genome, thousands or even

millions of base pairs apart. Gaps between scaffolds in the output final sequence are a

result of these “wrong” overlaps.

Due to these repeats, the complexity of the examined genome and innate sequencing

errors, produced by the using sequencing technology, the outcome of the first

assembly run are rarely similar with the expected genome. Genomes that contain at

most 1 error per 10.000 bases are considered finished genomes. These genomes are

called drafts. Fixing the erros is a very difficult work that requires lots of hours and it

also very expensive. Because of thsi lots of genomes are never fully assembled and

they remain in a draft form.

1.3 Genome Sequencing

Sequencing is the process of reading and decoding the nucleotides of DNA or RNA

composing the genome of a living organism. In this process the entire DNA is first

isolated from the target organism. As sequencers have the limitation that they cannot

take as an input more than a certain number of base pairs the extracted DNA must be

fragmented. This work is made by a shotgun sequencer. In a shotgun sequencing

project, named like this due to the quasi-random firing pattern of a shotgun, the

extracted DNA is randomly broken into millions of small pieces which then are read

by the sequencer and converted into digital information that can be stored in a

computer. The results obtained from the sequencer are called reads. Multiple reads of

the same DNA are generated by performing several rounds of segmentation and

sequencing. Then algorithms use the overlapping parts of the different reads to

assemble them into a continuous sequence.

The creation of multiple reads from the target DNA mentioned above is done to

achieve high coverage. Genome coverage is a very important parameter in the

assembly procedure. Coverage refers to the average number of sequences that

independently contain a certain nucleotide. Every sequencer produces error but with

different rates. These errors can be a skip of a base, a misread of a base or both.

However, using high coverage allows a computer to determine the correct genome

sequence based on consensus of the majority of the reads.

Figure 3

The majority of the sequence determines the consensus

sequence. In this example the sequences determine T as an error

as far as C appears more times

 A generalization of what is mentioned above is that high quality and accurate

assembly is a product of high coverage. Parts of the genome in that a big number of

reads overlap are said to have high coverage and the consensus is more reliable and

parts that few read overlap are said to have low coverage and the consensus is not that

reliable.

Figure 4

Multiple copies of the genome

Produced reads

Output-Consensus Sequence

 ATGGCATTGCAA
 TGGCATTGCAATTTG
 AGATGGAATTG
 GATGGCATT GCAA Reads
 GCATTGCAATTTGAC
 ATGGCATTGCAATTT
 AGATGGTATTGCAATTTG

 AGATGGCATTGCAATTTGAC Output
 Sequence

The multiplication in copies of the examined genome provide
coverage. The output-consensus sequence is more reliable in the part
that more reads overlap.

 The procedure of sequencing a fragment of DNA or RNA can be done in two main

ways. Sequencing only one helix of DNA (or RNA) from the 5’ end is called single-

end sequencing (PE) and sequencing both helix of the DNA (or RNA) from their 5’

ends is called pair-end sequencing. Mate-pair sequencing is similar to pair-end

sequencing with a difference in the size of the reads that are produced. Mate paired

reads are usually much longer than pair ended reads.

5’End

 ATGGAATCGCATAAGCCCTGAGGTA
3’End

Single End (SE) sequencing of DNA fragment

5’End
 ATGGAATCGCATAAGCCCTGAGGTA

3’End

3’End

 TACCTTAGCGTATTCGGGACTCCAT
5’End

Pair End (PE) sequencing of DNA fragment in both stand

 The sequencing technology provides another important parameter that is the

orientation of the pair end (or mate pair) reads. Every orientation has its own

meaning. The orientation that the reads have can be summarized in the following

categories:

1. Left Right (LR). This orientation, that can be also found as Forward Reverse

(FR) or (+/-), means that the reads are obtained from opposite DNA stands and

due to this the left read is forwad and the right read reversed. Libraries with

this orientation are often called pair end libraries with Sanger format.

2. Left Left (LL) / Right Right (RR). Reads oriented in this way, also named as

Forwad Forward (FF)/ Reverse Reverse (RR) or (+/+) /(-/-) respectively, are

obtained for the same DNA strand and due to this they have the same

orientation. The method that produce read from the same strand is known as

circularization. Some assemblers, like Velvet, expect paired-end reads to come

from opposite strand facing each other. Due to this if circularized reads are

going to be used the first read in each pair must be replaced from it reverse

complement before starting the assembly process.

 or

3. Right Left (RL) . named also as Reverse Forward (RF) or (-/+), are obtained

from different strands but in the opposite way of the LR pair ended reads. In

order to uses these libraries with assemblers that expects traditional Sanger

format, like Velvet, both reads in each library must be substitute by the reverse

complement before starting assembling them. The mate pairs library used in

this study has this orientation

Pair-ended and mate-pairs reads provide to the assembly procedure constraints that

define the location of the reads. These constraints lead us in a decrease of the

ambiguous regions and because of this longer genome scaffolds are created.

1.4 Assembly Categories

 Two are the main categories that the assembly of a genome can be distinguished.

These are:

1. De-novo: the reads are assembled to form a sequence not known a priori.

Sequence reads are assembled in longer contiguous sequences called

contigs, followed by the process of ordering contigs into scaffolds without

the help of a reference genome.

2. Mapping/reference: consists in assembling reads based on an pre-existing

genome sequence. This sequence is used to align the reads of new genome

avoiding the process of creating data structures as with the de novo

assembly. The generated sequence is similar with the backbone sequence

but not identical.

The de novo assembly problems from the mathematical point of view can be

categorized as NP-Hard. NP-hard problems don’t have an efficient computational

solution, so they are harder to be solved from the other problems. Even if de novo

assembly problems take longer time to be solved and they need more computational

resources they are the only way to assemble genomes that are not suitable with a

reference one. In the present study we will focus in the category of assemblers.

 On the other hand, mapping assembly is faster and need less computational

resources compared to de novo assembly. Also mapping is a much easier way to

assemble because it is sufficient to align the read to the reference genome

1.5 Why is Genome Assembly important

 The genome sequence can be seen like a treasure for the scientists. The wealth of

these data led to a big amount of discoveries in the field of biology. These discoveries

help to understand many principles of life.

By knowing the genome sequence scientists can find genes faster and easier due to

some clues that the sequence contains. Scientists can also understand how the whole

genome works. More precisely how genes work together to direct the evolution and

the maintenance of an organism. Moreover, because the genes cover the only the 25

percent of the genome scientists can study more deeply parts outside the genes. One

of these parts can be the stretches of junk DNA that till now is believe that it doesn’t

have any biological function.

2. Assemblers

2.1 Introduction

 First assemblers, developed in 1980s, were using longer fragments that allow better

identification of the sequences that overlap. In this generation of assemblers, called

first generation, fragments-reads were obtained by Sanger sequencer that can produce

read up to 1000 bases pairs. Sanger sequencing is based on the chain termination

method using capillary electrophoresis. In this technology problems were created

because the algorithms that were using long reads show quadratic or even exponential

complexity behavior. Also the high cost and the slow throughput of Sanger

sequencing made it unsuitable for sequencing whole genomes.

 As the year passed sequencers, aiming on high coverage, became faster and with a

lower cost they could produce reads that were shorter forming a new generation of

sequencing called Next Generation Sequencing (NGS). The ways of detecting overlap

and building the contigs are the same for an assembler regardless of the read's length.

In practice although, using the existing -first generation- assemblers with short read

failed for a variety of reasons. Some reason were based on the algorithmic part of the

existing assemblers as these assemblers impose a minimum read length or they

require a minimum amount overlap that is too long when short reads are used.

Another reason was that the part of the algorithm that have to define the overlaps

between the reads is one or maybe the most critical step in an assembly process. Short

read sequencing algorithms require a redesignation of this step to make it feasible

especially since many more short read are needed to achieve the same level of

coverage. Coverage used with the current technology usually ranges from 30X-50X

while with the first generation were limited at 8X.

 Mainly for these reasons, a new generation assemblers has been developed. While

short reads are faster to align they also created some problems. The major one is that

shorts reads are more difficult to use with repeats or near identical repeats. Moreover,

short reads make the NGS platforms not particularly suitable for the sequencing of

new genomes, especially of big dimension and rich in repeats genomes. Although

nowadays short reads assemblers are the most used to assemble and they are able to

assemble most of the genomes.

 The complexity of an assembly procedure is mainly based on the number of reads

and their length. More reads achieve better coverage and and longer reads achieve

better overlap. Due to these factors in the last years scientists are trying to find a

middle way between first and next generation assemblers in order to use longer reads,

compared to the one currently used, keeping the benefits of the current technology.

 The main sequencers that are currently used to create short reads reads are Illumina

Solexa, Roche's 454 Life Sciences, Applied Biosystems’ SOLiD systems and Ion

Proton from Life Technologies. They can produce 50-1200 base pairs depending of

the technology that is used. However, reads produced from these technologies are less

confident because error rates in these generations are higher. Although, the high speed

and the low cost can solve this problem with redundant coverage, as a nucleotide can

be sequenced many times. A summary of every technology is shown in the next table.

Summarizing, we can say that the main differences between the first and the next

generation sequencers are the lower cost and the higher throughput of NGS but with

the disadvantage of higher error rates and shorter read lengths.

 From 2007 several large genome have been published that use a combination of the

first generation and NGS. An initial assembly was created with a first generation

Sanger data and Next generation sequence data were used to fill the gaps.

Technology Sanger Illumina Solexa Roche 454

Sequencing Machine 3730xl HiSeq 2000 GS FLX Titanium

XL+

Sequencing Method Dideoxy chain
termination

Sequencing by
Synthesis

Pyrosequencing

Time per run ~23 Hours ~ 11 days 23 Hours

Mb (Mega bases)

per run

1.9~84Kb 600 Gb 700 Mb

Read Length 400-900 base pairs 100 base pairs 700-1000 base pairs

Cost per Mb $ 2400 $ 0.03 $ 84.39

Accuracy 99.999% 98% 99.997%

Instrument Cost $ 95,000 $ 690,000 $ 500,000

Strengths Long read

length

 High quality

throughput

 High

throughput

(highest one)

 Low cost per

base

 Long Reads

 Fast

sequencing

executions

 Handles well

GC regions

Weaknesses – Low
throughput

– High cost per

Mb

– Handles bad

AT‐ and

GC‐rich regions

– Error rate at 1%

– Low
throughput

– Error rate 1%

Technology SOLiD ABI Ion Torrent HeliScope

Sequencing

Machine

5500 series Ion Proton Sequencer tSMS

Sequencing

Method

Ligation-based

sequencing

Ion semiconductor

sequencing

Single molecule

sequencing

Time per run 9 days 2 Hours 7 days

Mb (Mega bases)
per run

170 Gb Up to10 Gb 21-35 Gb

Read Length 35 base pairs + 75 base

pair

Up to 200 base pair 25 base pair + 55

base pairs

Cost per Mb $ 0.004 $ 4.85 $ 0.005 (per base)

Accuracy Up to 99.99% 99.6% 99.995%

Instrument Cost $ 595,000 $ 149,000 $ 999.000

Strengths Low cost per

base

 High

throughput

 If reference

genome is

available

provides high
accuracy

 Fast

throughput

(fastest one)

 Low cost

instrument

 Library

preparation

easy

Weaknesses – Handles bad AT

and GC rich

regions

– Sequencing
times usually

long

– Most of the
times doesn’t
work with

colour space

– High cost per

base

– Doesn’t prone

homopolymer

errors

– High error
rates

 In the present study we will focus on the this new generation of genome assemblers

that use short reads in order to test them their efficiency with different genome’s size

in a big machine. The assemblers that are going to be tested are Velvet and

ALLPATHS-LG for shared memory and ABySS and Ray for distributed memory.

These assemblers have in common not only that they belong in the new generation of

genome assemblers but also that they are graph based. Graph based assemblers are the

most used and successful in achieving decent results with all the genome’s sizes. As

mentioned, when a reference genome is not available the only way to assemble a new

genome is by using de novo assembly. The de novo genome assemblers can be

divided in three main categories:

 Greedy assemblers that use is an implementation of string-based method

 Overlap-Layout-Consensus (OLC) assemblers and

 De Bruijn Graph assemblers (DBG) that both use graph based approaches.

 A short description of these three categories in given in the next paragraphs.

2.2 Assembly Errors- Short Description

 Before introducing the graph based de novo assembler categories a short description

of the errors that can be localized in graph that they create is given.

 Graph assemblers as all the assemblers don’t reconstruct the 100% of the target

genome because errors can affect the procedure. These errors can occur for two basic

reasons:

1. Incomplete and/or incorrect data that are given as an input to the

assemble

2. Limitations on the assembly process

The problems that can be errors create in a graph (overlap or de bruijn graph) are

presented below:

• Spurs: short dead end branches of the main path. They are usually

caused due to sequencing errors in one end of the read and low

coverage

• Bubbles: deviation of the main path in two branches that after rejoin

together in one path. They are usually caused due to sequencing errors

in the middle of the read and by the complexity of the target genome.

• Paths that converge into one and after they separate again into two

distinct paths. They are usually caused due to repeats in the target

genome.

• Cycles: Paths that created a loop on the main path. They are usually

cause due to repeats in the target genome

• Chimeric Connections: Connection of genuine contigs in “non-legal”

way. These connections can occur for a random overlap of two tips that

belong to different parts of the graph or for an erroneous alignment of a

read with another part of the genome.

A)

B)

C)

A

B

C

D

E

A B

C

A B C

B’

D)

E)

Figure 5

In this figure is shown the structure of the assembly errors that can be encountered in a graph:

A) A tip, B) A bubble, C)A converging and diverging path, D) A cycle and E) A chimeric connection

A B

D E

C

A B

2.3 Greedy Graph Assemblers

 Greedy assembly algorithms were the first de novo algorithms that appeared. Their

main work is to calculate pairwise alignments of all the reads provided as input. Then,

these alignments are scored with grades that represent the length of the overlap and

the percentage of matching bases. The two reads with the highest grade are merged

together creating a contig. The created contig is placed with all the rest of the reads in

a "pool" of sequences. The operation of extending sequences from the "pool"

continues till no more quality overlap exists.

 The assemblers of this category simplify the graph by passing from the high grade

edges. Missassemblies are tried to be avoid with mechanisms that terminate the

extension of the sequences when information that casues conflict is found. This

information consists in overlaps that two or more reads have with the same contig but

they don’t overlap between them.

Figure 6

An example the greedy approach. The assembler merge first reads 1 and 2 because they overlap in a bigger
area than reads 3 and 4 and reads 3 and 2. Then merges reads 3 and 4 with the second bigger overlapping area
and finally 2 and 3, that they have a small overlapping part. A contig is created in this way using only local
information.

 The greedy algorithms although can stuck at a local maxima if a contig is extended

with a read that would help other reads or contigs from the pool to grow even larger.

In general the basic disadvantage that they have is consider only local information at

each step so the assembler can be easily cheated by complex repeats that will lead to

Read 2:

Read 1:

:

Read 4:

Read 3:

:

Read 4:

:

Read 2:

Read 1:

:

Read 3:

:

mis-assemblies. Assemblers in this category are also memory intensive making them

inappropriate big and complex genomes.

Some assemblers that belong to this category are:

• TIGR

• CAP3

• SSAKE

• SHARCGS

• VCAKE

2.4 Overlap-Layout-Consensus Assemblers

 These assemblers, mainly developed in the first generation of assemblers, operate in

three main phases and are more suitable for long reads. Every OLC assembler uses

this 3 phases with a different approach and that’s why in this category there is a big

amount of different assemblers. The three main phases are the following:

Overlap Phase: In this step every each read is compared with every other to find the

area that they overlap and an overlap graph is constructed with the information

provided by the comparisons. Each read is represented by a node and an edge between

two nodes shows that these reads overlap. The creation of an edge between nodes

depends on the assembler’s tactic. The most used tactic is to create an edge if the

reads-nodes overlap with at least K bases of a Y% similarity. This method makes

overlap computation a very time intensive step- especially if the set of read is very

large.

Layout Phase: In this step the graph, constructed in the previous phase, is analyzed

and simplified, with the application of graph algorithms in order to identify the paths

that correspond to segments of the genome sequence. These paths are made by reads

that they overlap and form contigs. Contigs in this approach form subgraphs that

contain lots of edges between the node that this subgraph contains. The simplification

of the graph consist also in merging the nodes of the subgraph in unique. The ultimate

target is to find a Hamiltonian path (i.e. path that traverses each node in the graph

exactly once) that will be considered as an approximate layout of the reads in the final

genome sequence. The procedure of identifying a Hamiltonian path is a NP-complete

problem for which the time required to solve it increases exponentially with the

problem's size.

Consensus Phase: After the previous step the consensus sequence is derived. The

graph is reduced in large scaffolds with application of alignments in the sequences.

They ideal outcome is a single scaffold with not gaps, but as repeats and inefficient

information cause problems in the algorithm the final output consists in multiple

scaffolds with gaps between.

Figure 7

The OLC process. The reads that are provided to the algorithm are examined pairwise for overlaps. The graph
is created with the reads that represent the nodes and the edges the overlaps between them. Then the
algorithm searches for the best Hamiltonian path in the graph. Unused nodes and edges are removed. The
procedure is repeated many times and the resulting sequences are combined to achieve the consensus
sequence that will represent the genome. (Jennifer Commins 2009)

Some assemblers of this category are:

• PHRAP

• Celera

• Arachne

• Phusion

• Euler

Advantages-Disadvantages

 The major advantage, due to the three phase implementation of OLC assemblers, is

that an optimization and a modification in order to make these steps more efficient

can take place. Any step can be improved independently from the others and driven to

handle the needs of the assembly procedure. Another advantage is the OLC

assemblers can use data either from the first generation sequencer, like Sanger, or

from NGS platforms because the overlaps among the read can vary in length.

 On the other hand, the cost of the overlapping step is very time intensive as in this

phase each read is compared to every other to determine the overlaps. OLC, as

mentioned, can use NGS data but because this data consist in a bigger amount of

reads, a significant increase of the overlapping step will be caused. Moreover, finding

a Hamiltonian path (i.e a path that traverses every node just one time) in the layout

phase is an NP-problem not solvable is not yet polynomial time and this makes OLC

dependent of heuristics in order to achieve more confident results.

 Generally OLC assemblers are consider being inappropriate for NGS. The major

reasons are:

1. The overlap graph (a node per read) becomes extremely big and "heavy" to

calculate

2. The small dimension of the reads produces lots of ambiguous connection in

the graph

3. Many algorithms require a minimum overlap that is superior to the length of

the reads obtained from NGS

4. The big number of reads, the short overlaps and the high frequency of

sequencing errors create problems in the execution in the different phases of

the algorithm.

2.5 De Bruijn Graph Assemblers (DBG)

 Nowadays the most utilized approach in combination with NGS data is the de Bruijn

Graph approach. The first application of de Bruijn graphs for the assembly of a

genome was proposed by Pevzner in 2001 and is currently there is big amount of

assemblers base on the approach to handle short read data produced for NGS

platforms. The backbone steps are described below. Although every algorithm adapts

these steps to its needs.

Calculation of the k-mer and construction of the De Bruijn Graph

 In order to build the de Bruijn graph, the assembler divides all the reads in

overlapping segments of length k that are called k-mers. Then uses these k-mers to

build the de Bruijn graph. In a general way, we can say that the nodes represent the k-

mers and the edges the overlaps between them. The exact way of building the graph

differs in every algorithm and will described in detail in the algorithms that will be

presented in this thesis. The way of using k-mers to build the graph decreases

construction time because no pairwise overlaps are calculated. Every k-mer is stored

just one time in the memory despite the times that appears in the genome that makes

the construction of the graph easy with the use of a hash table. So high redundancy

does not affect the number of nodes.

Error Correction

 The de Bruijn graphs that are created in the previous step are, usually, very sensitive

to errors, especially to sequencing ones caused by the introduction of k-mers. As the

reads are divided in k-mers new sequencing errors can occur. Some assemblers

preprocess the reads so these new sequencing errors that occur in the k-mers are

avoided and then they create the graph, so we can say that the error correction is

included in the graph construction step, and some other assemblers use methods that

identify and correct the errors by examining the graph structure. The errors that can be

found in a graph are described in 2.2 paragraph. These erroneous graph structures are

localized, corrected or removed from the graph.

Scaffolding

 In this step every assembler uses information determined by its implementation, like

pair end sequences, clone maps, restriction maps, mate paired sequences and also, but

not so often, information from a related genome to gather, orient and glue segments.

 Usually, scaffolding is based on mate-pair information. Two contigs can be merged

to one if one end of a mate-pair is contained in the first contig and the other end is

contained in the second contig. Although, in practice two or more mate-pairs are

required between the two contigs in order to avoid experimental errors. Often greedy

approaches are used in order to create scaffolding techniques. These techniques begin

by using the most reliable information and then they incorporate data. This procedure

is done in a loop that ends when a new information create a problem with the already

build sequence.

Finishing

 As mentioned, the assemblies that end in scaffolds separated from gaps are called

draft assemblies. In these assemblies the process of filling the gaps to obtain the final

sequence is called finishing. This step fills the gaps, improve the low quality regions,

resolve missamblies and orders scaffolds. The first sequencing leads us, most of the

time, to draft assemblies, so a second assembly of the whole DNA is done to fill the

gaps. Also, sometimes, instead of reassembling the entire DNA an amplifying and

sequencing of the segments that end to gaps is performed. There are several tools to

perform this final step like IMAGE.

Some assemblers of this category are:

• Velvet

• ALLPATHS and ALLPATHS-LG

• ABySS

• Contrail

Advantages-Disadvantages

 De Bruijn assemblers greater advantage in comparison with the OLC approach is

that no computation of the pairwise overlaps is done. As mentioned in the OLC

approach this computation is very time expensive and the things get worst when large

data sets are used. K-mers are shorter reads and they are stored just one time in

memory a thing that allow to build the graph easily and without memory

consumption. The choice of the k-mers is very crucial in this approach: Small k-mer

length increases the connectivity but also increases the ambiguous region while big k-

mers increase the specificy but also decrease the connectivity.

 This approach has a k-mer centric nature meaning that its topology is unaffected by

the fragmentation of the reads. This makes de Bruijn assemblers efficient for

comparative genomics or when mixed length reads are used. Moreover, the one to one

relationship between path and sequences that the de bruijn graph make the

overlapping sequences follow the same path.

 An additional advantage of this approach is that the topology of the graph allow to

treat efficiently the error correction step. Repeats and sequencing errors are easier to

recognize and removed or correct than in an overlap graph.

 Finally, the structure of these graphs makes them efficient for cluster memory

distribution and multithreading in shared memory approaches. This advantage led in

the creation of multithreading version of some assemblers, like Velvet, and of parallel

assemblers like ABySS and Ray.

 On the other hand, the sensitivity of this approach in sequencing errors increase the

complexity of the graph as more nodes and edges are created. Furthermore, the use of

Sanger data that is long lead to a loss of information. As long read are sequenced in k-

mers a loss of the long range connectivity occurs. This loss of information can

generate ambiguous region in the graph caused by short repeats and an accumulation

of false positive overlaps can take place. Even if the identification of pairwise

overlaps is time and memory intensive can be extremely useful to determine if the two

overlapping reads come from the same genomic locus as this method is free from loss

of information.

 Moreover, as many eulerian paths can be located in a graph, every assembler using

this approach has to imply some constraints in order to identify the original genomic

sequence. The constraints, although, can lead in a creation of NP-hard problem

instead of a polynomial one.

3. Algorithmic Description

3.1 Introduction

 In this study two algorithms are going to be examined in order to analyze their

behavior in a cluster machine. These two assemblers are Velvet and ABySS. Their

main difference lies in that Velvet is built for shared memory distribution while

ABySS for distributed memory. Velvet supports OPEN MP in order to use

multithreading while ABySS uses MPI to pass messages between the nodes that it

uses. Their common point is that they belong both to the de novo graph approaches

that were described previously. They both use de Bruijn graph, built with a different

approach in each assembler, and they both use the graph to identify and correct errors.

Their algorithmic steps will be described in the next two paragraphs.

3.2 Velvet

3.2.1 Introduction

 Velvet is a set of algorithms written in C programming language created to

manipulate de Bruijn graphs for genome assembly. It implements a graph

structure slightly different from the one proposed be Pevzner in 2001. It’s a

suitable assembler for short reads, ranging from 25-50bp with a high coverage.

The use of de Bruijn graphs help to remove errors produced by the sequencing

machine and resolves repeats caused by the complexity of the genome. The

removal of the errors and the removal of the repeats are done in two different

steps. First an error connection step is applied and connects sequences that can be

merged without ambiguities and then a repeat solver algorithm takes place to

distinguish paths that locally overlap.

Velvet is divided in four steps: It has the reads into k-mer, it constructs the graph,

it corrects erros and finally resolve repeats. These steps have different

computational requirements with a main bottleneck in terms of memory and time

on the graph construction step.

3.2.2 Velvet’s de Bruijn Graph description

 Even if the basic idea of the graph structure,as mentioned, was based in

Pevzner’s (2001) implementation, the graph built by Velvet present some

differences. In Velvet’s de Bruijn graph a node N is created for a series of

overlapping k-mers. Neighbouring k-mers overlap by k-1 bases. The last base of

every k-mer that belongs to that series is its marginal information. The sequence

of these last bases of each k-mer in a node is called sequence of the node N and its

represented as s(N). Every node N its glued with Ñ that is its reverse complement

of k-mers present in N in a reverse order. In this way the graph created is a bi-

graph. This is done in order to make sure that the overlaps in the other strand of

DNA(or RNA) are taken into account. An directed edge is create between two

nodes if the last k-mer of the node that the arc starts overlaps by k-1 bases with

the first k-mer of the destination node. Due to symmetry, if an edge is going from

node N1 to N2 then there is an edge going from Ñ2 to Ñ1. Any change applied to

a node or a edge is applied also to its complementary node or paired arc. With this

structure reads are “translated” as paths in the graph.

3.2.3 Velvet-Assembly procedure

Graph Construction

 The reads given as an input to the assembler are first divided in k-mers whose

length is defined by the user. The k-mer’s length determines the quality of the

assembly. In order to have decent results k-mer lentgth should be smaller than the

reads length. In this way more overlaps among the k-mers will be observed.

Generally, a k-mer with length near to the reads length creates a small amount of

overlaps while smaller kmers increase both the chance of overlaps between kmers,

caused from errors, and the ambiguous repeats formed in the graph. Moreover,

smaller kmers increase the connectivity of the graph. The choice of k-mer length

depends mainly on the coverage of the reads and the complexity of the genome.

Different k-mers should be tested in order to find a k-mer length that will lead to

decent results. For short reads with 25bp usually a good k-mer length is k=21bp.

An important observation here is that only odd lengths can be used in order to

avoid the case that a k-mer is its own reverse complement (for example k-mer

ATAT). Such a case is a problem for the current de Bruijn bi-graph

implementation. Although if the user tries to use an even length, Velvet will

decrease and the start its execution.

 Velvet graph construction procedure start with the procession of input files that

contain a huge amount of reads. These reads are scanned, converted in an internal

format and then saved in a file called Sequences. Then k-mers are produced from

reads. Velvet creates a hashtable of n entries and every time that a k-mer is

observed the algorithm search for it in the hash table. If is not present the hash

table stores the ID of the read that this k-mer belongs to and the position of its

occurrence within that read while if is present a reference of this k-mer is stored in

another file called Roadmaps. In other words, Roadmaps file, determines for each

read which k-mer was seen in a previous read. The hash table is temporarily saved

in the memory while Roadmaps file is saved permanently.

 When all reads are scanned the hash table and the Roadmpas file are used to

build the graph. Each k-mer which "belongs" to a read (i.e. never seen previously)

is a node. Each read is a path through the nodes/k-mers created by that read or

previous reads (cf the Roadmaps file). This path is created by adding edges

between the nodes.

A.

B.

Figure 8

A. No changes in the Roadmap file. The k-mers are loaded in the hash table

B. K-mer 2 and 3 where already present in the hash table. A reference in Roadmpas file is creat

 HashTable

Index Read ID Position

1 1 1

2 1 2

3 1 3

4

5

6

READ 1:

GTACGT

1
st

k-mer:

GTAC

2nd k-mer:

TACG

3
rd

k-mer:

ACGT

 HashTable

Index Read ID Position

1 1 1

2 1 2

3 1 3

4 2 1

5

6

READ 2:

ATACGT

1
st

k-mer:

ATAC

2
nd

k-mer:

TACG

3
rd

k-mer:

ACGT

Roadmaps

Read K Index

2 2 3

2 3 5

Figure 9

Example of a Velvet’s de Bruijn Graph

 Graph Simplification

 Usually after the construction of the graph there are a lot of simplification that could

be done between the nodes as a node is created for every k-mer. This method create in

the graph chains of nodes that can be merged saving both memory space and

computation time without losing any information. The merging process take place

when a node N1 has only one directed outgoing edge to a node N2 that has only one

incoming edge. These two nodes can be merged in one containing all the information

that the two starting nodes had. An example is shown in Figure 9

 A B

Figure 10

Simplification method results in the merging of two nodes.

 Error Removal

 As Velvet focuses on topological features error removal take place after the

graph creation. Errors, cause by the sequence technology or repeats in the target

genome, form some typical structures in the graph that can be located and

removed.

 The most common error that can be located in a graph are spurs. As described

they are short dead end branches that are separate from the main path extremely

frequent when NGS data are used. Tips are formed when an error occurs less than

k bases from the end or the start of the read. Deleting these branches has only

local effect as the connectivity of the graph is not changed. Although lack of

coverage can lead to spurs that are not errors and in order to avoid the removal of

genuine sequences two parameters are taken into account. These are the length of

the spur and the minority count.

 A spur will be removed if its length is less than 2k bp where k is the size of the

k-mer. Usually spurs longer than 2k bp are not erroneous sequences, and if they

are they contain big amounts of errors that are difficult to distinguish from the

correct sequences. In the second case it’s good if the user apply another value to

the cutoff parameter.

 Minority count has a spur when the node that starts the derivation has at least one

edge with higher multiplicity than the edge going to the tip. This mean that the

path that leads to the tip is made by fewer reads (or small coverage depth) than the

other paths passing from the derivation node.

 Using the the above two constraints applied tips are removed iteratively with an

increasing order of multiplicity. This process removes tips without causing an

erosion of the graph and reveals paths with higher coverage. When this process

terminates a simplification step, like the one described before, is again applied in

this “new” graph as nodes could be merged to improve the graph structure.

 In a graph another error that can be easily identified are the bubbles, branches in

the graph that have same start and end node but they differ in the middle, caused

by error in the middle of the reads or k-mers, or from random overlaps of two

nearby tips. They way that Velvet treat them is with the “Tour Bus” algorithm.

 In briefly, this algorithm, executes a breath-first search in a Dijkstra mode. It

start from a node and goes through the graph visiting nodes of increasing distance.

The distance between two nodes N1 and N2 is the length of s(N2) divided by the

multiplicity of the edge going from N1 to N2 (i.e divided by the number of reads

going from N1 to N2). In this way priority is given to more secure-reliable high

coverage paths. When the procedure founds a node that was already visited it

backtracks to the closest ancestor. The two paths that end in the node that cause

the backtrack are extracted aligned and if they are similar they are merged. The

path that first arrived at the end node(that one that when was encountered the

second time caused the backtrack action) is uses as a backbone due to its higher

coverage.

 Although when the merging takes place the outcome sequence have to relocate

the connections with the nodes that the two paths were connected to. In linear

paths, paths that don’t contain blocks visited more than one time is easy because

the connections are simply repositioned in the merged sequence. In palindrome

paths, paths that go through a block one way and then throught it in the opposite

direction the merging process is more difficult as connectivity will be affected if

they are treated like linear paths. Due to this the Tour Bus algorithm marks every

node in the two branches and starts the merge procedure from an end to the other

visiting nodes consecutively. Each node of the minority branch is compared with

the corresponding node of the consensus sequence. All the information,like

coverage, edges and sequence identifiers, that the minority node had is transferred

to the consensus node. In this way the marked path is changed dynamically

without loss of connectivity.

A.

B.

C.

Figure 11

Example of Tour Bus execution.
A) The search start from A and goes toward the right.. The procedure that goes from B’ and C’ stops at D as
this node was already visited. The nucleotidic sequences of B’ C’ and B C are removed from the graph,
aligned and compared.
B) The two were consider similar and they are merged into BC. Then the procedure continues to the bottom
path and going through C’ and D’ end in E. The paths C’D’ and C D are compared and merged as were
considered similar.
C) The final graph.

 After the Tour Bus algorithm long straight nodes are created that have high

coverage. Moreover short nodes that couldn’t be simplified are low complexity

sequences present a lot of times in the genome with an elevated coverage value.

So, short nodes with low coverage usually correspond to chimeric connections (i.e

nodes which incorrectly connect two unrelated contigs). These connections should

be removed to achieve better results. After Tour Bus a removal of these erroneous

connections is applied to the graph. Velvet uses a coverage cutoff parameter, set

by the user, to remove nodes with coverage less than this value. This parameter,

although, should be set carefully because a high value can lead in gaps formation

and missasemblies as genuine nodes will be removed. A tactic that is generally

used to decide the value of this parameter is based on the observation of the

coverage distribution of the contigs.

 Repeats Resolution

 This step can be considered as the second phase of error removal. The first phase

ends with contigs separated in branching points caused by repeats. This step aims

in determining the genome’s sequence path that goes though the repeated nodes in

the graph. A repeated node is the one that its sequence is present multiple times in

the genome. If the repeat is longer than the sequence contained in a node then this

repeat is a path in the graph from which the genome sequence pass multiple times.

A simplified version of a repeat structure is presented in the next figure.

Figure 12

A simplified common repeat structue

 Resolution of repeats and scaffolding

 Velvet's final graph reduction step involves mate pairs (if provided). An

algorithm called Pebble is used to exploit paired end information to remove

repeats and build the final scaffolds. The first that is made is to identify unique

nodes. Velvet uses coverage to identify these nodes and then Pebble tries to

connect them using pair end information. For every unique node, chosen in an

decreasing order of coverage value, estimates the distance from this node to the

next unique one and then merges the distance information that these two nodes

provide.

Repeat contig

 In detail before resolving repeats Pebble build a primary scaffold. For any two

nodes in the graph Velvet counts the mate pair reads that connect them. Then

using a Maximun likelihood estimator finds out the distance between them. All

the inter-nodes that define the distance between the two examined nodes is called

primary scaffold.

 Then in order to merge unique nodes it is needed to find out which nodes are in

the neighborhood of every unique node. It uses the primary scaffold to find nearby

nodes but as this information is not sufficient, because usually the given insert

length is bigger that the examined unique’s node length and this creates no

primary information about the neighboring nodes, Pebble tries to compute the

distances between the local nodes. This is called secondary scaffold.

 What is done in an abstract view is shown in the figure. Primary neighbors are

the unique nodes that are connected with the examined node. This information is

provided by the primary scaffold. Then Pebble searches for all the directly

connections of these nodes, flags the nodes that the end that they are called

secondary neighbors. With the estimation of distance computed between the

examined node and its primary neighbours plus the distance between these nodes

and the secondary neighbors it is easy to find the distance between the examined

unique node and the secondary nodes by doing a subtraction.

Figure 13

 Pebble discovers all the unique nodes that an examined unique node
is connected. Here unique node A is connected with unique node B.
For every unique node B which is connected to A, Pebble then follows
the primary connections associated to B, thus flagging secondary
neighbors of A. Assuming that all the nodes are laid out on a line, it
can estimate that the distance from A and this secondary nodes is
equal to the distance from A to B, minus that from B to A.

 If also long paired reads are used, as Velvet can accept mixed read lengths,

another algorithm called Rock Band is used to build scaffold. Long reads can be

used to connect nodes that are produced after the error correction. This algorithm

is based on the idea that if a long read goes out of a unique node and leads to

another unique node, these two nodes can be merged. As Pebble, Rock Band

examines all the unique nodes starting from the one with bigger coverage towards

to the one with less. For every unique node it counts the long reads that are going

out from this node and if all reads go to the same destination the two unique nodes

are merges and the gaps are filled with the long read information.

Figure 14

 An schematic example that shows what Rock Band does. Contigs are the
displayed rectangular and the reads are the colorful lines that pass through
the contigs. Let’s assume that the are two unique nodes A and B. The
algorithm starts with examining the long reads going out from A. Two long
reads, black and red, goes to the unique node B. The brown long read goes to
a non-unique node so is discarded. Then all long reads going into node B are
examined. All come from A except the green one that is discarded as it come
from a non-unique node. In the end yellow long read that overlaps with the
others reads is discarded as do not end in one of the unique nodes.

3.3 ABySS Assembler Description

3.3.1 Introduction

 ABySS is a parallel sequence assembler. It uses a distributed de Bruijn graph in

order to parallelize the assembly of a huge amount of small reads over a cluster

machine. This implementation give us the opportunity to increase the memory that

is available to the assembly process leading to an increase of the genome size that

can be assembled. Summarizing we can say that that the main strengths of ABySS

are the small memory foot print, the distributed processing with MPI and that can

handle very large genomes.

 AbySS is implemented in C++ and uses Message Passing Interface (MPI) for

communication between the nodes of the cluster. The cluster’s bandwidth and

latency affect significantly the performance of the parallel assembly procedure. In

order to limit the latency in each communication message corresponds a unique

ID. The process sending the message does not wait for a respond immediately but

is the current state of the operation using the ID and continues its execution

processing other operations. The saved information is recovered when a response

for a message is received with the ID of this message. Then the original task can

continue its job. Moreover, in order to hide the latency of the network link the

system allows many operations that can run in the same moment on each of the

cluster used by AbySS.

3.3.2 Distributed De Bruijn Graph

 The distributed de Bruijn graph is an implementation of the normal de Bruijn

graph that allows storing neighboring sequences on the same computer. With this

implementation the sequences are stored in different nodes of a cluster. In order to

achieve this two things are needed. The one is to efficiently compute the the

location of a k-mer from its own sequence, and the second is to store the

neighboring information in a place that is independent of the location of the k-

mer.

 The location that a k-mer will be stored is computed through a hashing

procedure. A value form zero to three is assigned to every base (i.e zero to

Adenine, one to Cytosine, two to Guanine and 3 to Thymine) in order to form the

representation of a k-mer. From this representation a hash value is computed. The

same process is applied to the reverse complement of the k-mer and the 2 hash

values are combined with the XOR operation. The outcome value from the XOR

operation modulus the number of nodes provide the index that will determine in

which node is going to be stored the k-mer.

 The neighboring information is stored in a 8 bit per k-mer vertex. Since the

alphabet has four symbols (i.e A, C, G and T) the maximum in-degree and out-

degree of each vertex or k-mer is four. The presence or the absence of each edge

is stored in a single bit. A value of 1 corresponds in the presence of an edge and 0

to the absence. Neighboring k-mers are generated from the information that the

8bit vertex provides and their location is computed with the hashing method

described in the previous paragraph.

3.3.3 ABySS-Assembly Procedure

 The main ABySS assembly process is done in three steps depending on the

desirable assemble. The first is done without the use of pair-end information.

Contigs are merged and extended until they cannot be extended any more due to

lack of coverage or because a further extension will lead to unambiguity. The

second step uses paired-end information to remove errors and extended more the

contigs. And the third step uses mate pair information to build the scaffolds

De Bruijn Graph construction in ABySS

 At the beginning of this step sequences with bases determined by N or “.” are

discarded and the data are loaded in the distributed de Bruijn graph. The k-mers

are computed by shifting a piece of length k through the input sequence. So if the

input sequence is length l, (l – k + 1) overlapping k-mers are created. Then with

use of the hashing fuction described above, the cluster node index of every k-mer

is computed and the k-mer is stored in the node that belongs to. A sequence is not

stored in the hash table if the complement of this sequence is already registered in

the hash table as they are considered equivalent. At the end, as all k-mers are

loaded in the graph, start the computation of the adjancency. Every k-mer sends a

message to the eight possible neighbors. If one exist must overlap in k-1 bases and

this neighboring information is stored.

Error correction

 In this step the algorithm cleans the graph from sequencing errors. The most

common sequencing errors are the spurs. They are short dead end branches of the

main path. As far as these sequences don’t have an extension and they are usually

unique they are located, traced backward until the deviation point and if the

branch length is shorter than the threshold that was set they are eliminated. This

threshold can if is not override by the user is automatically set by the algorithm.

This procedure is done a lot of times and every time with a bigger threshold length

to remove bigger branches that weren’t eliminated in the previous iteration. This

procedure is affected by the choice of k-mer length. A big k-mer length will lead

to a big amount of short dead end branches and this will make difficult the

distinction between a sequence error and a correct sequence that cause a branch

due to lack of coverage. The latter case can results in contigs of a smaller length

so the choice of the k-mer should be done carefully.

 Another common sequencing error, caused in the middle of read, which can be

located in a graph is a deviation of the main path in two branches that after rejoin

together is called bubble. To remove bubbles ABySS locates every deviation point

in the graph. Then each path from a deviation point is traced forward searcing for

other paths that join after n nodes where is limited in the interval [k, 2k]. If a path

that joins is found then the path with the lower coverage is removed and stored in

a log file. Although, not only sequencing errors led to the formation of bubbles but

also repetitive genome regions. In such case the removal of a bubble will

minimize the repeat to a single sequence.

Figure 15
Short dead end branches are located. The branches iside the elipses are considered sequencing errors. These
errors can be of length k-1 or less. The assembly procedure trim these branches to prevent a premature end of
the algorithm.

In the next page:

Figure 16

Two bubbles: The first is a simple bubble that created from the deviation of two branches. The second is more
complex as it consists in the intersection of two bubbles. The bubbles can be of length 2k-1 or less

Figure 17

The removal step: The first bubble is removed with the help of coverage. The path with the lower coverage is
removed and saved in the Log file. The removal of the second bubble creates a dead end branch but I can also
create a bubble of a lower level.plex as it consists in the intersection of two bubbles. The bubbles can be of
length 2k-1 or less.

Figure 16

A G

T C G T G A A

A G

C G A A T

C

A A

T C

G A A C G T T

A G T

A

T A

G G T T A

A

Figure 17

T C

G

A A C G

T T A

C G T A

T C

G

A A C G

T T A

C G T A

G T G

T C

G T T A

C G T A

T C

G T T A

C G T A

G T G

The removal step is shown. The first bubble is removed with the help of coverage.

The path with the lower coverage is removed and save in the Log file. The

removal of the second bubble creates a dead end branch but also creates a bubble

of a lower level.

Merging Vertices

 In this last step of the first phase the algorithm merges vertices that are connected

via unambiguous edges. If there is an unsolved ambiguity in the in contigs

extension the procedure of contig’s length increase is stopped. Then the remaining

connected nodes are merged creating independent contigs that overlap by no more

than k-1 bases. The output contigs are in FASTA format.

Figure 18

Unresolved ambiguities lead to the creation of lot of contigs. These are merged to create independent
contigs in FASTA format

Second Phase-Use of pair-end information in order to merge contigs

In this phase the pair end information, if provided, is used to merge the previously

created contigs. This information helps in the way of finding contigs that can be

connected together by removing ambiguities. The contigs created in the previous

phase are aligned, linked and then filtered to remove connecting errors between

A G

T C G T G A A

A G

C G A A T

C

A A

T C

G A A C G T T

A G T

A

T A

G G T T A

A

them. In detail every k-mer in the single-end assembly is considered to be unique.

Then the algorithm maps reads with k consecutive correct bases. ABySS disposes

a set of aligners that can be used in different cases. Some short and long read

aligners are presented in the following table.

Short read Aligners

Aligner’s Name Strengths

Bowtie Fast

BWA Useful with small gaps

GSNAP Useful with big gaps

Long read Aligners

Aligner’s Name Strengths

BLAST Many reference genomes

BLAT Useful with large gaps

BWA-SW Useful with small gaps

Exonerate Easy to use

GMAP Useful with large gaps

MUMmer Align two different genomes

 Two contigs can be merged if at least p pairs join the contigs. For each contig,

Ci, created in the previous phase, is generated a set of contigs, Pi, that are paired

to this contig. Then a search in the de Bruijn graph is made to find a unique

sequence of contigs from Ci that visits each Pi. Heuristics are used to limit the

numbers of the visited vertices because the repetitive areas of the graph can lead

to a huge computational cost. This procedure is repeated for all the contigs and at

the end the paths are linked together to create the final contigs.

Third Phase- Use of mare pair information in order to build scaffolds

 The basic idea behind scaffolding is that distance estimates are found in the same

way paired end distance estimates are found, but the estimates aren't used so much

for the distances as for linking information. A scaffold graph is formed from the

distance estimates, and a number of transformations and heuristics are used to

simplify the graph as much as possible. Then scaffolds are made along

unambiguous paths where the number of N's inserted between contigs is related to

the estimated distance between the contigs.

4 Magerit & SLURM Description

4.1 Introduction

 In this chapter will be described the environment in which the tests were made. The

architecture of Magerit and SLURM, that is the queuing system of Magerit, will be

described briefly and a short description of how to submit a job in this cluster

machine will be presented.

 Magerit is the name of the one of the most powerful supercomputers of Spain. The

second version, installed in 2011 reached the 1st position of Spain, 44th of Europe

and 136th fastest of the world. This computer is installed in CeSViMa, a research

center of the Technical University of Madrid. The experiments done in this study are

made in this second version to take advantage of all the features that such a machine

can give.

4.2 Magerit 2

 Magerit is a cluster consisting of 260 nodes. The majority of them (i.e 245 nodes)

are eServer BladeCenter PS702 2S with 16 cores in two 64-bit POWER7 processors

(eight core each) of 3’3GHz and 32GB Ram. The rest 15 nodes are eServer

BladeCenter HS22 with eight Intel Xeon 2’5GHz processors with 96GB RAM. The

total system implies 4,160 CPUs and 9.2 TB RAM. All the nodes operate

independently and all with the same software configuration. The system has a

distributed storage system with a capacity of 192, TB provided by 256 disks of 750

GB each, which used a distributed and fault tolerant system (GPFS).

 Moreover Magerit, due to its dimensions, process batch jobs with large processing

requirements. In order to handle these jobs, which run in hundreds of CPUs a few

days, it organizes them with a queue manager called SLURM as it is impossible to use

more conventional access to the resources. SLURM plans the distinct jobs having as

an object to maximize the use and the power of the computer and process user’s jobs

as fast as possible without create starvation problems.

4.3 Simple Linux Utility for Resource Management (SLURM)

 SLURM is an open source, fault tolerant system for high scalable cluster

management and job scheduling used in Linux both small and large Linux clusters.

This system provides the basic functions. First, it allocates exclusive and/or non-

exclusive access to the nodes of the computer to the users for a duration of time

giving them the chance to execute a job. Second, for every job, that is usually a

parallel one, distributed between the available nodes, it provides a framework for

starting, executing and monitoring this job. Third, it manages pending jobs and their

requirements, which can create conflicts, with the use of a queue.

http://en.wikipedia.org/wiki/CeSViMa
http://en.wikipedia.org/wiki/Terabyte

 A queuing systems aims to provide a fairshare scheduling. This means that all users

are tried to be served in a fairly way when they need resources. In detail, a job starts

its execution before another one is based on two parameters. First when this job was

submitted and second how many resources are available at this times to the users.

Users that used less CPU time in the last job submissions has a priority from the

recent more active users. Of course this convention takes place if resources are not

available for all the user that submit a job at a certain time.

 The architecture of slurm is based on a centralized manager that controls both the

resources (i.e nodes) and the jobs by allocating them in the computer nodes. This

manager called slurmctld implements also a management daemon. Each node also

implements a daemon called slurmd that controls the tasks that are going to be

executed in this node. It waits for a job, executes that job, return a status and waits for

more jobs. Moreover it provides fault-tolerant hierarchical communications. Slurm

contains also other daemons that are not going to be mentioned and analyzed. Other

daemons are not going to be explained as the are not so relevant in this study. More

information about slurm can be found here:[18]

 SLURM daemons manage nodes, partitions, jobs and jobs steps. Partitions are sets

of nodes collected in logical groups. They can be seen like job queues, each of which

has a collection of constraints such the size limit a job, the time limit of a job,

permissions that a user has in this partition etc. A job is a resource allocation for a

specified amount of time. Jobs are allocated nodes within a partition until available

resources, such as memory, nodes, processors etc. are exhausted. Finally, job steps

are, usually parallel, tasks inside a job. Once a job is assigned in a set of nodes a user

can start multiple job step in the allocation. Multiple job steps can run in an

independent part of the allocation or a single job step can run in all the nodes. A

schematic representation follows:

Figure 19

SLURM entities described above

4.4 Executing Jobs in Magerit

 A job can be submitted by a user in a script format called batch or can be interactive

and executed in real time. A user can add constraints to the execution, like for

example how many nodes and how many processors this job is allowed to use, what

of partition is going to be used for the execution, the time limit of the job etc. When

the job is submitted the queue manager will try to find the resources defined in the job

file among the available ones, optimizing the machine use and decreasing the waiting

time of other users. In other words the queue manager tries to maximize the efficiency

of the supercomputer.

 A summary of the steps that the user should do in order to execute a job in Magerit is

the following:

1. Connect to an interactive node

2. Prepare the executable that want to send in the supercomputer

3. Prepare the job definition

4. Send the job to the queue manager

5. Wait until the system assigns the nodes and executes the load of the job

6. Retrieve the results and send new jobs

 Although some of the parameters that can be defined in the job file cannot exceed a

predefined value. In Magerit, for example, the Quality of Service (QoS) implies an

upper limit to the number of CPUs and the wall clock limit that each user has. A

standard quality of service has the following characteristics. Every user, depending of

the project that he is working for, can use a subset that will be assigned to him. In this

way every time a user submits a job can indicate a different QoS from the ones that he

is allowed to use.

Quality of Service Cpus Time

debug 16 00:10:00

class_a 1024 72:00:00

class_b 1024 36:00:00

class_c 1024 24:00:00

standard 512 72:00:00

premium 1024 72:00:00

 A user not only can submit a job but also check the state of a job, block a job, see a

list of the running jobs and cancel a job. These commands are available thought a

SLURM-Moab interface that provides the following commands:

jobsubmit: Submit a job

jobcheck: Check the state of a job

jobhold: Block/unblock a job

jobq: List of running jobs

jobcancel: Cancel a job

As mention,in order to submit a job a batch file should be created. A typical batch file

is presented in the next picture. It contains only the necessary declarations. These

declarations and some optinial ones are described here:

#!/bin/bash

 Indicates where shell is located in the system. By default all systems that have Bash

installed they have shell under /bin directory. By using this line the script can be

executed as a normal program.

#@ class

Indicates the QoS

#@ initialdir

Sets the working directory of the script. All the specified routes (output, error..) are

relative to this directory. If not specified is considered to be the current working

directory (.)

#@ output

Indicates where the standard output of the job will be redirected. This file contains the

combined output of all the processes that took place during the execution of the job,

directly or indirectly, in any of the assigned nodes.

#@ error

The only difference with the standard output directory is that here it indicated where

the error output of the work will be redirected.

#@ total_tasks

Indicates the number of CPUs that are needed. The maximum value is defined by the

QoS.

#@ wall_clock_limit

Indicates the time limit of a job. The maximum value is defined by the QoS

Figure 20

Presentation of a typical job with the most important parameters

5 Installation In Magerit

5.1 Velvet Installation

5.1.1Requirements

 Velvet can be installed in a 32bit Linux environment with at least 12GB of

physical memory. Although 32bit systems have memory limitations that can lead

to restriction for the assembly process. To avoid these constraints Velvet should

be installed in a standard 64bit Linux environment.

#!/bin/bash

#--------------------- Start job description --------------------

 #@ class =

#@ initialdir =

#@ output = res/out-%j.log

#@ error = res/err-%j.log

#@ total_tasks =

#@ wall_clock_limit =

#---------------------- End job description ---------------------

#-------------------------- Start execution --------------------------

Run our program

srun ./[myprogram]

#--------------------------- End execution --------------------------

Indicates where shell is located in the

system. By default all systems that have

Bash installed they have shell under /bin

directory. By using this line the script can

be executed as a normal program.

Definition of the QoS

Sets the working directory of the script. All

the specified routes (output, error..) are

relative to this directory. If not specified is

considered to be the current working

directory (.)

Indicates where the standard output of the

job will be redirected. This file contains the

combined output of all the processes that

took place during the execution of the job,

directly or indirectly, in any of the assigned

nodes.

The only difference with the standard output

directory is that here it indicated where the error

output of the work will be redirected.

Indicates the number of CPUs that are needed. The

maximum value is defined by the QoS.

Indicates the time limit of a job. The maximum value

is defined by the QoS.

 In the present study, Velvet version 1.2.03 was built in the 15 eServer

BladeCenter HS22 nodes that have eight Intel Xeon 2.5GHz processors with 96

GB RAM to exploit the amount of memory and avoid as much as possible the

assembly constraints created by the lack of memory.

5.1.2Compilation

In a GNU environment in order to install Velvet it is need only to type:

make

Lot of settings can be used in order to serve our needs in the assembly procedure.

We used some of them to achieve better results and test Velvet in different ways.

 Velvet version 1.2.03 was built in Intel nodes of Magerit with the following

command:

make “OMENMP=1” “CATEGORIES=4” “MAXKEMRLENGTH=61”

 OPENMP=1 allow to turn on multithreading. The program can use multiple

cpus that are located in the same machine. In our case the number of CPUs can

vary from 1 to 8. This option will lead to faster results especially when big

genomes are used. To enable this option when an execution is made it is needed to

set the environment variable OMP_NUM_THREADS=#CPUs in the job file that

will be submitted. Velvet will use OMP_NUM_THREADS+1 CPUs to run the

assembly procedure.

 CATEGORIES=# allows to distinguish reads from different insert libraries. By

default Velvet uses on two short reads categories. This variable was extended to 4

as is the biggest number of insert libraries that is going to be used in this study.

The bigger the number used in this variable the more memory will be required to

run Velvet.

 MAXKEMRLENGTH=# allows to increase the hash length. The default

maximum value used in Velvet is 31bp. The k-mer length determines in a big

level the quality of the assembly. In this study Velvet was built with

MAXKEMERLENGTH=60 in order to be tested with k-mers up to 60bp. Setting

a bigger number for the hash length will require more memory in order to store

longer words.

 Other setting not used in the present study but that can be usefull are:

BIGASSEMBLY=1 allows to store more reads. If the libraries used contain more

2.2 billion reads Velvet needs more memory to store them. Setting

BIGASSEMBLY=1 more memory is assigned in order to store these reads.

LONGSEQUENCES=1 allows to increase the read lengths that can be stored. By

default read lengths are stored on 16bit signed integers. Because of this if longer

than 32kbp reads are used in the process Velvet should build using

LONGSEQUENCES=1 in order to provide the memory that is required to store

coordinates.

5.2 Fatsx Toolkit

5.2.1 Introduction-Description

 This toolkit was installed as Velvet expects that pair-end reads come from

opposite strands facing each other. As in this study pair-end reads produced from

the same strand are used, a reverse complement of these reads must be produced

before running Velvet.

 FASTX-Toolkit is a collection of tools that can process FASTA/FASTQ short

reads. The available tools are described in the web site :

http://hannonlab.cshl.edu/fastx_toolkit/

 From the available tools that FASTX-Toolkit provides in the present study only

FASTQ/FASTA Reverse Complement was used, that produces a reverse

complement of each sequence in a FASTQ/FASTA file.

http://hannonlab.cshl.edu/fastx_toolkit/

5.2.2 Installation

 In order to install FASTX-Toolkit in Magerit libgtextutils-0.6 or above is

required. Both FASTX-Toolkit and libgtextutils can be downloaded from FASTX

web site:

http://hannonlab.cshl.edu/fastx_toolkit/download.html

 Libgtextutils-0.6.1 was downloaded and installed in the local path as follows:

./configure --prefix=/usr/local/libgtextutils

make

make install

 After libgtextutils installation FAST-Toolkit - 0.0.13.2 was downloaded and

installed. Before running FASTX’s “configure” script, the environment variable

PKG_CONFIG_PATH had to be set. The actions done were:

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:$PKG_CONFIG_PATH

./configure --prefix=/usr/local/Fastx

make

make install

5.3 ABySS installation

5.3.1 Requierements

 AByss in order to be installed requires the following libraries:

 [Boost](http://www.boost.org)

 [sparsehash](http://code.google.com/p/sparsehash)

 [Open MPI](http://www.open-mpi.org)

It requires also a C++ compiler that supports OpenMP.

http://hannonlab.cshl.edu/fastx_toolkit/download.html

5.3.2 Compilation

As the pair-end mode of ABYSS does not support SLURM, some addition and

changes were made to abyss-pe script for adding this support. The code added

to the script in order to integrate abyss-pe with SLURM was:

#Integrate with SLURM

ifdef SLURM_JOB_NAME

name?=$(SLURM_JOB_NAME)

endif

ifdef SLURM_JOBID

k?=$(SLURM_JOBID)

endif

ifdef SLURM_NTASKS

np?=$(SLURM_NTASKS)

endif

Moreover, the np option of abyss-pe specifies the number of processes to use

for the parallel MPI job. Without any MPI configuration, this will allow you to

use multiple cores on a single machine. To use multiple nodes for the

assembly ABySS should be run we the use of the parameter np=(the number

of threads that are going to be generated). The abyss-pe driver script will start

MPI process like so: mpirun –np 8 ABYSS-P. Although, users in Magerit does

not have the permission to run mpirun. Users can use only srun to submit their

jobs. As in the Magerit scheme, srun call mpirun internally changes are needed

in order to deal with this scheme. The changes to abyss-pe script are the

following:

ifdef np

ORIGINAL: $(mpirun) -np $(np) ABYSS-P $(abyssopt)

$(ABYSS_OPTIONS) -o $@ $(in) $(se)

 srun ABYSS-P $(abyssopt) $(ABYSS_OPTIONS) -o $@ $(in) $(se)

else

 ABYSS $(abyssopt) $(ABYSS_OPTIONS) -o $@ $(in) $(se)

endif

where #ORIGINAL and ABYSS-P is the parallel (MPI) de Bruijn graph

assembler used to run ABySS in parallel. ABYSS-P its called automatically

from abyss-pe.

As the above changes are made the installation can take place. We suppose an

installation of ABySS in the local directory (i.e /usr/local). As ABySS will

install with MPI support, OpenMPI executables must be in the local path. To

place the executables in the local path the command is:

module load openmpi

Next, environment variables CC and CXX are needed to be set. CC

environment variable defines what C Compiler is going to be used while

specifies the C++ Compiler that is going to be used. These variables are set as

follows:

export CC=mpicc

export CXX=mpixcc

where mpicc is compile and link MPI programs written in C while mpicxx

compile and links MPI programs written in C++. They both provide the

options and any special libraries that are needed to compile and link MPI

programs.

As the above preliminary steps are made the process continue to the main

building part. The steps made are the following:

./configure --prefix=/usr/local/ABySS

make

install

 The default maximum k-mer size is 64 and may be decreased to reduce

memory usage or increased at compile time. ABySS was installed keeping this

default value. Although this value can be change in the configuration as

follows:

./configure --enable-maxk= #

Where # is the desired value.

5.4 Running Velvet in Magerit

 In this paragraph are going to be analyzed only the parameters of Velvet used in this

study. There is big amount of other parameters that can be used to achieve the

desirable results that are described in detail in the Velvet Manual [31]

 First of all as we built Velvet activating multithreading we have to define the number

of threads that are going to be spawned during the assembly procedure. As mentioned,

the only thing needed is to define the number of threads by setting the environment

variable OMP_NUM_THREADS equal to the desired thread quantity – 1. Although,

something very important is that when variable OMP NUM THREADS is set to n,

velveth uses n + 1 in the parallelized part, but the speed up corresponds to n. Thus

when OMP NUM THREADS = 1 velveth uses two threads but the time is equal to the

serial version. This is a very important in this study as the time of Velvet’s

experiments will be analyzed.

 In the present study Velvet will only be tested with pair end FASTQ data. Although

Velvet supports also other formats like FASTA, SAM, BAM, ELAND, GERALD,

FASTA.GZ and FASTQ.GZ. In pair-end modem, Velvet, handles only interleaved or

“shuffled” fasta and fastq files, where each pair is seen one after the other. The read

indexed as 1 is paired with the read indexed as 2, 3 with 4 etc. Although, because

most of the pair end libraries are divided in two different files a merge of these files is

required. In order to merge in one file the forward and the reverse reads from these

two different files, an initial step is needed before the main assembly procedure starts.

Velvet provides a Perl script to perform this preliminary step in order to “shuffle” the

two files of each library used in the assembly. This script can be executed in the

following way:

shuffleSequences_fastq.pl library_1. fastq library_2.fasta output_library.fastq or

shuffleSequences_fasta.pl library_1. fasta library_2.fasta output_library.fastq

depending on the file format.

 After shuffling short jumping libraries usually are produced with and RF orientation

must need to complement reverse. To do this the script fastx_reverse-complent must

be applied to the circularized shuffled library. The way to do this is:

fastx_reverse-complement -i shuffledlibrary.fastq -o

reversedshuffledlibrary.fastq

where –i is for input and –o is for output. The assumption used in this script is that

the library that is going to be reversed is Illumina. Although in this study the libraries

are shifted to have the Sanger placement type. This shift needs the addition of the

parameter –Q 33 in the execution of fastx reverse complement script before

declaring the input library. Depending on the sequence technology use -Q parameter

take different values. This reverse and complement action in the circularized libraries

must be applied only to one strand, depending on the orientation, and then the library

can be shuffled.

 After receiving the shuffled and reversed libraries the procedure can proceed to the

main assembly steps. The first step is to create the files that Velvet will use to build

the graph. The program that does this job is velveth. Velveth reads the sequence files

and produces a hashtable and the output files Sequences and Roadmaps, which were

described in the description of Velvet’s algorithm.

 To do this work velveth needs as an input an output directory were the produced

Sequences and Roadmaps file are going to be stored, the k-mer length, the file format

of this files that are going to be assembled, the read category that these file belong and

then name of the files. The syntax can be described as:

velveth output_directory k-mer_length -file_format -read_category filename

 The read category can be one of the following:

 short, shortPaired, long, longPaired

 Instead of using a k-mer lots of k-mer’s length can be tested by replacing k-

mer_length as follows:

Velveth output_directory Start, Step, End ...rest of the files…

 This example tests all k-mers from the starting k-mer length (Start) until the ending

k-mer length (End) with a step of Step. The output directory produced each time will

have the following name.

Ouput_directory_k-merlengt

This way avoids doing all the redundant computations.

 The next step consists in the execution of the main part of Velvet’s algorithm.

Velvetg is part that the de Bruijn graph is built and manipulated to arrive at the final

results of the assembly process. The syntax of velvetg is as follows:

velvetg out_directory …other parameters…

where the output_directory should have the same name with the output directory of

velveth, as velvetg reads the Sequence and Roadmaps file that the former produced

and stored in this directory to build the de Bruijn graph.

As only pair end libraries will be assembled, two parameters must be specified to

activate the pair-end mode in Velvet: the expected insert length and the expected

short-read k-mer coverage. The expected insert length is the length of the sequenced

fragments that produced the reads. If is not known can be replaced from an

estimation. The expected k-mer coverage is a parameter that is used in Pebble to

resolve repeats. This parameter can be set as auto, can be set approximately or can be

calculated after one execution of Velvet with the use of estimate-exp_cov script

provided by Velvet.

 If the examined sample is believed uniform, expected k-mer coverage can be set

auto. When this is done, the algorithm will compute a histogram of k-mer coverages,

excluding extreme values, then estimates the median and set this value to the variable

exp_cov. By setting this parameter as auto another parameter, coverage cutoff

(cov_cutoff) used in removing erroneus connections step, will be also set

automatically (unless if it override by the user). The value that this parameter will

have will be equal to the half of exp_cov value.

 For example with expected k-mer coverage auto and insert read’s length 1000 the

systax is as follows.

velvetg output_directory –exp_cov auto -ins_length 1000 …other parameters….

 An example of the batch file with the most used commands during Velvet pair end

assembly is shown in the next page 57. Although more complex command can be

used to achieve the desirable execution. In the job description part of the batch are

mentioned only the parts that differ from the normal job description in the batch file.

One fastq paired end library named A is used to explain the more important steps

done.

 If more libraries are going to be used for every library must be declared the format

type, the read category and the insert length if is a pair-end (or a mate pair) library.

For every additional library the read category and the insert length option must be

followed by a number that show how many libraries are going to be used. To make

this clear lets assume the use of 3 libraries all pair-end with instert lengths of 300, 500

and 1000. Then the execution of Velveth and velvetg will be:

velveth output_directory k-mer_length -file_format -shortPaired library1_name /

–file_format –shortPaired2 library2_name –file_format –shortPaired3

library3_name / ..other parameters…

velvetg –exp_cov auto -ins_length 300 –ins2_length 500 –ins3_length 1000 /

..other parameters…

Figure 20

Presentation of a simple Velvet execution.

#!/bin/bash
#--------------------- Start job description --------------------
#@partition = intel
.
.
#@ total_tasks = 1
#@ cpus_per_task = 8
.
.
.
#---------------------- End job description ---------------------

#-------------------------- Start execution --------------------------

cd /usr/local/Tests

Run our program

 export OMP_NUM_THREAD=

/local/usr/VELVET/shuffleSequences_fastq.pl libraryA_1.fastq libraryA_2.fastq /

libraryA_shuffled.fastq

/local/usr/VELVET/velveth -fastq - libraryA_shuffled.fastq (…)

/local/usr/VELVET/velvetg -exp_cov auto -ins_length (…)

#--------------------------- End execution --------------------------

Number of threads that will be

created. Can range from 0 to 8

2 files of a pair-end

library.

Output shuffled library

Name of output directory

K-mer length

File format

Read category

Shuffled input library

Input directory that MUST have

the same name with the output

directory of velveth

Insert length of the input library

Here cpus_per_task is set at 8

to have all the cpus of the Intel

node available for the created

threads.

To define that the job will be

executed in the Intel nodes

5.5 Running ABySSn in Magerit

 Also in this paragraph are going to be mentioned the main parameters of ABySS and

the one used in this study. More detailed explanation about every parameter that this

assembelr can use can be found in ABySS Manual

As Velvet so ABySS is going to be tested with pair end FASTQ data. It supports also

other formats like FASTA, SAM, BAM, QSEQ and SRA.The data can be

comperessed with gz,bz2 or xz. Experiments of this study are going to be done with

pair end data. In order to assemble pair end data with ABySS driver script abyss-pe

need to be used. The suffix of the read identifier for a pair of reads must be one of '1'

and '2', or 'A' and 'B', or 'F' and 'R', or 'F3' and 'R3', or 'forward' and 'reverse'. The

reads may be interleaved in the same file or found in different files; however,

interleaved mates will use less memory. In the experiments the suffix '1' and '2' will

be used. abyss-pe has some input parameters that define what are the input libraries

and how they are going to be used. In detail:

-in parameter is used to declare input files when assembling data from a single

library

-lib parameter is used to declare a list of pair-end libraries when assembling data from

multiple fragment libraries. For each library in lib, a variable with the same name

must be declared specifying the files containg those reads

-pe is used to declare a list of paired-end libraries that will be used only in the step of

merging contigs.

-p is used to declare a list of mate-pair libraries used for scaffolding.

-se is used to declare single end reads

 To run ABySS in a pair end mode abyss-pe should be used defining the input

libraries in one of the above categories. Moreover abyss-pe need some other

parameters to start its execution. These parameter are the k-mer size andthe name of

the output files. The can be declare as follows:

abyss-pe name=output_name k=k-mer length …other parameters….

 This execution will produce all the assembly results in the path defined in the batch

file. The destination of the results can be changed in order to store the results there.

Also different k-mers can be tested to find an optimal value and their results stored

every time in a different file. An example follows:

 for k in {st_val..end_val}; do

 mkdir k$k

 abyss-pe -C k$k name=example …other parameters…

 done

 In order to limit the interval of the k-mer lengths that is good to examine in order to

find which k-mer value leads to a decent assembly is reported that for ABySS :

 “The k-mer value should not be less than (lmax+1)/2, where lmax is the length of the

longest read in the data set and cannot be more than the length of the shortest read,

lmin. Although the theoretical lower limit for an assembly is k=2, the above bound is

necessary to prevent excessive bubble formation, which otherwise would be possible

for read errors that are observed only once. The upper limit is from a hard constraint,

as for a k value higher than lmin it would not be possible to construct k-mers for reads

of length lmin if k is beyond this limit.’’

 In order to run ABySS in a parallel mode abyss-pe must be used. Moreover, with the

changes made in the abyss-pe script, the parallel execution will be enabled only when

parameters total_tasks and cpus_per_task are set. abyss-pe script can be used for

single-end, a pair-end assembly or an assembly that uses mate pairs. The mode that

this script will run depends from the declared variables. Every of these parameters add

the execution of an additional assembly stage:

Assembling without paired end information

abyss-pe unitigs …

Including the paired end assembly:

abyss-pe contigs …

Including scaffolding (use of mate pair information):

abyss-pe scaffolds …

 ABySS produces a lots output temporary files that are needed between the assembly

steps. These files for big assemblies can have a big size and Magerit the users space

for temporary files is limited to 100MB. In order to change the location that the files

are going to be stored the environment variable TMPDIR should be set with a location

of a bigger size. In Magerit this location can be scratch file. The variable is set as

follows:

export TMPDIR = /scratch

 Another parameter very usefull parameter useful in order to see in detail every step

of the procedure is v. This parameter also provide the memory consumption of the

assembly that is need when a benchmarking is done. I order to enable verbose logging

parameter

 v=-v

must be added in the execution line of ABySS.

 In figure in page 60 is shown a batch file with four diffents assembly executions in

Magerit. All of them use abyss-pe to run the procedu re. As mentioned, more

parameter can be added to the execution but this study concentrate in some of them.

 The parameters in the batch file cpus_per_task and total total_tasks define in how

many nodes and cpus ABySS is going to run. For example using:

total_task = 64

cpus_per_task=16

 ABySS is going to be executed in 64 CPUs that belong to exactly 4 nodes. By

defining cpus_per_task = 16 the user show his intention to use for his job a whole

node alone so other jobs will not affect the running one. Thus in the above example

64 tasks will be distributed in 4 nodes running at full time as they will not be affected

from other execution.

 One last thing that must be mentioned is that in order to execute the latest version of

ABySS the path is always:

/gpfs/apps_openmpi/ABYSS/1.3.3/bin/

followed by the desired script as ABySS is installed in the supercomputer.

Figure 21

Presentation of four types of assemblies in a bath file mode.

#!/bin/bash
#--------------------- Start job description --------------------
.
.
#@ cpus_per_task = 1
#@ total_tasks =
#@ cpus_per_task =
.
.
.
#---------------------- End job description ---------------------

#-------------------------- Start execution --------------------------

Run our program

export TMPDIR = /scratch

One paired-end library

/gpfs/apps_openmpi/ABYSS/1.3.3/bin/abyss-pe k= name= in='lib_1.fa lib_2.fa'

Multiple paired-end libraries

gpfs/apps_openmpi/ABYSS/1.3.3/bin/abyss-pe k= name= lib='lib1 lib2' \
 lib1='lib1_1.fa lib1_2.fa' lib2='lib2_1.fa lib2_2.fa'

Paired-end and mate-pair libraries

gpfs/apps_openmpi/ABYSS/1.3.3/bin/abyss-pe k= name= lib='pe1 pe2' \
mp='mp1 mp2' pe1='pe1_1.fa pe1_2.fa' pe2='pe2_1.fa pe2_2.fa'
mp1='mp1_1.fa mp1_2.fa' mp2='mp2_1.fa mp2_2.fa

#--------------------------- End execution --------------------------

For parallel jobs total_task and

cpus_per _task should be declared.

Defining a temporary directory if

big libraries are assembled

K-mer length

Output files name

The two strands of

the pair end library

Name of the two pair end libraries

For every library the

two strands must be

defined

Names of the two pair end

and the two mate pair libraries
For every declared pair end and mate

pair library the two strands must be

defined

6 Experiments

6.1 Introduction

 The assemblies done in Magerit aimed in testing one shared memory assembler, i.e.

Velvet, and one distributed memory assembler, i.e. ABySS, in order to check their

performance in time and find out which assembler can give the best results in a

shorter time.

 The performance and the efficiency of an assembler are usually determined by the

resource consumption and by the size of the contigs and scaffolds that that the

assembly process produce. The resource consumption of an assembler consists in

finding out the whole time of the assembly procedure and the RAM that is consumed.

The measurement of the contigs and scaffolds size includes the definition of the N50,

the maximum contig length and the total number of contigs that are produced.

 Contig or scaffold N50 is a weighted median statistic such that the 50% of the entire

assembly is contained in contigs or scaffolds equal or larger to this value. This

statistic provides a way to measure the connectivity of the assembly where higher

N50 lengths show better performance.

 The most common way used from assemblers to define this parameter is described

with the following steps:

1. All contigs are short by size

2. Contigs sizes are added, one by one, from the largest down to the shortest

3. When the size of the added contig’s length covers the half of the genome this

procedure is stopped.

4. The length of the last encountered contig is the N50 of the assembly

 An example: Let’s assume a genome of 40 Mbp. The contigs produced after the

assembly processes are shown in the figure below. From the length of the contigs

shown the N50 statistic will be set as 4.5 Mbp because 7+6.5+4.5+4.5=22.5>20

 The N50 statistic has some characteristics that are very useful to determine the

efficiency of the assembly. These characteristic are the following:

1. High N50 means long contigs and thus a good assembly

2. Low N50 means many short contigs, genome bad sequenced and thus a bad

assembly

 From the things mentioned above its clear the the N50 statistic is very useful to

determine the quality of an assembly. Although bad quality assemblies can have a

high N50 statistic.

Figure 22

Contigs produced and their lengths in Mbp. The first 4 lengths contigs have length greater than the half of the
assembled genome so the length of the fourth contig is the N50 statistic.

”The standard of judging assembly quality by size of contigs is questionable. Large

contigs may simply reflect overly aggressive joining of contigs, thereby creating

larger contigs with misassemblies. As a consequence, genome scientists who are not

experts at assembly can be completely misled by statistics about contig sizes, and as a

result might prefer the ’larger’ but incorrect assembly when given a choice.”[32]

 The maximum contig length, also used to determine the quality of the assembly

product, is an important parameter as longer contig mean that most of the errors were

eliminated and the genome were assembled in fewer and longer contigs.

 In the experiments done in Magerit were tested three genomes. These genomes

belong to a Staphylococcus aureus, an Escherichia coli and a Rhodobacter

sphaeroides. All the used fragment pair-end libraries, described in detail in the next

paragraph, have reads of 101 bp that is a relative big value for the examined short

read assemblers. The k-mer lengths used were odd and they belong to the interval

[19,61]. The values where chosen to be odd as Velvet handles only odd k-mer

lengths and the chosen interval reflects the need to take advantage of the provided

coverage with respect to the specificity that relative long k-mers provide. Bigger k-

mer length, that belong to the interval [60,80], will be also good to be checked but in

this study we limited in the mentioned interval to check the performance with smaller

k-mer lengths.

The tests that this study aimed to do with Velvet were:

 For Staphylococcus aureus and Escherichia Coli to test the k-mer lengths 25, 35, 45,

55 and then depending on which k-mer length were observed the biggest N50 to test

the nearby ±3 odd k-mers length to define the best k-mer length in the interval

[19,61]. Then, using this k-mer, to use the multithreading ability of Velvet to see how

the use of more threads affects the processing time of both velveth and velvetg.

 For Rhodobacter sphaeroides to test the k-mer lengths 25, 35, 45, 55 and then

depending on which k-mer length were observed the biggest N50 to test the

7

6.5

4.5

4.5

3.2

2.9

2.6

2.2

1.8

1.6

22.5

multithreading ability of Velvet to check the OpenMP ability of Velvet with respect to

the spawned threads.

While the tests aimed to do with ABySS were:

 For Staphylococcus aureus and Escherichia Coli to test the k-mer lengths 25, 35, 45,

55 using the short jumping libraries as mate pair libraries. Then depending on which

of the above tests where observed the biggest N50 to test the nearby ±3 odd k-mers

length and, like in Velvet, define the best N50 in the interval [19,61]. Finally, using

this k-mer, test the MPI ability of ABySS with a different number of CPUs every time

to check how the processing time is affected.

 For Rhodobacter sphaeroides to test the k-mer lengths 25, 35, 45, 55 with the

provided jumping libraries as mate pair libraries in the scaffolding stage. Then, using

this k-mer, to test the MPI ability of ABySS with a different number of CPUs every

time to check again the affection of the processing time.

 Also for the multithreading tests of Velvet and for the MPI tests of ABySS will be

benchmarked the peak of the consumed memory in order to have a full view of the

resource consumption during the mentioned tests.

*The commented results that are not present in the charts for every experiment can be

found in the appendix

6.2 Libraries

 In this paragraph are presented the libraries used in order to make the experiments

and test the two assemblers in an increasing order based on the size of these libraries.

Genome: Staphylococcus Aureus

Genome’s Size: 2.839.460 base pairs

Library Type Pair-end Fragment

library

Short Jumping

Library

Sample SRS004752 SRS004751

Run SRR022868 SRR022865

Library Solexa-8293 Solexa-3932

Average Read Length 101bp 37bp

Insert Length 180bp 3500bp

Number of Reads 1,294,104 3,494,070

Read Orientation Forward Reverse Reverse Forward

Run Base Count 131 Mb 129 Mb

Instrument Model Illumina Genome

Analyzer II

Illumina Genome

Analyzer II

Genome:Escherichia coli (1)

Genome’s Size: 4.639.675

Library Type Pair-end Fragment

library

Short Jumping

Library

Sample SRS009994 SRS269404

Run SRR034509 SRR401827

Library Solexa-11748 Solexa-44956

Average Read Length 101bp 93bp

Insert Length 180bp 5000bp

Number of Reads 10,353,618 1,615,703

Read Orientation Forward Reverse Reverse Forward

Run Base Count 2 GB 300MB

Instrument Model Illumina Genome

Analyzer II

Illumina HiSeq 2000

Escherichia coli (2)

Genome’s Size: 4.639.675

Library Type Pair-end Fragment library Short Jumping Library

Sample SRS302375 SRS269404

Run SRR447625 SRR447685 SRR401827 SRR492488

Library Solexa-25396 Solexa-

44956

Solexa-

42866

Average Read Length 101bp 93bp

Insert Length 180bp 5000bp

Number of Reads 13,479,432 13,457,571 1,615,703 362,200

Read Orientation Forward Reverse Reverse Forward

Run Base Count 2.8GB 2.8GB 313.4MB 67.4MB

Instrument Model Illumina HiSeq 2000

Rhodobacter sphaeroides

Genome’s Size: 4.607.000

Library Type Pair-end Fragment

library

Short Jumping Library

Sample SRS004732 SRS004732

Run SRR125492 SRR034527 SRR034528

Library Solexa-11749 Solexa-11767

Average Read Length 101bp 101bp

Insert Length 180bp 4000bp

Number of Reads 11,339,101 17,746,938 20,162,859

Read Orientation Forward Reverse Reverse Forward

Run Base Count 2.3G 3.6 GB 4.1G

Instrument Model Illumina Genome Analyzer II

6.3 Staphylococcus Aureus

Velvet:

 As, mentioned before starting a pair end assembly Velvet needs to shuffle the pair

end libraries (both the fragment and the jumping libraries) that are divided in two

files, one with the forward and one with the reverse reads. Moreover, as the second

library has an Reverse Forward (RF) orientation it is needed to reverse complement

both strands before shuffling or to reverse complement the whole previously shuffled

library. The second way was the one used. The time of each action done in this

preliminary step is the following:

 The total time of this step is 1.08 minutes and is a constant that will be add every

time to find out the total time of the assembly.

 After the above preliminary step the best k-mer in the interval [19,61] were defined

in two steps. First the k-mer lengths 25, 35, 45, 55 where tested to define the biggest

N50 value between them and then k-mers lengths around this k-mer value were tested

to find out the biggest k-mer in all the interval [19,61]. The results of the steps are

shown in Chart 9 and Chart 2. As shown the k-mer length that produced the better results

is 35.

 In the first test k-mer lengths 25, 45, 55 gave a very low N50 (especially k-mer

length 55) output showing that they are unsuitable for testing this genome and.

Moreover the use of a k-mer length produced a missassembly as the length of the

output contigs is bigger than the genome size. A thing to be noticed, for the correct

assembly, is that the scheme big N50 → few and long contigs and small N50 → lot

and small contigs is verified

 In the second test N50 statistic does not have a big variation in the interval [29, 37]

while for the two last k-mer, 59 and 61, this statistic falls in indecent results. A very

important point here is that the use of k-mer lengths 29, 31, 33, 37 and 39 led to

missasemblies as the length of the output contigs is bigger from the escherichia coli’s

genome. An observation in this test is that with exactly the same parameters two runs

with k-mer length of 35 had a N50 output that differs in ~60kbp. This deviation in the

results is caused by the multithreading. The fact that the reads are not processed

sequentially produces some discrepancies. This factor can lead sometimes in a “bad”

choice as a better k-mer length can be discarded if in a given multithreading run has a

smaller N50 from another k-mer length that is apparently more appropriate.

 As the best N50 is defined the next step is to tested the OpenMP ability of Velvet.

Results are shown in Chart 1 and Table 1

Action Input Size Time

Shuffle fragment libraries 2x140 MB 0:00:26

Shuffle short jumping libraries 2x 161.41 MB 0:00:38

Reverse complement shuffled short jumping libraries 322.82 MB 0:00:04

Chart 1

For staphylococcus aureus: Time in minutes used by velveth, velvetg and the total time of the procedure as a
function of the number of threads.

Percentage of time gained

Cores velveth velvetg Total Time

2 10.0% 5.2% 5.7%

4 6.2% 11.1% 7.2%

8 5.4% 4.5% 4.0%

Table 1

For staphylococcus aureus: Percentages of gained time for a single to a multithreaded execution

 In detail we can see from both tables above that the whole procedure does not scale

very well. With the use of four cores we have an decrease in time of ~7.2% that

compared to the other values in not that big. Also velvetg with the use of four cores

achieve his maximum speed up while velveth achieve this speedup with the use of

two cores. The creation of threads includes an overhead, mainly caused by the

creation of threads and the memory copied each time, that is compensate with the

advantages that a multithreading execution provides. The use of eight cores means the

creation of eight threads and more memory copies that from one hand make the move

from single to multi-threading faster but compared with the use of two or four cores

the overhead introduced is more visible and slows the whole procedure. This is

mainly because the libraries used are of a small size and multhreading have some

limits in the benefits that provides.

1 2 4 8

Total Velvet Time 0:05:32 0:05:13 0:05:08 0:05:19

Velveth Time 0:01:51 0:01:40 0:01:44 0:01:45

Velvetg Time 0:02:33 0:02:25 0:02:16 0:02:26

0:00:00
0:00:43
0:01:26
0:02:10
0:02:53
0:03:36
0:04:19
0:05:02
0:05:46
0:06:29

Ti
m

e

Staphylococcus: Time - Threads Time

ABySS:

N50

 Same tests were made with ABySS to determine the best k-mer in the interval

[19,61]. The first step is shown in Chart 9 and the second in Chart 2.

 In the first test with k-mer lengths 25, 35, 45, 55 the first thing that someone can

notice is that with k-mer lengths 45, 55 the output N50 is 0. This values does not

reflect the reality, as the execution was stopped because with a k-mer above 37 is

impossible to find alignments with the mate pair library as it has reads of 37bp.

Moreover as k-mer length of 25 lead a missassembly the only value that we can

choose, that also produced the biggest N50 value, is 35.

 In the second test is more obvious that k-mer lengths above 37 are inappropriate as

more values are checked. To overcome this result of an interrupted execution the

parameter “l”, that is set automatically equal to the k-mer length, can be override by

the user with a smaller value. This will lead to a complete assembly run but as in this

study the default value of the alignment parameter “l” is used we assume that with k-

mers bigger than the 37 the assembly procedure is stopped. In the interval of k-mer

lengths [29,33] the N50 gradually increase but all the assemblies are indecent because

they produce contings of a total length bigger than the genome size. The next two k-

mer lengths, before the ones that lead to an interruption of the procedure, end in a

correct assembly process from these two runs the one with k-mer length of 37 was

chose due to the big N50 value.

 With the chosen k-mer length we proceed to test the execution time of ABySS in

different nodes. The results are shown in Chart 8.

 Between the use of 1 and 2 nodes there is only a difference of a few second. When

MPI is enabled, the use of two nodes seems to have the same behavior with the full

use of 1 node. Things start to change with the use of three nodes. Time with the use of

three nodes decreases of about ~30.5 % from the single node and of about ~25.4%

when to nodes are used. The use of three nodes in the experiment seems to be the

appropriate as with more nodes times starts to increase again and with the use of 112

and 128 CPUs ,i.e. 7 and 8 nodes respectively, the time becomes bigger from the one

achieved with the use of only one node. With the use of 8 nodes the increment in time

from the fastest execution is of about ~143.2% showing the MPI spends more time in

communication than in the main procedure of assemble. This experiment shows that

for small sizes of libraries the MPI ability of ABySS is limited to the use of a small

amount of cores.

Chart 2

 Staphylococcus Aureus N50 values for both Velvet and ABySS in relation with the k-mer length

6. 4 Escherichia Coli (1)

Velvet:

 Like in the first genome, also in this one the pair end and the short jumping library

need to be shuffled. More over the short jumping library that has a Reverse Forward

orientation need a reserve complement action. For this three preliminary steps the

time was recorded as is a constant that every time need to be add in order to define the

whole time for an assembly

 The total time of this step is 9.42 minutes.

 After the described above action the same test made to Stapylococcus Aureus were

made to the Escherichia Coli genome shown in Chart 9 and Chart 3.

 In Chart 9 it is obvious that with k-mer lengths of 25 and 35 Velvet N50 value is very

small and the total length of the output contigs is ~18 times in the first test and ~4

times in the second more than the genome size. This results show that with k-mer

0

100000

200000

300000

400000

500000

600000

29 31 33 35 37 39 41

N
50

29 31 33 35 37 39 41

Velvet 213338 269602 298823 327929 270361 20655 18359

ABySS 160477 175086 322274 267326 566235 0 0

Staphylococcus Aureus: N50 - Kmer Length
Relation

Action Input Size Time

Shuffle fragment libraries 2x2.50 GB 00:07:35

Shuffle short jumping libraries 2x374.53 MB 00:01:02

Reverse coplement shuffled short jumping libraries 749.06 MB 00:01:05

lengths of 25 and 35 the procedure leads to non concrete results and these lengths

should not be used. With the two next k-mer values the results are totally different.

The N50 produced is more that 17kKbp times higher and the length of the total

contigs is smaller from the examined genome size. The N50 value between k-mers 45

and 55 does not have a big variation and maybe the k-mer length of 45 produce better

results if multithreading was not causing discrepancies. Although as we base our

choice in the better actual N50 statistic the next step of finding the best k-mer is using

as a reference the k-mer length of 55.

 In the second test with all the ±3 around 55 the resulting N50 outputs have small

differences between them with only two k-mers length procucing two N50 outputs of

almost the double value of the others. This k-mers lengths are 55 and 57. In the

previous test the N50 using a k-mer of length 55 was almost the half. The

characteristic of multithreading to be non-deterministic causes big differences in the

output values between same executions and this can lead to wrong decisions. An

equilibration in these results can be the max contig length. Here the execution with a

k-mer value of 51 that resulted in the smaller N50 has a bigger max contig value

compared to executions with bigger N50. This means that the execution produced

long output contigs and that these contigs where fragmented much more than with

other executions leading to a bigger amount of final contigs. In the executions with a

k-mer length of,55 and 57, the N50 has a value that is quite near to the longest

contigs produced in this assemblies. This mean that with the use of these k-mer

lengths the assembly was able to cover the half of the genome with the first few long

contigs meaning that the quality of it was relatively good.

 Choosing 57 as the best k-mer length we continued to the third test: to test the

multithreading abity of Velvet. The results are shown below in Chart 4 and Table2. In the

char we can see that the time decreases almost linearly. The use of more cores

produces a decrement in time for velveth and velvetg leading in a fastest output of the

whole procedure. Both velveth and velvetg give the output in almost the half time

from the single threading execution with the use of eight cores. Especially velveth

decreases the time spend to create the files in more than the half of the first execution.

The overhead that the multithreading introduces its fully overcome the advantages of

OpenMP are clearly visible in this test.

 Something last visible in the results of this test is the N50 value. The differences in

the N50 statistic between the same execution with different number of threads range

from ~700bp to ~500000bp showing that this can be a drawback of a multithreading

execution.

Chart 3

Escherichia Coli (1) N50 values in interval [49,61]

Chart 4

For escherichia coli (1): Time in minutes used by velveth, velvetg and the total time of the procedure as a
function of the number of thread

0

200000

400000

600000

800000

1000000

1200000

49 51 53 55 57 59 61

Velvet 694097 651262 676458 1131731 1193565 691638 691763

N
5

0

Escherichia Coli (1): N50 Value in [49,61]

1 2 4 8

Total Velvet Time 01:06:54 00:58:35 00:47:19 00:39:27

velveth Time 00:34:37 00:30:49 00:20:52 00:16:33

velvetg Time 00:22:35 00:18:04 00:16:45 00:13:12

00:00:00

00:07:12

00:14:24

00:21:36

00:28:48

00:36:00

00:43:12

00:50:24

00:57:36

01:04:48

01:12:00

Ti
m

e

Escherichia Coli (1): Time - Threads Time

Percentage of time gained

Cores velveth velvetg Total Time

2 11.0% 20.0% 12.4%

4 39.7% 25.8% 29.3%

8 55.0% 41.5% 41.0%

Table 2
For escherichia coli (1): Percentages of gained time for a single to a multithreaded execution.

ABySS:

 Following the same steps with ABySS in order to define a good k-mer length we had

the results shown in Chart 9 and Chart 5.

 In first test the best N50 this time was not observed in the same k-mer length with

Velvet as in the experiment of staphylococcus aureus. Here the best N50 was

achieved with the use of a k-mer length 35. None of the test finished with a

missassembly as all the total contigs lengths are smaller than Escherichia coli’s

genome size. K-mer lengths in 35, 45, 55 have a similar N50 output value. Although

in ABySS N50 is not affected by discrepancies, thus we can chose k-mer length 35

based on N50 output as the best assembly for the first test.

 In the second test resulting N50 using the odd k-mers lengths around 35 resulted in

N50 similar values with again a small peak in 37. These values range from ~100Kbp

to ~135Kbp that is a quite small interval. The only think that it can be mentioned here

is bigger kmer lengths lead to a fastest procedure. This is because more spurious

overlaps between unrelated k-mers are minimized and the error correction step’s

duration is less.

 After the two test made above we proceed to the MPI test. The behavior of time in

relation with the used nodes is shown in Chart 8. As is shown again there no a great

decrease in time but the results are more visible than with the smaller previously

tested genome. In detail time fall gradually from the single node execution till the use

of 6 nodes having a decrement in the processing time of about ~33.5% that is similar

with the time gained with the use of four nodes in the staphylococcus aureus. Then the

gain in time cause by the parallelization slightly disappear while increasing the nodes

showing again that for this size of libraries then use of more than 96 CPUs, i.e 6

nodes, is not approapriate in order to achieve better timing.

Chart 5
 Escherichia Coli (1) N50 values in the interval [29,41]

6.5 Escherichia Coli (2)

Velvet:

 In this experiment, testing again an Escherichia coli genome were used two pair end

fragment libraries and two shortjumping libraries instead of one and one respectively

in the first experiment of the same genome. Due to this the preliminary step of

shuffling and reverse complementing will add a bigger overhead in the time. The

results of this preliminary step are shown below:

The total time of all the action mentioned above is 26.20 minutes.

 The examples made in this test follow the same idea. For k-mer length 25, 35, 45, 55

the results are shown in Chart 10. While for the second test done in this time with a k-

mer length of 59 are shown in Chart 7

 The results in the first test have the same behavior with the previous experiment of

Escherichia coli with smaller values. Again with k-mer lengths 25, 35 the output N50

and the total length of the contigs show that the assembly process failed leading to

wrongs results. Then the N50 statistic increase rapidly but with a slight difference of

0

20000

40000

60000

80000

100000

120000

140000

29 31 33 35 37 39 41

ABySS 111205 113512 117015 134889 125419 133445 124655

N
50

Escherichia Coli (1) : N50 Value in [29,41]

Action Input Size Time

Shuffle fragment library 2x3.28 GB 0:10:56

Shuffle fragment library 2x3.27 GB 00:11:40

Shuffle short jumping libraries 2x374.53 MB 00:01:17

Shuffle short jumping libraries 2x149.49 MB 00:00:13

Reverse complement shuffled short jumping libraries 749.06 MB 00:01:53

Reverse complement shuffled short jumping libraries 374.53 MB 00:00:21

the previous experiment. Previously k-mer lengths 45 and 55 had a similar N50 output

but now they differ a lot showing clearly that 55 is an appropriate k-mer length to test

this genome.

 Having 55 as a reference k-mer length the second test took place. The around odd k-

mer lengths produced quite similar results in sense of N50 value with a peak at k-mer

length of 59 that is near to the one observed in the previous experiment of Escherichia

coli. Even if the N50 does not vary a lot the all the assemblies in the interval [49,53]

are missassmblies. The strange in this test is the the highest N50 output is

accompanied from the smaller max contig length. This mean that the other decent

executions create few big contigs and a big amount of small ones, thing that is

verified form the total contigs produced, while the one with the biggest N50 create

contigs of nearby lengths, as the N50 value is similar to the max contig length.

 The results of the multithreading test done are presented below. As shown the total

time that velvet proceeds the data and given the output decreases almost linearly with

the use of two and four cores. Then time continues its decrement but this time not

more linearly introducing some overhead form copies of memory that is not

compensated like before..

Chart 6

For escherichia coli (2): Time in minutes used by velveth, velvetg and the total time of the procedure as a
function of the number of threads

1 2 4 8

Velvet Total Time 2:31:47 2:06:39 1:46:10 1:37:08

velveth Time 0:58:24 0:43:52 0:35:34 0:33:58

velvetg Time 1:07:03 0:56:27 0:44:16 0:36:50

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

Ti
m

e

Escherichia Coli (2): Time - Threads Time

Percentage of time gained

Cores Velveth Velvetg Total Time

2 13.8% 15.8% 16.6%

4 30.1% 34.0% 30.0%

8 33.3% 45.0% 36.0%

Table 3

For Escherichia coli (2): Percentages of gained time for a single to a multithreaded execution

ABySS:

 Even the genome is the same tested in the previous experiment the results are

different. The addition of more pair end and mate pairs libraries changed the k-mer

area that is going to be examined. Chart 10 and Chart 7 show the results of the first two

tests.

 In the first test all k-mers produced reliable outputs as the total contig length is

smaller than the examined genome size. Moreover, the N50 values are very similar

with a small peak in k-mer length 55 that is much bigger than the one used previously,

i.e. 35. This is because the libraries in this example provide more coverage. Higher k-

mer means higher specificity in the graph, and this reduces the k-mer coverage that

the library provides.

 The second test resulted in N50s that differ between them at max 2Kbp. This is a

very small range showing that this entire interval is quite reliable with the only

exception the k-mer length of 61 that created contigs with total length bigger than

4,639.675bp. Another point to be mention is that the best N50 observed in present

three times, one with k-mer length 55, 59 and 61. We discard k-mer length of 61 as

produced a missassembly. In order to decide which k-mer length between the

remaining two will be chosen we based our choice in the maximum contig length and

the chosen one is k-mer with length 59.

 Bigger size of libraries for the same genome led to more clear view about the use of

MPI. The pass of the procedure from a single node to two has a more obvious slope

with a gain in type of about ~31.2%. This percentage was achieved with four and

eight nodes respectively in the previous two experiments. Time continues decreasing,

but with not big differences, and achieves its lower value with the use of 128 CPUs

with a gain in time of more than 50%. In the appendix are shown the run with 144

CPUs and 160 that led to a slower process

6.6 Rhodobacter sphaeroides

Velvet

 Velvet could not run this experiments due lack of RAM.

ABySS

 In this last experiment only the first test took place and its results are shown in Chart

8. The thing that compared to the other execution differs a lot in the k-mer that led to

the best N50 value. As mentioned, when the given k-mer coverage is big and the

genome is small then the best assembly, in sense of N50 output, should be observer

with a big k-mer. In this case things are different as there is provided big k-mer

coverage related to the sizes of the libraries. The bigger libraries are mate pairs. In

these experiments the libraries used for the contiging are small compared to the mate

pairs.

Chart 7

Escherichia Coli (2) N50 values in interval [49,61]

0

100000

200000

300000

400000

500000

600000

700000

49 51 53 55 57 59 61

N
50

49 51 53 55 57 59 61

Velvet 243195 364141 466670 428679 428975 640127 430884

ABySS 133562 134963 133562 135012 134413 135012 135012

Escherichia Coli (2): N50 - Kmer Length
Relation

 The latter ones take part only in the scaffolding stage trying to merge the previously

created contigs. So the k-mer length does not affect significantly the scaffolding stage.

 Due to this a much bigger N50 value was produced with a small k-mer length,i.e 25.

The other two reliable assemblies with k-mer lengths 25 and 55, as the one with a k-

mer value of 45 produced a missassembly, have similar N50 outputs but is limited to

the half achieved with a k-mer of length 25.

 With this k-mer the MPI’s results are showin in Chart 8. The thing that must be

mentioned here is the memory of one node was not enough to complete the procedure

so we cannot have a comparison with a single node execution. Although results here

show that the passage from two nodes to three has a biggest decrease in time of about

. Then the behavior is similar to the one observer in the other experiments, i.e. not big

changes in time. The ideal number of nodes, in sense of faster procedure, became

bigger this time arriving at 10. See appendix

Chart 8

 The time benchmarking of the four experiments with the use of a different size of nodes.

16 32 48 64 80 96 112 128

Staphylococcus 0:09:53 0:09:12 0:06:52 0:07:59 0:08:11 0:08:05 0:12:02 0:16:42

Escherichia Coli (1) 1:01:32 0:52:37 0:49:56 0:49:09 0:42:45 0:40:55 0:41:47 0:43:38

Escherichia Coli (2) 2:48:11 1:55:33 1:51:32 1:40:54 1:37:35 1:33:16 1:27:53 1:21:12

Rhodobacter sphaeroides 4:55:36 2:57:31 2:52:29 2:49:42 2:32:37 2:34:10 2:16:13

0:00:00

1:12:00

2:24:00

3:36:00

4:48:00

6:00:00

Ti
m

e

Processing time in relation with the nodes
used

Chart 9

N50 in relation with kmer length 25, 35, 45, 55 for Velvet and ABySS in Staphylococus Aureus and Escherichia
Coli (1) genomes

Chart 10

N50 in relation with kmer length 25, 35, 45, 55 for Velvet and ABySS in Escherichia Coli (2) and Rodobacter
sphaeroides genomes

0

100000

200000

300000

400000

500000

600000

700000

K-mer
Length 25

K-mer
Length 35

K-mer
Length 45

K-mer
Length 55

Velvet: Staphylococcu Aureus 59019 269676 11171 4068

ABySS: Staphylococcu Aureus 111765 248723 0 0

Velvet: Escherichia Coli (1) 43 31 651676 691437

ABySS: Escherichia Coli (1) 91048 134889 133951 131907

N
50

N50 and K-mer Length Relation Chart (1)

0
100000
200000
300000
400000
500000
600000
700000
800000

K-mer
Length 25

K-mer
Length 35

K-mer
Length 45

K-mer
Length 55

Velvet: Escherichia Coli (2) 51 31 28834 428679

ABySS: Escherichia Coli (2) 125214 133445 133456 135012

Velvet: Rhodobacter
sphaeroides

ABySS: Rhodobacter sphaeroides 763799 334226 252850 316365

N
50

N50 and K-mer Length Relation Chart (2)

6.7 RAM Consumption

Velvet:

The most common way to check Velvet’s memory is to use “top” and observe the

peak value that the RAM memory will reach. Although this command is disabled in

Magerit so we base our memory measurements in a formula given from another

benchmark [29]. This formula gives an estimation of the peak RAM consumption in

velveth and velvetg based on the millions of sequences being assembled. In detail,

for velveth

mem = 1.7N + 2.7

while for velvetg

mem = 2.2N − 4.0

where mem is in GB and N is the number of millions of sequences

Applying this formulas to our libraries we the following summarized results:

 Staphylococcus

Aureus

Escherichia

Coli (1)

Escherichia

Coli (2)

Rhodobacter

Sphaeroides

velveth RAM 10.84 GB 23.04 GB 51.847 GB 86.47 GB

velvetg RAM 6.53 GB 22.33 GB 59.58 GB 104.35 GB

 Here it is clear that the Rhodobacter Sphaeroides cannot be assembled in a node of

96 GB of RAM.

 A thing to notice is for a small amount of assembled sequences velveth needs more

memory while things change as velvetg consumes more memory.

ABySS:

 In ABySS the memory is reported in the output log file if in the execution line is

included the verbose output parameter, i.e. v=-v. For every assembled MPI test made

in the 3 genomes the values of the memory consumed per node are summarized in the

following chart.

 Chart 11

Peak memory used in every nodes one different MPI execution for the 4 experiments

In this Chart 11 and Chart 12 we can see that increasing the nodes memory is shared

between them although the total memory consumption it increases. Obviously for big

genomes the aggregation of memory that ABySS provides make it suitable for the

assembly of large genomes.

Chart 12

Peak total RAM memory consumed in the MPI tests for all the experiments.

16 32 48 64 80 96 112 128

Staphylococcus 7,35 6,72 5,38 4,61 3,98 2,87 1,73 1,54

Escherichia Coli (1) 16,73 13,47 10,84 8,67 7,89 6,35 5,12 4,78

Escherichia Coli (2) 21,97 17,78 15,11 13,26 11,59 10,07 9,15 8,12

Rhodobacter sphaeroides 33,26 29,18 26,17 22,78 19,76 17,22 14,16

0

5

10

15

20

25

30

35
R

A
M

 (
G

B
)

RAM consuption per node in relation with the
CPUs used

16 32 48 64 80 96 112 128

Staphylococcus 7,35 13,44 16,14 18,44 19,90 17,22 12,11 12,32

Escherichia Coli (1) 16,73 26,94 32,52 34,68 39,45 38,10 35,84 38,24

Escherichia Coli (2) 21,97 43,94 53,34 60,44 66,30 69,54 70,49 73,20

Rhodobacter sphaeroides 66,52 87,54 104,68 113,90 118,56 127,54 128,88

0

20

40

60

80

100

120

140

R
A

M
 (G

B
)

Whole RAM memory consued

6.8 Comparison

 The good point that the two assembler have is that they have been paralized and the

can share the procedure reducing the computational time. Velvet is parallelized with

OpenMP that limit him to one node while AbySS is parallelized with MPI so lots of

nodes can be used.

 From the results achieved above we can see that for small genomes Velvet is faster

than AbySS but while the genome gets bigger AbySS can achieve better timing. A

disadvantage of Velvet is the huge amount of RAM that needs for an assembly

procedure. The ability of AbySS to share the memory makes it suitable for big

genomes while for Velvet this is not valid. Moreover, multithreading is not

deterministic - threads will get different data at different times depending on the

scheduler and load of your machine etc. The scaffolding step in particular will give

different answers each time someone runs it. This can cause problem that can be only

treated with executing the assembly with one thread. Although this solution for big

genomes can be very time expensive, more than running two times the same

assembly and check the differences in the N50 value.

 Most of the assemblies done in this gave better N50 values with the use of Velvet.

Althought ABySS is reported that is suitable for bigger k-mer lengths than the one

used.

Another point that the two assembler have in common is that with bigger k-mer

lengths the assembly procedure was sorter. This is cause by the k-mer coverage.

Bigger length of a k-mer mean higher specifity in the graph that limits the coverage

provided leading to shorter assemblies.

Appendix:

VELVET TESTS

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:01:50 00:03:18 0:01:08 00:06:16 59019 273046 2932726

8 00:01:44 00:02:22 0:01:08 00:05:14 269676 778608 2831215

8 00:01:37 00:01:55 0:01:08 00:04:40 11171 54726 2832115

8 00:01:33 00:01:41 0:01:08 00:04:22 4068 20606 2772458

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:01:51 00:02:34 0:01:08 00:05:33 213338 342467 2915661

8 00:01:43 00:02:46 0:01:08 00:05:37 269602 596270 2908076

8 00:01:46 00:02:26 0:01:08 00:05:20 298823 797290 2908045

8 00:01:45 00:02:27 0:01:08 00:05:20 327929 823771 2832215

8 00:01:47 00:02:20 0:01:08 00:05:15 270361 800965 2893877

8 00:01:42 00:01:53 0:01:08 00:04:43 20655 73780 2839881

8 00:01:38 00:02:04 0:01:08 00:04:50 18359 58983 2834780

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

1 0:01:51 0:02:33 0:01:08 0:05:32 322690 823974 2834459

2 0:01:40 0:02:25 0:01:08 0:05:13 200366 825843 2833424

4 0:01:44 0:02:16 0:01:08 0:05:08 373070 826124 2837046

8 0:01:45 0:02:26 0:01:08 0:05:19 278486 825878 2835915

Staphylococcus

Multithreading K-mer Length 35

K-mer Length 29, 31, 33, 35, 37, 39, 41

K-mer Length 25, 35, 45, 55

Action Input Size Time

Shuffle fragment libraries 2x140 MB 0:00:26

Shuffle short jumping libraries 2x 161.41 MB 0:00:38

Reverse complement shuffled short jumping libraries 322.82 MB 0:00:04

Preparation

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:18:41 11:25:37 0:09:42 11:54:00 43 7406 85717329

8 00:18:17 00:32:31 0:09:42 1:00:30 31 259 18813171

8 00:18:20 00:17:48 0:09:42 0:45:50 651676 1299247 4625290

8 00:17:26 00:13:17 0:09:42 0:40:25 691437 2183079 4608739

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:23:00 00:16:50 0:09:42 00:49:32 694097 1201535 4614655

8 00:19:09 00:14:30 0:09:42 00:43:21 651262 1526313 4612360

8 00:17:01 00:14:00 0:09:42 00:40:43 676458 788138 4609069

8 00:16:40 00:13:44 0:09:42 00:40:06 1131731 1249922 4606350

8 00:16:47 00:13:30 0:09:42 00:39:59 1193565 1282816 4605441

8 00:17:31 00:13:35 0:09:42 00:40:48 691638 1194669 4609664

8 00:16:22 00:13:29 0:09:42 00:39:33 691763 1193905 4608824

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

1 00:34:37 00:22:35 00:09:42 01:06:54 770481 1282963 4605230

2 00:30:49 00:18:04 00:09:42 00:58:35 692118 1198957 4605943

4 00:20:52 00:16:45 00:09:42 00:47:19 1193977 1281907 4604097

8 00:16:33 00:13:12 00:09:42 00:39:27 1193290 1283203 4607350

K-mer Length 49, 51, 53, 55, 57, 59, 61

Multithreading K-mer Length 57

Escherichia Coli (1)

K-mer Length 25, 35, 45

Action Input Size Time

Shuffle fragment libraries 2x2.50 GB 00:07:35

Shuffle short jumping libraries 2x374.53 MB 00:01:02

Reverse coplement shuffled short jumping libraries 749.06 MB 00:01:05

Preparation

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 01:07:48 04:29:42 0:26:20 06:03:50 51 9791 91517267

8 01:06:33 02:37:47 0:26:20 04:10:40 31 1002 20265796

8 01:01:06 01:47:57 0:26:20 03:15:23 28834 114108 4555928

8 00:57:21 01:23:26 0:26:20 02:47:07 428679 831525 4637928

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:58:32 01:47:14 0:26:20 03:12:06 243195 934904 4682775

8 01:02:20 01:29:18 0:26:20 02:57:58 364141 1126687 4666132

8 01:02:43 01:34:35 0:26:20 03:03:38 466670 767760 4649613

8 00:58:40 01:14:46 0:26:20 02:39:46 428679 831525 4637928

8 01:00:26 01:10:59 0:26:20 02:37:45 428975 833457 4637823

8 00:59:57 01:09:35 0:26:20 02:35:52 640127 695659 4634775

8 00:54:54 01:03:56 0:26:20 02:25:10 430884 1015295 4635992

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

1 0:58:24 1:07:03 0:26:20 2:31:47 640127 695659 4634614

2 0:43:52 0:56:27 0:26:20 2:06:39 640141 696019 4635748

4 0:35:34 0:44:16 0:26:20 1:46:10 573051 658856 4634199

8 0:33:58 0:36:50 0:26:20 1:37:08 504975 658698 4634456

Multithreading K-mer Length 59

K-mer Length 49, 51, 53, 55, 57, 59, 61

K-mer Length 25, 35, 45

Escherichia Coli (2)

Action Input Size Time

Shuffle fragment library 2x3.28 GB 0:10:56

Shuffle fragment library 2x3.27 GB 00:11:40

Shuffle short jumping libraries 2x374.53 MB 00:01:17

Shuffle short jumping libraries 2x149.49 MB 00:00:13

Reverse complement shuffled short jumping libraries 749.06 MB 00:01:53

Reverse complement shuffled short jumping libraries 374.53 MB 00:00:21

Preparation

ABySS TEST

Time N50 Max Total

20:38:00 111765 364009 3135516

0:09:03 248723 459937 2838175

0

0

Time N50 Max Total

0:18:36 160477 342330 3045194

0:11:04 175086 341343 3082876

0:16:33 322274 947958 2855212

0:09:36 248723 459937 2837746

0:08:02 566235 1300164 2836923

0 0 0

0 0 0

Cpus Nodes Time N50 Max Total

16 1 0:09:55 566235 1300155 2835797

32 2 0:08:36 566235 1300152 2835794

48 3 0:06:52 566235 1300148 2835790

64 4 0:07:59 566235 970692 2836923

80 5 0:08:11 566235 1300164 2836923

96 6 0:08:05 566235 970711 2822323

112 7 0:12:02 566235 970708 2822320

128 8 0:16:42 566235 970708 2822323

Staphylococcus

K-mer Length 25, 35, 45, 55

K-mer Length 29, 31, 33, 35, 37, 39, 41

MPI testing K-mer Length 37

Time N50 Max Total

1:20:12 91048 246339 4563829

1:03:16 134889 413898 4585389

0:59:48 133951 414696 4606922

0:49:37 131907 356831 4615810

Time N50 Max Total

1:07:42 111205 413900 4574950

1:02:18 113512 413900 4571499

1:06:49 117015 413909 4571351

1:03:46 134889 413898 4585389

0:58:21 125419 413906 4583613

0:57:22 133445 414029 4592375

0:53:12 124655 414156 4588461

CPUs Nodes Time N50 Max Total

16 1 1:01:32 134889 413898 4585386

32 2 0:52:37 134889 413898 4585386

48 3 0:49:56 124635 413898 4585714

64 4 0:49:09 134889 413898 4585389

80 5 0:42:45 134889 413898 4585389

96 6 0:40:55 134889 413898 4585389

112 7 0:41:47 134889 413898 4585389

128 8 0:43:38 134889 413898 4585389

144 9 0:45:33 134889 413898 4585389

160 10 0:54:19 134889 413898 4585389

Escherichia Coli (1)

K-mer Length 25, 35, 45

K-mer Length 29, 31, 33, 35, 37, 39, 41

MPI testing K-mer Length 35

Rhodobacter sphaeroides

 K-mer Length 25, 35, 45

 Time N50 Max Total K-mer
 02:48:27 763799 1749633 4474272 25 417060

Time N50 Max Total K-mer

1:12:05 125214 357124 4595528 25

1:09:36 133445 415288 4619925 35

1:07:46 133456 357669 4619536 45

1:02:03 135012 414992 4630089 55

Time N50 Max Total K-mer

1:02:55 133562 415639 4623136 49

1:02:27 134963 414899 4622255 51

1:02:34 133562 414989 4625701 53

1:02:36 135012 414992 4630172 55

1:07:51 134413 414992 4625833 57

1:01:01 135012 415091 4631019 59

0:58:54 135012 415091 4734791 61

CPUs Nodes Time N50 Max Total

16 1 2:48:11 135012 415091 4734791

32 2 1:55:33 135012 415091 4734791

48 3 1:51:32 135012 415091 4734791

64 4 1:40:54 135012 415091 4734791

80 5 1:37:35 135012 415091 4734791

96 6 1:33:16 135012 415091 4734791

112 7 1:27:53 135012 415091 4734791

128 8 1:21:12 135012 415091 4734791

144 9 01:21:32 135012 415091 4734791

160 10 01:23:11 135012 415091 4734791

Escherichia Coli (2)

MPI testing

K-mer Length 25, 35, 45

K-mer Length 49, 51, 53, 55, 57, 59, 61

2:04:43 334226 1750657 4554389 35 417042
 1:53:00 252850 588316 4708867 45 417031
 1:45:50 316365 770679 4594987 55 417072

 MPI testing

CPUs Nodes Time N50 Max Total

K-
mer

8 1 12:01:22 763799 1749633 4473923 25

16 1 11:45:38 763799 1749633 4473923 25

32 2 8:55:36 763799 1749633 4473923 25

48 3 2:57:31 763799 1749633 4473923 25

64 4 2:52:29 763799 1749633 4473923 25

80 5 2:49:42 763799 1749633 4473923 25

96 6 2:32:37 763799 1749633 4473951 25

112 7 2:34:10 763799 1749633 4473951 25

128 8 2:16:13 763799 1749633 4473951 25

144 9 2:15:48 763799 1749633 4473951 25

160 10 2:10:42 763799 1749633 4473951 25

176 11 2:11:15 763799 1749633 4473951 25

192 12 2:27:50 763799 1749633 4473951 25

Bibliography

[1] Genomes. DeWeerdt, S. E. (2003, 1 15). From Genome News Network:

http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp1_1_1.shtml#g

enome1

[2] Genes. (n.d.). From News Medical: http://www.news-medical.net/health/Genes-What-are-

Genes.aspx

[3] Genetics Home Reference. (n.d.). From Genetics Home Reference:

 http://ghr.nlm.nih.gov/

[4] JGI Genome Portal. (n.d.). From JGI Genome Portal: http://genome.jgi-

 psf.org/help/index.html

http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp1_1_1.shtml#genome1
http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp1_1_1.shtml#genome1
http://www.news-medical.net/health/Genes-What-are-Genes.aspx
http://www.news-medical.net/health/Genes-What-are-Genes.aspx
http://ghr.nlm.nih.gov/
http://genome.jgi-psf.org/help/index.html
http://genome.jgi-psf.org/help/index.html

[5] Guía del Usuario de Magerit-Ejecución de trabajos. n.d.

http://docs.cesvima.upm.es/magerit- user-guide/es/magerit/scheduler.html#magerit-

scheduler (accessed 2012)

[6]]Whole genome sequencing. n.d. http://en.wikipedia.org/wiki/Full_genome_sequencing

 (accessed 2012).

[7] Sovic, I. (s.f.). Approaches to DNA de novo assembly. Zagreb: Ruder Boškovic Institute

[8]Shotgun sequencing. n.d. http://en.wikipedia.org/wiki/Shotgun_sequencing

[9] Compeau, P., Pevzner, P., & Tesler, G. (2011). How to apply de Bruijn graphs to genome

assembly. Nature Biotechnology 29, 987–991 (2011) doi:10.1038/nbt.2023

[10] Research. n.d. http://www.phrap.org/index.html (accessed 2012).

[11] De Bruijn Graphs. n.d. http://www.homolog.us/blogs/2011/07/29/de-bruijn-graphs-ii/

 (accessed 2012).

[12] Human Genome Project Information. (2009, 10 9). From Human

 Genome Project Information:

 http://www.ornl.gov/sci/techresources/Human_Genome/project/benefits.shtml

[13] Next Generation Sequencing. (n.d.). From Eurofins mwg Operon:

 http://www.eurofinsdna.com/service-corner/faqs-products-services/faqs-genome-

 sequencing/questions-on-genome-sequencing-services/what-is-a-mate-pair-

library.html

[14] Zerbino D., Birney E. “Velvet: Algorithms for de novo short read assembly using de

Bruijn graphs.” (Genome Research) 2008. 18: 821-829. doi: 10.1101/gr.074492.107

[15] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven J.M.

Jones, İnanç Birol. “ABySS: A parallel assembler for short read sequence data” (Genome

 Research) 2009. 19: 1117-1123. doi: 10.1101/gr.089532.108

[16] Zerbino DR, McEwen GK, Margulies EH, Birney E (2009) “Pebble and Rock Band:

Heuristic Resolution of Repeats and Scaffolding in the Velvet Short-Read de Novo

Assembler”. PLoS ONE 4(12): e840. doi:10.1371/journal.pone.0008407

[17] Queueing System . (2012, 6 2). From Freie Universitat Berlin: http://www.zedat.fu-

berlin.de/Compute/EN/SorobanQueueingSystem

[18] Jones, M. T. (2012, 5 22). Optimizing resource management in supercomputers with

SLURM. From developersWork: http://www.ibm.com/developerworks/library/l-

slurm-utility/

[19] Pop., M., Salzberg, S. L., & Shumway, M. (n.d.). Genome Sequence

Assembly:Algorithms and Issues. Yhe Insitute of Genomic Research. July 2002 (vol. 35 no.

7)

http://docs.cesvima.upm.es/magerit-%09user-guide/es/magerit/scheduler.html#magerit-scheduler
http://docs.cesvima.upm.es/magerit-%09user-guide/es/magerit/scheduler.html#magerit-scheduler
http://en.wikipedia.org/wiki/Full_genome_sequencing
http://en.wikipedia.org/wiki/Shotgun_sequencing
http://www.phrap.org/index.html
http://www.homolog.us/blogs/2011/07/29/de-bruijn-graphs-ii/
http://www.homolog.us/blogs/2011/07/29/de-bruijn-graphs-ii/
http://www.ornl.gov/sci/techresources/Human_Genome/project/benefits.shtml
http://www.eurofinsdna.com/service-corner/faqs-products-services/faqs-genome-%09sequencing/questions-on-genome-sequencing-services/what-is-a-mate-pair-library.html
http://www.eurofinsdna.com/service-corner/faqs-products-services/faqs-genome-%09sequencing/questions-on-genome-sequencing-services/what-is-a-mate-pair-library.html
http://www.eurofinsdna.com/service-corner/faqs-products-services/faqs-genome-%09sequencing/questions-on-genome-sequencing-services/what-is-a-mate-pair-library.html
http://www.zedat.fu-berlin.de/Compute/EN/SorobanQueueingSystem
http://www.zedat.fu-berlin.de/Compute/EN/SorobanQueueingSystem
http://www.ibm.com/developerworks/library/l-slurm-utility/
http://www.ibm.com/developerworks/library/l-slurm-utility/

[20] Ahmed, M., Ahmad, I., & Khan, S. U. (2010). A comparative analysis of parallel

computing approaches for genome assembly. 2011 Mar;3(1):57-63. Epub 2011 Mar

3.

[21] Can Alkan, Saba Sajjadian & Evan E Eichler. Limitations of next-generation genome

sequence assembly. Nature Methods 8, 61–65 (2011) doi:10.1038/nmeth.1527

[22] Dent A. Earl, Keith Bradnam, John St. John, Aaron Darling, Dawei Lin, Joseph Faas,

Hung On Ken Yu, Buffalo Vince, Daniel R. Zerbino, Mark Diekhans, Ngan Nguyen,

Pramila Nuwantha, Ariyaratne Wing-Kin Sung, Zemin Ning, Matthias Haime, Jared

T. Simpson, Nuno. "Assemblathon 1: A competitive assessment of de novo short read

assembly methods." (Genome Research) 2011. doi: 10.1101/gr.126599.111

[23] Michael C. Schatz, Arthur L. Delcher, Steven L. Salzberg. "Assembly of large genomes

using second-generation sequencing." (Genome Research) 2010 Sep;20(9):1165-73. Epub

2010 May 27. doi: 10.1101/gr.101360.109

[24] Jason R. Miller, Sergey Koren, Granger Sutton. Assembly algorithms for next-generation

sequencing data. 2010 Jun;95(6):315-27. Epub 2010 Mar 6..

[25] Zhang W, Chen J, Yang Y, Tang Y, Shang J. A Practical Comparison of De Novo

Genome Assembly Software Tools for Next-Generation Sequencing Technologies.

PLoS ONE 6(3): e17915. doi:10.1371/journal.pone.0017915

[26] Noonan, Jim. "Sequence Assembly and Alignment." n.d.

 http://www.gersteinlab.org/courses/452/09-spring/pdf/SeqAssembly.pdf (accessed

2012).

[27] abyss-pe. n.d. http://manpages.ubuntu.com/manpages/precise/en/man1/abyss-pe.1.html

(accessed 2012).

[28] Genome. n.d. http://www.broadinstitute.org/education/glossary/genome (accessed 2012).

[29] Jennifer Commins, Christina Toft and Mario A. Fares. “Computational Biology Methods

and Their Application to the Comparative Genomics of Endocellular Symbiotic Bacteria

of Insects”. Biological Procedures Online, 2009, Volume 11, Number 1, Pages 52-78

[30] Velvet performance in the computing service of the UPV/EHU. June 10, 2012. General

 Service of Informatics Applied to the Research

[31] Daniel Zerbino. Velvet Manual - version 1.1. August 29, 2008

[32] Steven L. Salzberg and James A. Yorke. Beware of mis-assembled

genomes.Bioinformatics (2005) 21 (24): 4320-4321

http://www.gersteinlab.org/courses/452/09-spring/pdf/SeqAssembly.pdf
http://manpages.ubuntu.com/manpages/precise/en/man1/abyss-pe.1.html
http://www.broadinstitute.org/education/glossary/genome

	1 Introduction
	1.1 What is a genome?
	1.2 What is Genome Assembly?
	1.3 Genome Sequencing
	1.4 Assembly Categories
	1.5 Why is Genome Assembly important

	2. Assemblers
	2.1 Introduction
	2.2 Assembly Errors- Short Description
	2.3 Greedy Graph Assemblers
	2.5 De Bruijn Graph Assemblers (DBG)

	3. Algorithmic Description
	3.1 Introduction
	3.2 Velvet
	3.2.1 Introduction
	3.2.2 Velvet’s de Bruijn Graph description
	3.2.3 Velvet-Assembly procedure

	3.3 ABySS Assembler Description
	3.3.1 Introduction
	3.3.2 Distributed De Bruijn Graph
	3.3.3 ABySS-Assembly Procedure

	4 Magerit & SLURM Description
	4.1 Introduction
	4.2 Magerit 2
	4.3 Simple Linux Utility for Resource Management (SLURM)
	4.4 Executing Jobs in Magerit

	5 Installation In Magerit
	5.1 Velvet Installation
	5.1.2Compilation

	5.2 Fatsx Toolkit
	5.2.1 Introduction-Description
	5.2.2 Installation

	5.3 ABySS installation
	5.3.1 Requierements
	5.3.2 Compilation

	5.4 Running Velvet in Magerit
	5.5 Running ABySSn in Magerit

	6 Experiments
	6.1 Introduction
	6.2 Libraries
	6.3 Staphylococcus Aureus
	6. 4 Escherichia Coli (1)
	6.5 Escherichia Coli (2)
	6.6 Rhodobacter sphaeroides
	6.7 RAM Consumption
	6.8 Comparison

	Appendix:
	VELVET TESTS
	ABySS TEST

	Bibliography

