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1 Introduction 

1.1 What is a genome? 

  Genome specifies life. Genome is the sum of all the biological material that are necessary 

to make and maintain alive every organ, cell and tissue of an organism, from a human to a 

single celled organism. Almost every cell of a living organism has a copy of the genome. 

Some information provided form the genome is used in the same way from all the cells and 

some other consist in some characteristic of distinct types of cells.  

There are two kinds of genome: 

 DNA genome 

- Contained in unicellular and multicellular organisms 

 

 RNA genome 

-Contained in some virus 

The human genome, like all multicellular organisms consists in 2 components: 

 The nuclear genome contained in every cell 

 

 the mitochondrial genome contained in the mitochondrion of every cell 

 These two kinds of genomes are made from DNA molecules. There are thousands 

molecules in the nuclear genome and few molecules in the mitochondrial genome. 

  The DNA molecule consists in 4 different nucleotides. These nucleotides consist of a 

deoxyribose, a phosphate group attached to it, and a base. The base of a nucleotide 

can be one between: Adenine, Thymine, Guanine and Cytosine. Sequences of these 

nucleotides form every one of the two complementary DNA strands-helixes. 

Adenine’s complementary base is Thymine and Guanine’s complementary base is 

Cytosine. Complementary means that if a strand of the DNA has a nucleotide with, 

for example, an Adenine base the nucleotide from the opposite strand in the same 

position will have as a base a Thymine that will bond with Adenine. The way that is 

used to represent them in a graphic or text application is through their abbreviations 

A, T, G, and C. 

  The nucleotide sequence of the genome is present on each of the two strands of the 

double helix of DNA. Given one strand it’s possible to construct the other due to 

complementarity. Each of the strands contains the same information. 

 

 



Organization in a cell: 

Figure   1 
 
A prokaryotic cell. All the chromosomes of a living organism are stored in the Nucleus of that cell. 

 

 

  The nucleus of each cell includes all the chromosomes of the organism. The genome, 

as mentioned, contains all the genetic information stored in the DNA sequence 

derived from the cells in the way of chromosomes. 

   A chromosome is an organized structure of twisted DNA and protein organized in a 

three-dimensional structure.  A discrete part of this twisted DNA that a chromosome 

contains is called gene.  A gene is a molecular unit of heredity of a living organism. 

The DNA stored in a gene is used to create proteins that give the characteristic of 

every individual.  

  In other words, the genome of an organism contains both genes and sequences that 

apparently don’t have any function, called junk DNA. Junk DNA is also the part of 

the DNA that is useless to create proteins. 

  Genomes according to their size (number of base pairs ) are divided in 3 main 

categories : 

 Small Genomes: Bacterial genomes containing few Megabases, 

 Medius Genomes: Lower plant genomes containing hundreds of Megabases  

 Big Genomes: Plants and mammalian genomes: containing Gigabases 

 



 

Figure 2 

Above is shown the nucleus of the cell with the chromosomes. Below is the coiled DNA of a chromosome that is 
divided indiscrete parts called genes. The genes contain the information for making proteins that distinguish 
every living organism. (Genome n.d.) 

 

1.2 What is Genome Assembly? 

  Scientists made significant efforts to create methods that will determine the exact 

sequence of the genome in a living organism. These efforts led to the development of 

a very interesting sub-field of computation biology called Genome assembly. 

Scientists dealing with this field focus on building algorithms and tools that will solve 

the genome assembly problem. 

All the current solutions to this problem are based on the same process. They start 

from multiple segments of the DNA molecule contained in every chromosome. Then 

these segments are randomly broken in a big number of short sequences, called reads, 

with the help of a shotgun sequencer. A shotgun sequencing project is the process of 

breaking the genome of an organism into multiple fragments of a generally small size. 

A more extensive explanation of this process is give in the next paragraph. The goal-

job of a genome assembler is to stitch together the data, produced by the sequencer, in 

a correct way in order to form the sequence of the genome. In order to achieve this 

merge every read is compared with each other, aligned to one another, finding all 

places that two or more reads overlap. The reads that overlap can be merged together 

and the procedure continues like this till the whole genome is created. The outcome of 

an assembly is a collection of big sequences of the genome that are put together 

correctly. 

Genome assembly it’s a hierarchic structure: the reads forms the contigs, the contigs 

form the scaffolds. 



 A read is a sequence determined by the sequencer. 

 

 A contig can be seen like a multiple alignment of reads ,is the part that they 

overlap without a gap 

 

 A scaffold (or supercontig) is an oriented and ordered sum of two or more 

contigs. Usually it contains gaps that are created by errors during the 

assembly process. 

 

  The assembly procedure is commonly referred as the process of solving a jigsaw 

puzzle. First we put every piece next to its other to check if they fit together and then 

we put the bigger pieces that are created into a place. 

  The difficult part of this process, even its not visible now, is that the genome 

contains over 30 percent of sequence that is repeated lot of times and belongs to 

different places of the genome sequence. Thus a repeat overlap can happened between 

fragments that are placed in totally different parts of the genome, thousands or even 

millions of base pairs apart. Gaps between scaffolds in the output final sequence are a 

result of these “wrong” overlaps. 

Due to these repeats, the complexity of the examined genome and innate sequencing 

errors, produced by the using sequencing technology, the outcome of the first 

assembly run are rarely similar with the expected genome. Genomes that contain at 

most 1 error per 10.000 bases are considered finished genomes. These genomes are 

called drafts. Fixing the erros is a very difficult work that requires lots of hours and it 

also very expensive. Because of thsi lots of genomes are never fully assembled and 

they remain in a draft form. 

 

1.3 Genome Sequencing 

Sequencing is the process of reading and decoding the nucleotides of DNA or RNA 

composing the genome of a living organism. In this process the entire DNA is first 

isolated from the target organism. As sequencers have the limitation that they cannot 

take as an input more than a certain number of base pairs the extracted DNA must be 

fragmented. This work is made by a shotgun sequencer. In a shotgun sequencing 

project, named like this due to the quasi-random firing pattern of a shotgun, the 

extracted DNA is randomly broken into millions of small pieces which then are read 

by the sequencer and converted into digital information that can be stored in a 

computer. The results obtained from the sequencer are called reads.  Multiple reads of 

the same DNA are generated by performing several rounds of segmentation and 

sequencing. Then algorithms use the overlapping parts of the different reads to 

assemble them into a continuous sequence.  



The creation of multiple reads from the target DNA mentioned above is done to 

achieve high coverage. Genome coverage is a very important parameter in the 

assembly procedure. Coverage refers to the average number of sequences that 

independently contain a certain nucleotide. Every sequencer produces error but with 

different rates. These errors can be a skip of a base, a misread of a base or both. 

However, using high coverage allows a computer to determine the correct genome 

sequence based on consensus of the majority of the reads. 

 

     

 

                                           

 

 

 

 

Figure 3 

The majority of the sequence determines the consensus 

sequence. In this example the sequences determine T as an error 

as far as C appears more times 

  A generalization of what is mentioned above is that high quality and accurate 

assembly is a product of high coverage. Parts of the genome in that a big number of 

reads overlap are said to have high coverage and the consensus is more reliable and 

parts that few read overlap are said to have low coverage and the consensus is not that 

reliable.  

 
    

 

 

 
 

 

 
 

 

 

 
 

 

 
 

Figure 4 

Multiple copies of the genome  

Produced reads  

Output-Consensus Sequence  

        ATGGCATTGCAA 
           TGGCATTGCAATTTG 
  AGATGGAATTG     
     GATGGCATT GCAA   Reads 
                GCATTGCAATTTGAC 
        ATGGCATTGCAATTT 
   AGATGGTATTGCAATTTG  
 
   
   AGATGGCATTGCAATTTGAC   Output 
                Sequence
  



The multiplication in copies of the examined genome provide 
coverage. The output-consensus sequence is more reliable in the part 
that more reads overlap. 

 
 

  The procedure of sequencing a fragment of DNA or RNA can be done in two main 

ways. Sequencing only one helix of DNA (or RNA) from the 5’ end is called single-

end sequencing (PE) and sequencing both helix of the DNA (or RNA) from their 5’ 

ends is called pair-end sequencing. Mate-pair sequencing is similar to pair-end 

sequencing with a difference in the size of the reads that are produced. Mate paired 

reads are usually much longer than pair ended reads. 
 
 
5’End

 ATGGAATCGCATAAGCCCTGAGGTA  
3’End 

 

Single End (SE) sequencing of DNA fragment 
 

 

 

5’End
 ATGGAATCGCATAAGCCCTGAGGTA  

3’End   

 

 
3’End

 TACCTTAGCGTATTCGGGACTCCAT  
5’End 

 

Pair End (PE) sequencing of DNA fragment in both stand 

 

  The sequencing technology provides another important parameter that is the 

orientation of the pair end (or mate pair) reads. Every orientation has its own 

meaning. The orientation that the reads have can be summarized in the following 

categories: 

 

1. Left Right (LR). This orientation, that can be also found as Forward Reverse 

(FR) or (+/-), means that the reads are obtained from opposite DNA stands and 

due to this the left read is forwad and the right read reversed. Libraries with 

this orientation are often called pair end libraries with Sanger format. 

 

 

 

 

 

2. Left Left (LL) / Right Right (RR). Reads oriented in this way, also named as 

Forwad Forward (FF)/ Reverse Reverse (RR) or (+/+) /(-/-) respectively, are 

obtained for the same DNA strand and due to this they have the same 

orientation. The method that produce read from the same strand is known as 

circularization. Some assemblers, like Velvet, expect paired-end reads to come 

from opposite strand facing each other. Due to this if circularized reads are 

going to be used the first read in each pair must be replaced from it reverse 

complement before starting the assembly process. 

 

                                                    or       



 

 

3. Right Left (RL) . named also as Reverse Forward (RF) or (-/+), are obtained 

from different strands but in the opposite way of the LR pair ended reads. In 

order to uses  these libraries with assemblers that expects traditional Sanger 

format, like Velvet, both reads in each library must be substitute by the reverse 

complement before starting assembling them. The mate pairs library used in 

this study has this orientation 

 

 

 

Pair-ended and mate-pairs reads provide to the assembly procedure constraints that 

define the location of the reads. These constraints lead us in a decrease of the 

ambiguous regions and because of this longer genome scaffolds are created. 

 

1.4 Assembly Categories 

 

  Two are the main categories that the assembly of a genome can be distinguished. 

These are: 

1. De-novo: the reads are assembled to form a sequence not known a priori. 

Sequence reads are assembled in longer contiguous sequences called 

contigs, followed by the process of ordering contigs into scaffolds without 

the help of a reference genome. 

 

2. Mapping/reference: consists in assembling reads based on an pre-existing 

genome sequence. This sequence is used to align the reads of new genome 

avoiding the process of creating data structures as with the de novo 

assembly. The generated sequence is similar with the backbone sequence 

but not identical. 

 

The de novo assembly problems from the mathematical point of view can be 

categorized as NP-Hard. NP-hard problems don’t have an efficient computational 

solution, so they are harder to be solved from the other problems. Even if de novo 

assembly problems take longer time to be solved and they need more computational 

resources they are the only way to assemble genomes that are not suitable with a 

reference one.  In the present study we will focus in the category of assemblers. 



  On the other hand, mapping assembly is faster and need less computational 

resources compared to de novo assembly. Also mapping is a much easier way to 

assemble because it is sufficient to align the read to the reference genome 

 

 

 

1.5 Why is Genome Assembly important 

   The genome sequence can be seen like a treasure for the scientists. The wealth of 

these data led to a big amount of discoveries in the field of biology. These discoveries 

help to understand many principles of life. 

By knowing the genome sequence scientists can find genes faster and easier due to 

some clues that the sequence contains. Scientists can also understand how the whole 

genome works. More precisely how genes work together to direct the evolution and 

the maintenance of an organism. Moreover, because the genes cover the only the 25 

percent of the genome scientists can study more deeply parts outside the genes. One 

of these parts can be the stretches of junk DNA that till now is believe that it doesn’t 

have any biological function. 

 

2.  Assemblers 

2.1 Introduction 

  First assemblers, developed in 1980s, were using longer fragments that allow better 

identification of the sequences that overlap. In this generation of assemblers, called 

first generation, fragments-reads were obtained by Sanger sequencer that can produce 

read up to 1000 bases pairs. Sanger sequencing is based on the chain termination 

method using capillary electrophoresis. In this technology problems were created 

because the algorithms that were using long reads show quadratic or even exponential 

complexity behavior. Also the high cost and the slow throughput of Sanger 

sequencing made it unsuitable for sequencing whole genomes.  

  As the year passed sequencers, aiming on high coverage, became faster and with a 

lower cost they could produce reads that were shorter forming a new generation of 

sequencing called Next Generation Sequencing (NGS). The ways of detecting overlap 

and building the contigs are the same for an assembler regardless of the read's length. 

In practice although, using the existing -first generation- assemblers with short read 

failed for a variety of reasons. Some reason were based on the algorithmic part of the 

existing assemblers as these assemblers impose a minimum read length or they 

require a minimum amount overlap that is too long when short reads are used. 

Another reason was that the part of the algorithm that have to define the overlaps 



between the reads is one or maybe the most critical step in an assembly process. Short 

read sequencing algorithms require a redesignation of this step to make it feasible 

especially since many more short read are needed to achieve the same level of 

coverage. Coverage used with the current technology usually ranges from 30X-50X 

while with the first generation were limited at 8X. 

  Mainly for these reasons, a new generation assemblers has been developed. While 

short reads are faster to align they also created some problems. The major one is that 

shorts reads are more difficult to use with repeats or near identical repeats. Moreover, 

short reads make the NGS platforms not particularly suitable for the sequencing of 

new genomes, especially of big dimension and rich in repeats genomes. Although 

nowadays short reads assemblers are the most used to assemble and they are able to 

assemble most of the genomes. 

  The complexity of an assembly procedure is mainly based on the number of reads 

and their length. More reads achieve better coverage and and longer reads achieve 

better overlap. Due to these factors in the last years scientists are trying to find a 

middle way between first and next generation assemblers in order to use longer reads, 

compared to the one currently used, keeping the benefits of the current technology. 

  The main sequencers that are currently used to create short reads reads are Illumina 

Solexa, Roche's 454 Life Sciences, Applied Biosystems’ SOLiD systems and Ion 

Proton from Life Technologies. They can produce 50-1200 base pairs depending of 

the technology that is used. However, reads produced from these technologies are less 

confident because error rates in these generations are higher. Although, the high speed 

and the low cost can solve this problem with redundant coverage, as a nucleotide can 

be sequenced many times. A summary of every technology is shown in the next table. 

Summarizing, we can say that the main differences between the first and the next 

generation sequencers are the lower cost and the higher throughput of NGS but with 

the disadvantage of higher error rates and shorter read lengths. 

   From 2007 several large genome have been published that use a combination of the 

first generation and NGS. An initial assembly was created with a first generation 

Sanger data and Next generation sequence data were used to fill the gaps. 

 

Technology Sanger Illumina Solexa Roche 454 

Sequencing Machine 3730xl HiSeq 2000 GS FLX Titanium 

XL+ 

Sequencing Method Dideoxy chain 
termination 

Sequencing by 
Synthesis 

Pyrosequencing 

Time per run ~23 Hours ~ 11 days 23 Hours 

Mb (Mega bases) 

per run 

1.9~84Kb 600 Gb 700 Mb 

Read Length 400-900 base pairs 100 base pairs 700-1000 base pairs 



 

Cost per Mb $ 2400   $ 0.03 $ 84.39  

Accuracy 99.999% 98% 99.997% 

Instrument Cost $ 95,000  $ 690,000  $ 500,000  

Strengths  Long read 

length 

 High quality 

throughput 

 High 

throughput 

(highest one) 

 Low cost per 

base 

 Long Reads 

 Fast 

sequencing 

executions 

 Handles well 

GC regions 

Weaknesses – Low 
throughput 

– High cost per 

Mb 

– Handles bad 

AT‐ and 

GC‐rich regions 

– Error rate at 1% 

– Low 
throughput 

– Error rate 1% 



Technology SOLiD ABI Ion Torrent HeliScope 

Sequencing 

Machine 

5500 series Ion Proton Sequencer tSMS 

Sequencing 

Method 

Ligation-based 

sequencing 

Ion semiconductor 

sequencing 

Single molecule 

sequencing 

Time per run 9 days 2 Hours 7 days 

Mb (Mega bases) 
per run 

170 Gb Up to10 Gb 21-35 Gb 

Read Length 35 base pairs + 75 base 

pair 

Up to 200 base pair 25 base pair + 55 

base pairs 

Cost per Mb $ 0.004  $ 4.85  $ 0.005  (per base) 

Accuracy Up to 99.99% 99.6% 99.995% 

Instrument Cost $ 595,000  $ 149,000  $ 999.000  

Strengths  Low cost per 

base 

 High 

throughput 

 If reference 

genome is 

available 

provides high 
accuracy 

 Fast 

throughput 

(fastest one) 

 Low cost 

instrument 

 Library 

preparation 

easy 

Weaknesses – Handles bad AT 

and GC rich 

regions 

– Sequencing 
times usually 

long 

– Most of the 
times doesn’t 
work with 

colour space 

– High cost per 

base 

– Doesn’t prone 

homopolymer 

errors 

 

– High error 
rates 

 

 

 

  In the present study we will focus on the this new generation of genome assemblers 

that use short reads in order to test them their efficiency  with different genome’s size 

in a big machine. The assemblers that are going to be tested are Velvet and 

ALLPATHS-LG for shared memory and ABySS and Ray for distributed memory. 

These assemblers have in common not only that they belong in the new generation of 

genome assemblers but also that they are graph based. Graph based assemblers are the 

most used and successful in achieving decent results with all the genome’s sizes. As 

mentioned, when a reference genome is not available the only way to assemble a new 

genome is by using de novo assembly. The de novo genome assemblers can be 

divided in three main categories: 

 Greedy assemblers that use is an implementation of string-based method 

 



 Overlap-Layout-Consensus (OLC) assemblers and 

 

 De Bruijn Graph assemblers (DBG)  that both use graph based approaches. 

 

  A short description of these three categories in given in the next paragraphs. 

 

2.2 Assembly Errors- Short Description 

 

  Before introducing the graph based de novo assembler categories a short description 

of the errors that can be localized in graph that they create is given. 

  Graph assemblers as all the assemblers don’t reconstruct the 100% of the target 

genome because errors can affect the procedure. These errors can occur for two basic 

reasons: 

1. Incomplete and/or incorrect data that are given as an input to the 

assemble  

2. Limitations on the assembly process 

The problems that can be errors create in a graph (overlap or de bruijn graph) are 

presented below: 

• Spurs: short dead end branches of the main path. They are usually 

caused due to sequencing errors in one end of the read and low 

coverage 

• Bubbles: deviation of the main path in two branches that after rejoin 

together in one path. They are usually caused due to sequencing errors 

in the middle of the read and by the complexity of the target genome. 

• Paths that converge into one and after they separate again into two 

distinct paths. They are usually caused due to repeats in the target 

genome. 

• Cycles: Paths that created a loop on the main path. They are usually 

cause due to repeats in the target genome 

• Chimeric Connections: Connection of genuine contigs in “non-legal” 

way. These connections can occur for a random overlap of two tips that 

belong to different parts of the graph or for an erroneous alignment of a 

read with another part of the genome. 
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Figure 5 

In this figure is shown the structure of the assembly errors that can be encountered in a graph:  

A) A tip, B) A bubble, C)A converging and diverging path, D) A cycle and E) A chimeric connection 

A B 

D E 

C 

A B 



 

2.3 Greedy Graph Assemblers 

   Greedy assembly algorithms were the first de novo algorithms that appeared. Their 

main work is to calculate pairwise alignments of all the reads provided as input. Then, 

these alignments are scored with grades that represent the length of the overlap and 

the percentage of matching bases. The two reads with the highest grade are merged 

together creating a contig. The created contig is placed with all the rest of the reads in 

a "pool" of sequences. The operation of extending sequences from the "pool" 

continues till no more quality overlap exists.  

  The assemblers of this category simplify the graph by passing from the high grade 

edges. Missassemblies are tried to be avoid with mechanisms that terminate the 

extension of the sequences when information that casues conflict is found. This 

information consists in overlaps that two or more reads have with the same contig but 

they don’t overlap between them. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 

An example the greedy approach. The assembler merge first reads 1 and 2 because they overlap in a bigger 
area than reads 3 and 4 and reads 3 and 2. Then merges reads 3 and 4 with the second bigger overlapping area 
and finally 2 and 3, that they  have a small overlapping part. A contig is created in this way using only local 
information. 

  The greedy algorithms although can stuck at a local maxima if a contig is extended 

with a read that would help other reads or contigs from the pool to grow even larger. 

In general the basic disadvantage that they have is consider only local information at 

each step so the assembler can be easily cheated by complex repeats that will lead to 

Read 2: 

Read 1:  

: 

Read 4: 

Read 3:  

: 

Read 4:  

: 

Read 2: 

Read 1:  

: 

Read 3:  

: 



mis-assemblies. Assemblers in this category are also memory intensive making them 

inappropriate big and complex genomes. 

Some assemblers that belong to this category are: 

 

• TIGR 

• CAP3 

• SSAKE 

• SHARCGS 

• VCAKE 

 

 

 

2.4 Overlap-Layout-Consensus Assemblers  

  These assemblers, mainly developed in the first generation of assemblers, operate in 

three main phases and are more suitable for long reads. Every OLC assembler uses 

this 3 phases with a different approach and that’s why in this category there is a big 

amount of different assemblers. The three main phases are the following: 

Overlap Phase: In this step every each read is compared with every other to find the 

area that they overlap and an overlap graph is constructed with the information 

provided by the comparisons. Each read is represented by a node and an edge between 

two nodes shows that these reads overlap. The creation of an edge between nodes 

depends on the assembler’s tactic. The most used tactic is to create an edge if the 

reads-nodes overlap with at least K bases of a Y% similarity. This method makes 

overlap computation a very time intensive step- especially if the set of read is very 

large. 

Layout Phase: In this step the graph, constructed in the previous phase, is analyzed 

and simplified, with the application of graph algorithms in order to identify the paths 

that correspond to segments of the genome sequence. These paths are made by reads 

that they overlap and form contigs. Contigs in this approach form subgraphs that 

contain lots of edges between the node that this subgraph contains. The simplification 

of the graph consist also in merging the nodes of the subgraph in unique. The ultimate 

target is to find a Hamiltonian path (i.e. path that traverses each node in the graph 

exactly once) that will be considered as an approximate layout of the reads in the final 

genome sequence. The procedure of identifying a Hamiltonian path is a NP-complete 

problem for which the time required to solve it increases exponentially with the 

problem's size. 



Consensus Phase: After the previous step the consensus sequence is derived. The 

graph is reduced in large scaffolds with application of alignments in the sequences. 

They ideal outcome is a single scaffold with not gaps, but as repeats and inefficient 

information cause problems in the algorithm the final output consists in multiple 

scaffolds with gaps between. 

 
 

 

Figure 7 

The OLC process. The reads that are provided to the algorithm are examined pairwise for overlaps. The graph 
is created with the reads that represent the nodes and the edges the overlaps between them. Then the 
algorithm searches for the best Hamiltonian path in the graph. Unused nodes and edges are removed. The 
procedure is repeated many times and the resulting sequences are combined to achieve the consensus 
sequence that will represent the genome. (Jennifer Commins 2009) 

 

 

 

 

 

Some assemblers of this category are: 



• PHRAP 

• Celera 

• Arachne 

• Phusion 

• Euler 

 

 

Advantages-Disadvantages 

  The major advantage, due to the three phase implementation of OLC assemblers, is 

that an optimization and a modification in order to make these steps more efficient 

can take place. Any step can be improved independently from the others and driven to 

handle the needs of the assembly procedure. Another advantage is the OLC 

assemblers can use data either from the first generation sequencer, like Sanger, or 

from NGS platforms because the overlaps among the read can vary in length.  

  On the other hand, the cost of the overlapping step is very time intensive as in this 

phase each read is compared to every other to determine the overlaps. OLC, as 

mentioned, can use NGS data but because this data consist in a bigger amount of 

reads, a significant increase of the overlapping step will be caused. Moreover, finding 

a Hamiltonian path (i.e a path that traverses every node just one time) in the layout 

phase is an NP-problem not solvable is not yet polynomial time and this makes OLC 

dependent of heuristics in order to achieve more confident results. 

 

  Generally OLC assemblers are consider being inappropriate for NGS. The major 

reasons are: 

1. The overlap graph (a node per read) becomes extremely big and "heavy" to 

calculate 

2. The small dimension of the reads produces lots of ambiguous connection in 

the graph 

3.  Many algorithms require a minimum overlap that is superior to the length of 

the reads obtained from NGS 

4. The big number of reads, the short overlaps and the high frequency of 

sequencing errors create problems in the execution in the different phases of 

the algorithm. 

 

 

 

2.5 De Bruijn Graph Assemblers (DBG) 

 
  Nowadays the most utilized approach in combination with NGS data is the de Bruijn 

Graph approach. The first application of de Bruijn graphs for the assembly of a 

genome was proposed by Pevzner in 2001 and is currently there is big amount of 

assemblers base on the approach to handle short read data produced for NGS 



platforms. The backbone steps are described below. Although every algorithm adapts 

these steps to its needs. 

 

Calculation of the k-mer and construction of the De Bruijn Graph 

  In order to build the de Bruijn graph, the assembler divides all the reads in 

overlapping segments of length k that are called k-mers. Then uses these k-mers to 

build the de Bruijn graph. In a general way, we can say that the nodes represent the k-

mers and the edges the overlaps between them.  The exact way of building the graph 

differs in every algorithm and will described in detail in the algorithms that will be 

presented in this thesis. The way of using k-mers to build the graph decreases 

construction time because no pairwise overlaps are calculated. Every k-mer is stored 

just one time in the memory despite the times that appears in the genome that makes 

the construction of the graph easy with the use of a hash table. So high redundancy 

does not affect the number of nodes. 

 

Error Correction 

 

  The de Bruijn graphs that are created in the previous step are, usually, very sensitive 

to errors, especially to sequencing ones caused by the introduction of k-mers. As the 

reads are divided in k-mers new sequencing errors can occur. Some assemblers 

preprocess the reads so these new sequencing errors that occur in the k-mers are 

avoided and then they create the graph, so we can say that the error correction is 

included in the graph construction step, and some other assemblers use methods that 

identify and correct the errors by examining the graph structure. The errors that can be 

found in a graph are described in 2.2 paragraph. These erroneous graph structures are 

localized, corrected or removed from the graph. 

 

 

Scaffolding  

 

  In this step every assembler uses information determined by its implementation, like 

pair end sequences, clone maps, restriction maps, mate paired sequences and also, but 

not so often, information from a related genome to gather, orient and glue segments. 

  Usually, scaffolding is based on mate-pair information. Two contigs can be merged 

to one if one end of a mate-pair is contained in the first contig and the other end is 

contained in the second contig. Although, in practice two or more mate-pairs are 

required between the two contigs in order to avoid experimental errors. Often greedy 

approaches are used in order to create scaffolding techniques. These techniques begin 

by using the most reliable information and then they incorporate data. This procedure 

is done in a loop that ends when a new information create a problem with the already 

build sequence. 

 

Finishing 

 

  As mentioned, the assemblies that end in scaffolds separated from gaps are called 

draft assemblies. In these assemblies the process of filling the gaps to obtain the final 

sequence is called finishing. This step fills the gaps, improve the low quality regions, 

resolve missamblies and orders scaffolds. The first sequencing leads us, most of the 

time, to draft assemblies, so a second assembly of the whole DNA is done to fill the 



gaps. Also, sometimes, instead of reassembling the entire DNA an amplifying and 

sequencing of the segments that end to gaps is performed. There are several tools to 

perform this final step like IMAGE. 

 

Some assemblers of this category are:  

• Velvet  

• ALLPATHS and ALLPATHS-LG 

• ABySS  

• Contrail 

 

 

 

Advantages-Disadvantages 

  De Bruijn assemblers greater advantage in comparison with the OLC approach is 

that no computation of the pairwise overlaps is done. As mentioned in the OLC 

approach this computation is very time expensive and the things get worst when large 

data sets are used. K-mers are shorter reads and they are stored just one time in 

memory a thing that allow to build the graph easily and without memory 

consumption. The choice of the k-mers is very crucial in this approach: Small k-mer 

length increases the connectivity but also increases the ambiguous region while big k-

mers increase the specificy but also decrease the connectivity.  

  This approach has a k-mer centric nature meaning that its topology is unaffected by 

the fragmentation of the reads. This makes de Bruijn assemblers efficient for 

comparative genomics or when mixed length reads are used. Moreover, the one to one 

relationship between path and sequences that the de bruijn graph make the 

overlapping sequences follow the same path. 

 An additional advantage of this approach is that the topology of the graph allow to 

treat efficiently the error correction step. Repeats and sequencing errors are easier to 

recognize and removed or correct than in an overlap graph.  

  Finally, the structure of these graphs makes them efficient for cluster memory 

distribution and multithreading in shared memory approaches. This advantage led in 

the creation of multithreading version of some assemblers, like Velvet, and of parallel 

assemblers like ABySS and Ray. 

  On the other hand, the sensitivity of this approach in sequencing errors increase the 

complexity of the graph as more nodes and edges are created. Furthermore, the use of 

Sanger data that is long lead to a loss of information. As long read are sequenced in k-

mers a loss of the long range connectivity occurs. This loss of information can 



generate ambiguous region in the graph caused by short repeats and an accumulation 

of false positive overlaps can take place. Even if the identification of pairwise 

overlaps is time and memory intensive can be extremely useful to determine if the two 

overlapping reads come from the same genomic locus as this method is free from loss 

of information.  

 Moreover, as many eulerian paths can be located in a graph, every assembler using 

this approach has to imply some constraints in order to identify the original genomic 

sequence. The constraints, although, can lead in a creation of NP-hard problem 

instead of a polynomial one. 

 

 

 

 

3.  Algorithmic Description 

3.1 Introduction 

 

  In this study two algorithms are going to be examined in order to analyze their 

behavior in a cluster machine. These two assemblers are Velvet and ABySS. Their 

main difference lies in that Velvet is built for shared memory distribution while 

ABySS for distributed memory. Velvet supports OPEN MP in order to use 

multithreading while ABySS uses MPI to pass messages between the nodes that it 

uses. Their common point is that they belong both to the de novo graph approaches 

that were described previously. They both use de Bruijn graph, built with a different 

approach in each assembler, and they both use the graph to identify and correct errors. 

Their algorithmic steps will be described in the next two paragraphs. 

   

 

3.2 Velvet  

3.2.1 Introduction 

 

  Velvet is a set of algorithms written in C programming language created to 

manipulate de Bruijn graphs for genome assembly. It implements a graph 

structure slightly different from the one proposed be Pevzner in 2001. It’s a 

suitable assembler for short reads, ranging from 25-50bp with a high coverage. 

The use of de Bruijn graphs help to remove errors produced by the sequencing 

machine and resolves repeats caused by the complexity of the genome. The 

removal of the errors and the removal of the repeats are done in two different 

steps. First an error connection step is applied and connects sequences that can be 

merged without ambiguities and then a repeat solver algorithm takes place to 

distinguish paths that locally overlap. 

Velvet is divided in four steps: It has the reads into k-mer, it constructs the graph, 

it corrects erros and finally resolve repeats. These steps have different 



computational requirements with a main bottleneck in terms of memory and time 

on the graph construction step. 

 

3.2.2 Velvet’s de Bruijn Graph description 

 

  Even if the basic idea of the graph structure,as mentioned, was based in 

Pevzner’s (2001) implementation, the graph built by Velvet present some 

differences. In Velvet’s de Bruijn graph a node N is created for a series of 

overlapping k-mers. Neighbouring k-mers overlap by k-1 bases. The last base of 

every k-mer that belongs to that series is its marginal information. The sequence 

of these last bases of each k-mer in a node is called sequence of the node N and its 

represented as s(N). Every node N its glued with Ñ that is its reverse complement 

of k-mers present in N in a reverse order. In this way the graph created is a bi-

graph. This is done in order to make sure that the overlaps in the other strand of 

DNA(or RNA) are taken into account. An directed edge is create between two 

nodes if the last k-mer of the node that the arc starts overlaps by k-1 bases with 

the first k-mer of the destination node. Due to symmetry, if an edge is going from 

node N1 to N2 then there is an edge going from Ñ2 to Ñ1. Any change applied to 

a node or a edge is applied also to its complementary node or paired arc. With this 

structure reads are “translated” as paths in the graph. 

3.2.3 Velvet-Assembly procedure 

 

Graph Construction 

 

  The reads given as an input to the assembler are first divided in k-mers whose 

length is defined by the user. The k-mer’s length determines the quality of the 

assembly. In order to have decent results k-mer lentgth should be smaller than the 

reads length. In this way more overlaps among the k-mers will be observed. 

Generally, a k-mer with length near to the reads length creates a small amount of 

overlaps while smaller kmers increase both the chance of overlaps between kmers, 

caused from errors, and the ambiguous repeats formed in the graph. Moreover, 

smaller kmers increase the connectivity of the graph. The choice of k-mer length 

depends mainly on the coverage of the reads and the complexity of the genome. 

Different k-mers should be tested in order to find a k-mer length that will lead to 

decent results. For short reads with 25bp usually a good k-mer length is k=21bp. 

An important observation here is that only odd lengths can be used in order to 

avoid the case that a k-mer is its own reverse complement (for example k-mer 

ATAT). Such a case is a problem for the current de Bruijn bi-graph 

implementation. Although if the user tries to use an even length, Velvet will 

decrease and the start its execution. 

  Velvet graph construction procedure start with the procession of input files that 

contain a huge amount of reads. These reads are scanned, converted in an internal 

format and then saved in a file called Sequences. Then k-mers are produced from 

reads. Velvet creates a hashtable of n entries and every time that a k-mer is 



observed the algorithm search for it in the hash table. If is not present the hash 

table stores the ID of the read that this k-mer belongs to and the position of its 

occurrence within that read while if is present a reference of this k-mer is stored in 

another file called Roadmaps. In other words, Roadmaps file, determines for each 

read which k-mer was seen in a previous read. The hash table is temporarily saved 

in the memory while Roadmaps file is saved permanently. 

  When all reads are scanned the hash table and the Roadmpas file are used to 

build the graph. Each k-mer which "belongs" to a read (i.e. never seen previously) 

is a node. Each read is a path through the nodes/k-mers created by that read or 

previous reads (cf the Roadmaps file). This path is created by adding edges 

between the nodes.   
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Figure 8 

A. No changes in the Roadmap file. The k-mers are loaded in the hash table 

B. K-mer 2 and 3 where already present in the hash table. A reference in Roadmpas file is creat 

   HashTable   

Index Read ID Position 

1 1 1 

2 1 2 

3 1 3 

4   

5   

6   

READ 1: 

GTACGT 

1
st 

k-mer: 

GTAC 

2nd k-mer: 

TACG 

3
rd 

k-mer: 

ACGT 

   HashTable   

Index Read ID Position 

1 1 1 

2 1 2 

3 1 3 

4 2 1 

5   

6   

READ 2: 

ATACGT 

1
st 

k-mer: 

ATAC 

2
nd

k-mer: 

TACG 

3
rd

k-mer: 

ACGT 

Roadmaps   

Read K Index 

2 2 3 

2 3 5 



 
Figure 9 

Example of a Velvet’s de Bruijn Graph 

 

 

 Graph Simplification 

 

   Usually after the construction of the graph there are a lot of simplification that could 

be done between the nodes as a node is created for every k-mer. This method create in 

the graph chains of nodes that can be merged saving both memory space and 

computation time without losing any information. The merging process take place 

when a node N1 has only one directed outgoing edge to a node N2 that has only one 

incoming edge. These two nodes can be merged in one containing all the information 

that the two starting nodes had. An example is shown in Figure 9 
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Figure 10 

Simplification method results in the merging of two nodes. 

 Error Removal 

 

  As Velvet focuses on topological features error removal take place after the 

graph creation. Errors, cause by the sequence technology or repeats in the target 

genome, form some typical structures in the graph that can be located and 

removed.  



  The most common error that can be located in a graph are spurs. As described 

they are short dead end branches that are separate from the main path extremely 

frequent when NGS data are used.  Tips are formed when an error occurs less than 

k bases from the end or the start of the read. Deleting these branches has only 

local effect as the connectivity of the graph is not changed. Although lack of 

coverage can lead to spurs that are not errors and in order to avoid the removal of 

genuine sequences two parameters are taken into account. These are the length of 

the spur and the minority count. 

  A spur will be removed if its length is less than 2k bp where k is the size of the 

k-mer. Usually spurs longer than 2k bp are not erroneous sequences, and if they 

are they contain big amounts of errors that are difficult to distinguish from the 

correct sequences. In the second case it’s good if the user apply another value to 

the cutoff parameter. 

  Minority count has a spur when the node that starts the derivation has at least one 

edge with higher multiplicity than the edge going to the tip. This mean that the 

path that leads to the tip is made by fewer reads (or small coverage depth) than the 

other paths passing from the derivation node.  

  Using the the above two constraints applied tips are removed iteratively with an 

increasing order of multiplicity. This process removes tips without causing an 

erosion of the graph and reveals paths with higher coverage. When this process 

terminates a simplification step, like the one described before, is again applied in 

this “new” graph as nodes could be merged to improve the graph structure. 

  In a graph another error that can be easily identified are the bubbles, branches in 

the graph that have same start and end node but they differ in the middle, caused 

by error in the  middle of the reads or k-mers, or from random overlaps of two 

nearby tips. They way that Velvet treat them is with the “Tour Bus” algorithm.  

  In briefly, this algorithm, executes a breath-first search in a Dijkstra mode. It 

start from a node and goes through the graph visiting nodes of increasing distance. 

The distance between two nodes  N1 and N2 is the length of s(N2) divided by the 

multiplicity of the edge going from N1 to N2 (i.e divided by the number of reads 

going from N1 to N2). In this way priority is given to more secure-reliable high 

coverage paths. When the procedure founds a node that was already visited it 

backtracks to the closest ancestor. The two paths that end in the node that cause 

the backtrack are extracted aligned and if they are similar they are merged. The 

path that first arrived at the end node(that one that when was encountered the 

second time caused the backtrack action) is uses as a backbone due to its higher 

coverage.    

  Although when the merging takes place the outcome sequence have to relocate 

the connections with the nodes that the two paths were connected to.  In linear 

paths, paths that don’t contain blocks visited more than one time is easy because 



the connections are simply repositioned in the merged sequence. In palindrome 

paths, paths that go through a block one way and then throught it in the opposite 

direction the merging process is more difficult as connectivity will be affected if 

they are treated like linear paths. Due to this  the Tour Bus algorithm marks every 

node in the two branches and starts the merge procedure from an end to the other 

visiting nodes consecutively. Each node of the minority branch is compared with 

the corresponding node of the consensus sequence. All the information,like 

coverage, edges and sequence identifiers, that the minority node had is transferred 

to the consensus node. In this way the marked path is changed dynamically 

without loss of connectivity. 
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Figure 11 

Example of Tour Bus execution. 
A) The search start from A and goes toward the right.. The procedure that goes from B’ and C’ stops at D as 
this node was already visited. The nucleotidic sequences of B’ C’ and B C are removed from the graph, 
aligned and compared.  
B) The two were consider similar and they are merged into BC. Then the procedure continues to the bottom 
path and going through C’ and D’ end in E. The paths C’D’ and C D are compared and merged as were 
considered similar. 
C) The final graph. 

 

 

 

  After the Tour Bus algorithm long straight nodes are created that have high 

coverage. Moreover short nodes that couldn’t be simplified are low complexity 

sequences present a lot of times in the genome with an elevated coverage value. 



So, short nodes with low coverage usually correspond to chimeric connections (i.e 

nodes which incorrectly connect two unrelated contigs). These connections should 

be removed to achieve better results. After Tour Bus a removal of these erroneous 

connections is applied to the graph. Velvet uses a coverage cutoff parameter, set 

by the user, to remove nodes with coverage less than this value. This parameter, 

although, should be set carefully because a high value can lead in gaps formation 

and missasemblies as genuine nodes will be removed. A tactic that is generally 

used to decide the value of this parameter is based on the observation of the 

coverage distribution of the contigs.  

 
 

 

 Repeats Resolution 

 

 This step can be considered as the second phase of error removal. The first phase 

ends with contigs separated in branching points caused by repeats. This step aims 

in determining the genome’s sequence path that goes though the repeated nodes in 

the graph. A repeated node is the one that its sequence is present multiple times in 

the genome. If the repeat is longer than the sequence contained in a node then this 

repeat is a path in the graph from which the genome sequence pass multiple times.  

A simplified version of a repeat structure is presented in the next figure. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 

A simplified common repeat structue 

 

 

 

 Resolution of repeats and scaffolding 

 

 

 Velvet's final graph reduction step involves mate pairs (if provided). An 

algorithm called Pebble is used to exploit paired end information to remove 

repeats and build the final scaffolds. The first that is made is to identify unique 

nodes. Velvet uses coverage to identify these nodes and then Pebble tries to 

connect them using pair end information. For every unique node, chosen in an 

decreasing order of coverage value, estimates the distance from this node to the 

next unique one and then merges the distance information that these two nodes 

provide.   

 

 

Repeat contig 

 

 



 In detail before resolving repeats Pebble build a primary scaffold. For any two 

nodes in the graph Velvet counts the mate pair reads that connect them. Then 

using a Maximun likelihood estimator finds out the distance between them. All 

the inter-nodes that define the distance between the two examined nodes is called 

primary scaffold.  

  Then in order to merge unique nodes it is needed to find out which nodes are in 

the neighborhood of every unique node. It uses the primary scaffold to find nearby 

nodes but as this information is not sufficient, because usually the given insert 

length is bigger that the examined unique’s node length and this creates no 

primary information about the neighboring nodes, Pebble tries to compute the 

distances between the local nodes. This is called secondary scaffold.  

  What is done in an abstract view is shown in the figure. Primary neighbors are 

the unique nodes that are connected with the examined node. This information is 

provided by the primary scaffold. Then Pebble searches for all the directly 

connections of these nodes, flags the nodes that the end that they are called 

secondary neighbors. With the estimation of distance computed between the 

examined node and its primary neighbours plus the distance between these nodes 

and the secondary neighbors it is easy to find the distance between the examined 

unique node and the secondary nodes by doing a subtraction. 

 

 

Figure 13  

  Pebble discovers all the unique nodes that an examined unique node 
is connected. Here unique node A is connected with unique node B. 
For every unique node B which is connected to A, Pebble then follows 
the primary connections associated to B, thus flagging secondary 
neighbors of A. Assuming that all the nodes are laid out on a line, it 
can estimate that the distance from A and this secondary nodes is 
equal to the distance from A to B, minus that from B to A. 

 

  If also long paired reads are used, as Velvet can accept mixed read lengths, 

another algorithm called Rock Band is used to build scaffold. Long reads can be 

used to connect nodes that are produced after the error correction. This algorithm 

is based on the idea that if a long read goes out of a unique node and leads to 

another unique node, these two nodes can be merged. As Pebble, Rock Band 



examines all the unique nodes starting from the one with bigger coverage towards 

to the one with less. For every unique node it counts the long reads that are going 

out from this node and if all reads go to the same destination the two unique nodes 

are merges and the gaps are filled with the long read information. 

 

 

 

 
 

Figure 14 

  An schematic example that shows what Rock Band does. Contigs are the 
displayed rectangular and the reads are the colorful lines that pass through 
the contigs. Let’s assume that the are two unique nodes A and B. The 
algorithm starts with examining the long reads going out from A. Two long 
reads, black and red, goes to the unique node B. The brown long read goes to 
a non-unique node so is discarded. Then all long reads going into node B are 
examined. All come from A except the green one that is discarded as it come 
from a non-unique node. In the end yellow long read that overlaps with the 
others reads is discarded as do not end in one of the unique nodes. 
 

 

 

 

3.3 ABySS Assembler Description 

3.3.1 Introduction 

  

  ABySS is a parallel sequence assembler. It uses a distributed de Bruijn graph in 

order to parallelize the assembly of a huge amount of small reads over a cluster 

machine. This implementation give us the opportunity to increase the memory that 

is available to the assembly process leading to an increase of the genome size that 

can be assembled. Summarizing we can say that that the main strengths of ABySS 

are the small memory foot print, the distributed processing with MPI and that can 

handle very large genomes. 

  AbySS is implemented in C++ and uses Message Passing Interface (MPI) for 

communication between the nodes of the cluster. The cluster’s bandwidth and 

latency affect significantly the performance of the parallel assembly procedure. In 

order to limit the latency in each communication message corresponds a unique 

ID. The process sending the message does not wait for a respond immediately but 

is the current state of the operation using the ID and continues its execution 



processing other operations. The saved information is recovered when a response 

for a message is received with the ID of this message. Then the original task can 

continue its job. Moreover, in order to hide the latency of the network link the 

system allows many operations that can run in the same moment on each of the 

cluster used by AbySS. 

 

 

3.3.2 Distributed De Bruijn Graph 

 

  The distributed de Bruijn graph is an implementation of the normal de Bruijn 

graph that allows storing neighboring sequences on the same computer. With this 

implementation the sequences are stored in different nodes of a cluster. In order to 

achieve this two things are needed. The one is to efficiently compute the the 

location of a k-mer from its own sequence, and the second is to store the 

neighboring information in a place that is independent of the location of the k-

mer. 

  The location that a k-mer will be stored is computed through a hashing 

procedure. A value form zero to three is assigned to every base (i.e zero to 

Adenine, one to Cytosine, two to Guanine and 3 to Thymine)  in order to form the 

representation of a k-mer. From this representation a hash value is computed. The 

same process is applied to the reverse complement of the k-mer and the 2 hash 

values are combined with the XOR operation. The outcome value from the XOR 

operation modulus the number of nodes provide the index that will determine in 

which node is going to be stored the k-mer. 

  The neighboring information is stored in a 8 bit per k-mer vertex. Since the 

alphabet has four symbols (i.e A, C, G and T) the maximum in-degree and out-

degree of each vertex or k-mer is four. The presence or the absence of each edge 

is stored in a single bit. A value of 1 corresponds in the presence of an edge and 0 

to the absence. Neighboring k-mers are generated from the information that the 

8bit vertex provides and their location is computed with the hashing method 

described in the previous paragraph. 

 

3.3.3 ABySS-Assembly Procedure 

 

  The main ABySS assembly process is done in three steps depending on the 

desirable assemble. The first is done without the use of pair-end information. 

Contigs are merged and extended until they cannot be extended any more due to 

lack of coverage or because a further extension will lead to unambiguity. The 

second step uses paired-end information to remove errors and extended more the 

contigs. And the third step uses mate pair information to build the scaffolds 

 

 

De Bruijn Graph construction in ABySS 



   At the beginning of this step sequences with bases determined by N or “.” are 

discarded and the data are loaded in the distributed de Bruijn graph. The k-mers 

are computed by shifting a piece of length k through the input sequence. So if the 

input sequence is length l, (l – k + 1) overlapping k-mers are created. Then with 

use of the hashing fuction described above, the cluster node index of every k-mer 

is computed and the k-mer is stored in the node that belongs to. A sequence is not 

stored in the hash table if the complement of this sequence is already registered in 

the hash table as they are considered equivalent. At the end, as all k-mers are 

loaded in the graph, start the computation of the adjancency. Every k-mer sends a 

message to the eight possible neighbors. If one exist must overlap in k-1 bases and 

this neighboring information is stored.  

 

Error correction 

  In this step the algorithm cleans the graph from sequencing errors. The most 

common sequencing errors are the spurs. They are short dead end branches of the 

main path. As far as these sequences don’t have an extension and they are usually 

unique they are located, traced backward until the deviation point and if the 

branch length is shorter than the threshold that was set they are eliminated. This 

threshold can if is not override by the user is automatically set by the algorithm. 

This procedure is done a lot of times and every time with a bigger threshold length 

to remove bigger branches that weren’t eliminated in the previous iteration. This 

procedure is affected by the choice of k-mer length. A big k-mer length will lead 

to a big amount of short dead end branches and this will make difficult the 

distinction between a sequence error and a correct sequence that cause a branch 

due to lack of coverage. The latter case can results in contigs of a smaller length 

so the choice of the k-mer should be done carefully. 

  Another common sequencing error, caused in the middle of read, which can be 

located in a graph is a deviation of the main path in two branches that after rejoin 

together is called bubble. To remove bubbles ABySS locates every deviation point 

in the graph. Then each path from a deviation point is traced forward searcing for 

other paths that join after n nodes where is limited in the interval [k, 2k]. If a path 

that joins is found then the path with the lower coverage is removed and stored in 

a log file. Although, not only sequencing errors led to the formation of bubbles but 

also repetitive genome regions. In such case the removal of a bubble will 

minimize the repeat to a single sequence. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 
Short dead end branches are located. The branches iside the elipses are considered sequencing errors. These 
errors can be of length k-1 or less. The assembly procedure trim these branches to prevent a premature end of 
the algorithm.  

 

In the next page: 

Figure 16 

Two bubbles: The first is a simple bubble that created from the deviation of two branches. The second is more 
complex as it consists in the intersection of two bubbles. The bubbles can be of length 2k-1 or less 

Figure 17 

The removal step: The first bubble is removed with the help of coverage. The path with the lower coverage is 
removed and saved in the Log file. The removal of the second bubble creates a dead end branch but I can also 
create a bubble of a lower level.plex as it consists in the intersection of two bubbles. The bubbles can be of 
length 2k-1 or less. 

 

Figure 16 
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Figure 17 
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The removal step is shown. The first bubble is removed with the help of coverage. 

The path with the lower coverage is removed and save in the Log file. The 

removal of the second bubble creates a dead end branch  but  also creates a bubble 

of a lower level. 

 

Merging Vertices 

  In this last step of the first phase the algorithm merges vertices that are connected 

via unambiguous edges. If there is an unsolved ambiguity in the in contigs 

extension the procedure of contig’s length increase is stopped. Then the remaining 

connected nodes are merged creating independent contigs that overlap by no more 

than k-1 bases. The output contigs are in FASTA format. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 

 

 

 

 

 

 

 

 

 

 

Figure 18 

Unresolved ambiguities lead to the creation of lot of contigs. These are merged to create independent 
contigs in FASTA format 

 

Second Phase-Use of pair-end information in order to merge contigs 

 

In this phase the pair end information, if provided, is used to merge the previously 

created contigs. This information helps in the way of finding contigs that can be 

connected together by removing ambiguities. The contigs created in the previous 

phase are aligned, linked and then filtered to remove connecting errors between 
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them. In detail every k-mer in the single-end assembly is considered to be unique. 

Then the algorithm maps reads with k consecutive correct bases. ABySS disposes 

a set of aligners that can be used in different cases. Some short and long read 

aligners are presented in the following table.  

 

Short read Aligners 

Aligner’s Name Strengths 

Bowtie Fast 

BWA Useful with small gaps 

GSNAP Useful with big gaps 

 

Long read Aligners 

Aligner’s Name Strengths 

BLAST Many reference genomes 

BLAT Useful with large gaps 

BWA-SW Useful with small gaps 

Exonerate Easy to use 

GMAP Useful with large gaps 

MUMmer Align two different genomes 

 

 

  Two contigs can be merged if at least p pairs join the contigs. For each contig, 

Ci, created in the previous phase,  is generated a set of contigs, Pi, that are paired 

to this contig. Then a search in the de Bruijn graph is made to find a unique 

sequence of contigs from Ci that visits each Pi. Heuristics are used to limit the 

numbers of the visited vertices because the repetitive areas of the graph can lead 

to a huge computational cost. This procedure is repeated for all the contigs and at 

the end the paths are linked together to create the final contigs. 

 

 

Third Phase- Use of mare pair information in order to build scaffolds 

  The basic idea behind scaffolding is that distance estimates are found in the same 

way paired end distance estimates are found, but the estimates aren't used so much 

for the distances as for linking information. A scaffold graph is formed from the 

distance estimates, and a number of transformations and heuristics are used to 

simplify the graph as much as possible. Then scaffolds are made along 

unambiguous paths where the number of N's inserted between contigs is related to 

the estimated distance between the contigs. 



4 Magerit & SLURM Description 

4.1 Introduction 

  In this chapter will be described the environment in which the tests were made. The 

architecture of Magerit and SLURM, that is the queuing system of Magerit, will be 

described briefly and a short description of how to submit a job in this cluster 

machine will be presented.  

  Magerit is the name of the one of the most powerful supercomputers of Spain. The 

second version, installed in 2011 reached the 1st position of Spain, 44th of Europe 

and 136th fastest of the world. This computer is installed in CeSViMa, a research 

center of the Technical University of Madrid. The experiments done in this study are 

made in this second version to take advantage of all the features that such a machine 

can give.  

 

4.2 Magerit 2 

  Magerit is a cluster consisting of 260 nodes. The majority of them (i.e 245 nodes) 

are eServer BladeCenter PS702 2S with 16 cores in two 64-bit POWER7 processors 

(eight core each) of 3’3GHz and 32GB Ram. The rest 15 nodes are eServer 

BladeCenter HS22 with eight Intel Xeon 2’5GHz processors with 96GB RAM. The 

total system implies 4,160 CPUs and 9.2 TB RAM. All the nodes operate 

independently and all with the same software configuration. The system has a 

distributed storage system with a capacity of 192, TB provided by 256 disks of 750 

GB each, which used a distributed and fault tolerant system (GPFS).  

  Moreover Magerit, due to its dimensions, process batch jobs with large processing 

requirements.  In order to handle these jobs, which run in hundreds of CPUs a few 

days, it organizes them with a queue manager called SLURM as it is impossible to use 

more conventional access to the resources. SLURM plans the distinct jobs having as 

an object to maximize the use and the power of the computer and process user’s jobs 

as fast as possible without create starvation problems. 

 

4.3 Simple Linux Utility for Resource Management (SLURM) 

  SLURM is an open source, fault tolerant system for high scalable cluster 

management and job scheduling used in Linux both small and large Linux clusters. 

This system provides the basic functions. First, it allocates exclusive and/or non-

exclusive access to the nodes of the computer to the users for a duration of time 

giving them the chance to execute a job. Second, for every job, that is usually a 

parallel one, distributed between the available nodes, it provides a framework for 

starting, executing and monitoring this job. Third, it manages pending jobs and their 

requirements, which can create conflicts, with the use of a queue. 

http://en.wikipedia.org/wiki/CeSViMa
http://en.wikipedia.org/wiki/Terabyte


  A queuing systems aims to provide a fairshare scheduling. This means that all users 

are tried to be served in a fairly way when they need resources. In detail, a job starts 

its execution before another one is based on two parameters. First when this job was 

submitted and second how many resources are available at this times to the users. 

Users that used less CPU time in the last job submissions has a priority from the 

recent more active users. Of course this convention takes place if resources are not 

available for all the user that submit a job at a certain time. 

  The architecture of slurm is based on a centralized manager that controls both the 

resources (i.e nodes) and the jobs by allocating them in the computer nodes. This 

manager called slurmctld implements also a management daemon. Each node also 

implements a daemon called slurmd that controls the tasks that are going to be 

executed in this node. It waits for a job, executes that job, return a status and waits for 

more jobs.  Moreover it provides fault-tolerant hierarchical communications. Slurm 

contains also other daemons that are not going to be mentioned and analyzed. Other 

daemons are not going to be explained as the are not so relevant in this study. More 

information about slurm can be found here:[18] 

  SLURM daemons manage nodes, partitions, jobs and jobs steps. Partitions are sets 

of nodes collected in logical groups.  They can  be seen like job queues, each of which 

has a collection of constraints such the size limit a job, the time limit of a job, 

permissions that a user has in this partition etc. A job is a resource allocation for a 

specified amount of time. Jobs are allocated nodes within a partition until available 

resources, such as memory, nodes, processors etc. are exhausted. Finally, job steps 

are, usually parallel, tasks inside a job.  Once a job is assigned in a set of nodes a user 

can start multiple job step in the allocation. Multiple job steps can run in an 

independent part of the allocation or a single job step can run in all the nodes. A 

schematic representation follows: 

 

 



 

Figure 19 

SLURM entities described above 

 

 

4.4 Executing Jobs in Magerit 

 

  A job can be submitted by a user in a script format called batch or can be interactive 

and executed in real time. A user can add constraints to the execution, like for 

example how many nodes and how many processors  this job is allowed to use, what 

of partition is going to be used for the execution, the time limit of the job etc. When 

the job is submitted the queue manager will try to find the resources defined in the job 

file among the available ones, optimizing the machine use and decreasing the waiting 

time of other users. In other words the queue manager tries to maximize the efficiency 

of the supercomputer. 

 A summary of the steps that the user should do in order to execute a job in Magerit is 

the following: 

1. Connect to an interactive node 

2. Prepare the executable that want to send in the supercomputer 

3. Prepare the job definition 

4. Send the job to the queue manager 

5. Wait until the system assigns the nodes and executes the load of the job 

6. Retrieve the results and send new jobs 

  Although some of the parameters that can be defined in the job file cannot exceed a 

predefined value. In Magerit, for example, the Quality of Service (QoS) implies an 

upper limit to the number of CPUs and the wall clock limit that each user has. A 

standard quality of service has the following characteristics. Every user, depending of 



the project that he is working for, can use a subset that will be assigned to him. In this 

way every time a user submits a job can indicate a different QoS from the ones that he 

is allowed to use. 

Quality of Service Cpus Time 

debug 16 00:10:00 

class_a 1024 72:00:00 

class_b 1024 36:00:00 

class_c 1024 24:00:00 

standard 512 72:00:00 

premium 1024 72:00:00 

 

  A user not only can submit a job but also check the state of a job, block a job, see a 

list of the running jobs and cancel a job. These commands are available thought a 

SLURM-Moab interface that provides the following commands: 

 

jobsubmit: Submit a job 

jobcheck: Check the state of a job 

jobhold: Block/unblock a job 

jobq: List of running jobs 

jobcancel: Cancel a job 

As mention,in order to submit a job a batch file should be created. A typical batch file 

is presented in the next picture. It contains only the necessary declarations. These 

declarations and some optinial ones are described here: 

#!/bin/bash 

 Indicates where shell is located in the system. By default all systems that have Bash 

installed they have shell under /bin directory. By using this line the script can be 

executed as a normal program. 

#@ class  

Indicates the QoS 

#@ initialdir        

Sets the working directory of the script. All the specified routes (output, error..) are 

relative to this directory. If not specified is considered to be the current working 

directory (.) 

#@ output            



Indicates where the standard output of the job will be redirected. This file contains the 

combined output of all the processes that took place during the execution of the job, 

directly or indirectly, in any of the assigned nodes. 

#@ error         

The only difference with the standard output directory is that here it indicated where 

the error output of the work will be redirected. 

#@ total_tasks       

Indicates the number of CPUs that are needed. The maximum value is defined by the 

QoS. 

#@ wall_clock_limit  

Indicates the time limit of a job. The maximum value is defined by the QoS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20  

Presentation of a typical job with the most important parameters 
 

5 Installation In Magerit 

5.1 Velvet Installation 

 

5.1.1Requirements 

 

  Velvet can be installed in a 32bit Linux environment with at least 12GB of 

physical memory. Although 32bit systems have memory limitations that can lead 

to restriction for the assembly process. To avoid these constraints Velvet should 

be installed in a standard 64bit Linux environment. 

#!/bin/bash 
 
#--------------------- Start job description -------------------- 
 
 #@ class            =  
 
 
#@ initialdir       =  
 
 
#@ output           = res/out-%j.log 
 
 
#@ error            = res/err-%j.log 
 
 
#@ total_tasks      =  
 
 
#@ wall_clock_limit =  
 
 
 
 
#---------------------- End job description --------------------- 
 

#-------------------------- Start execution -------------------------- 

# Run our program 
 
srun ./[myprogram] 
 
#--------------------------- End execution -------------------------- 

 

Indicates where shell is located in the 

system. By default all systems that have 

Bash installed they have shell under /bin 

directory. By using this line the script can 

be executed as a normal program. 

Definition of the QoS 

Sets the working directory of the script. All 

the specified routes (output, error..) are 

relative to this directory. If not specified is 

considered to be the current working 

directory (.) 

Indicates where the standard output of the 

job  will be redirected. This file contains the 

combined output of all the processes that 

took place during the execution of the job, 

directly or indirectly, in any of the assigned 

nodes. 

The only difference with the standard output 

directory is that here it indicated where the error 

output of the work will be redirected. 

Indicates the number of CPUs that are needed. The 

maximum value is defined by the QoS. 

Indicates the time limit of a job. The maximum value 

is defined by the QoS. 



  In the present study, Velvet version 1.2.03 was built in the 15 eServer 

BladeCenter HS22 nodes that have eight Intel Xeon 2.5GHz processors with 96 

GB RAM to exploit the amount of memory and avoid as much as possible the 

assembly constraints created by the lack of memory. 

 

5.1.2Compilation 

 

In a GNU environment in order to install Velvet it is need only to type: 

make 

Lot of settings can be used in order to serve our needs in the assembly procedure. 

We used some of them to achieve better results and test Velvet in different ways. 

  Velvet version 1.2.03 was built in Intel nodes of Magerit with the following 

command: 

make “OMENMP=1”  “CATEGORIES=4”  “MAXKEMRLENGTH=61”  

 OPENMP=1 allow to turn on multithreading. The program can use multiple 

cpus that are located in the same machine. In our case the number of CPUs can 

vary from 1 to 8. This option will lead to faster results especially when big 

genomes are used. To enable this option when an execution is made it is needed to 

set the environment variable OMP_NUM_THREADS=#CPUs in the job file that 

will be submitted. Velvet will use OMP_NUM_THREADS+1 CPUs to run the 

assembly procedure. 

 CATEGORIES=# allows to distinguish reads from different insert libraries. By 

default Velvet uses on two short reads categories. This variable was extended to 4 

as is the biggest number of insert libraries that is going to be used in this study. 

The bigger the number used in this variable the more memory will be required to 

run Velvet. 

 MAXKEMRLENGTH=# allows to increase the hash length. The default 

maximum value used in Velvet is 31bp. The k-mer length determines in a big 

level the quality of the assembly. In this study Velvet was built with 

MAXKEMERLENGTH=60 in order to be tested with k-mers up to 60bp. Setting 

a bigger number for the hash length will require more memory in order to store 

longer words. 

 Other setting not used in the present study but that can be usefull are: 

BIGASSEMBLY=1 allows to store more reads. If the libraries used contain more 

2.2 billion reads Velvet needs more memory to store them. Setting 

BIGASSEMBLY=1 more memory is assigned in order to store these reads. 



LONGSEQUENCES=1 allows to increase the read lengths that can be stored. By 

default read lengths are stored on 16bit signed integers. Because of this if longer 

than 32kbp reads are used in the process Velvet should build using 

LONGSEQUENCES=1 in order to provide the memory that is required to store 

coordinates. 

 

5.2 Fatsx Toolkit  

5.2.1 Introduction-Description 

  This toolkit was installed as Velvet expects that pair-end reads come from 

opposite strands facing each other. As in this study pair-end reads produced from 

the same strand are used, a reverse complement of these reads must be produced 

before running Velvet. 

  FASTX-Toolkit  is a collection of tools that can process FASTA/FASTQ short 

reads.  The available tools  are described in the web site :  

http://hannonlab.cshl.edu/fastx_toolkit/ 

  From the available tools that FASTX-Toolkit provides in the present study only 

FASTQ/FASTA Reverse Complement was used, that produces a reverse 

complement of each sequence in a FASTQ/FASTA file. 

http://hannonlab.cshl.edu/fastx_toolkit/


5.2.2 Installation 

  In order to install FASTX-Toolkit in Magerit libgtextutils-0.6 or above is 

required. Both FASTX-Toolkit and libgtextutils can be downloaded from FASTX 

web site: 

http://hannonlab.cshl.edu/fastx_toolkit/download.html 

  Libgtextutils-0.6.1 was downloaded and installed in the local path as follows: 

./configure --prefix=/usr/local/libgtextutils 

make 

make install 

  After libgtextutils installation FAST-Toolkit - 0.0.13.2 was downloaded and 

installed. Before running FASTX’s “configure” script, the environment variable 

PKG_CONFIG_PATH had to be set. The actions done were: 

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:$PKG_CONFIG_PATH 

./configure  --prefix=/usr/local/Fastx 

make 

make install 

 

5.3 ABySS installation 

5.3.1 Requierements 

   AByss in order to be installed requires the following libraries: 

  [Boost](http://www.boost.org) 

 [sparsehash](http://code.google.com/p/sparsehash) 

  [Open MPI](http://www.open-mpi.org) 

It requires also a C++ compiler that supports OpenMP. 

 

http://hannonlab.cshl.edu/fastx_toolkit/download.html


5.3.2 Compilation 

  

As the pair-end mode of ABYSS does not support SLURM, some addition and 

changes were made to abyss-pe script for adding this support. The code added 

to the script in order to integrate abyss-pe with SLURM was: 

 

#Integrate with SLURM 

 

ifdef SLURM_JOB_NAME 

name?=$(SLURM_JOB_NAME) 

endif 

ifdef SLURM_JOBID 

k?=$(SLURM_JOBID) 

endif 

ifdef SLURM_NTASKS 

np?=$(SLURM_NTASKS) 

endif 

 

Moreover, the np option of abyss-pe specifies the number of processes to use 

for the parallel MPI job. Without any MPI configuration, this will allow you to 

use multiple cores on a single machine.  To use multiple nodes for the 

assembly ABySS should be run we the use of the parameter np=(the number 

of threads that are going to be generated). The abyss-pe driver script will start 

MPI process like so: mpirun –np 8 ABYSS-P. Although, users in Magerit does 

not have the permission to run mpirun. Users can use only srun to submit their 

jobs. As in the Magerit scheme, srun call mpirun internally changes are needed 

in order to deal with this scheme. The changes to abyss-pe script are the 

following: 

 

ifdef np 

#   ORIGINAL: $(mpirun) -np $(np) ABYSS-P $(abyssopt) 

$(ABYSS_OPTIONS) -o $@ $(in) $(se) 

    srun ABYSS-P $(abyssopt) $(ABYSS_OPTIONS) -o $@ $(in) $(se) 

else 

    ABYSS $(abyssopt) $(ABYSS_OPTIONS) -o $@ $(in) $(se) 

endif 

 

where  #ORIGINAL  and ABYSS-P is the parallel (MPI) de Bruijn graph 

assembler used to run ABySS in parallel. ABYSS-P its called automatically 

from abyss-pe. 



As the above changes are made the installation can take place. We suppose an 

installation of ABySS in the local directory (i.e /usr/local ). As ABySS will 

install with MPI support, OpenMPI executables must be in the local path. To 

place the executables in the local path the command is: 

module load openmpi 

Next, environment variables CC and CXX are needed to be set. CC 

environment variable defines what C Compiler is going to be used while 

specifies the C++ Compiler that is going to be used. These variables are set as 

follows: 

export CC=mpicc          

export CXX=mpixcc 

 

where mpicc is compile and link MPI programs written in C while mpicxx 

compile and links MPI programs written in C++. They both provide the 

options and any special libraries that are needed to compile and link MPI 

programs. 

As the above preliminary steps are made the process continue to the main 

building part. The steps made are the following: 

./configure --prefix=/usr/local/ABySS 

 

make 

 

install 

 

 The default maximum k-mer size is 64 and may be decreased to reduce 

memory usage or increased at compile time. ABySS was installed keeping this 

default value. Although this value can be change in the configuration as 

follows: 

./configure --enable-maxk= # 

Where # is the desired value. 

 

 

5.4 Running Velvet in Magerit 

  In this paragraph are going to be analyzed only the parameters of Velvet used in this 

study. There is big amount of other parameters that can be used to achieve the 

desirable results that are described in detail in the Velvet Manual [31] 

  First of all as we built Velvet activating multithreading we have to define the number 

of threads that are going to be spawned during the assembly procedure. As mentioned, 



the only thing needed is to define the number of threads by setting the environment 

variable OMP_NUM_THREADS equal to the desired thread quantity – 1. Although, 

something very important is that when variable OMP NUM THREADS is set to n, 

velveth uses n + 1 in the parallelized part, but the speed up corresponds to n.  Thus 

when OMP NUM THREADS = 1 velveth uses two threads but the time is equal to the 

serial version. This is a very important in this study as the time of Velvet’s 

experiments will be analyzed. 

  In the present study Velvet will only be tested with pair end FASTQ data. Although 

Velvet supports also other formats like FASTA, SAM, BAM, ELAND, GERALD, 

FASTA.GZ and FASTQ.GZ. In pair-end modem, Velvet, handles only interleaved or 

“shuffled” fasta and fastq files, where each pair is seen one after the other. The read 

indexed as 1 is paired with the read indexed as 2, 3 with 4 etc. Although, because 

most of the pair end libraries are divided in two different files a merge of these files is 

required. In order to merge in one file the forward and the reverse reads from these 

two different files, an initial step is needed before the main assembly procedure starts. 

Velvet provides a Perl script to perform this preliminary step in order to “shuffle” the 

two files of each library used in the assembly. This script can be executed in the 

following way: 

shuffleSequences_fastq.pl library_1. fastq library_2.fasta output_library.fastq    or 

shuffleSequences_fasta.pl library_1. fasta library_2.fasta output_library.fastq  

depending on the file format. 

  After shuffling short jumping libraries usually are produced with and RF orientation 

must need to complement reverse. To do this the script fastx_reverse-complent must 

be applied to the circularized shuffled library. The way to do this is: 

fastx_reverse-complement   -i   shuffledlibrary.fastq     -o   

reversedshuffledlibrary.fastq     

where –i is for input and –o is for output.  The assumption used in this script is that 

the library that is going to be reversed is Illumina. Although in this study the libraries 

are shifted to have the  Sanger placement type. This shift needs the addition of the 

parameter   –Q 33 in the execution of fastx reverse complement script before 

declaring the input library. Depending on the sequence technology use -Q parameter 

take different values. This reverse and complement action in the circularized libraries 

must be applied only to one strand, depending on the orientation, and then the library 

can be shuffled. 

  After receiving the shuffled and reversed libraries the procedure can proceed to the 

main assembly steps. The first step is to create the files that Velvet will use to build 

the graph. The program that does this job is velveth. Velveth reads the sequence files 

and produces a hashtable and the output files Sequences and Roadmaps, which were 

described in the description of Velvet’s algorithm. 



  To do this work velveth needs as an input an output directory were the produced 

Sequences and Roadmaps file are going to be stored, the k-mer length, the file format 

of this files that are going to be assembled, the read category that these file belong and 

then name of the files. The syntax can be described as: 

velveth   output_directory   k-mer_length   -file_format  -read_category   filename 

  The read category can be one of the following: 

  short, shortPaired, long, longPaired 

  Instead of using a k-mer lots of k-mer’s length can be tested by replacing k-

mer_length  as  follows: 

Velveth output_directory   Start, Step, End    ...rest of the files… 

  This example tests all k-mers from the starting k-mer length (Start) until the ending 

k-mer length (End) with a step of Step. The output directory produced each time will 

have the following name. 

Ouput_directory_k-merlengt 

This way avoids doing all the redundant computations. 

  The next step consists in the execution of the main part of Velvet’s algorithm. 

Velvetg is part that the de Bruijn graph is built and manipulated to arrive at the final 

results of the assembly process. The syntax of velvetg is as follows: 

velvetg   out_directory   …other parameters… 

where the output_directory should have the same name with the output directory of 

velveth, as velvetg reads the Sequence and Roadmaps file that the former produced 

and stored in this directory to build the de Bruijn graph. 

As only pair end libraries will be assembled, two parameters must be specified to 

activate the pair-end mode in Velvet: the expected insert length and the expected 

short-read k-mer coverage. The expected insert length is the length of the sequenced 

fragments that produced the reads. If is not known can be replaced from an 

estimation. The expected k-mer coverage is a parameter that is used in Pebble to 

resolve repeats. This parameter can be set as auto, can be set approximately or can be 

calculated after one execution of Velvet with the use of estimate-exp_cov script 

provided by Velvet. 

  If the examined sample is believed uniform, expected k-mer coverage can be set 

auto. When this is done, the algorithm will compute a histogram of k-mer coverages, 

excluding extreme values, then estimates the median and set this value to the variable 

exp_cov.  By setting this parameter as auto another parameter, coverage cutoff 

(cov_cutoff) used in removing erroneus connections step, will be also set 



automatically (unless if it override by the user). The value that this parameter will 

have will be equal to the half of exp_cov value. 

  For example with expected k-mer coverage auto and insert read’s length 1000 the 

systax is as follows. 

velvetg output_directory   –exp_cov  auto  -ins_length  1000 …other parameters…. 

  An example of the batch file with the most used commands during Velvet pair end 

assembly is shown in the next page 57. Although more complex command can be 

used to achieve the desirable execution. In the job description part of the batch  are 

mentioned only the parts that differ from the normal job description in the batch file. 

One fastq paired end library named A is used to explain the more important steps 

done.  

  If more libraries are going to be used for every library must be declared the format 

type, the read category and the insert length if is a pair-end (or a mate pair) library. 

For every additional library the read category and the insert length option must be 

followed by a number that show how many libraries are going to be used. To make 

this clear lets assume the use of 3 libraries all pair-end with instert lengths of 300, 500 

and 1000. Then the execution of Velveth and velvetg will be: 

velveth   output_directory   k-mer_length   -file_format  -shortPaired library1_name /        

–file_format   –shortPaired2 library2_name   –file_format   –shortPaired3 

library3_name / ..other parameters… 

velvetg –exp_cov auto -ins_length 300   –ins2_length 500   –ins3_length  1000  /        

..other parameters… 



 

   

 

 

 

 

   

 

 

  

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 
Figure 20 

Presentation of a simple Velvet execution. 

#!/bin/bash 
#--------------------- Start job description -------------------- 
#@partition        =  intel 
. 
. 
#@ total_tasks      = 1 
#@ cpus_per_task    = 8 
. 
. 
. 
#---------------------- End job description --------------------- 
 

#-------------------------- Start execution -------------------------- 

cd /usr/local/Tests 

# Run our program  

 

 export OMP_NUM_THREAD=  

 

/local/usr/VELVET/shuffleSequences_fastq.pl   libraryA_1.fastq   libraryA_2.fastq  /  

libraryA_shuffled.fastq 

 

 

 

 

/local/usr/VELVET/velveth                                -fastq       -            libraryA_shuffled.fastq   ( … )  

 

/local/usr/VELVET/velvetg           -exp_cov  auto  -ins_length          ( … ) 

 

#--------------------------- End execution -------------------------- 

Number of threads that will be 

created. Can range from 0 to 8 

2 files of a pair-end 

library. 

Output shuffled library 

Name of output directory 

K-mer length 

File format 

Read category 

Shuffled input library 

Input directory that MUST have 

the same name with the output 

directory of velveth 

Insert length of the input library 

Here cpus_per_task is set at 8 

to have all the cpus of the Intel 

node available for the created 

threads. 

To define that the job will be 

executed in the Intel nodes 



5.5 Running ABySSn in Magerit  

  Also in this paragraph are going to be mentioned the main parameters of ABySS and 

the one used in this study. More detailed explanation about every parameter that this 

assembelr can use can be found in ABySS Manual 

As Velvet so ABySS is going to be tested with pair end FASTQ data. It supports also 

other formats like FASTA, SAM, BAM, QSEQ and SRA.The data can be 

comperessed with gz,bz2 or xz. Experiments of this study are going to be done with 

pair end data. In order to assemble pair end data with ABySS driver script abyss-pe 

need to be used. The suffix of the read identifier for a pair of reads must be one of '1' 

and '2', or 'A' and 'B', or 'F' and 'R', or 'F3' and 'R3', or 'forward' and 'reverse'. The 

reads may be interleaved in the same file or found in different files; however, 

interleaved mates will use less memory. In the experiments the suffix '1' and '2' will 

be used. abyss-pe has some input parameters that define what are the input libraries 

and how they are going to be used. In detail: 

-in parameter  is used to declare input files when assembling data from a single 

library 

-lib parameter is used to declare a list of pair-end libraries when assembling data from 

multiple fragment libraries. For each library in lib, a variable with the same name 

must be declared specifying the files containg those reads 

-pe is used to declare a list of paired-end libraries that will be used only in the step of 

merging contigs. 

-p is used to declare a list of mate-pair libraries used for scaffolding. 

 

 

-se is used to declare single end reads 

  To run ABySS in a pair end mode abyss-pe should be used defining the input 

libraries in one of the above categories. Moreover abyss-pe need some other 

parameters to start its execution. These parameter are the k-mer size andthe name of 

the output files. The can be declare as follows: 

abyss-pe   name=output_name    k=k-mer length  …other parameters…. 

  This execution will produce all the assembly results in the path defined in the batch 

file. The destination of the results can be changed in order to store the results there. 

Also different k-mers can be tested to find an optimal value and their results stored 

every time in a different file. An example follows: 

 for k in {st_val..end_val}; do 

      mkdir k$k 

      abyss-pe   -C k$k   name=example     …other parameters… 

 done 



 

 

  In order to limit the interval of the k-mer lengths that is good to examine in order to 

find which k-mer value leads to a decent assembly is reported that for ABySS : 

  “The k-mer value should not be less than (lmax+1)/2, where lmax is the length of the 

longest read in the data set and cannot be more than the length of the shortest read, 

lmin. Although the theoretical lower limit for an assembly is k=2, the above bound is 

necessary to prevent excessive bubble formation, which otherwise would be possible 

for read errors that are observed only once. The upper limit is from a hard constraint, 

as for a k value higher than lmin it would not be possible to construct k-mers for reads 

of length lmin if k is beyond this limit.’’ 

  In order to run ABySS in a parallel mode abyss-pe must be used. Moreover, with the 

changes made in the abyss-pe script, the parallel execution will be enabled only when 

parameters total_tasks and cpus_per_task are set. abyss-pe script can be used for 

single-end, a pair-end assembly or an assembly that uses mate pairs. The mode that 

this script will run depends from the declared variables. Every of these parameters add 

the execution of an additional assembly stage: 

Assembling without paired end information 

abyss-pe unitigs … 

Including the paired end assembly: 

abyss-pe contigs … 

 

Including scaffolding (use of mate pair information): 

abyss-pe scaffolds …  

  ABySS produces a lots output temporary files that are needed between the assembly 

steps. These files for big assemblies can have a big size and Magerit the users space 

for temporary files is limited to 100MB. In order to change the location that the files 

are going to be stored the environment variable TMPDIR should be set with a location 

of a bigger size. In Magerit this location can be scratch file. The variable is set as 

follows: 

export TMPDIR = /scratch 

  Another parameter very usefull parameter useful in order to see in detail every step 

of the procedure is v. This parameter also provide the memory consumption of the 

assembly that is need when a benchmarking is done. I order to enable verbose logging 

parameter  

 v=-v  

must be added in the execution line of ABySS. 



  In figure in page 60 is shown a batch file with four diffents assembly executions in 

Magerit. All of them use abyss-pe to run the procedu re. As mentioned, more 

parameter can be added to the execution but this study concentrate in some of them.  

  The parameters in the batch file cpus_per_task and total total_tasks define in how 

many nodes and cpus ABySS is going to run. For example using: 

total_task = 64 

cpus_per_task=16 

  ABySS is going to be executed in 64 CPUs that belong to exactly 4 nodes. By 

defining cpus_per_task = 16 the user show his intention to use for his job a whole 

node alone so other jobs will not affect the running one. Thus in the above example 

64 tasks will be distributed in 4 nodes running at full time as they will not be affected 

from other execution. 

  One last thing that must be mentioned is that in order to execute the latest version of 

ABySS the path is always: 

/gpfs/apps_openmpi/ABYSS/1.3.3/bin/   

followed by the desired script as ABySS is installed in the supercomputer. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 

Presentation of four types of assemblies in a bath file mode. 
 

 
#!/bin/bash 
#--------------------- Start job description -------------------- 
. 
. 
#@ cpus_per_task   = 1 
#@ total_tasks         =  
#@ cpus_per_task   =  
. 
. 
. 
#---------------------- End job description --------------------- 
 

#-------------------------- Start execution -------------------------- 

# Run our program  

export TMPDIR = /scratch 

# One paired-end library 

 

/gpfs/apps_openmpi/ABYSS/1.3.3/bin/abyss-pe  k=  name=  in='lib_1.fa lib_2.fa' 
 
 
# Multiple paired-end libraries 

 

gpfs/apps_openmpi/ABYSS/1.3.3/bin/abyss-pe  k=  name=  lib='lib1 lib2'  \ 
            lib1='lib1_1.fa lib1_2.fa'     lib2='lib2_1.fa lib2_2.fa' 
 
 
# Paired-end and mate-pair libraries 

 

gpfs/apps_openmpi/ABYSS/1.3.3/bin/abyss-pe  k=   name=  lib='pe1 pe2' \           
mp='mp1 mp2'          pe1='pe1_1.fa pe1_2.fa'        pe2='pe2_1.fa pe2_2.fa'  
mp1='mp1_1.fa mp1_2.fa'     mp2='mp2_1.fa mp2_2.fa 
 

 

 

 

 

 

 

 

#--------------------------- End execution -------------------------- 

For parallel jobs total_task and 

cpus_per _task should be declared.  

Defining a temporary directory if 

big libraries are assembled 

K-mer length 

Output files name 

The two strands of 

the pair end library 

Name of the two pair end libraries 

For every library the 

two strands must be 

defined 

Names of the two pair end 

and the two mate pair libraries 
For every declared pair end and mate 

pair library the two strands must be 

defined 



6 Experiments 

6.1 Introduction 

  The assemblies done in Magerit aimed in testing one shared memory assembler, i.e. 

Velvet, and one distributed memory assembler, i.e. ABySS, in order to check their 

performance in time and find out which assembler can give the best results in a 

shorter time. 

  The performance and the efficiency of an assembler are usually determined by the 

resource consumption and by the size of the contigs and scaffolds that that the 

assembly process produce. The resource consumption of an assembler consists in 

finding out the whole time of the assembly procedure and the RAM that is consumed. 

The measurement of the contigs and scaffolds size includes the definition of the N50, 

the maximum contig length and the total number of contigs that are produced. 

  Contig or scaffold N50 is a weighted median statistic such that the 50% of the entire 

assembly is contained in contigs or scaffolds equal or larger to this value. This 

statistic provides a way to measure the connectivity of the assembly where higher 

N50 lengths show better performance. 

  The most common way used from assemblers to define this parameter is described 

with the following steps: 

1. All contigs are short by size 

2. Contigs sizes are added, one by one, from the largest down to the shortest 

3. When the size of the added contig’s length covers the half of the genome this 

procedure is stopped. 

4. The length of the last encountered contig is the N50 of the assembly 

  An example: Let’s assume a genome of 40 Mbp. The contigs produced after the 

assembly processes are shown in the figure below. From the length of the contigs 

shown the N50 statistic will be set as 4.5 Mbp because 7+6.5+4.5+4.5=22.5>20 

  The N50 statistic has some characteristics that are very useful to determine the 

efficiency of the assembly. These characteristic are the following: 

1. High N50 means  long contigs and thus a good assembly 

2. Low N50 means many short contigs, genome bad sequenced and thus a bad 

assembly 

  From the things mentioned above its clear the the N50 statistic is very useful to 

determine the quality of an assembly. Although bad quality assemblies can have a 

high N50 statistic. 



 

                                                                                

 

 

 

 

Figure 22 

Contigs produced and their lengths in Mbp. The first 4 lengths contigs have length greater than the half of the 
assembled genome so the length of the fourth contig is the N50 statistic. 

”The standard of judging assembly quality by size of contigs is questionable. Large 

contigs may simply reflect overly aggressive joining of contigs, thereby creating 

larger contigs with misassemblies. As a consequence, genome scientists who are not 

experts at assembly can be completely misled by statistics about contig sizes, and as a 

result might prefer the ’larger’ but incorrect assembly when given a choice.”[32] 

   The maximum contig length, also used to determine the quality of the assembly 

product, is an important parameter as longer contig mean that most of the errors were 

eliminated and the genome were assembled in fewer and longer contigs.  

  In the experiments done in Magerit were tested three genomes. These genomes 

belong to a Staphylococcus aureus, an Escherichia coli and a Rhodobacter 

sphaeroides. All the used fragment pair-end libraries, described in detail in the next 

paragraph, have reads of 101 bp that is a relative big value for the examined short 

read assemblers. The k-mer lengths used were odd and they belong to the interval 

[19,61]. The values where chosen to be odd as     Velvet handles only odd k-mer 

lengths and the chosen interval reflects the need to take advantage of the provided 

coverage with respect to the specificity that relative long k-mers provide. Bigger k-

mer length, that belong to the interval [60,80], will be also good to be checked but in 

this study we limited in the mentioned interval to check the performance with smaller 

k-mer lengths.  

The tests that this study aimed to do with Velvet were: 

  For Staphylococcus aureus and Escherichia Coli to test the k-mer lengths 25, 35, 45, 

55 and then depending on which k-mer length were observed the biggest N50 to test  

the nearby ±3 odd k-mers length to define the best k-mer length in the interval 

[19,61]. Then, using this k-mer, to use the multithreading ability of Velvet to see how 

the use of more threads affects the processing time of both velveth and velvetg. 

  For Rhodobacter sphaeroides to test the k-mer lengths 25, 35, 45, 55 and then 

depending on which k-mer length were observed the biggest N50 to test  the 
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multithreading ability of Velvet to check the OpenMP ability of Velvet with respect to 

the spawned threads. 

While the tests aimed to do with ABySS were: 

  For Staphylococcus aureus and Escherichia Coli to test the k-mer lengths 25, 35, 45, 

55 using the short jumping libraries as mate pair libraries. Then depending on which 

of the above tests where observed the biggest N50 to test the nearby ±3 odd k-mers 

length and, like in Velvet, define the best N50 in the interval [19,61]. Finally, using 

this k-mer, test the MPI ability of ABySS with a different number of CPUs every time 

to check how the processing time is affected. 

  For Rhodobacter sphaeroides to test the k-mer lengths 25, 35, 45, 55 with the 

provided jumping libraries as mate pair libraries in the scaffolding stage. Then, using 

this k-mer, to test the MPI ability of ABySS with a different number of CPUs every 

time to check again the affection of the processing time. 

  Also for the multithreading tests of Velvet and for the MPI tests of ABySS will be 

benchmarked the peak of the consumed memory in order to have a full view of the 

resource consumption during the mentioned tests. 

*The commented results that are not present in the charts for every experiment can be 

found in the appendix 

 

6.2 Libraries 

  In this paragraph are presented the libraries used in order to make the experiments 

and test the two assemblers in an increasing order based on the size of these libraries. 

 

 

Genome: Staphylococcus Aureus 

Genome’s Size: 2.839.460 base pairs 

Library Type Pair-end Fragment 

library 

Short Jumping 

Library 

Sample SRS004752 SRS004751 

Run SRR022868 SRR022865 

Library Solexa-8293 Solexa-3932 

Average Read Length 101bp 37bp 

Insert Length 180bp 3500bp 

Number of Reads 1,294,104 3,494,070 

Read Orientation Forward Reverse Reverse Forward 

Run Base Count 131 Mb 129 Mb 

Instrument Model Illumina Genome 

Analyzer II 

Illumina Genome 

Analyzer II 



 

 

 

 

 

 

Genome:Escherichia coli (1) 

Genome’s Size: 4.639.675 

Library Type Pair-end Fragment 

library 

Short Jumping 

Library 

Sample SRS009994 SRS269404 

Run SRR034509 SRR401827 

Library Solexa-11748 Solexa-44956 

Average Read Length 101bp 93bp 

Insert Length 180bp 5000bp 

Number of Reads 10,353,618 1,615,703 

Read Orientation Forward Reverse Reverse Forward 

Run Base Count 2 GB 300MB 

Instrument Model Illumina Genome 

Analyzer II 

Illumina HiSeq 2000 

Escherichia coli (2) 

Genome’s Size: 4.639.675 

Library Type Pair-end Fragment library Short Jumping Library 

Sample SRS302375 SRS269404 

Run SRR447625 SRR447685 SRR401827 SRR492488 

Library Solexa-25396 Solexa-

44956 

Solexa-

42866 

Average Read Length 101bp 93bp 

Insert Length 180bp 5000bp 

Number of Reads 13,479,432 13,457,571 1,615,703 362,200 

Read Orientation Forward Reverse Reverse Forward 

Run Base Count 2.8GB 2.8GB 313.4MB 67.4MB 

Instrument Model Illumina HiSeq 2000 

Rhodobacter sphaeroides 

Genome’s Size: 4.607.000 

Library Type Pair-end Fragment 

library 

Short Jumping Library 

Sample SRS004732 SRS004732 

Run SRR125492 SRR034527 SRR034528 

Library Solexa-11749 Solexa-11767 

Average Read Length 101bp 101bp 

Insert Length 180bp 4000bp 

Number of Reads 11,339,101 17,746,938 20,162,859 

Read Orientation Forward Reverse Reverse Forward 

Run Base Count 2.3G 3.6 GB 4.1G 

Instrument Model   Illumina Genome Analyzer II 



 

6.3 Staphylococcus Aureus 

Velvet: 

  As, mentioned before starting a pair end assembly Velvet needs to shuffle the pair 

end libraries (both the fragment and the jumping libraries) that are divided in two 

files, one with the forward and one with the reverse reads. Moreover, as the second 

library has an Reverse Forward (RF) orientation it is needed to reverse complement 

both strands before shuffling or to reverse complement the whole previously shuffled 

library. The second way was the one used. The time of each action done in this 

preliminary step is the following: 

 

  The total time of this step is 1.08 minutes and is a constant that will be add every 

time to find out the total time of the assembly. 

  After the above preliminary step the best k-mer in the interval [19,61] were defined 

in two steps. First the k-mer lengths 25, 35, 45, 55 where tested to define the biggest 

N50 value between them and then k-mers lengths around this k-mer value were tested 

to find out the biggest k-mer in all the interval [19,61]. The results of the steps are 

shown in Chart 9 and Chart 2. As shown the k-mer length that produced the better results 

is 35.  

  In the first test k-mer lengths 25, 45, 55 gave a very low N50 (especially k-mer 

length 55) output showing that they are unsuitable for testing this genome and. 

Moreover the use of a k-mer length produced a missassembly as the length of the 

output contigs is bigger than the genome size. A thing to be noticed, for the correct 

assembly, is that the scheme big N50 → few and long contigs and small N50 → lot 

and small contigs is verified  

  In the second test N50 statistic does not have a big variation in the interval [29, 37] 

while for the two last k-mer, 59 and 61, this statistic falls in indecent results. A very 

important point here is that the use of k-mer lengths 29, 31, 33, 37 and 39 led to 

missasemblies as the length of the output contigs is bigger from the escherichia coli’s 

genome.  An observation in this test is that with exactly the same parameters two runs 

with k-mer length of 35 had a N50 output that differs in ~60kbp. This deviation in the 

results is caused by the multithreading. The fact that the reads are not processed 

sequentially produces some discrepancies. This factor can lead sometimes in a “bad” 

choice as a better k-mer length can be discarded if in a given multithreading run has a 

smaller N50 from another k-mer length that is apparently more appropriate.  

  As the best N50 is defined the next step is to tested the OpenMP ability of Velvet. 

Results are shown in Chart 1 and Table 1 

Action Input Size Time

Shuffle fragment libraries 2x140 MB 0:00:26

Shuffle short jumping libraries 2x 161.41 MB 0:00:38

Reverse complement shuffled short jumping libraries 322.82 MB 0:00:04



 

 

Chart 1 

For staphylococcus aureus: Time in minutes used by velveth, velvetg and the total time of the procedure as a 
function of the number of threads. 

 

Percentage of time gained 

Cores velveth  velvetg Total Time 

2 10.0% 5.2% 5.7% 

4 6.2% 11.1% 7.2% 

8 5.4% 4.5% 4.0% 
 

Table 1 

For staphylococcus aureus: Percentages of gained time for a single to a multithreaded execution 

 

  In detail we can see from both tables above that the whole procedure does not scale 

very well. With the use of four cores we have an decrease in time of ~7.2% that 

compared to the other values in not that big. Also velvetg with the use of four cores 

achieve his maximum speed up while velveth achieve this speedup with the use of 

two cores. The creation of threads includes an overhead, mainly caused by the 

creation of threads and the memory copied each time, that is compensate with the 

advantages that a multithreading execution provides. The use of eight cores means the 

creation of eight threads and more memory copies that from one hand make the move 

from single to multi-threading faster but compared with the use of two or four cores 

the overhead introduced is more visible and slows the whole procedure. This is 

mainly because the libraries used are of a small size and multhreading have some 

limits in the benefits that provides. 

 

1 2 4 8 

Total Velvet Time 0:05:32 0:05:13 0:05:08 0:05:19 

Velveth Time 0:01:51 0:01:40 0:01:44 0:01:45 

Velvetg Time 0:02:33 0:02:25 0:02:16 0:02:26 

0:00:00 
0:00:43 
0:01:26 
0:02:10 
0:02:53 
0:03:36 
0:04:19 
0:05:02 
0:05:46 
0:06:29 

Ti
m
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Staphylococcus: Time - Threads Time 



ABySS: 

N50  

  Same tests were made with ABySS to determine the best k-mer in the interval 

[19,61]. The first step is shown in Chart 9 and the second in Chart 2. 

  In the first test with k-mer lengths 25, 35, 45, 55 the first thing that someone can 

notice is that with k-mer lengths 45, 55 the output N50 is 0. This values does not 

reflect the reality, as the execution was stopped because with a k-mer above 37 is 

impossible to find alignments with the mate pair library as it has reads of 37bp. 

Moreover as k-mer length of 25 lead a missassembly the only value that we can 

choose, that also produced the biggest N50 value, is 35. 

  In the second test is more obvious that k-mer lengths above 37 are inappropriate as 

more values are checked. To overcome this result of an interrupted execution the 

parameter “l”, that is set automatically equal to the k-mer length, can be override by 

the user with a smaller value. This will lead to a complete assembly run but as in this 

study the default value of the alignment parameter “l” is used we assume that with k-

mers bigger than the 37 the assembly procedure is stopped. In the interval of k-mer 

lengths [29,33] the N50 gradually increase but all the assemblies are indecent because 

they produce contings of a total length bigger than the genome size. The next two k-

mer lengths, before the ones that lead to an interruption of the procedure, end in a 

correct assembly process from these two runs the one with k-mer length of 37 was 

chose due to the big N50 value. 

  With the chosen k-mer length we proceed to test the execution time of ABySS in 

different nodes. The results are shown in Chart 8. 

  Between the use of 1 and 2 nodes there is only a difference of a few second. When 

MPI is enabled, the use of two nodes seems to have the same behavior with the full 

use of 1 node. Things start to change with the use of three nodes. Time with the use of 

three nodes decreases of about ~30.5 % from the single node and of about ~25.4% 

when to nodes are used. The use of three nodes in the experiment seems to be the 

appropriate as with more nodes times starts to increase again and with the use of 112 

and 128 CPUs ,i.e. 7 and 8 nodes respectively, the time becomes bigger from the one 

achieved with the use of only one node. With the use of 8 nodes the increment in time 

from the fastest execution is of about ~143.2% showing the MPI spends more time in 

communication than in the main procedure of assemble. This experiment shows that 

for small sizes of libraries the MPI ability of ABySS is limited to the use of a small 

amount of cores. 



 

Chart 2 

 Staphylococcus Aureus N50 values for both Velvet and ABySS in relation with the k-mer length 

 

6. 4 Escherichia Coli (1) 

 

Velvet: 

  Like in the first genome, also in this one the pair end and the short jumping library 

need to be shuffled. More over the short jumping library that has a Reverse Forward 

orientation need a reserve complement action. For this three preliminary steps the 

time was recorded as is a constant that every time need to be add in order to define the 

whole time for an assembly 

 

  The total time of this step is 9.42 minutes. 

 After the described above action the same test made to Stapylococcus Aureus were 

made to the Escherichia Coli genome shown in Chart 9 and Chart 3. 

 In Chart 9  it is obvious that with k-mer lengths of 25 and 35 Velvet N50 value is very 

small and the total length of the output contigs is ~18 times in the first test and ~4 

times in the second more than the genome size. This results show that with k-mer 
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29 31 33 35 37 39 41 

Velvet 213338 269602 298823 327929 270361 20655 18359 

ABySS 160477 175086 322274 267326 566235 0 0 

Staphylococcus Aureus: N50 - Kmer Length 
Relation 

Action Input Size Time

Shuffle fragment libraries 2x2.50 GB 00:07:35

Shuffle short jumping libraries 2x374.53 MB 00:01:02

Reverse coplement shuffled short jumping libraries 749.06 MB 00:01:05



lengths of 25 and 35 the procedure leads to non concrete results and these lengths 

should not be used. With the two next k-mer values the results are totally different. 

The N50 produced is more that 17kKbp times higher and the length of the total 

contigs is smaller from the examined genome size. The N50 value between k-mers 45 

and 55 does not have a big variation and maybe the k-mer  length of 45 produce better 

results if multithreading was not causing discrepancies. Although as we base our 

choice in the better actual N50 statistic the next step of finding the best k-mer is using 

as a reference the k-mer length of 55.  

  In the second test with all the ±3 around 55 the resulting N50 outputs have small 

differences between them with only two k-mers length procucing two N50 outputs of 

almost the double value of the others. This k-mers lengths are 55 and 57. In the 

previous test the N50 using a k-mer of length 55 was almost the half. The 

characteristic of multithreading to be non-deterministic causes big differences in the 

output values between same executions and this can lead to wrong decisions. An 

equilibration in these results can be the max contig length. Here the execution with a 

k-mer value of 51 that resulted in the smaller N50 has a bigger max contig value 

compared to executions with bigger N50. This means that the execution produced 

long output contigs and that these contigs where fragmented much more than with 

other executions leading to a bigger amount of final contigs. In the executions with a 

k-mer length of,55 and 57, the N50  has a value that is quite near to the longest 

contigs produced in this assemblies. This mean that with the use of these k-mer 

lengths the assembly was able to cover the half of the genome with the first few long 

contigs meaning that the quality of it was relatively good.  

  Choosing 57 as the best k-mer length we continued to the third test: to test the 

multithreading abity of Velvet. The results are shown below in Chart 4 and Table2.  In the 

char we can see that the time decreases almost linearly. The use of more cores 

produces a decrement in time for velveth and velvetg leading in a fastest output of the 

whole procedure. Both velveth and velvetg give the output in almost the half time 

from the single threading execution with the use of eight cores. Especially velveth 

decreases the time spend to create the files in more than the half of the first execution. 

The overhead that the multithreading introduces its fully overcome the advantages of 

OpenMP are clearly visible in this test. 

  Something last visible in the results of this test is the N50 value. The differences in 

the N50 statistic between the same execution with different number of threads range 

from ~700bp to ~500000bp showing that this can be a drawback of a multithreading 

execution. 

 



 

Chart 3  

Escherichia Coli (1) N50 values in interval [49,61] 

 

 

   

Chart 4 

For escherichia coli (1): Time in minutes used by velveth, velvetg and the total time of the procedure as a 
function of the number of thread 
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Escherichia Coli (1): N50 Value in [49,61] 

1 2 4 8 

Total Velvet Time 01:06:54 00:58:35 00:47:19 00:39:27 

velveth Time 00:34:37 00:30:49 00:20:52 00:16:33 

velvetg Time 00:22:35 00:18:04 00:16:45 00:13:12 
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Escherichia Coli (1): Time - Threads Time 



Percentage of time gained 

Cores velveth  velvetg Total Time 

2 11.0% 20.0% 12.4% 

4 39.7% 25.8% 29.3% 

8 55.0% 41.5% 41.0% 
 

Table 2 
For escherichia coli (1): Percentages of gained time for a single to a multithreaded execution. 

 

ABySS: 

  Following the same steps with ABySS in order to define a good k-mer length we had 

the results shown in Chart 9 and Chart 5.  

  In first test the best N50 this time was not observed in the same k-mer length with 

Velvet as in the experiment of staphylococcus aureus. Here the best N50 was 

achieved with the use of a k-mer length 35. None of the test finished with a 

missassembly as all the total contigs lengths are smaller than Escherichia coli’s 

genome size. K-mer lengths in 35, 45, 55 have a similar N50 output value. Although 

in ABySS N50 is not affected by discrepancies, thus we can chose k-mer length 35 

based on N50 output as the best assembly for the first test. 

  In the second test resulting N50 using the odd k-mers lengths around 35 resulted in 

N50 similar values with again a small peak in 37. These values range from  ~100Kbp 

to ~135Kbp that is a quite small interval. The only think that it can be mentioned here 

is bigger kmer lengths lead to a fastest procedure. This is because more spurious 

overlaps between unrelated k-mers are minimized and the error correction step’s 

duration is less.  

  After the two test made above we proceed to the MPI test. The behavior of time in 

relation with the used nodes is shown in Chart 8. As is shown again there no a great 

decrease in time but the results are more visible than with the smaller previously 

tested genome. In detail time fall gradually from the single node execution till the use 

of 6 nodes having a decrement in the processing time of about ~33.5% that is similar 

with the time gained with the use of four nodes in the staphylococcus aureus. Then the  

gain in time cause by the parallelization slightly disappear while increasing the nodes 

showing again that for this size of libraries then use of more than 96 CPUs, i.e 6 

nodes, is not approapriate in order to achieve better timing. 

 

 

 

 



 

Chart 5 
 Escherichia Coli (1) N50 values in the interval [29,41] 

6.5 Escherichia Coli (2) 

 

Velvet: 

  In this experiment, testing again an Escherichia coli genome were used two pair end 

fragment libraries and two shortjumping libraries instead of one and one respectively 

in the first experiment of the same genome. Due to this the preliminary step of 

shuffling and reverse complementing will add a bigger overhead in the time. The 

results of this preliminary step are shown below: 

 

The total time of all the action mentioned above is 26.20 minutes. 

  The examples made in this test follow the same idea. For k-mer length 25, 35, 45, 55 

the results are shown in Chart 10. While for the second test done in this time with a k-

mer length of 59 are shown in Chart 7 

  The results in the first test have the same behavior with the previous experiment of 

Escherichia coli with smaller values. Again with k-mer lengths 25, 35 the output N50 

and the total length of the contigs show that the assembly process failed leading to 

wrongs results. Then the N50 statistic increase rapidly but with a slight difference of 
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Escherichia Coli (1) : N50 Value in [29,41] 

Action Input Size Time

Shuffle fragment library 2x3.28 GB 0:10:56

Shuffle fragment library 2x3.27 GB 00:11:40

Shuffle short jumping libraries 2x374.53 MB 00:01:17

Shuffle short jumping libraries 2x149.49 MB 00:00:13

Reverse complement shuffled short jumping libraries 749.06 MB 00:01:53

Reverse complement shuffled short jumping libraries 374.53 MB 00:00:21



the previous experiment. Previously k-mer lengths 45 and 55 had a similar N50 output 

but now they differ a lot showing clearly that 55 is an appropriate k-mer length  to test 

this genome.  

  Having 55 as a reference k-mer length the second test took place. The around odd k-

mer lengths produced quite similar results in sense of N50 value with a peak at k-mer 

length of 59 that is near to the one observed in the previous experiment of Escherichia 

coli. Even if the N50 does not vary a lot the all the assemblies in the interval [49,53] 

are missassmblies. The strange in this test is the the highest N50 output is 

accompanied from the smaller max contig length. This mean that the other decent 

executions create few big contigs and a big amount of small ones, thing that is 

verified form the total contigs produced, while the one with the biggest N50 create 

contigs of nearby lengths, as the N50 value is similar to the max contig length. 

  The results of the multithreading test done are presented below. As shown the total 

time that velvet proceeds the data and given the output decreases almost linearly with 

the use of two and four cores. Then time continues its decrement but this time not 

more linearly introducing some overhead form copies of memory that is not 

compensated like before.. 

 

 

Chart 6 

For escherichia coli (2): Time in minutes used by velveth, velvetg and the total time of the procedure as a 
function of the number of threads 

 

 

 

1 2 4 8 

Velvet Total Time 2:31:47 2:06:39 1:46:10 1:37:08 

velveth Time 0:58:24 0:43:52 0:35:34 0:33:58 

velvetg Time 1:07:03 0:56:27 0:44:16 0:36:50 
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Escherichia Coli (2): Time - Threads Time 



Percentage of time gained 

Cores Velveth  Velvetg Total Time 

2 13.8% 15.8% 16.6% 

4 30.1% 34.0% 30.0% 

8 33.3% 45.0% 36.0% 
 

Table 3 

For Escherichia coli (2): Percentages of gained time for a single to a multithreaded execution 

 

 
 
 

 

 

 
ABySS: 

  Even the genome is the same tested in the previous experiment the results are 

different. The addition of more pair end and mate pairs libraries changed the k-mer 

area that is going to be examined. Chart 10 and Chart 7  show the results of the first two 

tests. 

  In the first test all k-mers produced reliable outputs as the total contig length is 

smaller than the examined genome size. Moreover, the N50 values are very similar 

with a small peak in k-mer length 55 that is much bigger than the one used previously, 

i.e. 35. This is because the libraries in this example provide more coverage. Higher k-

mer means higher specificity in the graph, and this reduces the k-mer coverage that 

the library provides. 

 The second test resulted in N50s that differ between them at max 2Kbp. This is a 

very small range showing that this entire interval is quite reliable with the only 

exception the k-mer length of 61 that created contigs with total length bigger than 

4,639.675bp. Another point to be mention is that the best N50 observed in present 

three times, one with k-mer length 55, 59 and 61. We discard k-mer length of 61 as 

produced a missassembly. In order to decide which k-mer length between the 

remaining two will be chosen we based our choice in the maximum contig length and 

the chosen one is k-mer with length 59. 

  Bigger size of libraries for the same genome led to more clear view about the use of 

MPI. The pass of the procedure from a single node to two has a more obvious slope 

with a gain in type of about ~31.2%. This percentage was achieved with four and 

eight nodes respectively in the previous two experiments. Time continues decreasing, 



but with not big differences, and achieves its lower value with the use of 128 CPUs 

with a gain in time of more than 50%. In the appendix are shown the run with 144 

CPUs and 160 that led to a slower process 

 

6.6 Rhodobacter sphaeroides 

 

Velvet 

  Velvet could not run this experiments due lack of RAM. 

 

ABySS 

  In this last experiment only the first test took place and its results are shown in Chart 

8. The thing that compared to the other execution differs a lot in the k-mer that led to 

the best N50 value. As mentioned, when the given k-mer coverage is big and the 

genome is small then the best assembly, in sense of N50 output, should be observer 

with a big k-mer. In this case things are different as there is provided big k-mer 

coverage related to the sizes of the libraries. The bigger libraries are mate pairs. In 

these experiments the libraries used for the contiging are small compared to the mate 

pairs.  

 

 

Chart 7  

Escherichia Coli (2) N50 values in interval [49,61] 
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49 51 53 55 57 59 61 

Velvet 243195 364141 466670 428679 428975 640127 430884 

ABySS 133562 134963 133562 135012 134413 135012 135012 

Escherichia Coli (2): N50 - Kmer Length 
Relation 



  The latter ones take part only in the scaffolding stage trying to merge the previously 

created contigs. So the k-mer length does not affect significantly the scaffolding stage.  

  Due to this a much bigger N50 value was produced with a small k-mer length,i.e 25. 

The other two reliable assemblies with k-mer lengths 25 and 55, as the one with a k-

mer value of 45 produced a missassembly, have similar N50 outputs but is limited to 

the half achieved with a k-mer of length 25. 

   With this k-mer the MPI’s results are showin in Chart 8. The thing that must be 

mentioned here is the memory of one node was not enough to complete the procedure 

so we cannot have a comparison with a single node execution. Although results here 

show that the passage from two nodes to three has a biggest decrease in time of about 

. Then the behavior is similar to the one observer in the other experiments, i.e. not big 

changes in time. The ideal number of nodes, in sense of faster procedure, became 

bigger this time arriving at 10. See appendix 

 

 

Chart 8 

 The time benchmarking of the four experiments with the use of a different size of nodes. 

16 32 48 64 80 96 112 128 

Staphylococcus 0:09:53 0:09:12 0:06:52 0:07:59 0:08:11 0:08:05 0:12:02 0:16:42 

Escherichia Coli (1) 1:01:32 0:52:37 0:49:56 0:49:09 0:42:45 0:40:55 0:41:47 0:43:38 

Escherichia Coli (2) 2:48:11 1:55:33 1:51:32 1:40:54 1:37:35 1:33:16 1:27:53 1:21:12 

Rhodobacter sphaeroides   4:55:36 2:57:31 2:52:29 2:49:42 2:32:37 2:34:10 2:16:13 
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Processing time in relation with the nodes 
used  



 

Chart 9 

N50 in relation with kmer length 25, 35, 45, 55 for Velvet and ABySS in Staphylococus Aureus and Escherichia 
Coli (1) genomes 

 

Chart 10  

N50 in relation with kmer length 25, 35, 45, 55 for Velvet and ABySS in Escherichia Coli (2) and Rodobacter 
sphaeroides genomes 
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N50 and K-mer Length Relation Chart (1) 
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N50 and K-mer Length Relation Chart (2) 



6.7 RAM Consumption 

 

Velvet: 

The most common way to check Velvet’s memory is to use “top” and observe the 

peak value that the RAM memory will reach. Although this command is disabled in 

Magerit so we base our memory measurements in a formula given from another 

benchmark [29]. This formula gives an estimation of the peak RAM consumption in 

velveth and velvetg based on the millions of sequences being assembled. In detail, 

for velveth 

mem = 1.7N + 2.7   

while for velvetg 

mem = 2.2N − 4.0 

where mem is in GB and N is the number of millions of sequences 

Applying this formulas to our libraries we the following summarized results: 

 

 Staphylococcus 

Aureus 

Escherichia 

Coli (1) 

Escherichia 

Coli (2) 

Rhodobacter 

Sphaeroides 

velveth RAM 10.84 GB 23.04 GB 51.847 GB 86.47 GB 

velvetg RAM 6.53 GB 22.33 GB 59.58 GB 104.35 GB 

 

  Here it is clear that the Rhodobacter Sphaeroides cannot be assembled in a node of 

96 GB of RAM.  

  A thing to notice is for a small amount of assembled sequences velveth needs more 

memory while things change as velvetg consumes more memory. 

 

ABySS: 

  In ABySS the memory is reported in the output log file if in the execution line is 

included the verbose output parameter, i.e. v=-v. For every assembled MPI test made 

in the 3 genomes the values of the memory consumed per node are summarized in the 

following chart. 



 

 Chart 11 

Peak memory used in every nodes one different MPI execution for the 4 experiments 

In this Chart 11 and Chart 12 we can see that increasing the nodes memory is shared 

between them although the total memory consumption it increases. Obviously for big 

genomes the aggregation of memory that ABySS provides make it suitable for the 

assembly of large genomes. 

 

Chart 12 

Peak total RAM memory consumed in the MPI tests for all the experiments. 

 

16 32 48 64 80 96 112 128 

Staphylococcus 7,35 6,72 5,38 4,61 3,98 2,87 1,73 1,54 

Escherichia Coli (1) 16,73 13,47 10,84 8,67 7,89 6,35 5,12 4,78 

Escherichia Coli (2) 21,97 17,78 15,11 13,26 11,59 10,07 9,15 8,12 

Rhodobacter sphaeroides   33,26 29,18 26,17 22,78 19,76 17,22 14,16 
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Staphylococcus 7,35 13,44 16,14 18,44 19,90 17,22 12,11 12,32 

Escherichia Coli (1) 16,73 26,94 32,52 34,68 39,45 38,10 35,84 38,24 

Escherichia Coli (2) 21,97 43,94 53,34 60,44 66,30 69,54 70,49 73,20 

Rhodobacter sphaeroides   66,52 87,54 104,68 113,90 118,56 127,54 128,88 
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6.8 Comparison 

  The good point that the two assembler have is that they have been paralized and the 

can share the procedure reducing the computational time. Velvet is parallelized with 

OpenMP that limit him to one node while AbySS is parallelized with MPI so lots of 

nodes can be used.  

  From the results achieved above we can see that for small genomes Velvet is faster 

than AbySS but while the genome gets bigger AbySS can achieve better timing. A 

disadvantage of Velvet is the huge amount of RAM that needs for an assembly 

procedure. The ability of AbySS to share the memory makes it suitable for big 

genomes while for Velvet this is not valid. Moreover, multithreading is not 

deterministic - threads will get different data at different times depending on the 

scheduler and load of your machine etc. The scaffolding step in particular will give 

different answers each time someone runs it. This can cause problem that can be only 

treated with executing the assembly with one thread. Although this solution for big 

genomes can be very time expensive, more than running two times the  same 

assembly and check the differences in the N50 value.  

  Most of the assemblies done in this gave better N50 values with the use of Velvet. 

Althought ABySS is reported that is suitable for bigger k-mer lengths than the one 

used.  

Another point that the two assembler have in common is that with bigger k-mer 

lengths the assembly procedure was sorter. This is cause by the k-mer coverage. 

Bigger length of a k-mer mean higher specifity in the graph that limits the coverage 

provided leading to shorter assemblies. 

 

 

 

 

 

 

 

 

 

 

 



Appendix: 

 

VELVET TESTS 

 

 

 

 

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:01:50 00:03:18 0:01:08 00:06:16 59019 273046 2932726

8 00:01:44 00:02:22 0:01:08 00:05:14 269676 778608 2831215

8 00:01:37 00:01:55 0:01:08 00:04:40 11171 54726 2832115

8 00:01:33 00:01:41 0:01:08 00:04:22 4068 20606 2772458

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:01:51 00:02:34 0:01:08 00:05:33 213338 342467 2915661

8 00:01:43 00:02:46 0:01:08 00:05:37 269602 596270 2908076

8 00:01:46 00:02:26 0:01:08 00:05:20 298823 797290 2908045

8 00:01:45 00:02:27 0:01:08 00:05:20 327929 823771 2832215

8 00:01:47 00:02:20 0:01:08 00:05:15 270361 800965 2893877

8 00:01:42 00:01:53 0:01:08 00:04:43 20655 73780 2839881

8 00:01:38 00:02:04 0:01:08 00:04:50 18359 58983 2834780

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

1 0:01:51 0:02:33 0:01:08 0:05:32 322690 823974 2834459

2 0:01:40 0:02:25 0:01:08 0:05:13 200366 825843 2833424

4 0:01:44 0:02:16 0:01:08 0:05:08 373070 826124 2837046

8 0:01:45 0:02:26 0:01:08 0:05:19 278486 825878 2835915

Staphylococcus

Multithreading K-mer Length 35

K-mer Length 29, 31, 33, 35, 37, 39, 41

K-mer Length 25, 35, 45, 55

Action Input Size Time

Shuffle fragment libraries 2x140 MB 0:00:26

Shuffle short jumping libraries 2x 161.41 MB 0:00:38

Reverse complement shuffled short jumping libraries 322.82 MB 0:00:04

Preparation



 

 

 

 

 

 

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:18:41 11:25:37 0:09:42 11:54:00 43 7406 85717329

8 00:18:17 00:32:31 0:09:42 1:00:30 31 259 18813171

8 00:18:20 00:17:48 0:09:42 0:45:50 651676 1299247 4625290

8 00:17:26 00:13:17 0:09:42 0:40:25 691437 2183079 4608739

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:23:00 00:16:50 0:09:42 00:49:32 694097 1201535 4614655

8 00:19:09 00:14:30 0:09:42 00:43:21 651262 1526313 4612360

8 00:17:01 00:14:00 0:09:42 00:40:43 676458 788138 4609069

8 00:16:40 00:13:44 0:09:42 00:40:06 1131731 1249922 4606350

8 00:16:47 00:13:30 0:09:42 00:39:59 1193565 1282816 4605441

8 00:17:31 00:13:35 0:09:42 00:40:48 691638 1194669 4609664

8 00:16:22 00:13:29 0:09:42 00:39:33 691763 1193905 4608824

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

1 00:34:37 00:22:35 00:09:42 01:06:54 770481 1282963 4605230

2 00:30:49 00:18:04 00:09:42 00:58:35 692118 1198957 4605943

4 00:20:52 00:16:45 00:09:42 00:47:19 1193977 1281907 4604097

8 00:16:33 00:13:12 00:09:42 00:39:27 1193290 1283203 4607350

K-mer Length 49, 51, 53, 55, 57, 59, 61

Multithreading K-mer Length 57

Escherichia Coli (1)

K-mer Length 25, 35, 45

Action Input Size Time

Shuffle fragment libraries 2x2.50 GB 00:07:35

Shuffle short jumping libraries 2x374.53 MB 00:01:02

Reverse coplement shuffled short jumping libraries 749.06 MB 00:01:05

Preparation



 

 

 

 

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 01:07:48 04:29:42 0:26:20 06:03:50 51 9791 91517267

8 01:06:33 02:37:47 0:26:20 04:10:40 31 1002 20265796

8 01:01:06 01:47:57 0:26:20 03:15:23 28834 114108 4555928

8 00:57:21 01:23:26 0:26:20 02:47:07 428679 831525 4637928

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

8 00:58:32 01:47:14 0:26:20 03:12:06 243195 934904 4682775

8 01:02:20 01:29:18 0:26:20 02:57:58 364141 1126687 4666132

8 01:02:43 01:34:35 0:26:20 03:03:38 466670 767760 4649613

8 00:58:40 01:14:46 0:26:20 02:39:46 428679 831525 4637928

8 01:00:26 01:10:59 0:26:20 02:37:45 428975 833457 4637823

8 00:59:57 01:09:35 0:26:20 02:35:52 640127 695659 4634775

8 00:54:54 01:03:56 0:26:20 02:25:10 430884 1015295 4635992

N. of threads Velveth Time Velvetg Time Shuffling Time Total Time N50 Max Total

1 0:58:24 1:07:03 0:26:20 2:31:47 640127 695659 4634614

2 0:43:52 0:56:27 0:26:20 2:06:39 640141 696019 4635748

4 0:35:34 0:44:16 0:26:20 1:46:10 573051 658856 4634199

8 0:33:58 0:36:50 0:26:20 1:37:08 504975 658698 4634456

Multithreading K-mer Length 59

K-mer Length 49, 51, 53, 55, 57, 59, 61

K-mer Length 25, 35, 45

Escherichia Coli (2)

Action Input Size Time

Shuffle fragment library 2x3.28 GB 0:10:56

Shuffle fragment library 2x3.27 GB 00:11:40

Shuffle short jumping libraries 2x374.53 MB 00:01:17

Shuffle short jumping libraries 2x149.49 MB 00:00:13

Reverse complement shuffled short jumping libraries 749.06 MB 00:01:53

Reverse complement shuffled short jumping libraries 374.53 MB 00:00:21

Preparation



ABySS TEST 

 

  

 

 

Time N50 Max Total

20:38:00 111765 364009 3135516

0:09:03 248723 459937 2838175

0

0

Time N50 Max Total

0:18:36 160477 342330 3045194

0:11:04 175086 341343 3082876

0:16:33 322274 947958 2855212

0:09:36 248723 459937 2837746

0:08:02 566235 1300164 2836923

0 0 0

0 0 0

Cpus Nodes Time N50 Max Total

16 1 0:09:55 566235 1300155 2835797

32 2 0:08:36 566235 1300152 2835794

48 3 0:06:52 566235 1300148 2835790

64 4 0:07:59 566235 970692 2836923

80 5 0:08:11 566235 1300164 2836923

96 6 0:08:05 566235 970711 2822323

112 7 0:12:02 566235 970708 2822320

128 8 0:16:42 566235 970708 2822323

Staphylococcus

K-mer Length 25, 35, 45, 55

K-mer Length 29, 31, 33, 35, 37, 39, 41

MPI testing K-mer Length 37



 

 

 

 

Time N50 Max Total

1:20:12 91048 246339 4563829

1:03:16 134889 413898 4585389

0:59:48 133951 414696 4606922

0:49:37 131907 356831 4615810

Time N50 Max Total

1:07:42 111205 413900 4574950

1:02:18 113512 413900 4571499

1:06:49 117015 413909 4571351

1:03:46 134889 413898 4585389

0:58:21 125419 413906 4583613

0:57:22 133445 414029 4592375

0:53:12 124655 414156 4588461

CPUs Nodes Time N50 Max Total

16 1 1:01:32 134889 413898 4585386

32 2 0:52:37 134889 413898 4585386

48 3 0:49:56 124635 413898 4585714

64 4 0:49:09 134889 413898 4585389

80 5 0:42:45 134889 413898 4585389

96 6 0:40:55 134889 413898 4585389

112 7 0:41:47 134889 413898 4585389

128 8 0:43:38 134889 413898 4585389

144 9 0:45:33 134889 413898 4585389

160 10 0:54:19 134889 413898 4585389

Escherichia Coli (1)

K-mer Length 25, 35, 45

K-mer Length 29, 31, 33, 35, 37, 39, 41

MPI testing K-mer Length 35



 

 

 

 

Rhodobacter sphaeroides 

       K-mer Length 25, 35, 45 
 

       Time N50 Max  Total K-mer 
  02:48:27 763799 1749633 4474272 25 417060 

 

Time N50 Max Total K-mer

1:12:05 125214 357124 4595528 25

1:09:36 133445 415288 4619925 35

1:07:46 133456 357669 4619536 45

1:02:03 135012 414992 4630089 55

Time N50 Max Total K-mer

1:02:55 133562 415639 4623136 49

1:02:27 134963 414899 4622255 51

1:02:34 133562 414989 4625701 53

1:02:36 135012 414992 4630172 55

1:07:51 134413 414992 4625833 57

1:01:01 135012 415091 4631019 59

0:58:54 135012 415091 4734791 61

CPUs Nodes Time N50 Max Total

16 1 2:48:11 135012 415091 4734791

32 2 1:55:33 135012 415091 4734791

48 3 1:51:32 135012 415091 4734791

64 4 1:40:54 135012 415091 4734791

80 5 1:37:35 135012 415091 4734791

96 6 1:33:16 135012 415091 4734791

112 7 1:27:53 135012 415091 4734791

128 8 1:21:12 135012 415091 4734791

144 9 01:21:32 135012 415091 4734791

160 10 01:23:11 135012 415091 4734791

Escherichia Coli (2)

MPI testing

K-mer Length 25, 35, 45

K-mer Length 49, 51, 53, 55, 57, 59, 61



2:04:43 334226 1750657 4554389 35 417042 
 1:53:00 252850 588316 4708867 45 417031 
 1:45:50 316365 770679 4594987 55 417072 
 

       MPI testing 

       
CPUs Nodes Time N50 Max  Total 

K-
mer 

8 1 12:01:22 763799 1749633 4473923 25 

16 1 11:45:38 763799 1749633 4473923 25 

32 2 8:55:36 763799 1749633 4473923 25 

48 3 2:57:31 763799 1749633 4473923 25 

64 4 2:52:29 763799 1749633 4473923 25 

80 5 2:49:42 763799 1749633 4473923 25 

96 6 2:32:37 763799 1749633 4473951 25 

112 7 2:34:10 763799 1749633 4473951 25 

128 8 2:16:13 763799 1749633 4473951 25 

144 9 2:15:48 763799 1749633 4473951 25 

160 10 2:10:42 763799 1749633 4473951 25 

176 11 2:11:15 763799 1749633 4473951 25 

192 12 2:27:50 763799 1749633 4473951 25 
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