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  ΕΙΣΑΓΩΓΗ                                                                                   

 Οι  τεχνολογικές εξελίξεις στον τομέα  των ασυρμάτων δικτύων 
αλλάζουν θεμελιωδώς τον τρόπο με τον οποίο οι συσκευές επικοινωνούν 
μεταξύ τους. Οι σύγχρονες ασύρματες συσκευές μπορούν να σχηματίζουν 
δίκτυα, να αλλάζουν δυναμικά τις συνδέσεις μεταξύ τους ανάλογα με τις 
συνθήκες  και να συνεργάζονται για να μεταφέρουν την πληροφορία 
αποδοτικά. Σε αυτά τα δίκτυα, η αύξηση της ρυθμαπόδοσης (throughput) 
αλλά και η διατήρηση της ευρωστία τους είναι σημαντικά κριτήρια καλής 
λειτουργίας.

Η κωδικοποίηση δικτύου (Network Coding) είναι μια τεχνική με την 
οποία επιτυγχάνεται αξιοσημείωτη αύξηση της ρυθμαπόδοσης. Στα 
παραδοσιακά δίκτυα η  ροή  πληροφορίας ακολουθεί την ίδια αρχή με τη 
τη ροή υγρού μέσα σε σωλήνες. Δηλαδή οι ενδιάμεσοι κόμβοι προωθούν 
την πληροφορία που φτάνει σε  αυτούς, στους επόμενους κόμβους. Η 
τεχνική της κωδικοποίησης δικτύου αλλάζει αυτή τη θεώρηση και έτσι 
πλέον οι ενδιάμεσοι κόμβοι μπορούν να συνδυάζουν διαφορετικές 
(ανεξάρτητες) ροές πληροφορίας μεταξύ τους και να προωθούν πλέον τη 
συνδυασμένη αυτή ροή.  Ο κόμβος στον οποίο προορίζονταν η αρχική ροή 
πληροφορίας, μπορεί να την επανακτήσει αυτούσια. Με αυτό τον τρόπο 
μειώνεται ο αριθμός τον μεταδόσεων και έτσι υπάρχει κέρδος στο 
throughput σε σχέση με την απλή περίπτωση.

Σκοπός της παρούσας διπλωματικής εργασίας είναι να μελετήσει την 
πρακτική υλοποίηση του NC σε πραγματικό ασύρματο δικτυακό 
περιβάλλον. Το σημαντικότερο αποτέλεσμα αυτής της εργασίας είναι  η 
υλοποίηση ενός βέλτιστου αλγορίθμου δρομολόγησης για κωδικοποίηση 
δικτύου. Η υλοποίησή αυτή έγινε σε πραγματικές συσκευές δικτύου 
(ασύρματους κόμβους) της πλατφόρμας δικτυακών πειραμάτων  (testbed)
του τμήματος.  Στα πλαίσια της ενασχόλησης αυτής κατασκευάστηκε ένας 
μηχανισμός παροχής ανάδρασης στον κεντρικό κόμβο (router) από τους 
πλευρικούς κόμβους.  Ο κεντρικός χρονοπρογραμματιστής (scheduler) που 
λειτουργεί στο router συνδυάζει πακέτα προς αποστολή με μερική μόνο 
γνώση (πιθανοτικά) για το αν οι δέκτες μπορούν πράγματι να τα 
αποκωδικοποιήσουν. Στη συνέχεια και εφόσον η αποκωδικοποίηση 
απέτυχε, ο μηχανισμός παρέχει την απαραίτητη γνώση ανάδρασης στον 
χρονοπρογραμματιστή ώστε να παρθούν οι βέλτιστες αποφάσεις. Τελικά, 
η διαδικασία αυτή οδηγεί στην επίτευξη της μέγιστης ρυθμαπόδοσης σε 
περιβάλλον πιθανοτικής  γνώσης (για την ικανότητα αποκωδικοποίησης). 
Η σημαντικότητα του επιτεύγματος αυτού, έγκειται στο γεγονός ότι η 
ντετερμινιστική γνώση της δυνατότητας αποκωδικοποίησης είναι συχνά 
αδύνατη (υπολογιστικά ασύμφορη). Εν  αντιθέσει ο υλοποιημένος 



αλγόριθμος πετυχαίνει μια σημαντική βελτίωση στην απόδοση του 
συστήματος (το throughput του συστήματος ταυτίζεται μεγάλο βαθμό με 
αυτό που είχε προβλεφθεί θεωρητικά) ενώ παράλληλα ο υπολογιστικός 
φόρτος διατηρείται σε χαμηλά επίπεδα.

Το κύριο σώμα της εργασίας ακολουθεί ως παράρτημα. 
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1 Introduction
Wireless networks have become indispensable; they provide the means for
mobility, city-wide Internet connectivity, distributed sensing, and outdoor
computing. However, current wireless networks support transmission rates
which are at least an order of magnitude smaller than the capacity typically
available in wired networks. Furthermore, current wireless implementations
suffer from throughput limitations and do not scale to large, dense networks.
Network Coding (NC) is a new research area (a field of information theory
and coding theory) that is likely to have interesting applications in practical
networking systems. With network coding, intermediate nodes may send
out packets that are linear combinations of previously received informa-
tion. There are two key benefits of this approach: potential throughput
improvements and a high degree of robustness. NC can be used to attain
the maximum possible information flow in a network. Recently, it has found
applications in peer-to-peer and wireless networks. However, the bulk of
work on Network Coding is of theoretical nature and there exists very little
experimental work that quantifies the efficacy of this approach in practical
environments. Coding in packet networks can be classified into two types:
intra-session coding (where coding is restricted to packets belonging to the
same session or connection) and inter-session coding (where this restriction
is lifted and coding is allowed among packets belonging to possibly different
sessions). The former, which is also referred to as superposition coding, has
been extensively studied. It is well-known that intra-session coding improves
the throughput of lossless multicast sessions and of lossy sessions (unicast
or multicast). It is also known, however, that intra-session coding is subop-
timal [1] and inter-session coding is necessary to achieve optimal through-
put in general. In the present diploma thesis we will deal with practical
inter-session Network Coding in wireless mesh networks. In particular we
will present two cases of practical inter-session NC implementations (COPE
and NCRAWL) and we will extend the later, by implementing an optimal
throughput scheduling algorithm.

2 Fundamentals of Wireless Network Coding Schemes
In Network Coding, we allow an intermediate node to combine a number of
packets it has received or created into one or several outgoing packets. As-
sume that each packet consists of L bits. When the packets to be combined
do not have the same size, the shorter ones are padded with trailing 0s. We
can interpret s consecutive bits of a packet as a symbol over the field F2s ,
with each packet consisting of a vector of L/s symbols. With linear Network
Coding, outgoing packets are linear combinations of the original packets.
Linear combination is not concatenation: if we linearly combine packets of
length L, the resulting encoded packet also has size L. In contrast to con-
catenation, each encoded packet contains only a fraction of the information
contained in original packets. One can think of linear Network Coding as a
form of information spreading. The procedure of linear NC is as follows:
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• Encoding
Assume that a number of original packetsM1, ...,Mn are generated by
one or several sources. In linear Network Coding, each packet through
the network is associated with a sequence of coefficients g1, ..., gn in
F2s and is equal to X =

∑n
i=1 giM

i. The summation has to occur for
every symbol position, i.e., Xk =

∑n
i=1 giM

i
k , whereMk and Xk is the

kth symbol of M and X respectively. For simplicity, we assume that a
packet contains both the coefficients g = (g1, ..., gn) , called encoding
vector, and the encoded data X =

∑n
i=1 giMi , called information

vector. The encoding vector is used by recipients to decode the data.
For example, the encoding vector ei = (0, ..., 0, 1, 0, ...0), where the
1 is at the ith position, means that the information vector is equal
to Mi (i.e., is not encoded). Encoding can be performed recursively,
namely, to already encoded packets. Consider a node that has received
and stored a set (g1, X1), ..., (gm, Xm) of encoded packets, where gj

[resp. Xj ] is the encoding [resp. information] vector of the jth packet.
This node may generate a new encoded packet (g′, X ′) by picking
a set of coefficients h1, ..., hm and computing the linear combination
X ′ =

∑m
j=1 hjX

j the corresponding encoding vector g′ is not simply
equal to h, since the coefficients are with respect to the original packets
M1, ...,Mn ; in contrast, straightforward algebra shows that it is given
by g′i =

∑m
j=1 hjg

j
i . This operation may be repeated at several nodes

in the network.

• Decoding
Assume a node has received the set (g1, X1), ..., (gm, Xm). In order
to retrieve the original packets, it needs to solve the system Xj =∑n

i=1 g
j
iM

i (where the unknowns are the M i). This is a linear system
with m equations and n unknowns. We need m ≥ n to have a chance
of recovering all data, i.e. the number of received packets needs to be
at least as large as the number of original packets. Conversely, the
condition m ≥ n is not sufficient, as some of the combinations might
be linearly dependent.

As one can see above, the general linear NC demands elaborate calculations,
thus because we are interested in practical NC schemes we will focus on a
limited form of Network Coding which only uses XOR to combine pack-
ets. All transmissions are broadcasted and are overheard by the neighbors.
Packets are annotated with summary information about all other packets a
node already heard. This way, information about which nodes hold which
packets is distributed within the neighborhood. A node can encode multiple
packets for different neighbors and send them in a single transmission, if
each neighbor already has the remaining information to decode the packet.
A simple scenario without NC (a) and using NC (b) is illustrated using the
Alice–Relay-Bob topology shown in Figure 1. In case (a) four transmissions
take place but in (b) only three.
In this point we introduce some usefull terminology, shown in Figure 2.
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Figure 1: Alice-Relay-Bob topology.

Figure 2: Basic Practical NC Terms.

2.1 Practical Wireless Network Coding

To enable a practical application of NC to multi-hop wireless networks, one
needs to address the following issues:

• Network Coding for unicast applications: though most of the
theoretical results in NC are for multicast, the vast majority of Inter-
net traffic is unicast. An application of NC to the wireless environment
has to address multiple unicast flows, if it has any chance of being used.
In particular, with multicast, all receivers want all packets. Thus in-
termediate nodes can encode any packets together, without worrying
about decoding which will happen eventually at the destinations. In
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contrast, in unicast, packets from multiple flows may get encoded to-
gether at some intermediate node, but later their paths may diverge,
at which point they need to be decoded. If not, unneeded data will be
forwarded to area where there is no interested receiver, wasting much
bandwidth.

• Coping with bursty traffic and dynamic environments: prior
theoretical work on Network Coding shows that if the senders, the
receivers, and the traffic demands are known a priori, it is possible
to run a distributed optimization to find the optimal coding strategy
[6]. In reality, users start transmitting immediately without allowing
time for route optimization to converge. Further, the traffic is usually
bursty and the set of senders and receivers keeps changing over time.

• Broadcast with collision avoidance: in wireless environments, NC
relies on the broadcast nature of the medium to deliver a single en-
coded packet to multiple receivers. However, in contrast to unicast,
802.11 broadcast has no collision detection or avoidance mechanism.
As a result, broadcast works badly in congested environments where
the collision probability is high. However, these are the exact envi-
ronments that benefit from Network Coding and its ability to send
more information for less bandwidth. One may change the MAC layer
completely, but for the short term it may be more desirable to make
network coding work with 802.11 as this allows for a practical imple-
mentation using off-the-shelf hardware/drivers.

• Low complexity encoding and decoding: traditional Network
Coding uses operations over large finite fields. Decoding operations
have quadratic complexity, which becomes too slow for high through-
put applications. Further encoding operations are also complicated
since they involve multiplications in large finite fields. This makes their
use in high throughput applications questionable. Encoding/decoding
algorithms should have linear complexity for practical implementation.

Wireless is a broadcast medium, creating many opportunities for nodes
to overhear packets when they are equipped with omni-directional antennas.
However, broadcast exchanges in 802.11 networks are unreliable, which may
introduce high packet loss rate especially when the load is high. A mech-
anism must be chosen to circumvent this problem. A general approach is
to use pseudo-broadcast whereby reliability is implemented at the coding
layer. Unicast packets are still overheard by the nodes (since they are set to
be in promiscuous mode) and sent to the coding layer. If the coding layer is
just above the MAC layer, the delay of moving packets higher in the proto-
col stack can be saved and thus implementing reliability at this layer would
incur lower cost. Encoding a given packet with n-1 other packets requires
that each next-hop node must have n-1 packets in order for the packet to
be decodable. So the first task is to devise a way of getting this information
from the neighbouring nodes. The process of listening packets from nodes is
called Opportunistic Listening. Opportunistic Coding refers to the process
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of making the most efficient decision possible. Since many coding possibili-
ties may exist at any time, the router however, must make the best coding
decision (router may forward packets without coding if it will arise no gain
doing so).

A coding decision (taken by the router) must be made as soon as possible,
a fact that requires that the process of encoding must be time efficient.
Throughput gain of NC depends on the existence of coding opportunities,
which themselves depend on the traffic patterns. Factors affecting traffic
patterns include: 1) Number of flows in the network 2) Kind of traffic (TCP
or UDP) 3) Interference and noise 4) Ratio of upload and download traffic
rates etc 5) Topology . More specifically:

1. Number of flows in the network
When the number of flows in the network is increased, it is highly likely
that more coding opportunities would arise. This in effect would result
in higher throughput. However, when the number of flows is increased
beyond a certain threshold, the high load leads to contention which may
result in a higher packet loss rate. Since these packets would also contain
reception reports, the loss of which would prevent the intermediate node
in making the best possible coding decision. This would impact the
overall performance gain due to NC.

2. Kind of traffic
Applications running over TCP would have different of gains from NC
as opposed to applications that run over UDP. This happens because of
TCP’s sensitivity to packet loss and reordering. Packet losses and packet
reordering forces TCP sender to go into fast retransmit and timeouts
which causes them to cut their congestion window sizes into half. This
results in a significant reduction in the offered load and thus impacts
the number of coding opportunities. Concerning UDP traffic, on the
other hand, it does not exercise congestion control and thus more coding
opportunities arise, resulting in higher throughput improvements.

3. Interference and noise
The throughput gain of coding depends considerably on the level of in-
terference and noise in the wireless network under consideration. It may
be the case that users associated with an AP which uses Network Coding
has many other neighbouring APs which interfere with it. This increases
the likelihood of packet losses and that of reception reports.

4. Ratio of upload and download traffic rates
Coding opportunities arise when packets from two or more different nodes
traverse an intermediate node. When there is only unidirectional traffic,
the coding opportunities arise only between data and acknowledgment
packets in the opposite directions. Since ACKs are typically much smaller
than data packets, it results in the padding of ACKs with 0s. Therefore:

• Information content produced due to coding is reduced
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• The number of coding opportunities are also reduced. When the up-
load and the download traffic rates are large and comparable, more
coding opportunities arise which results in a significant throughput
gain

5. Topology
The capacity of general NC for unicast traffic is still an open question for
arbitrary graphs [4]. Figure 3 shows some simple topologies.

Figure 3: Various NC topologies.

For the chain topology shown in Figure 3(a) showed that the gain tends
to 2 as the number of intermediate hops increase. The “X” topology has
a maximum theoretical gain of 1.33; “Cross” topology has 1.6 whereas the
“Wheel” topology has a maximum gain of 2. Finally the alice-relay-bob
scenario depicted in Figure 1 has the same gain as the “X” topology. It
should be noted that when opportunistic is employed the coding gains may
increase as shown by [3].

2.2 Description of COPE Scheme

COPE [3] is a NC architecture for wireless mesh networks. It inserts a cod-
ing layer between the IP and MAC layers, which detects coding opportuni-
ties and exploits them to forward multiple packets in a single transmission.
COPE incorporates three main techniques:
(a) Opportunistic Listening: wireless is a broadcast medium, creating
many opportunities for nodes to overhear packets when they are equipped
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with omni-directional antennae. COPE sets the nodes in promiscuous mode,
makes them snoop on all communications over the wireless medium and store
the overheard packets for a limited period T (the default is T = 0.5s). In
addition, each node broadcasts reception reports to tell its neighbors which
packets it has stored. Reception reports are sent by annotating the data
packets the node transmits. A node that has no data packets to transmit
periodically sends the reception reports in special control packets.
(b) Opportunistic Coding: the key question is what packets to code to-
gether to maximize throughput. A node may have multiple options, but it
should aim to maximize the number of native packets delivered in a single
transmission, while ensuring that each intended nexthop has enough infor-
mation to decode its native packet. The above is best illustrated with an
example. In Figure 4(a), node B has 4 packets in its output queue p1 , p2
, p3 , and p4 . Its neighbors have overheard some of these packets. The
table in Fig 4(b) shows the nexthop of each packet in B’s queue. When the
MAC permits B to transmit, B takes packet p1 from the head of the queue.
Assuming that B knows which packets each neighbor has, it has a few coding
options as shown in Figure 4(c). It could send p1 ⊕ p2 . Since node C has
p1 in store, it could XOR p1 with p1⊕ p2 to obtain the native packet sent
to it (i.e p2). However, node A does not have p2 , and so cannot decode
the XOR-ed packet. Thus, sending p1⊕ p2 would be a bad coding decision
for B, because only one neighbor can benefit from this transmission. The
second option in Figure 4(c) shows a better coding decision for B. Sending

Figure 4: Opportunistic Coding in action.

p1 ⊕ p3 would allow both neighbors C and A to decode and obtain their
intended packets from a single transmission. Yet the best coding decision
for B would be to send p1⊕p3⊕p4 , which would allow all three neighbors to
receive their respective packets all at once. The above example emphasizes
an important coding issue. Packets from multiple unicast flows may get
encoded together at some intermediate hop. But their paths may diverge
at the nexthop, at which point they need to be decoded. If not, unneeded
data will be forwarded to areas where there is no interested receiver, wasting
much capacity. The coding algorithm should ensure that all nexthops of an
encoded packet can decode their corresponding native packets. This can be
achieved using the following simple rule:

To transmit n packets, p1, . . . , pn to n next-hops, r1, . . . , rn , a node can
XOR the n packets together only if each next-hop ri has all n− 1 packets
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pj for j = i.

This rule ensures that each nexthop can decode the XOR-ed version to
extract its native packet. Whenever a node has a chance to transmit a
packet, it chooses the largest n that satisfies the above rule to maximize the
benefit of coding.
(c) Learning Neighbor State: how does a node know what packets its
neighbors have? As explained earlier, each node announces to its neighbors
the packets it stores in reception reports. However, at times of severe con-
gestion, reception reports may get lost in collisions, while at times of light
traffic, they may arrive too late, after the node has already made a sub-
optimal coding decision. Therefore, a node cannot rely solely on reception
reports. So there is also adopted an alternative aproach. Wireless rout-
ing protocols compute the delivery probability between every pair of nodes
and use it to identify good paths. For e.g., the ETX metric [5] periodically
computes the delivery probabilities and assigns each link a weight equal to
1/(delivery probability). These weights are broadcasted to all nodes in the
network and used by a link-state routing protocol to compute shortest paths.
In the absence of deterministic information, COPE estimates the probabil-
ity that a particular neighbor has a packet as the delivery probability of
the link between the packet’s previous hop and the neighbor. Occasionally,
a node may make an incorrect guess, which causes the coded packet to be
undecodable at some nexthop. In this case, the relevant native packet is
retransmitted, potentially encoded with a new set of native packets.

2.3 Packet Encoding Scheduling Mechanisms

The problem of scheduling refers to -after the relay node has determined
which packets (belonging to different flows) should be encoded (mixed)
together- which one of these mixed packets should be transmitted at each
time slot. There exist two different approaches towards solving this prob-
lem: the relay has deterministic information about all key owners or the
relay only has statistical overhearing information and utilizes feedback from
the transmissions. As far as it concerns the statistical case two main algo-
rithms that exist are:

1) Max Weight Algorithm
A control action consists of selecting a number of queues to serve (encode
their packets together) at a single decision instance. The reward of each
control is the sum of queue length times the average service rate for each
queue. The Average Service Rate (ASR) is the expected number of suc-
cessfully serviced packets times the transmission rate for which the encoded
packet can be received by all intended receivers. This rate is the minimum
of the reception rates of all intended receivers. Let µi(C) be the the ASR
of flow i when control C is selected. Let also Qi be the backlog of flow’s i
queue. In Max Weight Algorithm the selected control C* is the one that
maximazes the product (let us call it control weight) of ASR and the flow
queue backlog i.e C*:{µi(C∗) * Qi > between the other control’s weights }
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2) Fixed Threshold Policy
In FTP the mixed packet combination is assigned a decoding probability
PD and if this number exceeds a fixed threshold, let say PD > G then this
combination is considered meaningfull and it is known that the intented re-
ceivers could decode the packet with at least probability G. This procedure
has been adopted by the COPE scheme. A variation of this policy is the
δ − FTP algorithm in which instead of calculating average service rates,
incoming packets are marked with information about decoding opportuni-
ties. In order to do so, overhearing probabilities qi, j are compared with a
fixed threshold δ ∈ [0, 1] and set to 1 if they exceed the threshold or zero
otherwise.

2.4 Description of an Optimal Scheduling Algorithm

Because of the fact that the algorithms mentioned above are suboptimal
concerning throughput, in this section we will present a throughput optimal
algorithm suggested by the authors of [7]. For simplicity reasons we will
present the algorithm for the case of two flows (see Figure 5; flow 1 is the
red one, flow 2 is the blue one). Generally speaking this algorithm creates a

Figure 5: An example topology with two asymmetric flows ("X" topology).

virtual subnetwork for each flow, so that each node of this network represents
the possible states of a packet: good (implying that the packet is owned by
the other node) , bad (the other node does not own the packet), unknown
(we do not know if the other node owns the packet). Packets with the same
properties are grouped together (i.e they are enqueued in the same queue).
For each flow we have three queues. For flow 1 there are Unknown1, Good1
and Bad1. For flow 2 there are Unknown2, Good2 and Bad2. The above
categorization is done by the router node based on the feedback it gets, after
sending an encoded (XOR-ed) packet to the nodes. An illustrative example
is shown in Figures 6 and 7 .

The edges of the virtual network (that consists of the subnetworks of
each flow) represent the state transitions of a packet and are assosiated with
a transition probability (weight). The virtual subnetwork for the first flow
is depicted in Figure 8. Each node (i.e queue) of the virtual network is asso-
ciated with a queue backlog (for instance node n1

u has a backlog x1
u ). As we

can see, when a packet of flow 1 enters the system (received by the router
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Figure 6: Blue packet is enqueued in Good2.

Figure 7: Red and blue packet are enqued in their respective bad queues.

Figure 8: The subnetwork for flow 1.

node), we have no information about it so it is enqueued in the unknown
queue. After this packet is encoded with another packet and gets transmit-
ted, it might be characterized for example as good (and so be enqueued in
Good1) with probability w1

ug. With probability w1
ub it could be characterized

as bad or with probability w1
ud it could be successfully decoded and so leave

the system i.e the backlogs for the destination node d of each subnetwork
are always zero (x1

d and x2
d =0). Easily we can understand how a packet

moves in its virtual subnetwork (it will be routed inside it until reaching
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node d). In the same fashion, a packet of flow 2 will move likewise in its
respective subnetwork. As far as it concerns scheduling: at each time slot,
the router selects a control which corresponds to activating either:
a) one node from the virtual network (single control) or
b) two nodes from two different subnetworks (control pair), excluding des-
tination nodes.
Once a control is taken, in case a) the first packet of the respective queue is
transmitted or in case b) the two packets (the first packet of each correspond-
ing queue) are encoded together and this encoded packet gets transmitted.
In the table of Figure 9 we can see the transition probabilities (weights),

Figure 9: Transition probabilities for subnetwork of flow 1, for every control
pair.

depending on which control pair is taken by the router, where q12 is the
probability that the receiver of flow 2 has overheard a packet of flow 1,
while q21 that the receiver of flow 1 has overheard a packet of flow 2. The
respective table for subnetwork of flow 2 can be determined by exchanging
indexes 1 and 2.
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The question now arises is which would be an optimal throughput schedul-
ing policy. The following algorithm comes to answer this question.
Let us first define some usefull notions:

• If a control I involves transmission from a single node j, located at
subnetwork i then

µi
k(I) =

{
rdown

i if k = j
0 otherwise

• If the control involves an XOR packet from nodes j1, j2 located at
subnetworks i1, i2 respectively, then

µi
k(I) =

{
min {rdown

i1 , rdown
i2 } if k = j1 or k = j2

0 otherwise

• I is the set of all controls and I∗ is the optimal control.

Optimal Algorithm
At each decision slot:

1) For each single control I={ni
c} form the cost Z(I) = xi

cµni
c
(I)

2) For each control pair I={ni
c1 , n

j
c2}

• form the weights
zi(I) = max{xi

c1 −
∑

k∈N
ni

c1

w(ni
c1 , k)(I)xi

k , 0 } and

zj(I) = max{xj
c2 −

∑
k∈N

n
j
c2

w(nj
c2 , k)(I)xj

k , 0 }

• and the the cost Z(I) = zi(I)µni
c1

(I) + zj(I)µ
nj

c2
(I)

3) select I∗ = arg maxI∈I{Z(I)}

_______________________________________________

The throughput optimality of the above algorithm, comes from the fact
that it can be proven to have maximal stability region.

3 Network Coding architecture for Wireless Adap-
tive Links (NCRAWL)

NCRAWL is a lightweight framework for implementing and testing coding
algorithms on real networks. The lightweight nature of NCRAWL is in
terms of memory and CPU utilization. Some significant characteristics of
this framework are
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• it is a modular system because it consists of modules used for imple-
menting vital operations such as encoding, decoding and scheduling.
This modules have been designed effectively allowing low overhead
operations

• it combines coding algorithms and scheduling

• it uses solely stochastic information

• it is channel aware in sense that routers are aware of all the potential
NC opportunities that can take place within their neighborhoods at
all times, as well as the maximum transmission rate of the encoded
packets that allows for decoding. They are also able to determine
which packets to code together in order to apply their NC policy.

3.1 NCRAWL Motivation

In cases where different transmission rates are employed to combat interfer-
ence, NC may not always provide the favorable performance. Rate control
is a traditional, effective means of coping with interference in wireless net-
works: the transmitter adapts the bit rate as per the quality of the link with
the receiver. For example SampleRate selects the bit rate with the highest
observed link throughput; the lower the throughput, the lower the bit rate.
With regards to NC this is translated to transmitting encoded packets at
the lowest bit rate that can be supported by all intended receivers, in order
for any of them to be able to receive those encoded packets. As an exam-
ple, consider the scenario in Figure 10, where nodes (1) and (3) wish to
exchange packets (A) and (B) through the relay node (2), and f(a, b) is the
highest-throughput bit rate on a link a→ b.

Figure 10: Simple chain topology example.

As mentioned above, while four transmissions are traditionally required,
with NC the packet exchange can take place in three transmissions, since
node (2) is transmitting an XOR combination (A ⊕ B) of the packets to
nodes (1) and (3). However, even though the same amount of information
is exchanged with fewer transmissions, coding will not lead to throughput
improvement, when: f(2,1) « f(2,3). In this case, the relay node (2) will
have to transmit the packet (A ⊕ B) at rate f(2,1); otherwise node (1) will
not be able to decipher the packet. The use of this rate can be suboptimal
for the link (2)→ (3). f(1,2) « f(3,2), while f(1,2) « f(2,1). In this scenario,
node (2) will have to wait for a long time until the reception of packet (A)
from node (1), since the rate f(1,2) is very low. This will also delay the
transmission of packet (A⊕B); hence the throughput on link (2)→ (1) will
not be significantly increased.
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3.2 A Brief Design Description

The design of NCRAWL involves the maintenance and update of local in-
formation with regards to the set of neighbors and their corresponding link
qualities. Let us initially assume that all N nodes belonging to the net-
work are participating in Network Coding. The following information is
maintained for any node k ∈ N :

• The set U(k, r) of all direct neighbors of k for every transmission rate
r ∈ R , where R is the set of all available transmission (bit) rates.
With this, node k will know the set of neighbors that can potentially
overhear packets transmitted by k at a certain bit rate r.

• The set U (m, r) of all direct neighbors of a node m, wherem ∈ U(k, r).
This will provide node k with the set of nodes that can overhear the
packet transmissions of node m at a certain bit rate r.

Figure 11: An "X" topology example.

Figure 11 shows an "X" topology example. Here, Jack is a node that can
serve as a relay and can perform Network Coding. Jack has categorized his 4
neighbors into 2 groups. A group corresponds to the maximum transmission
rate that can be supported by all nodes that belong to the group. Alice
and Bill belong to group 1. They can communicate with each other and
with Jack, using the maximum-throughput transmission rate r1, at any link
direction. (Rate r1 is the highest-throughput bit rate that can be supported
on any of the links that belong in group 1). Similarly for group 2, Bob,
Chloe and Jack can exchange data using a rate r2, which is the maximum
transmission rate that can be sustained by all links belonging in group 2.
Note here the following: Nodes belonging to group 1 cannot communicate
directly with nodes of group 2 at any transmission rate (i.e., Alice and Bob
are not neighbors). In order for Alice to send a packet to Bob, she has to
go through a relay node, such as Jack. It is possible that r1 = r2, since
Alice and Bob may have similar link qualities with Jack. Again here, Jack
will correspond Alice and Bob in two different groups, since Alice and Bob
cannot sustain a direct link. Jack, Alice and Bill may have a common
neighbor (e.g. John), with whom they can (mutually) communicate at a
rate r3 < r1. In such a case, Jack will correspond Alice, Bill and John in a
group 3, different than group 1. This organization of the local topological
information enables Jack to make decisions with regards to transmitting
encoded packets at appropriate rates, as we discuss below. Facilitating NC
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the formation of groups allows Jack to make efficient coding decisions in
real time. Let us assume that Alice wants to send a packet to Bob, while
Bob wants to send a packet to Alice, and that Jack is the relay, as in the
above figure. Jack’s locally maintained view of the topology suggests that
Alice and Bob belong to groups 1 and 2 respectively. As soon as Jack
receives both Alice’s and Bob’s packets, he performs an encoding operation
(XOR) and transmits the encoded packet to both of them. If r1 < r2,
the encoded packet is transmitted at rate r1, else at rate r2. Note that
the encoded packet is not a broadcast packet (broadcast 802.11 packets are
transmitted at the basic rate). It is a unicast packet, addressed to either
Bob or Alice. Since both recipients are in monitor mode, they are both able
to receive the encoded packet. If the reception of the encoded packet fails
(e.g. a collision occurs), Jack will transmit the individual packets; we discuss
this scenario below. Nodes perform the above operation opportunistically,
and this can facilitate the exchange of information between groups. As an
example, consider now the scenario where Alice wants to send a packet to
Bob, and Chloe wants to send a packet to Bill. Since both packets have to
be routed through Jack, he can perform the same operation as previously,
and transmit an encoded packet that he constructs from the mixture of the
two individual packets. Notice here that both Alice and Bill belong to the
same group. With this, Jack implicitly assumes that Alice’s packet can
be overheard by Bill, since: (a) Alice is Bill’s neighbor, and (b) the Alice-
Jack link supports the same maximum rate as the Alice-Bill link. Since
Bill can overhear Alice’s packet, he will have the required information to
decode the encoded packet transmitted by Jack, in order to get Chloe’s
packet. Clearly this requires from Bill to correctly decipher Alice’s original
packet. This packet, although transmitted to Jack successfully, may collide
at Bill’s antenna. In such a case, Bill is not going to be able to decode Jack’s
subsequent encoded packet. To address this situation, Bill acknowledges the
packets that he has successfully decoded. If Bill does not send a positive
acknowledgment for Chloe’s packet, Jack will unicast the latter to Bill.

3.3 NCRAWL System Implementation Description

The big picture: the main NCRAWL system is a Click network packet pro-
cessor that includes the SRCR routing protocol implementation for mesh
networks [8]. There have been included two additional processing stages:
the NCRAWL decoder and the NCRAWL encoder. These stages have been
developed as individual Click elements, and have been placed before the
beginning and after the end of the SRCR processing flow, respectively, as
depicted in Figure 12. The main components of NCRAWL are described
bellow:
a) packet decoder: the main tasks of the decoder module are the follow-
ing:

• To use the available (from overhearing or ownership) key packets in
order to decode the received encoded packet.

• To schedule the transmission of Layer-3 acknowledgements for the cor-
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Figure 12: NCRAWL architecture.

rectly retrieved native packets, derived by the decoding operation.

• To determine any potential pending acknowledgements, as well as to
verify any received acknowledgements.

• To tag and store all the correctly overheard data packets as potential
keys; as discussed above, these will be potentially used in the near fu-
ture for decoding received encoded packets. Moreover the key repos-
itory is used for packet resending in case a respective acknowledge-
ment never arrives. The decoder resides at the packet receiving side
of the system and is invoked by the respective packet arrival event.

b) NC packet encoder: the NCRAWL encoder element resides at the
sending side of the system and is more complicated, since it maintains and
manages the processor packet queues. A part of the element handles incom-
ing packet events, another part deals with outgoing packet events and there
is also code that gets invoked by timer as well as read and write Click con-
figuration events (Figure 12). It is this element that exports the framework
API which can be used to develop network coding algorithms. Specifically,
the main assigned tasks for this module are the following:

• To process and place incoming native packets (keys) into particu-
lar available maintained queues. The system supports a plurality of
queueing operations, which can be configured as per the requirements
of the NC algorithm under development.
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• To identify and combine packets together, towards forming encoded
packets. The selection of the appropriate packet set follows the direc-
tions of the NC algorithm under consideration, supported by NCRAWL.

• To generate any potentially expected acknowledgement tokens for each
one of the packets of an encoded combination.

• To piggyback any acknowledgements (through the use of scheduled,
upcoming data transmissions) that have been scheduled by the decoder
element, regarding outgoing native data packets.

c) Up-to-date topological information maintainer: the link metrics
updater is responsible for collecting information about the network neigh-
borhood as well as corresponding link transmission rates and PDR values
from all nodes. The information gathered is passed to the rest of the system
via the Click memory write event mechanism. Furthermore, the NCRAWL
code that configures the encoding combination policies is invoked to react as
needed. Gathering link quality information: The NCRAWL updater relies
on the existing SRCR protocol component, which maintains link connec-
tivity information and performs periodic measurements on all links. SRCR
sends probe packets at all rates to determine the PDR for each link and
chooses the highest rate that performs well. PDR information is then used
by SRCR to calculate the ETX or ETT metric [9] [10], which provides infor-
mation about entire routing paths, not just direct links. This information
is kept in the SRCR link table, which can be read from other Click com-
ponents. The SRCR period can be set as desired (the default value been
used is 3 sec). Managing neighbor information: Based on the information of
the SRCR link table, the link updater maintains its own so-called Neighbor
Table (NT), which includes information for its neighbors. Initially, the NT
is empty. The updater periodically reads the SRCR link table and updates
NT as needed. The NT contents are updated whenever (i) a new neighbor
appears, or (ii) an existing neighbor disappears, or (iii) a certain link qual-
ity changes. In such cases, the NCRAWL updater broadcasts a packet with
the new NT contents and sets a timer. When such a NT packet is received
(overheard), the updater replies by broadcasting its NT, provided it has
not done so recently. The reply suppression threshold is set equal to the
SRCR period. The NT packets are used by the NCRAWL updater to main-
tain the so- called Received NT Table (RNTT). This table complements the
NT, holding information about the link quality as experienced/measured
by the neighbor nodes themselves rather than by the local node. When an
NT packet arrives, the corresponding RNTT entry is updated respectively.
Packets from nodes that are not in the NT are ignored; a node must be
“officially” reported as a direct neighbor by SRCR in order to be considered
by NCRAWL.
Feeding NC algorithms with updated topological information: Each time the
updater modifies the contents of the NT or RNTT (i.e., each time it proac-
tively sends or receives a NT packet which leads to an update of the RNTT)
a timer is set. When the timer expires, the new link qualities are passed to
the main NCRAWL system, where they will potentially drive adaptive NC
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decisions, based on the NC designer’s needs. This timeout is (generously)
set to 1 sec, providing ample time for any NT reply packets to arrive.
Keeping overheads low: The NCRAWL updater employs its own threads
of execution to perform these information maintenance tasks (the current
implementation uses 2 threads), but these remain suspended most of the
time, making this component quite unintrusive in terms of CPU occupancy.
Moreover, only a small fraction of the wireless bandwidth is typically used
to collect the required link quality information from the neighboring nodes.
Finally, the “reactiveness” of the updater is a function of the SRCR period.
If a smaller period is used, link changes can be tracked faster (and more
accurately) but the processing and communication overhead will increase
too. Having said that, the implementation of the NCRAWL updater is not
optimized for a very rapidly changing environment as this is not the focus
of this work.
d) NCRAWL logger: the read events are used by another application, the
NCRAWL logger, which gathers various statistics that are generated online
by both encoder and decoder elements.
e) NCRAWL acknowledgement sender: NCRAWL acknowledges indi-
vidual (native) data packets, but also groups packet acknowledgements per
encoded combination. This way, if the same encoded packet has been suc-
cessfully decoded at one recipient but failed at another, the sender can figure
out which of the undelivered packets can be reused in encoded combinations,
based on whether they have been logged successfully as keys by fellow re-
cipient nodes. We should note here that NCRAWL provides this support;
however, it expects that the user algorithm will make the final scheduling
decisions. NCRAWL uses by default a user defined timeout threshold to re-
send packets that have not been acknowledged. Note also that a timer-expire
event triggers the transmission of acknowledgements in separate packets
when there is not enough outgoing traffic to piggyback them (Figure 12).
NCRAWL also reschedules packets from the key repository for which ac-
knowledgements have not arrived. Utilizing resources effectively: Efficient
resource utilization was a main concern during the design of the various
NCRAWL subsystems. More specifically, the repository that stores copies
of packets uses a FIFO queue as the main indexing mechanism and can host
up to a user defined quantity. After the storage limit is reached, the oldest
packet is removed in order for a new one to get stored. The same packets
are also indexed in a hash table based on their network-wide unique iden-
tifiers that we have previously discussed. The hashtable is used to quickly
retrieve packets either as keys for decoding, or for resending them in case an
expected acknowledgement token expires. The same indexing approach has
been used for the acknowledgements and expected acknowledgement tokens
as well.

3.4 NCRAWL VS COPE

The main differences between NCRAWL and COPE are mentioned below

• Low CPU and memory utilization operations: NCRAWL has
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been optimized at each stage of network coding operations, leading to
a lightweight generic framework in terms of CPU and memory utiliza-
tion. The result is a framework that provides the theoretical predicted
throughput gain while at the same time it requires much less CPU
processing, compared to COPE. The comprerative results are ilustrat-
ede in Figure 13. where NCRAWL’s algorithm-1 is a Max-Weight

Figure 13: CPU comparative results.

algorithm like the one described in subsection 2.3 and algorithm-2 is
a Myopic algorithm with feedback where bad packets are sent directly
to MAC layer for transmission without coding while good packets are
sent to the corresponding queue at the good state.

• Avoidance of long packet headers: with NCRAWL, nodes do not
need to explicitly state (in future packet headers) which packets have
been received and by whom. With COPE, each packet includes an

20



additional COPE header, which contains this information, in order for
neighbor nodes to know if their neighbors can perform decoding op-
erations. In contrast, NCRAWL depends on the grouping mechanism
which directly provides such information. Hence, theoretically Jack
can directly predict that Bill and Chloe have sniffed Alice’s and Bob’s
packets respectively. A possible (potentially minor) drawback with
this design is that Alice’s packet may have collided at Bill’s antenna
(with another packet from someone else); in this case, Bill would be
unable to decode Jack’s encoded packet. Since nodes acknowledge all
the packets that they successfully decode, NCRAWL resolves this issue
by having Jack to specifically unicast the packet to Bill. Note here that
the COPE header is of variable length; the more the packets sniffed,
the larger the header becomes for future data packets. However, this
can create extremely long packet headers, thereby increasing the trans-
mission overhead and reducing the throughput. More than that, this
problem will be exacerbated at high bit rates, where thousands of
packets are sniffed per second. Finally the processing overhead of the
sniffed packets will also be a major issue: the sniffer has to filter all
these packets, store them and add their IDs into future packet headers.
This is a quite time-consuming task and is expected to tremendously
degrade the performance of the device at high bit rates.

• Ability to employ NC dynamically: as explained above, in cer-
tain scenarios coding does not offer additional benefits. NCRAWL is
able to perform coding selectively for certain link qualities and be-
tween specific groups, by simply observing the state of the links in the
different groups. However, the COPE implementation cannot make
such decisions online. With COPE, coding is always performed, and
the extra COPE header is always used with data packets.

• Aggressiveness in encoding: NCRAWL is more aggressive in ex-
ploiting encoding opportunities. While COPE prefers encoding pack-
ets of similar lengths, NCRAWL encodes all kinds of packets that
reach Layer-3 (e.g. data packets, TCP acknowledgments, etc). De-
pending on the implementation, searching for packets of appropriate
length may incur even more processing overhead. (COPE considers 2
different virtual queues per node: one for small packets and one for
large ones). On the probability of packet reception: NCRAWL is heav-
ily dependent on the grouping mechanism. Jack can directly expect
that with a high probability nodes belonging to the same group have
sniffed the same packet. In contrast COPE incorporate’s the IDs of
the sniffed packets into the COPE header.

• Predestination of the encoded packet: the encoded packets are
destined to the node with the poorest link (in the groups of interest).
Consider for example group 1 in the above figure, and assume that
all links in group 1 use the 6 Mbps transmission rate. Even though
the same rate is used for all those links (an inherent design concept of
NCRAWL), each link may have a different quality in terms of packet
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delivery ratio (PDR), and thus the expected transmission count (ETX)
and expected transmission time (ETT) metric values may differ among
the 1-hop links in the group. With NCRAWL, whenever Jack trans-
mits an encoded packet to groups 1 and 2, he addresses the packet to
the node X with the highest ETT value on the link Jack ⇔ X, among
all the nodes that will sniff the packet. With this, if Jack receives
an 802.11 ACK from X (perhaps after a potential number of MAC
retransmissions of his encoded packet), he is quite confident that all
the other nodes (in the respective groups) will have managed to suc-
cessfully overhear his encoded packet.

4 Experimentation in Wireless Testbeds
A testbed is a platform for experimentation of large development projects.
A wireless network testbed consists of the hardware and software needed, in
order to give researchers a wide range of environments in which to develop,
debug, and evaluate their wireless network systems and protocols, in realistic
conditions.

4.1 NITOS Testbed

NITOS (Network Implementation Testbed using Open Source code) is a
testbed created by the Network Implementation Testbed Laboratory of the
Computer and Communication Engineering Department at University of
Thessaly, in collaboration with the Centre for Research and Technology
Hellas (CERTH). The NITOS platform is open to any researchers who would
like to test their protocols in a real-time wireless network. They are given
the opportunity to implement their protocols and study their behavior in a
custom tailor-made environment. The testbed’s capabilities are constantly
extended. Up to now it consist of 10 Orbit nodes, 5 diskless nodes and 20
Commell nodes. The topology placement of the nodes can be seen in Figure
14. Analytical details about the specifications of the nodes are explained in
the next section.

4.2 Hardware Specifications

NITOS Server
A console server in which the experimenter connects, so that to have access
to testbed resources (manage the reserved nodes, transfer files, run experi-
ment scripts etc).
Development Server
A development server relies on NITOS testbed’s intranet and its basic fea-
ture is to provide ease of use in source code development and compilation
procedures. NITOS users can take advantage of that facility because Nitos-
Dev has all the development versions of the packages that are used on the
testbed node images, so the user does not have to download any extra soft-
ware or check any version compatibilities. This is particularly convenient
for wireless driver development because typically they have to get compiled
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Figure 14: NITOS nodes deployment.

against certain versions of the kernel source. The major motivation for
building Nitos-Dev was to deal with file transfer latency. For example, click
modular router’s executable is typically 11 MB in size. Changing code, re-
compiling and transferring the new executable can be very frustrating, if the
link quality with the testbed’s front-end is not fast enough. Orbit Node
Orbit nodes are actually PC’s equipped with :

• 1 GHz VIA C3 proccessor

• 512 MB of RAM

• 40 GB disk

• two ethernet ports

• two 802.11 a/b/g cards

• a Chassis Manager i.e a PCI connecting control board, that has been
designed specifically for the VIA MB770 mainboard. This board is
powered up by standby power, and has its own Ethernet NIC to receive
power control commands.

Video Testbed
Fifteen of the wireless Orbit nodes are equipped with Logitech C120 USB
web-cameras, capable of up to 30 fps video capture (640x480 pixels). This
setup enables video-related research, such as real time services and QoS
provision for video in wireless networks.
Mobility
NITOS testbed will offers three WiFi enabled nodes that are mobile. Two
of them will be mounted on programmable robots, specifically i-Robots of
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Figure 15: Orbit node schematic.

the Acroname Robotics company. The third follows a standard predefined
path, as it is mounted on a DC-motor kit (Phidget LV motor kit) and moves
on rails placed on the rooftop of one of the buildings.
Diskless Nodes
The basic characteristic of these nodes is the lack of a local disk. Furthemore,
their price is significantly lower than the Orbit nodes due to their hardware
specifications. Sometimes, we may refer to those diskless nodes as Low
Cost Nodes (LCN). The LCN are [alix2.c2] system boards of [ PC Engines
company] equipped with:

• CPU: 500 MHz AMD Geode LX800

• DRAM: 256 MB DDR DRAM

• Storage: Compact Flash socket

• Power: DC jack or passive POE, min. 7V to max. 20V

• Three front panel LEDs, pushbutton

• Expansion: 2 mini PCI slots, LPC bus

• Connectivity: 2 Ethernet channels (Via VT6105M 10/100)

• I/O: DB9 serial port, dual USB port

Commell Nodes
NITLAB’s custom made nodes that feature heterogeneous hardware are
based on Commell LV-67B motherboards, with Intel Core 2 Duo P8400
2,26 GHz processors and 1 GB RAM. With 20 Commell Nodes, NITOS ex-
panded its hardware facilitites and combines different technologies. NITOS
Commell nodes are deployed in 4x4 GRID and the rest of them 4 + 2 (from
the GRID) form a star topology. Those 6 Commell nodes (in star topology)
are attached with GNU Radio boards and support MIMO features.
GNU radios
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Six of the Commell nodes are connected with GNU Radio boards (software
defined radios), specifically USRP1 boards with XCVR2450 daughterboards
(2.4-2.5 GHz and 4.9 to 5.85 GHz Dual-band Transceiver). The GNU radio
software allows the researcher to program a number of physical layer features
(e.g. modulation), thereby allowing for dedicated PHY layer or cross-layer
research. A GNU radio board connected with a Commel node is illustrated
next.
MIMO support
WMIA-199N WLAN 802.11 n (ATHEROS 9160) wireless miniPCI cards as
well as WMIR-200N Ralink RT2860+2850 mini PCI cards are used. The
basic setup is to support two types of polarization enabling vertical and hor-
izontal diversity. This is done with an external box that is attached with the
Commel node’s box and it can be rotated either horizantally or vertically.
The external box hosts 3 antennas that are connected to the miniPCI cards
via Pigtails.
Switch
A PoE switch [D-Link DES1228P] is used for wired connection between
server and nodes.

The general NITOS architecture is summarized in Figure 15.

Figure 16: NITOS architecture diagram.

4.3 Software Specifications

NITOS testbed is based on a set of software tools for its operation. In
order to book nodes and channels for a specific time period, one has to use
the NITOS Scheduler web-application, specifically designed to facilitate the
reservation procedure.

Being aware of the fact that an experimenter needs connectivity and link
quality data before he selects the desired nodes for an experiment, there has
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been created a topology-connectivity tool, based on the TLQAP protocol.
By means of this tool the user has access to up-to-date information regarding
the quality of each direct wireless link in the testbed.

For setting up and controlling an experiment, as well as for retrieving
measurements, it is recommended the use of the OMF software framework
(cOntrol and Management Framework). Though one is free to use custom
scripts in association with standard widely-used network tools (e.g. iperf),
OMF offers a complete network experiment control solution and ultimately
ease of use.

PXE and Frisbee is used for booting the nodes and loading the desired
kernel images on them respectively. It is also used NFS for mounting the
filesystem. This approach is adopted to avoid the delays and inconveniencies
related to burning an entire filesystem on the nodes. The user can build his
own image or use the images provided with every new account and located
in the user’s home directory.

5 Developing Network Coding Systems
In this section we will see things from a developer’s perspective. See ap-
pendix at the end of the document for some fundamental concepts of com-
puter networking.

5.1 Network Drivers

Driver is a program that allows operating system’s kernel to communicate
with various hardware devices such as the hard disk, sound cards, wireless
network cards etc. Drivers translate the language of the operating system
to an API (Application Programming Interface) that the hardware device
can understand. When the operating system starts up, it tries locating
various devices that are connected to a computer system. It then loads the
appropriate driver into the kernel memory space and waits for an input from
the user to communicate with the device, so that the device can perform
the appropriate action (by calling the respective function). Concerning a
wireless network driver, the basic functions are transmission, reception and
rate adaptation.

First of all, the wireless driver has to be loaded into kernel. When the
driver gets loaded, it has to allocate some memory space for itself to exist
within the kernel. Thus the driver has to request for this space from the
kernel. Then the device is registered with the kernel. By doing so, the
kernel is informed about the existence of the particular device. Next step
involves exporting non specific system calls that can be invoked by user level
program through the kernel. Although user and kernel space are separated
(a program in userspace cannot access kernel space memory) a device can
be easily accessed by a file in the /dev directory of the linux kernel, which
implies that one can use C code to talk to the device, just by writing to and
reading from this file. Then the wifi driver calls the function open to initialize
basic settings for transmission. This is generally represented as dev->open.
This function gets executed when a user pushes up an interface. This is
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done by “ifconfig ath0 up” for an Atheros card’s interface. So kernel calls
the open function which in turn turns on the hardware device. This function
also performs operations such as allocating address space for the hardware,
copying the MAC address and setting interrupt request (irq) numbers. Then
it starts the netif_start_queue to initialize the network queue to accept
packets from kernel.

Let see now what happens when a user sends a request to the wireless
card driver (let say that he is requesting a web page using his browser). The
request to deliver packets arrives from the upper layer (application layer).
This packet is then fragmented into smaller chunks, each one of size specified
by the fragment value. This is then encapsulated with TCP/IP information
by the network layer. Kernel now appends this packet with Ethernet infor-
mation, namely source, destination and packet type as obtained by the ARP
table. Till this point, this packet is only an Ethernet packet that can be sent
over by wire to a hub. The wifi driver, converts these Ethernet packets to
WiFi packets as specified by the IEEE standards. All through this process,
sk_buff is used by the kernel to keep track of the packet headers. This is
the kernel buffer which stores information of each packet like its data, TCP
HEADER, IP HEADER etc. This header is transferred from the upper layer
through every layer in the OSI Model of the linux kernel. In each layer, it
will be appended with that layer header and sent to the layer below it. De-
tails about sk_buff’s structure can be found in file sk_buff.h of the kernel’s
source. When a packet arrives to the kernel from the upper layers, kernel
calls the function dev->hardstart_xmit. This function is often mapped with
a device specific function in the driver. This function performs some sanity
check such as checking the packet’s size, before converting it to an 802.11
one. Thus an Ethernet layer packet as it arrives to the kernel, is then modi-
fied to an 802.11 packet by removing the header of this packet and replacing
it with a new header. With the new MAC header of 802.11 type, the packet
is ready to be sent out. Normally what follows is a call to a device specific
function, such as ath_tx_start() (in the case of Atheros drivers). This func-
tion is responsible for setting the transmission rates of the packets which are
sent out. This function also decides on the QoS of the packet, based on the
various flags set by the user to differentiate the packet. In the case of need
for encryption of data packets, it is this function which is responsible for
doing so. It also defines specific rates for management, control and data
packets. It is generally a rule in wifi networks that management packets
are transmitted at the basic rate. This is because of the fact that not all
stations can listen to packets with high rates. With these procedures, packet
is placed in the queue and a transmit interrupt is raised. In many cases a
bottleneck may be caused by the device (for instance when having the com-
bination of a slow device with a fast CPU). In this case if an extra packet
arrives, it is stored in hardware queue. Linux kernel provides a sophisticated
mechanism to be informed about slow hardware devices. Kernel provides
driver with functions such as netif_stop_queue() and netif_wake_queue().
The first one is used to inform the kernel from the driver, to stop sending
packets when packet buffer overflow occurs. The second is used to resume
this interrupted operation. These two functions can be used alternatively
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to control the feed rate of packet come from kernel into the driver’s buffer.
Sometimes netif_tx_disable() is used instead of netif_stop_queue() in case
of disabling packet transmission anywhere outside hardstart(). This method
is particularly helpful when sending high stream video packets. It may also
happen that because of a buggy device, a packet may fail to be transmitted.
To make sure everything goes right, kernel initializes a watchdog timer that
times out if the job was not done properly. This timer is similar to the timer
used by ping to get a response back. The driver must have a function to
handle this timer interrupt. Often these handlers have methods to report
transmission failures to the upper layers.

As far as it concerns packet reception, this could be a little trickier than
transmission, because of the fact that one needs to allocate memory space in
the kernel to copy this information and send it to the upper layer. Reception
of packets is generally interrupt driven, though there are cases when polling
may be used. Often the hardware, when it receives a packet, checks to see if
the packet is addressed to itself or if the packet is broadcast. For this cases,
it raises an interrupt to the driver. It may be noted that, in promiscuous
mode, device accepts all packets. Driver executes the appropriate inter-
rupt handler routine, which calls the receive function. The receive function
does the work of ripping the packet header and passing this packet to the
upper layer. This function is also responsible for recording the statistics
information about the packets received. Every packet entering this function
goes through a series of check for validating the packet. Then the 802.11
stack input function removes the MAC header of the packet and substitutes
it with an Ethernet header. This packet is further checked for a valid se-
quence number to identify if these packets are duplicate. Duplicate packets
are discarded as these are nothing but mere retries of the same packet.

5.2 Click Modular Router

Click is a software architecture for building flexible and configurable
routers. A Click router is assembled from packet processing modules called
elements. Individual elements implement simple router functions like packet
classification, queueing, scheduling, and interfacing with network devices.
These elements are writtern in C++ programming language. Click natu-
rally belongs to OSI Layer-3. It can also give hints to OSI Layer-2 (MAC)
because it can cooperate with Layer-2 drivers such as Atheros Madwifi, but
it cannot be used for radical Layer-2 implementations. A router’s config-
uration is (conceptually) a directed graph with elements at the vertices;
packets follow along the edges of the graph. Configurations are written in a
declarative language that supports user-defined abstractions. The click con-
figuration file describes connectivity between elements (an acyclic directed
graph is formed). It also allows configuration arguments to be specified for
the elements.

Typically there are three kinds of processing flows in Click:

- A flow that delivers packet to the next stage (a push flow)

- A flow that gets a packet from the next stage (a pull flow)
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- A flow that does not handle packets (typically triggered by a timer)

The types of elements are:

- Push: Pushes packet to the next element. E.g. FromDevice();

- Pull: Pulls packet from the previous element E.g. ToDevice();

- Agnostic: May act as push or pull. E.g. Paint();

The most important properties of an element are:

- Element’s class. Each element belongs to one element class. This specifies
the code that should be executed when the element processes a packet, as
well as the element’s initialization procedure and data layout.

- Ports. An element can have any number of input and output ports. Every
connection goes from an output port of one element to the input port of
another. Different ports can have different semantics; for example, second
output ports are often used to emit erroneous packets.

- Configuration string. The optional configuration string contains additional
arguments that are passed to the element at router’s initialization time.
Many element classes use these arguments to set per-element state and
fine-tune their behavior.

- Method interfaces. They are methods exported to other elements. For
example, methods for transferring packets like push(), pull() etc. Elements
communicate at run time through these interfaces, which can contain both
methods and data.

- Handlers. They are methods exported to the user rather than to other
elements in the router’s configuration. They support simple, text based
read/write semantics. Each element can easily install any number of han-
dlers, which are access points for user interaction. They appear to the user
as files in Linux’s /proc directory; for example, a count handler belonging
to an element named e would be accessible in the file /proc/click/e/count.
One of e’s methods is called when the user reads or writes this file. This
lightweight mechanism is most appropriate for local modifications to an
element, such as changing a maximum queue length. Handlers are also
useful for exporting statistics and other element’s pieces of information.

Figure 17 shows a sample element, Tee (2). ‘Tee’ is the element’s class; a
Tee copies each packet received on its single input port, sending one copy
to each output port. Configuration strings are enclosed in parentheses; the
‘2’ in ‘Tee(2)’ is interpreted by Tee as a request for two outputs. Method
interfaces are not shown explicitly, as they are implied by the element’s
class. Figure 18 shows several elements connected into a simple router that
counts incoming packets and then throws all of them away. Click supports
two kinds of connections, push and pull. On a push connection, packets
start at the source element and are passed downstream to the destination
element. On a pull connection, on the other hand, the destination element
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Figure 17: A sample element; Triangular ports are inputs and rectangular
ports are outputs.

Figure 18: A router configuration that throws away all packets, after count-
ing them.

initiates packet transfer: it asks the source element to return a packet, or a
null pointer if no packet is available. The processing type of a connection
whether it is push or pull is determined by the ports at its endpoints. Each
port in a running router is either push or pull; In a push port we have event
based packet flow, but in a pull port it can be used scheduling or polling.
Connections between two push ports are push, and connections between
two pull ports are pull. Connections between a push port and a pull port
are illegal. They may also be created agnostic ports, which behave as push
when connected to push ports and pull when connected to pull ports. In
diagrams bellow, black ports are push and white ports are pull; agnostic
ports are shown as push or pull ports with a double outline. In Figure 19
there are some illegal connections. The top configuration has four errors: (1)
FromDevice’s push output connects to ToDevice’s pull input; (2) more than
one connection to FromDevice’s push output; (3) more than one connection
to ToDevice’s pull input; and (4) an agnostic element, counter, in a mixed
push/pull context. The bottom configuration, which includes a Queue, is
legal. In a properly configured router, the port colors on either end of each
connection will match.

Figure 19: Some element connection violations.

As far as it concerns a packet, it consist of:

• char*

• Access with struct*

• Annotations i.e metadata to simplify processing carring information
downstream, that are statically defined fields in a packet. We can have
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IP header information, TCP header information, Paint annotations
and user defined annotations.

Click elements do not have implicit queues on their input and output
ports, because of the associated performance and complexity costs this would
provoke. Instead, queues in Click are explicit objects, implemented by a
separate Queue element. This gives the router’s designer explicit control
over an important router property, namely how packets are stored. It also
enables valuable configurations that are difficult to arrange otherwise. For
example, a single queue feeding multiple devices, or a queue feeding a traffic
shaper on the way to a device. Explicit queues necessitate both push and
pull connections. A Queue has a push input port and a pull output port; the
input port responds to pushed packets by enqueueing them, and the output
port responds to pull requests by dequeueing packets and returning them.

Here follows the description of some basic elements. The format is Ele-
mentName(configuration arguments) | Push, pull, or agnostic (specifies port
types)| Port descriptions (packet types and numbers of ports)| Description.

- ARPQuerier(...) | Push | First input takes IP packets, second input takes
ARP responses with Ethernet headers. Output emits ARP queries and IP-
in-Ethernet packets. Uses ARP to find the Ethernet address corresponding
to each input IP packet’s destination IP address annotation; encapsulates
the packet in an Ethernet header with that destination Ethernet address.

- ARPResponder(ip eth, ...) | Agnostic | Input takes ARP queries, output
emits ARP responses | Responds to ARP queries for IP address ip with
the static Ethernet address eth.

- CheckIPHeader(...) | Agnostic | Input takes IP packets. | Discards packets
with invalid IP length, source address, or checksum fields; forwards valid
packets unchanged.

- Classifier(...) | Push | Input takes any packet | Examines packet data
according to a set of classifiers, one classifier per output port. Forwards
packet to output port corresponding to the first classifier that matched.
For example classifier: “12/0800” checks that the packet’s data bytes 12
and 13 contain values 8 and 0, respectively.

- Discard | Push | Discards all input packets.

- FromDevice(devicename) | Push | No inputs | Sends packets to its single
output as they arrive from a Linux device driver.

- FromLinux(devicename, ip/netmask) | Push | No inputs | Installs into
Linux a fake Ethernet device devicename and a routing table entry that
sends packets for ip/netmask to that fake device. The result is that packets
generated at the router host and destined for ip/netmask are emitted on
FromLinux’s single output as they arrive from Linux.

- GetIPAddress(16) | Agnostic | Input takes IP packets | Copies the IP
header’s destination address field (offset 16 in the IP header) into the
destination IP address annotation; forwards packets unchanged.
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- IPClassifier(...) | Push | Input takes IP packets | Examines packet data
according to a set of classifiers, one classifier per output port. Forwards
packet to output port corresponding to the first classifier that matched.
For example classifier: “ip src 1.0.0.1 and dst tcp port www” checks that
the packet’s source IP address is 1.0.0.1, its IP protocol is 6 (TCP), and
its destination TCP port is 80.

- Queue(n) | Push input, pull output | Input takes any packet | Stores
packets in a FIFO queue; maximum queue capacity is n.

- ToDevice(device) | Pull | Input takes Ethernet packets; no outputs | Hands
packets to a Linux device driver for transmission. Activates pull requests
only when the device is ready.

- ToLinux | Push | Input takes Ethernet packets; Linux will ignore the
Ethernet header except for the protocol field. No outputs | Hands input
packets to Linux’s default network input software.

More elements and their detailed description can be found at
http://read.cs.ucla.edu/click/elements

The user can also write his own elements. All he has to do is to add his
element’s class i.e two C++ source files (File.hh and File.cc), override some
methods (like port_count(), processing(), initialize(), etc.) , export the ele-
ment and compile the elements. Some Debugging aids, when programming
in Click, that could be used are:
-to print messages with click_chatter()
-dmesg at the prompt
-read /var/log/messages
-ksymoops

There are three possible ways to run Click. It can be run as:
- a Kernel module. In this way it completely overrides Linux routing, re-
quires root permissions but the highest speed can be achieved. If Click
crashes then consequently kernel will also crash (leading to a system crash).
So it is recommended for final systems or to present experimental results.
- a Userlevel program. In this way it runs as a daemon on a Linux sys-
tem. On the one hand it is a bit slower than Kernel-level Click but on
the other it is easier to install and debug (but still sufficiently fast). So it
is recommended for development and prototyping. In order for User-level
Click to receive packets from network and send packets to the system, el-
ements FromDevice(athX) and ToDevice(athX) are used respectively. The
argument (athX) is the network’s interface that Click is connected to. In
addition, to send packets to the system and receive packets from the sys-
tem, virtual TUN/TAP interfaces are used . In this case default route to

1TUN and TAP are virtual network kernel devices. They are network devices that are
supported entirely in software, which is different from ordinary network devices that are
backed up by hardware network adapters. TAP (as in network tap) simulates an Ethernet
device and it operates with Layer-2 packets such as Ethernet frames. TUN (as in network
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the tun/tap device has to be set so traffic passes through the Click route.
Because of the fact that Linux routing is still working, ip addresses must be
correct.

- a routing agent within the ns-2 simulator(nsclick). It may be a bit dif-
ficult to install, but we can and take advantage of the simulation’s benefits
(having multiple routers in one system, less hardware, and being shielded of
exogenous factors like interference)

5.3 Roofnet

Roofnet is an experimental 802.11b/g mesh network developed at the
Computer Science and Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology (MIT). Part of the research project at MIT includes
link-level measurements of 802.11, finding high-throughput routes in the face
of lossy links, link adaptation, and developing new protocols which take ad-
vantage of radio’s unique properties (ExOR). The software developed for
this project is available free as open source. Roofnet consists of about 50
nodes in apartments in Cambridge. Each node is in radio range of a subset
of the other nodes and can communicate with the rest of the nodes via multi-
hop forwarding. A few of the nodes act as gateways to the wired Internet.
A primary feature of Roofnet’s design is that it requires no configuration
or planning, and is thus easy to deploy and expand. A new user can turn
on a new node and start using it for Internet connectivity with no config-
uration beyond installing the hardware. The new user need not allocate
an IP address, aim a directional antenna, or ask existing users to perform
any special actions to add the new node. One consequence of an unplanned
network is that each node can route packets through any of a large number
of neighbors, but the radio link to each neighbor is typically of marginal
quality; finding the best multi-hop routes through a rich mesh of marginal
links turns out to be a challenge. We will now focus on the softaware run-
ning at each node. The nodes use the Click software router toolkit for route
discovery and packet forwarding. All the routing software runs in the ker-
nel; this gives presice control over packet queuing and scheduling (to give
routing messages high priority), and allows tight integration between rout-
ing and the 802.11 driver (to get feedback about failed transmissions, and
control transmit power level and bit-rate). Click greatly eases routing pro-
tocol development by allowing upgrades without reboots and co-existence of
multiple routing and forwarding schemes in the same kernel. Each node also
runs a Web server, a NAT, and a DHCP server on its wired Ethernet port.
The DHCP server and NAT allow user’s home computers to use the node
as a router without any configuration. The Web server provides a simple

TUNnel) simulates a network layer device and it operates with Layer-3 packets such as IP
packets. TAP is used to create a network bridge, while TUN is used with routing. Packets
sent by an operating system via a TUN/TAP device are delivered to a user-space program
that attaches itself to the device. A user-space program may also pass packets into a
TUN/TAP device. In this case TUN/TAP device delivers (or "injects") these packets to
the operating system’s network stack (thus emulating their reception from an external
source).
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configuration interface (to turn on and off DHCP, and to set the IP address
of the wired interface), a status monitor showing what routes are available
and their current metrics and a means for rebooting the node. The software
architecture is presented in Figure 20.

Figure 20: Roofnet software architecture.

Roofnet uses a routing protocol called SrcRR. The main goal of
SrcRR is to find high-throughput routes. The key challenges it faces are
the intermediate quality of most links, asymmetric link loss rates, frequent
changes in link loss rates, and frequent losses of routing protocol packets
due to interference from hidden terminals.

SrcRR’s general design is inspired by DSR [11]. When a node n0 needs to
find a route to a destination nd, it broadcasts a query for nd. Each node ni

that hears a query forwards it, appending its own identifier to a source route
in the packet. Each time nd hears a query for itself, it sends a reply back
to n0 along the source route accumulated in the query. Node n0 (and every
node that sees the query or reply) adds all the links mentioned in the reply to
a local link-state database, and uses Dijkstra’s algorithm on that database
to find the best route. When n0 sends data packets to nd, it includes that
route (i.e. the sequence of node identifiers) in each packet as a source route.
The primary way in which SrcRR differs from DSR is that SrcRR uses the
ETX [9] metric to help it choose good routes. ETX continuously measures
the loss rate in both directions between each node and its neighbors using
periodic broadcasts. It assigns each link a metric that estimates the number
of times a packet will have to be transmitted before it (and the corresponding
802.11 ACK) are successfully received; thus the best link metric is one. The
ETX route metric is the sum of the link metrics; thus ETX penalizes both
long routes and routes that include links with high forward or reverse loss
rates. A node forwards a query if it has not seen the query before, or if
the query’s total route metric is better (lower) than the best instance of the
query the node has yet seen. This increases the amount of query traffic, but
decreases the algorithm’s bias in favor of shortest hop count. Nodes also
delay for a random period less than one second before forwarding a query to
avoid contention. When a node forwards a query, it includes the link ETX
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metric to whatever node it heard the query from; nodes store these metrics
in their link-state databases, and use them to compute the route metric to
minimize with Dijkstra’s algorithm. While a source node is sending data
along a route, SrcRR uses the following techniques to discover if the route
has broken or declined in quality. First, when a node forwards a data packet,
it updates the packet’s source route to contain the latest ETX metric from
the preceding node; if the routes in the two directions are the same, this
suffices to keep both ends aware of the current route quality. Second, if
the 802.11 card indicates that ten packets in a row have failed to elicit an
802.11-level ACK, the node will send the current link metric to the source.
Third, if a node is passing data in one direction but sees no data in the
other (i.e. the route is asymmetric or broken), it will periodically send the
current link metric to the source. Fourth, if a source node sees a new metric
for a link it is using, it re-runs Dijkstra’s algorithm to ensure it is using the
best known route. Finally, if a source node notices that the route it is using
has a current route ETX metric more than twice as high (half as good) as
the best it has seen since the last query, it will flood a new query.

SrcRR is independent of IP, and operates at a lower layer. It uses 32-bit
addresses; in the usual case in which it is carrying IP packets, SrcRR use IP
addresses in its headers. A SrcRR node maintains a mapping from SrcRR
32-bit addresses to 48-bit 802.11 MAC addresses, derived implicitly from
SrcRR query broadcasts.

6 Implementation of an Optimal Scheduling Al-
gorithm

In this section it will be presented the implementetion details of the algo-
rithm mentioned in section 3.4 . The algorithm was implemented as a part of
this diploma thesis, in order to examine if the throughput region, presented
by the authors of [7], can be achieved in practice, while in addition process-
ing overheads will be kept low. The algorithm was built on the NCRAWL
framework. In order to do that we extended the framework with some new
modules of processing and modified some of the existing ones. In brief:

1. Four new queues added (Good1, Bad1, Good2, Bad2). The original
NCRAWL’s queues were transformed to act as unknown ones.

2. The acknowledgment procedure of NCRAWL was re-designed from scratch.
In addition now the receivers can not only piggy-back acknowledgments,
but they are able to send explicit acks (this is usefull in the case of asym-
metric flow senarios where piggy-backing does not work)

3. A categorizing mechanism has been added. Its purpose is to insert a
packet in the apropropriate queue (Unknown, Good, Bad) based on feed-
back the router gets via acknowledgements.

4. The scheduling procedure of NCRAWL has been modified towards taking
into acount the proposed algorithm’s metrics
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In our case there exist six queues in total. In particular Unknown1,
Good1, Bad1 for the first flow and Unknown2, Good2, Bad2 for the second.
The main actions taking place, in order for the router to enqueue each
packet (according to the feedback it gets) is that when the router sends
an encoded packet, it enqueues an eapg entry in a FIFO queue (lets call
it eapgFifo). Each eapg (encoded ack packet group) entry consists of the
packet ids of the native packets (that have been encoded together) and
a timestamp ts (essentially it’s the current time that the encoded packet
was sent). It also inserts the packet ids of the two native packets in a
hash table (acksToBeReceivedHash). Finally the two native packets are
stored (in a structure called packetStorage) because they might need to
be retrieved in the categorization procedure. When the receiver gets and
decodes an encoded packet, it sends an acknowledgement back to the router
(i.e it sends the packet id of the packet intended to the receiver). When
the router receives an ack from a receiver it removes the packet id from
the acksToBeReceivedHash. In addition, in the router’s code a timer is
triggered periodically (every 2 seconds), in order for the router to start the
categorization procedure.

-Categorization Procedure: Let us call tg the time that the timer was
triggered. During this procedure, router reads the ts of the first (oldest)
entry (firstEapgEntry) in the eapgFifo. If ts is at least 1 second older than tg
(i.e timestamp rule holds) then checks whether the packets of this eapg have
been acked, by checking the presence (not acked) or absence (acked) of their
ids in the acksToBeReceivedHash. The condition on the timestamp ensures
that enough time has passed, so we can safely consider that a receiver had
not been able to decode a packet. The categorization rules for the packets
indicated in the firstEagpEntry are:

• if both packets have been acked
-remove both packets from packetStorage

• if the first packet has been acked but the second has not
-remove the first from packetStorage
-enqueue the second in Good2

• if the second packet has been acked but the first has not
-remove second from packetStorage
-enqueue the first in Good1

• if both packets have not been acked
-enqueue both packets in their respective bad queues (Bad1 , Bad2)

Then the firstEapgEntry is removed from eapgFifo and the same procedure
is repeated for the next eapg entries, until for some entry the timestamp
rule does not hold (so the categorization procedure terminates and will be
repeated when the timer will be retriggered). The reason that a packet is
removed from packetStorage is that, in essence, has left the system (reached
its destination).
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Now we will describe how the scheduling part of the algorithm is imple-
mented. Interpreting the weights of step (2) of the algorithm, for the case
of two flows they can be formulated as follows:
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u, n
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u)

z1(I) = (x1
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because they are kind of meaningless.

- For the case of single controls, finding the cost is trivial.

Every time a change happens in a queue (by enqueueing a packet or de-
queueing it in order to be sent out) the I∗ is recomputed(updating the
costs) so the most profitable (max cost) control combination is on the head
of a list that includes the elements of I (all the controls). We will call this
list controlsList.

The algorithm has been implemented in order to run on Nitos testbed.
So, having the intention to avoid the occupation of many nodes (five in
particular) of the testbed we came up with an alternative solution, involving
only three nodes (alice-relay-bob topology). In this case the key needed by a
node to decode an encoded packet is its own packet (the one that had been
sent before). So nodes have to store (keep) their own packets. We simulate
the overhearing probalities q12 and q21 by introducing a mechanism in which
a node keeps a packet with a certain probability. In the figures below we
can see the basic tasks of each node.
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Figure 21: Router node when encoding two packets together.

Figure 22: Receiver actions when receives an encoded packet.
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Figure 23: Receiver when sending a native packet.
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The throughput region of our system, determined after several exper-
iments for the case of 12 Mbps with q12 = 0.5 and q21 = 0.8 is depicted
below:

Figure 24: The throughput region for the case of 12Mbps links.
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The above results were achieved, while the router (which has the most
computational intensive tasks among the other nodes) utilized 8-10 % of its
CPU (we are refering to an orbit node which is equiped with an 1 GHz VIA
C3 proccessor).
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A Fundamentals of Computer Networking

A.1 OSI and TCP/IP Models

The Open Systems Interconnection model (OSI model) is a product of the
Open Systems Interconnection effort at the International Organization for
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Standardization. It is a prescription of characterizing and standardizing the
functions of a communications system in terms of abstraction layers. Similar
communication functions are grouped into logical layers. An instance of a
layer provides services to its upper layer instances while receiving services
from the layer below. The layers and the interaction between them can be
seen in Figure 25. A short description of the purpuse of each layer is as
follows:

Figure 25: OSI model layers.

• Application (Layer-7): provides services directly to user applications.
Because of the potentially wide variety of applications, this layer must
provide a wealth of services. Among these services are establishing
privacy mechanisms, authenticating the intended communication part-
ners and determining if adequate resources are present. Application
layer functions typically include identifying communication partners,
determining resource availability, and synchronizing communication.
When identifying communication partners, the application layer deter-
mines the identity and availability of communication partners for an
application with data to transmit. When determining resource avail-
ability, the application layer must decide whether sufficient network
or the requested communication exist. Examples of Layer-7 include
Telnet, FTP, NFS, NIS, etc. The data unit of this layer is a message
or stream (both could be named just data).

• Presentation (Layer-6): performs data transformations to provide a
common interface for user applications, including services such as re-
formating, compresing and data encryption. An example is the service
for the conversion of an EBCDIC-coded text file to an ASCII-coded
one.

• Session Layer (Layer-5): establishes, manages and ends user connec-
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tions while also manages the interaction between systems. Services
include such things as establishing communications as full or half du-
plex and grouping data. An example of a Session Layer Protocol is the
OSI protocol suite Session Layer Protocol, also known as X.235 or ISO
8327. In case of a connection loss this protocol may try to recover the
connection. If a connection is not used for a long period, the Session
Layer Protocol may close it and re-open it. Session layer services are
commonly used in application environments that make use of remote
procedure calls (RPCs).

• Transport (Layer-4): insulates the three upper layers (5 through 7)
from having to deal with the complexities of the layers below (1 through
3), by providing the functions necessary to guarantee a reliable net-
work link. Among other functions this layer provides error recovery
and flow control between the two end-points of the network connec-
tion. The main example protocols are TCP (Transmission Control
Protocol), UDP (User Datagram Protocol) and RDP (Reliable Data-
gram Protocol). The data unit of this layer is a segment (TCP case)
or Datagram (UDP case).

• Network (Layer-3): establishes, maintains and terminates network
connections. Among other functions, standards define how routing
and relaying are handled. Two examples of network layer protocols
are IP (Internet Protocol) and ICMP (Internet Control Message Pro-
tocol). The data unit of this layer is an IP Datagram or Packet.

• Data Link or MAC (Layer-2): ensures the reliability of the physical
link established at Layer-1. Standards define how data frames are
recognized and provide flow control and error handling at the frame
level. Protocol examples of Data link layer are Ethernet, Frame Relay,
802.11 wireless Lan, PPP(Point-to-Point Protocol), Token Ring, etc.
The data unit of this layer is a Frame.

• Physical (Layer-1): controls transmission of the raw bitstream over
the transmission medium. Standards for this layer define parameters
such as the amoung of signal voltage swing, the duration of symbols
(grouped bits) and so on. Physical layer protocols are the DSL (Digital
Subscriber Line), ISDN (Integrated Services Digital Network), SONET
(Synchronous optical networking), etc. The data unit of this layer is
a bit.

OSI reference model came into existence way before TCP/IP model was
created. Advance Research Project Agency (ARPA) created OSI reference
model so that they can logically group the similarly working components of
the network into various layers of the protocol. But after the advent of the
Internet, there arose the need for a streamlined protocol suite, which would
address the need of the ever growing Internet. So the Defense Advanced Re-
search Project Agency (DARPA), decided to create TCP/IP protocol suite.
This was going to address many, if not all the issues that had arisen with
OSI reference model. Even though the concept is different from the OSI
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model, the layers in TCP/IP are nevertheless often compared with the OSI
layering scheme in the following way: the TCP/IP protocol suite consists
of four protocol layers that approximately correspond to the OSI Reference
Model, as depicted in Figure 26. TCP/IP’s Network Interface Layer de-

Figure 26: OSI vs TCP/IP.

fines the interface between the host system and the network medium. It
is specific to the network implementation and roughly corresponds to the
combined OSI Reference Model Physical Layer and Data Link Layer; some
OSI Network Layer functionality could also be included. The Internet Layer
defines communications between hosts on networks. It provides the path to
link these networks into a single internetwork. Using IP and a number of
adjunct protocols, the Internet Layer can efficiently route packets across the
internetwork. It corresponds to the OSI Network Layer. The OSI Transport
Layer provides reliable end-to-end communication between hosts, while the
OSI Session Layer provides end-to-end communication between two com-
municating processes within the hosts. TCP provides a reliable, assured,
connection-oriented service between two hosts, and UDP provides an unre-
liable, connectionless service between two hosts. TCP and UDP offer some
Session Layer functionality since they provide addressing for higher layer
applications. TCP/IP’s Application Services Layer provides the end-user
window into the network as well as useful functions for the user. It is func-
tionally similar to OSI Layers 5–7 (i.e., Session, Presentation, Application)
and offers such applications as e-mail, file transfer, remote terminal access,
and access to the World Wide Web (WWW). For the purpuses of the present
diploma thesis, we will adopt the "Five-layer Internet model" or "TCP/IP
protocol suite" (James F. Kurose, Keith W. Ross, Computer Networking:
A Top-Down Approach, 2008), visualized in Figure 27. In Figure 3 it is
also described the encapsulation of a packet i.e as the packet moves down to
lower layers, each layer(more specifically each layer of the Kernel’s TCP/IP
protocol stack) adds its respective header to the packet. Then the packet is
pushed to the next layer until reaching the last one (Layer-1) and gets trans-
mitted. In this Figure, H1 denotes a TCP or UDP header, H2 the Network
header and H3 the Data Link header. The reverse procedure is called packet
decapsulation and is taking place when a node receives a packet, until the
data of the packet is delivered to the application.
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Figure 27: TCP/IP protocol suite model and packet encapsulation.

A.2 Wireless Networks

A Wireless network refers to any type of computer network that is not con-
nected by cables of any kind. It is a method by telecommunications and
enterprise (business) installations to avoid the costly process of introducing
cables into a building, or as a connection between various equipment loca-
tions. Wireless telecommunications networks are generally implemented and
administered using radio waves as their transmission medium. This imple-
mentation takes place at the physical level (layer) of the network structure.

A wireless ad hoc network is a decentralized type of wireless network.
The network is ad hoc because it does not rely on a preexisting infras-
tructure, such as routers in wired networks or access points in managed
(infrastructure) wireless networks. Instead, each node participates in rout-
ing by forwarding data for other nodes, and so the determination of which
nodes forward data is made dynamically based on the network connectivity.
In addition to the classic routing, ad hoc networks can use flooding for for-
warding the data. The earliest wireless ad hoc networks were the “packet
radio” networks (PRNETs) from the 1970s, sponsored by DARPA after the
ALOHAnet project. The decentralized nature of wireless ad hoc networks
makes them suitable for a variety of applications where central nodes can’t
be relied on, and may improve the scalability of wireless ad hoc networks
compared to wireless managed networks, though theoretical and practical
limits to the overall capacity of such networks have been identified. Mini-
mal configuration and quick deployment make ad hoc networks suitable for
emergency situations like natural disasters or military conflicts. The pres-
ence of a dynamic and adaptive routing protocols enable ad hoc networks
to be formed quickly.

Wireless ad hoc networks can be further classified by their application:

• wireless mesh networks (WMN)

• mobile ad hoc networks (MANET)
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• wireless sensor networks (WSN)

In this particular diploma thesis we will deal with wireless mesh net-
works. A WMN is a communications network made up of radio nodes or-
ganized in a mesh topology. Wireless mesh networks often consist of mesh
clients, mesh routers and gateways. The mesh clients are often laptops,
cell phones and other wireless devices while the mesh routers forward traffic
to and from the gateways which may but need not connect to the Inter-
net. The coverage area of the radio nodes working as a single network is
sometimes called a mesh cloud. Access to this mesh cloud is dependent on
the radio nodes working in harmony with each other to create a radio net-
work. A mesh network is reliable and offers redundancy. When one node
can no longer operate, the rest of the nodes can still communicate with
each other, directly or through one or more intermediate nodes. Wireless
mesh networks can be implemented with various wireless technology includ-
ing 802.11. As mentioned above wireless mesh network can be seen as a
special type of wireless ad hoc network. A wireless mesh network often has
a more planned configuration, and may be deployed to provide dynamic and
cost effective connectivity over a certain geographic area. The mesh routers
may be mobile, and be moved according to specific demands arising in the
network. Often the mesh routers are not limited in terms of resources com-
pared to other nodes in the network and thus can be exploited to perform
more resource intensive functions. In this way, the wireless mesh network
differs from an ad-hoc network, since these nodes are often constrained by
resources.

Wireless networks have gained increasing popularity because of their
ability to allow the components of a system to stay connected and WMNs
have emerged as a key technology for next-generation wireless networking.
Mesh networks are self configuring, self managing, and self healing. When
a mesh node powers up, it broadcasts and listens to identification messages
from neighbor nodes and a network is thus self formed. Their dynamic re-
configuration ability ensures that failure of a particular link to a node does
not lead to node isolation. Mesh networks can cover a wider geographical
area without having to establish additional backhaul communication links,
resulting in a cost effective technology. Hence WMNs have been accepted as
a fast, low-cost, and easily extensible solution for providing network connec-
tivity and coverage to distributed users in a wide area. The ease of mainte-
nance, robustness, and reliability of these networks makes them suitable for
varied applications.

As far as it concerns the implementation of wireless computer networks
Wi-Fi or IEEE 802.11 is a set of standards for this purpose in the 2.4, 3.6
and 5 GHz frequency bands. The most popular are 802.11b and 802.11g
protocols, which are amendments to the original standard. 802.11-1997 was
the first wireless networking standard, but 802.11b was the first widely ac-
cepted one, followed by 802.11g and 802.11n. Security was originally pur-
posefully weak due to export requirements of some governments, and was
later enhanced via the 802.11i amendment after governmental and legisla-
tive changes. 802.11n is a new multi-streaming modulation technique. Other
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standards in the family (c–f, h, j) are service amendments and extensions or
corrections to the previous specifications. 802.11b and 802.11g use the 2.4
GHz ISM band. Because of this choice of frequency band, 802.11b and g
equipment may occasionally suffer interference from microwave ovens, cord-
less telephones and Bluetooth devices. 802.11b and 802.11g control their in-
terference and susceptibility to interference by using direct sequence spread
spectrum (DSSS) and orthogonal frequency division modulation (OFDM)
signaling methods, respectively. Finally 802.11a uses the 5 GHz U-NII band,
which, for much of the world, offers at least 23 non-overlapping channels
rather than the 2.4 GHz ISM frequency band, where all channels overlap.
Better or worse performance with higher or lower frequencies (channels) may
be realized, depending on the environment. The knowledge of the opera-
tions of 802.11 medium access control protocol helps in the understanding
of the time required for a packet transmission in a wireless ad hoc network.
In 802.11 protocols, the fundamental channel access mechanism is based on
the Distributed Coordination Function (DCF) mode [2]. It is a decentral-
ized algorithm and does not require a single node to monitor or coordinate
the channel access scheme. The two techniques employed by the DCF mode
are the basic access mechanism and the RTS/CTS method. The basic ac-
cess method involves the transmission of ACK packets from the destination
node after the reception of the packet from the source node. In the case
of RTS/CTS mechanism, the source node first sends the Request To Send
(RTS) packet and waits for the Clear To Send (CTS) packet from the des-
tination node. This is followed by the actual data transmission and the
reception of the ACK packet from the destination. The random channel
access in 802.11 networks is based on the Carrier Sense Multiple Access
Collision Avoidance (CSMA/CA) scheme. When a data packet is ready to
be sent, the protocol senses the channel for ongoing transmissions. If the
channel is observed as free for a particular period of time called Distributed
Inter Frame Size (DIFS), the DCF mode initializes the back-off counter and
waits till the counter becomes zero before attempting transmission. The
packet is transmitted when the counter reaches zero. Upon successful trans-
mission, the next packet is chosen from the queue. The packet transmission
may fail, if a collision is encountered with any other packets in the network
and a back-off counter is chosen at random from a uniform distribution. A
maximum of M transmissions are attempted before the packet is discarded.
A simplyfied flow chart of the CSMA/CA is presented in Figure 28.
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Figure 28: Simplyfied CSMA/CA procedure.
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