
UNIVERSITY OF THESSALY

Algorithms and System-level Support for Agent Placement
and Migration in Wireless Sensor Networks.

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in

Computer and Communication Engineering
by

Nikolaos Tziritas

July 2011

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

UNIVERSITY OF THESSALY

Algorithms and System-level Support for Agent Placement
and Migration in Wireless Sensor Networks.

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy
in

Computer and Communication Engineering
by

Nikolaos Tziritas
July 2011

Dissertation Committee:

Prof. Alexis Delis

Prof. Eleni Karatza
Prof. Spyros Kontogiannis
Prof. Leandros Tassiulas
Associate Prof. Spyros Lalis (Primary Supervisor)
Assistant Prof. Iordanis Koutsopoulos

Assistant Prof. Thanasis Loukopoulos (Secondary Supervisor)

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Copyright by
Nikolaos Tziritas

2011

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

The Dissertation of Nikolaos Tziritas is approved by :

Dr. Spyridon Lalis, Primary Supervisor

Dr. Athanasios Loukopoulos, Secondary Supervisor

Dr. Iordanis Koutsopoulos

University O f Thessaly
July 2011

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Dedicated to my family:
my father Charalampos, my Mother Olga, my brother Ioannis and my soon-to-be sister-
in-law Dimitra.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Acknowledgements

I would like to express my gratitude to Dr. Spyros Lalis for his excellent supervision/mentoring

and invaluable support throughout these years. Without his guidance, constructive criticism and

truly scientific attitude, to name a few of his contributions, this doctoral study would not have

been possible.

I’m also greatly indebted to Dr. Thanasis Loukopoulos who brought unique perspectives to my

research, enriching it greatly. His co-supervision/mentoring and invaluable contribution, along

with the endless discussions made also this work possible.

I wish to thank Dr. Petros Lampsas who never stopped helping and encouraging me during the

entire PhD thesis. I’m also very appreciative for his fruitful and stimulating conversations.

I also would like to express my thanks to my colleagues Giorgis Georgakoudis, Manos

Koutsoumpelias, Apostolos Apostolaras and Dr Dimitris Syrivelis for making my study breaks

very enjoyable. I would like to mention that Manos and Giorgis contributed to the

implementation of the agent manager. Giorgis also helped me to conduct experiments to

evaluate the performance of the agent creation and migration protocols.

My sincerely thanks go to the members of my Dissertation Committee for accepting to review

my thesis.

A million thanks to my beloved family and friends for their moral support. I want to especially

thank Manos Chatzidakis, Giannis Portokalakis, Manthos Sarris, Giorgos Mpoulios, and

Lefteris Mamoulakis.

I very much acknowledge the financial support of the Alexander S. Onassis Public Benefit

Foundation.

1

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Finally, I want to acknowledge the financial support of POBICOS, FP7-ICT-223984, research

project.

11

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Abstract

Wireless sensor systems have drawn much attention from a considerable part of scientific

community during the last years. The advances in this field range from the design of battery-

powered embedded nodes to the development of software (i.e. operating system, middleware,

etc) especially designed to run on such resource-constrained devices. One of the most

challenging parts for both hardware and software oriented work is to maximize the lifetime of

such nodes. This thesis focuses on the design and implementation of mobile code placement and

migration algorithms for distributed applications in order to reduce the amount of application-

level communication performed over the network. Since the largest part of a node’s energy

expenditure is attributed to the wireless communication (not code execution), reducing the

energy consumption becomes of paramount importance, leading in that way to an increased

system lifetime. In the sequel, we give a brief overview of the application model, the algorithms

and the middleware designed and implemented in the context of this thesis.

The model adopted in this work is inspired by the POBICOS [91] platform, where the

application is organized as a set of software entities (agents) that communicate with each other

to implement the desired functionality. An agent can be “non-generic” or “generic”. Non

generic agents use special resources of a node, e.g. a sensor measuring a physical quantity or an

actuator controlling a device or function. On the contrary, generic agents perform computational

tasks and decision making at a higher level, without relying on special resources.

Chapter 1 introduces the agent migration problem stated as follows: given an application that is

deployed in a sensor network, perform generic agent migrations in order to reduce the data

exchanged over the network due to the application-level communication between agents. We

propose fully distributed algorithms that migrate an agent towards its center of gravity (in terms

of communication load), thereby reducing the network cost. Also, two protocols are presented

for handling the case of nodes with storage constraints (for hosting agents).

111

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2 examines the same (above) problem, with the difference that it considers migrations

of agent groups instead of single agent migrations. The algorithms in question deal with co

located agents that are “mutually dependent”, which in the case of the simpler algorithms may

hinder migration, leading to noticeably inferior placements.

Chapter 3 discusses the competitiveness of the aforementioned algorithms versus the optimal

algorithm. Also, it presents an enhancement of the group migration algorithms in order for them

to produce an optimal agent placement (in terms of the network cost incurred by the

application). It should be stressed that this enhancement guarantees optimality only if nodes do

not have storage constraints, else the problem is NP-complete.

Chapter 4 proposes fully distributed algorithms for the problem of generic agent migrations for

resource-constrained nodes, introducing the concept of “evictions”. Specifically, agent

migrations are considered that are not beneficial in their own right but free space which can be

used to perform additional (beneficial) migrations. Of course, the ultimate goal is to reduce the

network load, so the total benefit of the migrations must be greater than the cost of the non

beneficial ones.

In Chapter 5 we focus on the problem that the aforementioned algorithms are not able to

“guess” whether a (group) migration will turn out to actually reduce the network cost. They

simply assume that the structure and communication pattern of the application remains stable

for a “sufficiently” long time, so as to amortize the migration cost. As a consequence, frequent

changes in the application-level load may lead to frequent agent migrations, thereby increasing

the network cost (instead of reducing it). For example, an agent may continuously “oscillate”

between two nodes due to periodic changes of the communication load with other agents

(changing its center of gravity), before the respective migration cost is amortized. For this

reason, we propose online algorithms, along with a discussion of their competitiveness versus

the offline optimal algorithm.

In Chapters 6 and 7 we propose centralized algorithms tackling more complex problems.

Specifically, chapter 6 addresses the problem of reducing the network cost through migrations

of both generic and non-generic agents, considering that the nodes of the system have storage

capacity limitations. The proposed algorithms use graph coloring techniques. In Chapter 7, a

two-dimensional problem is considered, the objectives being: (a) to maximize the number of

agents hosted by the nodes of the system; and (b) to maximize the network lifetime (maximize

the lifetime of the first node that depletes its battery). We propose algorithms solving each

dimension (sequentially) in an independent way, along with a branch-and-bound algorithm

iv

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

tackling the problem concurrently in both dimensions. Regarding the first dimension of the

problem, a considerable part of the algorithms involves the de-fragmentation of the nodes’

storage capacity, through agent migrations.

Chapter 8 describes the implementation of the component of the POBICOS middleware that

provides full-fledged, distributed, agent management functionality, on top of the TinyOS

embedded operating system. Specifically, we describe: i) the mechanism for creating agents on

eligible nodes; ii) the mechanism for transporting agent-level messages; iii) the mechanism

detecting and destroying “orphan” agents; and iv) the mechanism for the migration of generic

agents with full transparency for the application.

Finally, Chapter 9 discusses works related to this thesis, while Chapter 10 includes an overview

of this dissertation and future directions.

v

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Περίληψη

Τα τελευταία χρόνια ένα σημαντικό μέρος της επιστημονικής κοινότητας έχει στρέψει το

ενδιαφέρον της προς τα ασύρματα δίκτυα αισθητήρων (wireless sensor networks). Οι

τεχνολογικές εξελίξεις σε αυτό τον τομέα ξεκινούν από την σχεδίαση ενσωματωμένων κόμβων

που ρευματοδοτούνται μέσω μπαταρίας και φτάνουν μέχρι την ανάπτυξη λογισμικού

(λειτουργικών συστημάτων, ενδιάμεσου λογισμικού, κλπ) ειδικά σχεδιασμένου για να μπορεί

να εκτελείται με τους περιορισμένους πόρους αυτών των συσκευών. Η μεγιστοποίηση της

διάρκειας ζωής των κόμβων αποτελεί πρόκληση τόσο σε επίπεδο υλικού όσο και σε επίπεδο

λογισμικού. Η παρούσα διατριβή αφορά στην σχεδίαση και ανάπτυξη αλγορίθμων τοποθέτησης

και μετανάστευσης κώδικα κατανεμημένων εφαρμογών με στόχο την μείωση του φόρτου

επικοινωνίας της εφαρμογής που πραγματοποιείται πάνω από το ασύρματο δίκτυο. Καθώς το

μεγαλύτερο μέρος της ενέργειας των κόμβων ξοδεύεται συνήθως στην επικοινωνία (όχι στην

εκτέλεση κώδικα), με αυτό το τρόπο μειώνεται η κατανάλωση ενέργειας και αυξάνεται η

διάρκεια ζωής των κόμβων του συστήματος. Στη συνέχεια, παραθέτουμε μια σύντομη

περιγραφή του μοντέλου εφαρμογής, των αλγορίθμων και του ενδιάμεσου λογισμικού που

σχεδιάστηκαν και αναπτύχθηκαν στα πλαίσια της διατριβής.

Το μοντέλο που υποθέτει η εργασία είναι εμπνευσμένο από την πλατφόρμα POBICOS [91],

όπου η εφαρμογή σχεδιάζεται ως ένα σύνολο από τμήματα λογισμικού (πράκτορες) που

επικοινωνούν μεταξύ τους για να υλοποιήσουν την επιθυμητή λειτουργικότητα. Οι πράκτορες

διαχωρίζονται σε «ειδικούς» και «γενικούς». Οι ειδικοί πράκτορες χρησιμοποιούν ειδικούς

πόρους ενός κόμβου, π.χ. έναν αισθητήρα που δίνει τιμές για ένα φυσικό μέγεθος ή ένα ελεγκτή

μιας συσκευής ή λειτουργίας. Αντίθετα, οι γενικοί πράκτορες πραγματοποιούν λειτουργίες

επεξεργασίας και λήψης αποφάσεων σε πιο ψηλό επίπεδο, χωρίς να απαιτούν ειδικούς πόρους.

Οι πράκτορες της εφαρμογής κατανέμονται (δυναμικά) στους κόμβους του συστήματος

ανάλογα με τους πόρους που αυτοί διαθέτουν.

Υ11

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Το κεφάλαιο 1 εισάγει το πρόβλημα μετακίνησης πρακτόρων που διατυπώνεται ως εξής:

δοθήσας μιας εφαρμογής που έχει αναπτυχθεί σε ένα δίκτυο αισθητήρων, το ζητούμενο είναι να

πραγματοποιηθούν μετακινήσεις γενικών πρακτόρων ώστε να μειωθεί το κόστος δικτύου λόγω

της επικοινωνίας σε επίπεδο εφαρμογής. Προτείνουμε πλήρως κατανεμημένους αλγορίθμους με

στόχο την μετακίνηση του κάθε πράκτορα προς το κέντρο βάρους του (όσον αφορά το κόστος

επικοινωνίας), πράγμα που ελαχιστοποιεί και το συνολικό κόστος επικοινωνίας σε επίπεδο

δικτύου. Επίσης παρουσιάζονται δύο πρωτόκολλα για τον χειρισμό της περίπτωσης όπου οι

κόμβοι διαθέτουν περιορισμένη αποθηκευτική χωρητικότητα για την φιλοξενία πρακτόρων.

Το κεφάλαιο 2 αφορά στο ίδιο (παραπάνω) πρόβλημα, με τη διαφορά ότι εξετάζει μετακινήσεις

από ομάδες πρακτόρων αντί από μεμονωμένους πράκτορες. Οι εν προκειμένω αλγόριθμοι

αντιμετωπίζουν την «αμοιβαία εξάρτηση» πρακτόρων που φιλοξενούνται στον ιδιο κόμβο και

επικοινωνούν μεταξύ τους, πράγμα που, στους πιο απλούς αλγορίθμους, μπορεί να εμποδίσει

την μετακίνηση τους, έχοντας ως αποτέλεσμα μια (σημαντικά) χειρότερη τοποθέτηση.

Το κεφάλαιο 3 εξετάζει την ανταγωνιστικότητα των παραπάνω αλγορίθμων σε σχέση με τον

βέλτιστο αλγόριθμο. Επίσης, παρουσιάζει μία τροποποίηση που αφορά τους αλγορίθμους

ομαδοποίησης έτσι ώστε αυτοί να καταλήγουν στη βέλτιστη τοποθέτηση των πρακτόρων

(αναφορικά με το συνολικό φόρτο επικοινωνίας της εφαρμογής πάνω από το δίκτυο). Να

τονιστεί πως αυτή η τροποποίηση καθιστά τους αλγορίθμους ομαδοποίησης βέλτιστους μόνο

όταν δεν εξετάζουμε κόμβους με περιορισμένη χωρητικότητα, διαφορετικά το πρόβλημα είναι

NP-complete.

Το κεφάλαιο 4 προτείνει πλήρως κατανεμημένους αλγορίθμους για την τοποθέτηση πρακτόρων

σε κόμβους περιορισμένης αποθηκευτικής χωρητικότητας, εισάγοντας την έννοια της

«έξωσης». Πιο συγκεκριμένα, εξετάζονται μετακινήσεις πρακτόρων που είναι μεμονωμένα

ασύμφορες αλλά μπορεί να απελευθερώσουν χώρο που στη συνέχεια μπορεί να χρησιμοποιηθεί

για την μετακίνηση άλλων πρακτόρων. Βεβαίως, ο απώτερος σκοπός εξακολουθεί να είναι η

μείωση του κόστους επικοινωνίας, επομένως απαιτείται το συνολικό όφελος των μετακινήσεων

να υπερβαίνει το κόστος των ασύμφορων μετακινήσεων.

Στο κεφάλαιο 5 εστιάζουμε στο πρόβλημα του ότι οι προαναφερθέντες αλγόριθμοι δεν έχουν

την ικανότητα να «μαντέψουν» αν μία (ομαδική) μετακίνηση θα αποβεί τελικά προσοδοφόρα η

όχι. Απλά υποθέτουν ότι ο αριθμός των πρακτόρων και ο φόρτος επικοινωνίας μεταξύ τους θα

παραμείνουν σταθερά για ένα «αρκετά» μεγάλο χρονικό διάστημα, έτσι ώστε να αποσβεσθεί το

όποιο κόστος μετακίνησης των πρακτόρων. Επομένως, συχνές αλλαγές στο σχήμα και φόρτο

επικοινωνίας της εφαρμογής μπορεί να οδηγήσουν τους παραπάνω αλγορίθμους σε συχνές

viii

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

μετακινήσεις πρακτόρων που τελικά αυξάνουν το κόστος επικοινωνίας πάνω από το δίκτυο

(αντί να το μειώνουν). Για παράδειγμα, ένας πράκτορας μπορεί να «παλινδρομεί» συνεχώς

μεταξύ δύο κόμβων, λόγω περιοδικών αλλαγών στο φόρτο επικοινωνίας με άλλους πράκτορες

(αλλάζοντας το κέντρο βάρος του), χωρίς ποτέ να αποσβένεται το κόστος μετακίνησης. Για

αυτό το λόγο, προτείνουμε online αλγορίθμους, δείχνοντας επίσης πόσο ανταγωνιστικοί είναι

σε σχέση με τον offline βέλτιστο αλγόριθμο.

Στα κεφάλαια 6 και 7 προτείνουμε κεντρικοποιημένους αλγορίθμους που λύνουν πιο

πολύπλοκα προβλήματα. Ειδικότερα, το κεφάλαιο 6 καταπιάνεται με το πρόβλημα της

ελαχιστοποίησης του κόστους δικτύου μέσω μετακινήσεων πρακτόρων όχι μόνο γενικού αλλά

και ειδικού τύπου, όταν οι κόμβοι διαθέτουν περιορισμένη αποθηκευτική χωρητικότητα. Οι

αλγόριθμοι που προτείνονται κάνουν χρήση τεχνικών χρωματισμού γράφου. Στο κεφάλαιο 7

εξετάζεται ένα πρόβλημα δύο διαστάσεων, όπου το ζητούμενο είναι (α) να φιλοξενηθούν όσο

γίνεται περισσότεροι πράκτορες στους κόμβους του δικτύου, και (β) να αυξηθεί η διάρκεια

ζωής του συστήματος (δηλαδή να μεγιστοποιηθεί ο χρόνος ζωής του πρώτου κόμβου που θα

εξαντλήσει τη μπαταρία του). Προτείνονται αλγόριθμοι που λύνουν το πρόβλημα ξεχωριστά

(σειριακά) σε κάθε διάσταση, μαζί με ένα αλγόριθμο branch-and-bound που λύνει το πρόβλημα

ταυτόχρονα και στις δύο διαστάσεις του. Ένα σημαντικό τμήμα των αλγορίθμων ως προς την

πρώτη διάσταση του προβλήματος αφορά στην αποκερματοποίηση του αποθηκευτικού χώρου

στους κόμβους του δικτύου, μέσω μετακινήσεων πρακτόρων.

Το κεφάλαιο 8 περιγράφει την υλοποίηση του τμήματος του ενδιάμεσου λογισμικού POBICOS

που παρέχει μια ολοκληρωμένη, κατανεμημένη, διαχείριση των πρακτόρων της εφαρμογής,

πάνω από το ενσωματωμένο λειτουργικό σύστημα TinyOS. Συγκεκριμένα, περιγράφονται: i) ο

μηχανισμός δημιουργίας νέων πρακτόρων σε κόμβους με τους κατάλληλους πόρους, ii) ο

μηχανισμός ανταλλαγής μηνυμάτων μεταξύ πρακτόρων, iii) ο μηχανισμός ανίχνευσης και

καταστροφής «ορφανών» πρακτόρων, και iv) ο μηχανισμός μετακίνησης γενικών πρακτόρων

με πλήρη διαφάνεια μετακίνησης σε επίπεδο εφαρμογής.

Τέλος, το κεφαλαιο 9 αναφέρει εργασίες που είναι συναφείς με την παρούσα διατριβή, ενώ το

κεφάλαιο 10 παρέχει τα γενικά συμπεράσματα για την παρούσα δουλειά.

IX

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Contents

ACKNOWLEDGEMENTS... I
ABSTRACT... III
ΠΕΡΙΛΗΨΗ...VII
CONTENTS..XI
LIST OF FIGURES..XV
LIST OF TABLES...XIX
LIST OF EQUATIONS..XXI

CHAPTER 1: ON DEPLOYING TREE STRUCTURED AGENT APPLICATIONS IN NETWORKED EMBEDDED
SYSTEMS..1

1 Introduction..1
2 Application and System Model, Problem Formulation... 2

2.1 Application model.. 2
2.2 System model...3
2.3 Problem formulation.. 4

3 Uncapacitated 1-hop Agent Migration Algorithm..5
4 Uncapacitated k-hop Agent Migration Algorithm...7
5 Handling Capacity Constraints...9
6 Experiments..10

6.1 Setup..10
6.2 Results without capacity constraints ... 11
6.3 Results with capacity constraints - small scale experiments..12
6.4 Results with capacity constraints - large scale experiments..13
6.5 Result summary... 15

7 Conclusions..15

CHAPTER 2: GRAL: A GROUPING ALGORITHM TO OPTIMIZE APPLICATION PLACEMENT IN WIRELESS
EMBEDDED SYSTEMS...17

1 Introduction..17
2 Application Model, System Model and Problem Formulation..18
3 Motivation example... 18
4 GRAL Migration Algorithm.. 19

4.1 Beneficial single agent migrations.. 19
4.2 Beneficial group migrations..19

5 Handling increased network knowledge..25

xi

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

6 Handling capacity constraints... 28
7 Experiments..29

7.1 Results without capacity constraints..29
7.2 Small-scale experiments... 30
7.3 Large-scale experiments.. 33
7.4 Discussion...36

8 Conclusions..36

CHAPTER 3: IDENTIFYING THE WORST-CASE BOUNDS FOR AMA AND GRAL, AND DEVISING AN
OPTIMAL ALGORITHM..39

1 Introduction... 39
2 Application and System Mo del... 40
3 Identifying the worst-case bound of AMA... 41
4 GRAL*: Modifying GRAL to become optimal..47
5 Identifying the worst-case bound of GRAL.. 51
6 Conclusions..55

CHAPTER 4: INTRODUCING AGENT EVICTIONS TO IMPROVE APPLICATION PLACEMENT IN WIRELESS
EMBEDDED SYSTEMS...57

1 Introduction... 57
2 Application, System Model and Problem Formulation...58

2.1 System model...58
2.2 Problem formulation.. 59
2.3 Migration benefit/penalty and eligibility.. 60
2.4 Evictions...60

3 Heuristics..61
3.1 Single path algorithm (SP).. 62
3.2 Network flooding algorithm (FL)...63
3.3 Convergence...65
3.4 Radio silence .. 66

4 Evaluation..67
4.1 Reference algorithms ... 67
4.2 Experiments.. 67
4.3 Result summary...71

5 Conclusions..71

CHAPTER 5: ONLINE ALGORITHMS FOR THE AGENT MIGRATION PROBLEM IN WIRELESS EMBEDDED
SYSTEMS... 73

1 Introduction... 73
2 Application and System Mo del..74
3 Algorithms...75

3.1 Online algorithm based on discrete-time events (ADE) .. 75
3.2 Algorithm based on sliding window and discrete-time events (ADE-SW)78
3.3 Algorithm based on aggregation of events (AGE)..80

4 Experiments..85
4.1 Setup... 85
4.2 Considering T(H), T(L) and T(UL)...86
4.3 Considering T(UH)..88
4.4 Comparing our algorithms to the offline optimal algorithm..90

5 Conclusions..92

CHAPTER 6: ON RECONFIGURING EMBEDDED APPLICATION PLACEMENT ON SMART SENSING AND
ACTUATING ENVIRONMENTS.. 93

xii

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

1 Introduction..93
1.1 Application Model.. 94

2 Problem Definition..94
2.1 System model... 94
2.2 Problem formulation.. 95

3 Algorithms...96
3.1 The ARP problem with 2 nodes...97
3.2 The agent exchange algorithm...98
3.3 Extending to N nodes.. 99
3.4 Greedy algorithmic approach... 102

4 Experiments..102
4.1 Experimental setup...102
4.2 Comparison against the optimal algorithm...104
4.3 Experiments with a larger network... 105
4.4 Discussion.. 106

5 Conclusions..107

CHAPTER 7: ALGORITHMS FOR ENERGY-DRIVEN AGENT PLACEMENT IN WIRELESS EMBEDDED
SYSTEMS WITH MEMORY CONSTRAINTS...109

1 Introduction..109
2 Problem Definition..110

2.1 System model... 110
2.2 Battery consumption and node lifetime..110
2.3 Adding a new agent..111
2.4 Problem statement...113

3 Algorithms for Accepting Agents.. 114
3.1 Pairwise checking algorithm (PCA)... 114
3.2 Greedy bin packing algorithm (GBPA).. 116

4 Optimizing Node Lifetime... 117
4.1 Agent swaps... 117
4.2 Reconfiguration algorithms..118

5 Accepting Agents and Optimizing Lifetime S imultaneously..119
6 Implementing a New Placement...121
7 Experiments..121

7.1 Performance on acceptance criterion .. 122
7.2 Performance on energy criterion ... 125
7.3 Other experiment and metrics ... 127
7.4 Discussion ...130

8 Conclusions..131

CHAPTER 8: AGENT MANAGER SYSTEM IMPLEMENTATION AND EVALUATION...........................133

1 Introduction..133
2 System Implementation..134

2.1 Data types and data structures.. 135
2.2 Host Candidate Discovery Protocol... 136
2.3 Agent Creation Protocol..138
2.4 Heartbeat Protocol...140
2.5 Agent-level Message Transport protocol.. 142
2.6 Agent Migration Protocol...144
2.7 Migration algorithms..148

3 Middleware Evaluation.. 148
3.1 Performance measurements.. 148

xiii

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

3.2 Application scenario.. 152
4 Conclusions...154

CHAPTER 9: RELATED WORK..155

1 Systems that Support Mobile Code/Agents.. 155
2 Data Placement and Replica Placement Problems...157

2.1 Data placement.. 157
2.2 Replica placement.. 158

3 Energy Driven Algorithms... 159
4 Load Balancing Problems.. 161
5 Online Decision Problems.. 162
6 Query Optimization in Distributed Databases and WSNs ...164
7 Agent/Task Migrations... 165
8 Summary...166

CHAPTER 10: CONCLUSIONS...169

1 Overview ..169
2 Future Work.. 170

REFERENCES...173

xiv

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Fig 1.1 Agent tree structure of an indicative sensing/control application... 3
Fig 1.2 Application agent structure.. 6
Fig 1.3 Agent placement on the network...6
Fig 1.4 Total load vs. capacity increase (20 nodes, app10)...13
Fig 1.5 Control overhead vs. capacity increase (20 nodes, app10)... 13
Fig 1.6 Total load vs. capacity increase (50 nodes, application mix) ..14
Fig 1.7 Migrations vs. capacity increase (50 nodes, application mix)... 14
Fig 1.8 Control overhead vs. capacity increase (50 nodes, application mix) .. 14
Fig 1.9 Back-offs vs. capacity increase (50 nodes, application mix).. 14
Fig 2.1 Application placement... 19
Fig 2.2 Application structure...22
Fig 2.3 Agent placement... 22
Fig 2.4 Tree construction phase for group (A, B, C, D, F, G, H).. 23
Fig 2.5 Tree contraction phase...23
Fig 2.6 Tree construction phase...27
Fig 2.7 Tree contraction phase...27
Fig 2.8 Load reduction (20 nodes, app-1 0)... 31
Fig 2.9 Control messages exchanged... 31
Fig 2.10 Migrations performed (20 nodes, app-10)..31
Fig 2.11 Load reduction (20 nodes, app-1 0)... 31
Fig 2.12 Load reduction (50 nodes, app-mix) .. 33
Fig 2.13 Migrations performed (50 nodes, app-mix) .. 33
Fig 2.14 Control messages exchanged (50 nodes, app-mix) ..34
Fig 2.15 Load reduction (50 nodes, app-mix) .. 34
Fig 2.16 Control messages exchanged (50 nodes, app-mix) ..35
Fig 2.17 Migrations performed (50 nodes, app-mix) .. 35
Fig 3.1 Network structure... 42
Fig 3.2 Application structure...42
Fig 3.3 Network.. 43
Fig 3.4 Unbalanced group As ..46
Fig 3.5 Unbalanced group of 3 agents...48
Fig 3.6 subtree rooted on Ai ...49
Fig 3.7 subtree rooted on a2...49
Fig 3.8 Unbalanced group of G agents..53
Fig 3.9 Unbalanced and totally balanced groups...55
Fig 4.1 Application structure and traffic..61
Fig 4.2 Initial application placement.. 61
Fig 4.3 Example with probe requests/replies... 64
Fig 4.4 Load reduction vs. additional capacity (20 nodes, app-10)... 68

List of Figures

xv

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Fig 4.5 Load reduction vs. additional capacity (50 nodes, 15 applications).. 68
Fig 4.6 Migrations vs. additional capacity (50 nodes, 15 applications)...68
Fig 4.7 Control messages vs. additional capacity (50 nodes, 15 applications)...68
Fig 4.8 Load reduction vs. hop limit (50 nodes, cap +10, app-mix)...70
Fig 4.9 Migrations vs. hop limit (50 nodes, cap +10, app-mix)... 70
Fig 4.10 Control msgs vs. hop limit (50 nodes, cap +10, app-mix)... 71
Fig 5.1 Application deployment... 79
Fig 5.2 Sliding window and marker...79
Fig 5.3 when hjf becomes equal to D-1...82
Fig 5.4 ADE-SW behavior when varying the size of sliding marker.. 87
Fig 5.5 AGE behavior when varying the reset threshold..87
Fig 5.6 ADE-SW behavior when varying the size of sliding marker (the migration threshold is kept fixed at

0.1)...88
Fig 5.7 migrations performed by ADE-SW when varying the size of sliding marker (the migration threshold is

KEPT FIXED at 0.1).. 88
Fig 5.8 ADE-SW behavior when varying the migration threshold (the size of the sliding marker is kept fixed at

500)..89
Fig 5.9 ADE-SW behavior when varying the migration threshold (the size of the sliding marker is kept fixed at

1).. 89
Fig 5.10 Migrations performed by ADE-SW when varying the migration threshold (the size of sliding marker

is kept fixed at 1).. 90
Fig 5.11 AGE behavior when varying the reset threshold (the migration threshold is kept fixed at 0.1). ..90
Fig 5.12 AGE and ADE-SW against the optimal offline algorithm (the application family is kept fixed at F^.

... 91
Fig 5.13 Migrations performed (the application family is kept fixed at Fi)...91
Fig 5.14 AGE and ADE-SW against the optimal algorithm when varying the application families (T(L) is kept

fixed).. 91
Fig 6.1 Agent communication graph..97
Fig 6.2 Extending the communication graph... 97
Fig 6.3 Resulting graph after merging... 99
Fig 6.4 Pseudocode of PRA...100
Fig 6.5 Network.. 100
Fig 6.6 Resulting problem graph.. 100
Fig 6.7 Resulting problem graph.. 101
Fig 6.8 Performance of the algorithms against increased node capacity.. 105
Fig 6.9 Performance of the algorithms when relaxing special resource constraints...............................105
Fig 7.1 An example network..111
Fig 7.2 Placement (a) ...112
Fig 7.3 Placement (b) ...112
Fig 7.4 Pseudocode for PCA..114
Fig 7.5 Example of knapsack runs: (a) initial state; (b) run on N1 (c) run on n2 ..115
Fig 7.6 Pseudocode for GBPA...116
Fig 7.7 Pseudocode for swapping agents in a node pair ..117
Fig 7.8 Pseudocode for ggRA..118
Fig 7.9 Solution tree with 10 nodes... 119
Fig 7.10 Skyline example... 119
Fig 7.11 Pseudocode for s BBA..120
Fig 7.12 Number of tentative wrong rejections for various agent s izes ... 125
Fig 7.13 Minimum node lifespan.. 126
Fig 7.14 Average node battery consumption per time unit..126
Fig 7.15 Comparison between ggRA and glRA...127
Fig 7.16 Minimum node lifespan achieved by different iBBA versions...128

xvi

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Fig 7.17 Running time of different iBBA versions...128
Fig 7.18 Number of migrations..129
Fig 7.19 Placement overhead as a percentage of total network lo ad ... 129
Fig 7.20 Average running time (msecs) for accepting/rejecting a single agent..129
Fig 8.1 Key middleware components and interactions for supporting agent mobility............................. 134
Fig 8.2 Message diagram for the Host Candidate Discovery protocol... 138
Fig 8.3 Message diagram for the Agent Creation protocol (ping messages are not shown)140
Fig 8.4 Message diagram for the Heartbeat protocol...141
Fig 8.5 Message diagram for the Agent-level Message Transport protocol...144
Fig 8.6 Message diagram for the Agent Migration protocol.. 147
Fig 8.7 Agent creation delay as a function of hop distance for different agent sizes...............................149
Fig 8.8 Agent migration delay as a function of hop distance for different agent sizes............................ 150
Fig 8.9 Experiment setup: (a) application tree; (b) nodes, network topology, and agent placement at different

stages of the test scenario...152

xvii

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Table 1.1 Performance in the uncapacitated case (20 nodes, app10)...12
Table 2.1 Load components...23
Table 2.2 Load coefficients for the subtree.. 27
Table 2.3 Peformance for Lavg and the 20-node network... 29
Table 4.1 Pseudocode description of SP... 62
Table 4.2 Benefit/penalty per migration.. 64
Table 6.1 Agent communication load and resource requirements...97
Table 6.2 Solution quality compared to the optimal... 104
Table 6.3 Migrations performed.. 105
Table 7.1 Acceptance metrics..123
Table 7.2 Domination percentage... 123
Table 7.3 Average algorithm behavior in the domination t e s t ... 124
Table 8.1 Agent creation cost breakdown and overhead for different agent sizes..................................149
Table 8.2 Agent migration cost breakdown and overhead for different agent sizes............................... 150
Table 8.3 Cost and benefit for each migration of the inference agent in the test scenario, as well as the time

of stable operation required in order to amortize each migration... 153

List of Tables

xix

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Eq. 1 .1... 4
Eq. 1 .2... 4
Eq. 1 .3... 4
Eq. 1 .4... 4
Eq. 1 .5... 5
Eq. 1 .6... 5
Eq. 2 .1 ... 20
Eq. 2 .2 ... 20
Eq. 2 .3 ... 20
Eq. 2 .4 ... 20
Eq. 2 .5 ... 21
Eq. 2 .6 ... 25
Eq. 2 .7 ... 25
Eq. 2 .8 ... 25
Eq. 2 .9 ... 26
Eq. 3 .1 ... 40
Eq. 3 .2 ... 40
Eq. 3 .3 ... 40
Eq. 3 .4 ... 40
Eq. 3 .5 ... 40
Eq. 3 .6 ... 42
Eq. 3 .7 ... 42
Eq. 3 .8 ... 42
Eq. 3 .9 ... 44
Eq. 3.10... 45
Eq. 3.11... 45
Eq. 3.12... 45
Eq. 3.13... 47
Eq. 3.14... 47
Eq. 3.15... 47
Eq. 3.16... 52
Eq. 3.17... 52
Eq. 3.18... 52
Eq. 3.19... 52
Eq. 3.20... 52
Eq. 3.21... 54
Eq. 3.22... 54
Eq. 3.23... 54
Eq. 3.24... 54

List of Equations

xxi

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Eq. 3.25..54
Eq. 3.26..54
Eq. 3.27..54
Eq. 3.28..54
Eq. 4.1.. 60
Eq. 4.2.. 60
Eq. 4.3.. 60
Eq. 4.4.. 60
Eq. 5.1.. 76
Eq. 5.2.. 76
Eq. 5.3.. 76
Eq. 5.4.. 77
Eq. 5.5.. 77
Eq. 5.6.. 78
Eq. 5.7.. 78
Eq. 5.8.. 78
Eq. 5.9.. 83
Eq. 5.10..83
Eq. 5.11..83
Eq. 5.12..83
Eq. 5.13..83
Eq. 5.14..84
Eq. 5.15..84
Eq. 5.16..84
Eq. 5.17..85
Eq. 6.1.. 95
Eq. 6.2.. 95
Eq. 6.3.. 96
Eq. 6.4.. 96
Eq. 6.5.. 96
Eq. 6.6.. 96
Eq. 6.7.. 96
Eq. 6.8.. 96
Eq. 7.1.. 111
Eq. 7.2.. 111
Eq. 7.3.. 111
Eq. 7.4.. 111
Eq. 7.5.. 112
Eq. 7.6.. 113

xxii

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

Chapter 1

On Deploying Tree Structured Agent Applications in
Networked Embedded Systems

1 Introduction

Mobile code technologies for networked embedded systems, like Aggila [36], SmartMessages

[52], Rovers [27] and POBICOS [91], allow the programmer to structure an application as a set

of mobile components that can be placed on different nodes based on their computing resources

and sensing/actuating capabilities. From a system perspective, the challenge is to optimize such

a placement (through migrating the mobile components) taking into account the message traffic

between application components. It should be stressed that this work focuses on non-highly

volatile environments, e.g., home or office environments. Therefore, we can expect that: (i) the

arrival of new applications is rather infrequent; (ii) an application is expected to be resident for

a fairly large amount of time (enough to offset any potential migration overhead).

This chapter presents distributed algorithms for the dynamic migration of mobile components,

referred to as agents, in a system of networked nodes with the objective of reducing the network

load due to agent-level communication. The proposed algorithms are simple so they can be

implemented on nodes with limited memory and computing capacity. Also, modest assumptions

are made regarding the knowledge of routing paths used for message transport. The algorithms

rely on information that can be provided by even simple networking or middleware logic

without incurring (significant) additional communication overhead.

1

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

The contributions of this work are the following: (i) we identify and formulate the agent

placement problem (APP) in a way that is of practical use to the POBICOS middleware but can

also prove useful to other work on mobile agent systems with placement constraints, (ii) we

present a distributed algorithm that relies on minimal network knowledge and extend it so that it

can exploit additional information about the underlying network topology (if available), (iii) we

evaluate both algorithm variants via simulations and discuss their performance.

2 Application and System Model, Problem Formulation

This section introduces the type of applications targeted in this work and the underlying system

and network model. It then formulates the agent placement problem (APP) and the respective

optimization objectives.

2.1 Application model

We focus on applications that are structured as a set of cooperating agents organized in a

hierarchy. For instance, consider a demand-response client which tries to reduce power

consumption upon request of the energy utility. A simplified possible structure is shown in Fig

1.1. The lowest level of the tree comprises agents that periodically report individual device

status and power consumption to a room agent, which reports (aggregated) data for the entire

room to the root agent. When the root decides to lower power consumption (responding to a

request issued by the electric utility), it requests some or all room agents to curve power

consumption as needed. In turn, room agents trigger the respective actions (turn off devices,

lower consumption level) in the end devices by sending requests to the corresponding device

agents.

2

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

Fig 1.1 Agent tree structure of an indicative sensing/control application.

Leaf (sensing and actuating) agents interact with the physical environment and must be placed

on nodes that provide some specific resources (e.g. sensing or actuating capabilities), hence are

called “non-generic”. On the other hand, intermediate agents perform their tasks using just

general-purpose computing resources which can be provided by any node; thus we refer to these

agents as “generic”. In Fig 1.1, device agents are non-generic while all other agents are generic.

Agents can migrate between nodes to offload their current hosts or to get closer to the agents

they communicate with. In our work we consider migration only for generic agents because

their operation is location- and node-independent by design, while non-generic agents remain

fixed on the nodes where they were created. Still, the ability to migrate generic agents creates a

significant optimization potential in terms of reducing the overall communication cost.

2.2 System model

We assume a network of capacitated (resource-constrained) nodes with sensing and/or actuating

capabilities. Let ni denote the ith node, 1<i<N and r(ni) its resource capacity (processing power

or memory size). The capacity of a node imposes a generic constraint to the number of agents it

can host.

Nodes communicate with each other on top of a (wireless) network that is treated as a black

box. The underlying routing topology is abstracted as a graph, its vertices representing nodes

and each edge representing a bidirectional routing-level link between a node pair. In this work

we consider tree-based routing, i.e., there is exactly one path for connecting any two nodes. Let

D be a N*N*N boolean matrix encoding the routing topology as follows: Dijx=1 iff the path

from ni to nj includes nx, else Dijx=0. Since we assume that the network is a tree Dijx = Djix. Also,

3

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

Au=1, D1JJ=1 and Mij=0. Let hij be the path length between ni and nj; equal to 0 for i=j.

Obviously, hij = hji.

Each application is structured as a set of cooperating agents organized in a tree-like structure,

the leaf agents being non-generic and all other agents being generic. Assuming an enumeration

of agents whereby generic agents come first, let ak be the kth agent, 1<k<A+S, with A and S

being equal to the total number of generic and non-generic agents, respectively. Let r(ak) be the

capacity required to host ak. Agent-level traffic is captured via an (A+S)*(A+S) matrix C, where

Ckm denotes the load from ak to am (measured in data units over a time period). Note that Ckm

need not be equal to Cmk. Also, Ckk=0 since an agent does not send messages to itself.

2.3 Problem formulation

For the sake of generality we target the case where all agents are already hosted on some nodes,

but the current placement is non-optimal.

Let P be an A*(A+S) matrix used to encode the placement of agents on nodes as follows: P ik=1

iff ni hosts ak, 0 otherwise. Let j (Eq. 1.1) denote the load associated with agent ak hosted at

node ni for a neighbor node nj specifically, this load involves the volume of data exchanged

between ak and the agents using nj as either a hosting or routing node to communicate with

ak.The total network load L incurred by the application for a placement P can then be expressed

by Eq. 1.2:

A+S
1\jk Σ Σ 'km + Cmk)d'ixj ? Pxm 1

m=1
Eq. 1.1

A+S A+S N N
Eq. 1.2

L = Σ Σ Cm Σ Σ W m
k=1 m=1 i j

A placement P is valid iff each agent is hosted on exactly one node and the node capacity

constraints are not violated:

N
Σ P = 1, Vk, 1 < k < A + S
i=1

Eq. 1.3

N
Σ Pikr (ak) < r (n, λ Vi, 1 < i < N
k=1

Eq. 1.4

4

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

Also, a migration is valid only if starting from a valid placement P it leads to another valid

agent placement P without moving any non-generic agent:

P = p , Vk, A < k < A + S Eq. 1.5

The agent placement problem (A PP) can then be stated as: starting from an initial valid agent

placement Pold, perform a series of valid agent migrations, eventually leading to a new valid

placement Pnew that minimizes Eq. 1.2. In that sense the agent placement problem (APP) can be

renamed to the agent migration problem (AMP). The decision for migrating ak from nl to nj is

taken iff /ijk is greater than the total load with all other neighbors of ni plus the local load

associated with ak:

h jk > h ik + Σ ^ ixk , h ij h ix 1
x * i ,j

Eq. 1.6

The intuition behind Eq. 1.6 is that by moving ak from its current host ni to a neighbor nj, the

distance for the load with nj decreases by one hop while the distance for all other loads,

including the load that used to take place locally, increases by one hop. If Eq. 1.6 holds, the

cost-benefit of the migration is positive, hence the migration reduces the total network load as

per Eq. 1.2.

Note that the resulting optimal placement of APP may be an unreachable placement, meaning

that starting from an initial (sub-optimal) placement the optimal one can be reached by only

performing a non-feasible “swap” of agents (the involved nodes cannot perform this “swap”

because they don’t have enough free capacity). A similar feasibility issue is discussed in [78]

but in a slightly different context. Also, Eq. 1.2 does not take into account the cost for

performing a migration. This is because we target scenarios where the application structure,

agent-level traffic pattern and underlying routing topology are expected to be sufficiently stable

to amortize the migration costs.

3 Uncapacitated 1-hop Agent Migration Algorithm

This section presents an agent migration algorithm for the case where nodes can host any

number of agents, i.e., without taking into account capacity limitations. In terms of routing

knowledge, each node knows only its immediate (1-hop) neighbors involved in transporting

inbound and outbound agent messages; we refer to this as 1-hop network awareness. This

information can be provided by even a very simple networking layer. A node does not attempt

5

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

to discover additional nodes but simply considers migrating agents to one of its neighbors. An

agent may nevertheless move to distant nodes via consecutive 1-hop migrations.

Description. The 1-hop agent migration algorithm (AMA-1) works as follows. A node records,

for each locally hosted agent, the traffic associated with each neighboring node as well as the

local traffic, due to the message exchange with remote and local agents, respectively.

Periodically, this information is used to decide if it is beneficial for the agent to migrate to a

neighbor.

a 1

a4 a5 a6 aj

n i

Fig 1.2 Application agent structure Fig 1.3 Agent placement on the network

Consider the application depicted in Fig 1.2 which comprises four non-generic agents (a4, a5, a6,

a7), two intermediate generic agents (a2 a3) and a generic root agent (ai), and the actual agent

placement on nodes shown in Fig 1.3. Let each non-generic agent generate 2 data units per time

unit towards its parent, which in turn generates 1 data unit per time unit towards the root (edge

values in Fig 1.2). Assume that n1 runs the algorithm for a3 (striped). The load associated with

a3 for the neighbour node n2 and n3 is l123=2 respectively l133=3 while the local load is l113=0.

According to Eq. 1.6 the only beneficial migration for a3 is for it to move on n3. Continuing the

example, assume that a3 indeed migrates to n3 and is (again) checked for migration. This time

the relevant loads are l313=2, l353=2, l363 =0, l333=1, thus a3 will remain at n3. Similarly, a1 will

remain at n3 while a2 will eventually migrate from n4 to n2 then to n1 and last to n3 , resulting in a

placement where all generic agents are hosted at n3. This placement is stable since there is no

beneficial migration as per Eq. 1.6.

Implementation and complexity. For each local agent it is required to record the load with

each neighboring node and the load with other locally hosted agents. This can be done using a

A x (g+1) load table, where A is the number of local generic agents and g is the node degree

6

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

(number of neighbors). The destination for each agent can then be determined as per Eq. 1.6 in a

single pass across the respective row of the load table, in O(g) operations or a total of O(gA) for

all agents. Note that the results of this calculation remain valid as long as the underlying

network topology, application structure and agent message traffic statistics do not change.

Convergence. For the time being, the algorithm does not guarantee convergence because it is

susceptible to live-locks. Revisiting the previous example, assume that the application consists

only of the right-hand sub-tree of Fig 1.2, placed as in Fig 1.3. Node ni may decide to move a3

to n3 while n3 may decide to move ai to ni. Later on, the same migrations may be performed in

the reverse direction, resulting in the old placement etc.

We expect such livelocks to be rare in practice, especially if neighboring nodes invoke the

algorithm at different intervals. Nevertheless, to guarantee convergence we introduce a

coordination scheme in the spirit of a mutual exclusion protocol. When ni decides to migrate ak

to nj it asks for a permission. To avoid “swaps” nj denies this request if: (i) it hosts an agent ak

that is the child or the parent of ak, (ii) it has decided to migrate ak· to ni, and (iii) the identifier

of nj is smaller than that of ni (j<i). Else, nj grants permission to ni and does not consider

migrating any child or parent of ak to ni before the granted migration completes. It is important

to note that any migration is guaranteed to lead to a better placement only if agents that

communicate with each other directly (in the application tree) are not allowed to change hosts

concurrently.Convergence is guaranteed since it is no more possible to perform swaps and each

migration that is not a swap reduces the network load as per Eq. 1.2. It is worth pointing out that

such a protocol can be implemented quite efficiently by piggybacking requests and replies on

other messages that need to be exchanged anyway in order to perform the actual migration.

4 Uncapacitated Λ-hop Agent Migration Algorithm

This section introduces an extension of the i-hop algorithm for the case where a node is

assumed to know the routing topology within a k-hop radius. We refer to this as k-hop network

awareness. Note this information may be collected in a lazy fashion, incurring a minimal

communication overhead, by piggybacking the k most recent node identifiers when a (small)

message travels through the network. In fact, this information comes for free by employing a

naming scheme that encodes path information into node identifiers (e.g., as in ZigBee networks

with hierarchical routing).

7

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

Description. The k-hop agent migration algorithm (AMA-k) is a straightforward extension of

AMA-1 that exploits k-hop awareness. The difference is that for each agent am hosted at node ni,

AMA-k considers as possible candidates all nodes up to k-hops away from ni which are involved

in the message traffic of am.

The algorithm chooses the destination for am by iteratively evaluating Eq. 1.6 for neighbour

nodes, starting from 1-hop neighbours and working its way to more distant neighbours,

following the most beneficial outbound direction. Each iteration determines whether it is

beneficial to move am to a node that is 1 hop further away from ni assuming am were hosted on

the node picked in the previous iteration. The algorithm stops after k iterations or earlier when it

is no longer beneficial to migrate am. AMA-k is expected to lead to fewer migrations than

AMA-1 because an agent can (directly) move on a distant node in a single migration; as

opposed to performing several 1-hop migrations to reach the same destination.

Returning to the previous example of Fig 1.3, assume that node n4 runs AMA-5 for agent a2.

The first iteration will determine that a2 should migrate (from n4) to n2, the second iteration will

determine that a2 should migrate (from n2) to n1 , the third iteration will determine that a2 should

move on n3, and finally the fourth iteration will decide that it is not beneficial for a2 to migrate

any further. At this point the algorithm stops, suggesting the migration of a2 from n4 to n3.

Implementation and complexity. AMA-k requires the same type of load information as AMA-

1 but for all k-hop instead of just 1-hop neighbors, rendering gk the space complexity of AMA-1

(note that a refined, asynchronous, implementation, could store only the loads of the neighbors

that are relevant for the computation of each iteration, requiring the same amount of memory as

AMA-1). The destination for an agent is chosen in up to k iterations, each time evaluating Eq.

1.6 for the relevant, up to g, neighbor nodes, yielding a total time complexity of O(kg) for

determining the most beneficial destination for a local agent, i.e., AMA-k is k times slower than

AMA-1.

Convergence. It is straightforward to infer that the algorithm converges provided that race

conditions are tackled as per AMA-1.

8

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

5 Handling Capacity Constraints

This section discusses how AMA-1 and AMA-L can be extended to handle node capacity

constraints. When running the algorithms, some assumptions must be made regarding the free

capacity of remote nodes to drop infeasible solutions. Notably, these assumptions could be

invalid and must be confirmed in order to actually perform a migration. In this work we

investigate two different schemes, as follows.

Inquire-Lock Before (ILB). Before running the algorithm, a request is sent to all potential

destinations, 1-hop or L-hop neighbours depending on the algorithm, inquiring about their free

capacity and requesting to reserve up to the amount needed to host all locally hosted agents that

could be selected for migration. Nodes reply with their available free capacity, if any, which

they reserve until further notice. The selection of the destination for each locally hosted agent is

done as described in the previous subsections, having a consistent and guaranteed view of node

capacities. When the destinations are chosen, all other nodes are informed to release the

reserved capacity, while destinations release the capacity that is left over after accepting the

agents assigned to them.

Inquire-Lock After (ILA). The algorithm runs based on a previous, possibly outdated, view of

free node capacities. Destinations are then contacted to reserve the capacity needed for hosting

the agents assigned to them. Initially, all nodes are assumed to have an infinite free capacity.

This view, along with the nominal capacity of each node, is updated based on the replies

received for each request. To avoid excluding destinations due to outdated information, with a

certain probability nodes are assumed to have their full nominal capacity free, independently of

the local view. Of course, this means that a migration might be decided based on invalid

information, in which case the destination will send a negative reply when contacted to actually

reserve capacity (and perform the migration).

Algorithmic adaptations. When AMA-1 picks a destination for a locally hosted agent, the

migration is performed only if that node indeed has sufficient free capacity. Else, the agent is

not considered for migration because all other destinations are guaranteed to lead to a load

increase; Eq. 1.6 holds for at most one 1-hop neighbor or put in other words there can be at most

one beneficial migration direction in a tree network. In contrast, AMA-L can fall back to the

next best option in that path. For instance, in Fig 1.3, n4 would consider first n3, then n1 and

finally n2 as destinations for the migration of a2. Notably, the destinations chosen by ILB are

9

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

guaranteed to be able to host the agents assigned to them, while ILA may pick destinations that

turn out not to have sufficient free capacity to host the agent(s) assigned to them.

Notably, both schemes are subject to starvation due to locking collisions. To reduce the

probability of such live-locks, each node invokes the algorithm in random intervals (within a

larger time period). The random selection of algorithm invocation, guarantees convergence, but

only eventually (the probability that convergence is reached at some point becomes one for

infinite time) and without an apriori bound on communication. Convergence can also be

achieved more conservatively, by adding a simple rule such as: “stop migration attempts after c

collisions”, which obviously guarantees convergence, even with “systematic” collisions.

6 Experiments

This section presents an experimental evaluation of the algorithms based on simulations

performed on top of NS2 [85]. First we describe the experimental setup and then we present and

discuss the results of indicative experiments.

6.1 Setup

Two types of networks are considered with 20 and 50 nodes placed randomly in a 80^80 and

120x120 plane, respectively. Nodes are in range of each other if their Euclidean distance is less

than 30. The tree-based routing topology is obtained by calculating a spanning tree over the

connectivity graph. Five topologies are generated for each network type. Each experiment is

performed on all topologies. The average diameter for the 20- and 50-node networks is 6 and

15, respectively.

The application structure is generated as follows. Starting from an initial set of non-generic

(leaf) agents, agents are split in disjoint groups of 5, and for each group 2-5 agents are randomly

chosen, removed from the set, and labeled as children of a new generic agent that is added to the

set. This process is repeated until the set comprises a single agent which becomes the root (we

check to make sure that this is indeed a generic agent). Three application structures are

generated with (50, 22), (25, 12) and (10, 5) (non-generic, generic) agents, referred to as app50,

app25 and app10, respectively. The initial agent placement on nodes is random.

10

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

In terms of application-level traffic, we let each non-generic (leaf) agent send 10-50 messages

per time unit to its parent and each generic (intermediate) agent send to its parent the average of

the load received from its children (perfect aggregation). Also, each parent agent sends 1

message per time unit to its children (representing a heartbeat protocol). For simplicity, all

messages are of equal size. The traffic pattern is stable throughout the whole duration of the

experiments.

Nodes invoke the algorithm every T time units. Each node starts its periodic invocation with a

different offset, randomly set between 0 and T. If an attempted migration fails due to resource

constraints, the node backs-off for a number of periods T, chosen randomly between 1 and 5.

Finally, in ILA, the probability for considering a node assuming that its full nominal capacity is

free (as opposed to its free capacity according to the local view) is set to 20%.

As the main metric for our comparison, we measure the network load that corresponds to the

agent placement produced by the algorithms vs. the load of the initial random placement but

also vs. the optimal solution obtained via an exhaustive search algorithm (only for small-scale

experiments). For experiments without capacity constraints, convergence is inferred when all

nodes invoke the algorithm without attempting any migration. In experiments with capacity

constraints, where algorithms employ the ILB or ILA scheme and convergence is not

guaranteed, the simulation is stopped when each node invokes the algorithm 4 consecutive

times without managing to perform a migration. The overhead of algorithms is captured via the

number of agent migrations performed to reach the final placement as well as the number of

(control) messages exchanged to avoid swaps and to reserve and release capacity.

6.2 Results without capacity constraints

In a first experiment we compare the placements obtained by the uncapacitated algorithms for

the 20-node networks and one app10 application. Table 1.1 summarizes the results for different

degrees of network awareness (average values for the 5 different topologies). All algorithms

perform close to optimal, even though the initial random placement is very bad, incurring more

than twice the load of the optimal solution.

11

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

Table 1.1 Performance in the uncapacitated case (20 nodes, app10).

Algorithm Total Load Migrations Control Msgs
Initial 106,6 - -

AMA-1 45 10 20
AMA-2 44,4 6,8 13,6
AMA-3 44,8 5,2 10,4
AMA-4 44,8 5 10
Optimal 43,6 - -

The (slightly) inferior placement achieved by AMA-1 is due to the fact that it forces distant

migrations to occur in iterations, moving agents one hop at a time. In the meantime, other agents

that communicate with the agent “under migration” might migrate too, leading to a suboptimal

lock-in. Greater network awareness reduces the probability of such lock-ins but does not

guarantee their absence, e.g., note that AMA-3 and AMA-4 produce a (slightly) worse

placement than AMA-2.

As expected, greater network awareness leads to fewer migrations because agents can be placed

directly on nodes further away from their original hosts, if desired. Notice that the number of

control messages (in this case generated to avoid swaps) equals twice the number of migrations,

indicating that no migration was turned down.

6.3 Results with capacity constraints - small scale experiments

In a second experiment, for capacitated nodes, we compare AMA-1 and AMA-2 vs. the optimal

solution for the same topology and application as before, for both ILB and ILA schemes. All

agents have identical capacity requirements. The results are plotted as node capacity is

increased so that each node can host 1, 2, 3 and 4 additional agents compared to the initial

placement.

As it can be seen in Fig 1.4, all algorithms produce sub-optimal results when node capacity is

scarce, but the gap shrinks quite rapidly as capacity becomes abundant, approaching the results

of the exhaustive search algorithm. Once again, the placements achieved by AMA-2 are better

than those of AMA-1. Somewhat surprisingly, ILB consistently outperforms ILA only for

AMA-1 but not for AMA-2. When capacity is tight, AMA-2 produces better results with ILA

than ILB, even though ILA works with possibly outdated node capacity information. This can

be explained due to the greedy locking approach of ILB which leads to more collisions

compared to ILA, as network awareness increases and a node can receive capacity reservation

requests from a larger number of nodes.

12

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

Fig 1.4 Total load vs. capacity increase Fig 1.5 Control overhead vs. capacity increase
(20 nodes, app10) (20 nodes, app10)

Another negative effect of ILB is shown in Fig 1.5 which plots the number of generated control

messages. ILB clearly incurs a significantly higher overhead compared to ILA, by 1.5-2 orders

of magnitude. This is due to the fact that ILB pro-actively inquires about and attempts to reserve

free capacity on all neighbor nodes within a k-hop radius, while ILA mainly relies on

information acquired through previous communications and tries to lock only the nodes that are

actually selected as destinations.

6.4 Results with capacity constraints - large scale experiments

We also performed experiments for the 50-node networks and an application mix of five

instances of app10, app25 and app50. We compare the performance of AMA-k, for k = 1, 2, 5,

10. Given the bad scalability of ILB, obvious from the previous results, only ILA is used. In the

spirit of the previous experiments, the algorithms were tested for the case where each node is

capable of hosting 5, 10, 20 and 40 additional agents compared to the initial random placement.

Fig 1.6 and Fig 1.7 depict the load corresponding to the placements achieved (the initial

placements amounted to an average load of 11,000) and the number of migrations performed to

reach them, respectively. As expected, greater network awareness results in better placements

and fewer migrations. The differences in placement quality are more pronounced for limited

capacity and shrink as capacity increases, while the opposite trend holds for the number of

migrations. Note that capacity constraints have a greater impact for smaller values of k. This is

because, as discussed in Sec. 6.2, low network awareness is more likely to lead to suboptimal

lock-ins, but now this may also waist capacity that could have enabled more beneficial

migrations. Indeed this effect is more visible when capacity is scarce and diminishes as capacity

increases.

13

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

Fig 1.6 Total load vs. capacity increase
(50 nodes, application mix)

Fig 1.7 Migrations vs. capacity increase
(50 nodes, application mix).

Fig 1.8 Control overhead vs. capacity increase
(50 nodes, application mix)

Fig 1.9 Back-offs vs. capacity increase
(50 nodes, application mix)

The number of control messages is plotted in Fig 1.8. AMA-1 and AMA-2 follow opposite

trends compared to AMA-5 and AMA-10, with the first pair incurring less overhead when

capacity is tight, but then increasingly more as capacity becomes abundant. This is due to two

reasons. On the one hand, the number of migrations, and that of (successful) capacity

reservations in ILA, increases more steeply for low network awareness, as shown in Fig 1.7. On

the other hand, the number of unsuccessful reservations, initially larger for the greater

awareness, generally decreases with increasing capacity. This is confirmed in Fig 1.9 which

shows the percentage of control messages that resulted in a back-off. The net effect results in

the observed behaviour.

14

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 1

6.5 Result summary

Based on the presented results we can state that: (i) AMA-k achieves close to optimal

performance when there are no capacity constraints; (ii) with capacity constraints, AMA-k

considerably improves agent placement from an initial random placement; (iii) greater network

awareness leads to better placements while requiring fewer migrations, but this performance

advantage shrinks rather quickly for larger values of k; (iv) the ILA scheme scales better than

ILB, and in fact leads to better placements for increased network awareness when node capacity

is scarce.

7 Conclusions

In this work we formulated the problem of placing cooperating mobile agents on nodes as to

minimize the network load due to agent-level message traffic under node capacity constraints.

We proposed and evaluated corresponding distributed algorithms for agent migration that can

take advantage of basic routing-level information. Given their simplicity, these algorithms are

suitable for resource constrained embedded systems. AMA-k combined with the ILA capacity

inquiry and reservation scheme is a particularly attractive candidate since it achieves good

results for relatively small (compared to the network diameter) values of k, incurring a modest

communication overhead and being quite efficient in terms of memory and runtime complexity.

Part of this work has been published in the following conference:

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “On Deploying Tree Structured

Agent Applications in Networked Embedded Systems,” in Proc. EUROPAR 2010.

15

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tziritas:Nikos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lalis:Spyros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lampsas:Petros.html

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

Chapter 2

GRAL: A Grouping Algorithm to Optimize
Application Placement In Wireless Embedded Systems

1 Introduction

This chapter considers the agent placement/migration problem (introduced in the previous

chapter) in a more sophisticated way against the aforementioned simple algorithms.

Specifically, it pinpoints the problem induced when having groups of “mutually” dependent

agents (communicating heavily with each other), whereby the involved agents are located on

their center of gravity in their own right, but not when considered as a whole. Therefore,

migrating such a group of agents towards its center of gravity, network load reduction is further

achieved.

Of course, the challenge is to identify such unbalanced groups of “mutually” dependent agents

and then migrate them towards their center of gravity. To this end, a fully distributed grouping

algorithm (GRAL) is proposed which considers both single and group agent migrations to

minimize the network traffic. Given unlimited general-purpose resources, the algorithm utilizes

only information available locally at each node, while in the more realistic constrained case, the

resource status of potential destinations must be discovered/estimated.

The contributions of this work include the following: (i) we present two versions of the GRAL

migration algorithm each assuming different network knowledge, given unlimited resources at

nodes; (ii) we discuss various mechanisms to tackle migrations towards storage/resource

constrained nodes; (iii) we evaluate the different approaches through simulation experiments,

17

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

comparing their performance against: a) optimal assignment derived through exhaustive search;

b) AMA [113] which is an algorithm we have proposed in the previous chapter tackling the

same problem in a different approach.

2 Application Model, System Model and Problem
Formulation

This section is identical with the respective section of Chapter 1, with the difference that the

system model is a little bit further extended as follows. An edge is called local edge when its

incident agents are co-located, otherwise this edge is named remote edge. A collection/group of

co-located generic agents is called non-partitioned when all the agents participating into that

collection are connected with each other through local edges. Let hj denote the distance in hops

between ni and n}.

3 Motivation example

Consider the example depicted in Fig 2.1 where an application of three agents has been

deployed into a network of two nodes; with white and black rectangles representing generic and

non-generic agents, respectively. The number beside an edge denotes the communication load

(per time unit) between the involved agents (e.g. in the example C12 + C21 = 20). As it can be

observed both ai and a2 are located on their center of gravity, with that placement yielding a

cost of 10. However, there is a group of “mutually” dependent agents (a1, a2), which is not

located on its center of gravity, since the network cost could be reduced at zero if both a1 and a2

migrated towards n1. Recall that this work assumes only generic agents can migrate, hence a3

cannot migrate towards n1. It should be stressed that AMA doesn’t consider group migrations,

thus we propose an algorithm tackling this case.

18

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

a 1

20

a2

10

a

ni

Fig 2.1 Application placement

4 GRAL Migration Algorithm

This section presents GRAL for the case where nodes can host any number of agents without

taking into account capacity limitations. In terms of routing information, a node knows only its

immediate (1-hop) neighbours involved in transporting both inbound and outbound agent

messages. This information can be typically provided by even a simple networking layer.

GRAL is a completely different approach against AMA [113], with the former considering

migrations in a grouping manner taking into account agent dependencies, in contradistinction to

latter where the migrations are performed in a single agent fashion.

4.1 Beneficial single agent migrations

GRAL performs single agent migrations in the same way as AMA algorithm (described in the

previous chapter).

4.2 Beneficial group migrations

The algorithm first identifies disjoint application sub-trees hosted locally, and for each sub-tree

produces a group (that may be a subset of the sub-tree). For each group, a single destination is

chosen as a host for all agents that are part of the group. More specifically, the algorithm works

in several steps, as follows:

19

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

Sub-tree Identification. First, one or more disjoint sets of communicating locally-hosted generic

agents (belonging to the same application) are identified. Each such set corresponds to a part of

the application tree, henceforth referred to as a sub-tree. Specifically the sub-tree identification

takes place as follows: i) create a sub-tree rooted on a locally-hosted generic agent not

belonging to an already identified sub-tree; ii) add to this sub-tree each locally-hosted generic

agent adjacent to one of the agents belonging already to this sub-tree. Repeat phase (ii) till no

agent can expand this sub-tree. After the expansion of a sub-tree completes, repeat phase (i) and

(ii) accordingly, till all generic agents have been considered. Note that each sub-tree consisting

of only one agent is discarded, since this agent will be considered by the single agent migration

mechanism. Observe that each of the remaining sub-trees is a non-partitioned collection of co

located generic agents.

Selection o f destination. For each sub-tree, the most promising 1-hop destination node is

determined by comparing the load between subtree’s agents and that node versus all other

neighbours, as well as the load with (immobile) locally hosted non-generic agents. Let lijk(A)

and lijk(S) denote the components of lijk due to the local communication of ak with generic

respectively non-generic agents hosted at n;·. Then, both Eq. 2.1 and Eq. 2.2 must hold true to

select n as a destination for a subtree G hosted at n{.

Σ j > Σ I h j = 1Λ h ix = 1 Vx * U j Eq. 2.1
Vk \ak g G V k :ak g G

Σ lk > Σ Ik (S)\h, = 1 Eq. 2.2
Vk: ak g G Vk: ak g G

Namely, Eq. 2.1 says that the aggregate load between the agents of the sub-tree and the

destination n should be greater than the respective load for any other neighboring node. The

aforementioned aggregate load involves the data exchanged between the agents of the sub-tree

and the agents using nj as either a hosting or routing node to communicate with the former ones

.While Eq. 2.2 says that this load should be also greater than the locally incurred one due to the

communication with (immobile) non-generic agents hosted at ni.

Partial benefit calculation. Having chosen the best promising 1-hop destination pn;, the

respective affinity and partial benefit value is computed for each agent ak of the sub-tree.

II.H<II-s;$

w1w1IIO' Eq. 2.3
V x * i,j

P b ijr = f - h r (A) \ h j = 1 Eq. 2.4

20

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

P b ,jm = - h ,m (A) + 2 (C vm + C m v) | p r vm = 1 a h tJ = 1 Eq. 2.5

The affinity affijk is equal to the load associated with ak for pnj minus (i) the local

communication load in terms of local (immobile) non-generic agents; and ii) the respective load

for all other neighbors. It provides an upper bound on the positive impact the migration of ak

from ni to nj can have, provided that the entire subtree moves to n;·. If all agents have negative

affinity then no beneficial group migration exists within the subtree. Else, the partial migration

benefit is calculated for each agent in a top down fashion. Eq. 2.4 is used to calculate the partial

benefit of the root ar of the sub-tree, which corresponds to the benefit if only ar migrates to pnj

while all other agents of the subtree it communicates with (i.e. its children) remain on ni . To

calculate the partial benefit of every other agent am of the subtree we make use of Eq. 2.5, with

prV being equal to 1 if av is the parent of am (in terms of that subtree), otherwise 0. Specifically,

this equation corresponds to the load impact if both am and its parent av migrate to pnj while all

other agents am cooperates with (i.e., its children) remain on ni .

By construction, these values can be used to calculate the actual benefit obtained by migrating

on pnj any part of the subtree. Specifically, the actual benefit for migrating any agent am

together with all its predecessors (in the path) up to the root ar is equal to the sum of the

respective partial migration benefit values. Also, the benefit of migrating any agent am together

with all its predecessors up to agent au (u^r) is equal to the sum of the partial benefits minus

two times the load between au and its parent (that does not belong to the part being considered

for migration).

Group Selection. The algorithm processes the subtree by merging leafs with their parent in a

bottom-up fashion. Each merge produces a so-called group node with a respective migration

benefit. The best grouping combination is recorded and updated correspondingly. Nodes with a

negative benefit value are pruned. The grouping phase terminates when a single group node

remains, and the best grouping is returned.

21

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

3

J

3 6

J k

6

k
Fig 2.2 Application structure

As an example, consider the application tree shown in Fig 2.2, where generic agents are denoted

in capitals and (multiple instances of) non-generic agents in small case letters. Edge values

stand for the communication load between two agents.

Let the application be deployed on a network as illustrated in Fig 2.3. Two disjoint subtrees are

hosted at n1: (A, B, C, D, F, G, H) and (I, J, K), hence two groupings will be produced, one for

each subtree (note that AMA cannot improve the placement depicted in Fig 2.3).

h

h

In the sequel we illustrate this process for the first sub-tree (A, B, C, D, F, G, H). Table 2.1

gives the relevant load components for these agents, i.e., the load coming from each neighbour

of n1, i.e., n2 and n3, together with the load from n1 itself (local load). The last load is split into

the load due to communicating with generic agents (n1(A)) and the load due to communicating

with non-generic agents (n1(S)). For instance, [C, n1(A)] is 8 due to the local communication

with generic agents A and F on n1, [F, n1(S)] is 2 due to the local communication with non

22

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

generic agent f on n1, and [H, n3] is 10 due to the remote communication with agents h on n6 and

n7 (via n4).

Table 2.1 Load components

Agent n1(A) n1(S) n2 n3

A 15 1 0 0
B 15 0 2 15
C 8 0 3 0
D 16 0 0 0
F 5 2 0 0
G 1 1 1 0
H 12 0 0 10

First, the destination for (A, B, C, D, F, G, H) is chosen. The two possible options are n2 and n3.

Based on the given loads, the best destination as per Eq. 2.1 and Eq. 2.2 is n3, since it accounts

for an aggregated load of 25 as opposed to 6 for n2, and this load is greater than the total local

load incurred between the entire sub-tree and the non-generic agents hosted at n1, which is equal

to 4.

Then, the partial benefits are computed by starting from the root of the subtree, in this case A

which has an affinity of -1 (aff13A = l13A - l11A(S) - l12A = 0 - 1 - 0 = -1). The partial migration

benefit of A as per Eq. 2.4 is -16 (pb13A = aff13A - l11A(A) = -1-5 = -16). The partial benefits of

all other agents are calculated as per Eq. 2.5; for instance this is 22 for B: (pb13B = aff13B -

l11B(A) +2*(Cba + CAB) = 13 - 15 + 12*2 = 22). The results are shown in Fig 2.4 with node

values denoting the respective partial migration benefits. The sub-tree is then processed to

produce the best grouping option. Fig 2.5 depicts the result of the first iteration, which leads to

the creation of group nodes DH and CF.

- 16a

2 2 b c -5

-10 D F 3

-1 G h 22

Fig 2.4 Tree construction phase for group
(A, B, C, D, F, G, H)

-16a

22 B CF -2

12 DH

Fig 2.5 Tree contraction phase

23

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

Notice that G was pruned since it had negative partial benefit. In the second iteration CF will be

pruned and BDH created with a benefit of 34. Finally, A will be merged with BDH and the

resulting group node ABDH will have an actual benefit of 18.

Convergence. Notably, for the time being the algorithm does not guarantee convergence as it is

susceptible to race conditions. Consider for instance two communicating node neutral agents

residing at neighboring nodes. If the load between them is high enough and the nodes invoke the

algorithm with the same period it is possible that these agents will swap places at one period,

only to re-swap back to their original positions at the next period and so on so for.

We expect such live-locks to be rare in practice, especially if neighboring nodes invoke the

algorithm at random intervals. To guarantee convergence though, we introduce a coordination

scheme between nodes in the spirit of a mutual exclusion protocol. Namely, when ni decides to

migrate a group to n it asks n for a permission. In turn, n rejects such a request if all the

following is true: (i) it hosts an agent ak that is the child or parent of an agent belonging in the

group to be transferred, (ii) it has decided to migrate ak to ni and has requested a respective

permission, and (iii) the id of n is smaller than that of ni (j<i). Else, n grants permission to ni

and does not consider migrating any agent to ni which has parent or child relation with an agent

of the group in question till the later completes its migration. Convergence is guaranteed

because conflicting migrations cannot be performed concurrently and each (non-conflicting)

migration reduces the network load.

Complexity. For each locally hosted generic agent, one needs to record the load with each

neighbor node as well as the load aggregates for local generic and non-generic agents. This

requires a A ’x(N’+2) table, where A ’ and N ’ is the number of local generic agents and

neighbors, respectively, in the spirit of Table 2.1. In addition, parent-child loads must be

recorded for each pair of locally hosted cooperating generic agents. This can be done via a

separate tree structure for each subtree, with pointers to the respective locations of the load

table, requiring O(A’) memory in total.

The destination for each subtree can be chosen in one pass of the corresponding tree structure

and respective load table entries, in O(A’N ’) for all subtrees. The calculation of the affinity and

partial benefit values requires one more pass. Similarly, the grouping of each subtree can be

done in a single pass of the tree structure in O(A’), while the best grouping combination can be

updated in O(1) for each step. Hence the asymptotic time complexity of GRAL is O(A’N ’).

24

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

5 Handling increased network knowledge

In this section we consider the case where each node not only knows its immediate neighbors,

but also every node within k-hops. Such k-hop information may be collected without significant

extra communication, e.g., by (occasionally) piggybacking node identifiers as a message travels

through the network, or by employing a naming scheme that directly encodes path information

into node identifiers as done in ZigBee for the case of hierarchical routing [129]. We proceed by

presenting a variation of GRAL that explores such increased knowledge, referred to as GRAL-

k. GRAL-k extends GRAL to: (i) take advantage of k-hop awareness, and (ii) potentially assign

different parts of the group to different destinations (i.e., suggesting that some agents of the

group migrate to different nodes).

For each subtree G, all neighbors within k hops of the local host and which are involved in the

load associated with G are considered as potential destinations. The respective affinity and

partial benefit values for each destination node ni are calculated in the spirit of GRAL, however

Eq. 2.3, Eq. 2.4 and Eq. 2.5 are adjusted to consider the fact that n need not be a neighbour of

η:

a f f = l h - l (S) h - Y l h -JJ ijm ijm ij n m \ / ij ixm ij
V x^i, j.Dijx =°Ahjx =1 Eq. 2.6

Υ (l — l)(h - h) D = 1Λ h = 1 λ u ψ i , jV ixm m m ; \ jx ix s xju xu
Vχψi, i D ijx =i

P b ,jr = f — h r (A) h ,j
Eq. 2.7

P b ijm = a f f i jm — h m (A) h ij + 2 (C Vm + C mv) h ij 1 P r l = 1
Eq. 2.8

Where in Eq. 2.6 nu is the next hop node in the path from nx to n;, in Eq. 2.7 ar is the root of the

sub-tree, and in Eq. 2.8 av is the parent of am in the sub-tree. Recall, that the affinity affijm

represents the benefit of migrating am from ni to n assuming the entire sub-tree also moves on

nj. Once again, three load components are considered: (i) the load associated with am that goes

through nj, minus (ii) the load due to the local communication with non-generic agents hosted at

ni and (iii) the additional load going through other nodes nx. The first two components remain

the same as in Eq. 2.3, multiplied by the hop distance between ni and n;·. The third component

now comprises two terms, handling two different cases. If nx is a neighbor of ni in a different

outbound direction than nj, the load for nx remains the same and is multiplied by the extra

distance travelled (the distance between ni and nj). Else, if nx is between ni and n;, the additional

penalty is the difference between the load for nx and the next hop node nu towards nj multiplied

25

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

by the corresponding hop difference; this actually corresponds to a benefit, if nx is closer to n

than ni. Note that Eq. 2.6 maps to Eq. 2.3 in case n is a neighbour of ni (the last term

disappears). The partial benefit formulas Eq. 2.7 and Eq. 2.8 are straightforward extensions of

Eq. 2.4 and Eq. 2.5, taking into account the distance between n and ni.

The partial benefit values for each agent and destination node can be stored using a single tree

structure, where the partial benefit of an agent is a vector; each element indicating the partial

benefit for a different destination node. The grouping process follows the same principle as in

GRAL, but when merging two nodes the best destination for the leaf is selected for each

destination option of the next-level node, producing an equal number of combined placements

and partial benefit values for the resulting group node. The most beneficial vector’s entry of

final contracted node is chosen.

During the grouping phase, the benefit values are calculated based on the fact that each merge

“links” the parent agent am in the leaf node with the parent agent an in the next-level node (am is

the child of an, both hosted at n,). Let tm and tn denote the nodes (forming a sub-tree) that contain

these agents, and t„m denote the node that results after merging tm with tn. Also, letpbtium be the

partial benefit of tm if am moves from ni on nu, and pbtivn the partial benefit for tn if an moves

from ni on nv. Then the corresponding combined partial benefit for t„m is:

P b t lVn ,um = P b t ivn + P b t ium ~ (C mn + C nm) (~ Κ + k m + \ ν) | p ^ = 1 Eq. 2.9

To explain the third term, recall that pbtivn is calculated as per Eq. 2.7 assuming that am (a child

of an) remains at ni while, an moves from ni on nu, and pbtium is calculated as per Eq. 2.8

assuming that an (the parent of am) will also migrate from ni on nu together with am. If this is not

the case (v^u), the benefit must be adjusted by (i) crediting the cost (Cmn+Cnm)hiv assumed in

Eq. 2.7, (ii) subtracting the benefit (Cmn+Cnm)hiu assumed in Eq. 2.8, and (iii) subtracting the

load (Cmn+Cnm)huv that will actually be incurred between am and an from their new hosts. Note

that the third term disappears for v=u in which case the partial benefit of tnm equals the sum of

the individual partial benefits, as usual.

We illustrate how the algorithm works by revisiting the previous example (of Fig 2.2and Fig

2.3) for k=2. Assume that n1 invokes the algorithm for the sub-tree (I, J, K). The candidate

destination nodes, involved in the message traffic associated with one or more agents of this

sub-tree, are n2, n3 and n5 (n4 incurs no load and is omitted). Table 2.2 lists the load and affinity

value for each agent and destination candidate. For instance, [.J, l15] is 3 due to the

26

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

communication with agent j on n5, and [J, aff15] is 6 (aff15J = l15Jh15 - ln j (S)h15 - l12Jh15 - (l13J-

li5 j)(h13-h 35) = 3*2 - 0*2 - 0*2 - (6-3)*(1-1) = 6).

Table 2.2 Load coefficients for the subtree

Agent aff12) aff13) (l15, aff15)

I (1, 1) (0, -1) (0, -2)
J (0, -6) (6, 6) (3, 6)
K (0, -12) (6, 0) (0, -12)

Fig 2.6 depicts the initial state of the sub-tree where each node is associated with 3 different

partial benefit values, one for each of the candidate destinations nodes (listed below the

respective values). For instance, the partial benefits for n5 are: -16 for I (pb15I = aff15I - l11I(A)h15

= -2 - (6+1)*2) as per Eq. 2.7; 18 for J (pbUj = affU j - lm (A)h15 +2(Cj+C j i)hn = 6 -6*2

+2*6*2) as per Eq. 2.8; -10 for K (pb15K = aff15K - l11K(A)h15 +2(CK I+CKI)h 15 = -12 -1*2

+2*1*2) as per Eq. 2.8.

Each merge produces 3 combinations whereby each agent is separately assigned to a

destination. Fig 2.7 shows the result of merging tree node K with I into a group node IK. Put in

other words, if I migrates on n2 the best destination for K is n3 yielding a combined partial

benefit of -7, if I moves on n3 the best destination for K is n3 with a partial benefit of -7, and if I

moves on n5 the best destination for K is n3 with a benefit of -15. The vector of final contracted

node IKJ becomes <11, 11, 3>, with the agent assignment on nodes being < (n2, n3, n5), (n3, n3,

n5), (n5 , n3 , n5)>. Hence, the algorithm will choose either the first or second entry, since both

carry the same migration benefit. For instance, if the first entry is chosen as the most beneficial

one, this means that I , K, J will migrate to n2 , n3 , n5 , respectively; with the actual migration

benefit being 11.

<-6, -8, -16>
<n2, n3> n5>

I

J K
<0, 12, 18> <-11, 1, -10>
< ^ ^ n5> < ^ ^ n5>

<-7, -7, -15>
<(n2 , Π3), (Π3 , 1Ί3), (1Ί5 , n3)>

IK

J
<0, 12, 18>
<n2 , n3 , n5>

Fig 2.6 Tree construction phase Fig 2.7 Tree contraction phase

In terms of space complexity, for each group node the partial benefit vector is O(N’) in size, and

O(N’2) of space is required to store the various placement combinations, where N ’ is the number

27

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

of nodes that are k hops away from the local node. Thus the aggregate space complexity is

O(A’N ’2). The time complexity of the algorithm is dominated by the grouping phase because

each merge involves calculating the partial benefits of O(N’2) combinations, each individual

calculation done in O(1). This yields a total of O(A’N ’2) for all locally hosted subtrees.

6 Handling capacity constraints

This section discusses how GRAL can be extended to tackle node capacity constraints. In a

nutshell, four main elements must be added: (i) infeasible migrations must be dropped; (ii) the

available free capacity of nodes must be “discovered” dynamically; (iii) capacity reservations

must be made before initiating a migration; (iv) we keep in a special vector the most beneficial

feasible merged node along with its actual migration benefit when considered as a standalone

entity.

GRAL checks the capacity constraint during the grouping phase of a subtree. If a leaf contains

agents that exceed the capacity of the destination, it is pruned. When running the algorithm,

some assumptions must be made regarding the free capacity of remote nodes. These

assumptions are then used to drop infeasible solutions. Obviously, these assumptions may be

invalid and must be confirmed in order to actually perform a migration. In terms of (iv), each

time two nodes are merged, we update the special vector to keep the merged node with the best

actual migration benefit. Finally, when the contraction phase completes, the merged node with

the best actual migration benefit is returned. The motivation behind this is that the finally

merged node may be an infeasible solution, therefore in that way we are able to choose the most

beneficial feasible solution. The algorithms are enhanced with the two locking schemes

proposed in the previous chapter (ILA and ILB).

28

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

7 Experiments

The setting for the experimental setup took place in the same way as in Chapter 1.

7.1 Results without capacity constraints

In a first experiment we compare the placements obtained by the GRAL and AMA variants, and

the optimal algorithm without taking into account capacity constraints. Due to time complexity

owed to the exhaustive algorithm, we choose small-scale experiments (20-nodes, app-10).

Table 2.3 Peformance for Lavg and the 20-node network

Algorithm Total
Load

Migrations Control
Msgs

Conv.
Time

initial 173.6 N/A N/A N/A
AMA-1 65.6 10.4 20.8 2.4
GRAL-1 58.2 14.8 22.8 2.6
AMA-2 61 7 14 2.4
GRAL-2 58.2 9.8 15.6 2.4
optimal 58.2 N/A N/A N/A

Table 2.3 summarizes the results of the aforementioned algorithms for an initial (random)

placement and the lavg model. The first observation is that the initial placement is quite bad,

incurring more than twice the total load of the optimal solution. In fact, both grouping variants

GRAL-1 and GRAL-2 consistently achieve an optimal result. In case of AMA, the 2-hop

variant produces better placements than the 1-hop variant, illustrating that in this case greater

network awareness is less prone to suboptimal lock-ins compared to lower awareness. This is

because the latter must perform hop-by-hop migrations in order for an agent to reach its final

destination, while former can transfer it through 2-hop jumps.

As expected, the 2-hop variants perform a smaller number of migrations compared to their 1-

hop counterparts, because they allow agents to move further away from their original hosts in a

single migration. The grouping migration (GM) algorithms result in more migrations than their

AMA counterparts, hinting to the fact that grouping avoids suboptimal lock-ins to which single

agent algorithms are vulnerable. Further attesting to this fact is the observation that GM

algorithms exhibit a lower control message per migration ratio than AMA, showing that it was

indeed possible to form groups assigned to the same destination (2 control messages are needed

per destination due to the protocol for avoiding swaps). In absolute numbers, however, GM

algorithms result in slightly more control messages than AMA algorithms, which is due to the

29

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

larger number of migrations performed. A final observation is that the algorithms have much the

same convergence time (~2.5 periods).

The same experiment was conducted for the rest load models (Isum and Imix), with the optimal

algorithm being marginally better than GRAL variants. Specifically, the optimal algorithm

achieved 1% and 5%o better performance against GRAL over Isum and Imix, respectively.

However, it was interesting to notice that AMA variants did not manage to bear fruit in Isum

and Imix load models, yielding an enough inferior performance of 30% and 22%, respectively,

against grouping variants. This is due to the fact that in these models the “bonds” among the

relative agents become stronger, especially when the load between generic agents and their

parents is relatively heavy; exposing in that way the drawback of considering migrations in a

single agent manner, like AMA variants do. Hereafter, in the experiments we will always be

using the lavg model.

Finally, the experiment was also repeated for the special case where all generic agents are

initially placed on the same node (chosen randomly). GM algorithms once more achieved very

good results, close to optimal (compared to the exhaustive algorithm). AMA algorithms were

particularly bad due to their inherent lock-in problem.

7.2 Small-scale experiments

In the second set of experiments we compare the performance of the AMA-1, AMA-2, GRAL-1

and GRAL-2 algorithms for the ILB and ILA schemes versus the optimal solution obtained by

exhaustive search. To reduce simulation time (for the exhaustive algorithm), we choose again

the experimental setup to consist of a 20 node network and app10. The evaluation is performed

for varying levels of “tightness” of the capacity constraint. More specifically, we start with the

nodes having just enough capacity to store the agents defined in the initial placement and add

additional capacity to hold 1, 2, 3, 4 extra agents at each node.

Fig 2.8 depicts the percentage of load reduction achieved by the 1-hop variants. All algorithms

reduce significantly the load by more than 40% even in the case where the capacity constraint is

tight. Comparing against exhaustive search, we notice that the performance difference between

the algorithms and the optimal solution rapidly decreases as more capacity becomes available.

For instance, with surplus capacity of 1 the difference between GRAL-1 (ILB) and the optimal

result is more than 15% while with a surplus capacity of 4 it is less than 5%. This is due to the

fact that when capacity is scarce it is also more likely that nodes will be filled. A filled node

30

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

essentially acts as a bottleneck separating the tree network into two parts. For 1-hop algorithms

this means that these network parts cannot exchange agents; therefore, it is more likely to reach

a suboptimal solution. Obviously, exhaustive search doesn’t perform any real migrations in

order to find the optimal solution, thus doesn’t suffer from the effects of bottleneck nodes. The

increase in load reduction for exhaustive search should be attributed to the “generally

improved” optimization potential as the capacity of nodes increases and the setting gradually

shift towards the unconstrained case.

S P
0 s·

CO
+->u3■DOJs_
■DfljO

70

65

60

55

50

45

40

35

30

1000

ΙΛ<UW)ru
100(Λa>

o
10

c
ou

B-

-ft-

-B- =B= ■M

- 0 —AMA-1 (ILB)

- Δ —GRAL-1 (ILB)

AMA-1 (ILA)

•GRAL-1 (ILA)

1
1 2 3 4

Surplus capacity
1 2 3 4

Surplus capacity
Fig 2.8 Load reduction

(20 nodes, app-10)
Fig 2.9 Control messages exchanged

(20 nodes, app-10)

Fig 2.10 Migrations performed
(20 nodes, app-10)

Fig 2.11 Load reduction
(20 nodes, app-10)

Concerning the relative performance of the 1-hop algorithms in Fig 2.9 we can observe the

following: (i) ILB achieves better placements than ILA for both AMA-1 and GRAL-1, and (ii)

GRAL-1 consistently outperforms AMA, except in the case of ILA and surplus capacity of 1.

Both observations are due to the fact that ILA works with estimates about the free capacity of

nodes, thus it may be impossible to perform the decided migrations. While through each failed

migration (and capacity reservation) attempt ILA updates its capacity information, this also

leads to a back-off. This delay might prove vital since in the meantime a bottleneck node could

31

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

be created. This particularly affects GRAL-1 (ILA) because group migrations (two or more

agents destined for the same node) are more likely to fail due to outdated capacity information

when capacity is tight. AMA-1 (ILA) is less vulnerable to this effect because it only considers

single agent migrations. However, it is worth noting that the negative performance impact of

ILA in both AMA-1 and GRAL-1 applies only when capacity is scarce and diminishes when

capacity increases.

Unfortunately, the performance of the ILB scheme comes at a non-negligible cost. Fig 2.9 plots

the control messages generated in order to reserve capacity and avoid swaps. It can be seen that

ILB requires roughly one order of magnitude more messages compared to ILA. This is because

ILB greedily attempts to obtain locks from all neighbors, before running the actual algorithm

that determines the destinations for agent migrations, i.e., regardless whether these nodes will be

chosen as migration targets or not. On the contrary, ILA tries to lock capacity only at the nodes

that have been selected as destinations for one or more agent migrations. It is also worth noting

that AMA-1 and GRAL-1 generate roughly the same amount of control messages. Another

interesting observation is that the number of control messages for ILB tends to decrease as

capacity increases. This is attributed to the fact that with larger free capacity a larger number of

migrations will succeed without experiencing back-offs or lock-ins due to filled nodes and it is

more likely to reach a good placement where agents will not need to move away from their

hosts. This is in line with Fig 2.11 which plots the number of migrations. As it can be seen, the

number of migrations rises as capacity increases. It can also be seen that when capacity

becomes abundant, the GM algorithms are able to perform more migrations than the SAM

algorithms which suffer from lock-ins.

Fig 2.11 shows the results for the 2-hop variants, i.e., AMA-2 and GRAL-2. Most of the general

trends discussed for the 1-hop variants hold here too, so we choose to not show the figures

about control messages and migrations. Note, however, that the performance difference between

ILA and ILB becomes minimal for both AMA-2 and GRAL-2. This is a very encouraging result

considering the fact that ILB is very expensive in terms of control messages. To explain this

note that with 2-hop network awareness the number of capacity reservation conflicts for ILB

increases as a node can receive requests from a larger number of nodes. Thus, it is likely that

some agents will not migrate to the destination(s) assigned to them but rather to a (less optimal)

one hop neighbor of it, or not at all. This induces a similar effect to the one observed for ILA for

1-hop awareness. Namely, once back-offs occur and agent migrations are delayed, node

capacity may be filled with other agents thereby hindering migrations that would be more

32

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

beneficial overall. In fact, notice that ILA quickly closes on and eventually overtakes ILB for

GRAL-2 as capacity increases, approaching an optimal result.

7.3 Large-scale experiments

In this set of experiments we generated networks of 50 nodes. Also, we deploy 5 applications

for each application structure (app-10, app-25, app-50) to synthesize a mix of 15 applications

(app-mix). The algorithms being evaluated remain the same (excluding optimal) under a

different range of surplus capacity (2, 5, 10, 20). The performance of the algorithms in this

setting a little bit different compared to the previous one; specifically the load reduction (Fig

2.12) ranges between 10 and 50 instead of 40 and 60 percentage units, respectively. This is

because in the previous setting, the proportion of agents needing migration per total surplus

capacity is less than this one, thus leading in a more tight placement, and therefore in less

migrations. Also, taking a look at the differences of locking schemes between Fig 2.12 and Fig

2.8, we notice that ILB scheme deteriorates with the increase of the network topology (we

attribute this to the increasing reservation conflicts).

Fig 2.12 Load reduction
(50 nodes, app-mix)

Surplus capacity
Fig 2.13 Migrations performed

(50 nodes, app-mix)

33

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

10000

(Λ

Π3
(Λ
(ΛΟ)
^ 1000
"ο
4 - ·C
ου

100

AMA-1 (ILB) -B -A M A -1 (ILA)

GRAL-1 (ILB) —X —GRAL-1 (ILA)

π----------------- 1----------------- 1---------------- 1—

2 5 10 20
Surp lus capacity

Fig 2.14 Control messages exchanged
(50 nodes, app-mix)

70

60

50

u
40

-aai
30

-are
20

10

- 0 —AMA (ILB)

- B - A M A (ILA)

- Δ —GRAL (ILB)

- X - G R A L (ILA)

2 3 5
k-hop awareness

101

Fig 2.15 Load reduction
(50 nodes, app-mix)

In terms of control messages, we notice in Fig 2.13 that ILB continues sending much more

messages against ILA, with ILA having a more steep inclination compared to ILB. This is

elaborated through the following remarks: i) the number of migrations increases in a linear

fashion (Fig 2.14) and the number of control messages, concerning ILA, are exactly twice the

number of migrations (request/reply messages); b) in ILB scheme, the number of locking

messages is amortized as the number of parallel migrations per node increases, since a node will

not send double reservation messages in case it tries to migrate concurrently more than one

agents. Summing up the aforementioned remarks, the control messages sent over ILA are linear

to the number of migrations, in contradistinction to ILB which is not the case as discussed

earlier. Therefore the aforesaid remarks explain ILA’s bland increase. Also, due to the fact that

we have observed a much similar behavior between 1-hop and 2-hop variants we chose to not

show the figures accounting for the control messages and migrations.

For the last experiment we fix the surplus capacity to 5 agents per node and vary nodes’

awareness to be between 1 and 10 hops. As we can see in Fig 2.15, GRAL achieves by far the

better performance compared to AMA, in both ILA and ILB schemes. More specifically, for

k=5 GRAL achieves roughly double the load reduction of AMA. The reduction itself is also

quite impressive (roughly 65% of the random initial placement). Notably, the load reduction

increases rapidly as hop awareness increases from 1 to 2 and 3 hops, stabilizing from 5

onwards. This means that modest network awareness (in this case, 1/3 of the network diameter)

is sufficient to reach good solutions, which is also quite important considering the

corresponding memory and runtime complexity implications.

34

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

(50 nodes, app-mix) (50 nodes, app-mix)

Concerning the capacity reservation schemes, ILA clearly outperforms ILB for both AMA and

GRAL with the difference becoming more pronounced as network awareness increases. Fig

2.16 also shows that ILB exhibits an exponential trend with regards to control messages

rendering this scheme inherently non-scalable.

Looking at Fig 2.17, which plots the number of migration performed, note that GRAL exhibits a

rapid increase as hop awareness increases from 1 to 3, then stabilizing and dropping afterwards.

The trend up to 3-hop awareness is due to the fact that increased hop awareness enables the

flexible placement of even more agents at even better destinations. Once a good placement is

reached, a further increase in hop awareness does not considerably enhance placement quality

(see plateau in Fig 2.15) but only has the effect of decreasing the number of performed

migrations (or more precisely, the consecutive migrations an agent must do in order to reach a

good destination; a trend which is more clear for AMA). The above indicate an essential

property of k-hop aware algorithms, namely that significant load reduction can be achieved with

a relatively small value for k. Even larger k-hop awareness is not entirely without a positive

effect, since it results in a reduced number of migrations and a smaller number of control

messages for ILA.

A final remark concerns that the larger number of migrations performed by GRAL (ILB)

compared to GRAL (ILA) for k=3,4,5, actually leads to an inferior agent placement. We

attribute this to capacity reservation conflicts which become more likely for ILB as hop

awareness increases. Such conflicts may lead to a suboptimal mapping of agents on nodes, with

increasing probability as hop awareness increases, on nodes that are further away from their

ideal destinations (and closer to their original hosts). In turn this may create bottlenecks that

hinder more beneficial migrations, without necessarily blocking them completely. Even though

35

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 2

ILA can miss opportunities due to outdated capacity information, with increasing probability as

hop awareness increases, hence is likely to perform a smaller number of migrations than ILB,

precisely for that reason it is also less vulnerable to reservation conflicts thus is more likely to

perform migrations that are more beneficial/effective than those of ILB. The net effect seems to

be in favor of ILA even when performing fewer migrations compared to ILB.

7.4 Discussion

Summarizing the above, we can conclude on the following: (i) ILA is the more promising

locking scheme, in fact, ILB is only applicable for small network awareness; (ii) algorithms

using grouping outperform their counterparts in most cases but the ones where no network

awareness exists and the capacity is very restricted; (iii) network awareness especially when

applied to grouping algorithms together with ILA, drastically increase the quality of the

produced placement, while performing comparably fewer migrations and control message

exchange compared to non-network aware algorithms; (iv) in the unconstrained case GRAL-1

and GRAL-2 achieve optimal or close to optimal performance.

8 Conclusions

In this work we tackled (as in the previous chapter) the problem of placing the agents

comprising an embedded application to the available nodes. We proposed distributed

asynchronous algorithms to tackle both uncapacitated and capacitated versions of the problem,

considering agent migrations in the form of a group instead of standalone entities (Chapter 1).

Algorithms based on group migrations, outperform the ones considering migrations in a single

agent manner, with their performance being optimal in most cases when the nodes have no

capacity limitations; and near-optimal when nodes have enough capacity to host more than one

agents (group of agents). Also, grouping algorithms are in the process of being implemented in

POBICOS middleware, bestowing an extra quality on it against other similar systems, since

such an attribute proves to be of great importance regarding the energy depletion.

Part of this work has been published in the following conference:

* N. Tziritas, T. Loukopoulos,S. Lalis and P. Lampsas, “GRAL: A Grouping Algorithm to

Optimize Application Placement in Wireless Embedded Systems,” In Proc. IPDPS 2011.

36

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tziritas:Nikos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lalis:Spyros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lampsas:Petros.html

Chapter 2

37

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

Chapter 3

Identifying the worst-case bounds for AMA and
GRAL, and devising an optimal algorithm

1 Introduction

In this chapter we give an extensive analysis through lemmas and theorems about the

approximation ratios of AMA and GRAL against the optimal algorithm. Specifically we prove

that the worst-case scenario of AMA against the optimal algorithm is not bounded. As regards

the approximation ratio of GRAL against the optimal algorithm, it proves to be that expressed

by Eq. 3.1. With G denoting the number of generic agents into our system, while B/2 being the

maximum number of the data an agent can send towards another one, each time the respective

network routine is called. It should be stressed that the aforementioned approximation ratio is

expressed Eq. 3.4, under the restriction that an agent cannot communicate with more than N

other agents (at most N incident edges). Also, we give some details as to why GRAL is not

optimal, and introduce a modification of GRAL (called GRAL*) which proves to be optimal.

Section 2 describes the application and system model as usual. Section 3 proves that the

communication cost difference between AMA and the optimal algorithm tends to infinity. In

Section 4 we modify GRAL into GRAL* and prove that the later is optimal when having no

capacity limitations; while Section 5 provides two worst case bounds of GRAL, with the first

one concerning the case where an agent can have an arbitrarily large number of relatives; while

the second one considering the case that an agent is allowed to have at most N relatives. Finally

Section 6 concludes our work.

39

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

1
(G - 2) * 2 B

(G

1
2G - N - 3

N
2) * 2 B

Eq. 3.1

Eq. 3.2

2 Application and System Model

The application and system model continue being the same as that of Chapter 1, with the system

model being a little bit extended. Let h(a) be the hosting node of ai. G and NG denote the

number of generic and non-generic agents, respectively. exy equals 1 when there is an edge

between ax and ay, otherwise 0. qxy captures the data exchanged between ax and ay (qxy = qxy =

Cxy+Cyx). Let Eq. 3.3 represent the data exchanged between a1 and the non-generic agents it

communicates with. Eq. 3.4 and Eq. 3.5 capture the data exchanged between an agent (let a_j)

and the generic agents it communicates with, with Eq. 3.5 excluding the co-located agents

communicating with a_j. M ijk denotes the migration of ak from ni towards ni.

Qs .j = Σ % 1 e =1 Eq. 3.3
a e n g

Qn, j = Σ % 1 ev =1 Eq. 3.4a e g
Qn ■, j = Σ % 1h(a.) * h(aj) Λ eij =1a e g Eq. 3.5

Let D be the diameter of the network, while B/2 be the maximum data an agent can send

towards another one, each time it calls the respective network routine, assuming that there is an

edge connecting those agents. Therefore the maximum volume of data can pass through an edge

at any instance of time is equal to B, with this happening when both involved agents send

towards one another B/2 data simultaneously. We say that an agent is individually balanced if

located on its center of gravity; otherwise we say that this agent is unbalanced. An agent (let ax)

is considered totally balanced if thefollowing hold: a) it is individually balanced; b) there is no

subtree that contains ax after the contraction phase completes (see Sec. 4 in the previous

chapter). From now on we will interchangeably use the terms stabilization and balance,

rendering the same meaning.

40

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

Definitionl. The same equations/properties apply for either an individual agent or a group of

agents.

A group of co-located agents can be thought of as a super-agent, provided that these agents are

non-partitioned. The construction of a super-agent occurs by merging all the agents of the group

as follows: a) each edge that originates from any agent of the group and ends up on another one

not belonging to that group becomes an incident edge to that super-agent (originates from the

super-agent instead of that agent); b) we ignore any edge that originates from and ends up on an

agent belonging to that super-agent (internal edges). Without loss of generality we can assume a

super-agent is possessed of the same properties (equations) holding true for a regular agent. Let

As denote such a super-agent. From now on, we will use interchangeably the terms super-agent

and group of agents.

3 Identifying the worst-case bound of AMA

Initially we prove AMA cannot be optimal through the following lemma.
Lemma 1: If the agents of an application are individually but not totally balanced, then it could
be found a migration of group of agents, which reduces the total network communication cost.
Proof. Assume a1 and a4 (non-generic agents) are hosted by n1 and n3, respectively; while a2

and a3 (generic agents) are hosted by n2, with the application and network structure being
illustrated in Fig 3.1 and Fig 3.2. Now assume the following hold: q23 > q12, q34 and q34 > qu .
Observe that there is no beneficial single agent migration, since a2 and a3 are stabilized due to
the fact that there is no nj such that: l 2 j 2 > /222 + ^ l 2x2 and l 2j2 > /223 + ^ l2x3. Therefore,

j ,2 X^ j ,2

AMA cannot migrate any generic agent, with the total network cost being q12 + q34 . However if
we were able to migrate both a2 and a3 towards n3 then the total network cost would become
2q12 > q12 + q34. Hence, the total network cost could be further reduced by considering a group
agent migration.

41

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

Fig 3.1 Network structure

Corollary 1. AMA is not optimal.

Proof. It stems directly from Lemma 1.

Lemma 2. A placement of agents is optimal iff there is no agent or super-agent (group of

agents) being unbalanced (i.e., the placement is totally balanced/stabilized).

Proof. It is similar to show that if a placement of agents (let Ps) is totally balanced/stabilized,

then there is no other placement reducing further the total communication cost. Proof tries to

show this through contradictions of three assumptions described further down. Specifically, the

three assumptions to be contradicted, provided that the initial placement is totally balanced, are:

a) there is an agent/group migration that results in another balanced placement where the

network cost is reduced; b) there is at least one agent/group migration which leaves intact the

network cost on its own right, but reduces it via the help of other ones; c) the same as (b) with

the difference that there is at least one agent/group migration increases the network cost instead

of leaving it intact. For simplicity, to show the above contradictions we make use of only single

agent migrations (not groups), without loss of generality due to Definition 1.

Assumption A: Consider a migration of an agent ak from nx towards an 1-hop neighbor nu,

under the assumption that the new placement is also totally balanced. Assume also that this

migration reduces the total network cost. Since ak is balanced independently of whether it is

located on nx or nu, then the following hold:

w+II-^x Eq. 3.6
m ^u ,x

^uxk ^uuk ^ ^umk
Eq. 3.7

m ^u ,xw+Λ-^x Eq. 3.8
m ^u ,x

42

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

Since we claimed that the migration in question reduces the total communication load, then the

equation Eq. 3.8 must hold true, which comes in contradiction with Eq. 3.6. Therefore a

migration like that cannot reduce the communication cost on its own, hence we consider the

case where such a migration cause other migration(s), where all of them reduce network cost. It

is straightforward to show that these case holds true when nu is a k-hop neighbor.

Assumption B: Consider the previous case with the difference that instead of nu we have an k-

hop neighbor (let nz) and Mxzk leaves the network cost intact. Assume also that after Mxzk takes

place, am migrates due to stabilization issues (changes in load patterns), which means that am

has an edge towards ak. However, am cannot be located on any node other than nx, due to the

following facts: i) if am was located on any node (like ny depicted in Fig 3.3) across the path

between nx and nz, then Mxzk would increase the network cost, which contradicts with our

assumption that Mxzk does not increase/decrease the cost; ii) the same would hold if am was

located on any node (like nf in Fig 3.3) using ny as a router to reach nx, with the restriction that

this node must not use nz as a router; iii) if am was located on any node (like nb) before the path

between nx and nz, or after that path (like na), then am would not initially be balanced

(contradiction); iv) if am was hosted by nz, then am could not migrate anywhere since am would

be eventually co-located with ak (contradiction). Therefore, we result in the fact that am should

be hosted by nx. However the migration of both am and ak cannot reduce the network cost; since

that would mean that a group of agents is not stabilized which contradicts with the assumption

of an initial totally balanced placement. It is self-evident that the same holds in case we have

more than one agent (like am) to be migrated.

nf

nb . . . ΠΧ y

Fig 3.3 Network

Assumption C: We omit the case where Mxzk increases the communication cost without causing

any other migration, since in that case the final network cost will increase (our proof is based on

network cost reduction). Hence, assume Mxzk increases network cost, with that migration

causing an extra migration of the agent am (with am having an edge towards ak, as previously)

43

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

due to load changes, which finally reduces the initial network cost (i.e. the cost before Mxzk

takes place). However such a situation could not happen since it is obvious that in the best case

(assume that there are only two agents into our system am and ak) am would amortize the cost

caused by Mxzk. While in the worst case either Mxzk should be “revoked” (by performing Mzxk),

or the migration of am would cause other migrations like the ones caused by Mxzk. As we can

observe such a kind of migrations may be performed in a recursive fashion till the boundaries of

the application tree are reached (root agent and non-generic agents), however without eventually

reducing the final network cost.

Summing up: It was shown that if an algorithm results in a totally balanced placement, then

there is no migration or a series of migrations of agents (or super-agents by making use of

Definition 1) that can take place to reduce the network cost further more. Therefore, we

conclude that a placement is optimal when all the agents are totally balanced (there is no

agent/group being unbalanced).

Theorem 1. The worst-case bound between AMA and the optimal algorithm is

(G — 1)*2B * D * T , with T denoting the maximum number of times the agents can send B/2

data units over the network.

Proof. Assume that in our system there are no unbalanced individual agents (without loss of

generality since AMA always results in a placement of no unbalanced individual agents), while

there exist one unbalanced group (let super agent As). Since AMA cannot identify such a group

to migrate it to its center of gravity, the worst-case scenario is for As to be as farther from its

centre of gravity as possible (it is obvious that the optimal algorithm will decide to migrate this

group of agents to its centre of gravity). In order for AMA to incur as large network cost as

possible, while for optimal as small as possible, we need to decide which node will host As and

which node(s) will host the adjacent agents to As. The best case for optimal algorithm is for the

adjacent agents of As to be co-located on the same node (let nr), hence the optimal algorithm will

take the decision to migrate As towards nr, with the network cost being zero. The worst-case for

AMA results by consulting the following function:

f (i , j , s — — Σ 4A —
V x^i, j D jX =°Ahix = Eq. 3 . 9

Σ (l — l)(h — h) | D = 1 λ h = 1 λ u Φ jV ixs i u s s \ jx ix s I xju xu J
Vx* i, j 'Dijx =1

Let Eq. 3.9 be a function yielding the benefit/cost of migrating As from ni to nj. The first factor

concerns the benefit of Mijs due to the load associated with As and directed to nj when ni hosts As.

44

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

The second factor captures the cost of migrating As due to the communication load with its co

located agents. Third factor concerns the cost of moving As towards an opposite direction

against the nodes hosting agents communicating with As (excluding n). Finally, the forth factor

signifies the benefit/cost — benefit when nx is closer to nj; while cost when it is closer to ni —

of moving As towards nj in terms of the nodes located in-between ni and nj.

We demand that Eq. 3.9 be as large as possible in order for AMA to incur as large

communication cost as possible. Looking carefully on Eq. 3.9 it is obvious that when the first

factor increases then also the cost increases, while second and third factor contribute negatively

to the communication cost. In terms of 4th factor, note that the following equation holds always

true h — hjx < h , hence it is worse (in terms of cost) to host an agent on nj instead of nx.

Therefore the worst-case is to have the relative agents of As located on nj, and the hop-distance

between ni and nj to be as large as possible, i.e., D.

Assumption A: Assume all generic agents participate into As, therefore all adjacent agents to As

should be non-generic agents. Let ni be the initial hosting node of As. Note that in order for each

agent ak participating into As to be individually balanced Eq. 3.10 should hold true:

Qs k + < Σ Vxk I ak , ax e As Eq· 3 1 0

Vx:exk =1

Σ (Qsk + Q„ -k)D Eq· 311
y k:ak e As

Qsk + QNk = Σ B , V k : ak e As Eq· 312
Vx:̂ . =1a ax eAs

Specifically Eq. 3.10 denotes that, QSk and QNk (considering that ak participates in the

unbalanced group) should be equal to or less than the accumulated communication load between

ak and each generic agent belonging into the unbalanced group. Eq. 3.11 represents the network

cost induced by AMA due to the external load (QSk + ^ Nk) of each agent ak participating into

As. From now on, any reference to network cost will be inextricably linked with the fact that any

agent is able to send B/2 data units (towards each adjacent agent of its own) at most one time, T

= 1. The factor D in Eq. 3.11 is justified by an earlier remark that the adjacent agents to As

should be hosted by a node that is D hops away against the node hosting As. Therefore the

worst-case scenario for AMA is for QSk and QN k to be as large as possible, since AMA cannot

identify a migration to save this load/cost. Namely, given that: a) at most B data units can travel

over an edge (B/2 for each agent incident to that edge); b) each qxk should be as large as possible

45

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

(provided that ak and ax belong into As); we conclude that each such qxk should be equal to B,

hence Eq. 3.10 becomes Eq. 3.12.

unbalanced group of generic
agents hosted by the same node

Qs ,

Fig 3.4 Unbalanced group A s

Initially we assume that only two generic agents do exist into our system (m = 2 in Fig 3.4).

Therefore, Eq. 3.11 becomes equal to 2B*D, since Qsl + Qwl = qu = B and

QS2 + Qn ,2 = qu = B . In case of 3 generic agents (m = 3 in Fig 3.4) AMA results in a

placement where the network cost is equal to 4B*D, since Qsl + Qwl = q12 = B ,

QS2 + Qn ,2 = q12 + q23 = 2 B , and QS3 + QN,3 = q23 = B . For 4 generic agents the network cost

becomes 6B*D, and so on. Hence, we observe that for each internal edge of As AMA incurs

2B*D additional cost. Therefore, due to the fact that our application is structured as a tree (in a

tree of G nodes G-1 edges there exist), the largest difference (in terms of cost) between AMA

and the optimal algorithm is equal to (G-1)*2B*D. Note also that the cost incurred by AMA is

independent of how the agents belonging into As are connected with each other, since it depends

only on the number of As’ internal edges.

Assumption B: In the sequel we proceed with the case that {a1..aG-1} belong to AS, while aG not

to. Therefore, aG is either located on the same node hosting As or on another one.

Assumption B1: In the first case the optimal algorithm will decide to migrate As from ni

towards the center of gravity (let nj). Note that the ideal case for the optimal algorithm is to

migrate also aG onto nj, however it could not make such a decision since in that case aG would

belong into As which comes in contradiction with Assumption B. This means that the load QSG

cannot come from nj, also QNG cannot be greater than QSG (since in that case aG would belong

into As). The worst case for AMA (best for the optimal algorithm) is the QNG to be as high as

possible, and aG to migrate as close to nj as possible (let this node be nx) with hjx = 1, and with

46

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

nx being the source for the external load QSG. As a result, the cost incurred by the optimal

algorithm is that of the communication between aG and the agents belonging to As (Eq. 3.13).

While AMA incurs cost equal to the external load of both As and aG multiplied by the hops

traversed (hij and hix respectively); the external load of As is equal to (G-1)*2B, while the
G-1

external load of aG cannot be greater than Σ qiG | ejG = 1 λ a. e As due to the fact that aG must
i=1

be individually balanced on ni (our initial assumption). Note also that aG cannot be connected

with more than one agent belonging to As due to the fact that: a) the application is structured as

a tree; and b) the agents belonging to As must be non-partitioned (Definition 1). Therefore the

external load of aG cannot be greater than qiG | eiG = 1 λ a. e As . As a result the communication

cost of AMA is represented by Eq. 3.14, which is less than (G-1)*2B*D.

G-1
hxj Σ qiG 1 eiG = 1 Λ ai e As

i=1
Eq. 3.13

(G - 2) * 2 B * h + B * h e = (G - 2) * 2 B * D + B * (D -1) Eq. 3.14

(G - 2)* 2 B * h + B * h = (G - 2) * 2 B * D + B * D Eq. 3.15

Assumption B2: Consider now the second case where aG is initially hosted by a node other than

ni. In order for the optimal algorithm to pay no cost, the best-case scenario is for nj to initially

host aG. The worst-case scenario for AMA is for aG to be as far away in terms of ni as possible

(i.e on nj). Following the same rationale as that of Eq. 3.14, with the difference that hix must be

replaced by hjj, we end up on Eq. 3.15 which is less than (G-1)*2B*D.

Summing up: the worst-case scenario of AMA is that described in Assumption A (all the

generic agents belong into the unbalanced group). Note also that in case that T tends to infinity

the communication cost difference between AMA and the optimal algorithm tends also to

infinity.

4 GRAL*: Modifying GRAL to become optimal

Lemma3. The way GRAL chooses the destination node (the most promising neighboring node)

for a potential migrating group may lead GRAL to result in a sub-optimal placement.

47

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

Proof. When GRAL runs on a node it chooses for each non-partitioned collection of locally-

hosted generic agents (disjoint subtree) the most promising destination node in order to proceed

with the subtree construction/contraction phase. Specifically, when GRAL runs on a node (let

nx) records: a) for any neighboring node (let ny) the communication load exchanged between the

generic agents located on node nx and the generic or non-generic agents located on either ny or

on a node using ny as a router; b) the load exchanged between nx’s locally-hosted generic and

non-generic agents (without taking into account the load between locally-hosted generic

agents). For example, assume that only two nodes does exist into our system (ni and n2).

Consider that n1 hosts the agents a1, av, a2 and a3 depicted in Fig 3.5, while a2, and a3, are

hosted by n2. Note that the current network cost is equal to 20, while in case of migrating both

a2 and a3 towards n2 the network cost becomes 1. Note that GRAL is not able to identify this

beneficial migrating group due to the fact that when GRAL runs on ni it finds out that the most

promising destination node for any potential migrating group is n1 itself; since the accumulated

local load is totaled 100 which is greater than the accumulated remote load associated n2, which

amounts to 20. A solution to this drawback is for GRAL to proceed with a tree

construction/contraction phase for all the neighboring nodes of the node it runs on.

unbalanced group o f generic
agents hosted by the sam e node

Fig 3.5 Unbalanced group of 3 agents

Lemma 4. The fact that the root agent of a sub-tree cannot be pruned (when contraction phase

takes place) may lead GRAL to result in a sub-optimal placement.

Proof. The only agent that cannot be pruned when contraction phase takes place is the root

agent. Consider again the example of Lemma 3 where GRAL is possessed of the ability to

proceed with the tree construction/contraction phase for all the neighboring nodes of the running

48

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

node. Assume again the example described previously and depicted in Fig 3.5. Let GRAL

construct a sub-tree (rooted on a1) for the potential destination node n2 (Fig 3.6). Observe that

when the contraction phase completes the final merged/contracted node has negative benefit

which leads GRAL to cancel the decision to migrate this group. However if GRAL constructs a

sub-tree rooted on a2 (Fig 3.7), it is able to identify a beneficial migrating group and result in a

better placement.

-101 -1 -1

a i

1

a?2

20

a3

Fig 3.6 subtree rooted on ai Fig 3.7 subtree rooted on a2

Lemma 5. If the root agent of an identified sub-tree belongs to an unbalanced group (let As) of

agents, then after the contraction phase GRAL will identify a beneficial migrating group (and

migrate it in an optimal way) which is identical to As.

Proof. Recall that in the construction phase of a sub-tree, each agent belonging to that sub-tree

is assigned a partial benefit for its migration towards a promising destination (let pnx). Due to

the nature of partial benefit calculation, if an agent is located at the bottom level of the sub-tree,

then the partial benefit of that agent corresponds to the upper bound benefit of its migration

towards pnx.

Assumption 1: Consider that GRAL decides to construct a sub-tree of only two levels based on

pnx. Assume also that a part of this sub-tree represents an unbalanced group of agents where the

optimal algorithm will decide to migrate it towards nx (with the root agent belonging to the

unbalanced group). This part of the sub-tree is called optimal migrating group.

If there are agents at the bottom level of the sub-tree, which have partial benefit equal to or less

than zero, then GRAL will take the decision to prune them. Note that the optimal algorithm will

decide to remove these agents from the optimal migrating group as well, since their upper

bound migration benefit will be less than or equal to zero. Therefore GRAL’s decision to prune

them is correct. The rest bottom-level agents have positive partial benefit each, which means

that if their parent (in terms of the sub-tree structure) migrate also, then their actual migration

benefit should be greater than zero. It is obvious that the optimal algorithm will decide to

49

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

include these agents into the optimal migrating group, with the latter being consisted of the

agents in question plus the root agent. According to GRAL’s contraction phase, these agents

will be merged (along with their partial benefits) with the root agent. Of course, in order for

GRAL to perform the migration of the group represented by the final contracted node, the

partial benefit of the latter should be greater than zero. Note that this partial benefit is equal to

the actual benefit of migrating the group represented by that node. According to the optimal

algorithm this actual migration benefit is positive, therefore GRAL will take the optimal

decision to migrate that group.

Assumption 2: The same as Assumption 1 with the difference that the sub-tree is consisted of

three levels instead of 2. In the first step GRAL will proceed with the merge/pruning of the

bottom level of the tree. As said earlier, each leaf contributing negatively will be pruned (the

optimal algorithm will take the same decision). The rest bottom-level agents will be merged

with the next upper-level nodes (which nodes represent agents), since they have positive partial

benefit. Therefore, we result in a case identical to that of Assumption 1, with the difference that

some of the bottom-level nodes may represent super-agents instead of individual ones. By

making use of Definition 1, we conclude that GRAL will migrate the same agents with the

optimal algorithm.

Assumption 3: The same as assumption B with the difference that the sub-tree is consisted of 4

levels instead of 3. Following the same rationale as previously, we conclude that this case is

reduced to the case of Assumption 2. Therefore, GRAL again takes the optimal decision.

Iteratively, in general the case where the sub-tree is consisted of n levels is always reduced to

Assumption 1. As a result, we conclude that if the root agent of a sub-tree belongs to an

unbalanced group, then GRAL will identify and migrate this group in an optimal way.

Definition 2. GRAL* is a modification of GRAL tackling the drawbacks brought out by lemma

3 and lemma 4 through the following way. For each possible pair (As, nd)— where As is an

identified sub-tree and nd is the potential destination node of that sub-tree — GRAL* constructs

as many sub-trees (containing the same agents with As) as the number of the agents belonging to

As, with each such sub-tree being rooted on a different agent.

Lemma 6. Each unbalanced group is contained in one of GRAL’s sub-trees.

Proof. According to the sub-tree identification phase (described in Chapter 2, sec 4.2), GRAL

organize all the locally hosted agents into sub-trees (co-located non-partitioned generic agents).

50

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

Since an unbalanced group is consisted of non-partitioned locally hosted agents, it is obvious

that each unbalanced group should be contained by some GRAL’s sub-tree.

Theorem 2. GRAL* results always in an optimal placement.

Proof. According to Lemma 6 and Definition 2, for each unbalanced group there is always a

GRAL*’s sub-tree where a) it includes this unbalanced group, and b) the root agent of this sub

tree belongs to this unbalanced group. Combining the above with Lemma 5, we conclude that

GRAL* will identify all the unbalanced groups and take the optimal decision for them. This

means that GRAL* will always result in a totally balanced placement, which in combination

with Lemma 2 prove GRAL*’s optimality.

5 Identifying the worst-case bound of GRAL

Theorem 3. The approximation ratio between GRAL and the optimal algorithm is

------------------ for G > 2 , otherwise GRAL is optimal.
(G - 2)*2* B

Proof.

Part A: In this part we prove that GRAL is optimal when G < 2 GRAL. It is obvious that when

G = 1 AMA is optimal (it stems from Lemma 2) so GRAL is optimal too, so we need to

consider only the case where G = 2 . Since sub-optimality of GRAL is attributed to Lemmas 3

and 4 (GRAL* becomes optimal by overcoming the drawbacks brought out by these lemmas),

we only need to show that these lemmas do not hold true for the case of G = 2 . Getting started

with Lemma 3, we can observe that in case GRAL cannot identify any promising neighboring

node, then either both generic agents are individually and totally balanced, or one of them

misleads GRAL to take the decision that the promising destination node is the local one. This

means that only one generic agent is unbalanced, in which case both AMA and GRAL are able

to identify such an individually unbalanced agent, and hence Lemma 3 does not hold true.

Proceeding with Lemma 4 we predicate that it also does not hold true. As regards Lemma 4, it

doesn’t hold true (in terms of G = 2) as well; this is due to the fact that when the identified

sub-tree is rooted on an agent not belonging to an unbalanced group, then it is obvious that only

individually unbalanced agents there can be. Hence, it is self-evident that Lemma 4 does not

hold true.

51

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

Part B: Here we see the case where G > 2 . We extend Fig 3.5 into Fig 3.8 in order for both

data exchanged between agents and the number of agents to be arbitrarily large. Let /oc(QSi)

and ext(QSi) denote the local respectively remote load attributed to the data exchanged between

ai and its adjacent non-generic agents. Assume the case where only 3 generic agents there exist,

and they are hosted by some node nx. Let m = 2 in Fig 3.8, then a1 and a2 will belong to the

unbalanced group, while a3 will be totally balanced. Note that in our case QNH (V i) is equal to

0, since all generic agents are assumed to be co-located. Also in order for GRAL to not be able

to identify that unbalanced group (for the sake of proof) we need Eq. 3.16 to hold true.

Q s ,m+1 + Q , \m +1 ^ (G - 2)*2B
Eq. 3.16

Σ e X t (Q S,/) + ^ 2 , 3 * D Eq. 3 1 7
/

Σ e x t Q) + 2B * D Eq. 3 1 8

/

Σ eXt(QS, /) + ^ 2 , 3 * D
- L ---------------------------- Eq. 3.19
Σ ext (Qs/) + 2 * B * D
/

--------1-------- Eq. 3.20
(G - 2)*2B

According to those discussed in the previous paragraph, the optimal algorithm and GRAL will

result in a placement where the communication cost is equal to that expressed by Eq. 3.17 and

Eq. 3.18, respectively; with 2B*D stemming from Eq. 3.12, by following the same rationale as

that of assumption A in Theorem 1. Therefore their ratio is given by Eq. 3.19, which lessens in

case both external loads and q23 are equal to zero. However q23 could not be equal to zero since

in that case GRAL would identify the unbalanced group, resulting in that way in an optimal

placement. Hence, q2 ,3 is set to 1 (the minimum feasible value) with the worst-case bound

becoming 1/2B. Following the same rationale as above we conclude that for G = 4 (m = 3 in

Fig 3.8) the worst-case bound becomes 1/4B, while for G = 5 we have 1/6B. Finally, by

reduction to an arbitrarily large G, we conclude that the worst-case ratio is given by Eq. 3.20.

Following the same reasoning as in Theorem 1 we conclude that a) the network cost incurred by

the resulting placement of GRAL is independent of how the agents belonging into the

unbalanced group are connected with each other; b) the more the agents belonging to the

unbalanced group the more the network cost incurred by the resulting placement of GRAL; c)

52

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

the totally balanced agent (am+1) should be adjacent with only one agent of the unbalanced

group. Else, the collection of a1..am would be partitioned due to the tree-structured application;

in other words, the number of the agents belonging to the unbalanced group could not be greater

than G-1, lessening in that way the worst-case bound (not desired).

unbalanced
group

Fig 3.8 Unbalanced group of G agents

Theorem 4. The approximation ratio of GRAL is equal to
(G

1
2G - N - 3

N
2) * 2 B

under the following restrictions: i) the number of incident edges to an agent is at most N and at

least 3; and ii) G > 2 .
Proof. In order for GRAL to result in a non optimal placement (the same rationale as in

previous proof), it is required Eq. 3.21 to hold true. Also, due to the fact that an agent cannot

have more than N adjacent agents, Eq. 3.22 should hold true as well. Equating Eq. 3.21 with Eq.

3.22 we get Eq. 3.23. Specifically, the positive part of the latter equation specifies the external

load of the agents participating into the unbalanced group, while the negative part concerns the

local load of the totally balanced agent. However, Eq. 3.23 does not hold true for any possible

combination (G, N), thus enabling GRAL to identify the unbalanced group depicted in Fig 3.8

(which spoils the proof). So it is needful for Eq. 3.23 to be modified to hold true for any

combination (G, N).

This can be achieved by having the negative part of Eq. 3.23 to always surpass the positive one.

Note that the positive part of that equation decreases when the number of agents participating

into the unbalanced group decreases; of course this means that the number of agents belonging

to the totally balanced group increases proportionally. Therefore, assuming G — 1 — k agents

participate into the unbalanced group instead ofG — 1, Eq. 3.21 is transformed into Eq. 3.24.

53

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

Note that the number of totally balanced agents (called totally balanced group) is k +1, instead

of 1, consequently Eq. 3.22 is transformed into Eq. 3.25. Fig 3.9 illustrates such a scenario, with

the unbalanced agents being m = G — 1 — k , while the totally balanced ones being

n — (m +1) = k + 1. Note that the second part of Eq. 3.25 is attributed to the fact that when the

totally balanced group is consisted of k +1 agents, then all these agents are able to have a total
k

of at most Σ (N — 2) + (N — 1) adjacent non-generic agents. Putting these all together, we infer
i=1

that for each agent being transferred from the unbalanced group to the totally balanced one, the

positive part of Eq. 3.21 decreases by 2B since the internal edges of the unbalanced group

decrease by 1; while the negative part decreases by (N — 2)* B . As a result, Eq. 3.21 becomes

Eq. 3.26 (by equating Eq. 3.24 with Eq. 3.25), with k denoting the agents transferred from the

unbalanced group to the totally balanced one.

Qs ,m+1 + Qn\m+1 > (G — 2)*2B

& ,m+1 + Qn >+1 < (N — 1)* B

(N —1)* B > (G — 2) * 2 B ^ (G — 2) * 2 B — (N — 1)* B < 0

k+1

Σ (Q s m + i + Qn ',m + i) > (G — 2 — k)*2B
i=1

k +1 k

Σ (Q s ,m+i + Q n ·,m+i) < Σ ((N - 2) * B) — (N — 1) * B
i=1 i 1

(G — 2 — k)*2B — (N — 1)* B — Σ (N — 2)* B < 0

k =
" (G — 2)*2B — N — 1)* B " " 2G — N — 3"

2B + (N — 2)* B N

1

(G —2G — N — 3
N

— 2)*2B

i=0

Eq. 3.21

Eq. 3.22

Eq. 3.23

Eq. 3.24

Eq. 3.25

Eq. 3.26

Eq. 3.27

Eq. 3.28

What it remains is to decide the value of k in order for Eq. 3.26 to hold always true, keeping at

the same time this equation as close to zero as possible in order for GRAL to be as worse as

possible. This value is given by Eq. 3.27 which says that assuming an unbalanced group o f

G — 1 agents and a totally balanced group o f only 1, how many agents we need to transfer from

the unbalanced group to the totally balanced one in order for that equation to become equal to

54

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 3

or less than 0. Recall that for each such transfer, the positive part of Eq. 3.26 decreases by 2B,

while the negative one decreases by (N — 2)* B , giving a total decrease of 2B + (N — 2)* B .

Putting all these together, we infer that the unbalanced group is able to have at most G — k — 2

internal edges. Following the same rationale as in Theorem 3 — that is, for each internal edge

(G — k — 2 in total) inside unbalanced group, GRAL incurs network cost equal to 2B — we

conclude that the approximation ratio is given by Eq. 3.28.

unbalanced group
of co-located node

group of co-located
node-neutral agents

Fig 3.9 Unbalanced and totally balanced groups

6 Conclusions

In this chapter we discussed the bounds for the algorithms proposed in Chapter 1and Chapter 2,

and showed that AMA can not be bounded. We also proposed two simple changes for the

GRAL algorithm, making it in that way to result always in the optimal placement.

Part of this work is going to be submitted in the following journal:

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Identifying the worst-case bounds

for AMA and GRAL, and devising an optimal algorithm,” to be submitted in IEEE

Transactions on Parallel and Distributed Systems.

55

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tziritas:Nikos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lalis:Spyros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lampsas:Petros.html

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

Chapter 4

Introducing Agent Evictions to Improve Application
Placement in Wireless Embedded Systems

1 Introduction

In the previous chapter we proved that GRAL can be transformed into an optimal algorithm

(GRAL*), provided that there are no storage-constrained nodes. However, the agent migration

problem continues being intractable for the case where the nodes of the system have storage

capacity limitations. Specifically, we prove that the agent migration problem is NP-complete

through its reduction to the well-known knapsack problem [56], considering no capacious (in

terms of memory) nodes. The algorithms proposed in this chapter are designed in a more

sophisticated way against the solutions proposed in previous ones.

This work introduces the concept of “evictions”. Specifically, the term “eviction” represents a

migration of an agent without aiming at reducing network cost, but at increasing the free storage

capacity of the current hosting node. Of course such a migration it does not come for free

(network cost increases), since it is distanced from its center of gravity. It should be stressed

that an agent eviction takes place iff there is a guarantee that the induced network cost will be

amortized by some other migration. The former migration is also called space-effective, while

the latter one is named cost-effective.

The algorithms proposed take the decision for migrating an agent based on a fully distributed

manner. Specifically, a cost-effective migration is considered in the same way as a migration in

Chapter 1, while the decision for a space-effective one is taken in a different way described in

57

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

the following sections. Note that these algorithms are enhanced with a mechanism to stop/start,

in a dynamic way, the dispatch of control messages exchanged for discovering potential

destination nodes with enough free capacity to host a migrating agent. This mechanism is

referred to as a radio silence mechanism, and can be also applied to ILA and ILB protocols to

decrease considerably their control messages.

The rest of this work is structured as follows: section 2 describes the problem formulation,

application and system model; section 3 presents the proposed distributed algorithms; section 4

section provides the experimental evaluation of the proposed algorithms through simulation.

2 Application, System Model and Problem Formulation

Since the application model of this chapter is the same with the previous ones we referred the

reader to Chapter 1.

2.1 System model

The system consists of nodes with special sensing/actuating capabilities and limited storage

capacity. Let n,and c(ni) denote the ith node and its hosting capacity, respectively. Note that the

capacity of a node imposes a generic constraint to the number of both node-neutral and node

specific agents it can host.

Nodes communicate with each other via short-range radio. We assume a tree-based routing

structure, whereby any two nodes are connected via a single, possibly multi-hop, path. Let rij

denote the number of hops between ni and n;·. We assume that the links of the routing structure

are bidirectional, thus ri]=rji. Also, rii=0.

The system can host several applications, each one having its own node-neutral and node

specific agents. Let ak, s(ak), h(ak) be the kth agent in the system, its size and the node hosting it,

where 1<k<NA and NA+1<k< NA+SA enumerates all node-neutral and all node-specific agents,

respectively. An agent ak may exchange messages with its relatives (parent or children) in the

application tree, let RSk. Also, let T be a (NA+SA)x(NA+SA) matrix that encodes the

communication between agents. Specifically, Tkm denotes the unidirectional traffic from ak to

am, i.e., the number of data units ak sends to am over a specific period (note that, in the general

case, Tkm̂ Tmk).

58

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

2.2 Problem formulation

The objective is to reduce the amount of wireless traffic between nodes due to the application-

level communication, i.e., the messages exchanged between agents. Without loss of generality,

we assume the agents of an application are placed on the nodes of the system in a non-optimal

way. Then, our goal is to perform a series of agent migrations in order to achieve a better agent

placement that reduces (ideally, minimizes) the wireless network traffic.

In the sequel we provide a proof sketch that the agent placement problem is NP-hard by

reduction to the knapsack problem. Assume a knapsack instance with k objects, each denoted

with oi. Let si, vi be the size and value of oi and S the size of the knapsack. The knapsack

problem consists of finding the collection of objects of maximum value V that fits in the

knapsack. We can transform any such statement to an equivalent statement of the agent

placement problem studied in this work, as follows. The application tree consists of the root and

two more levels. In the first level, k generic agents (let a) exist, corresponding one to one to the

knapsack objects. In the second level, k non-generic agents (let at) exist, such as each generic

agent ai communicates with exactly one non-generic agent av and vice versa.

The communication cost between the tree root and the generic agents is set to be e, where

e<min(vi), and between the generic agent ai and the non generic ar is set to be vi-e. Two nodes

exist in the network n1 and n2. All the generic agents initially rest at n1, while n2 holds all non

generic agents together with the application root. The size of a generic agent ai is set to the

corresponding knapsack’s object size (si), the size of the root agent is set to: 1 + ̂ s i , while the
V i

size of the non-generic agents can be any positive number. Finally, the capacity of n1 is set to

^ s j , i.e., just enough to hold the generic agents allocated there, while the capacity of n2 is set
Vi

so that S free capacity remains. In the constructed agent placement problem instance, the

network load is due to the agents of the first level (that rest in ni) communicating with the root

agent and the agents of the second level (that rest at n2). The total load of this assignment is

^ (vi - e) + ̂ e = ^ v i . In order to minimize this load the only possible migrations involve the
V i V i V i

agents of the first level moving from ni to n2 . This is due to the fact that the agents of the second

level are non-generic (thus cannot move), while the root agent has size greater than the capacity

of n1. It is easy to see that each migration of ai from n1 to n2, decreases the network cost by vi

and can only be done provided that the free space S at n2 is not covered. Thus, a solution to the

59

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

aforementioned agent placement problem instance provides a solution the initial knapsack

instance.

2.3 Migration benefit/penalty and eligibility

We focus on a distributed solution whereby each node decides locally which agents to migrate

on which nodes, based on the agents’ incoming and outgoing load with other agents

Using the previous notations, the load that ak incurs into the system if hosted by ni can be

expressed as follows:

= Σ + T mk)riKam) Eq. 4 . 1
am eRSk

Let M k refer to the migration of ak from ni to n;·. The benefit/penalty of M k, in terms of the load

difference (positive or negative) of the placement obtained after m k takes place compared to

the current placement, is given by:

Bk = lk - lk Eq. 4.2

For M k to be eligible, ak should be node-neutral and the destination node n should have

enough free capacity:

ak ,1 < k < NA Eq. 4.3

NA+SA

c (n j) ^ s (a k) + Σ s (a m) | h (a m) = Hj Eq. 4 . 4

m

Each migration m k leads to a new placement, which may incur a lower or perhaps a higher

agent-level communication over the network, depending on whether Bk is positive or negative.

In the former case we refer to the migration as beneficial else non-beneficial. But note that not

all beneficial migrations are eligible, due to the capacity constraint (Eq. 4.4).

2.4 Evictions

To alleviate this problem we consider performing possibly non-beneficial migrations that free

node capacity. We refer to such migrations as evictions. The idea is to exploit the capacity being

released this way to perform beneficial migrations. Obviously, per definition, evictions cannot

(by themselves) reduce the amount of application-level traffic over the network. In order to

60

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

achieve this, evictions must be followed by at least one migration with a benefit that outweighs

their penalty.

In the sequel we give an example to illustrate this scenario. Assume the application depicted in

Fig 4.1, which comprises four node-specific (a3, a4, a5, a6) and two node-neutral (ai, a2) agents.

The link weights represent the message traffic between agents (as the number of data units

exchanged per time unit, e.g., bytes per second). Also assume the application is deployed in a

network of seven nodes as shown in Fig 4.2, where each node has enough capacity to host only

one agent.

Fig 4.1 Application structure and traffic Fig 4.2 Initial application placement

Let us first consider node-neutral agent a1. There is no better placement for it, because every

migration of a1 away from n1 is non-beneficial as per Eq. 4.2. Let us now consider agent a2. In

this case, a migration from n4 to n1 would yield a benefit of 9 as per Eq. 4.2. But note that m 2

is not feasible due to the capacity constraint (Eq. 4.4) for n1. However, this can be made feasible

by evicting a1 to n6 at a penalty of 1. If both migrations are performed (Mj6 followed by m \) a

better placement will be obtained for the application, with a benefit of 8 vs. the current

placement.

3 Heuristics

In this section we propose heuristics that consider evictions, which in turn enable a beneficial

migration so that the cumulative benefit/penalty is positive.

61

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

3.1 Single path algorithm (SP)

In this algorithm each node iterates through the list of locally hosted node-neutral agents to find

the one (if any) that is most beneficial to migrate to a neighboring node. Then, it sends to the

respective destination a hosting request with the identifier of the agent to be migrated, its size

and the benefit of the migration as per Eq. 4.2.

When a node receives a hosting request it checks if it has enough free capacity to host the agent

in question, in which case it sends a positive reply. Else, it considers one or more evictions (in

increasing order of their penalty) until enough free capacity is secured (or the cumulative

penalty outweighs the benefit of the request). Then, or each such eviction, a hosting request is

issued carrying the remaining benefit (used to decide for more evictions downstream). If all

replies are positive and the total penalty does not exceed the benefit, a positive reply is sent

back to the node that issued the hosting request.

When a node responds positively to a hosting request, it reserves the capacity required to host

the agent in question, including the capacity (still) being used for the agents that are to be

evicted. This ensures that it will be possible to perform the respective migration, if the node that

issued the hosting request decides to proceed. Such reservations are cancelled when a node

receives a negative reply. Also, in the case of eviction groups, if a single reply is negative then a

cancellation message is sent the nodes that replied positively.

Finally, to avoid races, an agent is not considered for several migration or eviction processes

simultaneously. Also, we limit the degree of “recursive” forwarding of hosting requests via a

hop limit specified by the nodes that initiates the migration process.

Table 4.1 Pseudocode description of SP

protocol execution on source node n s_________________
for each local node-neutral agent a k {

for each neighbor node n d {
calculate potential benefit B ksd

update most beneficial migration m
}

}
if (m . b e n e f i t > 0) {

send (m . d s t , [H o s tR e q , m .a i d , m .a s i z e , m . b e n e f i t]);
recv(m . d s t , [H o s t R e p l y , r e s , p e n a l t y]);
if (r e s = O K) { start migration m }

}

62

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

destination n d receives from n s [H o s t R e q , a i d , a s i z e , b e n e f i t]
if (f r e e S p a c e > asize) {

reserveSpace(asize);
send (ns, [H o s t R e p l y , O K , 0]);

}
else {

e v i c t := {}; e s p a c e := 0; p e n a l t y := 0;
do {

for each local node-neutral agent a k not in e v i c t {
for each neighbor node n d · Φn s {

calculate potential benefit B ^
update most beneficial migration m

}
}

p e n a l t y := p e n a l t y - m .b e n e f i t ; // >0 for evictions
if (p e n a l t y >= b e n e f i t) { break; }
e v i c t := e v i c t + {m};
e s p a c e := e s p a c e + m .a s i z e ;

} while (e s p a c e + f r e e S p a c e <= a s i z e) ;

if (p e n a l t y >= b e n e f i t) { send (ns, [H o s t R e p l y , N O K , 0]); }
else {

r e s e r \ e S p a c e (f r e e S p a c e + e s p a c e) ;

r e m b e n e f i t := b e n e f i t - p e n a l t y ;

for each m in e v i c t {
send (m . d s t , [H o s tR e q , m .a i d , m . a s i z e , r e m b e n e f i t]) ;

}
r e p l i e s := {};
for each eviction m in e v i c t {

recv(m.dst, [H o s t R e p l y , r e s , p e n a l t y 2]) ;

p e n a l t y := p e n a l t y + p e n a l t y 2 ;

r e p l i e s := r e p l i e s + { r e s };
}
if (all r e p l i e s are O K) and (b e n e f i t > p e n a l t y) {

send(n s , [H o s t R e p l y , O K , p e n a l t y]);
for each m in e v i c t { start migration m }

}
else {

send(n s , [H o s t R e p l y , N O K , 0]);
for each m in e v i c t { cancel reserved space }

}
}

}

3.2 Network flooding algorithm (FL)

In SP a node chooses to evict agents in increasing order of the respective penalty. However, the

latter is calculated locally, without knowing what the actual penalty of such migrations will be

(an eviction may lead to further evictions downstream). To address this problem, we propose an

algorithm where the agent to be evicted is chosen based on the smallest “total” penalty of this

action.

63

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

The main difference compared to SP is that the algorithm determines the cost of an agent

eviction by investigating all possible destinations; not just the most promising one according to

local knowledge. More specifically, a so-called probe request is sent to each destination that is a

candidate for hosting the agent to be evicted. When all replies arrive, the one with the greatest

benefit (smallest penalty) is selected and the corresponding node is appointed as the destination

for the migration/eviction in question.

Probe replies travel back the same way hosting replies do, with the difference that a reply also

includes, besides the cumulative penalty, the respective eviction list. Eventually, the node that

started the process (issued the probe request for the beneficial migration) receives such a reply.

If this is positive, a hosting request is sent downstream, else the migration is (silently) cancelled.

Unlike in SP, a hosting request specifies the evictions to be performed, therefore a node knows

which agent(s) it has to evict to which nodes.

For example, consider an application that is deployed in a network of nodes as shown in Fig

4.3. Assume that each node is able to host one agent, and that all agents depicted in Fig 4.3 are

node-neutral and of the same size. Also, without going into the details of the agent-level

message traffic, let the benefit/penalty of agent migrations is as listed in Table 4.2.

Table 4.2 Benefit/penalty per migration

K M 23 M 24 M35 M 46 M67
20 -7 -2 -1 -5 -5

PrRp(OK,1,{M335}) PrRp(OK,0,{})
(5) - (4 X

Fig 4.3 Example with probe requests/replies

Given that the only beneficial migration is that of aj from n to n2, node n will send a probe

request to n2 with a benefit value of 20. Since n2 does not have enough free capacity to host at,

it will consider evicting a2, to n3 with a penalty of 7, or to n4 with a penalty of 2. Since both

64

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

penalties are smaller than the benefit of the probe request, in turn, n2 sends a probe to both

destinations, with a remaining benefit of 13 and 18, respectively. In the same spirit, when n3

receives the request from n2, it considers evicting a3 to n5 with a penalty of 1, and sends a

corresponding probe request with a remaining benefit of 12. Given that n5 has sufficient free

capacity to host a3, thus sends back a positive reply with a penalty of 0 and an empty eviction

list. When n3 receives this reply, it sends to n2 a positive reply with the cumulative penalty of 1

and an updated eviction list that includes M35. Similarly, n2 will receive from n4 a positive reply

with a cumulative penalty of 10 and the respective eviction list { M446, M657 }. n2 will chose the

reply with the smallest penalty, i.e., that of n3, and will reply positively to n with a cumulative

penalty of 8 and the eviction list { M223 , M335 }. Finally, upon receipt of a positive reply, n will

issue a respective hosting request that will be propagated down the chosen path (not shown in

Fig 4.3). Note that in this example SP would choose to evict a2 towards n4 leading to an inferior

placement.

Unlike in SP, an agent may be considered for eviction in the context of several different

requests at the same time. This is to reduce excessive “locking conflicts” that would occur due

to the flooding nature of the algorithm. More specifically, a host request can be issued for an

agent that is already involved in a probe request for which no reply has been received yet. In

other words, hosting requests have precedence over probe requests. However, to avoid having

numerous races, which in turn may result in many failed hosting requests, a hosting request

cannot concern an agent involved in another pending hosting requests and a probe request

cannot concern an agent involved in a pending probe or hosting request. We also note that probe

replies not do guarantee any capacity reservation. As a consequence a node may receive a

hosting request for an agent that is no longer hosted locally (in which case it sends a negative

reply).

3.3 Convergence

Migrations and evictions are performed to reduce the application-level message traffic over the

network. The algorithms decide for one or more evictions in the context of a beneficial

migration, only if the series of migrations and evictions will reduce the total network load by at

least 1. Hence, assuming a stable communication pattern between the agents of the application

totaling x data units per time unit, at most x beneficial migrations can take place. While each

beneficial migration may trigger a number of evictions, this number is also bounded by the

65

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

network diameter (there are no cycles). It follows that the total number of migrations is

bounded, therefore, eventually, there will be no more migrations (or evictions) to perform.

It is important to note that a beneficial migration as per Eq. 4.2 is guaranteed to lead to a better

placement only if agents that communicate with each other directly (in the application tree) are

not allowed to change hosts concurrently. Else, it would be possible to have a never ending loop

of “swaps”. The algorithms can be easily extended to satisfy this constraint, e.g., by notifying

the relatives of an agent before commencing with the actual migration process.

3.4 Radio silence

Both algorithms are extended with a mechanism that stops the respective protocols from

producing messages (ad infinitum) once convergence is reached. This works as follows: (a)

each time a negative reply is sent to a node, the node is added to an update list; (b) when a node

receives a negative reply, it adds the sender to a block list (blocked nodes are not considered as

candidates for probe and hosting requests); (c) when a node frees capacity (due to the migration

of a local agent to a remote node), it sends an update message to each node in the update list,

and clears the list; and (d) when a node receives an update message, it removes the sender from

its block list, and forwards the update to its neighbors.

Due to convergence, eventually, no more migrations will take place. The source(s) of the last

beneficial migration(s) will issue update messages due to the hosting capacity that is freed

locally, triggering the generation of host/probe requests at other nodes. But given that

convergence has been reached, no more migrations can be decided. Therefore, each node from

which a hosting/probe request originated will receive a negative reply, and will henceforth

suppress the generation of new requests due to the blocking policy. When this final

communication phase is over, there are no nodes that can generate any new update messages or

hosting/probe requests, hence radio silence is achieved.

66

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

4 Evaluation

The settings for the experimental setup took place in the same way as in Chapter 1.

4.1 Reference algorithms

As a reference for the results achieved by SP and FL, we run the ILA algorithm, described in

detail in Chapter 1. ILA chooses to perform only beneficial migrations, in the same way a

beneficial migration is decided in the SP and FL algorithms. Information about the free capacity

of neighboring nodes is acquired in a lazy fashion, through the replies received in response to

migration requests (initially, all neighbors are assumed to have their full nominal capacity free).

ILA does not have a mechanism for notifying nodes when capacity is freed. Instead, with a

certain probability (0.2 in our experiments) each neighboring node is optimistically assumed to

have enough free capacity. Then, the best candidate, as per Eq. 4.2, is contacted to check

whether it can actually host the agent in question. As a consequence ILA never achieves radio

silence; even though it is guaranteed to converge, i.e., stop performing migrations. In our

simulations, we stop running ILA when no migration is accomplished by any node in four

consequent iterations.

We also employ an exhaustive algorithm that computes the best placement, by starting from an

unoccupied network and trying out all combinations of agents on nodes, subject to their hosting

capacity. However, the placement obtained this way may not be actually feasible, because it

may be impossible to reach from the initial placement by performing a series of eligible agent

migrations and evictions, due to the capacity constraint (Eq. 4.4). This means that the

corresponding network cost represents a lower bound on what could be achieved even by an

optimal algorithm.

4.2 Experiments

In a first set of experiments we compare the placements obtained for the 20-node networks and

one app-10 application, as the initial hosting capacity of the nodes increases to 1-4 times the

average agent size in the system. We report the average results for the five different network

topologies and five different initial placements for each topology (25 runs). No large variances

were recorded.

67

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

surplus capacity [x avg agent size]

Fig 4.4 Load reduction vs. additional capacity (20
nodes, app-1 0).

surplus capacity [x avg agent size]

Fig 4.5 Load reduction vs. additional capacity (50
nodes, 15 applications).

Fig 4.4 illustrates the load reduction vs. the initial placement achieved by the algorithms. As it

can be inferred by the trends, both SP and FL achieve a significant reduction of the network

load. The improvement over ILA is roughly 30-20% when nodes have a rather modest amount

of free capacity. Also, when the extra free capacity is (just) 2 times the average agent size, SP

and FL perform close to the exhaustive algorithm, which is merely 10% better; a very positive

sign as to their effectiveness. When nodes have considerable free capacity, SP, FL and ILA

achieve practically equally good placements, a trend observed throughout all our experiments.

This is natural since the probability of a node becoming the bottleneck for beneficial migrations

drops as free capacity increases, hence good placements can be reached without (any) agent

evictions.

surplus capacity [x avg agent size]

Fig 4.6 Migrations vs. additional capacity (50 nodes,
15 applications).

Fig 4.7 Control messages vs. additional capacity
(50 nodes, 15 applications).

In the next experiments, we run the algorithms in the 50-node networks where we deploy a mix

of fifteen applications (five app-50, five app-25 and five app-10 applications). This time we

increase the free space of each node by 2, 5, 10, 20, 40 and 80 times the average agent size. We

do not run the exhaustive algorithm due to its prohibitive runtime complexity.

68

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

As it can be seen in Fig 4.5, the trend is similar to the one observed in the small-scale

experiment. However, the improvement of SP and FL vs. ILA becomes impressive, from 320%

to 220%, when the hosting capacity of nodes is limited. What is equally important to note is that

SP performs better placements than FL. In fact, when capacity is tight SP produces placements

that are almost 1.5x better compared to FL, which in turn produces placements that are close to

2.5 times as efficient compared to the ones produce by ILA.

The inferiority of FL vs. SP is attributed to the contention introduced by its flooding

mechanism. In a large-scale system, it is very likely that several migrations and evictions will be

attempted concurrently, which in turn leads to a large number of conflicts, where beneficial

migrations are hindered by less beneficial ones (including evictions). Also, given that each such

conflict leads to the generation of negative replies, the radio silence mechanism may be

activated prematurely, missing opportunities for migrations/evictions.

The ability of SP to perform a larger number of migrations (and evictions) than FL is clearly

shown in Fig 4.6, which plots the number of migrations/evictions performed per agent in the

system. The difference between SP and FL is more pronounced when capacity is tight, which is

also the case when SP performs notably better than FL. As the free capacity of nodes increases,

the number of beneficial migrations that can be performed without having to do any evictions

grows, thus all algorithms perform a comparable number of migrations (and SP starts

performing fewer migrations in total as the number of evictions drop). ILA performs the

smallest number of migrations, by far when free capacity is scare, because it does not perform

any evictions.

We also measure the number of so-called control messages generated by FL, SP and ILA to

decide about migrations (and evictions). Fig 4.7 shows the ratio of control messages to the

number of migrations performed. Clearly, SP is more efficient than both FL and ILA, especially

when nodes have little free capacity. The greater per-migration protocol overhead of FL is

partly due to the fact that it performs fewer migrations than SP. Moreover, for each beneficial

migration, FL floods the network with probe requests and replies in order to find the best

possible series of evictions, whereas SP picks a single path.

The high per-migration protocol overhead of ILA is also due to the fewer migrations

accomplished compared to SP and FL. This is clearly visible when free capacity is tight.

However, ILA continues to exhibit a non-negligible overhead even when nodes have abundant

free capacity and the number of migrations performed is close to that of SP and FL. The reason

is that even if a node is found occupied, ILA will still consider it (with 0.2 probability) as a

69

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

possible destination for a beneficial agent migration. As a result of contacting nodes in this

optimistic way, the number of unsuccessful migration attempts remains high.

65

60

55

50
<J

45<U
■5 40

Π3o
35

30

—Δ— FL —Θ—SP —B— ILA

1 2 4 8
hop limit

Fig 4.8 Load reduction vs. hop limit (50 nodes, cap
+ 1 0 , app-mix).

Fig 4.9 Migrations vs. hop limit (50 nodes, cap
+ 1 0 , app-mix).

In a final set of experiments, we measure the impact of limiting the hops of hosting and probe

requests in SP and FL. We use again the 50-node networks and application mix of the previous

experiments, while fixing the extra free node capacity to 10 times the average agent size in the

system. The load reduction achieved, the number of migrations per agent and the number of

control messages per migration are depicted in Fig 4.8, Fig 4.9 and Fig 4.10, respectively, with

the hop limit varying from 1 to 8. The behavior of ILA is not affected by this parameter (the

algorithm only issues 1-hop requests for beneficial migrations).

Both algorithms exhibit a similar performance for small hop limits. As the hop limit increases,

SP clearly outperforms FL, due to the growing negative effects of the flooding approach. It is

interesting to observe that the load reduction achieved by SP flattens at 4 hops being practically

identical to the reduction achieved at 8 hops, despite the larger number of migrations (and

evictions) performed in the latter case. This is attributed to the fact that, from a certain point

onwards, additional evictions do not lead to a significantly better application placement. More

specifically, the average diameter of the 50-node networks used in our simulations is 10.

Therefore a hop limit of 4 is already sufficient for a node that is not located at the periphery of

the network to reach almost all other nodes (requests issued by that node can cover an area with

a diameter of 8). Worthwhile noting is also the fact that the protocol overhead of SP starts

dropping at 4 hops and this trend continues at 8 hops. The reason is that there are fewer

opportunities to perform migrations (and evictions) when the hop limit is small, while the

protocol overhead is amortized as the number of migrations grow at larger hop limits. On the

other hand, the per-migration overhead of FL increases steadily due to the scalability problems

of the flooding approach.

70

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 4

hop limit

Fig 4.10 Control msgs vs. hop limit (50 nodes, cap +10, app-mix).

4.3 Result summary

Both SP and FL produce significantly better placements than ILA when nodes have limited

hosting capacity. Also, SP consistently outperforms FL, not only in the placement achieved but

also in the per-migration protocol overhead.

5 Conclusions

Here we described distributed algorithms for migrating agents between the nodes of a wireless

embedded system in order to reduce application-level network traffic. Our approach introduces

migrations that are non-beneficial on their own but free enough space on nodes in order to

enable beneficial migrations, which can eventually lead to an overall better placement. We

presented and discussed the results of extensive simulations, showing that the proposed

approach outperforms solutions based solely on beneficial migrations, resulting in placements

that reduce network traffic significantly.

Part of this work is goint to be submitted in the following conference:

* N. Tziritas, P. Lampsas, S. Lalis, T. Loukopoulos, “Introducing Agent Evictions To

Improve Application Placement in Wireless Embedded Systems” ICPADS 2011.

71

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tziritas:Nikos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lampsas:Petros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lalis:Spyros.html

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

Chapter 5

Online Algorithms for the Agent Migration Problem in
Wireless Embedded Systems

1 Introduction

Previous works turn their attention to migrate agents without i) laying emphasis on the changes
of traffic patterns, and ii) taking into account the cost of the migrations performed. However,
assuming that traffic patterns are not static (they are subject to changes with the pass of time),
performing migrations without taking their cost into consideration may prove crucial to the
energy spent over the network. So we focus on the intractable problem of taking online
decisions to migrate agents in order to reduce the overall network cost, considering the energy
spent through the process of migrating an agent.
The difficulty of this problem lies in the fact that a decision should be made in advance of any
knowledge about the future load/traffic changes. The implications of making bad decisions are
that: i) the agent may be migrated far way from its center of gravity, paying in that way the cost
of the wireless communication with its distanced relative agents; ii) the network will be
burdened with the energy spent for mistakenly (due to a bad estimation) transfering an agent
from some node to another one.
In this chapter we propose two online algorithms to decide which is the point in time that an
agent should migrate to reduce its communication cost over the network, taking also into
account its migration cost. Commonly, the algorithms proposed in the context of online decision
problems are accompanied with their competitive ratios. The competitiveness is used to

73

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

compare the output of online algorithms when coming up against an input chosen by an

adversary, to the output generated by the offline optimal algorithm. When the competitive ratio

approximates 1, it means that the behavior of the online algorithm considered comes closer to

optimal. Therefore, following the current, we evaluate the performance of the proposed

algorithms by providing for each of them its competitive ratio along with a comprehensive

proof. Specifically, the first algorithm achieves 1/3 competitive ratio assuming infinite capacity,

while the second one 1/4 (no assumptions about infinite capacity).

This work is organized as follows. In Section 2 we describe the application and system model.

Section 3 provides the proposed algorithms and discusses their competitiveness in a detailed

way. In Section 4 the experimental setup is described along with a thorough evaluation of the

proposed algorithms. This section also discusses the way we implemented a static offline

optimal algorithm serving as a yardstick for the quality of our algorithms. Last, Section 5

concludes our work.

2 Application and System Model

The application and system model is much the same as the one described in Chapter 1. Below,

we repeat the most relevant elements of the model, and introduce some extensions that are used

to describe the algorithms and give the worst-case bound proofs.

Let lSk be the number of bytes exchanged between ak hosted by nl and other agents hosted by nj

in the time-interval [s , t]. Let Ps = Σ lij khj be the network communication cost due to the
Vj Φί

data exchanged between ak hosted by ni and the agents that are not co-located with ak, under the

time-interval [s, t] . Let M ijk specify the migration of ak from ni towards nj. Let B j be the

benefit/cost of Mijk, subject to the collected message traffic statistics in the time interval [s, t] .

The cost of M ijk at time unit t is captured by M C ‘J k . We assume that the time when a migration

is performed is independent of the migration cost, therefore M C]Jk = M C - j k , V s , t .

Let d and D specify the hop-awareness of an algorithm and the diameter of the network,

respectively. If the cost of migrating an agent towards an 1-hop neighbor is equal to X, then the

cost of migrating the agent in question towards an d-hop neighbor is equal to d*X, which is

74

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

formally stated by MC= = =ijM C t== 1 1 = 1 · For simplicity, we assume that a migration

occurs “instantly” and that the data traffic within the respective time interval [t_, t+] is zero.

MT denotes the migration threshold, i.e., the minimum required benefit for taking the decision

to migrate an agent towards its center of gravity.

3 Algorithms

In this section we present three algorithms addressing the problem of taking into account the

network cost incurred when migrating an agent. We prove also the competitiveness of each

algorithm against the optimal algorithm.

3.1 Online algorithm based on discrete-time events (ADE)

The first algorithm is designed based on the (unrealistic) assumption that we have infinite

memory. Based on this assumption, the algorithm, called ADE, can calculate the benefit/cost of

migrating an agent based on any (sample) time interval ranging from the most recent point in

time to any point in time in the past.

Let P1 be a property which forces this algorithm to migrate agents iff there is a time interval

[p , z z] such that B p > 2M Cp | i Φ j (this is referred to as “migration threshold”). The

drawback of this algorithm is the increased memory complexity, since it needs to keep

information about the exchanged data (volume of data, source/destination node that

sent/received the data in question) in a discrete-time fashion; in order to be able to identify any

[p , z_] where P1 is satisfied. Note that z_ should always map to the most recent point in time,

whilep can be any point in time past (that’s why this algorithm needs infinite memory).

Theorem 1. ADE is 1/3-competitive.

Proof:

Consider that only one agent does exist into our system (ak), which is hosted on nt. Initially we

let ADE perform a migration iff there is any [p , z~] such that BpPZ > 0 (P1’). Obviously, when

both ADE and the optimal algorithm perform no migrations, the competitive ratio is equal to 1.

Therefore we focus on the case where the loads are such that ADE chooses to perform

75

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

migrations. Assume there is a time interval [x , y] such that B X y > 0 , which means that ADE

will perform M j k (y ~ is the most recent point in tim e). In this case, the optimal algorithm may

decide to perform or not to perform M ijk.

Assumption 1

Let’s start with the case where ADE decides that M j k should not be performed. In this case, the

competitive ratio between the optimal algorithm and ADE becomes:

p s x i p x y
p ik + p ik + P k

p s x i p x y
P ik + P ik + p j k + + M C j k

Eq. 5.1

We now consider when this ratio becomes as small as possible (the worst case). We observe that

the smaller the values o f P “ , P ζ y , p y c the smaller the ratio. Note that P l y > h tj otherwise

M j k would not be performed, which contradicts our assumption that migrations are performed

when P1’ holds true. Also, we notice that when P yk c increases the ratio decreases. In

combination with the fact that the value o f enumerator should be kept as small as possible, we

conclude that only l yik should be greater than zero; else p y c could not be equal to zero hence

the enumerator (and the ratio) would increase. O f course this means that there is a time interval

[y +, c] such that B y kc > 0 , which means that ADE will perform an additional migration, in the

reverse direction, namely j ^ ik, as dictated by our assumption that ADE performs a migration

when P1’ holds true. Therefore the ratio is expressed by E q . 5 . 2 , which equation implies that the

ratio is independent o f the hops between n l and n } .

hj *1 + h i *1 + hjiM Cgm,+hjMCl, 2 + 2 M C g mk
\h

1 Eq. 5.2

If we assume that ADE additionally performs X such back-and-forth migrations, as the

previously discussed case, then the ratio becomes:

X

2 X + 2 X * M C g mk

1
2 + 2 M C gmk

hgm
Eq. 5.3

In other words, the worse-case ratio is independent of the number o f back-and-forth migrations.

76

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

Assumption 2

Now let’s consider the case where optimal algorithm decides that Mljk should be performed. In

this case, the ratio becomes:

p s x . p x c
P ik ^ P jk + M C X

p f + P k y ~ + j + M c y

Eq. 5.4

It is obvious that the worst case scenario is that P kx , P J k c are as small as possible, while

P X y , P J k c as large as possible. However we note that the optimal algorithm will

“immediately” decide for this migration, before ADE collects the “necessary” load information.

It follows that [y +, c] ^ [x +, c] ^ P J k c < P Jk c, and thus P J k c should be as small as possible

too.

Here we make an extra assumption: Namely, that the maximum application-level message size

is smaller than the cost to perform any migration M jik.

Based on this assumption, p X y cannot be larger than the maximum application-level message,

because ADE takes the decision to perform MJik as soon as P1’ holds true, and this condition is

checked each time a message is sent/received. Therefore, the ratio becomes:

M C U _ P h = 1 Eq. 5.5

2 M C y „ k 21
Note that this is smaller than E q . 5 . 2 . Also note that in this case, naturally, since both ADE and

the optimal algorithm decided for a migration, E q . 5 . 5 is independent o f the number of

migrations. Consequently, the worst case is when the benefit B X y is such that optimal

algorithm does not perform migration, but ADE decides for a (back-and-forth) migration.

Fine-tuning the migration threshold

Let’s see if we are able to improve the performance o f ADE, by fine-tuning the migration

threshold. Consider the case when ADE performs a migration iff there is any [p , z ~] such that

B p >M T (P1’’). For sake o f simplicity we assume that M T = p *x , hence the

aforementioned ratios described by E q . 5 . 2 and E q . 5 . 5 become:

77

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

x

2 x + 2 M C g mk 1 h g m 1

M CU
x - M C ygmk + 2M C I *

I h m = 1 x > M C U

Eq. 5.6

Eq. 5.7

Note that E q . 5 . 6 decreases when M T increases to the point that x = 2 M C ygmk (note that the

enumerator cannot be greater than 2 M C ygmk, independently o f the value of x) . Also, E q . 5 . 7

increases when M T increases, and remains smaller than E q . 5 . 6 as long as x < 2 M C lm k , and

becomes equal to E q . 5 . 6 if x = 2 M C y mk. Also, note that in E q . 5 . 7 x > M C y mk due to our

assumption that the optimal algorithm performs M jk. Therefore, due to the equality o f E q . 5 . 6

and E q . 5 . 7, the competitive ratio between the optimal algorithm and ADE is given by E q . 5 . 8 ,

provided that ADE takes the decision for migration iff there is any [p , z -] such that

B p = 2 M C Z k (in practice, the decision could be taken if B p > 2 M C Z k , due to the

transmission/arrival o f a large application-level message). We should point out that E q . 5 . 8 is

independent o f the number o f migrations. Therefore our assumption of only one agent into our

system is valid.

M C ygmk _ Eq. 5.8
3 M C y mk 3 1 gm

3.2 Algorithm based on sliding window and discrete-time events (ADE-SW)

Since ADE is non-applicable due to the assumption o f infinite memory, we resort to a modified

version o f it to bound the memory needed for keeping message traffic statistics. ADE-SW uses

for each generic agent (ak) a s l i d i n g w i n d o w (wk) o f maximum size S k to keep the data

exchanged between this agent and its relatives. Let w 'k and t () denote the ith entry o f w k and

the point in time this entry was inserted into wk, respectively; then t (w k) > t (w j) | i < J , v k , j ,

in other terms j th entry was inserted into wk prior to ith one. An entry w 'k represents a tuple (a m ,

v d) , whereby v d is the volume o f data exchanged between am and ak at t (w 'k) . Putting it

otherwise, w 'k represents the size o f the message sent/received by ak at t (w 'k) , provided that a m

78

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

is the destination/source agent. Let mrk (1 < mrk < S k) be the sliding marker for wk , which
points to an entry of wk. s(mrk) denotes the number of entries this marker leaves behind
(including the one it points to) when it slides towards the most aged entry.
Each wk is implemented as a list. Each time a generic agent (ak) sends/receives a message it
pushes at the back of the list an entry, provided that the new size of the list is not greater than 5k.
Otherwise, the first entry of the list is removed before inserting the new one at the end of the
list. Initially the marker is set to s(mrk)th entry of wk, provided that this entry does exist;
otherwise is set to the most ancient entry. The entries lying behind the sliding marker (including
the one it points to) are deemed marked. ADE-SW considers whether the migration threshold of
an agent has been reached or not, by taking into account only the information associated with
the marked entries. Each time it decides that ak cannot migrate anywhere (no benefit), it slides
the respective marker by s(mrk) entries (i.e. mrk = mrk + s(mrk)), and reconsiders whether the
migration threshold of ak has been exceeded or not. This procedure repeats itself till the marker
points to the most aged entry, where if the corresponding agent cannot be migrated then the
sliding marker is reset to s (mrk)th entry.

In case ADE-SW decides to implement a migration, then the respective agent (ak) is migrated
along with only the marked entries. There are two reasons for doing so: i) if we don’t transfer
this information and an agent cannot migrate directly towards its center of gravity (limited hop-
awareness), then each intermediate migration of its own will be delayed (due to P1); ii) if we
resort to transfer all entries of the window associated with the migrating agent, then it is
probable for that agent to migrate back-and-forth, due to outdated information.

Fig 5.1 Application deployment Fig 5.2 Sliding window and marker

79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

Consider the example illustrated in Fig 5.1, whereby ak is a generic agent while the rest non

generic ones. A solid edge means that the involved agents communicate with each other, while a

dashed edge represents the hosting node of the involved agent. Let the cost of migrating ak

towards an 1-hop away neighboring node be 4 (M C ygmk = 4,| h = 1, Vy, k), s{mrk) = 2 and

S = 6. In Fig 5.2 we set out an example of how an agent is migrated, making use of the

respective sliding window and marker. A column in an upper row represents the point in time

where ak sent/received a message towards/from an adjacent agent of its own, with ti

representing the most aged message, while t10 the most recent one. A column in a bottom row

signifies the respective message size along with the involved destination/source agent. Recall

that the window slides towards the most recent messages (i.e., t5..t10).

Initially, mrk is set to 2; however due to P1, whereby B23k0 = 4 < 2* M C ^k = 8, M 23k is

considered non beneficial and the sliding marker is set to 4. Therefore, in the next iteration

B^j10 = 8, which means that ak is forced to migrate towards n3 (along with the marked entries

t7...t10). It is worth noticing that without the sliding marker M 23k cannot be identified (since

B23k = —10). In the sequel, the same steps are followed on n3, forcing ak to eventually migrate

towards n4 (along with the marked entries t7...t10), without even needing to collect any extra

information. It should be stressed that if ak migrated towards n3 a) without the entries of the

respective window then M would be procrastinated till there is a tn such that

B?3k" >= 8,ho —tm < tn (case i); b) along with all entries of the respective window, then n3

would decide to migrate ak back to n2, since when mrk = 6 then B32k° = 10. This back-and-

forth migration would continue in a perpetual way, till new messages arrived (case ii).

3.3 Algorithm based on aggregation of events (AGE)

AGE is designed to reduce the memory requirements of ADE-SW, whereby the information

about the collected events of same affinity is kept aggregated. Specifically, for each generic

agent akhosted on node ni and each m-hop neighbor node n2, where 0<=m<=d, where d is equal

to the network awareness, a load variable Rijk is used to record the accumulated message traffic

associated with ak between ni and n as follows:

1) if 0<=m<d, RiJk records the accumulated load between ak and all agents that reside on n;

80

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

2) if m=d, Rijk records the accumulated load between ak and (a) all agents that reside on η

and (b) all agents that reside on nodes that are more than m hops away from ni and
communicate with ni via n;·.

Note that if d is equal to the network diameter D, i.e., in case of “full network awareness”, (2)
becomes equivalent to (1) because no two nodes can be more than d hops away from each other,
so there can be no case (2b). Finally, Riik records the load between ak and all agents that are co
located with it on ni. Due to the fact that the load is stored in an aggregated fashion, the benefit
of Mijk is now represented by B .jk > 0 (instead of B .̂ > 0), where z“ is the most recent point
in time.
The algorithm works as follows: Initially, when ak is created on ni, the load variables RiJk for
each (relevant) neighbor node n is initialized to 0. From that point onwards, RiJk is updated by
adding the number of bytes sent/received by ak to/from node n;·.

Each time RiJk is updated, the following checks/actions are made/taken:

i) If BZk > 2MC*k, Mjjk is performed.

ii) if B:lk > 0, the load variables are reset to 0 (on the current host).

iii) Else, if ^ Rijk > RTk, the load variables are reset to 0 (on the current host ni); RTk istj
referred to as the so-called reset threshold

Note that the resetting of the load variables in (ii) and (iii) corresponds to a form of “aging”,
making sure that a recent change in the application traffic pattern will be considered promptly,
instead of waiting until it “overrules” the aggregated load history.

Theorem 2. AGE is 1/4 competitive, when d=D and RTk « 3.2MCygmk | hgm = 1.

Proof:

Consider AGE without (ii) and (iii).
We initially assume that AGE performs only one migration Mijk at time unit y. The performance
of AGE worsens as the value of lSk increases. This is because (i) must hold true, which means

that the network cost produced by ISy (i.e., ISy htj) must become equal to 2MCyk + Vyk htj.

81

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

When hij increases the performance of AGE worsens, so we conclude that the worst-case

scenario is to have htJ = D .

Similarly, the performance of AGE keeps worsening the larger the value of (another load

variable) l^ , f ^ i, j ; now, in order for B'Sy = 2MCkk, the network cost produced by lSy

should be equal to 2MCkk + ISy htj + l̂ k hf]. For the sake of proof, we need hfj to be as large as

possible. Note that hj would be equal to D iff nf: (a) is not in the path between ni and nj and (b)

does not use any node in the path between ni and nj (including nj) as a router for data towards ni.

This is not possible, though, since then hfj would have to be equal to D+1 (we assumed

h = D). However, it is feasible for hfj to be equal to D-1 (see Fig 5.3) which is the next largest

possible value. This is the case when: (a) nf is in the path between ni and nj, provided that hif = 1;

or (b) nf uses a node nu as a router for data towards nj, provided that hm = 1 and h . = D — 1.

O—Θ
Fig 5.3 when hjf becomes equal to D-1

Note that since l sk can be arbitrarily large, without loss of generality, we can assume that all

other load variables lA,, f Φ- i, j , f are equal to zero.

Consequently, in order for AGE to perform M ijk (i.e., for (i) to hold true), nj must produce

network cost of lSy = l̂ k (D — 1) + lSy D + 2MCkk . The worst case for AGE is for the optimal

algorithm to decide Mjjk before nj starts producing any network cost (lSk = 0), thus incurring

only the migration cost plus l sk which is unavoidable (for both algorithms). Therefore the ratio

vs. the optimal algorithm (which decides for that migration before AGE, ideally when lSk = 0),

becomes:

82

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

+ M C j + M C j
isy . isy

+ l ijk + M C y isylifi + Γ sy+ l ifk (D -1) + li D + 3 M C yk

Eq. 5.9

Note that E q . 5 . 9 is independent o f the number o f migrations, since for each additional

migration (following the same rationale) the cost for each algorithm is doubled. Therefore our

initial assumption o f only one migration does not affect the competitive ratio.

We observe that when lgg = 0 and isy tends to infinity, the ratio tends to 0 (provided that

lggk = 0). We avoid this case by applying (ii). Then, isy cannot be greater than lgg , hence the

worst case is to have lgg = lhyk (provided that l̂ = 0 and l̂y = 0, with z being the point in

time where the optimal algorithm performs Mijk). Let also lSy = X for the sake o f readability.

As a result, the ratio becomes equal to that expressed by E q . 5 . 1 0 (also taking into account that

h j = D , hence M C l k = D * M C y gmk | h gm = 1):

X + D * M C ; mk

2X * D + 3 D * M C y mk gm

M C gmk | h = 1

2 X + 3 M C m ' gm

Eq. 5.10

Eq. 5.11

When D tends to infinity the competitive ratio worsens, therefore we reformulate E q . 5 . 1 0 into

E q . 5 . 1 1 . By applying (iii) and setting a finite R T k : (a) X cannot be arbitrarily large, which

means that E q . 5 . 1 1 decreases; and (b) AGE becomes reactive to load changes. It is prudent to

choose R T k greater than the double cost of migrating a k towards 1-hop neighbor

(R T k > 2 * M C ym k | h = 1), else we compromise the performance o f AGE (load variables will

be reset before being able to decide for any migration). We also note that when resetting the

load variables there is a case of resetting a variable R ijk, while some B yk > 0 . The greater the

value o f R T the greater the loss o f AGE vs. the optimal algorithm, however B y

greater than 2 M C y due to (i).

cannot be

(R T k - 2 M C g m k 1) / 2 1 h gm = 1 Eq. 5 . 1 2

(R T k - 2 M C g y - 1) / 2 + 2 M C g y - 1 \ h y = 1 Eq. 5 . 1 3

83

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

Therefore, the worst case now becomes that o f having the previous scenario with the difference

that AGE is forced to reset the load variables as many times as possible before deciding for M ijk,

provided that when these resets take place B zijk is as large as possible. We stress that the worst

point in time (let z) o f resetting the load variables for AGE is when B .jk = 2 M C j k — 1, else

AGE would perform M ijk. We should also point out that in order to reset load variables when

B j k = 2 M C zk — 1 , we need from some nodes to incur a load given by E q . 5 . 1 2 , and for n to

incur a load given by E q . 5 . 1 3 . Note that the nodes contributing to E q . 5 . 1 2 : (a) cannot be in the

path between n i and n;, and (b) cannot use any node in the path between n i and n (including nj)

as a router for data towards n i, else E q . 5 . 1 3 would be increased and property (iii) would be

violated. It follows that the only node that can contribute to E q . 5 . 1 2 is n i, else AGE would

create cost greater than that of E q . 5 . 1 2 .

Summing up, the performance ratio between AGE and the optimal algorithm becomes:

D * f (R T k — 2 M C g mk —1) /2 + M C i ; k

D * f [(R T k — ! M C gmk — 1) / 2 + 2 M C g mk — 1] + 3 M C j k
h 1 λ h,. D Eq. 5.14

with f denoting the number o f resets. For simplicity, we eliminate the “-1”s (without loss of

generality since the ratio worsens). We can observe that the ratio changes with the variation o f f

and R T k . For the case where R T k is less than 3 M C L the ratio worsens w h e n f tends to infinity.

In terms o f case where R T k is equal to or greater than 3 M C yijk the ratio worsens when f tends to

zero. However we omit the case where f tends to zero since in that case E q . 5 . 1 4 is dominated

by E q . 5 . 1 1 , which means that the worst-case ratio is given by E q . 5 . 1 1 . As a result E q . 5 . 1 4

becomes:

R T k — 2 M C y m 1 Eq. 5.15

R T k + 2 M C g m k 1 gm

Due to the fact that X should be as large as possible without enabling the resetting o f loads, we

conclude that the resetting threshold should be expressed by E q . 5 . 1 6 . Therefore E q . 5 . 1 1 is

transformed into E q . 5 . 1 7 .

R T = Γ ν + l syR T k l iik + l ifk + 2 M C g m k + 1 ·■ 2 X + 2 M C s , | h = 1gmk I gm Eq. 5.16

84

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

M C U
R T k + M C gmk

\ \ m = 1 Eq. 5.17

We recall that RTk > 2MCgmk I hgm = 1, else we could not be able to perform migrations across

the whole network, and therefore the performance of AGE would decrease. We observe that

when RTk increases Eq. 5.15 decreases, while Eq. 5.17 increases. Given the above, and due to

the fact that the competitive ratio is given by the smaller equation between Eq. 5.15 and Eq.

5.17, we turn to equating them to get the value(s) of R T which maximize(s) the competitive

ratio. Therefore, two roots result from that operation, the negative and the positive one. Of

course the negative one is out of consideration, since RTk cannot be negative. The positive root

is roughly equal to 3.2MCygmk | h = 1, with the competitive ratio being approximately equal to

1/4.

4 Experiments

This section presents an experimental evaluation of the algorithms based on simulations

performed on top of NS2 [85]. First we describe the experimental setup and then we present and

discuss the results of indicative experiments.

4.1 Setup

The network topologies and application structures were produced in the same way as for the

previous chapters. Five different network topologies were generated, while 3 different

application types were produced with (50, 22), (25, 12) and (10, 5) (non-generic, generic)

agents, referred to as app50, app25 and app10, respectively. For each application type we

produced 5 different application structures. The initial agent placement on nodes was random,

while agents were assigned sizes randomly selected between 100 and 1,000 bytes. For each

combination network topology and application structure an experiment was conducted (75 in

total) taking the average of them.

Contrary to the previous chapters, in this one we consider traffic patterns that are not stable

throughout the duration of an experiment. Unless otherwise stated, we assume that a non

generic agent can change between two modes MH and ML, signifying a change in the frequency

85

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

of the messages are sent out by the respective agent. Specifically, when an agent is in MH mode

then it sends 10 times more messages against than ML mode. We consider four different types of

traffic pattern T(UH), T(H), T(L) and T(UL); with these reflecting that an agent changes

between MH and ML modes in ultra high, high, low and ultra low rate, respectively. Specifically,

in terms of T(UH) each agent remains in a mode from 1 to 10 time periods, chosen randomly.

As far as T(H), T(L) and T(UL) are concerned, their corresponding periods range between (1,

100), (50, 500) and (100, 1000), respectively. We differentiate between three application

families Fi, F2 and F3, whereby at most 1, 2 and 3, respectively, agents belonging to the same

parent can be in LH mode simultaneously.

As the main metric for our comparison, we use the network load incurred by the resulting

placements of our algorithms. We also devise a static offline optimal algorithm serving as a

yardstick for the quality of the solutions derived by the proposed algorithms. In order to get the

static offline optimal solution, we resort to GRAL* of which the input is chosen to be slightly

different against the online algorithms. Specifically, GRAL* takes as input the static load

associated with each application edge. Specifically, the static load of an edge represents the

volume of data that would be exchanged between the incident agents to this edge, if we let the

involved agents exchange messages for a specified time according to an adopted type of traffic

pattern, e.g., T(H).

We observed that ADE-SW variants have different trend when the traffic is based on T(UH)

pattern compared to the rest ones, so we chose to plot the results separately for each case.

4.2 Considering T(H), T(L) and T(UL)

ADE-SW can be parameterized into two dimensions, with the first one being the migration

threshold, which is common for both algorithms; while the second one being the number of

window entries marked each time the marker slides towards the most aged entries. From now on

a variant of ADE-SW will be referred to as ADE-SW-(MT, s(mr)); with MT and s(mr)

reflecting the first and second dimension, respectively. AGE is also parameterized into two

dimensions, with the first one being also the migration threshold, while the second one being the

reset threshold. From this time forward a variant of AGE will be referred to as AGE-(MT, RT);

with RT reflecting the reset threshold. This set of experiments is based on F1 application family.

Fig 5.4 concerns the case where the size of the sliding marker varies between 1 and 500,

considering all types of traffic patterns excluding T(UH). As observed, the performance of

86

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

ADE-SW variants deteriorates as the size of the sliding marker increases. This is expected since

such an increase means that the migration decisions will be based on further aged information,

rendering in that way ADE-SW slower in identifying changes in message traffic pattern.

Another remark is that the gap between variants is growing as the changes in traffic pattern

become less intense. This is explained by the fact that the benefit of migrating an agent towards

a direction is continuously growing as long as its center of gravity does not change into another

direction. Specifically, an agent’s center of gravity change more vigorously in T(H) pattern,

rendering some migrations less fruitful, since in that case it is almost the same for an agent to

remain in a node instead of migrating back and forth due to load changes.

3.E+07

■ζ3 3.E+07
ro O

2.E+07

2.E+07

<D
1.E+07

5.E+06H
0.E+00

ADE-SW-(0.1,1)
ADE-SW-(0.1,50)
ADE-SW-(0.1,200)

- ADE-SW-(0.1,10)
- ADE-SW-(0.1,100)
■ ADE-SW-(0.1,500)

T(H) T(L)
T ra ffic pattern

T(UL)

Fig 5.4 ADE-SW behavior when varying the size
of sliding marker

—X —AGE-(0.1,0.2) —Δ — AGE-(0.1,10)

AGE-(0.1,50) AGE-(0.1,100)

Fig 5.5 AGE behavior when varying the reset
threshold

Fig 5.5 shows the behavior of AGE when varying the reset threshold between 0.2 and 500. It is

observed that the performance worsens when increasing the reset threshold. This is anticipated

since such an increase incurs a proportional delay when deciding to perform a migration.

Specifically, an increase to the reset threshold means that the migration decisions are based on

more outdated information, so the delay is attributed to the time the algorithm needs to offset

this outdated information and finally take the decision to perform a migration.

Note that we conducted the same experiment for both ADE-SW and AGE keeping fixed the size

of the sliding marker and the reset threshold at 1 and 0.2, respectively; while varying the

migration threshold. The results showed that the performance of both algorithms worsens as the

migration threshold increases. Hence we conclude that the best variants are ADE-SW-(0.1, 1)

and AGE-(0.1, 0.2). The observation that the variants are more distanced with each other when

the changes in traffic pattern become less intense is explained through the respective remark in

the previous paragraph.

87

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

4.3 Considering T(UH)

In this set of experiments the application family continues being Fj, however the traffic patter

type considered is T(UH). Fig 5.6 shows the behavior of ADE-SW when varying the size of

sliding marker. It is shown that ADE-SW variants have an opposite trend against the previous

case (Fig 5.4). This is due to frequent changes in traffic pattern, increasing in that way the

probability of not amortizing the cost of the agent migrations performed. Therefore it is not

lucrative for an agent to be reactive to all those changes. Note that, as discussed earlier, an agent

becomes less reactive to changes when increasing the size of the sliding marker, therefore the

“variant-500” achieves the best performance with the “variant-200” following closely. This

performance is attributed to the fact that the greater the size of the sliding marker the less

reactive the algorithm to traffic changes, and therefore the less the migrations performed (Fig

5.7).

1.E+06

^S .E + 0 5
CO

_o
^ 6.E+05ίΟ

(LI 4.E+05

• 2.E+05

0.E+00

ADE-SW

fo7 fo7 fo7 fo
^ O j ' SOj "

50

45

40

35

30

25

20

15

10

5

0

7°Oj % s%j

■ ADE-SW

Fig 5.6 ADE-SW behavior when varying the size of Fig 5.7 migrations performed by ADE-SW when
sliding marker (the migration threshold is kept varying the size of sliding marker (the migration

fixed at 0 .1). threshold is kept fixed at 0 .1).

We conducted the same experiment with that depicted in Fig 5.6 with the difference that we

kept the size of the sliding marker fixed at 500 (best variant), while varied the migration

threshold. The results of this experiment are shown in Fig 5.8, whereby the performance of

ADE-SW degenerates when increasing the migration threshold. This is due to the fact that the

benefit of migrating agents is kept in low levels due to frequent load changes, therefore an

increase to the migration threshold may lead to migrations that their cost is hardly (or cannot be)

amortized.

88

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

6.8E+05 η

6.6E+05~σro
_°6 .4E + 05

6.2E+05
4 —'
cu

6.0E+05
ro

4 —'

,2 5.8E+05

5.6E+05

I ADE-SW

to, '$n
u0j “Oj UOj '■Sn. rs

u°j

1.8E+06

1.6E+06

1.4E+06

1.2E+06

1.0E+06

8.0E+05

6.0E+05

4.0E+05

2.0E+05

0.0E+00

ADE-SW

^o7 &o7 ŝo °°J,

Fig 5.8 ADE-SW behavior when varying the
migration threshold (the size of the sliding marker

is kept fixed at 500).

Fig 5.9 ADE-SW behavior when varying the
migration threshold (the size of the sliding marker

is kept fixed at 1).

We also carried out the same experiment with that depicted in Fig 5.8, with the difference that

the size of the sliding marker is kept fixed at 1 instead of 500. In Fig 5.9 there are two

observations (i) the trend of this experiment is opposite to the previous one as long as the

migration threshold is less than or equal to 10; (ii) while these trends coincide when the

migration threshold is equal to or greater than 20. The first observation is explained by the fact

that ADE-SW becomes enough reactive to load changes when the size of the sliding marker is

1; as a result the migration threshold serves as a repressing factor regarding the reactiveness of

the algorithm to those changes. The second observation is attributed to the fact that when the

migration threshold becomes enough large, then an agent may be not migrated even in the case

where all the relative agents of its own belong to the same direction. This is witnessed in Fig

5.10, where it can be seen that the number of migrations lessens rapidly when increasing the

migration threshold. It should be stressed that among all these cases, the best results are

obtained through ADE-SW-(0.1, 500).

89

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

1. E+06

-o 8.E+05
roο
ΐ 6.E+05
ο3

4.E+05

ro
2. E+05

0.E+00

■ AGE

fo
%>0j

to,
>0j

Fig 5.10 Migrations performed by ADE-SW when
varying the migration threshold (the size of

sliding marker is kept fixed at 1).

Fig 5.11 AGE behavior when varying the reset
threshold (the migration threshold is

kept fixed at 0 .1).

Fig 5.11 shows the performance of AGE when varying the reset threshold, while keeping fixed

the migration threshold at 0.1. As it can be observed, AGE becomes more fruitful when

increasing the reset threshold. This increase means that AGE becomes less reactive to frequent

load changes, thus yielding placements wasting less resources in terms of the wireless

communication. Note that we decided to omit the rest experiments conducted for AGE, since

the observations were exact the same as previously. It should be noticed that AGE-(0.1,500)

outperforms all AGE variants.

4.4 Comparing our algorithms to the offline optimal algorithm

In this set of experiments we pick the best variants of AGE and ADE-SW for each type of

traffic pattern and draw a parallel between them and the static offline optimal algorithm (i.e.,

GRAL*).

For the first experiment (Fig 5.12) the application family keeps being Fi. A first observation is

that the performance of AGE and ADE-SW is identical. This is expected since in case of (i)

T(UH) both algorithms gather enough information in order to decide whether a migration is

beneficial or not; (ii) T(H), T(L) and T(UH) both algorithms take the decision to migrate an

agent as early as possible. Another remark is that the offline optimal algorithm outperforms

AGE and ADE-SW when the load changes take place in a rapid fashion. This is why in such a

situation it is difficult for an online algorithm to decide whether a migration will bear fruits or

not. Therefore the best decision is to perform only the essential migrations, however such a

decision is only applicable in an offline fashion. This is illustrated in Fig 5.13, where in T(UH)

plot both online algorithms try to perform as less migrations as possible. Of course our

90

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

algorithms are able to adjust their thresholds in such a way to become almost identical with the

offline algorithm.

It is also observed that online algorithms achieve up to 80 percent load reduction against the

offline optimal algorithm, provided that the type of traffic pattern is other than T(UH). This is

attributed to the fact that when load changes become less frequent then online algorithms are

able, due to their nature, to perform more beneficial migrations than the static offline optimal

algorithm. This is partly explained through Fig 5.13, whereby online algorithms perform by far

more migrations against the static offline optimal algorithm, given that traffic changes take

place in a slower pace than T(UH).

T ra ffic pa tte rn
Fig 5.12 AGE and ADE-SW against the optimal offline

algorithm (the application family is kept fixed at Fi).

Fig 5.13 Migrations performed (the application Fig 5.14 AGE and ADE-SW against the optimal
family is kept fixed at Fi). algorithm when varying the application families

(T(L) is kept fixed).

Last, we ran another experiment where the application family is varied among F1, F2 and F3.

Taking a look at Fig 5.14, we can see that both algorithms are getting worse when going from

91

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 5

Fi to F2, and finally to F3. As discussed earlier, the index of an application family reflects the

maximum number of the sibling agents that can be simultaneously in MH state. Hence, the

probability of a migration to become less beneficial is increased. Also another remark is that the

performance of AGE becomes less gainful against ADE-SW. This is ascribed to the inferiority

of AGE to promptly identify a beneficial agent migration when the involved agent receives

simultaneously data from more than one relatives of its own. Actually the proof of Theorem 2 is

based on such a scenario, whereby AGE fails to identify a beneficial migration in a prompt

manner due to threshold reset.

5 Conclusions

In this work we introduced the problem of deciding which is the point in time that a migration

should be performed to reduce the total network cost, taking into account the network cost when

performing a migration. We proposed two online algorithms solving the problem without

knowing in advance the future traffic changes. The competitive ratios of the proposed

algorithms are also discussed thoroughly, giving in that way a flavor of the quality of each

algorithm. Experiments were conducted to take an insight about the performance of our

algorithms against the static offline optimal algorithm. This work differs from the previous ones

in that the migration decisions are taken in an online way taking also into account the migration

cost.

Part of this work is going to be submitted in the following conference:

* N. Tziritas, T. Loukopoulos,P. Lampsas, S. Lalis, “Online Algorithms for the Agent

Migration Problem in Wireless Embedded Systems” IPDPS 2012.

92

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tziritas:Nikos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lampsas:Petros.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lalis:Spyros.html

Chapter 6

Chapter 6

On Reconfiguring Embedded Application Placement
on Smart Sensing and Actuating Environments

1 Introduction

In this chapter we introduce the agent reconfiguration problem (ARP), in light of a smart home

or smart office environment with a central monitoring entity, e.g., a desktop computer or a set

top box. This entity is responsible for deciding about the agents’ placement, having full

knowledge of the present placement scheme, the network, and the respective smart node

capabilities. The goal is to place agents in nodes having the required resources (generic or non

generic), so that communication traffic is minimized, thus reducing battery consumption and

saving bandwidth. The main differences with the previous chapters are: i) that non-generic

agents are able to migrate, taking into account their non-generic resource demands; and ii) that

the reconfiguration decision (migrations) is made in a centralized way (on central monitoring

entity); iii) the application is structured as a general graph instead of a tree.

This work is modeled as a graph coloring problem; where the proposed algorithm is based on to

perform agent exchanges (i.e., migrations) between nodes to eventually reduce the total network

cost. It should be stressed that the graph is modeled in such a way to include the migration cost,

favoring in that way agent migrations of small size. Note also that the knapsack component [56]

is used to check feasibility issues involving the agent exchanges between nodes.

The rest of this chapter is organized as follows: the rest of Section 1 illustrates the application

model; Section 2 provides the system model and problem formulation ; Section 3 illustrates two

93

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

algorithmic approaches solving ARP, with the first one being based on the graph coloring

problem while the second one on greedy techniques In Section 4 both algorithms are evaluated

on small- and large-scale experiments, where in the former ones an exhaustive algorithm takes

place for comparison reasons; while in Section 5 we give our conclusions.

1.1 Application Model

In this chapter we use a roughly different application model against the previous ones.

Specifically, the agents participating into an application may communicate with agents of other

applications for reusability reasons. Consider two applications are to be deployed into a

network, with the first one needing to create humidity and temperature gathering agents, while

the second one brightness and temperature ones. Assume the first application is deployed as

usual by creating the humidity and temperature agents. It is prudent, in light of scarce resources

provided by such a network, to force the second application to not create temperature agents but

use the already existing ones. However, the middleware may set a limitation on the number of

applications an agent can participate to, due to overloading an agent.

2 Problem Definition

This section first introduces the system model, then proceeds with formulating the ARP

problem.

2.1 System model

Let the system comprise of N nodes with sensing/actuating capabilities denoted by ni, 1<i<N,

and A agents denoted by ak, 1<k<A. Let r(n) depict the level of generic resources available at ni

(i.e., available memory). Similarly we denote by r(ak) the amount of these resources that must

be available at a node in order for agent ak to execute correctly. It is straightforward to include

more than one generic resource constraints in the model if necessary.

A non-generic agent is not only dependent on the computational resources at the destination; it

requires also that non-generic resources be provided by the destination node (i.e. sensing or

actuating capabilities). A binary N*A eligibility matrix L is used to encode whether a node has

the required non-generic resources (thus is eligible to hold the agent) as follows: Lik=1 if ni

94

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

provides the required by ak specific resources, 0 otherwise. Recall also that non-generic agents

belonging to the same application and providing the same functionality (e.g. temperature

gathering agent) must not reside at the same node. We model it through an A*A binary mutual

exclusion matrix F, whereby Fkw=1 if ak must not reside at the same node with aw, 0 if no such

requirement is necessary.

Nodes communicate with each other via some wireless technology (which is treated as a black

box). In this work we consider tree-based routing, i.e., there is exactly one path for connecting

any two nodes. Let hiJ be the length of the path between ni and n;·; equal to 0 for i=j.

Communication between agents is captured via an A*·A matrix C, where Ckw denotes the data

units sent on average from agent ak to aw per time unit.

2.2 Problem formulation

A binary N*A matrix P is used to encode agent placement at nodes as follows: P ik=1 if ak is in

ni, 0 otherwise. The APR problem can then be stated as follows: given an initial placement Pold

of application agents on nodes, define a new placement Pnew so that the overall network load due

to agent communication is minimized. As a secondary optimization target we also require that

the network cost due to the migrations performed in order to switch from the initial placement

Pold to the new one Pnew is also minimal. The network load T due to agent communication is

given by Eq. 6.1. Thus, the benefit in agent communication terms by switching from Pold to Pnew

described by Eq. 6.2.

A single migration incurs a cost proportional to the agent size and the hop distance between the

start and destination node. We assume that there exists a single monitoring node (let nm) which

also acts as an entry point for the arriving agents in the system (e.g., for security reasons) and

keeps an immutable copy of all agents’ code. Migrations are performed by sending a copy of the

agent’s code from nm and the agent’s status from the node where the agent currently resides. For

simplicity, we assume that the size of the status is negligible, compared to the code size, which

is denoted by sk. Therefore, given an initial placement Pold and the one that must be

implemented Pnew, the total migration cost M can be computed by Eq. 6.3.

A A N N
t = Σ Σ (C k, Σ Σ h A p ,m. >k=1 m=1 i=1 j=1

B
rj-Old j-inew

Eq. 6.1

Eq. 6.2

95

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

A N

M =Σ Σ ΡΓ(1 - P ld
Eq. 6.3

k =1 i =1

Minimizing agent communication cost (Eq. 6.1) and migration cost (Eq. 6.3) are conflicting,

since Eq. 6.3 is minimized if Pnew is the same as Pold. Intuitively, Eq. 6.3 acts as an overhead

which can be fully or partially offset by the reduction in agent communication cost (Eq. 6.2),

depending on whether Pnew will remain unchanged for a sufficient large time. Let a be a

constant depicting the importance of migration cost over agent communication. Then the APR

problem can be stated as: given an initial agent placement Pold find a new placement Pmw such

as Eq. 6.4 is optimized, with respect to constraints described by Eq. 6.5,Eq. 6.6,Eq. 6.7, and Eq.

6.8.

max D = B - y M Eq. 6.4

A
Eq. 6.5Σ P r r (<*k) £ r), Vi

k=1

N
Eq. 6 . 6Σ P 'k~' = 1 Vki=1

>o
'II11

Eq. 6.7

Ρ ^ Ρ Γ Ρ Γ = 0, Vi, k, w Eq. 6 . 8

Eq. 6.5 states that node capacity constraints should not be violated. Eq. 6.6 enforces that each

agent should be placed at exactly one node. In addition, this placement must be eligible in terms

of specific resources (Eq. 6.7) and there should not be conflicts with other agents residing at the

same node (Eq. 6.8). By Eq. 6.5 it is easy to see that the relevant ARP decision problem is NP-

complete having (among others) a knapsack component [56]. In the following section we

present heuristics to tackle it.

3 Algorithms

The proposed algorithms are based on the concept of pair-wise agent exchanges between system

nodes. We begin our discussion by presenting the core exchange method in a system consisting

of two nodes, then generalize for a system of N>2 nodes. We also present a greedy method used

for comparison reasons in the experiments.

96

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

3.1 The ARP problem with 2 nodes

Consider the ARP problem for the case where the system consists of two nodes n1 and n2 and a

monitoring node nm. All nodes are assumed to have 1-hop distance between each other. Assume

a total of 5 agents are already placed at the system’s nodes as follows: a1, a2 and a3 are placed at

n1 and a4, a5 at n2. Table 6.1 depicts the load generated due to agent communication, as well as

the agents’ resource requirements.

Table 6.1 Agent communication load and resource requirements

riak) a1 a2 a3 a4 a5

2 a1 0 4 0 1 0

1 a2 1 0 0 1 0

2 a3 0 2 0 2 3

3 a4 2 0 4 0 0

2 a5 0 0 5 5 0

Let the capacity of the two nodes (resource wise) be: r(n1)=7 and r(n2)=5. Assuming migrations

incur no cost and that no specific resources or mutual exclusion constraints do exist, ARP can

be transformed into a graph coloring problem as follows. In a first phase, the agent

communication graph G(V, E) is constructed, whereby the vertices of the graph correspond one

to one with the agents, and an edge (ak, aw) exists if ak and aw communicate with each other.

Each edge has a weight w(ak, aw) which equals the communication cost between ak and aw

across both directions, i.e., w(ak, aw) = Ckw + Cwk. Furthermore, each vertex has a weight w(ak)

equaling the amount of generic resources ak demands. Let Fig 6.1 represent such a graph in

terms of the agents hosted by n1 and n2.

1 2 1 2

3 2 3 2
Fig 6.1 Agent communication graph Fig 6.2 Extending the communication graph

In a second phase, graph G is extended by adding two vertices, with these vertices

corresponding to the node pair hosting the agents represented by G. These vertices have 0

weight and are colored through a 2-color scheme (e.g. red, black). Note that the rest vertices

97

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

(agent-vertices) remain uncolored for the time being. In order to take into account the cost of

migrating an agent, for each agent-vertex there are two extra edges towards the two node

vertices. Since such an edge represents the migration cost, its weight is set to zero if the incident

agent-vertex to that edge is not hosted by the incident node-vertex; otherwise the weight equals

to the cost of migrating the agent represented by the incident agent-vertex, from the monitoring

node towards the node not hosting it. Fig 6.2 illustrates the above extension, only for the agents

a3 and a5, assuming that all agent sizes is 8 and that the constant a=0.5. Red vertex («i) is shown

striped, while black vertex (n2) is shown grayed. Since all migrations are assumed to be

performed via the monitoring node (hop distance of 1 against n1 and n2), all edges whereby the

migration cost must be charged have a weight of 4 (equals a*agent size*hop distance).

The specific resources demands (in terms of an agent) are included in the model by coloring the

respective agent-vertex. For instance, if in the example Z21 = 0 , then a1 vertex will be painted

in red, i.e., a1 will be forced to stay at n1 (red vertex). Finally, mutual exclusion constraints are

included by adding coloring constraints for the corresponding agents. For example, in modeling

that F , = 0 , it is equivalent to say that ak and aw vertices must have different colours.

Putting all these together, an agent that is differently colored against its current hosting node,

should migrate towards the other node in the system (same-coloured). Hence, ARP can be re

stated as follows: try to paint each agent-vertex in one of the available colours, with respect to

our constraints, in such a way that the network communication cost is minimized.

3.2 The agent exchange algorithm

Here we present the agent exchange algorithm (AXA) to come with a solution for the 2-node

version of ARP. AXA uses the transformation of ARP into the equivalent coloring problem

presented in Sec. 3.1.

The algorithm works in iterations. In each iteration, the edge with the highest weight is selected

and the vertices it connects with are merged, since this weight represents a benefit. Specifically

if the incident vertices to that edge: i) are both agent-vertices, then this benefit comes from

placing the agents, included on that vertices, on the same node (they communicate heavily); and

ii) are an agent-vertex and a node-vertex, this benefit comes from placing the agent(s)

represented by agent-vertex on node represented by node-vertex. In case the merged vertices

have a mutual exclusion constraint, the merging is not performed and the edge connecting them

is colored grey (i.e., not to be considered further). Otherwise, the new vertex has the cumulative

98

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

weight o f the previous ones and their remaining edges. If any o f the vertices belonging to the

merged vertex is colored then the merged vertex will also be colored (with the same color). In

case the two vertices to be merged are colored with different color each, merging is not

performed and the respective edge becomes grey. F i g 6 . 3 shows the resulting graph by merging

a 3 with a 5.

0

0
Fig 6.3 Resulting graph after merging.

Each time two vertices are merged, AXA attempts to find if a feasible vertex coloring does exist

in the new graph. To this end it solves knapsack two times, once for n and once for n2 , with the

candidate objects being the ak vertices (the size o f each object being the weight of the vertex). In

the previous example (F i g 6 . 3) , by solving knapsack on n (the red node) we get the following

objects to be placed: {ab a 2 , {a3 , a 5 }}, filling the resource capacity o f n which is 7. Having

obtained a knapsack solution for nu the algorithm checks if the remaining objects fit in n 2 . In

the example only a 4 remains which fits in n 2 since r(n2) was assumed 5. If so, the algorithm

keeps the merged vertex without coloring it and proceeds with the next iteration. Otherwise, the

algorithm attempts to find a valid placement by solving knapsack for n 2 (the black node) and

checking whether the remaining objects fit at n x . If after trying both knapsack solutions AXA is

unable to find a valid placement involving all the objects, it backtracks to the graph state before

merging, marking the edge under consideration as grey.

The algorithm continues in the same fashion till either all the remaining agent-vertices are

colored, whereby performs the corresponding migrations; or edges are colored in gray, where no

migrations are performed.

3.3 Extending to N nodes

Tackling the case o f N > 2 nodes is done with the p a i r - w i s e r e c o n f i g u r a t i o n a l g o r i t h m (PRA), the

pseudocode o f which is shown in F i g 6 . 4 .

99

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

found:=true;
while (found)

found:=false;
for i=1 to N
for j=1 to N

apply AXA over (n i, n j) pair;
if D>0 then found:=true; keep AXA changes;

else discard AXA changes;
endif

endfor
endfor

endwhile

Fig 6.4 Pseudocode of PRA

PRA iterates through all node pairs applying AXA. If during an iteration AXA manages to

define a better placement according to E q . 6 . 4 , the process reiterates, otherwise it ends

producing the final agent placement. In order for AXA to successfully optimize locally, i.e.,

within a node pair, the agent placement, adaptations are required to the way agent

communication load and migration costs are modeled. We illustrate them through an example.

Assume the network o f F i g 6 . 5 , with 7 nodes plus the monitoring node n m . Let the agents of

T a b l e 6 . 1 be already placed on n2 and n5 as follows: n 2 has a \ , a 2, a 3 and n5 has a 4 and a 5 . In

other terms, n2 and n5 in this example have the same role as n 1 and n2 in the example o f Sec. 3.1.

Assuming only these agents exist in the network, the equivalent graph colouring problem is

similar to the one in F i g 6 . 2 , with the exception being that the hop count must be taken into

account both on edges representing agent communication (ak, aw) and on edges representing

migration cost (ni, ak). So all w (a k , aw) edge weights will be multiplied by a factor o f 3 (the hop

distance between n 2 and n5), while all edge weights w (n i, ak) will be multiplied by the hop

distance between nm and the node of the opposite color with which ni was painted. For instance,

w (n 2, a 2) will remain 4 since the distance between nm and n5 (the black node) is 1, while w(n5,

a4) will now be 16 since hm2=4. Fig. 7 depicts the resulting problem graph. For clarity, the edges

between (a1, a 2, a4) and (n1, n2) are omitted, as previously.

Fig 6.5 Network Fig 6.6 Resulting problem graph

0

100

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

In the general case, agents placed on nodes other than the pair in question (n2 , n5) might

generate load towards some o f the agents placed on the pair. F i g 6 . 5 gives an example, whereby

3 more agents exist, namely: a 6 which is placed at n 1, a 7 at n3 and a 8 at n7 . The figure also shows

the load these agents generate towards the ones placed at n 2 and n5 , specifically: C6 3 + C3 6 =3,

C65+ C56=2 , C7 3 + C3 7 =4 , C7 5 + C5 7 = 3 and C8 5+ C58=4 .

Such external (to the node pair) load must be incorporated to the graph coloring model in order

for it to map to ARP correctly. This external load can be viewed as another form o f node related

cost in the problem graph, as was the case with migration. Consider for instance the migration

of a 5 from n 5 to n 2 . Aside from the migration cost of 16 to transfer a 5 from n m to n 2 there will

also be a change on the cost in terms o f the external load directed to/from a 5 . For instance, the

load generated by (a 5 , a 8) communication will not incur a cost of 8 , but rather a cost o f 2 0 since

the hop distance between the two agents will increase from 2 to 5. In order to incorporate the

above case in the problem graph it suffices to augment: i) w(n5 , a 5) by the network cost incurred

if a 5 moved to n 2 , i.e., 2 0 ; and ii) w(n2 , a 5) by the incurred load if a 5 stayed in n5 , i.e., 8 .

Repeating the process for all the external loads o f a 5 results in w(n5 , a 5) being augmented by a

factor of: 20 (a 8 ’s load) + 3 (a 7 ’s load) + 2 (a 6 ’s load) for a total o f 25, and w (n 2, a 5) being

augmented by: 8 (a 8 ’s load) + 6 (a 7 ’s load) + 8 (a 6 ’s load) for a total o f 22. F i g 6 . 7 illustrates

the final graph coloring transformation for the example of Fig. 6 . Again, to avoid cluttering,

only edges between n 2 , n 5 and a 3 , a 5 are shown.

1 2

0

0

Fig 6.7 Resulting problem graph

However, a subtle change must be made to AXA in order for it to function properly. Recall, that

AXA selects the link o f highest weight and attempts to merge the incident vertices to that link.

The rationale for the decision is to attempt to place together agents communicating heavily with

each other. So, if a 3 and a 5 are placed together, then the communication load among them will

be alleviated and a benefit o f w(a3, a 5)=24, will occur. However, the same is not true when

considering edges involving a node-vertex. For instance, if a 5, n5 are merged the actual benefit

will not be 31, but rather the cost difference between placing a 5 at n 5 and at n2. According to

101

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

this, AXA may begin the coloring/merging process from a less beneficial edge, thus leading to

inferior solutions. For instance, in this example AXA will begin with (a5 , n5) having actual

benefit equal to 9 (31-22), instead of (a5 , a 3) having actual benefit equal to 24. For this reason,

at the sorting step o f AXA all edges o f the form (n i, a k) do not participate with their weights, but

rather with the weight difference: w (n i, ak) - w (n j , ak), assuming n i and n j are the system nodes

for which AXA runs.

3.4 Greedy algorithmic approach

Thus far, we have shown how the ARP problem from the standpoint o f a node pair can be

transformed into a graph coloring problem. We also discussed both an algorithm to derive a

solution to the coloring problem (AXA) and how it can be invoked in order to tackle the ARP

problem globally (PRA). For comparison reasons here, we discuss another algorithm to solve

ARP based on the greedy approach.

Starting from the initial placement, G r e e d y iteratively selects an agent to migrate and performs

the migration. Specifically, at each iteration all A * N possible migrations are considered and the

one that optimizes E q . 6 . 4 the most, subject to the constraints E q . 6 . 5 - E q . 6 . 8 , is selected. The

process is repeated until no further beneficial migration can be defined.

4 Experiments

This section describes the experimental evaluation o f PRA. Section 4.1 presents the

experimental setup. Section 4.2 gives a comparison o f PRA and Greedy against exhaustive

search for a small experiment, while in Section 4.3 we compare PRA against Greedy for a larger

experimental setup. Finally, Sec. 4.4 summarizes the experimental findings.

4.1 Experimental setup

Due to the fact that the POBICOS middleware is currently under development we conducted the

experimental evaluation using simulation experiments. The details of the simulation setup are

briefly discussed below.

N e t w o r k g e n e r a t i o n . Two types o f networks were constructed, one with 7 and one with 30

nodes. In both networks an extra node played the role o f the monitoring node. Nodes were

102

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

placed randomly in a 100^100 2D plain and assumed to be in range o f each other if their

Euclidean distance was less than 30 distance units. In the resulting network topology graph, a

spanning tree was calculated and acted as the corresponding tree-based routing topology.

A p p l i c a t i o n g e n e r a t i o n . The application tree structure is generated randomly, based on the

(given) number of non-generic agents. The initial non-generic agents are split in disjoint groups

o f 5, and for each group 2-5 agents are randomly chosen as children of a new generic agent. In

next iterations, orphan (generic and non-generic) agents are (again) randomly split in groups of

5 and the process o f parent creation is repeated, until a single agent remains which becomes the

root o f the application. With the above method the resulting application is a tree, its leaves

consisting o f non-generic agents. Since the scope of this work is broader tackling general

application graphs as opposed to trees, we alter the resulting application tree as follows. For

each generic agent two more non-generic agents were assumed to be its children, thus, these

non-generic agents had two (or more) parents. Two different application structures were

generated with this way a p p - 1 0 and a p p - 4 0 , each with 10 and 40 non-generic agents,

respectively.

A p p l i c a t i o n t r a f f i c . We assumed that the communication load between a non-generic and a

generic agent was between 10 to 50 data units per time unit. For the load between generic

agents we considered three cases: (i) l a v g : a generic agent sends the average o f the load

received from its children, corresponding to a data aggregation scenario; (ii) I s u m : a generic

agent sends to its parent the sum of the loads received from its children, corresponding to a

forwarding scenario; and (iii) I m i x : half of the generic agents (randomly chosen) generate load

according to l a v g and the other half according to l s u m . Unless otherwise stated, the constant a

(see (4)) governing the importance o f migration cost versus communication load was set to

0 .0 1 .

O t h e r p a r a m e t e r s . The size o f agents varied uniformly between 100 and 1,000 data units. All

the non-generic agents that have the same parent were assumed to share one common special

resource requirement and had a mutual exclusion constraint among them. Non-generic agents

with different parents were assumed to differ in at least one special resource requirement. In the

experiments we begin with an initial placement and run the algorithms to define a better one.

This initial placement is derived by placing the non generic agents first. Specifically for every

group of non-generic agents with the same parent (let n g in cardinality), (1 + f) n g nodes

(randomly selected) were assumed to have adequate special resources to hold the agents, i.e., for

a node n i and an agent a k such as above, L ik=1. Unless otherwise stated, constant β takes a value

103

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

of 0.5. In the initial placement the non-generic agents were placed randomly to nodes having the

required functionality in such a way so as to respect mutual exclusion constraints as well.

Having placed the non-generic agents, generic agents were placed afterwards, again in a random

fashion. Last, in the experiments we assume that the computational resource o f interest is

memory and that all nodes start with an initial capacity equaling the size of the agents assigned

to them by the initial placement.

4.2 Comparison against the optimal algorithm

In this set of experiments we compare both PRA and Greedy against the optimal solution

derived through exhaustive search. For this reason we used the smaller 7-node network type and

app-10 application. Five different network topologies were generated and five different app-10

applications. Results depict the average o f the combined runs (25 in total).

First we recorded the performance o f the algorithms regarding the quality o f the placement

scheme they reach, as a percentage o f the optimal performance. Assuming that in the initial

placement i n i t communication load is incurred per time unit, that in the optimal scheme o p t

communication load is incurred and that in the placement calculated by the algorithms a l g

communication load is incurred, the percentage o f the optimal performance achieved by an

algorithm is characterized by the ratio: (i n i t - a l g) / (i n i t - o p t) , i.e., how much load reduction an

algorithm achieves compared to the optimal. T a b l e 6 . 2 presents the results for PRA and Greedy

for two different load types: l a v g and I s u m . We also varied the amount of extra free capacity

available at the system nodes. So for instance l a v g (2) , means that each node had just enough

capacity to hold the agents allocated there in the initial placement, plus extra space equaling 2

times the average agent size.

Table 6.2 Solution quality compared to the optimal

lavg(l) lavg(2) lavg (3) lsum(1) lsum(2) lsum(3)

Greedy 81.7% 88.4% 95.4% 86.8% 86.9% 86.9%
P R A 85.5% 100% 100% 89.8% 100% 100%

We can observe from T a b l e 6 . 2 that PRA constantly outperforms the simpler Greedy algorithm.

In fact, the difference between PRA and the optimal scheme is not large when capacity is tight

(plus one extra space for an agent), while with a less tight constraint, PRA achieves the optimal

performance. It is also worth noting that the Greedy algorithm never achieves an optimal

performance.

104

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

Table 6.3 Migrations performed

lavg(l) lavg(2) lavg (3) lsum(1) lsum(2) lsum(3)

Greedy 9.2 9.4 10.4 8.7 10.1 10.1
P R A 8.8 10.0 10.0 9.2 9.5 9.5

We also recorded in T a b l e 6 . 3 the number of migrations performed by each o f the algorithms.

Recall, that the application type used was app-10, involving 10 non-generic agents and roughly

6 generic, for a total o f 16 agents. Results here are mixed, with PRA doing more or less

migrations compared to Greedy depending on the scenario. However, the fact that in certain

cases where PRA achieves the optimal, e.g., l a v g (3) , l s u m (3) , PRA also performs less

migrations compared to Greedy, illustrates even more the merits of our approach.

4.3 Experiments with a larger network

Here we conducted experiments using the larger network case (30 nodes + the monitor node).

Five different network topologies were generated and each experiment depicts the average.

Eight applications o f type app-40 were assumed to be initially placed, while the load model was

I m i x . We plot the percentage o f load reduction achieved compared to the initial placement, i.e.,

(i n i t - a l g) / i n i t . Since the exhaustive algorithm could not produce results within acceptable time,

we only compared PRA against Greedy.

0.8+■*ΙΛO
0.7

o
0.6

4 — QJ0 *-01

0.5

0.4

0.3

0.2

<uu
OJ
a.

0.1

0

Greedy

PRA

1 2 4 8
Surplus capacity

Fig 6.8 Performance of the algorithms against
increased node capacity

μE u
O =5
U -D

4 - QJ O *-
® ts
9 S■H
c
QJ

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

50% 100% 150% 200%

Special resource constraints

Fig 6.9 Performance of the algorithms when
relaxing special resource constraints

F i g 6 . 8 demonstrates the performance of the algorithms as more capacity is added at each node

e.g., the value o f 4 in the x-axis means that each node has capacity equaling the necessary one to

hold the agents initially placed there, plus 4 times the average agent size. The first thing to

notice, is that the achievable saves by both algorithms increase to the surplus capacity at the

105

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

nodes, which is expected since with tighter capacity agents that should have been placed

together might not be able to do so. Notice that PRA manages to reduce the initial load by more

than 60% in all cases and by roughly 10% more compared to Greedy, a fact that further

reinforces the viability o f our approach.

Last, in F i g 6 . 9 we measure the performance o f the algorithms as the special resource

constraints become less tight. Recall from Sec. 4.1 that each non-generic agent group having the

same parent is assumed to require the same special resource. Assuming n g is the group size (5

in our case) then (1 + β) ^ nodes are assumed to provide such a special resource. In the x-axis of

Fig. 10 we vary the constant β by 50%, 100%, 150% and 200% essentially increasing the

number o f possible hosts (special resource wise) from 5 to 7.5, 10, 12.5 and 15.

As expected, with more candidate locations available for each agent, there is an increased

optimization potential compared to the random initial placement. Both PRA and Greedy exploit

this potential resulting in a performance increase (PRA achieves roughly 80% savings by the

end o f the plot). Again PRA outperforms Greedy with their difference becoming small in the

150% and 200% case. In a sense, this result means that as the nodes o f the system become more

homogeneous, Greedy might be a viable alternative, whereas for heterogeneous networks PRA

is a clear winner.

4.4 Discussion

Summarizing the experiments we can state the following: (i) judging from the optimization

margin left by the initial placement, any random solution to ARP will probably be particularly

inefficient; (ii) PRA achieves performance close to optimal particularly if the computational

capacity constraint is not very tight; and (iii) simpler algorithms based on a pure greedy

paradigm cannot achieve equivalent performance compared to PRA, particularly in networks

with a heterogeneity degree as is usually the case in a smart home environment.

We would also like to mention that the increased performance offered by PRA does not involve

a prohibitive runtime cost. All the experiments were run in an ordinary laptop carrying an Intel

Pentium Dual CPU T3200 processor at 2GHz with 3GB of memory. Even in the larger setup of

Sec. 4.3 the running time o f PRA never exceeded a couple o f seconds.

106

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 6

5 Conclusions

In this work we tackled the APR problem by iteratively solving it for node pairs. To do so we

illustrated a graph coloring problem transformation, and proposed an algorithm (AXA) to derive

a solution for the equivalent problem. Through simulation experiments the final algorithmic

scheme (PRA) was found to outperform a simpler greedy approach, while achieving the optimal

solution in many cases. The main differences o f this work against the previous ones are: i) the

application structure is structured as a graph (instead o f a tree); ii) besides the generic agents,

the non-generic ones are migratable provided that the destination nodes have the required non

generic resources.

Although we considered the case o f centralized execution, our core contribution (AXA) is

distributed in nature involving only a node pair. As part o f our future work we plan to

investigate adaptations to the centralized pairing mechanism (PRA) that will allow the

algorithm to execute in a fully distributed manner.

Part o f this work has been published in the following book chapter:

* N. Tziritas, S.U. Khan, T. Loukopoulos, “On Reconfiguring Embedded Application

Placement On Smart Sensing and Actuating Environment”, in Intelligent Decision

Systems in Large-Scale Distributed Environments, Springer, New York, USA, 20011,

ISBN 978-3-642-21270-3, Chapter 11.

107

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tziritas:Nikos.html

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

Chapter 7

Algorithms for Energy-Driven Agent Placement in
Wireless Embedded Systems with Memory Constraints

1 Introduction

In this chapter, we address the basic problem o f placing a single new agent (software

component) in a network o f nodes taking into account both the available memory and remaining

battery o f each node. Priority is given to agent acceptance while maximizing the lifetime o f the

first node that will run out o f battery. As it turns out, the problem of accepting a new agent,

without paying any attention to the communication and battery costs, is quite challenging in

itself. The reason is that even if no single node has enough memory to host a new agent, it may

still be possible to free sufficient space at some node by migrating one or more agents to other

nodes.

Our solutions are centralized, assuming a single point o f entry, which has sufficient computing

and energy resources and decides about agent placement having a global overview of the system

state. For the POBICOS system, this could be a set-top box or a desktop computer which acts as

the coordinator of the home network, keeping track o f the applications deployed in the system

in order to take good agent placement decisions. We assume that the node network topology and

communication traffic between agents is known to the coordinator; in reality, this information

would have to be collected at runtime using some kind o f monitoring protocol - but this does

not change the core o f the problem investigated here.

The rest o f this work is organized as follows: Sec. 2 formulates the agent placement problem;

Sec. 3 presents algorithms that accept a new agent without making any lifetime optimization;

109

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

Sec. 4 gives two greedy reconfiguration algorithms to optimize node lifetime once an agent is

successfully placed in the system; Sec. 5 illustrates two branch and bound heuristics that accept

a new agent while optimizing node lifetime in a “simultaneous” way; Sec. 6 describes how to

implement the defined placements efficiently; experimental evaluation is included in Sec. 7;

finally, Sec. 8 includes the concluding remarks.

2 Problem Definition

2.1 System model

Let the system comprise o f N nodes denoted by n i, 1 < i < N and let m (n) be the memory

capacity o f the ith node measured in abstract data units. The agents to be deployed in the system

are denoted by a k , 1 < k < A , each having size m(ak). A binary N*A matrix P is used to encode

agent placement at nodes as follows: P ik=1 if ak is hosted by ni, 0 otherwise. Obviously, a node

can host agents only up to its memory capacity. The communication between agents is captured

via an A *A matrix C, where Ckw denotes the data units sent on average from agent ak to aw per

time unit. Let R be a N*N*N routing table where an element Rijx denotes the percentage of

traffic from ni to n } that passes through nx. Multiple routing and network topology scenarios can

be captured using R . The model and consequently the algorithms in this work do not make any

particular assumptions on either o f them.

2.2 Battery consumption and node lifetime

Let b (n) be the battery level o f node ni, measured as the data units a node can send before its

battery is depleted. Data transfer consumes the battery o f the source and destination nodes

where the communicating agents reside, but also the battery o f all intermediate nodes that act as

routers. Let β denote the ratio between the cost o f sending and receiving a data unit. So, for

instance if β=0.5 it means that the receiving cost is 50% of the sending cost. We assume that the

cost o f routing is equal to the cost for receiving plus the cost for sending data. For simplicity,

we ignore the communication cost between co-located agents and the cost o f local agent

execution.

110

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

Fig 7.1 An example network

As an example o f how battery consumption is captured in our model, consider the topology

shown in F i g 7 . 1 . Let n 1 send a message o f K data units to n 3 every time unit. Assuming that the

battery levels o f all nodes are B and that β=0.5, n 1 will deplete its battery after B / K time units, n3

after 2B/K t i m e units and n 2 after 2B/3K time units.

More formally, let L i denote the lifetime of ni. This depends on the communication load

incurred at ni, which in turn comprises o f three components: (1) the load due to the data sent by

agents located on ni (let X) (2) the load due to the data received by agents located on ni (let Ti),

and (3) the load due to ni acting as a router (let Zi):

X , = ' t t]p,k (1 - P C
k =1 w=1

Y = Σ Σ Ρ * (i - P) C w k
k =1 w =1

A A

Z = Σ Σ (1 - P k) (1 - P w R C k w \ P , k = 1 λ P yw = 1
k =1 w =1

L = ---------- ^ ----------
' χ , + β γ + (1 + β) 2 ,

Eq. 7.1

Eq. 7.2

Eq. 7.3

Eq. 7.4

2.3 Adding a new agent

The addition of a new agent requires that sufficient memory space be found at some node or be

created through agent migrations. For instance, F i g 7 . 2 shows two nodes with a memory

capacity o f 2 0 units each, which host five agents in total, leaving 2 units o f free space at n 1 and

3 units at n2 . Assume that a new agent of size 5 arrives. Clearly, neither n 1 nor n 2 have sufficient

free space to host the agent. It is however possible to merge the two free memory fragments into

a single bigger chunk, e.g., by swapping a 5 with a 2 and a 3, in order to make space for the new

agent to be hosted at n2 as depicted in F i g 7 . 3 .

111

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

free
space: 2

size: 6

size: 5

size: 7

«3

«2

«1

free
space:3

«6
size: 5

size: 13

size: 4

free free
space: 0 space:0

« 6

«3

1 «2

ni Π2 ni Π2

Fig 7.2 Placement (a) Fig 7.3 Placement (b)

The operations that can be used to alter the agent placement scheme are transfers (migrations)

and deletions. Let Tjk denote the transfer o f ak from n i to n j and D ik the deletion o f ak at ni. In

order for a transfer Tjk to be feasible, the destination n j must have enough free space to hold ak.

Note that, given this restriction, it is not possible to implement the transition shown from the

placement o f F i g 7 . 2 into that o f F i g 7 . 3 , because to perform any agent transfer one must first

perform a deletion. We discussed similar feasibility issues in placement transitions in [78].

Tackling them in combination with memory and energy optimization exceeds the scope o f this

work. Therefore, we assume that the entry point maintains a repository with the code o f all

agents that have been injected in the system. Thus, the suggested transition could be

implemented by deleting a 5 from n2 , transferring a 2 and a 3 from n 1 to n2 , and then transferring a 5

to ni and the new agent (a6) to n2 from the entry point, corresponding to the sequence {D2 5 , T1 2 2 ,

Ti2 3 , Tei5 , Te2 6 } where ne is the entry point.

Deletions incur no cost. On the contrary, the cost for performing a transfer is proportional to the

agent size, affecting source, destination and the intermediate routers. Specifically, the cost

incurred at ni for a transfer T xyk is given by E q . 7 . 5 .

S i (T x y k) = \

m (a k) , i = x

P m (a k X i = y

0 + P) m (a k) R x y , i * x y

Eq. 7.5

Since an agent migration incurs a communication cost, it also affects the lifetime of nodes in the

system. Assuming that at a given point in time the battery level o f ni is equal to b (n) , and that a

series o f transfers and deletions are performed to place a new agent, the lifetime o f n i for the

new system configuration (including the new agent which introduces additional communication

cost due to its interaction with one or more existing agents) is given by E q . 7 .6 .

112

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

b (n ,) - X S , (T„)
£ _ ______ v T xyt perform ed Eq. η β

L ~ X i + β ¥ , + (1 + β) Ζ ,

Notably, our agent migration model ignores for simplicity the cost required for transferring the
state of an agent (considered negligible compared to the agent code size). However, it is quite
straightforward to take this aspect into account too, by splitting an agent’s transfer into two
parts: its status only obtainable by the hosting node, and its code obtainable by the hosting node
as well as the entry point.

2.4 Problem statement

Let Pold be the existing placement of agents on the nodes of the system and Pnew the placement
reached after accepting a new agent (if possible). For modeling purposes we let Pold and Pnew be
(N+1)*(A+1) matrices, where nW1 is the entry point and a A +1 is the new agent to be placed in
the system; whose code is initially available only at node nN+b i.e.,
P n + \ a +\ = 1 λ P a +i = 0 V1 < i < N . Also, the routing matrix R is extended to include n N+1.

The first target of the agent placement problem (APP) is to define a feasible schedule of agent
migrations (transfers and deletions) such that, starting from P old, one reaches a placement P new

N

where a A +1 is placed at some node (besides nN+i), i.e., X P " aWi = 1 . The second target is to
i=1

maximize the lifetime of the first node that will deplete its battery resources, as per E q . 7 . 6 .

Thus, the agent placement problem (APP) can be stated as: Given an initial placement Pold of A

agents at N nodes and a special entry point node nN + 1 that holds the code of all agents as well as
the code of a new agent aA + 1, define a series of transfers and deletions leading to a new
placement Pnew where aA + 1 is placed at some node ni, 1 < i < N , while maximizing min(Zi).
Notably, APP decision is NP-complete even for the first criterion only, i.e., accepting a new
agent with no concern for node lifetimes. We sketch an informal proof by reduction to the Bin
Packing-decision (BP-dec) problem which has the following statement: given A objects of size
s i and bins of size K , is there an assignment of objects to bins using V bins?
P r o o f o f N P - c o m p l e t e n e s s : For each BP-dec instance we build an APP-dec statement as follows.
The network consists of V+1 nodes, the first V of which have capacity K, while nV + 1 acts as the
entry point. Furthermore, for each object in BP-dec there exists a corresponding agent of same
size. In P old the agents exist only at the entry point, while in P new they must be accepted (placed)

113

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

at nodes n to nV. Clearly, a solution for accepting all agents exists if and only if the equivalent

BP-dec has a solution with V bins. Therefore, APP-dec is NP-complete.

3 Algorithms for Accepting Agents

Accepting an agent works in two steps. The first step is to check whether some node has

sufficient free space to host the agent. If so, the agent is placed at that node. In case multiple

candidates exist, the one that results in the longest minimum lifetime as per E q . 7 . 6 is chosen. If

no node has sufficient memory to hold the new agent, the second step is to create enough space

at some node, by performing a series o f transfers and deletions as discussed in Sec 2.3. The

respective heuristics employ a component for solving the knapsack problem through dynamic

programming [56].

3.1 Pairwise checking algorithm (PCA)

The node with the largest free memory is more likely to provide the space needed for hosting a

new agent, by moving one or more o f its local agents to another node. Conversely, if some

agents must be moved away from a node, it is easier to do so if the destination has relatively

ample free space. This is the intuition behind the pairwise-checking algorithm (PCA), the

pseudocode of which is shown in F i g 7 . 4 .

Algorithm PCA openSpace(node: n1, node: n2)

L:=sort nodes in decreasing order of available memory
while (L has at least two nodes)

n1 :=L^head; //most capacious node
n2 :=n1 ^next; //second most
while (n2^NIL && availMem(n1)<requiredSpace)

openSpace(n1, n2);
reinsert(L, n1); reinsert(L, n2);
if (n1 =L^head && n2 =n1 ^next) n2 :=n2 ^next;
else if (n1 =L^head) n2 :=n1 ^next; //n2 changed
else break; //n1 , n2 changed, restart process
endif

endwhile
if (availMem(n1)> requiredSpace) return; //success
endif
if (n2=NIL) delete(L, n1); //list traversed
endif

endwhile

maxSpace:=maxFreeSpace(n1, n2);
bestsol: =current placement;
A:=set of agents located at both n1 and n2;
sol1 :=knapsack(n1, A) and remaining agents at n2;
sol2:=knapsack(n2, A) and remaining agents at n1;
if (maxFreeSpace(sol1, n1, n2) > maxSpace)

bestsol:=sol1 ;
maxSpace := maxFreeSpace(sol1, n1, n2) ;

endif
if (maxFreeSpace(sol2, n1, n2) > maxSpace)

bestsol:=sol2 ;
maxSpace := maxFreeSpace(sol2, n1, n2) ;

endif
implement bestsol ;

Fig 7.4 Pseudocode for PCA

114

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

Specifically, PCA maintains a list o f nodes sorted in decreasing order of their remaining free

space. It takes the first node (with the most free space) and attempts to open even more space by

considering the second node o f the sorted list as a partner for exchanging agents. If enough

space is opened at any o f the two nodes, the algorithm terminates successfully. Else, the first

node is checked against the third node etc., until the last node in the list is checked. Then, the

first node is removed from the list and the process is repeated (starting with the new first node),

until either enough free space is opened at some node or the list is empty. After each attempt to

open space the list is updated with the new free space values (and placements) o f the

participating nodes. If during the process either the first or second node changes position in the

list, the iteration restarts with the new first and second nodes.

Agent rearrangement at each considered node pair (openSpace function) is done with the goal to

maximize the free space at one o f the nodes. This is achieved by solving two different instances

o f the knapsack problem, with the storage capacity o f the first and respectively second node as

the knapsack size; the set o f agents to be placed in the knapsack being the union o f agents

hosted at both nodes, and the benefit of each agent being equal to its size. The two solutions are

compared to each other and with the initial placement, and the one with the largest free space at

a node is chosen.

free
free space: 6

space:3 i-----

a : 6

0 2 . 5

αι: 7

ni n2

05: 13

04: 4

free
space: 1

05: 13

0 1 : 7

free
space: 8

03: 6

02: 5

04: 4

n2

free
space: 9

free
space: 0

02: 5

0 1 : 7

n2

03: 6

05: 13

04: 4

(a) (b) (c)

Fig 7.5 Example of knapsack runs: (a) initial state; (b) run on n 1; (c) run on n 2

As an example, consider F i g 7 . 5 a which continues the example of F i g 7 . 2 but with the capacity

o f « 1 and n 2 being 21 and 23 data units, respectively, leaving 3 units o f free space at n 1 and 6 at

n2. Assume 9 units o f free space are needed to place a new agent. The knapsack run on n 1 (F i g

7 . 5 b) produces a placement whereby agents a 1, a 5 are located at n 1 while a 2, a 3, a 4 are located at

n2, resulting in a contiguous free space o f 8 units at n2. For the run on n 2 (F i g 7 . 5 c) , agents a 3,

a4, a 5 are placed at n2 while a 1, a 2 are placed at n1, leaving a free space of 9 units at n1. Thus, the

placement resulting from the second run is chosen.

115

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

3.2 Greedy bin packing algorithm (GBPA)

The second algorithm follows a bin packing approach. Starting with all nodes initially empty,

GBPA iteratively attempts to place all agents, including the newcomer. In the first iteration,

knapsack is run N times, once for each node, and the solution that leaves the least free space on

a node, i.e., fills a node as much as possible, is chosen. The agents selected by that knapsack run

are placed on that node, and the process is repeated for the rest o f the agents and nodes. The

algorithm continues until either all agents or all nodes have been considered. In the first case the

generated placement can be used to accommodate the new agent whereas in the second case a

solution could not be found. F i g 7 . 6 illustrates the pseudocode of the algorithm.

Algorithm GBPA_____________________________

N:=all nodes;
A:=all agents including the newcomer;
bestspace:=INFTY; bestnode:=NIL; bestagents:=NIL;
while (A and N not empty)

for all nodes ni at N
knapsack(ni, A);
if (free space at ni<bestspace)

bestspace:=free space at ni;
bestnode:=ni;
bestagents:=agents assigned to ni by knapsack;

endif
endfor
remove bestnode from N;
remove bestagents from A;

endwhile
if (A=NIL) implement the assignments produced;
endif

Fig 7.6 Pseudocode for GBPA

One can expect that GBPA will alter the initial placement scheme more drastically than PCA,

because all agents are placed on the nodes essentially from scratch. PCA changes the placement

o f node pairs and starts doing so using the most promising ones (the ones with the largest free

space), hence the initial placement scheme could be left relatively unmodified. However, given

its packing-oriented nature, GBPA is also more likely to reach a solution compared to PCA. For

comparison reasons we also experiment with two well known bin packing algorithms, FirstFit

(FF) and BestFit (BF).

116

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

4 Optimizing Node Lifetime

Once the goal o f placing a new agent is accomplished, one may adjust the placement in order to

maximize the lifetime of the node that will first deplete its battery. The key component o f the

above optimization is an agent swapping process among node pairs that attempts to move agents

that communicate heavily “closer” to each other; ideally on the same node. Following we give

details o f the process and introduce two algorithms that optimize lifetime based on agent

swapping.

4.1 Agent swaps

Given a pair o f nodes and the agents assigned to them, the problem of redefining the placement

so that the minimum node lifetime is increased is tackled as follows. For each agent the benefit

(in node lifetime terms) o f migrating it to the other node o f the pair is calculated. The agent with

the highest benefit attempts to migrate first. If the destination node has sufficient free space, the

migration succeeds. Else, the process attempts to define a group of agents at the destination,

such that if the group is swapped with the agent, enough free space opens. If such a group exists

and the overall placement remains beneficial, the exchange is performed. The process is

repeated for the next most beneficial agent and so on. After a migration attempt is successfully

accomplished, the benefits are updated. The process terminates, when all agents are considered.

F i g 7 . 7 shows its pseudocode.

swapAgents(node: n1, node: n2)

oldlife:=calculate min lifetime //as per E q . 7 .6
for all agents ak in n1 and n2

life[k]:=min lifetime if a k changed node;
benefit[k]:=life[k] - oldlife;

endfor
while (exists ak: benefit[k]>0)

candidate:=max benefit agent;
if (free capacity at opposite node>size of candidate)

place candidate at opposite node;
else

g:=group of agents from opposite node such that enough free space is opened;
newlife:=min lifetime if candidate and agents in g were swapped;
if (newlife>oldlife)

swap candidate and agents in g;
endif

endif
oldlife:=newlife;
recalculate life[], benefit[];

endwhile

Fig 7.7 Pseudocode for swapping agents in a node pair

117

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

4.2 Reconfiguration algorithms

All the reconfiguration algorithms (RAs) we consider, work in a greedy fashion by iteratively

applying the swapAgents method (Sec. 4.1).

g g R A . The first algorithm called greedy global reconfiguration algorithm (ggRA) considers at

each iteration, all node pairs (O (N 2)) and for each o f them computes agent swapping as per Sec.

4.1. The pair for which the application o f swapAgents yielded the maximum benefit with

respect to minimum node lifetime is selected and the induced agent transfers are performed. The

algorithm then continues by checking again the agent swapping at all node pairs, selecting the

best candidate and so on so for, until at some iteration the application o f swapAgents results in

zero or negative benefit at all node pairs. At this point the algorithm stops and the final

placement is produced. F i g 1 . 2 shows the pseudocode o f the algorithm.

Algorithm ggRA

oldlife:=calculate min lifetime //as per Eq. 7.6
found:=true;
while (found)

found:=false;
bestlife:=0 ;
for all node pairs (ni, nj)

sol:=swapAgents(ni, nj);
newlife:=calculate min lifetime of sol;
if (newlife>bestlife)

bestsol:=sol; bestlife:=newlife;
endif

endfor
if (bestlife>oldlife)

implement bestsol;
oldlife:=bestlife;
found:=true;

endif
endwhile

Fig 7.8 Pseudocode for ggRA

g l R A . The second algorithm we consider called greedy local reconfiguration algorithm (glRA)

works in a similar manner to ggRA. Again at each iteration it computes swapAgents for node

pairs. However, contrary to ggRA which must check all node pairs before deciding the best one,

glRA selects the first pair that incurs a positive benefit in swapAgents, perform the required

transfers and reiterates.

Comparing the two reconfiguration algorithms we expect that glRA will be considerably faster

compared to ggRA, without however, achieving the same solution quality.

118

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

5 Accepting Agents and Optimizing Lifetime
Simultaneously

The algorithms presented so far can be used to tackle APP in a two step fashion: first the new

agent is placed at some node, using the algorithms of Sec. 3 to create enough space if necessary;

then some RA to optimize the resulting placement in terms o f node lifetime. The algorithms

presented here are based on the branch and bound paradigm and combine both steps at the same

time.

s B B A . The simple branch and bound algorithm (sBBA) works as follows. Beginning with the

initial placement (excluding the new agent), a solution tree is built. At the first level, all node

pairs are considered, and sBBA runs for each node pair the openSpace process (Sec. 3). Then, it

selects the best candidates, which are expanded to produce the next level o f the tree, by adding

one o f the remaining nodes. F i g 7 . 9 depicts the structure o f such a tree. Whenever a partial

solution (tree node) with i nodes is expanded to produce a partial solution with i+ 1 nodes (e.g.,

from a pair to a triplet) the agent placement is updated by running openSpace for opening space

among the node that was added to produce the expansion and the node with the largest free

space in the previous solution.

skyline

min node lifetime

Fig 7.9 Solution tree with 10 nodes Fig 7.10 Skyline example

sBBA decides which partial solutions (tree nodes) to expand by evaluating them across two

metrics: the maximum free space at a node belonging to the partial solution and the minimum

node lifetime in all nodes of the network. At each tree level, only partial solutions at the skyline

(no other solution is better in both dimensions) of the above two dimensional space are

considered for expansion (see F i g 7 . 1 0) . F i g 7 . 1 1 illustrates the algorithm in pseudocode.

119

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

Algorithm sBBA

P:=all partial solutions consisting of single nodes;
c:=1;//minimum cardinality of a partial solution at P
while (requiredSpace not opened)

while (P contains partial solutions of cardinality c)
pi:=a partial solution of cardinality c;
while (not all nodes considered for expansion)

expand pi with node nj;
for all nodes nx e pi

openSpace(nx, nj) //as per F i g 7 .4

endfor
if (requiredSpace opened)

finalsol:=expanded pi + all nodes £ pi
return;

endif
endwhile
subtract pi from P
add pi’s expansions to P

endwhile
prune from P partial solutions not belonging to the skyline
c:=c+1 ;

endwhile

Fig 7.11 Pseudocode for sBBA

i B B A . The improved branch and bound algorithm (iBBA) follows the same general procedure

with sBBA, nevertheless, it differs in two major ways. The first one concerns the way a final

solution (involving all nodes) is defined, once in a partial solution (tree node) the required free

space is opened. sBBA stops at this point and leaves the placement on the nodes not belonging

in the final solution untouched. So, for instance in F i g 7 . 9 if the partial solution < n 3, n 4, n 2, n 5>

opens the required space, the final solution o f sBBA will consist o f the placement described at

the partial solution for the nodes < n 3 , n 4 , n 2 , n 5> and the initial placement at the remaining nodes

<ni, n6 ,.., n 1 0>. This might be inefficient liefetime-wise, since in the remaining nodes

optimization possibilities might exist. iBBA takes advantage o f such optimization potential by

defining the final solution as follows. It adds to the partial solution e.g., <n3 , n4 , n2 , n5> one by

one all remaining nodes in a random order (in the example 6 in total). At each such addition

swapAgents (F i g 7 . 7) is run between the agent that is added and the existing agents at the partial

solution.

iBBA also differs in another way compared to sBBA. Namely, while sBBA stops if a partial

solution involves the desired free space, iBBA continues exploring further possibilities. To do

so, the partial solution that opened the desired space, as well as all its successors do not take

part in the skyline criterion. To bound the running time, iBBA stops after k such alternative

solutions are defined and implements the best among them.

120

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

6 Implementing a New Placement

A subtle issue concerns how the computed placements are actually implemented. Recall that all

algorithms start from an initial placement P old and try to define a new one P new that includes the

new agent. It is possible to trace the execution steps o f the algorithms to perform the

corresponding agent migrations, albeit at a high implementation cost. This is especially true if

the algorithms run as a “pipeline”, e.g., ggRA on top o f GBPA, since the placement produced

by the algorithm that runs first, will be altered afterwards. Instead, we tackle the implementation

of P new as a separate problem, which can be stated as: given P old and the P new derived by the

algorithm(s) of Sec. 3-5, perform a series o f agent transfers and deletions so that P new is reached

with the lowest possible cost.

In [78] we explored various algorithms for a similar problem where multiple copies must be

created for a given object. Here we adopt the following variation. Starting from the set of all

required agent migrations (agent ak must move to n i if P '° ° d = 0 and P ”™ = 1), a migration is

picked randomly and performed by transferring the agent code from a suitable source. Two

sources may exist for fetching the code o f an agent: the node that hosted the agent in P old

(provided the agent has not been deleted), and the entry point which keeps a copy of all agents.

If both options apply, the algorithm selects the source corresponding to the transfer path that

contains the node with the longest minimum lifetime. In case the destination does not have

enough free space, the algorithm randomly deletes one or more agents that must not be hosted at

that node according to P new. Finally, having performed all the required transfers, to reach P new,

the algorithm deletes any superfluous copies of agents (at their old hosts).

7 Experiments

The presented algorithms were evaluated through simulations for a network o f 31 nodes (one

being the entry point). A total of 5 different networks were generated as follows. The nodes

were randomly placed in a 100x100 2D plane and assumed to be in range o f each other if their

Euclidean distance was less than 30. Based on the resulting connectivity graph, the minimum

(hop-wise) spanning tree was defined as the routing topology. Nodes were assumed to have a

battery lifetime enough to transfer/receive (both costs assumed equal) 1GB o f data (roughly the

case o f an Imote2 platform supported with 3 AAA alkaline batteries [1]) and 256KB of

121

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

memory. The size o f agents varied uniformly between 10KB and 150KB (unless stated

otherwise). Each agent communicated with 5 other randomly selected agents, generating a load

uniformly distributed between 1 0 and 1 0 0 bytes per time unit per agent.

In the following experiments we discuss the performance of PCA, GBPA, sBBA, iBBA, BF and

FF, both as standalone algorithms and in conjunction with ggRA and glRA (denoted as

PCA+ggRA etc.). Unless otherwise stated, the maximum number o f final solutions explored by

iBBA was set to 5. Each experiment was repeated 4 times per generated network (total 20

times), each with a different agent setup and results were averaged. As a reference, we also

include results obtained for a naive algorithm (RAND) which randomly places a new agent as

long as there is a node with enough space to host it.

7.1 Performance on acceptance criterion

Starting from an empty system, we investigate the scenario where one new agent arrives every

100 time units, for 500 agents. The algorithms do not stop when the first agent is rejected, but

continue until all agents have been considered (in their arrival sequence).

T a b l e 7 .1 shows the sequence number (average o f 20 runs) of the first agent that was rejected by

each algorithm. It shows that RAND, BF and FF start dropping agents earlier on, with a value

between 92 and 93, while BBAs, GPBA and PCA are able to place roughly 4 more agents

before rejecting the first one. Among them, GBPA has the best performance with the relevant

differences being small. This experiment was also performed with all the algorithms’

combinations with ggRA and glRA. Results showed that the application o f RAs had a negligible

(mostly positive) effect to the acceptance metrics o f all algorithms but RAND, whereby it

results in performance deterioration. This is because RAND never changes the placement of

agents, hence cannot “repair” possible fragmentation o f free space caused by RA in its attempt

to optimize node lifetime.

T a b l e 7 .1 also shows the number o f agents that were rejected, while the total free fragmented

space was greater than their size (tentative wrong rejections). Also, the ratio o f the respective

agent sizes to the total free memory at the point of rejection is shown, as a measure o f difficulty

for the placement that failed. It can be seen that GBPA is almost optimal with only 1 agent

being a tentative wrong rejection for the total o f the 20 runs (0.05 average) while the total

available space was barely enough to host it (0.97 ratio).

122

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

Table 7.1 Acceptance metrics

first
rejection

tentative wrong
rejections

agent size /
available memory

R A N D 92.5 298.9 0.53
R A N D +ggR A 88.05 318.75 0.48
R A N D + glR A 88.4 300.35 0.49
PC A 96.3 4.15 0.89
G B PA 96.6 0.05 0.97
sB B A 96.05 30.7 0.78
iB B A 96.3 21.25 0.81
BF 92.65 294.3 0.53
FF 92.7 300.1 0.52

To further evaluate the algorithms concerning their acceptance capability we performed a

“domination” test. An algorithm A is said to dominate another algorithm B if any sequence of

agent arrivals that is accepted by B, is accepted by A as well. In order to test algorithm

domination, we recorded in the previous experiment all the agents accepted by each algorithm.

Recall that the simulation didn’t terminate upon an agent’s rejection but continued until all 500

agents were considered. Therefore, different algorithms accepted (most likely) different agents

in each o f the 20 runs conducted. We used the agents accepted by an algorithm as input to the

others and recorded whether the sequence was accepted or not.

T a b l e 7 . 2 gives the percentage o f the sequences that were accepted by another algorithm. Table

columns depict which algorithm’s accepted agents were used as an input sequence to the

algorithm mentioned in the relevant row. Each value represents the result o f all 20 such

sequences. So, for instance PCA accepted only 15% (0.15 value in the relevant cell) of the 20

sequences involving the agents accepted by GBPA, while all algorithms obviously have a

domination percentage o f 1 against themselves. RAND was excluded from the experiment since

it was dominated by all others.

Table 7.2 Domination percentage

PCA GBPA sBBA iBBA BF FF

PCA 1 0.15 0.7 0 . 6 1 1

GBPA 0.95 1 0.95 0.95 0.95 1

sBBA 0.35 0.05 1 0.5 1 1

iBBA 0 . 2 0.05 0.55 1 1 1

BF 0 0 0 0 1 0.25
FF 0 0 0 0 0.75 1

123

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

The first thing to notice is that no algorithm dominates absolutely all others. The second thing is

that GBPA offers the highest domination ratio accepting 19 out of 20 sequences corresponding

to PCA and BBAs (0.95 value in the table). A peculiar result is that while BF and FF are totally

dominated (value of 1) by PCA and BBAs, GBPA fails to accept one o f the BF sequences (0.95

value). By delving into the experimental data, we found out that there is only one agent GBPA

rejected, which agent is accepted by PCA, BBAs and BF. Nevertheless, the domination rate of

GBPA is still the highest. Furthermore, what is more important is to observe the domination of

the other algorithms versus GBPA. PCA accepts only 15% of GBPA’s sequences, while BBAs

accept only 5%. This reinforces our intuition in Sec. 3.2 that GBPA is the most powerful

algorithm in opening space to accommodate new agents. T a b l e 7 . 2 also shows PCA coming

second followed by BBAs, while BF and FF being particularly bad, unable to accept any o f the

remaining algorithms’ sequences.

Table 7.3 Average algorithm behavior in the domination test

domination
percentage rejected agents size of rejected

agents

PCA 0.69 0.31 10.15
GBPA 0.96 0.04 5.96
sBBA 0.58 0.42 17.31
iBBA 0.56 0.46 19.97
BF 0.05 2.53 233.7
FF 0.15 2 . 2 2 224.43

T a b l e 7 . 3 records the average domination percentage o f an algorithm against the sequences of

all others (5*20=100 total), together with the average number o f rejected agents per sequence

and their size. One thing that deserves explanation is the fact that iBBA has a slightly smaller

average domination behaviour compared to sBBA. This is an acceptable tradeoff, since iBBA

results in placements more optimized towards energy efficiency against sBBA. Overall, T a b l e

7 . 3 confirms the previous remarks concerning the relevant algorithm performance on accepting

agents, i.e., GBPA is first, followed by PCA, followed by BBAs, while BF and FF are

particularly bad with the latter being better than the first. Henceforth, RAND, BF and FF will be

mostly omitted from the experiments.

124

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

400

<Λc
ο
uω
αΓi—
CUDc
o

<u>

350

300

250

2 0 0

150

1 0 0

■ PCA
□ GBPA
□ sBBA
□ iBBA

<u
0

10..50 10..100 10..150 50..150 100..150
Agent size

Fig 7.12 Number of tentative wrong rejections for various agent sizes

As a last test for the ability o f the algorithms to accept a newcomer agent, F i g 7 . 1 2 shows the

number o f tentative wrong agent rejections for 5 different agent size (uniform) distributions. In

the cases where agent size could take both small and large values (10..100 and 10..150

distributions), all algorithms had almost zero tentative wrong rejections. This is a particularly

encouraging result indicating that the algorithms achieved the optimal performance. In the

10..50 case the best performance was by GBPA followed by PCA. For the 50..150 and 100..150

distributions, where the maximum agent size is greater than half node capacity, a significant

number o f tentative wrong rejections appear, their number increasing with the average agent

size. This behaviour is expected because the problem of creating enough space to fit an average

sized agent becomes harder. GBPA either outperforms or is equal to the rest, which further

confirms its merits in accepting agents. Notice, that the high rejection rate observed is a bit

misleading. In the 100..150 case all algorithms left a total (at all nodes) free space o f merely

179.95 i.e., enough to place one additional agent with the largest size, while in the 50..150 case

the total free space left varied from between 64 (GBPA) and 88.7 (sBBA), i.e., enough to store

one agent o f the smallest size.

7.2 Performance on energy criterion

In order to evaluate the algorithms in terms o f maximizing the lifetime of the first node that

depletes its battery, we stop our simulation when the first agent is rejected by some algorithm

(on average at the 96th agent). At that point, all placements are guaranteed to contain the same

125

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

(communicating) agents, and thus can be fairly compared as to the energy consumption

criterion.

F i g 7 . 1 3 shows the minimum node lifetime for GBPA, PCA, sBBA, iBBA and their glRA

variants. When executed as standalone, iBBA achieves the best results with a performance

difference o f more than 20% compared to the second best which is sBBA. Standalone PCA

outperforms GBPA by roughly 12.7%, however, both algorithms result in marginally inferior

solutions agenst iBBA and sBBA (by more than 141%). These results confirm the premise of

BBAs, i.e., that they can tackle both acceptance and energy optimization criteria at the same

time. Next, observe that the application o f glRA considerably improves the performance o f all

algorithms by between 30.8% in iBBA and 227% in PCA. The best combination is

sBBA+glRA, with iBBA+glRA coming second, PCA+glRA third and GBPA+glRA last. An

interesting thing to notice is that standalone iBBA outperforms GBPA+glRA by 30.1% and

loses to PCA+glRA by 13%. As it will become apparent in Sec. 7.3, the application of glRA

affects significantly the running time o f the algorithms. Therefore, when a compromise between

running time and energy efficiency is needed, standalone iBBA is a valid choice. Finally, we

would like to mention that the apparently low performance o f GBPA, even after the application

o f glRA is rather expected since GBPA redefines the total placement from scratch each time it

accepts an agent, therefore it makes it harder for glRA to optimize the placement and also

requires more (costly) migrations to do so.

Fig 7.13 Minimum node lifespan Fig 7.14 Average node battery consumption per
time unit

To further characterize the algorithms in terms o f energy efficiency, F i g 7 . 1 4 shows the average

battery consumption at each node per time unit, measured from the time when the first agent is

accepted up to the time where the first node runs out o f battery. Again, iBBA achieved the best

performance among standalone algorithms, while sBBA+glRA was the best combination with

126

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

iBBA+glRA following closely. This means that BBAs and their combinations are not only

superior in maximizing the lifetime of the first dying node, but also in minimizing energy

consumption across the whole network (iBBA had 32.3% less consumption against PCA and

42% against GBPA).

7.3 Other experiment and metrics

Thus far we presented results with glRA as the reconfiguration algorithm. F i g 7 . 1 5 shows the

relevant performance differences between ggRA and glRA when applied over PCA, GBPA,

sBBA and iBBA. Concerning the main energy related metrics, i.e., min node lifetime and

average battery consumption at all nodes, ggRA gives mixed results. For instance, BBAs+ggRA

is better at improving the lifetime o f the first node that dies compared to BBAs+glRA (by less

than 10%), while when applied over PCA and GBPA the results are the opposite, i.e., the glRA

combination is superior (negative values in the plot). However, glRA is faster than ggRA,

regardless o f the algorithm applied to, and is therefore a more viable option.

50

40

30
00
to+■»
S 20u
0)Q.

10

0

-10
pcaI

L
GBPA

□ running time

□ min lifetime

■ avg. consumption

■
sBBÂ J iBBA^ |

-20

Fig 7.15 Comparison between ggRA and glRA

Next, we evaluate iBBA’s performance with regards to the number o f the final solutions (that is,

the k variable we are referred to in last paragraph o f Sec. 5) the algorithm is allowed to explore

before terminating. F i g 7 . 1 6 plots the achievable node lifespan, while F i g 7 . 1 7 plots the average

running time for accepting/rejecting a single agent o f iBBA. Concerning the later we can notice

that it increases linearly to the number o f final solutions the algorithm outputs, while

127

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

performance on the node lifetime criterion (F i g 7 . 1 6) exhibits a knee. The results mean that

after a certain number o f final solutions are achieved, the relevant performance gains by

continuing the exploration o f the solution space are small and might be offset by the

corresponding increase in the running time o f the algorithm. In all our experiments we used the

value o f the knee, i.e., 5 final solutions as a stopping criterion o f iBBA.

3.50E+07

3.00E+07

2.50E+07W
2.00E+07

<u
ε 1.50E+07H

1.00E+07

5.00E+06 * 1

0.00E+00

—0 — iBBA

1 5 10 15 20

Number of final solutions

Fig 7.16 Minimum node lifespan achieved by
different iBBA versions

70

60

50

S 40
a; in

30

20

10

0

1 5 10 15 20

Number of final solutions

Fig 7.17 Running time of different iBBA versions

Last, we discuss two more performance parameters. The first parameter is the communication

cost incurred by the algorithms due to agent migrations, which is essentially the overhead for

achieving the resulting placement. F i g 7 . 1 8 shows the number o f migrations and F i g 7 . 1 9 the

percentage o f migration cost in the total communication load (including agent-level traffic) for

three different battery levels: 1, 0.5 and 0.1 GB. In all cases the placement overhead (F i g 7 . 1 9)

increases as the battery level decreases, because nodes (and agents) die sooner and as a

consequence the system cannot amortize the agent migration cost paid. glRA variants incur

significantly higher overhead compared to standalone algorithms due to the increased number of

migrations performed; more than an order o f magnitude compared to standalone algorithms as

shown in F i g 7 . 1 8 . Among the standalone algorithms GBPA is the most expensive migration

wise. This confirms the assumption that bin packing alters considerably the existing placement,

making it much harder for RAs to optimize it.

128

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

M
ig

ra
tio

ns

Chapter 7

■ PCA ■ PCA (gIRA ■ GBPA

GBPAigIRA ■ sBBA IsBBAig lRA

1 (GB) O.B(GB) O.l(GB)
Battery

Fig 7.18 Number of migrations

Battery
Fig 7.19 Placement overhead as a percentage of total network load

10000

■ PCA

GBPAigIRA

■ iBBA

■ PCAigIRA

■ sBBA

BBAigIRA

■ GBPA

sBBA+gIRA

Node capacity
Fig 7.20 Average running time (msecs) for accepting/rejecting a single agent

129

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

Finally, we measure the running time of the algorithms. F i g 7 . 2 0 presents the average time it

took for the algorithms to accept (reject) one agent, measured for three distinct node sizes:

256KB, 512KB, 1024KB. Note, that the running time o f most algorithms increases for larger

node sizes (more agents accepted). Among the standalone variants, PCA is the fastest, with

GBPA second and sBBA, iBBA following in that order. It is interesting however to notice that

iBBA is faster compared to all algorithms that achieve comparable performance on the lifetime

metric with it, i.e., glRA variants (F i g 7 . 1 3) . Overall glRA increases the running time of all

standalone versions by between 1 and 3 orders o f magnitude. Nevertheless, the actual values

even for the slowest combination (about 3 secs for GBPA+glRA) are still small enough for a

real-world system.

7.4 Discussion

Summarizing we can state the following: (i) the classic bin packing solutions BF and FF, as well

as the random algorithm have noticeably inferior performance compared to GBPA, PCA and

BBAs, accepting fewer agents; (ii) GBPA is better in accepting agents than PCA and BBAs but

has higher running time and is less able to save energy; (iii) BBAs are the most energy efficient

algorithms, achieve comparable (but smaller) to GBPA and PCA performance on the agent

acceptance criterion, but have higher running times compared to them; (iv) among BBAs, iBBA

is slower compared to sBBA, but achieves considerably better performance on the lifetime

criterion; (v) PCA is a tradeoff between GBPA and BBAs concerning acceptance and energy

management, while being considerably faster compared to them; (vi) RAs improve the energy

efficiency o f all algorithms without affecting the acceptance criterion much, at the expense o f a

higher running time; (vii) among the RAs, glRA offers the better trade-off between running time

and solution quality.

Thus, whenever the acceptance criterion is the absolute determining factor GBPA (and possibly

GBPA+glRA or GBPA+ggRA) is the algorithm to choose, whereas if energy efficiency is

equally important iBBA (and possibly sBBA+glRA) offer viable alternatives. Finally, PCA (and

possibly PCA+glRA) is a good choice whenever a decent trade-off between acceptance, energy

optimization and computation time is required.

130

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 7

8 Conclusions

In this chapter we introduced the agent placement problem (APP) which has two different

components: (i) finding/creating enough space for hosting an agent and (ii) optimizing energy

consumption due to agent communication and migration. Heuristics were proposed for tackling

the two performance aspects both independently (GBPA, PCA, RAs) and simultaneously

(BBAs). Through simulated experiments, different tradeoffs were identified (BBAs offered a

particularly promising one), while all algorithms outperformed two well known bin packing

heuristics (best and first fit) as well as random placement. In previous works the objective

function was the reduction o f the energy spent over the network, while this chapter does not

take this optimization into account at all.

Part o f this work has been published in the following workshop and journal proceedings:

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Agent Placement in Wireless

Embedded Systems: Memory Space and Energy Optimizations,” in Proc. 9th Int.

Workshop on Performance Modeling, Evaluation, and Optimization ofUbiquitous

Computing and Networked Systems (P M E O 2 0 1 0) , I P D P S w o r k s h o p s .

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Algorithms for energy-driven

agent placement in wireless embedded systems with memory constraints,” S i m u l a t i o n

M o d e l l i n g P r a c t i c e a n d T h e o r y (E l s e v i e r) , 2011

131

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

Chapter 8

Agent Manager System Implementation and
Evaluation

1 Introduction

POBICOS [91] is a platform that focuses on applications running on top o f a networking system

consisting o f cooperating objects in the field of wireless embedded systems. An application

consists o f a number o f mobile code entities (called agents) structured in a tree-like manner. The

main targets o f POBICOS is to provide: i) a user-friendly environment to install/un-

install/monitor applications without needing the presence o f an expert; ii) an opportunistic

programming model enabling the application programmer to write an application of its own

preference without knowing in advance which objects will host the application in question, and

also the connectivity graph o f that objects.

The core o f this project is the middleware lying between the application(s) and the operating

system (TinyOS). Specifically the most significant components o f the middleware are shown in:

i) the r u n t i m e which is responsible for executing the code of an agent; ii) the a g e n t m a n a g e r

whose functionality is to enable the interaction between agents either they are co-located or not;

iii) the c o d e t r a n s p o r t which is invoked by agent manager to download agent binaries; iv) the

n e t w o r k a b s t r a c t i o n which is responsible for the communication between objects. In the sequel

we give a coarse-grained description about the basic functionalities o f network and runtime

component which are central to the agent manager functionality.

133

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

The networking layer provides two different messaging services: reliable and best-effort. In the

case o f former, a datagram is (re-)transmitted from the source node to the destination one, till

either an acknowledgment travels back from the destination node to the source one to confirm

that the datagram has been successfully delivered; or the maximum number o f retransmissions

has been reached, where the delivery is declared unsuccessful. Datagram ordering and filtering

o f duplicates is handled by that service. As far as the best-effort service is concerned, a

datagram is sent towards the destination node without retransmission attempts, and therefore

without guarantees that the datagram will be ever delivered. This service provides neither

ordering nor filtering o f duplicates.

The agent manager interacts with the runtime component through commands/events in order for

the former to: i) issue a request (via a command) about the allocation and removal o f an agent

instance; ii) request the suspend/resume of the execution flow o f an agent instance when needed

(e.g. performing an agent migration); inquire about locally available (generic and non-generic)

resources and the local node descriptor.

Fig 8.1 Key middleware components and interactions for supporting agent mobility.

2 System Implementation

The POBICOS middleware is developed for TinyOS v2.1 running on Crossbow iMote2 nodes

at 104MHz. Thanks to a component that provides transparent access to external memories (e.g.,

Flash), the core RAM requirements can be kept below 8 KB, which makes it possible to port the

134

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

middleware to more resource-constrained devices. Wireless communication is via an external

ZigBee modem from the Z430-RF2480 demo kit o f Texas Instruments [110].

We should notice that AGE has been developed into the agent manager, besides the protocols

elucidated further down.

2.1 Data types and data structures

This section gives an overview of the data types and data structures o f the POBICOS

middleware that are relevant for the purpose o f agent management. Data structures are specified

in a high-level fashion, without focusing on any implementation details.

2.1.1 Agent identifiers
The identifiers o f agents are 4-byte unsigned integers. The most significant 2 bytes are set equal

to the address o f the node where the agent is created. The least significant 2 bytes are assigned

the value o f an agent seed number, which is incremented each time a new agent is created. This

number is stored in persistent memory to guarantee uniqueness o f agent identifiers despite node

reboots.

2.1.2 Agent descriptors
For each locally hosted agent, a descriptor is used to keep all relevant information, such as the

agent’s identifier, the node address and identifier o f its parent, as well as the node addresses,

identifiers and group identifiers o f its children. Agent descriptors are stored in volatile memory.

When a node reboots, this information (along with all runtime information associated with

agents) is lost. (Note: POBICOS agents are not persistent.)

2.1.3 Creation request descriptors
For each agent creation request issued by a locally hosted agent, a descriptor is used to keep all

relevant information, such as the identifier o f the agent that issues the request, the parameters of

the request, the remaining lifetime of the request, and the current state o f the request. Creation

request descriptors are stored in volatile memory. When a node reboots, this information is lost.

2.1.4 Message queues, sequence numbers, epoch numbers
For each node, a message queue is maintained where agent-level (and other special) messages

are placed for transmission in FIFO order over the network. Each queue is associated with a

local sequence number that is increased for each message sent via the queue, and with a remote

135

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

sequence number that is updated each time a message from that node is received. Message

queues and their sequence numbers are stored in volatile memory, hence do not survive reboots.

A message queue is initialized when the node reboots or the respective remote node becomes

“unreachable” (according to the network abstraction layer), in which case both the local and

remote sequence numbers are reset to 0. To let remote nodes infer such resets, each message

queue is also associated with a local and remote epoch number. The local epoch is attached

(together with the local sequence number) to all messages which must be delivered in FIFO

order. The local epoch number is stored in persistent memory and increases each time the node

reboots. It is also increased when a remote node is declared “unreachable”, in which case the

epoch o f the corresponding message queue is updated (the epoch numbers of other queues are

left intact). The epoch numbers o f remote nodes do not need to be stored in persistent memory.

They are initialized when the first a message is received from that node and are updated when a

message arrives carrying an epoch that is greater the previously recorded value (indicating a

reset in the remote sequence numbering).

2.1.5 Report lists
For each report list created by a local agent, a corresponding data structure is maintained for

storing and retrieving reports. These data structures are all kept in volatile memory. When a

node reboots, this information is lost.

2.2 Host Candidate Discovery Protocol

This protocol is used to discover the nodes that are candidates for hosting an instance o f a given

agent type, subject to size constraints and (for non-generic agents) the non-generic resource

requirements and the object qualifier expression provided by the application.

2.2.1 Description
To find candidates for hosting an instance o f a given agent type, the middleware broadcasts a

H o s t P r o b e R e q u e s t message to the POBICOS network and waits for H o s t P r o b e R e p l y messages

for a certain amount o f time. H o s t P r o b e R e q u e s t messages carry information about the agent

type, size and non-generic requirements as well as the object qualifier specified by the

application and the application’s priority. Due to the limited size o f broadcast messages, it may

be possible to sent only part o f the non-generic requirements and/or object qualifier, in which

case this first phase will produce “inaccurate” results (i.e., false positives).

136

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

Each H o s t P r o b e R e p l y received is added in a candidate list. When the waiting time elapses, the

candidate list is traversed to find the “best” candidate. Notably, there is no need to wait for the

entire waiting time to elapse, and waiting can be terminated as soon as a “good enough”

candidate replies. This is implementation specific.

When the middleware receives a H o s t P r o b e R e q u e s t message, it checks whether the locally

available generic computing resources are sufficient to host the agent’s code and static data.

Also, if the agent type is non-generic, it checks whether the local node matches the object

qualifier expression and meets the corresponding non-generic resource requirements; also that

there is no other locally hosted non-generic agent o f equal or higher priority that employs a

conflicting non-sharable primitive. If all checks are successful, a H o s t P r o b e R e p l y is sent back to

the sender o f the request, carrying the matching result (this can be further processed to pick the

“best” reply). Notably, a reply serves just as a hint, i.e., the replying node does not reserve any

local resources.

The H o s t P r o b e R e q u e s t message is broadcast as an unreliable datagram while the

H o s t P r o b e R e p l y message is sent as a reliable datagram, using the corresponding service o f the

networking abstraction layer. A simple sequence numbering scheme is used to verify that a

H o s t P r o b e R e p l y message corresponds to the most recently sent H o s t P r o b e R e p l y message.

2.2.2 Message sequence diagram
The prototypical interaction for this protocol is as follows:

137

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

Fig 8.2 Message diagram for the Host Candidate Discovery protocol

2.3 Agent Creation Protocol

This protocol is used to create a new agent instance on a (specific) candidate node.

2.3.1 Description
Having picked a candidate for hosting an agent to be created (see Host Candidate Discovery

Protocol), the middleware sends an A g e n t C r e a t i o n R e q u e s t message to it and waits for an

A g e n t C r e a t i o n R e p l y message. If the reply is positive, the child information o f the local parent

agent is updated and the agent is notified accordingly about child creation. If the reply is

negative, the next candidate (if any) is considered.

When the middleware receives an A g e n t C r e a t i o n R e q u e s t message, it checks that the object

qualifier (if any) matches against the local object descriptor. Then, it fetches the code (if not

already locally available) and the configuration settings for that agent type. Finally, it checks

whether the local generic computing resources are sufficient to host the agent type, and, if the

agent type is non-generic, whether the local node meets the corresponding non-generic resource

requirements, and that there is no other locally hosted non-generic agent o f equal or higher

priority that employs a conflicting non-sharable primitive. If these checks are successful, a new

138

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

agent o f the requested type is created locally (via calls to the runtime) and an

A g e n t C r e a t i o n R e p l y message is sent back to the sender o f the request carrying the identifier of

the newly created agent. If any o f these checks fail or the transfer of the agent code or its

configuration settings fail or the runtime failed to instantiate the requested agent instance, the

value zero (0) is returned instead o f an agent identifier.

The A g e n t C r e a t i o n R e q u e s t and A g e n t C r e a t i o n R e p l y messages are sent as reliable datagrams

using the corresponding service o f the networking abstraction layer (it is assumed that the entire

information o f a request fits within a reliable message; note that requests do not carry the non

generic requirements since these are extracted locally by the host, once the agent code is

fetched). A simple sequence numbering scheme is used to verify that an A g e n t C r e a t i o n R e p l y

message corresponds to the most recently sent A g e n t C r e a t i o n R e q u e s t message.

While waiting for a reply from a node, P i n g messages are sent periodically to it in order to

check its operation, making sure that it (still) makes sense to wait for a reply. If the network

reports that it was unable to deliver a P i n g message to the destination, the next candidate (if

any) is considered.

139

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

2.3.2 Message sequence diagram
The prototypical interaction for this protocol is as follows:

Fig 8.3 Message diagram for the Agent Creation protocol (ping messages are not shown)

2.4 Heartbeat Protocol

This protocol is used to refresh the lifetime o f child agents as well as to detect the fact that an

agent (parent or child) is unreachable.

2.4.1 Description
The liveness o f agents is explicitly confirmed by periodically transmitting a H e a r t b e a t message

from the parent to its children. The middleware does this automatically, without any explicit

request from the application.

When the middleware receives a H e a r t b e a t message from the parent of a local agent, it extends

the lifetime o f that agent by a certain amount o f time. If the lifetime of a local agent expires, i.e.,

140

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

a “sufficiently” long period o f time passes by without having received a heartbeat from its

parent, the agent is declared orphan. Consequently it is finalized and removed.

If the middleware receives a H e a r t b e a t message for an agent that is not hosted locally, a

corresponding N A c k message is sent back to inform the sender that the agent does not exist,

carrying some information about its non-existence, if possible. When the middleware receives a

N A c k message for a child o f a local agent, it notifies the agent that the child is unreachable.

H e a r t b e a t messages are sent as reliable datagrams whereas N A c k messages are sent as

unreliable datagrams. To avoid causal inconsistencies, N A c k messages are delivered in a FIFO

manner behind agent-level messages and thus carry corresponding sequencing information

(epoch and sequence numbers). The sequencing logic is discussed in the sequel, as a part o f the

agent-level message transport protocol.

2.4.2 Message sequence diagrams
The prototypical interaction for this protocol is as follows:

Fig 8.4 Message diagram for the Heartbeat protocol

2.4.3 Node-level heartbeats
A single or multiple local agents may have created several children on the same node. To avoid

sending several heartbeat messages to the same node, each heartbeat (or application-level

message) sent from a local parent to a child on a node also serves (i) as a heartbeat from that

141

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

parent to any other o f its children that happen to be on that node, as well as (ii) a heartbeat from

all other local parents to all o f their children on the same node.

2.5 Agent-level Message Transport protocol

This protocol is used to transport (reliable and unreliable) agent-level messages (commands and

reports) as well as negative acknowledgement messages.

2.5.1 Description
For each (reliable or unreliable) agent-level message, the middleware prepares a corresponding

A g e n t M s g message and queues it up for transmission towards the node where the destination

agent is hosted.

An A g e n t M s g message also serves as a heartbeat (see previous section). This means that the

recipient is expected to generate a N A c k message if the destination agent does not exist, just like

for a H e a r t b e a t message (see heartbeat protocol). Note that in this case, a N A c k message may be

issued towards a parent (indicating, as in the heartbeat protocol, that the child does not exist) as

well as towards a child (indicating that the parent does not exist).

2.5.2 Sequencing
To achieve FIFO delivery, every message queue is associated with local and remote sequence

number. The local sequence number is incremented each time an A g e n t M s g (or N A c k) message

is added in the queue, and the sequence number is also attached to the message itself.

The queue is traversed to forward messages to the network layer for transmission. Message

transmission is suspended when a reliable message is handed over to the network layer, until its

delivery is explicitly confirmed or the network layer reports a problem (see failure handling

below).

When the middleware receives an A g e n t M s g (or N A c k) message it checks its sequence number

and accepts it only if it is greater or equal to the next expected sequence number for that

(remote) node. Else the message must be dropped.

Due to the transmission policy on the sending side, it is impossible for an unreliable message to

overtake a reliable message. As a consequence, only unreliable messages may arrive out of

order, and can be dropped without violating the application-level delivery semantics.

Nevertheless, a clever implementation can buffer out o f order (unreliable) messages and wait

for “late” messages to arrive.

142

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

A g e n t M s g messages are sent as reliable or unreliable messages, as requested by the application.

N A c k messages are also sent as unreliable datagrams. To avoid causal inconsistencies, N A c k

messages are queued behind agent-level messages and thus carry corresponding sequencing

information.

2.5.3 Network and node failures
When the network reports that it was not possible to successfully transmit a reliable datagram,

the corresponding remote node is declared “unreachable” . In this case, messages queued up for

transmission towards this node are dropped. Also, all agents known to be hosted on that node

are declared “unreachable”. If such an agent is the father o f a local agent, the child is considered

orphan and is terminated/finalized and removed. Else, if such an agent is the child o f a local

agent, the child is removed from the child list and the agent is notified about the child being

“unreachable”.

To deal with network failures and reboots, the middleware maintains a local epoch number.

Each message queue is associated with a local and remote epoch number. When the middleware

initializes (the local node boots) it increments its epoch number and assigns this value to each

message queue. When a remote node is declared unreachable, the local epoch is incremented

and assigned to the local epoch of the corresponding message queue while the local sequence

number is reset to 0. The local epoch number associated with a message queue is attached

together with the sequence number to all A g e n t M s g and N A c k messages sent via that queue.

When the middleware receives from a node a message with a smaller than expected epoch

number, it drops it. Messages with the expected epoch number are processed as usual (see

sequencing). Finally, if a message with a greater than expected epoch number is received, the

middleware knows that the remote node has declared the local node as unreachable, handles this

case appropriately (as if it had also declared that node unreachable, but without increasing the

local epoch), updates the epoch for that remote node and resets the corresponding sequence

number to 0 .

Notably, this approach allows a node to safely declare another node as unreachable, using

whatever criterion is considered more realistic, without causing any serious inconsistency even

if the node is actually alive. The price for doing this too “eagerly” is that nodes (and agents) can

be declared as unreachable even if this is not the case in reality. It is up to the middleware

implementation to decide when to declare a node as unreachable, e.g., when the network fails to

deliver a reliable message to the destination node (after some number o f attempts or a timeout).

143

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

2.5.4 Message sequence diagram
The prototypical interaction for this protocol is as follows:

Fig 8.5 Message diagram for the Agent-level Message Transport protocol

2.6 Agent Migration Protocol

This protocol is used to move a locally hosted (generic) agent to a specific (given) remote node

in a transparent fashion. The protocol works in multiple phases: (i) acquisition o f the agent code

and configuration settings; (ii) notification o f the agent’s parent and children that the migration

starts; (iii) actual migration; (iv) notification o f the agent’s parent and children that the

migration finished. The last phase also serves as a tie-break, in case migration succeeds but the

old host nevertheless believes (due to a network partition or message transmission failure) that

migration has not been completed successfully, letting the parent act as a common

synchronization point.

Notably, this protocol does not address the problem of finding a suitable destination for a

locally hosted agent, which is the subject of the so-called Agent Migration Algorithm (several

options are discussed in the respective chapter o f this document).

2.6.1 Description
When the middleware wishes to move a locally hosted agent to a given destination, it performs

a series o f communication rounds, as follows.

144

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

In a first step, the agent’s host sends a G e t C o d e R e q u e s t message to the destination and waits for

a G e t C o d e R e p l y message. When the middleware receives a G e t C o d e R e q u e s t message, it fetches

the code o f the agent to be migrated (see reusable data item transfer protocol), if not already

available, as well as the configuration settings for that agent. The result is communicated back

to the host o f the agent via a G e t C o d e R e p l y message. The reachability o f the destination is

monitored (via P i n g messages, as in the agent creation protocol). In case o f a failure, the

migration is aborted.

In a second step, the agent’s host informs the nodes o f the agent’s parent and children about the

(planned) migration via a M i g N o t i f y message and waits for corresponding M i g N o t i f y A c k replies.

When the middleware receives a M i g N o t i f y message, it starts buffering all messages towards

that agent (except heartbeats) until further notice, and replies with a M i g N o t i f y A c k message. If

any o f the nodes hosting the agent’s parent or children become unreachable (again, this is

detected via the periodic transmission o f P i n g messages), the migration is aborted, and the

agent’s host sends M i g F a i l e d messages to the nodes o f the agent’s parent and children.

When the agent’s host receives all M i g N o t i f y A c k replies, it suspends the agent and retrieves its

runtime state via the proper calls to the local runtime. Then, it waits until all outgoing messages

issued by that agent are sent over the network.

In a third step, a M i g R e q u e s t message is sent to the destination node, followed by one or more

A g e n t S t a t e messages1 carrying the full state o f the agent (i.e., pending creation requests,

children information, report lists and their contents, and runtime state). Upon receipt o f these

messages, the destination (to become the agent’s new host) fetches the code and configuration

settings o f that agent type, creates a new instance, and initializes it using the state received. The

result is reported via a M i g R e p l y message. If the M i g R e p l y is negative, the old host o f the agent

sends M i g F a i l e d messages to the nodes o f the agent’s parent and children. Else, if the M i g R e p l y

is positive it simply removes the agent.

If the M i g R e p l y is positive, in a fourth step, the new host sends a M i g D o n e message to the node

o f the agent’s parent and waits for a M i g A c k or M i g N A c k reply. Upon receipt o f a M i g A c k

message, it sends M i g D o n e messages to the hosts o f the agent’s children and resumes the

execution of the agent (including the transmission o f heartbeats to its children). Else, if a

M i g N A c k message is received, indicating that the old host believes the migration has not been

1 T he reason fo r th is fragm entation (sending the m igra tion request and ag en t’s state u sing d iffe ren t m essages and splitting the
sta te in m ore than one m essages) is th a t th e curren t n e tw ork abstraction does n o t support arb itrarily large reliab le datagram s neither
does i t p rovide a reliab le stream abstraction.

145

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

completed and already notified the parent about this, the new host removes the agent (still in a

suspended state).

The old host monitors the reachability o f the new host (via P i n g messages) until it receives a

M i g R e p l y . In case o f a failure, it (conservatively) assumes that migration has not been

completed successfully. To “complete” the migration, it sends a M i g D o n e message to the node

that hosts the agent’s parent (advertising its own address), and waits for a M i g A c k or M i g N A c k

message. Upon receipt o f a M i g A c k message, it sends M i g D o n e messages to the hosts o f the

agent’s children and resumes the execution o f the agent. Else, if a M i g N A c k message is

received, indicating that the new agent successfully completed the migration and notified the

parent about this, the old host removes the agent (still in a suspended state).

When a node receives a M i g F a i l e d message it resumes agent-level message transmission to it.

When a node receives a M i g D o n e message, it does the same after adjusting the agent’s node

address. In addition, if the node is the agent’s parent, it sends a M i g A c k message as a

confirmation, before resuming normal message transmission. If the parent receives an

unexpected M i g D o n e message (for a child that is not under migration), it replies with a

M i g N A c k message.

All messages are sent as reliable datagrams. Also, all messages except the ones related to the

agent code transfer phase (G e t C o d e R e q and G e t C o d e R e p l y) carry a sequence number that is

used to drop old messages (generated as a part of a previous instance of the migration protocol).

Finally, M i g N o t i f y A c k messages are sent using the FIFO transport mechanism used for

A g e n t M s g messages, so that their receipt also serves as a guarantee that there are no other

A g e n t M s g messages in transit for the agent to be migrated. In the same spirit, the M i g D o n e

messages towards the children are also sent via the FIFO transport mechanism used for

A g e n t M s g messages, so that they are guaranteed to precede any messages sent by the agent once

it is resumed.

146

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

2.6.2 Message sequence diagram
The prototypical interaction for this protocol is as follows:

147

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

2.7 Migration algorithms

We have implemented the £-hop variant o f AGE algorithm, which assumes knowledge about

the network routing structure within a k-hop radius and picks migration destinations in this

range. Note that in ZigBee tree networks, routing information can be gained without extra

communication, by exploiting the addressing scheme [8 6]; in essence, a node that receives a

message can reconstruct the path to the source based on its address.

3 Middleware Evaluation

The evaluation o f the agent manager takes place through conducting measurements about (i) the

performance o f the agent creation and migration mechanism (ii) the load reduction achieved

when using agent migrations in context o f a real application.

3.1 Performance measurements

This section presents measurements on the performance of agent creation and migration. The

network topology is a 4-node chain, with the ZigBee coordinator at the one end as the source

and other nodes as the destinations o f the mobility operations.

The protocol cost is reported in bytes both for the Network Abstraction and ZigBee modem

interface; the difference is due to datagram fragmentation. As a reference for the reported

delays, the 1-hop throughput via the Abstract Network (incl. headers) is about 26Kbps and

15Kbps for unreliable and reliable datagrams, respectively. This poor performance is attributed

to delays in accessing the CC2480 chip via SPI, but also middleware overheads, such as

datagram fragmentation and software retransmission.

148

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

3.1.1 Agent creation overhead
In a first set o f experiments, we measure the overhead for creating a non-generic agent with just

one special resource need (e.g., a user activity sensor). The results for generic agents are similar.

The delay for creating an agent locally is about 1ms.

Table 8.1 Agent creation cost breakdown and overhead for different agent sizes.

a g e n t c o d e
siz e (B)

c o d e tra n sp o r t
p ro to c o l c o s t (B)

s ig n a lin g
p ro to c o l c o s t (B)

re la tiv e p ro to c o l
o v e rh e a d (B)

a b s tra c t Z ig B e e ab s tra c t Z ig B e e a b s tra c t Z ig B e e

3 00 352 4 8 4 71 107 4 1 % 9 7 %
6 00 684 9 12 71 107 2 6 % 7 0 %
9 00 1032 1392 71 107 2 3 % 6 7 %

- Θ — 300B
- Δ —600B
- a — 900B
—*— cached

hop distance between source and destination

Fig 8.7 Agent creation delay as a function of hop distance for different agent sizes.

T a b l e 8 . 1 analyzes the protocol cost for different agent sizes. The signaling overhead is constant

and relatively low, corresponding to one host probe and one agent creation request-reply

interaction. Clearly, the dominating part is the code transfer cost, which grows as expected to

the agent size. The relative protocol overhead drops as code size increases, but the conversion of

datagrams to ZigBee packets costs 35-40%.

F i g 8 . 7 plots the creation time, including the host probe phase, as a function o f the hop distance

between the source and the destination node for different agent sizes. It can be seen that the

routing overhead is non-negligible. Naturally, the delay rises as the code size increases, yet with

an economy of scale: about 21% and 24% for a 600B and a 900B agent vs. a 300B agent. Code

transfer requires 3, 5 (+2) and 8 (+3) reliable datagrams (chunks) for 300B, 600B and 900B,

which is why the creation o f the 600B agent is slightly faster in relation.

We also performed measurements when the agent binary is cached at the destination node. In

this case, the cost is solely due to the signaling protocol as per T a b l e 8 . 1 . The respective delay,

149

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

shown in F i g 8 . 7, is considerably smaller, yielding an average speedup of 3.7x, 5.8x and 8.4x

for a 300B, 600B and 900B agent, respectively.

3.1.2 Agent migration overhead
In a second set o f experiments, we measure the migration overhead for a generic agent that is

co-located with its parent and has one child on a remote node to which it migrates directly. The

runtime state is fixed at 256B. The delay for a corresponding agent suspend-create-init-resume

cycle is about 2 ms when performed locally.

The breakdown of the protocol cost is listed in T a b l e 8 . 2 . Naturally, the code transfer numbers

Table 8.2 Agent migration cost breakdown and overhead for different agent
agent code
+ runtime
size (B)

code transport s
protocol cost (B)

signaling + state trans.
protocol cost (B)

relative protocol
overhead (B)

abstract ZigBee abstract ZigBee abstract ZigBee
300+256 352 484 387 543 33% 85%
600+256 684 912 387 543 25% 70%
900+256 1032 1392 387 543 23% 67%

hop distance between source and destination

300B
— £s— 600B
- o — 900B
—*— cached

Fig 8 . 8 Agent migration delay as a function of hop distance for different agent sizes.

are the same as for agent creation. The signaling cost is much higher though because it includes

the synchronization with the agent’s parent and child, but also the transfer o f the 256B state. As

a result, the code transfer cost is less dominant compared to agent creation, amounting to 47%

(vs. 82%), 67% (vs. 89%) and 72% (vs. 92%) of the protocol cost for a 300B, 600B and 900B

agent, respectively.

F i g 8 . 8 plots the agent migration time as a function o f the hop distance for different agent sizes.

The trends are the same as for agent creation with the respective delays being longer due to the

increased signaling and state transfer cost. The delay rises to the code size, but with a greater

economy of scale compared to agent creation, about 35% and 43% for a 600B and a 900B agent

vs. a 300B agent, due to the higher signaling cost. For the same reason, while caching reduces

150

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

the migration time, the speedup is less impressive: 1.7x, 2.2x and 2.9x for a 300B, 600B and

900B agent.

It is worth noting that a 2-hop migration is 32% faster compared to two 1-hop migrations, and a

3-hop migration is 40% faster than three 1-hop migrations. This holds even more if agent

binaries are cached, the savings being 33% and 45%, respectively. This clearly speaks in favor

o f performing a single long-distance migration vs. several shorter-distance ones.

We also measured the migration time for a 600B agent with 256B runtime state for a varying

number o f its children residing on different 1-hop neighbors (using a star topology). The delay

is 843ms, 874ms, 945ms and 974ms for 1, 2, 3 and 4 children, respectively (345, 400, 430 and

485 for a cached agent), rising due to the extra signaling needed for each child. The non

linearity from 2 to 3 children is due to the increase in the child information which happens to

exceed the datagram payload limit, requiring an additional reliable transmission during the state

transfer.

3.1.3 Summary
The results show that agent creation is fast enough to support the build-up and evolution o f the

application tree at runtime. Creation is very quick if a node has the binary cached (e.g., because

it hosted such an agent in the past). Agent migration is also reasonably fast. Most importantly,

since agents remain fully operational during the code transfer phase, the application is affected

only by the signaling and state transfer delay; well under 1 second in our experiments (see the

values reported for caching). This is acceptable for the applications we wish to support using

our middleware, which have rather slack and soft real-time requirements. Note that an agent

will notice the delay o f a migration only if it expects to receive a message at the same point in

time. Finally, the 1-hop throughput o f the agent mobility operations, implemented largely using

reliable datagrams, is 12-14Kbps. This is close to the throughput o f our communication

subsystem, which seems to be the main bottleneck. The practically instantaneous local creation

and suspend-create-init-resume operations further attest to this fact.

151

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

3.2 Application scenario

In this section we put the benefit and cost of agent mobility in context o f a concrete application

scenario. Both the application and the network are kept simple in order to easily follow the

operation o f the POBICOS middleware. Still, the results are indicative o f the potential gains in

more complex and larger scale scenarios.

3.2.1 Application, network topology and test scenario
The test scenario involves an application to infer user absence based on all possible user activity

sensors in a home: the root agent (R) creates a generic agent (I) for inferring user inactivity,

which in turn creates an open number o f non-generic user activity sensing agents (A). F i g 8 . 9 a

illustrates the corresponding tree structure.

As long as a sensing agent does not detect activity, it sends to the inference agent a 1-byte report

every 5 seconds. When user activity is detected, the reporting frequency rises to 1 report per 2

seconds. Based on the reports received from its children, the inference agent sends a 1-byte

multiple
instances

(a) (b)
Fig 8.9 Experiment setup: (a) application tree; (b) nodes, network topology,

and agent placement at different stages of the test scenario.

status report to the root every 10 seconds. The size o f the root, inference, and user activity

sensing agent is 50B, 240B and 24B, respectively.

F i g 8 . 9 b shows the object/node network used to deploy and run the application. Nodes n 2 , n3

and n6 represent objects with a user activity sensor, which can host a user activity sensing agent.

The root remains fixed on n5 from where the application is launched, while the generic inference

agent can be placed on any node.

The initial node/network topology is that of F i g 8 . 9 b without n3, which is added and removed at

later stages. The relevant stages o f the test scenario are as follows:

152

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

The application is launched from n 5 . The root and the inference agent are created on n 5 , while

user activity sensing agents are created on n 2 and n6 . Since the traffic with its children is larger

than the traffic with its parent, the inference agent migrates on n4 .

The agent on n 2 detects user activity and starts reporting at a higher frequency. In turn, this

increase in traffic drives the inference agent to migrate on n 2 .

User activity stops, and the sensing agent on n 2 reverts to the normal reporting frequency.

Consequently, the inference agent moves back on n4 .

Node n3 (with a user activity sensor) is added to the network, leading to the creation o f a sensing

agent on it. As a result o f this new child, the traffic for the inference agent via node n 1 becomes

larger than the traffic with n5 and n 6 , so the inference agent migrates on n 1 .

Finally, n3 is removed, the local user activity sensing agent is killed, and the inference agent

moves back on n4 .

F i g 8 . 9 b shows the migrations and placements of the inference agent for each stage.

3.2.2 Results
Table 3 lists the results. It can be seen that the migration o f the inference agent leads to

considerable savings in network traffic, also at a cost that can be recovered within a relatively

short amount o f time of stable operation. Moreover, when the inference agent returns to a node

where it was previously hosted (stages 3 and 5), caching halves the migration cost, also

shortening the respective amortization time.

Table 8.3 Cost and benefit for each migration of the inference agent in the test scenario,
as well as the time of stable operation required in order to amortize each migration.

sc en a rio
s tag es

m ig ra tio n
o f in fe ren c e

a g e n t

m ig ra tio n
co s t

(B x h o p s)

a b s o lu te tra ff ic
red u c tio n

(B x h o p s / m in)

re la tiv e tra ff ic
red u c tio n

(%)

m ig ra tio n
am o rtiz a tio n

(m in s)
1 Π5 —— Π4 873 558 3 0 % 1.5
2 Π4 —— Π2 1495 522 2 2 % 2 .7
3 Π2 —— Π4 769 4 8 6 2 7 % 1.6
4 n — n1 1007 174 8% 5.8
5 n1 — n 511 2 7 0 17% 1.9

In terms o f real-time performance (not shown here), the average delay for creating a remote user

activity agent is about 200ms. The migration delay for the inference agent is 620ms on average

vs. 390ms when the code is cached at the destination. In both cases, migration delays were

153

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 8

unnoticeable at the application level, and are too insignificant to affect the respective

amortization times.

O f course, a migration may turn out to be non-beneficial if the agent tree or traffic pattern

changes fast. In our implementation we have two criteria for suppressing migrations that are

unlikely to be beneficial, namely a migration is not performed unless it (i) reduces the amount

o f network traffic above a threshold and (ii) can be amortized within a certain amount o f time,

assuming stable operation. These checks can be computed locally. The network traffic after a

migration can be computed based on the known agent message traffic while an estimate o f the

migration cost can be calculated using an analytical formula. Both checks are disabled in the

experiment; they simply lead to fewer migrations, depending on the threshold settings.

4 Conclusions

In this chapter we briefly described how micro-agents are to be managed internally by

POBICOS middleware. We also discussed, in a comprehensive way, the protocols used for the

corresponding interaction between different instances o f the middleware residing on different

nodes. A number o f experiments was conducted to evaluate the performance o f agent creation

and migration protocol, which comprise the most heavy (in terms o f messages exchanged)

functionalities o f not only the agent manager, but also the POBICOS middleware. Among the

algorithms proposed in the previous chapters, we chose AGE to be implemented in POBICOS

middleware due to its eminent features: i) it is a fully distributed algorithm; ii) it needs only a

small amount o f both computational and storage resources; iii) it makes a decision to migrate an

agent in an online manner. Finally, an indicative experiment was conducted to see AGE

behaviour in a real system

154

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

Chapter 9

Related work

1 Systems that Support Mobile Code/Agents

Mobile code based systems are subsumed in the general category o f systems that afford

programming abstractions for WSNs [84]. Mate [6 6] is a general event-driven stack-based

architecture allowing a user to select the bytecodes and execution events in order to build a

virtual machine of his own preference. It focuses on simplifying application development via a

high-level program representation, which allows the nodes o f a network to be reprogrammed in

a dynamic fashion. Rovers [27] is a middleware for tiny resource-constrained communicating

nodes. Its agent-based programming model aims at freeing the programmer from the concept of

the physical node by providing ontology-driven representation o f sensors and actuators and

implicit resource discovery.

One.world [41] is an architecture designed from the ground up to provide system support for

pervasive application development. One o f the system services, afforded by one.world is

migration that moves or copies an environment (represents units o f local computation) and all

its contents to a different device. In [52] a system based on mobile code units, called Smart

Messages, is described. Smart Messages (SMs) correspond to agents in our terminology. A key

operation in the SM programming model is multi-hop migration, which implements routing

using tags. An SM names the nodes o f interest by tags, and then calls a high-level migrate

function to route itself to a node that has the desired tags through multiple one hop migrations.

Agilla [36], adopts a mobile agent-based paradigm where programs are composed o f agents that

can migrate across nodes. A context manager determines the node location and maintains the

155

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

list o f reachable neighbours. Migration is accomplished either by reliably relocating the agent,

or by cloning it. Both strong and weak mobility is supported. Strong mobility ensures that the

execution state is retained across movement, enabling the agent to resume execution right after

the migration instruction. Instead, weak mobility moves only the agent code, whose execution

restarts from scratch. A similar approach is adopted by Olympus framework [92] a high-level

programming model for Active Spaces (i.e. a physically-bounded collection, such as a room of

devices, objects, users, services and applications), while in SensorWare [20] only weak

mobility is supported.

The above systems support user triggered/defined agent placement/migration. A small number

o f systems exist that automatically partitions an application into components (agents) and

decide on their placement. The Pleiades compiler [60] performs data-flow analysis to partition

the program in independent execution units called nodecuts, each running on a single node. The

compiler assigns nodecuts to nodes based on the expected communication cost for accessing

variables at remote nodes. MagnetOS [73] automatically and transparently partitions

applications into components and dynamically places them on nodes to reduce energy

consumption. The MagnetOS runtime also provides an explicit interface by which application

writers can manually direct component placement. DFuse [96] is an architectural framework for

dynamic application-specified data fusion in sensor networks. It can be used for developing

advanced fusion applications (aggregation on data o f possibly different types) that take into

account the dynamic nature o f applications and sensor networks. One o f its main components is

the distributed algorithm for fusion function placement and dynamic relocation that attempts to

optimally place the fusion functions in the network nodes so that communication is minimized.

Summarizing, many systems provide support for mobile code and migration (strong mobility),

adopting a 1-hop or k-hop network awareness (and migration) model. Some systems, such as

Agilla, one.world, Smart Messages, Olympus, SensorWare, Pushpin and Mobile-C, let

placement and/or migration be defined/triggered by the programmer. Other systems, such as

MagnetOS, Pleiades and DFuse, automatically place and move code between nodes based on

some optimization objective, typically related to the reduction o f communication that takes

place over the network. However to the best o f our knowledge none of the systems reviewed

considers: i) the case o f storage constrained nodes; ii) the migration o f a group o f agents; iii)

online algorithms to migrate agents; iv) maximize the network lifetime.

156

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

2 Data Placement and Replica Placement Problems

Algorithmic wise the agent migration problem (AMP) belongs to the general family of

placement problems, whereby given a set o f possible hosting entities and a set o f objects, the

problem is to place the objects at the entities so that performance is optimized. Placement

problems have been studied in various fields, some of them not directly related to computer

science, e.g., the facility location problem in operation research [1 0 1].

2.1 Data placement

In computer science one o f the first placement problems to attract research interest was the so

called file allocation problem (FAP). The first problem statements date the late 60’s. [24] is one

o f the pioneering works tackling the problem of assigning files (single copies) to computers in a

multi-computer environment in order to minimize the cost o f answering user requests (read

only) under storage constraints. They prove that under their formulation the problem

experiences monotonic behaviour, i.e., each assignment reduces the cumulative cost and

propose a branch and bound algorithm to solve it optimally. Extensions to the basic formulation

included considering multiple file copies (replication), update requests, distinguishing between

code and data allocation etc. A survey o f early works in FAP can be found in [29]. [10]

considers distributed FAP with read and write requests. An online Steiner-tree is built on which

requests and replica creations are performed. To achieve competitiveness the algorithm bounds

the cost o f updates by deleting all object replicas when a write request is issued.

The above early works on allocation/placement are not directly related to the work on AMP we

present here. However, they do provide a background as far as constructing a useful cost model

concerns.

With the advent o f the Internet and the World Wide Web, placement problems got renewed

interest. Two main problem families were studied. The first aimed at placing network entities

optimally. Papers in this subject include: [48], [67], [94], [107]. [67], [94] and [107] aimed at

placing Web proxies at the network in order to improve user experienced response time, while

[48] aimed at placing monitoring tools at the Internet in order to be able to estimate all-pair host

distances based on accurately measuring a small portion o f them. Typically, these papers use

variations o f the k-median problem [115] which can be briefly stated as: given a network graph

with node weights representing user requests and link weights denoting a distance cost between

157

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

nodes, place k servers at the nodes so that the total cost o f satisfying user requests (a function of

node weights and distance), is minimized. For the case of a tree network, transitive distance

cost, i.e., if d(u,v) is the distance between nodes u and v and d(v,w) is the distance between

nodes v and w, then d(u,w)=d(u,v)+d(v,w), and linear target function o f distance*node weight,

exact solutions can be obtained by dynamic programming [115], [48].

Overall, we found k-median formulations less than useful, both for the centralized and the

distributed problem versions we tackle. Nevertheless, it was important at the designing step to

consider similar formulations even if we didn’t adopt them.

2.2 Replica placement

The second family o f placement problems that was extensively studied in the Web context was

related to FAP with multiple file copies, often called replica placement. Solutions to the replica

placement problem included both static centralized algorithms and dynamic distributed ones.

[53] consider the problem of allocating Web objects at distributed Web servers with the aim of

minimizing the background network traffic. The solution proposed was static and based on the

greedy paradigm. [76] considered a similar static model and proposed a genetic algorithm to

decide on object placement. They also gave extensions to the basic genetic algorithm which

targeted at incrementally altering object allocation whenever slight changes in user request

patterns occur. [55] evaluates different replica placement heuristics with the aim being network

traffic cost, user response time, or server load balancing. [128] illustrates algorithms that decide

separately on the number o f object replicas and the locations they should be placed. Finally,

[50] considers object placement in a tree-network with read and write requests. They give a

dynamic programming algorithm for the uncapacitated case and prove that the problem is NP-

hard when servers have capacity constraints.

Combinations o f problems where object/replica placement is considered as a component have

also been studied. [13] discussed the combined effects o f static replica placement together with

LRU caching. Their aim was to define the optimal split o f storage space for long term

replication and on demand caching. [77] tackled placement together with the implementation

cost o f it. Their goal was to define placements that are not expensive to implement, i.e., do not

require many object transfers. The same authors also studied the implementation o f placement

by means o f transfers and deletions as a separate problem in [78]. Notice, that in the centralized

AMP once a newcoming agent is accepted, agent placement is altered in order to maximize the

minimum node lifetime. This involves agent transfers which consume battery and affect the

158

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

optimization target function. Thus, the problem has a similar component to the one discussed in

[78]. In fact RA adopts a simple algorithm to decide upon transfers that is inspired from [78].

Last, [107] considers both proxy and data placement in a k-median inspired manner.

The above works on object/replica placement make static assumptions regarding user request

patterns and lead to centralized solutions. Although close in spirit to our work for the

centralized AMP, AMP is different in a number o f ways. The most important perhaps is the fact

that the primary goal is to find/open space for a new agent. In the previous work creating an

object replica is rather optional and is done only if it helps improving the optimization function.

In our case accepting an agent is almost compulsory, therefore, the bin packing aspect o f the

problem is more important than the pure placement one.

A number o f works exist on the dynamic/distributed replica placement. [109] proposes and

compares static versus dynamic greedy heuristics for replica placement. [118] introduces the

ADR algorithm, which creates, migrates and deletes replicas depending on the traffic direction

and the relevant read to write ratio. [95] proposed a distributed algorithm that attempt to reduce

simultaneously both the network traffic and server load imbalance. The core idea is that aside

from deciding what to replicate where, a request routing scheme must be defined to judiciously

distribute the load at the created replicas.

Some of the ideas used in the algorithms for distributed AMP are also found in the above works,

namely, the migration towards the center o f gravity o f the communication load, or single hop

migrations [118]. However, we differ from the above works in many ways. The most important

one is that in the above works load is considered to originate from system nodes. In our case we

might consider that the traffic between non-generic and generic agents is essentially traffic

between nodes and generic agents, however, we also have traffic between generic agents or, put

it in another way, the objects to be placed communicate with each other. As a result, algorithms

that consider for migration each object separately are less powerful compared to the ones that

form groups o f objects/agents.

3 Energy Driven Algorithms

This section gives a flavour o f the most related problems against the one introduced in Chapter

7. Specifially, our work is related to the greater area o f energy management in wireless

embedded systems, which is attracting much research interest. Most o f the papers are dealing

159

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

with the problem o f energy-aware routing. Existing work attempts to optimize power

consumption mostly at routing level.

A wide number o f papers address the problem of minimum energy routing [12], [97], [63], [32]

to name but a few. [7] deals with the data-centric routing and proposes an algorithm building a

special rooted broadcast tree with many leaves. By doing so, this algorithm keeps active only

the relaying nodes while it turns off the radio on the leaves. Benerjee and Misra [16] argue that

minimum-energy routing algorithms should not be based solely on the energy spent in a single

transmission but on the total energy spent for a packet to be delivered to its final destination.

[51] investigates the problem of energy-efficient broadcast routing over wireless static ad hoc

network. It provides a globally optimal solution to the problem maximizing a static network

lifetime through a graph theoretic approach. The case o f power-aware georouting, whereby

routing is done based on location and not address (thus no need to maintain routing information)

is the objective of [26].

The approach o f the above works is to minimize the energy spent on the network. However,

there are a lot of papers, in the context o f power-aware routing, aiming at maximizing the

network lifespan [1], [69], [88], [22], [116] to name a few. In [1] the problem of maximizing

system’s lifespan (measured as the time when the first node dies) was formulated as a linear

program. An optimal probabilistic data propagation algorithm maximizing network lifespan was

proposed in [92], while [69] tackles the case where energy is replenished in a dynamic fashion.

In [88] the authors study the impact of cooperative routing for maximizing the network lifetime

in sensor networks. Chang and Tassiulas proposed a shortest cost path routing algorithm which

uses link costs that reflect both the communication energy consumption rates and the residual

energy levels at the two end nodes. Differently from previous solutions, the purpose of [116] is

to maximize network lifetime by exploiting sink mobility. Specifically, the authors give a linear

programming formulation for the joint problems of determining the movement o f the sink and

the sojourn time at different points in the network that induce the maximum network lifetime.

Other papers related to energy-driven algorithms are [17], [47], [49], [35], [46], [64]. [17]

studies the problem of reducing energy dissipation by losslessly compressing data prior to

transmission. The authors in [47] present an algorithm which automatically maps the IPs/cores

onto a generic regular Network on Chip (NoC) such that the total communication energy is

minimized. At the same time they try to not violate the constraints in terms o f bandwidth

reservation. [49] describes DE-MAC which is based on media access control technique.

Specifically, DE-MAC treats the nodes having scarce energy resources differently in a

160

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

distributed manner, i.e., a weaker node should be used less frequently in a routing in order to

accomplish load balancing. [35] shows how applications can dynamically modify their behavior

to conserve energy. An energy-aware spanning tree algorithm is proposed by Lee and Wong

[64] in the context o f data aggregation. Specifically, this algorithm constructs a spanning tree

based on the residual energy on nodes. The authors in [114] introduce energy-aware fault-

tolerance heuristics in the context of real-time systems. [87] considers the problem of average

throughput maximization per total consumed energy in sensor networks.

There are also papers that target at power management to achieve reduction in energy spent on

machines. Sharma et al [99] investigate adaptive algorithms for dynamic voltage scaling in

QoS-enabled Web servers to minimize energy consumption subject to service delay constraints;

while [46] proposes power-aware algorithms that adapt its voltage and frequency setting to

achieve reduction in energy dissipation with minimal impact on performance.

The papers dealing with the problem o f minimizing the energy dissipation in wireless sensor

networks are close to our works (excluding Chapter 7). However there are a lot o f differences

ranging from node storage constraints up to mutual agent dependencies. In terms o f the

aforementioned papers the ones related to the network lifespan maximization are rather similar

to the work described in Chapter 7. Again the scope o f our work is rather different from these

papers since we try to both i) maximize the lifespan of the network by changing the placement

o f the application components; ii) make defragmentation in order for the nodes to be able to

host as many application components as possible.

4 Load Balancing Problems

A significant part o f the literature focuses on migrating jobs to distribute workload across

multiple workstations (commonly known as load-balancing). An important part o f the load

balancing strategy is the migration policy, which determines when migrations occur and which

processes are migrated. There are two kind of strategies, the first one involves the preemptive

migration where an active process may be suspended and migrate to another host [65], [61],

[10] [15]; the second one concerns the non-preemptive load distribution which is based on

initial placement o f processes on the machines [106], [7], [28], [71], [82]. Another part concerns

the selection o f a new host for the migrated process, where [127] and [62] claim that the target

161

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

host should be the one with the shortest CPU run queue. [127] and [105] study load-balancing

policies using a priori information about job lifetimes.

Most recent papers turn focus on distributing traffic among a set o f diverse paths (i.e., routing

with load balancing), especially when the target is a wireless sensor network due to its limited

resources in terms o f bandwidth. In [90] the authors provide an analytic model for evaluating

the load balance as regards single shortest path routing in an ad hoc network. In terms of multi

path routing, they assume that load is uniformly distributed without considering the number of

paths used and the way these paths are chosen. [38] is a relevant work to [90], where the authors

propose an analytic model showing that multi-path routing results in a better load balance

compared to single-path routing in case there is a very large number of paths between any

source-destination pair nodes. While [45] proposes a load-balancing routing algorithm that

lowers the bandwidth blocking rate to maximize network utilization. Last, in [44] two

distributed algorithms are proposed for routing and load balancing in dynamic communication

networks. Specifically The first algorithm is based on round trip routing agents that update the

routing tables by backtracking their way after having reached the destination; while the second

one relies on forward agents that update routing tables directly as they move towards their

destination.

The papers dealing with the problem of migrating jobs to balance the load in a system are the

most relative to our works, since the jobs and machines can be viewed as agents and nodes,

respectively. However, our works differs from the above ones in that the agents are structured as

a tree/graph and that there are two kind of agents (generic and non-generic).

5 Online Decision Problems

This section is directly related to Chapter 5, and discusses a lot o f online algorithmic problems.

The difficulty of the online decision problems lie in the fact that the input is only partially

available because some relevant input data arrives in the future and is not accessible at present.

Therefore an online algorithm should take a decision without knowledge o f the entire output.

The quality of such an online algorithm is usually evaluated using competitive analysis. The

idea of competitiveness is to compare the output generated by an online algorithm to the output

produced by an offline algorithm that knows the entire input data in advance and can compute

162

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

an optimal output. The better an online algorithm approximates the optimal solution, the more

competitive this algorithm is [4]. A survey on online algorithms is given by [5].

One from the most renowned problems in the context o f online decision problems is that of

deciding which pages to keep in a memory o f k pages in order to minimize the number o f faults

(i.e., paging problem). Sleator and Tarjan [102] provide two theorems, whereby the first one

says that LRU and FIFO are k-competitive; while the second shows that no deterministic online

algorithm for the paging problem can achieve a competitive ratio smaller than k. [33] proposes a

randomized algorithm, called marking algorithm, and shows that it is 2Hk-competitve where Hk

denotes the kth harmonic number.

Scheduling has received a lot o f research interest in the context o f online strategies.

Specifically, the problem is to assign jobs on machines in such a way as to minimize the

makespan, which is the completion time of the last job that finishes in the schedule. Graham

[25] proposed the elegant Greedy algorithm and analized its performance. Specifically, this

algorithm assigns a new job to the least loaded machine and is (2 - 1 /m)-competitive, where m

represents the machines. Graham also showed that the competitive ratio o f Greedy is not smaller

than 2-1/m. In recent years the research community has focused on devising algorithms that

achieve a competitive ratio asymptotically smaller than 2 [98], [3], [54], [34].

Online load-balancing can be viewed as a type of scheduling problem, where we have to

minimize the maximum load instead of minimizing the makespan. [9] Studies the problem of

minimizing the load on machines for the case where the tasks have limited duration. While [11]

study the same problem provided that the task durations are not known upon their arrival. The

authors prove also that the competitive factor o f their algorithm is at most 4c, provided c > 5.

Caragiannis et al [21] introduce the problem of how much the quality o f load balancing is

affected by selfishness and greediness. They prove that for any e > 0 , greedy load balancing

has competitiveness at least 17/3 - e , while greedy load balancing on identical servers has

competitiveness at most 2 / 3>/21 + 1 .

The most recent years a significant part of research community has turned its attention towards

online decision problems in the context o f WSNs. Even though the online routing problems

have received a lot o f interest [37], [8], [83], [6 8], [117]; there are also works that focus on

other issues related to WSNs. For example, in [18] the authors analyze the theoretical

complexity for the problem of gathering data in WSNs in a distributed fashion, and devise

online algorithms solving this problem. [23] provides an online algorithm for the time interval

163

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

top-k query optimization to maximize the network lifetime through striking balance between the

total energy consumption and the maximum energy consumption. Another work [58] presents

an online algorithm to minimize the total transmission energy in a broadcast network by

dynamically adjusting each node’s transmission power and rate on a per-packet basis. Finally,

[75] deals with the problem o f mining frequent sensor value sets from a large sensor network.

None o f the above papers is related to the problem o f deciding in an online fashion whether the

cost of an agent migration would be amortized in the future or not. However, they provided us

some useful insights into devising the competitiveness o f our algorithms. Last, if we were asked

to say which is the most relevant work to ours, then we would refer to the papers dealing with

the problem o f online load balancing on machines (see previous section).

6 Query Optimization in Distributed Databases and WSNs

Generic agents in the POBICOS programming model carry the core application decision logic.

Commonly, such logic involves filtering and aggregation o f the data collected from sensors.

Therefore, from the standpoint o f data processing our work is related to database research on

query optimization in general distributed systems [31] and (more recently) sensor networks

[103].

Centralized query processing aims at defining the optimal sequence o f filtering operations

(WHERE clause in an SQL statement) as well as JOIN operations so that the query is answered

in the minimum possible time. In doing so, the key parameters involved are table sizes and the

selectivity o f each filtering operation. Query answer time is usually assumed to be a function of

the involved table sizes and the cost o f the operation(s) on them. In distributed query processing

network delays are taken into account. Each node only stores a portion o f the database scheme.

Answering a query might involve multiple nodes. An optimal query plan must decide whether a

node should send its data elsewhere or must acquire data from other nodes and perform a partial

join. [6] discussed the problem o f optimally placing table fragments (data) in distributed nodes,

assuming a fixed query plan that involves fetching all the necessary fragments to compute joins.

[70] considered allocation when query plans involve partial join computations at intermediate

nodes. For surveys on query optimization techniques including distributed query optimization

the interested reader is referred to [39] and [59].

164

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

In the context o f sensor networks much work has been done on how to efficiently perform

aggregations, e.g., [79], [92], [30] to name a few. Usually, the aim is to reduce the amount of

data sent by a node through either using special data structures, or delaying transmissions until

absolutely necessary. Under the context o f acquisitional query processing [80] discusses how

often data must be propagated to query operators that (aside from simple aggregations) might

involve complex filtering and joins. Reducing the cost o f join operators in sensor networks has

also seen much research activity, e.g., [123] while multiple query optimization in this context

has been tackled in [120]. The above papers fall in the category o f optimizing the execution of

specific operators and/or joins. In doing so, they usually assume a fixed operator placement and

discuss execution strategies that reduce the amount o f transmitted data.

Perhaps the closest to our works from the query optimization literature are the ones tackling

operator placement, e.g., [103], [1], [124] to name a few. In [103] the authors consider the

problem of optimally placing query operators on the nodes o f a sensor network given estimated

operator costs. [1] proposed a greedy algorithm to solve the same problem, while [124]

considered caching at intermediate nodes to reduce the fetching requirements o f operators. The

authors o f [103] also studied the operator placement problem in the context o f Web Services

giving an optimal algorithm to perform Select-Project-Join queries [104]. In the POBICOS

framework each operator is implemented as a generic agent. Therefore, at a first glance the two

problems, i.e., o f placing operators and o f placing agents appear to be very similar. There is

however, one important difference between works on operator placement and our work on

AMP. Namely, there is a difference in scope. In our case, we attempt to optimize the placement

o f agents (operators) the behaviour o f which is not known in advance since it is up to the user to

decide. Therefore, we can only view the agents as black boxes and decide on their placement

not according to their functionality, but rather according to their interaction with their

environment, i.e., the load they incur.

7 Agent/Task Migrations

The concept of migrating agents instead o f moving raw data to processing elements for data

integrations is discussed in [93]. [119] takes a step forward, in the context of the previous work,

by introducing the problem of computing a route for the mobile agent in terms o f maximizing

the received signal strength while keeping path loss and energy consumption low. They propose

165

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

a genetic algorithm to solve this problem since it turns out to be NP-hard. The same problem is

considered in [1 2 1] and [1 2 2], with the difference that they focus on dynamic mobile agent

planning techniques, which are distributed and dynamic in nature. They evaluate their

algorithm’s performance using three metrics: energy consumption, network lifetime, and the

number o f hops. [1 0 0] is a quite different work against the previous ones, since they consider

agent migrations in the context o f increasing efficiency o f systems. However, the objectives of

the above papers are completely different with the works discussed in this thesis.

The task allocation problem can be also viewed as the agent migration problem, since a

migrating task may be represented by a migrating agent. In [43], [62], and [74] the authors

consider the problem of mapping communicating tasks to homogeneous computing nodes in

order to minimize execution time, while [108] considers the same problem in a heterogeneous

environment. In [2] the authors tackle task allocation in an underlying torus network with the

target o f reducing both task communication and network congestion. In [42] the authors address

the problem o f finding a robust task allocation absorbing large changes o f the environment

without needing reallocation.

The fact that in the task allocation problem the tasks communicate with each other brings this

problem closer to our works against the aforementioned agent migration problems which have

no similarity to our ones. However these papers differ from the problems studied in this thesis

either in the network and application structure assumed [43], [62], [74], [108], [2] as well as in

scope [42].

8 Summary

Even though the area o f energy management in sensor network systems is attracting a lot of

research interest, there is no other work on either distributed or centralized agent migration

algorithms aiming at bringing the communicating agents close to each other to reduce the

energy spent over the network by considering solutions where i) the agents can migrate in

groups; ii) the nodes have limited storage constraints; iii) agents can be evicted to create room

to other agents which can eventually reduce the total network load; iv) the migration decisions

are taken in an online fashion. Also, to the best o f our knowledge there is no work that considers

maximizing at the same time both the number o f agents that a sensor network can host, and the

lifespan o f the later.

166

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 9

167

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 10

Chapter 10

Conclusions

1 Overview

The most crucial factors in terms o f the sustainability o f an application running on a sensor

network are: i) the energy spent over the embedded nodes due to the communicating agents,

since wasteful energy consumption may render a battery-powered node no operational; ii) as

well as the limited resources the embedded nodes provide, since they may remove the right

from an agent to be placed/migrated on a desired node. Inspired by the aforementioned issues,

this thesis focuses on the agent migration problem to handle them in an efficient way.

In the first two chapers we proposed fully distributed algorithms to alleviate the total energy

spent over the network, by performing beneficial migrations o f agents or group of thems

towards their center o f gravity. The proposed algorithms are enhanced with two locking

schemes to deal with the resource-constrained nodes. The third chapter discusses the bound of

the proposed algorithms in a detailed way, and provides a modification o f the grouping

algorithm to make agent migration decisions in an optimal way.

In the sequel, though, we realized that when the nodes o f the system provides scarce

resources,then there is a lot of room for improving the solutions produced by the locking

schemes studied in Chapter 1 and 2. This insight came through the fact that GRAL performed

migrations in an almost optimal way when the nodes o f the system provided a considerable

amount o f resources, while in the opposite case there was a discernible difference when

comparing the placements resulted by GRAL and the optimal algorithm. Therefore we resorted

169

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 10

to the agent evictions (i.e. possibly no beneficial migrations) to enable a beneficial agent

migration which eventually reduces the total network cost (taking into account the cost o f the

former ones). The algorithms proposed in Chapter 4 are based in the concept of agent evictions

and they result in agent placements that are by far better in terms of energy dissipation against

the aforementioned locking schemes.

Chapters 5 and 6 deal also with the problem of energy consumption but taking also into account

the cost o f the migrations performed. However, there are a lot o f differences between them,

since Chapter 5 proposes distributed algorithms that migrate only generic agents in an online

fashion, while Chapter 6 focuses on offline centralized solutions based on the graph coloring

problem, which aim at the network load reduction through migrating both generic and non

generic agents. Also, in Chapter 6 we adopt applications structured as a graph instead o f a tree,

unless otherwise stated.

Chapter 7 differs from the above works, since it formulates the agent migration problem for the

two optimization goals o f accepting a new agent and maximizing network longevity.

Finally, Chapter 8 discusses the implementation issues o f how an agent migration/creation can

take place in a POBICOS-enabled sensor network. AGE has also been implemented in

POBICOS middleware, proving that some of the algorithms proposed in this thesis can be

implemented in resource-constrained embedded systems.

2 Future Work

The distributed solutions dealing with the energy minimization problem assume tree-like

structures for both the application and the underlying network. It would be challenging to devise

new distributed algorithms along with their bounds when both application and network are

organized as a graph. Also another future work would be to enhance the proposed distributed

algorithms to consider non-generic agent migrations.

As regards the online decision problem discussed in Chapter 5, we plan to investigate

algorithms that automatically learn to recognize patterns and make intelligent decisions based

on their learning experience. Actually, such an algorithm could dynamically change parameters

like migration threshold or reset threshold, which parameters turn out to be crucial for the

170

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Chapter 10

performance o f the online algorithms. It would be also interesting to develop online algorithms

for the problem of maximizing the network lifetime.

As part o f our plans is the investigation o f a distributed protocol that takes advantage o f the

distributed nature o f PRA when considering migrations between node pairs. There is also a lot

o f room for the problem discussed in Chapter 7, since it would be quite challenging to deal with

it through distributed solutions.

The root agent o f an application may experience delay from the time the data are sensed till they

are accessible (in a fused manner) to it. However, such a delay may prove crucial for the

functionality o f a real-time application. Therefore a future direction could be the energy

minimization without violating some pre-specified delay constraints. Also, this problem could

be investigated in its own right (without considering the energy minimization aspect), through

algorithms that dynamically reform the application structure to meet delay constraints.

171

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

References

References

[1] Abrams Z. and Liu J., “Greedy is good: On service tree placement for in-network stream
processing,” in Proc. of ICDCS, 2006.

[2] Agarwal T., Sharma A., Laxmikant A. and Kale L.V., “Topology-aware task mapping for reducing
communication contention on large parallel machines,” in Proc. 20th Int. Parallel and Distributed
Processing Symp. (IPDPS 06).

[3] Albers S., “Better bounds for online scheduling”, SIAM J. Comput. 29, pp. 459-473, 1999.
[4] Albers S., “Competitive online algorithms”, OPTIMA: The Mathematical programming Society

Newsletter, 1997.
[5] Albers S., “Online algorithms: A survey”, Mathematical Programming, 2003.
[6] Apers P.M.G., “Data Allocation in Distributed Database Systems”, ACM Transactions on

Database Systems, 13(3), 1988.
[7] Artsy Y., Finkel R., “Designing a process migration facility: The Charlotte experience”, IEEE

Comput. 22(1), 198l.
[8] Aslam J., Li Q., Rus D., “Three power-aware routing algorithms for sensor networks”, Wireless

Communications and Mobile Computing”, 3(2), 2003.
[9] Aspenes J., Azar Y., Fiat A., Plotkin S., Waarts O., “On-line machine scheduling with application

to load balancing and virtual circuit routing”, In Proc. Annual ACM Symposium on Theory of
Computing”, 1993.

[10] Awerbuch B., Bartal Y., Fiat A., “Optimally-Competitive Distributed File allocation,” 25th Annual
ACM Symposium on Theory of Computing (STOC), 1993.

[11] Azar Y., Kalyanasundararm B., Plotking S., Pruhs K., Waarts O., “On-line load balancing of
temporary tasks”, In Proc. Workshop on Algorithms and Data Structures, 1993.

[12] Baker D.J., Ephremides A., “The architectural organization of a mobile radio network via a
distributed algorithm”, Transactions on Communications, 1981.

[13] Bakiras S., Loukopoulos T., “Increasing the Performance of CDNs Using Replication and
Caching: A Hybrid Approach,” IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2005.

[14] Balter M.H., Downey A.B., “Exploiting Process Lifetime Distributions for Dynamic Load
Balancing”, in Proc TOCS, 1997.,

[15] Barker K.J., Chrisochoides N.P., “An evaluation of a framework for the dynamic load balancing of
highly adaptive and irregular parallel applications”, In Proc ICS, 2003

[16] Banerjee S., Misra A., “Minimum Energy Paths for Reliable Communication in Multi-Hop
Wireless Networks”, in Proc Mobihoc, 2002.

[17] Barr K.C, Asanovic K., “Energy-Aware Lossless Compression”, ACM Transactions on Computer
Systems, 24(3), 2006.

[18] Bonifaci V., Korteweg P., Marchetti-Spaccamela A., Stougie L. “The distributed wireless
gathering problem”, In Proc. ICAMWN, 2008.

173

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

References

[19] Boukerche A., Cheng X., Linus J., “Energy-Aware Data-Centric Routing in Microsensor
Netowkrs”, in Proc MSWIM, 2003.

[20] Boulis A., Han C.-C., Shea R., Srivastava M.B., “SensorWare: Programming sensor networks
beyond code update and querying”, Pervasive and Mobile Computing Journal, 3(4), 2007,
Elsevier.

[21] Caragiannis I., Flammini M., Kaklamanis C., Kanellopoulos P., Loscardelli L., “Tight bounds for
selfish and greedy load balancing”, In Proc. ICALP, 2006.

[22] Chang J.H., Tassiulas L., “Maximum lifetime routing in wireless sensor networks”, Transactions
on Networking, 12(4), 2004.

[23] Chen B., Liang W, Xu Yu J.,‘Online time interval top-k queries in wireless sensor networks—, In
Proc. ICMDM, 2010.

[24] Chu W., “Optimal File Allocation in a Multiple Computer System,” IEEE Transactions on
Computers, 18(10), 1969.

[25] Crossbow, “Imote2 Hardware Reference Manual”, available
at: http://www.cse.wustl.edu/wsn/images/9/90/Imote2_hardware_ref.pdf.

[26] Das S., Nayak A., Ruhrup S. and Stojmenovic I., “Semi-Beaconless Power and Cost Efficient
Georouting with Guaranteed Delivery Using Variable Transmission Radii for Wireless Sensor
Networks,” in Proc. MASS 2007.

[27] Domaszewicz J., Roj M., Pruszkowski A., Golanski M., Kacperski K., “ROVERS: Pervasive
Computing Platform for Heterogeneous Sensor-Actuator Networks”. Proc. WoWMoM 2006.

[28] Douglis F., Ousterhout J., “Transparent process migration: Design alternatives and the Sprite
implementation” Softw. Pract. Exper. 21(8), 1991.

[29] Dowdy L., Foster D., “Comparative Models of the File Assignment problem,” ACM Computing
Surveys, 14(2), 1982.

[30] Edara P. and Ramamritham K., “Asynchronous In-Network Prediction: Efficient Aggregation in
Sensor Networks,” in ACM TOSN, vol. 4(4):25, Aug. 2008.

[31] Epstein R., Stonebraker M. and Wong E., “Distributed query processing in a relational data base
system,” in Proc. ACM SIGMOD 1978.

[32] Falls N., “On the Problem of Energy Efficiency of Multi-Hop vs One-Hop Routing in Wireless
Sensor Networks”, In Proc IANAW, 2007.

[33] Fiat A., Karp R.M., Luby M., McGeoch L.A., Sleator D.D., Young N.E., “Competitive paging
algorithms”, Journal of Algorithms, 12(4), 1991.

[34] Fleischer R., Wal M., “Online scheduling revisited”, J. Scheduling 3, pp. 343-353, 2000.
[35] Flinn J., Satyanarayanan M., “Managing battery lifetime with energy-aware adaptation”, ACM

Transactions on Computer Systems, 22(2), 2004.
[36] Fok L., Roman G., Lu C. Rapid Development and Flexible Deployment of Adaptive Wireless

Sensor Network Applications. Proc. ICDCS 2005.
[37] Fontanelli D., Palopoli L., Passerone R., “On the global convergence of a class of distributed

algorithms for maximizing the coverage of a WSN”, in Proc CDC/CCC, 2009.
[38] Ganjali Y., Keshavarzian A., “Load balancing in ad hoc networks: single-path routing vs. multi

path routing”, In Proc INFOCOM, 2004.
[39] Graefe C., “Query evaluation techniques for large databases,” in ACM Computing Surveys, vol.

25(2), pp. 73-170, 1993.
[40] Graham R.L., “Bounds for certain multiprocessor anomalies”, Bell Syst. Technical J, 1966.
[41] Grimm R., Davis J., Lemar E., Macbeth A., Swanson S., Anderson T., Bershad B., Borriello G.,

Gribble S., Wetherall D., “System support for pervasive applications”, ACM Transactions on
Computer Systems, 22(4), 2004.

174

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://www.cse.wustl.edu/wsn/images/9/90/Imote2_hardware_ref.pdf

References

[42] Gu D., Drews F. and Welch L.R., —Robust task allocation for dynamic distributed real-time
systems subject to multiple environmental parameters,” in Proc. 25th Int. Conf. on Distributed
Computing Systems (ICDCS 05).

[43] Heiss H.U. and Schmitz M., “Decentralized dynamic load balancing: The particles approach,” in
Proc. 8 th Int. Symp. on Computer and Information Sciences (ISCIS 95).

[44] Heusse M., Snyers D., Guering S., Kuntz P., “ Adaptive agent-driven routing and load balancing
in communication networks”, ACS, 1(2), 1998.

[45] Hsiao P.H., Hwang A., Kung H.T., Vlah D., “Load-balancing routing for wireless access
networks”, In Proc INFOCOM, 2001.

[46] Hsu C.H., Feng W.C, “A Power-Aware Run-Time System for High-Performance Computing”, in
Proc SC 2005.

[47] Hu J., Marculescu R, “Energy-Aware Mpapping for Tile-based NoC architectures under
performance constraints”, in Proc ASP-DAC 2003.

[48] Jamin S., Jin C., Jin Y., Riaz D., Shavitt Y., Zhang L., “On the Placement of Internet
Instrumentation,” IEEE INFOCOM, 2000.

[49] Kalindindi R., Kannan R. Iyengar S.S., Ray L., “Distributed Energy Aware Mac Layer Protocol
for Wireless Sensor Networks”, in Proc ICWN 2003.

[50] Kalpakis K., Dasgupta K., Wolfson O., “Optimal Placement of Replicas in Trees with Read, Write
and Storage Costs,” IEEE Transactions on Parallel and Distributed Systems (TPDS), 12(6), 2001.

[51] Kang I., Poovendran R., “Maximizing Static Network Lifetime of Wireless Broadcast Ad Hoc
Networks”, in Proc ICC 2003.

[52] Kang P., Borcea C., Xu G., Saxena A., Kremer U., Iftode L., “Smart Messages: A Distributed
Computing Platform for Networks of Embedded Systems”. The Computer Journal, 47(4), 2004.

[53] Kangasharju J., Roberts J., W. Ross K., “Object Replication Strategies in Content Distribution
Networks”, Computer Communications, 25(4), 2002.

[54] Karger D.R, Phillips S.J., Torng E. J. Algorithms 20, pp. 400-430, 1996.
[55] Karlsson M., Karamanolis C., “Choosing Replica Placement Heuristics for Wide-Area Systems”,

IEEE International Conference on Distributed Computing Systems (ICDCS), 2004.
[56] Kellerrer H., Pferchy U. and Pisinger D., Knapsack Problems Springer, Oct. 2004.
[57] Kim H.S., Abdelzaher T.F. and Kwon W.H., “Dynamic Delay-Constrained Minimum-Energy

Dissemination in Wireless Sensor Networks,” in ACM Trans. on Embedded Computing Systems,
Vol. 4 (3), pp. 679-706, 2005.

[58] Kompella R.R., Shoeren A.C., “Practical lazy scheduling in sensor networks”, In Proc SenSys,
2003.

[59] Kossmann D., “The state of the art in distributed query processing”, ACM Computing Surveys,
32(4), 2000.

[60] Kothari N., Gummadi R., Millstein T., Govindan R., “Reliable and efficient programming
abstractions for wireless sensor networks”, ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2007.

[61] Krueger P., Livny M., “A comparison of preemptive and non-preemptive load distributing”, In
Proc ICDCS 1988.

[62] Kunz T., “The Influence of Different Workload Descriptions on a Heuristic Load Balancing
Scheme,” in IEEE Transactions on Software Engineering., Vol. 17 (7) , pp. 725-730, 1991.

[63] Lee H., Lee K., “Energy Minimization for Flat Routing nd Hierarchical Routing for Wireless
Sensor Networks”, In Proc ICSTA, 2008.

[64] Lee M., Wong V.W.S., “An Energy-Aware Spanning Tree Algorithm for Data Aggregation in
Wireless Sensor Networks”, in Proc PACRIM 2005.

175

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

References

[65] Leland W.E., Ott T.J., “Load-balancing heuristics and process behavior” In Proc of Sigmetrics,
1986.

[6 6] Levis P. and Culler D., “Mate: A Tiny Virtual Machine for Sensor Networks,” in Proc. ASPLOS
2 0 0 2 .

[67] Li B., Golin M., Italiano G., Deng X., “On the optimal placement of web proxies in the Internet”,
IEEE INFOCOM, 2000.

[6 8] Li Q., Aslam J., Rus D., “Online power-aware routing in wireless ad-hoc networks”, In Proc
MobiCom, 2001

[69] Lin L., Shroff N. and Srikant R., “Asymptotically Optimal Power-Aware Routing for Multihop
Wireless Networks with Renewable Energy Sources,” in Proc. INFOCOM 2005.

[70] Lin X., Orlowska M., Zhang Y., “On Data Allocation with the Minimum Overall Communication
Costs in Distributed Database Design”, 5th IEEE International Conference on Computing and
Information (ICCI), 1993.

[71] Litskow M., Linvy M., Mutca M., “Condor - A hunter of idle workstations” In Proc ICDCS 1988.
[72] Littman M.L., Boyan J.A., “A Distributed Reinforcement Learning Scheme for Network Routing”,

In Advances in Neural Information Processing Systems, vol. 6 , pp.670-678, 1993.
[73] Liu H., Roeder T., Walsh K., Barr R., Sirer E.G., “Design and implementation of a single system

image operating system for ad hoc networks”, 3rd International Conference on Mobile Systems,
Applications and Services (MOBISYS), 2005.

[74] Lo V.M., “Heuristic Algorithms for Task Assignment in Distributed Systems,” in IEEE
Transactions on Computers, Vol. 31 (11), pp. 1384-1397, 1988.

[75] Loo K.K., Tong I., Kao B., “Online algorithms for mining inter-stream associations from large
sensor neworks”, Lecture Notes in Computer Science, 2005.

[76] Loukopoulos T., Ahmad I., “Static and Adaptive Data Replication Algorithms for Fast Information
Access in Large Distributed systems”, 20th IEEE International Conference on Distributed
Computing Systems (ICDCS), 2000.

[77] Loukopoulos T., Lampsas P., Ahmad I., “Continuous Replica Placement Schemes in Distributed
Systems”, International Conference on Supercomputing (ICS), 2005.

[78] Loukopoulos T., Tziritas N., Lampsas P., Lalis S. : Implementing Replica Placements: Feasibility
and Cost Minimization. Proc. IPDPS 2007.

[79] Madden S., Franklin M., Hellerstein J. and Hong W., “TAG: A tiny aggregation service for ad-hoc
sensor networks,” in Proc. 5th USENIX Symposium on OSDI, Dec. 2002.

[80] Madden S., Franklin M., Hellerstein J., Hong W., “The design of an acquisitional query processor
for sensor networks,” in Proc. ACM SIGMOD 2003.

[81] Manolache S., Eles P., Peng Z, “Fault and Energy-Aware communication mapping with
guaranteed latency for applications implemented on NoC”, in Proc DAC 2005.

[82] Milojicic D.S., “Load distribution: Implementation for the Mach microkernel. Ph.D. dissertation,
Univ. of Kaiserslautern, Kaiserslautern, Germany, 1993.

[83] Minhas M.R., Gopalakrishnan S., Leung V.C.M., “An online multipath routing algorithm for
maximizing lifetime in wireless sensor networks”, in Proc ITNG, 2009.

[84] Mottola L., Picco G.P., “Programming Wireless Sensor Networks: Fundamental Concepts and
State of the Art”, to appear in ACM Computing Surveys (2010).

[85] Network Simulator2 (ns2), http://www.isi.edu/nsnam/ns/.
[8 6] Pan M.-S., Fang H.-W., Liu Y.-C., Tseng Y.-C.: Address Assignment and Routing Schemes for

Zigbee-based Long-thin Wireless Sensor Networks. 67th IEEE International Conference on
Vehicular Technology (VTC), 2008.

176

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://www.isi.edu/nsnam/ns/

References

[87] Pandana C., Liu K.J.R., “Near-Optimal Reinforcement Learning Framework for Energy-Aware
Sensor Communications”, In IEEE Journal on Selected Areas in Communications, vol. 23, pp.
788-797, 2005.

[8 8] Pandana C., Siriwongpairat W.P., Himsoon T., “ Distributed Cooperative Routing Algorithms for
Maximizing Network Lifetime”, in Proc WCNC, 2006.

[89] Pearlman M.R., Haas Z.J., Sholander P., Tabrizi S.S., “Mobile and ad hoc networking and
computing, In Proc MobiHOC, 2000.

[90] Pham P.P., Perreau S., “Performance analysis of reactive shortest path and multi-path routing
mechanism with load balance”, In Proc INFOCOM, 2003

[91] POBICOS project web site, http://www.ict-pobicos.eu.
[92] Powell O., Leone P. and Rolim J., “Energy Optimal Data Propagation in Wireless Sensor

Netowrks,” in Elsevier JPDC, vol. 67(3), pp. 302-317, 2007.
[93] Qi H, Iyengar S., Chakrabarty K., “Multiresolution data integration using mobile agents in

distributed sensor networks”, IEEE Transactions on Applications and Reviews, 2001.
[94] Qiu L., Padmanabhan V., Voelker G., “On the Placement of Web Server Replicas”, IEEE

INFOCOM, 2001.
[95] Rabinovich M., Rabinovich I., Rajaraman R., Aggarwal A., “A dynamic object replication and

migration protocol for an Internet hosting service”, 19th IEEE International Conference on
Distributed Computing Systems (ICDCS), 1999.

[96] Ramachandran U., Kumar R., Wolenetz M., Cooper B., Agarwalla B., Shin J., Hutto P., Paul A.,
“Dynamic data fusion for future sensor networks”, ACM Transactions on Sensor Networks, 2(3),
2006.

[97] Rodoplu V., Meng T.H., “Minimum Energy Mobile Wireless Networks”, In Proc. INFOCOM
,1997.

[98] Rudin J.F., “Improved bounds for the on-line scheduling problem”, Ph.D. Thesis, the university of
Texas, Dallas, 2001.

[99] Sharma V., Thomas A., Abdelzaher T., Skadron K., Zhijian L., “ Power-aware QoS management
in web servers”, In Proc RTSS, 2003.

[100] Shehory O., Sycara K., Chalasani P., Jha S. “Agent cloning: an approach to agent mobility and
resource allocation”, Communications Magazine, 1998.

[101] Shmoys D., Tardos E., Aardal K., “Approximation algorithms for facility location problems”, 28th
ACM Symposium on Theory of Computing (STOC), 1997.

[102] Sleator D.D., Tarjan R.E., “Amortized efficiency of list update and paging rules”, ACM Commun,
1985.

[103] Srivastava U., Munagala K. and Widom J., “Operator Placement for In-Network Stream Query
Processing,” in Proc. PODS 2005.

[104] Srivastava U., Munagala K., Widom J. and Motwani R., “Query optimization over web services,”
in Proc. VLDB 2006.

[105] Svensson A., “History, an intelligent load sharing filter”, In Proc ICDCS 1990.
[106] Tanenbaum A., Renesse V.H, Staveren V.H., Sharp G.,“Experiences with the Amoeba distributed

operating system—, ACM Commun., 1990
[107] Tang X., Xu J., “QoS-Aware Replica Placement for Content Distribution”, IEEE Transactions on

Parallel and Distributed Systems (TPDS), 16(10), 2005.
[108] Taura K. and Chien A., “A Heuristic Algorithm for Mapping Communicating Tasks on

Heterogeneous Resources,” in Proc. 9th Heterogeneous Computing Workshop (HCW 00).
[109] Tenzakhti F., Day K., Olud-Khaoua M., “Replication Algorithms for the Word-Wide Web”,

Journal of System Architecture, 50, 2004.

177

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://www.ict-pobicos.eu/index.htm

References

[110] Texas Instruments: Z-Accell Demonstration Kit, http://focus.ti.com/docs/toolsw/folders/
print/ez430-rf2480.html.

[111] Tian Y., Boangoat J., Ekici E. and Ozguner F., —Real-time task mapping and scheduling for
collaborative in-network processing in DVS-enabled wireless sensor networks,” in Proc. 20th Int.
Parallel and Distributed Processing Symp. (IPDPS 06).

[112] Tziritas N., Loukopoulos T., Lalis T., Lampsas P. : Agent placement in wireless embedded
systems: memory space and energy optimizations. Proc. 9th Int. Workshop on Performance
Modeling, Evaluation and Optimization of Ubiquitous Computing and Networked Systems
(PMEO-UCNS10).

[113] Tziritas N., Loukopoulos T., Lalis S. and Lampsas P., “On Deploying Tree Structured Agent
Applications in Embedded Systems” in Proc. EUROPAR 2010.

[114] Unsal O.S., Kren I., Krishna C.M.,“ Towards Energy-Aware Software-based Fault Tolerance in
Real-Time Systems—, in Proc. ISLPED 2002.

[115] Vigneron A., Gao L., Golin M., Italiano G., Li B., “An algorithm for finding a k-median in a
directed tree,” Information Processing Letters, 74, 2000.

[116] Wang Z.M., Basagni S., Melachrinoudis E., Petrioli C., “Exploiting Sink Mobility for Maximizing
Sensor Networks Lifetime”, In Proc HICSS, 2005.

[117] Watfa M., Yaghi L., “An efficient online-battery aware geographic routing algorithm for wireless
sensor networks”, International Journal of Communication Systems, 23(1), 2010.

[118] Wolfson O., Jajodia S., Huang Y., “An Adaptive Data Replication Algorithm”, ACM Transactions
on Database Systems, 22(4), 1997.

[119] Wu Q., Rao N. S. V., Barhen J., et al., “On computing mobile agent routes for data fusion in
distributed sensor networks,” in IEEE Transactions on Knowledge and Data Engineering, Vol. 16
(6), pp. 740-753, 2004.

[120] Xiang S., Lim H. B., Tan K. L. and Zhou Y., “Two-Tier Multiple Query Optimization for Sensor
Networks,” in Proc. ICDCS 2007.

[121] Xu Y., Qi H, “ Mobile agent migration algorithms for collaborative processing”, In Proc WCNC,
2006.

[122] Xu Y., Qi H, “ Mobile agent migration modeling and design for target tracking in wireless sensor
networks”, In Proc WCNC, 2006.

[123] Yang X., Lim H. B., Ozsu M. T. and Tan K. L., “In-Network Execution of Monitoring Queries in
sensor Networks,” in Proc. SIGMOD 2007.

[124] Ying L., Liu Z., Towsley D. and Xia C.H., “Distributed Operator Placement and Data Caching in
Large Scale Sensor Networks,” in Proc. INFOCOM 2008.

[125] Younis M., Youssef M., Arisha K., “Energy-Aware Routing in Cluster-based Sensor Networks”,
In Proc. MASCOT 2002.

[126] Youssef M., Younis M., Arisha K., “A Constrained Shortest-Path Energy-Aware Routing
Algorithm for Wireless Sensor Networks”, in Proc. WCNC 2002.

[127] Zhou S., Wang J., Zheng X., Delisle P., “Utopia: A load-sharing facility for large heterogeneous
distributed computing systems., Softw. Pract. Exper. 23(2), 1993.

[128] Zhuo L., Wang C-L, Lau F. C. M., “Document Replication and Distribution in Extensible
Geographically Distributed Web Servers”, Journal of Parallel and Distributed Computing, 63(10),
2003.

[129] Zigbee Alliance: Zigbee specification (2006), http://www.zigbee.org.

178

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79

http://focus.ti.com/docs/toolsw/folders/
http://www.zigbee.org/

