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Abstract

Wireless sensor systems have drawn much attention from a considerable part of scientific 

community during the last years. The advances in this field range from the design of battery- 

powered embedded nodes to the development of software (i.e. operating system, middleware, 

etc) especially designed to run on such resource-constrained devices. One of the most 

challenging parts for both hardware and software oriented work is to maximize the lifetime of 

such nodes. This thesis focuses on the design and implementation of mobile code placement and 

migration algorithms for distributed applications in order to reduce the amount of application- 

level communication performed over the network. Since the largest part of a node’s energy 

expenditure is attributed to the wireless communication (not code execution), reducing the 

energy consumption becomes of paramount importance, leading in that way to an increased 

system lifetime. In the sequel, we give a brief overview of the application model, the algorithms 

and the middleware designed and implemented in the context of this thesis.

The model adopted in this work is inspired by the POBICOS [91] platform, where the 

application is organized as a set of software entities (agents) that communicate with each other 

to implement the desired functionality. An agent can be “non-generic” or “generic”. Non

generic agents use special resources of a node, e.g. a sensor measuring a physical quantity or an 

actuator controlling a device or function. On the contrary, generic agents perform computational 

tasks and decision making at a higher level, without relying on special resources.

Chapter 1 introduces the agent migration problem stated as follows: given an application that is 

deployed in a sensor network, perform generic agent migrations in order to reduce the data 

exchanged over the network due to the application-level communication between agents. We 

propose fully distributed algorithms that migrate an agent towards its center of gravity (in terms 

of communication load), thereby reducing the network cost. Also, two protocols are presented 

for handling the case of nodes with storage constraints (for hosting agents).
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Chapter 2 examines the same (above) problem, with the difference that it considers migrations 

of agent groups instead of single agent migrations. The algorithms in question deal with co

located agents that are “mutually dependent”, which in the case of the simpler algorithms may 

hinder migration, leading to noticeably inferior placements.

Chapter 3 discusses the competitiveness of the aforementioned algorithms versus the optimal 

algorithm. Also, it presents an enhancement of the group migration algorithms in order for them 

to produce an optimal agent placement (in terms of the network cost incurred by the 

application). It should be stressed that this enhancement guarantees optimality only if nodes do 

not have storage constraints, else the problem is NP-complete.

Chapter 4 proposes fully distributed algorithms for the problem of generic agent migrations for 

resource-constrained nodes, introducing the concept of “evictions”. Specifically, agent 

migrations are considered that are not beneficial in their own right but free space which can be 

used to perform additional (beneficial) migrations. Of course, the ultimate goal is to reduce the 

network load, so the total benefit of the migrations must be greater than the cost of the non

beneficial ones.

In Chapter 5 we focus on the problem that the aforementioned algorithms are not able to 

“guess” whether a (group) migration will turn out to actually reduce the network cost. They 

simply assume that the structure and communication pattern of the application remains stable 

for a “sufficiently” long time, so as to amortize the migration cost. As a consequence, frequent 

changes in the application-level load may lead to frequent agent migrations, thereby increasing 

the network cost (instead of reducing it). For example, an agent may continuously “oscillate” 

between two nodes due to periodic changes of the communication load with other agents 

(changing its center of gravity), before the respective migration cost is amortized. For this 

reason, we propose online algorithms, along with a discussion of their competitiveness versus 

the offline optimal algorithm.

In Chapters 6 and 7 we propose centralized algorithms tackling more complex problems. 

Specifically, chapter 6 addresses the problem of reducing the network cost through migrations 

of both generic and non-generic agents, considering that the nodes of the system have storage 

capacity limitations. The proposed algorithms use graph coloring techniques. In Chapter 7, a 

two-dimensional problem is considered, the objectives being: (a) to maximize the number of 

agents hosted by the nodes of the system; and (b) to maximize the network lifetime (maximize 

the lifetime of the first node that depletes its battery). We propose algorithms solving each 

dimension (sequentially) in an independent way, along with a branch-and-bound algorithm
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tackling the problem concurrently in both dimensions. Regarding the first dimension of the 

problem, a considerable part of the algorithms involves the de-fragmentation of the nodes’ 

storage capacity, through agent migrations.

Chapter 8 describes the implementation of the component of the POBICOS middleware that 

provides full-fledged, distributed, agent management functionality, on top of the TinyOS 

embedded operating system. Specifically, we describe: i) the mechanism for creating agents on 

eligible nodes; ii) the mechanism for transporting agent-level messages; iii) the mechanism 

detecting and destroying “orphan” agents; and iv) the mechanism for the migration of generic 

agents with full transparency for the application.

Finally, Chapter 9 discusses works related to this thesis, while Chapter 10 includes an overview 

of this dissertation and future directions.
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Περίληψη

Τα τελευταία χρόνια ένα σημαντικό μέρος της επιστημονικής κοινότητας έχει στρέψει το 

ενδιαφέρον της προς τα ασύρματα δίκτυα αισθητήρων (wireless sensor networks). Οι 

τεχνολογικές εξελίξεις σε αυτό τον τομέα ξεκινούν από την σχεδίαση ενσωματωμένων κόμβων 

που ρευματοδοτούνται μέσω μπαταρίας και φτάνουν μέχρι την ανάπτυξη λογισμικού 

(λειτουργικών συστημάτων, ενδιάμεσου λογισμικού, κλπ) ειδικά σχεδιασμένου για να μπορεί 

να εκτελείται με τους περιορισμένους πόρους αυτών των συσκευών. Η μεγιστοποίηση της 

διάρκειας ζωής των κόμβων αποτελεί πρόκληση τόσο σε επίπεδο υλικού όσο και σε επίπεδο 

λογισμικού. Η παρούσα διατριβή αφορά στην σχεδίαση και ανάπτυξη αλγορίθμων τοποθέτησης 

και μετανάστευσης κώδικα κατανεμημένων εφαρμογών με στόχο την μείωση του φόρτου 

επικοινωνίας της εφαρμογής που πραγματοποιείται πάνω από το ασύρματο δίκτυο. Καθώς το 

μεγαλύτερο μέρος της ενέργειας των κόμβων ξοδεύεται συνήθως στην επικοινωνία (όχι στην 

εκτέλεση κώδικα), με αυτό το τρόπο μειώνεται η κατανάλωση ενέργειας και αυξάνεται η 

διάρκεια ζωής των κόμβων του συστήματος. Στη συνέχεια, παραθέτουμε μια σύντομη 

περιγραφή του μοντέλου εφαρμογής, των αλγορίθμων και του ενδιάμεσου λογισμικού που 

σχεδιάστηκαν και αναπτύχθηκαν στα πλαίσια της διατριβής.

Το μοντέλο που υποθέτει η εργασία είναι εμπνευσμένο από την πλατφόρμα POBICOS [91], 

όπου η εφαρμογή σχεδιάζεται ως ένα σύνολο από τμήματα λογισμικού (πράκτορες) που 

επικοινωνούν μεταξύ τους για να υλοποιήσουν την επιθυμητή λειτουργικότητα. Οι πράκτορες 

διαχωρίζονται σε «ειδικούς» και «γενικούς». Οι ειδικοί πράκτορες χρησιμοποιούν ειδικούς 

πόρους ενός κόμβου, π.χ. έναν αισθητήρα που δίνει τιμές για ένα φυσικό μέγεθος ή ένα ελεγκτή 

μιας συσκευής ή λειτουργίας. Αντίθετα, οι γενικοί πράκτορες πραγματοποιούν λειτουργίες 

επεξεργασίας και λήψης αποφάσεων σε πιο ψηλό επίπεδο, χωρίς να απαιτούν ειδικούς πόρους. 

Οι πράκτορες της εφαρμογής κατανέμονται (δυναμικά) στους κόμβους του συστήματος 

ανάλογα με τους πόρους που αυτοί διαθέτουν.
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Το κεφάλαιο 1 εισάγει το πρόβλημα μετακίνησης πρακτόρων που διατυπώνεται ως εξής: 

δοθήσας μιας εφαρμογής που έχει αναπτυχθεί σε ένα δίκτυο αισθητήρων, το ζητούμενο είναι να 

πραγματοποιηθούν μετακινήσεις γενικών πρακτόρων ώστε να μειωθεί το κόστος δικτύου λόγω 

της επικοινωνίας σε επίπεδο εφαρμογής. Προτείνουμε πλήρως κατανεμημένους αλγορίθμους με 

στόχο την μετακίνηση του κάθε πράκτορα προς το κέντρο βάρους του (όσον αφορά το κόστος 

επικοινωνίας), πράγμα που ελαχιστοποιεί και το συνολικό κόστος επικοινωνίας σε επίπεδο 

δικτύου. Επίσης παρουσιάζονται δύο πρωτόκολλα για τον χειρισμό της περίπτωσης όπου οι 

κόμβοι διαθέτουν περιορισμένη αποθηκευτική χωρητικότητα για την φιλοξενία πρακτόρων.

Το κεφάλαιο 2 αφορά στο ίδιο (παραπάνω) πρόβλημα, με τη διαφορά ότι εξετάζει μετακινήσεις 

από ομάδες πρακτόρων αντί από μεμονωμένους πράκτορες. Οι εν προκειμένω αλγόριθμοι 

αντιμετωπίζουν την «αμοιβαία εξάρτηση» πρακτόρων που φιλοξενούνται στον ιδιο κόμβο και 

επικοινωνούν μεταξύ τους, πράγμα που, στους πιο απλούς αλγορίθμους, μπορεί να εμποδίσει 

την μετακίνηση τους, έχοντας ως αποτέλεσμα μια (σημαντικά) χειρότερη τοποθέτηση.

Το κεφάλαιο 3 εξετάζει την ανταγωνιστικότητα των παραπάνω αλγορίθμων σε σχέση με τον 

βέλτιστο αλγόριθμο. Επίσης, παρουσιάζει μία τροποποίηση που αφορά τους αλγορίθμους 

ομαδοποίησης έτσι ώστε αυτοί να καταλήγουν στη βέλτιστη τοποθέτηση των πρακτόρων 

(αναφορικά με το συνολικό φόρτο επικοινωνίας της εφαρμογής πάνω από το δίκτυο). Να 

τονιστεί πως αυτή η τροποποίηση καθιστά τους αλγορίθμους ομαδοποίησης βέλτιστους μόνο 

όταν δεν εξετάζουμε κόμβους με περιορισμένη χωρητικότητα, διαφορετικά το πρόβλημα είναι 

NP-complete.

Το κεφάλαιο 4 προτείνει πλήρως κατανεμημένους αλγορίθμους για την τοποθέτηση πρακτόρων 

σε κόμβους περιορισμένης αποθηκευτικής χωρητικότητας, εισάγοντας την έννοια της 

«έξωσης». Πιο συγκεκριμένα, εξετάζονται μετακινήσεις πρακτόρων που είναι μεμονωμένα 

ασύμφορες αλλά μπορεί να απελευθερώσουν χώρο που στη συνέχεια μπορεί να χρησιμοποιηθεί 

για την μετακίνηση άλλων πρακτόρων. Βεβαίως, ο απώτερος σκοπός εξακολουθεί να είναι η 

μείωση του κόστους επικοινωνίας, επομένως απαιτείται το συνολικό όφελος των μετακινήσεων 

να υπερβαίνει το κόστος των ασύμφορων μετακινήσεων.

Στο κεφάλαιο 5 εστιάζουμε στο πρόβλημα του ότι οι προαναφερθέντες αλγόριθμοι δεν έχουν 

την ικανότητα να «μαντέψουν» αν μία (ομαδική) μετακίνηση θα αποβεί τελικά προσοδοφόρα η 

όχι. Απλά υποθέτουν ότι ο αριθμός των πρακτόρων και ο φόρτος επικοινωνίας μεταξύ τους θα 

παραμείνουν σταθερά για ένα «αρκετά» μεγάλο χρονικό διάστημα, έτσι ώστε να αποσβεσθεί το 

όποιο κόστος μετακίνησης των πρακτόρων. Επομένως, συχνές αλλαγές στο σχήμα και φόρτο 

επικοινωνίας της εφαρμογής μπορεί να οδηγήσουν τους παραπάνω αλγορίθμους σε συχνές

viii

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



μετακινήσεις πρακτόρων που τελικά αυξάνουν το κόστος επικοινωνίας πάνω από το δίκτυο 

(αντί να το μειώνουν). Για παράδειγμα, ένας πράκτορας μπορεί να «παλινδρομεί» συνεχώς 

μεταξύ δύο κόμβων, λόγω περιοδικών αλλαγών στο φόρτο επικοινωνίας με άλλους πράκτορες 

(αλλάζοντας το κέντρο βάρος του), χωρίς ποτέ να αποσβένεται το κόστος μετακίνησης. Για 

αυτό το λόγο, προτείνουμε online αλγορίθμους, δείχνοντας επίσης πόσο ανταγωνιστικοί είναι 

σε σχέση με τον offline βέλτιστο αλγόριθμο.

Στα κεφάλαια 6 και 7 προτείνουμε κεντρικοποιημένους αλγορίθμους που λύνουν πιο 

πολύπλοκα προβλήματα. Ειδικότερα, το κεφάλαιο 6 καταπιάνεται με το πρόβλημα της 

ελαχιστοποίησης του κόστους δικτύου μέσω μετακινήσεων πρακτόρων όχι μόνο γενικού αλλά 

και ειδικού τύπου, όταν οι κόμβοι διαθέτουν περιορισμένη αποθηκευτική χωρητικότητα. Οι 

αλγόριθμοι που προτείνονται κάνουν χρήση τεχνικών χρωματισμού γράφου. Στο κεφάλαιο 7 

εξετάζεται ένα πρόβλημα δύο διαστάσεων, όπου το ζητούμενο είναι (α) να φιλοξενηθούν όσο 

γίνεται περισσότεροι πράκτορες στους κόμβους του δικτύου, και (β) να αυξηθεί η διάρκεια 

ζωής του συστήματος (δηλαδή να μεγιστοποιηθεί ο χρόνος ζωής του πρώτου κόμβου που θα 

εξαντλήσει τη μπαταρία του). Προτείνονται αλγόριθμοι που λύνουν το πρόβλημα ξεχωριστά 

(σειριακά) σε κάθε διάσταση, μαζί με ένα αλγόριθμο branch-and-bound που λύνει το πρόβλημα 

ταυτόχρονα και στις δύο διαστάσεις του. Ένα σημαντικό τμήμα των αλγορίθμων ως προς την 

πρώτη διάσταση του προβλήματος αφορά στην αποκερματοποίηση του αποθηκευτικού χώρου 

στους κόμβους του δικτύου, μέσω μετακινήσεων πρακτόρων.

Το κεφάλαιο 8 περιγράφει την υλοποίηση του τμήματος του ενδιάμεσου λογισμικού POBICOS 

που παρέχει μια ολοκληρωμένη, κατανεμημένη, διαχείριση των πρακτόρων της εφαρμογής, 

πάνω από το ενσωματωμένο λειτουργικό σύστημα TinyOS. Συγκεκριμένα, περιγράφονται: i) ο 

μηχανισμός δημιουργίας νέων πρακτόρων σε κόμβους με τους κατάλληλους πόρους, ii) ο 

μηχανισμός ανταλλαγής μηνυμάτων μεταξύ πρακτόρων, iii) ο μηχανισμός ανίχνευσης και 

καταστροφής «ορφανών» πρακτόρων, και iv) ο μηχανισμός μετακίνησης γενικών πρακτόρων 

με πλήρη διαφάνεια μετακίνησης σε επίπεδο εφαρμογής.

Τέλος, το κεφαλαιο 9 αναφέρει εργασίες που είναι συναφείς με την παρούσα διατριβή, ενώ το 

κεφάλαιο 10 παρέχει τα γενικά συμπεράσματα για την παρούσα δουλειά.
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Chapter 1

Chapter 1

On Deploying Tree Structured Agent Applications in 
Networked Embedded Systems

1 Introduction

Mobile code technologies for networked embedded systems, like Aggila [36], SmartMessages

[52], Rovers [27] and POBICOS [91], allow the programmer to structure an application as a set 

of mobile components that can be placed on different nodes based on their computing resources 

and sensing/actuating capabilities. From a system perspective, the challenge is to optimize such 

a placement (through migrating the mobile components) taking into account the message traffic 

between application components. It should be stressed that this work focuses on non-highly 

volatile environments, e.g., home or office environments. Therefore, we can expect that: (i) the 

arrival of new applications is rather infrequent; (ii) an application is expected to be resident for 

a fairly large amount of time (enough to offset any potential migration overhead).

This chapter presents distributed algorithms for the dynamic migration of mobile components, 

referred to as agents, in a system of networked nodes with the objective of reducing the network 

load due to agent-level communication. The proposed algorithms are simple so they can be 

implemented on nodes with limited memory and computing capacity. Also, modest assumptions 

are made regarding the knowledge of routing paths used for message transport. The algorithms 

rely on information that can be provided by even simple networking or middleware logic 

without incurring (significant) additional communication overhead.
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The contributions of this work are the following: (i) we identify and formulate the agent 

placement problem (APP) in a way that is of practical use to the POBICOS middleware but can 

also prove useful to other work on mobile agent systems with placement constraints, (ii) we 

present a distributed algorithm that relies on minimal network knowledge and extend it so that it 

can exploit additional information about the underlying network topology (if available), (iii) we 

evaluate both algorithm variants via simulations and discuss their performance.

2 Application and System Model, Problem Formulation

This section introduces the type of applications targeted in this work and the underlying system 

and network model. It then formulates the agent placement problem (APP) and the respective 

optimization objectives.

2.1 Application model

We focus on applications that are structured as a set of cooperating agents organized in a 

hierarchy. For instance, consider a demand-response client which tries to reduce power 

consumption upon request of the energy utility. A simplified possible structure is shown in Fig 

1.1. The lowest level of the tree comprises agents that periodically report individual device 

status and power consumption to a room agent, which reports (aggregated) data for the entire 

room to the root agent. When the root decides to lower power consumption (responding to a 

request issued by the electric utility), it requests some or all room agents to curve power 

consumption as needed. In turn, room agents trigger the respective actions (turn off devices, 

lower consumption level) in the end devices by sending requests to the corresponding device 

agents.

2
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Fig 1.1 Agent tree structure of an indicative sensing/control application.

Leaf (sensing and actuating) agents interact with the physical environment and must be placed 

on nodes that provide some specific resources (e.g. sensing or actuating capabilities), hence are 

called “non-generic”. On the other hand, intermediate agents perform their tasks using just 

general-purpose computing resources which can be provided by any node; thus we refer to these 

agents as “generic”. In Fig 1.1, device agents are non-generic while all other agents are generic.

Agents can migrate between nodes to offload their current hosts or to get closer to the agents 

they communicate with. In our work we consider migration only for generic agents because 

their operation is location- and node-independent by design, while non-generic agents remain 

fixed on the nodes where they were created. Still, the ability to migrate generic agents creates a 

significant optimization potential in terms of reducing the overall communication cost.

2.2 System model

We assume a network of capacitated (resource-constrained) nodes with sensing and/or actuating 

capabilities. Let ni denote the ith node, 1<i<N and r(ni) its resource capacity (processing power 

or memory size). The capacity of a node imposes a generic constraint to the number of agents it 

can host.

Nodes communicate with each other on top of a (wireless) network that is treated as a black 

box. The underlying routing topology is abstracted as a graph, its vertices representing nodes 

and each edge representing a bidirectional routing-level link between a node pair. In this work 

we consider tree-based routing, i.e., there is exactly one path for connecting any two nodes. Let 

D be a N*N*N boolean matrix encoding the routing topology as follows: Dijx=1 iff the path 

from ni to nj includes nx, else Dijx=0. Since we assume that the network is a tree Dijx = Djix. Also,

3
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Au=1, D1JJ=1 and Mij=0. Let hij be the path length between ni and nj; equal to 0 for i=j. 

Obviously, hij = hji.

Each application is structured as a set of cooperating agents organized in a tree-like structure, 

the leaf agents being non-generic and all other agents being generic. Assuming an enumeration 

of agents whereby generic agents come first, let ak be the kth agent, 1<k<A+S, with A and S 

being equal to the total number of generic and non-generic agents, respectively. Let r(ak) be the 

capacity required to host ak. Agent-level traffic is captured via an (A+S)*(A+S) matrix C, where 

Ckm denotes the load from ak to am (measured in data units over a time period). Note that Ckm 

need not be equal to Cmk. Also, Ckk=0 since an agent does not send messages to itself.

2.3 Problem formulation

For the sake of generality we target the case where all agents are already hosted on some nodes, 

but the current placement is non-optimal.

Let P be an A*(A+S) matrix used to encode the placement of agents on nodes as follows: P ik=1 

iff ni hosts ak, 0 otherwise. Let j  (Eq. 1.1) denote the load associated with agent ak hosted at 

node ni for a neighbor node nj specifically, this load involves the volume of data exchanged 

between ak and the agents using nj as either a hosting or routing node to communicate with 

ak.The total network load L incurred by the application for a placement P can then be expressed 

by Eq. 1.2:

A+S
1\jk Σ Σ 'km + Cmk )d'ixj ? Pxm 1

m=1
Eq. 1.1

A+S A+S N N
Eq. 1.2

L = Σ Σ  Cm Σ Σ  W m
k=1 m=1 i j

A placement P is valid iff each agent is hosted on exactly one node and the node capacity

constraints are not violated:

N
Σ  P  = 1, Vk, 1 < k  < A + S
i=1

Eq. 1.3

N
Σ  Pikr (ak) < r (n, λ Vi, 1 < i < N
k=1

Eq. 1.4
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Also, a migration is valid only if starting from a valid placement P it leads to another valid 

agent placement P without moving any non-generic agent:

P  =  p ,  Vk, A  <  k  <  A  +  S  Eq. 1.5

The agent placement problem (A PP) can then be stated as: starting from an initial valid agent 

placement Pold, perform a series of valid agent migrations, eventually leading to a new valid 

placement Pnew that minimizes Eq. 1.2. In that sense the agent placement problem (APP) can be 

renamed to the agent migration problem (AMP). The decision for migrating ak from nl to nj is 

taken iff /ijk is greater than the total load with all other neighbors of ni plus the local load 

associated with ak:

h jk  > h ik  + Σ  ^ ixk , h ij h ix 1
x * i ,j

Eq. 1.6

The intuition behind Eq. 1.6 is that by moving ak from its current host ni to a neighbor nj, the 

distance for the load with nj decreases by one hop while the distance for all other loads, 

including the load that used to take place locally, increases by one hop. If Eq. 1.6 holds, the 

cost-benefit of the migration is positive, hence the migration reduces the total network load as 

per Eq. 1.2.

Note that the resulting optimal placement of APP may be an unreachable placement, meaning 

that starting from an initial (sub-optimal) placement the optimal one can be reached by only 

performing a non-feasible “swap” of agents (the involved nodes cannot perform this “swap” 

because they don’t have enough free capacity). A similar feasibility issue is discussed in [78] 

but in a slightly different context. Also, Eq. 1.2 does not take into account the cost for 

performing a migration. This is because we target scenarios where the application structure, 

agent-level traffic pattern and underlying routing topology are expected to be sufficiently stable 

to amortize the migration costs.

3 Uncapacitated 1-hop Agent Migration Algorithm

This section presents an agent migration algorithm for the case where nodes can host any 

number of agents, i.e., without taking into account capacity limitations. In terms of routing 

knowledge, each node knows only its immediate (1-hop) neighbors involved in transporting 

inbound and outbound agent messages; we refer to this as 1-hop network awareness. This 

information can be provided by even a very simple networking layer. A node does not attempt
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to discover additional nodes but simply considers migrating agents to one of its neighbors. An 

agent may nevertheless move to distant nodes via consecutive 1-hop migrations.

Description. The 1-hop agent migration algorithm (AMA-1) works as follows. A node records, 

for each locally hosted agent, the traffic associated with each neighboring node as well as the 

local traffic, due to the message exchange with remote and local agents, respectively. 

Periodically, this information is used to decide if it is beneficial for the agent to migrate to a 

neighbor.

a 1

a4 a5 a6 aj

n i

Fig 1.2 Application agent structure Fig 1.3 Agent placement on the network

Consider the application depicted in Fig 1.2 which comprises four non-generic agents (a4, a5, a6, 

a7), two intermediate generic agents (a2 a3) and a generic root agent (ai), and the actual agent 

placement on nodes shown in Fig 1.3. Let each non-generic agent generate 2 data units per time 

unit towards its parent, which in turn generates 1 data unit per time unit towards the root (edge 

values in Fig 1.2). Assume that n1 runs the algorithm for a3 (striped). The load associated with 

a3 for the neighbour node n2 and n3 is l123=2 respectively l133=3 while the local load is l113=0. 

According to Eq. 1.6 the only beneficial migration for a3 is for it to move on n3. Continuing the 

example, assume that a3 indeed migrates to n3 and is (again) checked for migration. This time 

the relevant loads are l313=2, l353=2, l363 =0, l333=1, thus a3 will remain at n3. Similarly, a1 will 

remain at n3 while a2  will eventually migrate from n4  to n2  then to n1  and last to n3 , resulting in a 

placement where all generic agents are hosted at n3. This placement is stable since there is no 

beneficial migration as per Eq. 1.6.

Implementation and complexity. For each local agent it is required to record the load with 

each neighboring node and the load with other locally hosted agents. This can be done using a 

A x (g+1) load table, where A is the number of local generic agents and g is the node degree
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(number of neighbors). The destination for each agent can then be determined as per Eq. 1.6 in a 

single pass across the respective row of the load table, in O(g) operations or a total of O(gA ) for 

all agents. Note that the results of this calculation remain valid as long as the underlying 

network topology, application structure and agent message traffic statistics do not change.

Convergence. For the time being, the algorithm does not guarantee convergence because it is 

susceptible to live-locks. Revisiting the previous example, assume that the application consists 

only of the right-hand sub-tree of  Fig 1.2, placed as in Fig 1.3. Node ni may decide to move a3 

to n3 while n3 may decide to move ai to ni. Later on, the same migrations may be performed in 

the reverse direction, resulting in the old placement etc.

We expect such livelocks to be rare in practice, especially if neighboring nodes invoke the 

algorithm at different intervals. Nevertheless, to guarantee convergence we introduce a 

coordination scheme in the spirit of a mutual exclusion protocol. When ni decides to migrate ak 

to nj it asks for a permission. To avoid “swaps” nj denies this request if: (i) it hosts an agent ak 

that is the child or the parent of ak, (ii) it has decided to migrate ak· to ni, and (iii) the identifier 

of nj is smaller than that of ni (j<i). Else, nj grants permission to ni and does not consider 

migrating any child or parent of ak to ni before the granted migration completes. It is important 

to note that any migration is guaranteed to lead to a better placement only if agents that 

communicate with each other directly (in the application tree) are not allowed to change hosts 

concurrently.Convergence is guaranteed since it is no more possible to perform swaps and each 

migration that is not a swap reduces the network load as per Eq. 1.2. It is worth pointing out that 

such a protocol can be implemented quite efficiently by piggybacking requests and replies on 

other messages that need to be exchanged anyway in order to perform the actual migration.

4 Uncapacitated Λ-hop Agent Migration Algorithm

This section introduces an extension of the i-hop algorithm for the case where a node is 

assumed to know the routing topology within a k-hop radius. We refer to this as k-hop network 

awareness. Note this information may be collected in a lazy fashion, incurring a minimal 

communication overhead, by piggybacking the k most recent node identifiers when a (small) 

message travels through the network. In fact, this information comes for free by employing a 

naming scheme that encodes path information into node identifiers (e.g., as in ZigBee networks 

with hierarchical routing).
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Description. The k-hop agent migration algorithm (AMA-k) is a straightforward extension of 

AMA-1 that exploits k-hop awareness. The difference is that for each agent am hosted at node ni, 

AMA-k considers as possible candidates all nodes up to k-hops away from ni which are involved 

in the message traffic of am.

The algorithm chooses the destination for am by iteratively evaluating Eq. 1.6 for neighbour 

nodes, starting from 1-hop neighbours and working its way to more distant neighbours, 

following the most beneficial outbound direction. Each iteration determines whether it is 

beneficial to move am to a node that is 1 hop further away from ni assuming am were hosted on 

the node picked in the previous iteration. The algorithm stops after k iterations or earlier when it 

is no longer beneficial to migrate am. AMA-k is expected to lead to fewer migrations than 

AMA-1 because an agent can (directly) move on a distant node in a single migration; as 

opposed to performing several 1-hop migrations to reach the same destination.

Returning to the previous example of Fig 1.3, assume that node n4 runs AMA-5 for agent a2. 

The first iteration will determine that a2 should migrate (from n4) to n2, the second iteration will 

determine that a2  should migrate (from n2 ) to n1 , the third iteration will determine that a2  should 

move on n3, and finally the fourth iteration will decide that it is not beneficial for a2 to migrate 

any further. At this point the algorithm stops, suggesting the migration of a2 from n4 to n3.

Implementation and complexity. AMA-k requires the same type of load information as AMA- 

1 but for all k-hop instead of just 1-hop neighbors, rendering gk the space complexity of AMA-1 

(note that a refined, asynchronous, implementation, could store only the loads of the neighbors 

that are relevant for the computation of each iteration, requiring the same amount of memory as 

AMA-1). The destination for an agent is chosen in up to k iterations, each time evaluating Eq. 

1.6 for the relevant, up to g, neighbor nodes, yielding a total time complexity of O(kg) for 

determining the most beneficial destination for a local agent, i.e., AMA-k is k times slower than 

AMA-1.

Convergence. It is straightforward to infer that the algorithm converges provided that race 

conditions are tackled as per AMA-1.
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5 Handling Capacity Constraints

This section discusses how AMA-1 and AMA-L can be extended to handle node capacity 

constraints. When running the algorithms, some assumptions must be made regarding the free 

capacity of remote nodes to drop infeasible solutions. Notably, these assumptions could be 

invalid and must be confirmed in order to actually perform a migration. In this work we 

investigate two different schemes, as follows.

Inquire-Lock Before (ILB). Before running the algorithm, a request is sent to all potential 

destinations, 1-hop or L-hop neighbours depending on the algorithm, inquiring about their free 

capacity and requesting to reserve up to the amount needed to host all locally hosted agents that 

could be selected for migration. Nodes reply with their available free capacity, if any, which 

they reserve until further notice. The selection of the destination for each locally hosted agent is 

done as described in the previous subsections, having a consistent and guaranteed view of node 

capacities. When the destinations are chosen, all other nodes are informed to release the 

reserved capacity, while destinations release the capacity that is left over after accepting the 

agents assigned to them.

Inquire-Lock After (ILA). The algorithm runs based on a previous, possibly outdated, view of 

free node capacities. Destinations are then contacted to reserve the capacity needed for hosting 

the agents assigned to them. Initially, all nodes are assumed to have an infinite free capacity. 

This view, along with the nominal capacity of each node, is updated based on the replies 

received for each request. To avoid excluding destinations due to outdated information, with a 

certain probability nodes are assumed to have their full nominal capacity free, independently of 

the local view. Of course, this means that a migration might be decided based on invalid 

information, in which case the destination will send a negative reply when contacted to actually 

reserve capacity (and perform the migration).

Algorithmic adaptations. When AMA-1 picks a destination for a locally hosted agent, the 

migration is performed only if that node indeed has sufficient free capacity. Else, the agent is 

not considered for migration because all other destinations are guaranteed to lead to a load 

increase; Eq. 1.6 holds for at most one 1-hop neighbor or put in other words there can be at most 

one beneficial migration direction in a tree network. In contrast, AMA-L can fall back to the 

next best option in that path. For instance, in Fig 1.3, n4 would consider first n3, then n1 and 

finally n2 as destinations for the migration of a2. Notably, the destinations chosen by ILB are
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guaranteed to be able to host the agents assigned to them, while ILA may pick destinations that 

turn out not to have sufficient free capacity to host the agent(s) assigned to them.

Notably, both schemes are subject to starvation due to locking collisions. To reduce the 

probability of such live-locks, each node invokes the algorithm in random intervals (within a 

larger time period). The random selection of algorithm invocation, guarantees convergence, but 

only eventually (the probability that convergence is reached at some point becomes one for 

infinite time) and without an apriori bound on communication. Convergence can also be 

achieved more conservatively, by adding a simple rule such as: “stop migration attempts after c 

collisions”, which obviously guarantees convergence, even with “systematic” collisions.

6 Experiments

This section presents an experimental evaluation of the algorithms based on simulations 

performed on top of NS2 [85]. First we describe the experimental setup and then we present and 

discuss the results of indicative experiments.

6.1 Setup

Two types of networks are considered with 20 and 50 nodes placed randomly in a 80^80 and 

120x120 plane, respectively. Nodes are in range of each other if their Euclidean distance is less 

than 30. The tree-based routing topology is obtained by calculating a spanning tree over the 

connectivity graph. Five topologies are generated for each network type. Each experiment is 

performed on all topologies. The average diameter for the 20- and 50-node networks is 6 and 

15, respectively.

The application structure is generated as follows. Starting from an initial set of non-generic 

(leaf) agents, agents are split in disjoint groups of 5, and for each group 2-5 agents are randomly 

chosen, removed from the set, and labeled as children of a new generic agent that is added to the 

set. This process is repeated until the set comprises a single agent which becomes the root (we 

check to make sure that this is indeed a generic agent). Three application structures are 

generated with (50, 22), (25, 12) and (10, 5) (non-generic, generic) agents, referred to as app50, 

app25 and app10, respectively. The initial agent placement on nodes is random.
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In terms of application-level traffic, we let each non-generic (leaf) agent send 10-50 messages 

per time unit to its parent and each generic (intermediate) agent send to its parent the average of 

the load received from its children (perfect aggregation). Also, each parent agent sends 1 

message per time unit to its children (representing a heartbeat protocol). For simplicity, all 

messages are of equal size. The traffic pattern is stable throughout the whole duration of the 

experiments.

Nodes invoke the algorithm every T time units. Each node starts its periodic invocation with a 

different offset, randomly set between 0 and T. If an attempted migration fails due to resource 

constraints, the node backs-off for a number of periods T, chosen randomly between 1 and 5. 

Finally, in ILA, the probability for considering a node assuming that its full nominal capacity is 

free (as opposed to its free capacity according to the local view) is set to 20%.

As the main metric for our comparison, we measure the network load that corresponds to the 

agent placement produced by the algorithms vs. the load of the initial random placement but 

also vs. the optimal solution obtained via an exhaustive search algorithm (only for small-scale 

experiments). For experiments without capacity constraints, convergence is inferred when all 

nodes invoke the algorithm without attempting any migration. In experiments with capacity 

constraints, where algorithms employ the ILB or ILA scheme and convergence is not 

guaranteed, the simulation is stopped when each node invokes the algorithm 4 consecutive 

times without managing to perform a migration. The overhead of algorithms is captured via the 

number of agent migrations performed to reach the final placement as well as the number of 

(control) messages exchanged to avoid swaps and to reserve and release capacity.

6.2 Results without capacity constraints

In a first experiment we compare the placements obtained by the uncapacitated algorithms for 

the 20-node networks and one app10 application. Table 1.1 summarizes the results for different 

degrees of network awareness (average values for the 5 different topologies). All algorithms 

perform close to optimal, even though the initial random placement is very bad, incurring more 

than twice the load of the optimal solution.
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Table 1.1 Performance in the uncapacitated case (20 nodes, app10).

Algorithm Total Load Migrations Control Msgs
Initial 106,6 - -

AMA-1 45 10 20
AMA-2 44,4 6,8 13,6
AMA-3 44,8 5,2 10,4
AMA-4 44,8 5 10
Optimal 43,6 - -

The (slightly) inferior placement achieved by AMA-1 is due to the fact that it forces distant 

migrations to occur in iterations, moving agents one hop at a time. In the meantime, other agents 

that communicate with the agent “under migration” might migrate too, leading to a suboptimal 

lock-in. Greater network awareness reduces the probability of such lock-ins but does not 

guarantee their absence, e.g., note that AMA-3 and AMA-4 produce a (slightly) worse 

placement than AMA-2.

As expected, greater network awareness leads to fewer migrations because agents can be placed 

directly on nodes further away from their original hosts, if desired. Notice that the number of 

control messages (in this case generated to avoid swaps) equals twice the number of migrations, 

indicating that no migration was turned down.

6.3 Results with capacity constraints -  small scale experiments

In a second experiment, for capacitated nodes, we compare AMA-1 and AMA-2 vs. the optimal 

solution for the same topology and application as before, for both ILB and ILA schemes. All 

agents have identical capacity requirements. The results are plotted as node capacity is 

increased so that each node can host 1, 2, 3 and 4 additional agents compared to the initial 

placement.

As it can be seen in Fig 1.4, all algorithms produce sub-optimal results when node capacity is 

scarce, but the gap shrinks quite rapidly as capacity becomes abundant, approaching the results 

of the exhaustive search algorithm. Once again, the placements achieved by AMA-2 are better 

than those of AMA-1. Somewhat surprisingly, ILB consistently outperforms ILA only for 

AMA-1 but not for AMA-2. When capacity is tight, AMA-2 produces better results with ILA 

than ILB, even though ILA works with possibly outdated node capacity information. This can 

be explained due to the greedy locking approach of ILB which leads to more collisions 

compared to ILA, as network awareness increases and a node can receive capacity reservation 

requests from a larger number of nodes.
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Fig 1.4 Total load vs. capacity increase Fig 1.5 Control overhead vs. capacity increase
(20 nodes, app10) (20 nodes, app10)

Another negative effect of ILB is shown in Fig 1.5 which plots the number of generated control 

messages. ILB clearly incurs a significantly higher overhead compared to ILA, by 1.5-2 orders 

of magnitude. This is due to the fact that ILB pro-actively inquires about and attempts to reserve 

free capacity on all neighbor nodes within a k-hop radius, while ILA mainly relies on 

information acquired through previous communications and tries to lock only the nodes that are 

actually selected as destinations.

6.4 Results with capacity constraints -  large scale experiments

We also performed experiments for the 50-node networks and an application mix of five 

instances of app10, app25 and app50. We compare the performance of AMA-k, for k = 1, 2, 5, 

10. Given the bad scalability of ILB, obvious from the previous results, only ILA is used. In the 

spirit of the previous experiments, the algorithms were tested for the case where each node is 

capable of hosting 5, 10, 20 and 40 additional agents compared to the initial random placement.

Fig 1.6 and Fig 1.7 depict the load corresponding to the placements achieved (the initial 

placements amounted to an average load of 11,000) and the number of migrations performed to 

reach them, respectively. As expected, greater network awareness results in better placements 

and fewer migrations. The differences in placement quality are more pronounced for limited 

capacity and shrink as capacity increases, while the opposite trend holds for the number of 

migrations. Note that capacity constraints have a greater impact for smaller values of k. This is 

because, as discussed in Sec. 6.2, low network awareness is more likely to lead to suboptimal 

lock-ins, but now this may also waist capacity that could have enabled more beneficial 

migrations. Indeed this effect is more visible when capacity is scarce and diminishes as capacity 

increases.
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Fig 1.6 Total load vs. capacity increase 
(50 nodes, application mix)

Fig 1.7 Migrations vs. capacity increase 
(50 nodes, application mix).

Fig 1.8 Control overhead vs. capacity increase 
(50 nodes, application mix)

Fig 1.9 Back-offs vs. capacity increase 
(50 nodes, application mix)

The number of control messages is plotted in Fig 1.8. AMA-1 and AMA-2 follow opposite 

trends compared to AMA-5 and AMA-10, with the first pair incurring less overhead when 

capacity is tight, but then increasingly more as capacity becomes abundant. This is due to two 

reasons. On the one hand, the number of migrations, and that of (successful) capacity 

reservations in ILA, increases more steeply for low network awareness, as shown in Fig 1.7. On 

the other hand, the number of unsuccessful reservations, initially larger for the greater 

awareness, generally decreases with increasing capacity. This is confirmed in Fig 1.9 which 

shows the percentage of control messages that resulted in a back-off. The net effect results in 

the observed behaviour.
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6.5 Result summary

Based on the presented results we can state that: (i) AMA-k achieves close to optimal 

performance when there are no capacity constraints; (ii) with capacity constraints, AMA-k 

considerably improves agent placement from an initial random placement; (iii) greater network 

awareness leads to better placements while requiring fewer migrations, but this performance 

advantage shrinks rather quickly for larger values of k; (iv) the ILA scheme scales better than 

ILB, and in fact leads to better placements for increased network awareness when node capacity 

is scarce.

7 Conclusions

In this work we formulated the problem of placing cooperating mobile agents on nodes as to 

minimize the network load due to agent-level message traffic under node capacity constraints. 

We proposed and evaluated corresponding distributed algorithms for agent migration that can 

take advantage of basic routing-level information. Given their simplicity, these algorithms are 

suitable for resource constrained embedded systems. AMA-k combined with the ILA capacity 

inquiry and reservation scheme is a particularly attractive candidate since it achieves good 

results for relatively small (compared to the network diameter) values of k, incurring a modest 

communication overhead and being quite efficient in terms of memory and runtime complexity.

Part of this work has been published in the following conference:

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “On Deploying Tree Structured 

Agent Applications in Networked Embedded Systems,” in Proc. EUROPAR 2010.
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Chapter 2

GRAL: A Grouping Algorithm to Optimize
Application Placement In Wireless Embedded Systems

1 Introduction

This chapter considers the agent placement/migration problem (introduced in the previous 

chapter) in a more sophisticated way against the aforementioned simple algorithms. 

Specifically, it pinpoints the problem induced when having groups of “mutually” dependent 

agents (communicating heavily with each other), whereby the involved agents are located on 

their center of gravity in their own right, but not when considered as a whole. Therefore, 

migrating such a group of agents towards its center of gravity, network load reduction is further 

achieved.

Of course, the challenge is to identify such unbalanced groups of “mutually” dependent agents 

and then migrate them towards their center of gravity. To this end, a fully distributed grouping 

algorithm (GRAL) is proposed which considers both single and group agent migrations to 

minimize the network traffic. Given unlimited general-purpose resources, the algorithm utilizes 

only information available locally at each node, while in the more realistic constrained case, the 

resource status of potential destinations must be discovered/estimated.

The contributions of this work include the following: (i) we present two versions of the GRAL 

migration algorithm each assuming different network knowledge, given unlimited resources at 

nodes; (ii) we discuss various mechanisms to tackle migrations towards storage/resource 

constrained nodes; (iii) we evaluate the different approaches through simulation experiments,
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comparing their performance against: a) optimal assignment derived through exhaustive search; 

b) AMA [113] which is an algorithm we have proposed in the previous chapter tackling the 

same problem in a different approach.

2 Application Model, System Model and Problem 
Formulation

This section is identical with the respective section of Chapter 1, with the difference that the 

system model is a little bit further extended as follows. An edge is called local edge when its 

incident agents are co-located, otherwise this edge is named remote edge. A collection/group of 

co-located generic agents is called non-partitioned when all the agents participating into that 

collection are connected with each other through local edges. Let hj denote the distance in hops 

between ni and n}.

3 Motivation example

Consider the example depicted in Fig 2.1 where an application of three agents has been 

deployed into a network of two nodes; with white and black rectangles representing generic and 

non-generic agents, respectively. The number beside an edge denotes the communication load 

(per time unit) between the involved agents (e.g. in the example C12 + C21 = 20). As it can be

observed both ai and a2 are located on their center of gravity, with that placement yielding a 

cost of 10. However, there is a group of “mutually” dependent agents (a1, a2), which is not 

located on its center of gravity, since the network cost could be reduced at zero if both a1 and a2 

migrated towards n1. Recall that this work assumes only generic agents can migrate, hence a3 

cannot migrate towards n1. It should be stressed that AMA doesn’t consider group migrations, 

thus we propose an algorithm tackling this case.
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a 1
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Fig 2.1 Application placement

4 GRAL Migration Algorithm

This section presents GRAL for the case where nodes can host any number of agents without 

taking into account capacity limitations. In terms of routing information, a node knows only its 

immediate (1-hop) neighbours involved in transporting both inbound and outbound agent 

messages. This information can be typically provided by even a simple networking layer. 

GRAL is a completely different approach against AMA [113], with the former considering 

migrations in a grouping manner taking into account agent dependencies, in contradistinction to 

latter where the migrations are performed in a single agent fashion.

4.1 Beneficial single agent migrations

GRAL performs single agent migrations in the same way as AMA algorithm (described in the 

previous chapter).

4.2 Beneficial group migrations

The algorithm first identifies disjoint application sub-trees hosted locally, and for each sub-tree 

produces a group (that may be a subset of the sub-tree). For each group, a single destination is 

chosen as a host for all agents that are part of the group. More specifically, the algorithm works 

in several steps, as follows:
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Sub-tree Identification. First, one or more disjoint sets of communicating locally-hosted generic 

agents (belonging to the same application) are identified. Each such set corresponds to a part of 

the application tree, henceforth referred to as a sub-tree. Specifically the sub-tree identification 

takes place as follows: i) create a sub-tree rooted on a locally-hosted generic agent not 

belonging to an already identified sub-tree; ii) add to this sub-tree each locally-hosted generic 

agent adjacent to one of the agents belonging already to this sub-tree. Repeat phase (ii) till no 

agent can expand this sub-tree. After the expansion of a sub-tree completes, repeat phase (i) and 

(ii) accordingly, till all generic agents have been considered. Note that each sub-tree consisting 

of only one agent is discarded, since this agent will be considered by the single agent migration 

mechanism. Observe that each of the remaining sub-trees is a non-partitioned collection of co

located generic agents.

Selection o f destination. For each sub-tree, the most promising 1-hop destination node is 

determined by comparing the load between subtree’s agents and that node versus all other 

neighbours, as well as the load with (immobile) locally hosted non-generic agents. Let lijk(A) 

and lijk(S) denote the components of lijk due to the local communication of ak with generic 

respectively non-generic agents hosted at n;·. Then, both Eq. 2.1 and Eq. 2.2 must hold true to 

select n  as a destination for a subtree G hosted at n{.

Σ j  > Σ  I h j  =  1Λ h ix =  1 Vx * U  j  Eq. 2.1
Vk \ak g G  V k :ak g G

Σ lk > Σ  Ik (S)\h,  = 1 Eq. 2.2
Vk: ak g G  Vk: ak g G

Namely, Eq. 2.1 says that the aggregate load between the agents of the sub-tree and the 

destination n  should be greater than the respective load for any other neighboring node. The 

aforementioned aggregate load involves the data exchanged between the agents of the sub-tree 

and the agents using nj as either a hosting or routing node to communicate with the former ones 

.While Eq. 2.2 says that this load should be also greater than the locally incurred one due to the 

communication with (immobile) non-generic agents hosted at ni.

Partial benefit calculation. Having chosen the best promising 1-hop destination pn;, the 

respective affinity and partial benefit value is computed for each agent ak of the sub-tree.

II.H<II-s;$

w1w1IIO' Eq. 2.3
V x * i,j

P b ijr =  f  -  h r  ( A )  \ h j  =  1 Eq. 2.4
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P b ,jm  =  - h ,m (A )  +  2 ( C vm +  C m v) | p r vm =  1 a h tJ =  1 Eq. 2.5

The affinity affijk is equal to the load associated with ak  for pnj  minus (i) the local 

communication load in terms of local (immobile) non-generic agents; and ii) the respective load 

for all other neighbors. It provides an upper bound on the positive impact the migration of ak  

from ni to nj  can have, provided that the entire subtree moves to n;·. If all agents have negative 

affinity then no beneficial group migration exists within the subtree. Else, the partial migration 

benefit is calculated for each agent in a top down fashion. Eq. 2.4 is used to calculate the partial 

benefit of the root ar of the sub-tree, which corresponds to the benefit if only ar migrates to pnj  

while all other agents of the subtree it communicates with (i.e. its children) remain on ni . To 

calculate the partial benefit of every other agent am of the subtree we make use of  Eq. 2.5, with 

prV being equal to 1 if av is the parent of am (in terms of that subtree), otherwise 0. Specifically, 

this equation corresponds to the load impact if both am and its parent av migrate to pnj  while all 

other agents am cooperates with (i.e., its children) remain on ni .

By construction, these values can be used to calculate the actual benefit obtained by migrating 

on pnj  any part of the subtree. Specifically, the actual benefit for migrating any agent am 

together with all its predecessors (in the path) up to the root ar is equal to the sum of the 

respective partial migration benefit values. Also, the benefit of migrating any agent am together 

with all its predecessors up to agent au (u^r) is equal to the sum of the partial benefits minus 

two times the load between au and its parent (that does not belong to the part being considered 

for migration).

Group Selection. The algorithm processes the subtree by merging leafs with their parent in a 

bottom-up fashion. Each merge produces a so-called group node with a respective migration 

benefit. The best grouping combination is recorded and updated correspondingly. Nodes with a 

negative benefit value are pruned. The grouping phase terminates when a single group node 

remains, and the best grouping is returned.
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Fig 2.2 Application structure

As an example, consider the application tree shown in Fig 2.2, where generic agents are denoted 

in capitals and (multiple instances of) non-generic agents in small case letters. Edge values 

stand for the communication load between two agents.

Let the application be deployed on a network as illustrated in Fig 2.3. Two disjoint subtrees are 

hosted at n1: (A, B, C, D, F, G, H) and (I, J, K), hence two groupings will be produced, one for 

each subtree (note that AMA cannot improve the placement depicted in Fig 2.3).

h

h

In the sequel we illustrate this process for the first sub-tree (A, B, C, D, F, G, H). Table 2.1 

gives the relevant load components for these agents, i.e., the load coming from each neighbour 

of n1, i.e., n2 and n3, together with the load from n1 itself (local load). The last load is split into 

the load due to communicating with generic agents (n1(A)) and the load due to communicating 

with non-generic agents (n1(S)). For instance, [C, n1(A)] is 8 due to the local communication 

with generic agents A and F  on n1, [F, n1(S)] is 2 due to the local communication with non
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generic agent f  on n1, and [H, n3] is 10 due to the remote communication with agents h on n6 and 

n7 (via n4).

Table 2.1 Load components

Agent n1(A) n1(S) n2 n3

A 15 1 0 0
B 15 0 2 15
C 8 0 3 0
D 16 0 0 0
F 5 2 0 0
G 1 1 1 0
H 12 0 0 10

First, the destination for (A, B, C, D, F, G, H) is chosen. The two possible options are n2 and n3. 

Based on the given loads, the best destination as per Eq. 2.1 and Eq. 2.2 is n3, since it accounts 

for an aggregated load of 25 as opposed to 6 for n2, and this load is greater than the total local 

load incurred between the entire sub-tree and the non-generic agents hosted at n1, which is equal 

to 4.

Then, the partial benefits are computed by starting from the root of the subtree, in this case A 

which has an affinity of -1 (aff13A = l13A -  l11A(S) -  l12A = 0 -  1 -  0 = -1). The partial migration 

benefit of A as per Eq. 2.4 is -16 (pb13A = aff13A -  l11A(A) = -1-5 = -16). The partial benefits of 

all other agents are calculated as per Eq. 2.5; for instance this is 22 for B: (pb13B = aff13B -  

l11B(A) +2*(Cba + CAB) = 13 -  15 + 12*2 = 22). The results are shown in Fig 2.4 with node 

values denoting the respective partial migration benefits. The sub-tree is then processed to 

produce the best grouping option. Fig 2.5 depicts the result of the first iteration, which leads to 

the creation of group nodes DH and CF.

- 16a

2 2 b c -5

-10 D F 3

-1 G h 22

Fig 2.4 Tree construction phase for group 
(A, B, C, D, F, G, H)

-16a

22 B CF -2

12 DH

Fig 2.5 Tree contraction phase
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Notice that G was pruned since it had negative partial benefit. In the second iteration CF will be 

pruned and BDH created with a benefit of 34. Finally, A will be merged with BDH and the 

resulting group node ABDH will have an actual benefit of 18.

Convergence. Notably, for the time being the algorithm does not guarantee convergence as it is 

susceptible to race conditions. Consider for instance two communicating node neutral agents 

residing at neighboring nodes. If the load between them is high enough and the nodes invoke the 

algorithm with the same period it is possible that these agents will swap places at one period, 

only to re-swap back to their original positions at the next period and so on so for.

We expect such live-locks to be rare in practice, especially if neighboring nodes invoke the 

algorithm at random intervals. To guarantee convergence though, we introduce a coordination 

scheme between nodes in the spirit of a mutual exclusion protocol. Namely, when ni decides to 

migrate a group to n  it asks n  for a permission. In turn, n  rejects such a request if all the 

following is true: (i) it hosts an agent ak that is the child or parent of an agent belonging in the 

group to be transferred, (ii) it has decided to migrate ak to ni and has requested a respective 

permission, and (iii) the id of n  is smaller than that of ni (j<i). Else, n  grants permission to ni 

and does not consider migrating any agent to ni which has parent or child relation with an agent 

of the group in question till the later completes its migration. Convergence is guaranteed 

because conflicting migrations cannot be performed concurrently and each (non-conflicting) 

migration reduces the network load.

Complexity. For each locally hosted generic agent, one needs to record the load with each 

neighbor node as well as the load aggregates for local generic and non-generic agents. This 

requires a A ’x(N’+2) table, where A ’ and N ’ is the number of local generic agents and 

neighbors, respectively, in the spirit of Table 2.1. In addition, parent-child loads must be 

recorded for each pair of locally hosted cooperating generic agents. This can be done via a 

separate tree structure for each subtree, with pointers to the respective locations of the load 

table, requiring O(A’) memory in total.

The destination for each subtree can be chosen in one pass of the corresponding tree structure 

and respective load table entries, in O(A’N ’) for all subtrees. The calculation of the affinity and 

partial benefit values requires one more pass. Similarly, the grouping of each subtree can be 

done in a single pass of the tree structure in O(A’), while the best grouping combination can be 

updated in O(1) for each step. Hence the asymptotic time complexity of GRAL is O(A’N ’).
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5 Handling increased network knowledge

In this section we consider the case where each node not only knows its immediate neighbors, 

but also every node within k-hops. Such k-hop information may be collected without significant 

extra communication, e.g., by (occasionally) piggybacking node identifiers as a message travels 

through the network, or by employing a naming scheme that directly encodes path information 

into node identifiers as done in ZigBee for the case of hierarchical routing [129]. We proceed by 

presenting a variation of GRAL that explores such increased knowledge, referred to as GRAL- 

k. GRAL-k extends GRAL to: (i) take advantage of k-hop awareness, and (ii) potentially assign 

different parts of the group to different destinations (i.e., suggesting that some agents of the 

group migrate to different nodes).

For each subtree G, all neighbors within k hops of the local host and which are involved in the 

load associated with G are considered as potential destinations. The respective affinity and 

partial benefit values for each destination node ni are calculated in the spirit of GRAL, however 

Eq. 2.3, Eq. 2.4 and Eq. 2.5 are adjusted to consider the fact that n  need not be a neighbour of 

η:

a f f  =  l  h  - l  ( S  ) h  -  Y  l  h  -JJ  ijm ijm ij n m \  / ij ixm ij
V x^i, j.Dijx =°Ahjx =1 Eq. 2.6

Υ  ( l  — l  )(h  -  h  ) D  = 1Λ h  =  1 λ  u  ψ  i ,  jV ixm m m ; \  jx  ix s  xju xu
Vχψi, i D ijx =i

P b ,jr =  f  —  h r  ( A ) h ,j
Eq. 2.7

P b ijm =  a f f i jm  —  h m  ( A ) h ij +  2 ( C Vm +  C mv ) h ij 1 P r l  =  1
Eq. 2.8

Where in Eq. 2.6 nu is the next hop node in the path from nx to n;, in Eq. 2.7 ar is the root of the 

sub-tree, and in Eq. 2.8 av is the parent of am in the sub-tree. Recall, that the affinity affijm 

represents the benefit of migrating am from ni to n  assuming the entire sub-tree also moves on 

nj. Once again, three load components are considered: (i) the load associated with am that goes 

through nj, minus (ii) the load due to the local communication with non-generic agents hosted at 

ni and (iii) the additional load going through other nodes nx. The first two components remain 

the same as in Eq. 2.3, multiplied by the hop distance between ni and n;·. The third component 

now comprises two terms, handling two different cases. If nx is a neighbor of ni in a different 

outbound direction than nj, the load for nx remains the same and is multiplied by the extra 

distance travelled (the distance between ni and nj). Else, if nx is between ni and n;, the additional 

penalty is the difference between the load for nx and the next hop node nu towards nj multiplied
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by the corresponding hop difference; this actually corresponds to a benefit, if nx is closer to n  

than ni. Note that Eq. 2.6 maps to Eq. 2.3 in case n  is a neighbour of ni (the last term 

disappears). The partial benefit formulas Eq. 2.7 and Eq. 2.8 are straightforward extensions of 

Eq. 2.4 and Eq. 2.5, taking into account the distance between n  and ni.

The partial benefit values for each agent and destination node can be stored using a single tree 

structure, where the partial benefit of an agent is a vector; each element indicating the partial 

benefit for a different destination node. The grouping process follows the same principle as in 

GRAL, but when merging two nodes the best destination for the leaf is selected for each 

destination option of the next-level node, producing an equal number of combined placements 

and partial benefit values for the resulting group node. The most beneficial vector’s entry of 

final contracted node is chosen.

During the grouping phase, the benefit values are calculated based on the fact that each merge 

“links” the parent agent am in the leaf node with the parent agent an in the next-level node (am is 

the child of an, both hosted at n,). Let tm and tn denote the nodes (forming a sub-tree) that contain 

these agents, and t„m denote the node that results after merging tm with tn. Also, letpbtium be the 

partial benefit of tm if am moves from ni on nu, and pbtivn the partial benefit for tn if an moves 

from ni on nv. Then the corresponding combined partial benefit for t„m is:

P b t lVn ,um  =  P b t ivn + P b t ium ~  ( C mn + C nm ) ( ~ Κ  +  k m +  \ ν ) |  p ^  =  1 Eq. 2.9

To explain the third term, recall that pbtivn is calculated as per Eq. 2.7 assuming that am (a child 

of an) remains at ni while, an moves from ni on nu, and pbtium is calculated as per Eq. 2.8 

assuming that an (the parent of am) will also migrate from ni on nu together with am. If this is not 

the case (v^u), the benefit must be adjusted by (i) crediting the cost (Cmn+Cnm)hiv assumed in 

Eq. 2.7, (ii) subtracting the benefit (Cmn+Cnm)hiu assumed in Eq. 2.8, and (iii) subtracting the 

load (Cmn+Cnm)huv that will actually be incurred between am and an from their new hosts. Note 

that the third term disappears for v=u in which case the partial benefit of tnm equals the sum of 

the individual partial benefits, as usual.

We illustrate how the algorithm works by revisiting the previous example (of Fig 2.2and Fig 

2.3) for k=2. Assume that n1 invokes the algorithm for the sub-tree (I, J, K). The candidate 

destination nodes, involved in the message traffic associated with one or more agents of this 

sub-tree, are n2, n3 and n5 (n4 incurs no load and is omitted). Table 2.2 lists the load and affinity 

value for each agent and destination candidate. For instance, [.J, l15] is 3 due to the
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communication with agent j  on n5, and [J, aff15] is 6 (aff15J = l15Jh15 -  ln j (S)h15 -  l12Jh15 -  (l13J-

li5 j)(h13-h 35) = 3*2 -  0*2 -  0*2 -  (6-3)*(1-1) = 6).

Table 2.2 Load coefficients for the subtree

Agent aff12) aff13) (l15, aff15)

I (1, 1) (0, -1) (0, -2)
J (0, -6) (6, 6) (3, 6)
K (0, -12) (6, 0) (0, -12)

Fig 2.6 depicts the initial state of the sub-tree where each node is associated with 3 different 

partial benefit values, one for each of the candidate destinations nodes (listed below the 

respective values). For instance, the partial benefits for n5 are: -16 for I  (pb15I = aff15I -  l11I(A)h15 

= -2  -  (6+1)*2) as per Eq. 2.7; 18 for J  (pbUj  = affU j  -  lm (A)h15 +2(Cj+C j i  )hn = 6 -6*2 

+2*6*2) as per Eq. 2.8; -10 for K (pb15K = aff15K -  l11K(A)h15 +2(CK I+CKI )h 15 = -12 -1*2 

+2*1*2) as per Eq. 2.8.

Each merge produces 3 combinations whereby each agent is separately assigned to a 

destination. Fig 2.7 shows the result of merging tree node K  with I  into a group node IK. Put in 

other words, if I  migrates on n2 the best destination for K  is n3 yielding a combined partial 

benefit of -7, if I  moves on n3 the best destination for K  is n3 with a partial benefit of -7, and if I  

moves on n5 the best destination for K  is n3 with a benefit of -15. The vector of final contracted 

node IKJ becomes <11, 11, 3>, with the agent assignment on nodes being < (n2, n3, n5), (n3, n3, 

n5 ), (n5 , n3 , n5 )>. Hence, the algorithm will choose either the first or second entry, since both 

carry the same migration benefit. For instance, if the first entry is chosen as the most beneficial 

one, this means that I , K, J  will migrate to n2 , n3 , n5 , respectively; with the actual migration 

benefit being 11.

<-6, -8, -16> 
<n2, n3> n5>

I

J K
<0, 12, 18> <-11, 1, -10> 
< ^  ^  n5> < ^  ^  n5>

<-7, -7, -15>
<(n2 , Π3), (Π3 , 1Ί3), (1Ί5 , n3)>

IK

J
<0, 12, 18> 
<n2 , n3 , n5>

Fig 2.6 Tree construction phase Fig 2.7 Tree contraction phase

In terms of space complexity, for each group node the partial benefit vector is O(N’) in size, and 

O(N’2) of space is required to store the various placement combinations, where N ’ is the number
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of nodes that are k hops away from the local node. Thus the aggregate space complexity is 

O(A’N ’2). The time complexity of the algorithm is dominated by the grouping phase because 

each merge involves calculating the partial benefits of O(N’2) combinations, each individual 

calculation done in O(1). This yields a total of O(A’N ’2) for all locally hosted subtrees.

6 Handling capacity constraints

This section discusses how GRAL can be extended to tackle node capacity constraints. In a 

nutshell, four main elements must be added: (i) infeasible migrations must be dropped; (ii) the 

available free capacity of nodes must be “discovered” dynamically; (iii) capacity reservations 

must be made before initiating a migration; (iv) we keep in a special vector the most beneficial 

feasible merged node along with its actual migration benefit when considered as a standalone 

entity.

GRAL checks the capacity constraint during the grouping phase of a subtree. If a leaf contains 

agents that exceed the capacity of the destination, it is pruned. When running the algorithm, 

some assumptions must be made regarding the free capacity of remote nodes. These 

assumptions are then used to drop infeasible solutions. Obviously, these assumptions may be 

invalid and must be confirmed in order to actually perform a migration. In terms of (iv), each 

time two nodes are merged, we update the special vector to keep the merged node with the best 

actual migration benefit. Finally, when the contraction phase completes, the merged node with 

the best actual migration benefit is returned. The motivation behind this is that the finally 

merged node may be an infeasible solution, therefore in that way we are able to choose the most 

beneficial feasible solution. The algorithms are enhanced with the two locking schemes 

proposed in the previous chapter (ILA and ILB).
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7 Experiments

The setting for the experimental setup took place in the same way as in Chapter 1.

7.1 Results without capacity constraints

In a first experiment we compare the placements obtained by the GRAL and AMA variants, and 

the optimal algorithm without taking into account capacity constraints. Due to time complexity 

owed to the exhaustive algorithm, we choose small-scale experiments (20-nodes, app-10).

Table 2.3 Peformance for Lavg and the 20-node network

Algorithm Total
Load

Migrations Control
Msgs

Conv.
Time

initial 173.6 N/A N/A N/A
AMA-1 65.6 10.4 20.8 2.4
GRAL-1 58.2 14.8 22.8 2.6
AMA-2 61 7 14 2.4
GRAL-2 58.2 9.8 15.6 2.4
optimal 58.2 N/A N/A N/A

Table 2.3 summarizes the results of the aforementioned algorithms for an initial (random) 

placement and the lavg model. The first observation is that the initial placement is quite bad, 

incurring more than twice the total load of the optimal solution. In fact, both grouping variants 

GRAL-1 and GRAL-2 consistently achieve an optimal result. In case of AMA, the 2-hop 

variant produces better placements than the 1-hop variant, illustrating that in this case greater 

network awareness is less prone to suboptimal lock-ins compared to lower awareness. This is 

because the latter must perform hop-by-hop migrations in order for an agent to reach its final 

destination, while former can transfer it through 2-hop jumps.

As expected, the 2-hop variants perform a smaller number of migrations compared to their 1- 

hop counterparts, because they allow agents to move further away from their original hosts in a 

single migration. The grouping migration (GM) algorithms result in more migrations than their 

AMA counterparts, hinting to the fact that grouping avoids suboptimal lock-ins to which single 

agent algorithms are vulnerable. Further attesting to this fact is the observation that GM 

algorithms exhibit a lower control message per migration ratio than AMA, showing that it was 

indeed possible to form groups assigned to the same destination (2 control messages are needed 

per destination due to the protocol for avoiding swaps). In absolute numbers, however, GM 

algorithms result in slightly more control messages than AMA algorithms, which is due to the
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larger number of migrations performed. A final observation is that the algorithms have much the 

same convergence time (~2.5 periods).

The same experiment was conducted for the rest load models (Isum and Imix), with the optimal 

algorithm being marginally better than GRAL variants. Specifically, the optimal algorithm 

achieved 1% and 5%o better performance against GRAL over Isum and Imix, respectively. 

However, it was interesting to notice that AMA variants did not manage to bear fruit in Isum 

and Imix load models, yielding an enough inferior performance of 30% and 22%, respectively, 

against grouping variants. This is due to the fact that in these models the “bonds” among the 

relative agents become stronger, especially when the load between generic agents and their 

parents is relatively heavy; exposing in that way the drawback of considering migrations in a 

single agent manner, like AMA variants do. Hereafter, in the experiments we will always be 

using the lavg model.

Finally, the experiment was also repeated for the special case where all generic agents are 

initially placed on the same node (chosen randomly). GM algorithms once more achieved very 

good results, close to optimal (compared to the exhaustive algorithm). AMA algorithms were 

particularly bad due to their inherent lock-in problem.

7.2 Small-scale experiments

In the second set of experiments we compare the performance of the AMA-1, AMA-2, GRAL-1 

and GRAL-2 algorithms for the ILB and ILA schemes versus the optimal solution obtained by 

exhaustive search. To reduce simulation time (for the exhaustive algorithm), we choose again 

the experimental setup to consist of a 20 node network and app10. The evaluation is performed 

for varying levels of “tightness” of the capacity constraint. More specifically, we start with the 

nodes having just enough capacity to store the agents defined in the initial placement and add 

additional capacity to hold 1, 2, 3, 4 extra agents at each node.

Fig 2.8 depicts the percentage of load reduction achieved by the 1-hop variants. All algorithms 

reduce significantly the load by more than 40% even in the case where the capacity constraint is 

tight. Comparing against exhaustive search, we notice that the performance difference between 

the algorithms and the optimal solution rapidly decreases as more capacity becomes available. 

For instance, with surplus capacity of 1 the difference between GRAL-1 (ILB) and the optimal 

result is more than 15% while with a surplus capacity of 4 it is less than 5%. This is due to the 

fact that when capacity is scarce it is also more likely that nodes will be filled. A filled node
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essentially acts as a bottleneck separating the tree network into two parts. For 1-hop algorithms 

this means that these network parts cannot exchange agents; therefore, it is more likely to reach 

a suboptimal solution. Obviously, exhaustive search doesn’t perform any real migrations in 

order to find the optimal solution, thus doesn’t suffer from the effects of bottleneck nodes. The 

increase in load reduction for exhaustive search should be attributed to the “generally 

improved” optimization potential as the capacity of nodes increases and the setting gradually 

shift towards the unconstrained case.
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Concerning the relative performance of the 1-hop algorithms in Fig 2.9 we can observe the 

following: (i) ILB achieves better placements than ILA for both AMA-1 and GRAL-1, and (ii) 

GRAL-1 consistently outperforms AMA, except in the case of ILA and surplus capacity of 1. 

Both observations are due to the fact that ILA works with estimates about the free capacity of 

nodes, thus it may be impossible to perform the decided migrations. While through each failed 

migration (and capacity reservation) attempt ILA updates its capacity information, this also 

leads to a back-off. This delay might prove vital since in the meantime a bottleneck node could
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be created. This particularly affects GRAL-1 (ILA) because group migrations (two or more 

agents destined for the same node) are more likely to fail due to outdated capacity information 

when capacity is tight. AMA-1 (ILA) is less vulnerable to this effect because it only considers 

single agent migrations. However, it is worth noting that the negative performance impact of 

ILA in both AMA-1 and GRAL-1 applies only when capacity is scarce and diminishes when 

capacity increases.

Unfortunately, the performance of the ILB scheme comes at a non-negligible cost. Fig 2.9 plots 

the control messages generated in order to reserve capacity and avoid swaps. It can be seen that 

ILB requires roughly one order of magnitude more messages compared to ILA. This is because 

ILB greedily attempts to obtain locks from all neighbors, before running the actual algorithm 

that determines the destinations for agent migrations, i.e., regardless whether these nodes will be 

chosen as migration targets or not. On the contrary, ILA tries to lock capacity only at the nodes 

that have been selected as destinations for one or more agent migrations. It is also worth noting 

that AMA-1 and GRAL-1 generate roughly the same amount of control messages. Another 

interesting observation is that the number of control messages for ILB tends to decrease as 

capacity increases. This is attributed to the fact that with larger free capacity a larger number of 

migrations will succeed without experiencing back-offs or lock-ins due to filled nodes and it is 

more likely to reach a good placement where agents will not need to move away from their 

hosts. This is in line with Fig 2.11 which plots the number of migrations. As it can be seen, the 

number of migrations rises as capacity increases. It can also be seen that when capacity 

becomes abundant, the GM algorithms are able to perform more migrations than the SAM 

algorithms which suffer from lock-ins.

Fig 2.11 shows the results for the 2-hop variants, i.e., AMA-2 and GRAL-2. Most of the general 

trends discussed for the 1-hop variants hold here too, so we choose to not show the figures 

about control messages and migrations. Note, however, that the performance difference between 

ILA and ILB becomes minimal for both AMA-2 and GRAL-2. This is a very encouraging result 

considering the fact that ILB is very expensive in terms of control messages. To explain this 

note that with 2-hop network awareness the number of capacity reservation conflicts for ILB 

increases as a node can receive requests from a larger number of nodes. Thus, it is likely that 

some agents will not migrate to the destination(s) assigned to them but rather to a (less optimal) 

one hop neighbor of it, or not at all. This induces a similar effect to the one observed for ILA for 

1-hop awareness. Namely, once back-offs occur and agent migrations are delayed, node 

capacity may be filled with other agents thereby hindering migrations that would be more
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beneficial overall. In fact, notice that ILA quickly closes on and eventually overtakes ILB for 

GRAL-2 as capacity increases, approaching an optimal result.

7.3 Large-scale experiments

In this set of experiments we generated networks of 50 nodes. Also, we deploy 5 applications 

for each application structure (app-10, app-25, app-50) to synthesize a mix of 15 applications 

(app-mix). The algorithms being evaluated remain the same (excluding optimal) under a 

different range of surplus capacity (2, 5, 10, 20). The performance of the algorithms in this 

setting a little bit different compared to the previous one; specifically the load reduction (Fig 

2.12) ranges between 10 and 50 instead of 40 and 60 percentage units, respectively. This is 

because in the previous setting, the proportion of agents needing migration per total surplus 

capacity is less than this one, thus leading in a more tight placement, and therefore in less 

migrations. Also, taking a look at the differences of locking schemes between Fig 2.12 and Fig 

2.8, we notice that ILB scheme deteriorates with the increase of the network topology (we 

attribute this to the increasing reservation conflicts).

Fig 2.12 Load reduction 
(50 nodes, app-mix)

Surplus capacity
Fig 2.13 Migrations performed 

(50 nodes, app-mix)
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In terms of control messages, we notice in Fig 2.13 that ILB continues sending much more 

messages against ILA, with ILA having a more steep inclination compared to ILB. This is 

elaborated through the following remarks: i) the number of migrations increases in a linear 

fashion (Fig 2.14) and the number of control messages, concerning ILA, are exactly twice the 

number of migrations (request/reply messages); b) in ILB scheme, the number of locking 

messages is amortized as the number of parallel migrations per node increases, since a node will 

not send double reservation messages in case it tries to migrate concurrently more than one 

agents. Summing up the aforementioned remarks, the control messages sent over ILA are linear 

to the number of migrations, in contradistinction to ILB which is not the case as discussed 

earlier. Therefore the aforesaid remarks explain ILA’s bland increase. Also, due to the fact that 

we have observed a much similar behavior between 1-hop and 2-hop variants we chose to not 

show the figures accounting for the control messages and migrations.

For the last experiment we fix the surplus capacity to 5 agents per node and vary nodes’ 

awareness to be between 1 and 10 hops. As we can see in Fig 2.15, GRAL achieves by far the 

better performance compared to AMA, in both ILA and ILB schemes. More specifically, for 

k=5 GRAL achieves roughly double the load reduction of AMA. The reduction itself is also 

quite impressive (roughly 65% of the random initial placement). Notably, the load reduction 

increases rapidly as hop awareness increases from 1 to 2 and 3 hops, stabilizing from 5 

onwards. This means that modest network awareness (in this case, 1/3 of the network diameter) 

is sufficient to reach good solutions, which is also quite important considering the 

corresponding memory and runtime complexity implications.
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(50 nodes, app-mix) (50 nodes, app-mix)

Concerning the capacity reservation schemes, ILA clearly outperforms ILB for both AMA and 

GRAL with the difference becoming more pronounced as network awareness increases. Fig 

2.16 also shows that ILB exhibits an exponential trend with regards to control messages 

rendering this scheme inherently non-scalable.

Looking at Fig 2.17, which plots the number of migration performed, note that GRAL exhibits a 

rapid increase as hop awareness increases from 1 to 3, then stabilizing and dropping afterwards. 

The trend up to 3-hop awareness is due to the fact that increased hop awareness enables the 

flexible placement of even more agents at even better destinations. Once a good placement is 

reached, a further increase in hop awareness does not considerably enhance placement quality 

(see plateau in Fig 2.15) but only has the effect of decreasing the number of performed 

migrations (or more precisely, the consecutive migrations an agent must do in order to reach a 

good destination; a trend which is more clear for AMA). The above indicate an essential 

property of k-hop aware algorithms, namely that significant load reduction can be achieved with 

a relatively small value for k. Even larger k-hop awareness is not entirely without a positive 

effect, since it results in a reduced number of migrations and a smaller number of control 

messages for ILA.

A final remark concerns that the larger number of migrations performed by GRAL (ILB) 

compared to GRAL (ILA) for k=3,4,5, actually leads to an inferior agent placement. We 

attribute this to capacity reservation conflicts which become more likely for ILB as hop 

awareness increases. Such conflicts may lead to a suboptimal mapping of agents on nodes, with 

increasing probability as hop awareness increases, on nodes that are further away from their 

ideal destinations (and closer to their original hosts). In turn this may create bottlenecks that 

hinder more beneficial migrations, without necessarily blocking them completely. Even though
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ILA can miss opportunities due to outdated capacity information, with increasing probability as 

hop awareness increases, hence is likely to perform a smaller number of migrations than ILB, 

precisely for that reason it is also less vulnerable to reservation conflicts thus is more likely to 

perform migrations that are more beneficial/effective than those of ILB. The net effect seems to 

be in favor of ILA even when performing fewer migrations compared to ILB.

7.4 Discussion

Summarizing the above, we can conclude on the following: (i) ILA is the more promising 

locking scheme, in fact, ILB is only applicable for small network awareness; (ii) algorithms 

using grouping outperform their counterparts in most cases but the ones where no network 

awareness exists and the capacity is very restricted; (iii) network awareness especially when 

applied to grouping algorithms together with ILA, drastically increase the quality of the 

produced placement, while performing comparably fewer migrations and control message 

exchange compared to non-network aware algorithms; (iv) in the unconstrained case GRAL-1 

and GRAL-2 achieve optimal or close to optimal performance.

8 Conclusions

In this work we tackled (as in the previous chapter) the problem of placing the agents 

comprising an embedded application to the available nodes. We proposed distributed 

asynchronous algorithms to tackle both uncapacitated and capacitated versions of the problem, 

considering agent migrations in the form of a group instead of standalone entities (Chapter 1). 

Algorithms based on group migrations, outperform the ones considering migrations in a single 

agent manner, with their performance being optimal in most cases when the nodes have no 

capacity limitations; and near-optimal when nodes have enough capacity to host more than one 

agents (group of agents). Also, grouping algorithms are in the process of being implemented in 

POBICOS middleware, bestowing an extra quality on it against other similar systems, since 

such an attribute proves to be of great importance regarding the energy depletion.

Part of this work has been published in the following conference:

* N. Tziritas, T. Loukopoulos,S. Lalis and P. Lampsas, “GRAL: A Grouping Algorithm to 

Optimize Application Placement in Wireless Embedded Systems,” In Proc. IPDPS 2011.
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Chapter 3

Identifying the worst-case bounds for AMA and 
GRAL, and devising an optimal algorithm

1 Introduction

In this chapter we give an extensive analysis through lemmas and theorems about the 

approximation ratios of AMA and GRAL against the optimal algorithm. Specifically we prove 

that the worst-case scenario of AMA against the optimal algorithm is not bounded. As regards 

the approximation ratio of GRAL against the optimal algorithm, it proves to be that expressed 

by Eq. 3.1. With G denoting the number of generic agents into our system, while B/2 being the 

maximum number of the data an agent can send towards another one, each time the respective 

network routine is called. It should be stressed that the aforementioned approximation ratio is 

expressed Eq. 3.4, under the restriction that an agent cannot communicate with more than N  

other agents (at most N incident edges). Also, we give some details as to why GRAL is not 

optimal, and introduce a modification of GRAL (called GRAL*) which proves to be optimal.

Section 2 describes the application and system model as usual. Section 3 proves that the 

communication cost difference between AMA and the optimal algorithm tends to infinity. In 

Section 4 we modify GRAL into GRAL* and prove that the later is optimal when having no 

capacity limitations; while Section 5 provides two worst case bounds of GRAL, with the first 

one concerning the case where an agent can have an arbitrarily large number of relatives; while 

the second one considering the case that an agent is allowed to have at most N  relatives. Finally 

Section 6 concludes our work.

39

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 3

1
( G  -  2 ) * 2 B

( G

1
2G - N  -  3 

N
2 ) * 2 B

Eq. 3.1 

Eq. 3.2

2 Application and System Model

The application and system model continue being the same as that of  Chapter 1, with the system 

model being a little bit extended. Let h(a) be the hosting node of ai. G and NG denote the 

number of generic and non-generic agents, respectively. exy equals 1 when there is an edge 

between ax and ay, otherwise 0. qxy captures the data exchanged between ax and ay (qxy = qxy = 

Cxy+Cyx). Let Eq. 3.3 represent the data exchanged between a1 and the non-generic agents it 

communicates with. Eq. 3.4 and Eq. 3.5 capture the data exchanged between an agent (let a_j) 

and the generic agents it communicates with, with Eq. 3.5 excluding the co-located agents 

communicating with a_j. M ijk denotes the migration of ak from ni towards ni.

Qs .j  = Σ % 1 e =1 Eq. 3.3
a  e n g

Qn, j = Σ  % 1 ev =1 Eq. 3.4a e g
Qn ■, j = Σ  % 1h(a.) * h(aj) Λ eij =1a e g Eq. 3.5

Let D be the diameter of the network, while B/2 be the maximum data an agent can send 

towards another one, each time it calls the respective network routine, assuming that there is an 

edge connecting those agents. Therefore the maximum volume of data can pass through an edge 

at any instance of time is equal to B, with this happening when both involved agents send 

towards one another B/2 data simultaneously. We say that an agent is individually balanced if 

located on its center of gravity; otherwise we say that this agent is unbalanced. An agent (let ax) 

is considered totally balanced if thefollowing hold: a) it is individually balanced; b) there is no 

subtree that contains ax after the contraction phase completes (see Sec. 4 in the previous 

chapter). From now on we will interchangeably use the terms stabilization and balance, 

rendering the same meaning.
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Definitionl. The same equations/properties apply for either an individual agent or a group of 

agents.

A group of co-located agents can be thought of as a super-agent, provided that these agents are 

non-partitioned. The construction of a super-agent occurs by merging all the agents of the group 

as follows: a) each edge that originates from any agent of the group and ends up on another one 

not belonging to that group becomes an incident edge to that super-agent (originates from the 

super-agent instead of that agent); b) we ignore any edge that originates from and ends up on an 

agent belonging to that super-agent (internal edges). Without loss of generality we can assume a 

super-agent is possessed of the same properties (equations) holding true for a regular agent. Let 

As denote such a super-agent. From now on, we will use interchangeably the terms super-agent 

and group of agents.

3 Identifying the worst-case bound of AMA

Initially we prove AMA cannot be optimal through the following lemma.
Lemma 1: If the agents of an application are individually but not totally balanced, then it could 
be found a migration of group of agents, which reduces the total network communication cost.
Proof. Assume a1 and a4 (non-generic agents) are hosted by n1 and n3, respectively; while a2 

and a3 (generic agents) are hosted by n2, with the application and network structure being 
illustrated in Fig 3.1 and Fig 3.2. Now assume the following hold: q23 > q12, q34 and q34 > qu . 
Observe that there is no beneficial single agent migration, since a2 and a3 are stabilized due to 
the fact that there is no nj such that: l 2 j 2  >  /222 + ^  l 2x2 and l 2j2 >  /223 + ^  l2x3. Therefore,

j  ,2 X^ j  ,2

AMA cannot migrate any generic agent, with the total network cost being q12 + q34 . However if 
we were able to migrate both a2  and a3 towards n3 then the total network cost would become 
2q12 > q12 + q34. Hence, the total network cost could be further reduced by considering a group 
agent migration.
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Fig 3.1 Network structure 

Corollary 1. AMA is not optimal.

Proof. It stems directly from Lemma 1.

Lemma 2. A placement of agents is optimal iff there is no agent or super-agent (group of 

agents) being unbalanced (i.e., the placement is totally balanced/stabilized).

Proof. It is similar to show that if a placement of agents (let Ps) is totally balanced/stabilized, 

then there is no other placement reducing further the total communication cost. Proof tries to 

show this through contradictions of three assumptions described further down. Specifically, the 

three assumptions to be contradicted, provided that the initial placement is totally balanced, are: 

a) there is an agent/group migration that results in another balanced placement where the 

network cost is reduced; b) there is at least one agent/group migration which leaves intact the 

network cost on its own right, but reduces it via the help of other ones; c) the same as (b) with 

the difference that there is at least one agent/group migration increases the network cost instead 

of leaving it intact. For simplicity, to show the above contradictions we make use of only single 

agent migrations (not groups), without loss of generality due to Definition 1.

Assumption A: Consider a migration of an agent ak from nx towards an 1-hop neighbor nu, 

under the assumption that the new placement is also totally balanced. Assume also that this 

migration reduces the total network cost. Since ak is balanced independently of whether it is 

located on nx or nu, then the following hold:

w+II-^x Eq. 3.6
m ^u ,x

^uxk ^uuk ^  ^umk
Eq. 3.7

m ^u ,xw+Λ-^x Eq. 3.8
m ^u ,x
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Since we claimed that the migration in question reduces the total communication load, then the 

equation Eq. 3.8 must hold true, which comes in contradiction with Eq. 3.6. Therefore a 

migration like that cannot reduce the communication cost on its own, hence we consider the 

case where such a migration cause other migration(s), where all of them reduce network cost. It 

is straightforward to show that these case holds true when nu is a k-hop neighbor.

Assumption B: Consider the previous case with the difference that instead of nu we have an k- 

hop neighbor (let nz) and Mxzk leaves the network cost intact. Assume also that after Mxzk takes 

place, am migrates due to stabilization issues (changes in load patterns), which means that am 

has an edge towards ak. However, am cannot be located on any node other than nx, due to the 

following facts: i) if am was located on any node (like ny depicted in Fig 3.3) across the path 

between nx and nz, then Mxzk would increase the network cost, which contradicts with our 

assumption that Mxzk does not increase/decrease the cost; ii) the same would hold if am was 

located on any node (like nf in Fig 3.3) using ny as a router to reach nx, with the restriction that 

this node must not use nz as a router; iii) if am was located on any node (like nb) before the path 

between nx and nz, or after that path (like na), then am would not initially be balanced 

(contradiction); iv) if am was hosted by nz, then am could not migrate anywhere since am would 

be eventually co-located with ak (contradiction). Therefore, we result in the fact that am should 

be hosted by nx. However the migration of both am and ak cannot reduce the network cost; since 

that would mean that a group of agents is not stabilized which contradicts with the assumption 

of an initial totally balanced placement. It is self-evident that the same holds in case we have 

more than one agent (like am) to be migrated.

nf

nb . . . ΠΧ y

Fig 3.3 Network

Assumption C: We omit the case where Mxzk increases the communication cost without causing 

any other migration, since in that case the final network cost will increase (our proof is based on 

network cost reduction). Hence, assume Mxzk increases network cost, with that migration 

causing an extra migration of the agent am (with am having an edge towards ak, as previously)
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due to load changes, which finally reduces the initial network cost (i.e. the cost before Mxzk 

takes place). However such a situation could not happen since it is obvious that in the best case 

(assume that there are only two agents into our system am and ak) am would amortize the cost 

caused by Mxzk. While in the worst case either Mxzk should be “revoked” (by performing Mzxk), 

or the migration of am would cause other migrations like the ones caused by Mxzk. As we can 

observe such a kind of migrations may be performed in a recursive fashion till the boundaries of 

the application tree are reached (root agent and non-generic agents), however without eventually 

reducing the final network cost.

Summing up: It was shown that if an algorithm results in a totally balanced placement, then 

there is no migration or a series of migrations of agents (or super-agents by making use of 

Definition 1) that can take place to reduce the network cost further more. Therefore, we 

conclude that a placement is optimal when all the agents are totally balanced (there is no 

agent/group being unbalanced).

Theorem 1. The worst-case bound between AMA and the optimal algorithm is 

(G  — 1)*2B  * D  * T , with T denoting the maximum number of times the agents can send B/2 

data units over the network.

Proof. Assume that in our system there are no unbalanced individual agents (without loss of 

generality since AMA always results in a placement of no unbalanced individual agents), while 

there exist one unbalanced group (let super agent As). Since AMA cannot identify such a group 

to migrate it to its center of gravity, the worst-case scenario is for As to be as farther from its 

centre of gravity as possible (it is obvious that the optimal algorithm will decide to migrate this 

group of agents to its centre of gravity). In order for AMA to incur as large network cost as 

possible, while for optimal as small as possible, we need to decide which node will host As and 

which node(s) will host the adjacent agents to As. The best case for optimal algorithm is for the 

adjacent agents of As to be co-located on the same node (let nr), hence the optimal algorithm will 

take the decision to migrate As towards nr, with the network cost being zero. The worst-case for 

AMA results by consulting the following function:

f ( i ,  j , s  — — Σ  4A —
V x^i, j D jX =°Ahix = Eq. 3 . 9

Σ  (l — l  )(h — h  ) | D = 1 λ h = 1 λ u Φ jV ixs i u s s \  jx  ix s I xju xu J
Vx* i, j  'Dijx =1

Let Eq. 3.9 be a function yielding the benefit/cost of migrating As from ni to nj. The first factor 

concerns the benefit of Mijs due to the load associated with As and directed to nj when ni hosts As.
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The second factor captures the cost of migrating As due to the communication load with its co

located agents. Third factor concerns the cost of moving As towards an opposite direction 

against the nodes hosting agents communicating with As (excluding n). Finally, the forth factor 

signifies the benefit/cost — benefit when nx is closer to nj; while cost when it is closer to ni — 

of moving As towards nj in terms of the nodes located in-between ni and nj.

We demand that Eq. 3.9 be as large as possible in order for AMA to incur as large 

communication cost as possible. Looking carefully on Eq. 3.9 it is obvious that when the first 

factor increases then also the cost increases, while second and third factor contribute negatively 

to the communication cost. In terms of 4th factor, note that the following equation holds always 

true h  — hjx < h , hence it is worse (in terms of cost) to host an agent on nj instead of nx.

Therefore the worst-case is to have the relative agents of As located on nj, and the hop-distance 

between ni and nj to be as large as possible, i.e., D.

Assumption A: Assume all generic agents participate into As, therefore all adjacent agents to As 

should be non-generic agents. Let ni be the initial hosting node of As. Note that in order for each 

agent ak participating into As to be individually balanced Eq. 3.10 should hold true:

Qs k  + < Σ  Vxk I ak , ax e As Eq· 3 1 0

Vx:exk =1

Σ  (Qsk  + Q„ -k )D  Eq· 311
y k:ak e As

Qsk + QNk = Σ  B , V k :  ak e As Eq· 312
Vx:̂ . =1a ax eAs

Specifically Eq. 3.10 denotes that, QSk and QNk (considering that ak participates in the 

unbalanced group) should be equal to or less than the accumulated communication load between 

ak and each generic agent belonging into the unbalanced group. Eq. 3.11 represents the network 

cost induced by AMA due to the external load (QSk + ^ Nk) of each agent ak participating into 

As. From now on, any reference to network cost will be inextricably linked with the fact that any 

agent is able to send B/2 data units (towards each adjacent agent of its own) at most one time, T 

= 1. The factor D in Eq. 3.11 is justified by an earlier remark that the adjacent agents to As 

should be hosted by a node that is D hops away against the node hosting As. Therefore the 

worst-case scenario for AMA is for QSk and QN k to be as large as possible, since AMA cannot 

identify a migration to save this load/cost. Namely, given that: a) at most B data units can travel 

over an edge (B/2 for each agent incident to that edge); b) each qxk should be as large as possible
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(provided that ak and ax belong into As); we conclude that each such qxk should be equal to B, 

hence Eq. 3.10 becomes Eq. 3.12.

unbalanced group of generic 
agents hosted by the same node

Qs ,

Fig 3.4 Unbalanced group A s

Initially we assume that only two generic agents do exist into our system (m = 2 in Fig 3.4). 

Therefore, Eq. 3.11 becomes equal to 2B*D, since Qsl + Qwl = qu = B  and

QS2 + Qn ,2 = qu = B . In case of 3 generic agents (m = 3 in Fig 3.4) AMA results in a

placement where the network cost is equal to 4B*D, since Qsl + Qwl = q12 = B ,

QS2 + Qn ,2 = q12 + q23 = 2 B , and QS3 + QN,3 = q23 = B  . For 4 generic agents the network cost

becomes 6B*D, and so on. Hence, we observe that for each internal edge of As AMA incurs 

2B*D additional cost. Therefore, due to the fact that our application is structured as a tree (in a 

tree of G nodes G-1 edges there exist), the largest difference (in terms of cost) between AMA 

and the optimal algorithm is equal to (G-1)*2B*D. Note also that the cost incurred by AMA is 

independent of how the agents belonging into As are connected with each other, since it depends 

only on the number of As’ internal edges.

Assumption B: In the sequel we proceed with the case that {a1..aG-1} belong to AS, while aG not 

to. Therefore, aG is either located on the same node hosting As or on another one.

Assumption B1: In the first case the optimal algorithm will decide to migrate As from ni 

towards the center of gravity (let nj). Note that the ideal case for the optimal algorithm is to 

migrate also aG onto nj, however it could not make such a decision since in that case aG would 

belong into As which comes in contradiction with Assumption B. This means that the load QSG 

cannot come from nj, also QNG cannot be greater than QSG (since in that case aG would belong 

into As). The worst case for AMA (best for the optimal algorithm) is the QNG to be as high as 

possible, and aG to migrate as close to nj as possible (let this node be nx) with hjx = 1, and with
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nx being the source for the external load QSG. As a result, the cost incurred by the optimal 

algorithm is that of the communication between aG and the agents belonging to As (Eq. 3.13). 

While AMA incurs cost equal to the external load of both As and aG multiplied by the hops 

traversed (hij and hix respectively); the external load of As is equal to (G-1)*2B, while the
G-1

external load of aG cannot be greater than Σ  qiG | ejG = 1 λ a. e As due to the fact that aG must
i=1

be individually balanced on ni (our initial assumption). Note also that aG cannot be connected 

with more than one agent belonging to As due to the fact that: a) the application is structured as 

a tree; and b) the agents belonging to As must be non-partitioned (Definition 1). Therefore the 

external load of aG cannot be greater than qiG | eiG = 1 λ  a. e  As . As a result the communication 

cost of AMA is represented by Eq. 3.14, which is less than (G-1)*2B*D.

G-1
hxj Σ  qiG 1 eiG = 1 Λ ai e As 

i=1
Eq. 3.13

(G  -  2 ) * 2 B  *  h  +  B  *  h e  =  ( G  -  2 ) * 2 B  *  D  +  B  * ( D -1 )  Eq. 3.14

(G  -  2 )* 2 B  * h  + B  *  h  =  ( G  -  2 ) * 2 B  *  D  +  B  *  D  Eq. 3.15

Assumption B2: Consider now the second case where aG is initially hosted by a node other than 

ni. In order for the optimal algorithm to pay no cost, the best-case scenario is for nj to initially 

host aG. The worst-case scenario for AMA is for aG to be as far away in terms of ni as possible 

(i.e on nj). Following the same rationale as that of  Eq. 3.14, with the difference that hix must be 

replaced by hjj, we end up on Eq. 3.15 which is less than (G-1)*2B*D.

Summing up: the worst-case scenario of AMA is that described in Assumption A (all the 

generic agents belong into the unbalanced group). Note also that in case that T tends to infinity 

the communication cost difference between AMA and the optimal algorithm tends also to 

infinity.

4 GRAL*: Modifying GRAL to become optimal

Lemma3. The way GRAL chooses the destination node (the most promising neighboring node) 

for a potential migrating group may lead GRAL to result in a sub-optimal placement.
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Proof. When GRAL runs on a node it chooses for each non-partitioned collection of locally- 

hosted generic agents (disjoint subtree) the most promising destination node in order to proceed 

with the subtree construction/contraction phase. Specifically, when GRAL runs on a node (let 

nx) records: a) for any neighboring node (let ny) the communication load exchanged between the 

generic agents located on node nx and the generic or non-generic agents located on either ny or 

on a node using ny as a router; b) the load exchanged between nx’s locally-hosted generic and 

non-generic agents (without taking into account the load between locally-hosted generic 

agents). For example, assume that only two nodes does exist into our system (ni and n2). 

Consider that n1 hosts the agents a1, av, a2 and a3 depicted in Fig 3.5, while a2, and a3, are

hosted by n2. Note that the current network cost is equal to 20, while in case of migrating both 

a2 and a3 towards n2 the network cost becomes 1. Note that GRAL is not able to identify this 

beneficial migrating group due to the fact that when GRAL runs on ni it finds out that the most 

promising destination node for any potential migrating group is n1 itself; since the accumulated 

local load is totaled 100 which is greater than the accumulated remote load associated n2, which 

amounts to 20. A solution to this drawback is for GRAL to proceed with a tree 

construction/contraction phase for all the neighboring nodes of the node it runs on.

unbalanced group o f generic 
agents hosted by the sam e node

Fig 3.5 Unbalanced group of 3 agents

Lemma 4. The fact that the root agent of a sub-tree cannot be pruned (when contraction phase 

takes place) may lead GRAL to result in a sub-optimal placement.

Proof. The only agent that cannot be pruned when contraction phase takes place is the root 

agent. Consider again the example of Lemma 3 where GRAL is possessed of the ability to 

proceed with the tree construction/contraction phase for all the neighboring nodes of the running
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node. Assume again the example described previously and depicted in Fig 3.5. Let GRAL 

construct a sub-tree (rooted on a1) for the potential destination node n2 (Fig 3.6). Observe that 

when the contraction phase completes the final merged/contracted node has negative benefit 

which leads GRAL to cancel the decision to migrate this group. However if GRAL constructs a 

sub-tree rooted on a2 (Fig 3.7), it is able to identify a beneficial migrating group and result in a 

better placement.

-101 -1 -1

a i

1

a?2

20

a3

Fig 3.6 subtree rooted on ai Fig 3.7 subtree rooted on a2

Lemma 5. If the root agent of an identified sub-tree belongs to an unbalanced group (let As) of 

agents, then after the contraction phase GRAL will identify a beneficial migrating group (and 

migrate it in an optimal way) which is identical to As.

Proof. Recall that in the construction phase of a sub-tree, each agent belonging to that sub-tree 

is assigned a partial benefit for its migration towards a promising destination (let pnx). Due to 

the nature of partial benefit calculation, if an agent is located at the bottom level of the sub-tree, 

then the partial benefit of that agent corresponds to the upper bound benefit of its migration 

towards pnx.

Assumption 1: Consider that GRAL decides to construct a sub-tree of only two levels based on 

pnx. Assume also that a part of this sub-tree represents an unbalanced group of agents where the 

optimal algorithm will decide to migrate it towards nx (with the root agent belonging to the 

unbalanced group). This part of the sub-tree is called optimal migrating group.

If there are agents at the bottom level of the sub-tree, which have partial benefit equal to or less 

than zero, then GRAL will take the decision to prune them. Note that the optimal algorithm will 

decide to remove these agents from the optimal migrating group as well, since their upper 

bound migration benefit will be less than or equal to zero. Therefore GRAL’s decision to prune 

them is correct. The rest bottom-level agents have positive partial benefit each, which means 

that if their parent (in terms of the sub-tree structure) migrate also, then their actual migration 

benefit should be greater than zero. It is obvious that the optimal algorithm will decide to
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include these agents into the optimal migrating group, with the latter being consisted of the 

agents in question plus the root agent. According to GRAL’s contraction phase, these agents 

will be merged (along with their partial benefits) with the root agent. Of course, in order for 

GRAL to perform the migration of the group represented by the final contracted node, the 

partial benefit of the latter should be greater than zero. Note that this partial benefit is equal to 

the actual benefit of migrating the group represented by that node. According to the optimal 

algorithm this actual migration benefit is positive, therefore GRAL will take the optimal 

decision to migrate that group.

Assumption 2: The same as Assumption 1 with the difference that the sub-tree is consisted of 

three levels instead of 2. In the first step GRAL will proceed with the merge/pruning of the 

bottom level of the tree. As said earlier, each leaf contributing negatively will be pruned (the 

optimal algorithm will take the same decision). The rest bottom-level agents will be merged 

with the next upper-level nodes (which nodes represent agents), since they have positive partial 

benefit. Therefore, we result in a case identical to that of Assumption 1, with the difference that 

some of the bottom-level nodes may represent super-agents instead of individual ones. By 

making use of Definition 1, we conclude that GRAL will migrate the same agents with the 

optimal algorithm.

Assumption 3: The same as assumption B with the difference that the sub-tree is consisted of 4 

levels instead of 3. Following the same rationale as previously, we conclude that this case is 

reduced to the case of Assumption 2. Therefore, GRAL again takes the optimal decision.

Iteratively, in general the case where the sub-tree is consisted of n levels is always reduced to 

Assumption 1. As a result, we conclude that if the root agent of a sub-tree belongs to an 

unbalanced group, then GRAL will identify and migrate this group in an optimal way.

Definition 2. GRAL* is a modification of GRAL tackling the drawbacks brought out by lemma 

3 and lemma 4 through the following way. For each possible pair (As, nd)— where As is an 

identified sub-tree and nd is the potential destination node of that sub-tree — GRAL* constructs 

as many sub-trees (containing the same agents with As) as the number of the agents belonging to 

As, with each such sub-tree being rooted on a different agent.

Lemma 6. Each unbalanced group is contained in one of GRAL’s sub-trees.

Proof. According to the sub-tree identification phase (described in Chapter 2, sec 4.2), GRAL 

organize all the locally hosted agents into sub-trees (co-located non-partitioned generic agents).

50

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 3

Since an unbalanced group is consisted of non-partitioned locally hosted agents, it is obvious 

that each unbalanced group should be contained by some GRAL’s sub-tree.

Theorem 2. GRAL* results always in an optimal placement.

Proof. According to Lemma 6 and Definition 2, for each unbalanced group there is always a 

GRAL*’s sub-tree where a) it includes this unbalanced group, and b) the root agent of this sub

tree belongs to this unbalanced group. Combining the above with Lemma 5, we conclude that 

GRAL* will identify all the unbalanced groups and take the optimal decision for them. This 

means that GRAL* will always result in a totally balanced placement, which in combination 

with Lemma 2 prove GRAL*’s optimality.

5 Identifying the worst-case bound of GRAL

Theorem 3. The approximation ratio between GRAL and the optimal algorithm is

------------------ for G > 2 , otherwise GRAL is optimal.
(G -  2)*2* B

Proof.

Part A: In this part we prove that GRAL is optimal when G < 2 GRAL. It is obvious that when 

G = 1 AMA is optimal (it stems from Lemma 2) so GRAL is optimal too, so we need to 

consider only the case where G = 2 . Since sub-optimality of GRAL is attributed to Lemmas 3 

and 4 (GRAL* becomes optimal by overcoming the drawbacks brought out by these lemmas), 

we only need to show that these lemmas do not hold true for the case of G  = 2 . Getting started 

with Lemma 3, we can observe that in case GRAL cannot identify any promising neighboring 

node, then either both generic agents are individually and totally balanced, or one of them 

misleads GRAL to take the decision that the promising destination node is the local one. This 

means that only one generic agent is unbalanced, in which case both AMA and GRAL are able 

to identify such an individually unbalanced agent, and hence Lemma 3 does not hold true. 

Proceeding with Lemma 4 we predicate that it also does not hold true. As regards Lemma 4, it 

doesn’t hold true (in terms of G = 2 ) as well; this is due to the fact that when the identified 

sub-tree is rooted on an agent not belonging to an unbalanced group, then it is obvious that only 

individually unbalanced agents there can be. Hence, it is self-evident that Lemma 4 does not 

hold true.
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Part B: Here we see the case where G > 2 . We extend Fig 3.5 into Fig 3.8 in order for both 

data exchanged between agents and the number of agents to be arbitrarily large. Let /oc(QSi) 

and ext(QSi) denote the local respectively remote load attributed to the data exchanged between 

ai and its adjacent non-generic agents. Assume the case where only 3 generic agents there exist, 

and they are hosted by some node nx. Let m = 2 in Fig 3.8, then a1 and a2 will belong to the 

unbalanced group, while a3 will be totally balanced. Note that in our case QNH ( V i ) is equal to

0, since all generic agents are assumed to be co-located. Also in order for GRAL to not be able 

to identify that unbalanced group (for the sake of proof) we need Eq. 3.16 to hold true.

Q s  ,m+1 + Q ,  \m +1 ^  (G -  2)*2B
Eq. 3.16

Σ  e X t ( Q S,/) + ^ 2 , 3 * D  Eq. 3 1 7
/

Σ  e x t  Q )  + 2B  * D  Eq. 3 1 8

/

Σ  eXt(QS, / )  +  ^ 2 , 3 *  D
- L ----------------------------  Eq. 3.19
Σ ext (Qs/ ) + 2 * B * D
/

--------1--------  Eq. 3.20
(G -  2)*2B

According to those discussed in the previous paragraph, the optimal algorithm and GRAL will 

result in a placement where the communication cost is equal to that expressed by Eq. 3.17 and 

Eq. 3.18, respectively; with 2B*D stemming from Eq. 3.12, by following the same rationale as 

that of assumption A in Theorem 1. Therefore their ratio is given by Eq. 3.19, which lessens in 

case both external loads and q23 are equal to zero. However q23 could not be equal to zero since 

in that case GRAL would identify the unbalanced group, resulting in that way in an optimal 

placement. Hence, q2 ,3  is set to 1 (the minimum feasible value) with the worst-case bound 

becoming 1/2B. Following the same rationale as above we conclude that for G = 4 ( m = 3 in 

Fig 3.8) the worst-case bound becomes 1/4B, while for G = 5 we have 1/6B. Finally, by 

reduction to an arbitrarily large G, we conclude that the worst-case ratio is given by Eq. 3.20.

Following the same reasoning as in Theorem 1 we conclude that a) the network cost incurred by 

the resulting placement of GRAL is independent of how the agents belonging into the 

unbalanced group are connected with each other; b) the more the agents belonging to the 

unbalanced group the more the network cost incurred by the resulting placement of GRAL; c)
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the totally balanced agent (am+1) should be adjacent with only one agent of the unbalanced 

group. Else, the collection of a1..am would be partitioned due to the tree-structured application; 

in other words, the number of the agents belonging to the unbalanced group could not be greater 

than G-1, lessening in that way the worst-case bound (not desired).

unbalanced
group

Fig 3.8 Unbalanced group of G agents

Theorem 4. The approximation ratio of GRAL is equal to
( G

1
2G - N  -  3 

N
2 ) * 2 B

under the following restrictions: i) the number of incident edges to an agent is at most N  and at 

least 3; and ii) G  > 2  .
Proof. In order for GRAL to result in a non optimal placement (the same rationale as in 

previous proof), it is required Eq. 3.21 to hold true. Also, due to the fact that an agent cannot 

have more than N adjacent agents, Eq. 3.22 should hold true as well. Equating Eq. 3.21 with Eq. 

3.22 we get Eq. 3.23. Specifically, the positive part of the latter equation specifies the external 

load of the agents participating into the unbalanced group, while the negative part concerns the 

local load of the totally balanced agent. However, Eq. 3.23 does not hold true for any possible 

combination (G, N), thus enabling GRAL to identify the unbalanced group depicted in Fig 3.8 

(which spoils the proof). So it is needful for Eq. 3.23 to be modified to hold true for any 

combination (G, N).

This can be achieved by having the negative part of  Eq. 3.23 to always surpass the positive one. 

Note that the positive part of that equation decreases when the number of agents participating 

into the unbalanced group decreases; of course this means that the number of agents belonging 

to the totally balanced group increases proportionally. Therefore, assuming G  — 1 — k  agents 

participate into the unbalanced group instead ofG  — 1, Eq. 3.21 is transformed into Eq. 3.24.
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Note that the number of totally balanced agents (called totally balanced group) is k  +1, instead 

of 1, consequently Eq. 3.22 is transformed into Eq. 3.25. Fig 3.9 illustrates such a scenario, with 

the unbalanced agents being m = G  — 1 — k , while the totally balanced ones being 

n — (m +1) = k  + 1. Note that the second part of  Eq. 3.25 is attributed to the fact that when the 

totally balanced group is consisted of k  +1 agents, then all these agents are able to have a total
k

of at most Σ  (N  — 2) + (N  — 1) adjacent non-generic agents. Putting these all together, we infer
i=1

that for each agent being transferred from the unbalanced group to the totally balanced one, the 

positive part of Eq. 3.21 decreases by 2B since the internal edges of the unbalanced group 

decrease by 1; while the negative part decreases by (N  — 2)* B . As a result, Eq. 3.21 becomes 

Eq. 3.26 (by equating Eq. 3.24 with Eq. 3.25), with k denoting the agents transferred from the 

unbalanced group to the totally balanced one.

Qs ,m+1 + Qn\m+1 > (G — 2)*2B 

& ,m+1 + Qn  >+1 < (N  — 1)* B

(N —1)* B > ( G — 2 ) * 2 B  ^  ( G — 2 ) * 2 B — (N  — 1)* B < 0

k+1

Σ  (Q s m + i +  Qn ',m + i) > (G  —  2 —  k )*2B
i=1

k +1 k

Σ  ( Q s ,m+i +  Q n ·,m+i) <  Σ  ((N  -  2) * B) — (N  — 1) * B
i=1 i 1

(G — 2 — k  )*2B  — (N  — 1)* B — Σ (N  — 2)* B < 0

k  =
" (G — 2)*2B — N  — 1)* B " " 2G — N  — 3"

2B + (N  — 2)* B N

1

(G —2G — N  — 3 
N

— 2)*2B

i=0

Eq. 3.21 

Eq. 3.22

Eq. 3.23 

Eq. 3.24

Eq. 3.25

Eq. 3.26

Eq. 3.27

Eq. 3.28

What it remains is to decide the value of k in order for Eq. 3.26 to hold always true, keeping at 

the same time this equation as close to zero as possible in order for GRAL to be as worse as 

possible. This value is given by Eq. 3.27 which says that assuming an unbalanced group o f 

G  — 1 agents and a totally balanced group o f only 1, how many agents we need to transfer from 

the unbalanced group to the totally balanced one in order for that equation to become equal to
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or less than 0. Recall that for each such transfer, the positive part of Eq. 3.26 decreases by 2B, 

while the negative one decreases by (N  — 2)* B , giving a total decrease of 2B + (N  — 2)* B . 

Putting all these together, we infer that the unbalanced group is able to have at most G — k  — 2 

internal edges. Following the same rationale as in Theorem 3 — that is, for each internal edge 

( G — k  — 2 in total) inside unbalanced group, GRAL incurs network cost equal to 2B — we 

conclude that the approximation ratio is given by Eq. 3.28.

unbalanced group 
of co-located node

group of co-located 
node-neutral agents

Fig 3.9 Unbalanced and totally balanced groups

6 Conclusions

In this chapter we discussed the bounds for the algorithms proposed in Chapter 1and Chapter 2, 

and showed that AMA can not be bounded. We also proposed two simple changes for the 

GRAL algorithm, making it in that way to result always in the optimal placement.

Part of this work is going to be submitted in the following journal:

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Identifying the worst-case bounds 

for AMA and GRAL, and devising an optimal algorithm,” to be submitted in IEEE 

Transactions on Parallel and Distributed Systems.
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Chapter 4

Introducing Agent Evictions to Improve Application 
Placement in Wireless Embedded Systems

1 Introduction

In the previous chapter we proved that GRAL can be transformed into an optimal algorithm 

(GRAL*), provided that there are no storage-constrained nodes. However, the agent migration 

problem continues being intractable for the case where the nodes of the system have storage 

capacity limitations. Specifically, we prove that the agent migration problem is NP-complete 

through its reduction to the well-known knapsack problem [56], considering no capacious (in 

terms of memory) nodes. The algorithms proposed in this chapter are designed in a more 

sophisticated way against the solutions proposed in previous ones.

This work introduces the concept of “evictions”. Specifically, the term “eviction” represents a 

migration of an agent without aiming at reducing network cost, but at increasing the free storage 

capacity of the current hosting node. Of course such a migration it does not come for free 

(network cost increases), since it is distanced from its center of gravity. It should be stressed 

that an agent eviction takes place iff there is a guarantee that the induced network cost will be 

amortized by some other migration. The former migration is also called space-effective, while 

the latter one is named cost-effective.

The algorithms proposed take the decision for migrating an agent based on a fully distributed 

manner. Specifically, a cost-effective migration is considered in the same way as a migration in 

Chapter 1, while the decision for a space-effective one is taken in a different way described in
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the following sections. Note that these algorithms are enhanced with a mechanism to stop/start, 

in a dynamic way, the dispatch of control messages exchanged for discovering potential 

destination nodes with enough free capacity to host a migrating agent. This mechanism is 

referred to as a radio silence mechanism, and can be also applied to ILA and ILB protocols to 

decrease considerably their control messages.

The rest of this work is structured as follows: section 2 describes the problem formulation, 

application and system model; section 3 presents the proposed distributed algorithms; section 4 

section provides the experimental evaluation of the proposed algorithms through simulation.

2 Application, System Model and Problem Formulation

Since the application model of this chapter is the same with the previous ones we referred the 

reader to Chapter 1.

2.1 System model

The system consists of nodes with special sensing/actuating capabilities and limited storage 

capacity. Let n,and c(ni) denote the ith node and its hosting capacity, respectively. Note that the 

capacity of a node imposes a generic constraint to the number of both node-neutral and node

specific agents it can host.

Nodes communicate with each other via short-range radio. We assume a tree-based routing 

structure, whereby any two nodes are connected via a single, possibly multi-hop, path. Let rij 

denote the number of hops between ni and n;·. We assume that the links of the routing structure 

are bidirectional, thus ri]=rji. Also, rii=0.

The system can host several applications, each one having its own node-neutral and node

specific agents. Let ak, s(ak), h(ak) be the kth agent in the system, its size and the node hosting it, 

where 1<k<NA and NA+1<k< NA+SA enumerates all node-neutral and all node-specific agents, 

respectively. An agent ak may exchange messages with its relatives (parent or children) in the 

application tree, let RSk. Also, let T be a (NA+SA)x(NA+SA) matrix that encodes the 

communication between agents. Specifically, Tkm denotes the unidirectional traffic from ak to 

am, i.e., the number of data units ak sends to am over a specific period (note that, in the general

case, Tkm̂ Tmk).
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2.2 Problem formulation

The objective is to reduce the amount of wireless traffic between nodes due to the application- 

level communication, i.e., the messages exchanged between agents. Without loss of generality, 

we assume the agents of an application are placed on the nodes of the system in a non-optimal 

way. Then, our goal is to perform a series of agent migrations in order to achieve a better agent 

placement that reduces (ideally, minimizes) the wireless network traffic.

In the sequel we provide a proof sketch that the agent placement problem is NP-hard by 

reduction to the knapsack problem. Assume a knapsack instance with k objects, each denoted 

with oi. Let si, vi be the size and value of oi and S the size of the knapsack. The knapsack 

problem consists of finding the collection of objects of maximum value V that fits in the 

knapsack. We can transform any such statement to an equivalent statement of the agent 

placement problem studied in this work, as follows. The application tree consists of the root and 

two more levels. In the first level, k generic agents (let a ) exist, corresponding one to one to the 

knapsack objects. In the second level, k non-generic agents (let at) exist, such as each generic 

agent ai communicates with exactly one non-generic agent av and vice versa.

The communication cost between the tree root and the generic agents is set to be e, where 

e<min(vi), and between the generic agent ai and the non generic ar is set to be vi-e. Two nodes 

exist in the network n1 and n2. All the generic agents initially rest at n1, while n2 holds all non

generic agents together with the application root. The size of a generic agent ai is set to the 

corresponding knapsack’s object size (si), the size of the root agent is set to: 1 + ̂ s i , while the
V i

size of the non-generic agents can be any positive number. Finally, the capacity of n1 is set to 

^ s j , i.e., just enough to hold the generic agents allocated there, while the capacity of n2 is set
Vi

so that S free capacity remains. In the constructed agent placement problem instance, the 

network load is due to the agents of the first level (that rest in ni) communicating with the root 

agent and the agents of the second level (that rest at n2). The total load of this assignment is 

^  (vi -  e) + ̂  e = ^ v i . In order to minimize this load the only possible migrations involve the
V i V i V i

agents of the first level moving from ni to n2 . This is due to the fact that the agents of the second 

level are non-generic (thus cannot move), while the root agent has size greater than the capacity 

of n1. It is easy to see that each migration of ai from n1 to n2, decreases the network cost by vi 

and can only be done provided that the free space S at n2  is not covered. Thus, a solution to the
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aforementioned agent placement problem instance provides a solution the initial knapsack 

instance.

2.3 Migration benefit/penalty and eligibility

We focus on a distributed solution whereby each node decides locally which agents to migrate 

on which nodes, based on the agents’ incoming and outgoing load with other agents

Using the previous notations, the load that ak incurs into the system if hosted by ni can be 

expressed as follows:

= Σ +  T mk)riKam) Eq. 4 . 1
am eRSk

Let M k refer to the migration of ak from ni to n;·. The benefit/penalty of M k, in terms of the load 

difference (positive or negative) of the placement obtained after m k takes place compared to 

the current placement, is given by:

Bk =  lk - lk Eq. 4.2

For M k to be eligible, ak should be node-neutral and the destination node n  should have 

enough free capacity:

ak ,1 < k < NA Eq. 4.3

NA+SA

c ( n j ) ^ s ( a k ) + Σ s ( a m ) | h ( a m ) = Hj  Eq. 4 . 4

m

Each migration m k leads to a new placement, which may incur a lower or perhaps a higher 

agent-level communication over the network, depending on whether Bk is positive or negative. 

In the former case we refer to the migration as beneficial else non-beneficial. But note that not 

all beneficial migrations are eligible, due to the capacity constraint (Eq. 4.4).

2.4 Evictions

To alleviate this problem we consider performing possibly non-beneficial migrations that free 

node capacity. We refer to such migrations as evictions. The idea is to exploit the capacity being 

released this way to perform beneficial migrations. Obviously, per definition, evictions cannot 

(by themselves) reduce the amount of application-level traffic over the network. In order to
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achieve this, evictions must be followed by at least one migration with a benefit that outweighs 

their penalty.

In the sequel we give an example to illustrate this scenario. Assume the application depicted in 

Fig 4.1, which comprises four node-specific (a3, a4, a5, a6) and two node-neutral (ai, a2) agents. 

The link weights represent the message traffic between agents (as the number of data units 

exchanged per time unit, e.g., bytes per second). Also assume the application is deployed in a 

network of seven nodes as shown in Fig 4.2, where each node has enough capacity to host only 

one agent.

Fig 4.1 Application structure and traffic Fig 4.2 Initial application placement

Let us first consider node-neutral agent a1. There is no better placement for it, because every 

migration of a1 away from n1 is non-beneficial as per Eq. 4.2. Let us now consider agent a2. In 

this case, a migration from n4 to n1 would yield a benefit of 9 as per Eq. 4.2. But note that m 2 

is not feasible due to the capacity constraint (Eq. 4.4) for n1. However, this can be made feasible 

by evicting a1 to n6 at a penalty of 1. If both migrations are performed (Mj6 followed by m \  ) a 

better placement will be obtained for the application, with a benefit of 8 vs. the current 

placement.

3 Heuristics

In this section we propose heuristics that consider evictions, which in turn enable a beneficial 

migration so that the cumulative benefit/penalty is positive.
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3.1 Single path algorithm (SP)

In this algorithm each node iterates through the list of locally hosted node-neutral agents to find 

the one (if any) that is most beneficial to migrate to a neighboring node. Then, it sends to the 

respective destination a hosting request with the identifier of the agent to be migrated, its size 

and the benefit of the migration as per Eq. 4.2.

When a node receives a hosting request it checks if it has enough free capacity to host the agent 

in question, in which case it sends a positive reply. Else, it considers one or more evictions (in 

increasing order of their penalty) until enough free capacity is secured (or the cumulative 

penalty outweighs the benefit of the request). Then, or each such eviction, a hosting request is 

issued carrying the remaining benefit (used to decide for more evictions downstream). If all 

replies are positive and the total penalty does not exceed the benefit, a positive reply is sent 

back to the node that issued the hosting request.

When a node responds positively to a hosting request, it reserves the capacity required to host 

the agent in question, including the capacity (still) being used for the agents that are to be 

evicted. This ensures that it will be possible to perform the respective migration, if the node that 

issued the hosting request decides to proceed. Such reservations are cancelled when a node 

receives a negative reply. Also, in the case of eviction groups, if a single reply is negative then a 

cancellation message is sent the nodes that replied positively.

Finally, to avoid races, an agent is not considered for several migration or eviction processes 

simultaneously. Also, we limit the degree of “recursive” forwarding of hosting requests via a 

hop limit specified by the nodes that initiates the migration process.

Table 4.1 Pseudocode description of SP

protocol execution on source node n s_________________
for each local node-neutral agent a k { 

for each neighbor node n d { 
calculate potential benefit B ksd 

update most beneficial migration m
}

}
if ( m . b e n e f i t  > 0 ) {

send ( m . d s t ,  [ H o s tR e q ,  m .a i d ,  m .a s i z e ,  m . b e n e f i t]); 
recv( m . d s t ,  [ H o s t R e p l y ,  r e s ,  p e n a l t y ]); 
if ( r e s = O K )  { start migration m  }

}
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destination n d receives from n s [H o s t R e q , a i d ,  a s i z e ,  b e n e f i t] 
if (f r e e S p a c e  > asize) { 

reserveSpace(asize); 
send (ns, [ H o s t R e p l y ,  O K , 0]);

}
else {

e v i c t  := {}; e s p a c e  := 0; p e n a l t y  := 0;
do {

for each local node-neutral agent a k not in e v i c t  { 
for each neighbor node n d · Φn s { 

calculate potential benefit B ^  
update most beneficial migration m

}
}

p e n a l t y  := p e n a l t y  -  m .b e n e f i t ;  // >0 for evictions 
if ( p e n a l t y  >= b e n e f i t )  { break; } 
e v i c t  := e v i c t  + {m}; 
e s p a c e  := e s p a c e  + m .a s i z e ;

} while ( e s p a c e  + f r e e S p a c e  <= a s i z e ) ;

if (p e n a l t y  >= b e n e f i t )  { send (ns, [ H o s t R e p l y ,  N O K ,  0]); }
else {

r e s e r \ e S p a c e ( f r e e S p a c e  + e s p a c e ) ;  

r e m b e n e f i t  := b e n e f i t  -  p e n a l t y ;  

for each m  in e v i c t  {
send ( m . d s t ,  [ H o s tR e q ,  m .a i d ,  m . a s i z e ,  r e m b e n e f i t ] ) ;

}
r e p l i e s  := {};
for each eviction m  in e v i c t  { 

recv(m.dst, [ H o s t R e p l y ,  r e s ,  p e n a l t y 2 ] ) ;  

p e n a l t y  := p e n a l t y  + p e n a l t y 2 ;  

r e p l i e s  := r e p l i e s  + { r e s };
}
if (all r e p l i e s  are O K ) and (b e n e f i t  > p e n a l t y ) { 

send(n s , [H o s t R e p l y , O K , p e n a l t y ]);
for each m  in e v i c t  { start migration m  }

}
else {

send(n s , [H o s t R e p l y , N O K , 0]);
for each m  in e v i c t  { cancel reserved space }

}
}

}

3.2 Network flooding algorithm (FL)

In SP a node chooses to evict agents in increasing order of the respective penalty. However, the 

latter is calculated locally, without knowing what the actual penalty of such migrations will be 

(an eviction may lead to further evictions downstream). To address this problem, we propose an 

algorithm where the agent to be evicted is chosen based on the smallest “total” penalty of this 

action.
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The main difference compared to SP is that the algorithm determines the cost of an agent 

eviction by investigating all possible destinations; not just the most promising one according to 

local knowledge. More specifically, a so-called probe request is sent to each destination that is a 

candidate for hosting the agent to be evicted. When all replies arrive, the one with the greatest 

benefit (smallest penalty) is selected and the corresponding node is appointed as the destination 

for the migration/eviction in question.

Probe replies travel back the same way hosting replies do, with the difference that a reply also 

includes, besides the cumulative penalty, the respective eviction list. Eventually, the node that 

started the process (issued the probe request for the beneficial migration) receives such a reply. 

If this is positive, a hosting request is sent downstream, else the migration is (silently) cancelled. 

Unlike in SP, a hosting request specifies the evictions to be performed, therefore a node knows 

which agent(s) it has to evict to which nodes.

For example, consider an application that is deployed in a network of nodes as shown in Fig 

4.3. Assume that each node is able to host one agent, and that all agents depicted in Fig 4.3 are 

node-neutral and of the same size. Also, without going into the details of the agent-level 

message traffic, let the benefit/penalty of agent migrations is as listed in Table 4.2.

Table 4.2 Benefit/penalty per migration

K M 23 M 24 M35 M  46 M67
20 -7 -2 -1 -5 -5

PrRp(OK,1,{M335}) PrRp(OK,0,{})
(5) -  (4 X

Fig 4.3 Example with probe requests/replies

Given that the only beneficial migration is that of aj from n  to n2, node n  will send a probe 

request to n2 with a benefit value of 20. Since n2 does not have enough free capacity to host at, 

it will consider evicting a2, to n3 with a penalty of 7, or to n4 with a penalty of 2. Since both
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penalties are smaller than the benefit of the probe request, in turn, n2 sends a probe to both 

destinations, with a remaining benefit of 13 and 18, respectively. In the same spirit, when n3 

receives the request from n2, it considers evicting a3 to n5 with a penalty of 1, and sends a 

corresponding probe request with a remaining benefit of 12. Given that n5 has sufficient free 

capacity to host a3, thus sends back a positive reply with a penalty of 0 and an empty eviction 

list. When n3 receives this reply, it sends to n2 a positive reply with the cumulative penalty of 1 

and an updated eviction list that includes M35. Similarly, n2 will receive from n4 a positive reply 

with a cumulative penalty of 10 and the respective eviction list { M446, M657 }. n2 will chose the 

reply with the smallest penalty, i.e., that of n3, and will reply positively to n  with a cumulative 

penalty of 8 and the eviction list { M223 , M335 }. Finally, upon receipt of a positive reply, n  will 

issue a respective hosting request that will be propagated down the chosen path (not shown in 

Fig 4.3). Note that in this example SP would choose to evict a2 towards n4 leading to an inferior 

placement.

Unlike in SP, an agent may be considered for eviction in the context of several different 

requests at the same time. This is to reduce excessive “locking conflicts” that would occur due 

to the flooding nature of the algorithm. More specifically, a host request can be issued for an 

agent that is already involved in a probe request for which no reply has been received yet. In 

other words, hosting requests have precedence over probe requests. However, to avoid having 

numerous races, which in turn may result in many failed hosting requests, a hosting request 

cannot concern an agent involved in another pending hosting requests and a probe request 

cannot concern an agent involved in a pending probe or hosting request. We also note that probe 

replies not do guarantee any capacity reservation. As a consequence a node may receive a 

hosting request for an agent that is no longer hosted locally (in which case it sends a negative 

reply).

3.3 Convergence

Migrations and evictions are performed to reduce the application-level message traffic over the 

network. The algorithms decide for one or more evictions in the context of a beneficial 

migration, only if the series of migrations and evictions will reduce the total network load by at 

least 1. Hence, assuming a stable communication pattern between the agents of the application 

totaling x data units per time unit, at most x beneficial migrations can take place. While each 

beneficial migration may trigger a number of evictions, this number is also bounded by the
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network diameter (there are no cycles). It follows that the total number of migrations is 

bounded, therefore, eventually, there will be no more migrations (or evictions) to perform.

It is important to note that a beneficial migration as per Eq. 4.2 is guaranteed to lead to a better 

placement only if agents that communicate with each other directly (in the application tree) are 

not allowed to change hosts concurrently. Else, it would be possible to have a never ending loop 

of “swaps”. The algorithms can be easily extended to satisfy this constraint, e.g., by notifying 

the relatives of an agent before commencing with the actual migration process.

3.4 Radio silence

Both algorithms are extended with a mechanism that stops the respective protocols from 

producing messages (ad infinitum) once convergence is reached. This works as follows: (a) 

each time a negative reply is sent to a node, the node is added to an update list; (b) when a node 

receives a negative reply, it adds the sender to a block list (blocked nodes are not considered as 

candidates for probe and hosting requests); (c) when a node frees capacity (due to the migration 

of a local agent to a remote node), it sends an update message to each node in the update list, 

and clears the list; and (d) when a node receives an update message, it removes the sender from 

its block list, and forwards the update to its neighbors.

Due to convergence, eventually, no more migrations will take place. The source(s) of the last 

beneficial migration(s) will issue update messages due to the hosting capacity that is freed 

locally, triggering the generation of host/probe requests at other nodes. But given that 

convergence has been reached, no more migrations can be decided. Therefore, each node from 

which a hosting/probe request originated will receive a negative reply, and will henceforth 

suppress the generation of new requests due to the blocking policy. When this final 

communication phase is over, there are no nodes that can generate any new update messages or 

hosting/probe requests, hence radio silence is achieved.
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4 Evaluation

The settings for the experimental setup took place in the same way as in Chapter 1.

4.1 Reference algorithms

As a reference for the results achieved by SP and FL, we run the ILA algorithm, described in 

detail in Chapter 1. ILA chooses to perform only beneficial migrations, in the same way a 

beneficial migration is decided in the SP and FL algorithms. Information about the free capacity 

of neighboring nodes is acquired in a lazy fashion, through the replies received in response to 

migration requests (initially, all neighbors are assumed to have their full nominal capacity free). 

ILA does not have a mechanism for notifying nodes when capacity is freed. Instead, with a 

certain probability (0.2 in our experiments) each neighboring node is optimistically assumed to 

have enough free capacity. Then, the best candidate, as per Eq. 4.2, is contacted to check 

whether it can actually host the agent in question. As a consequence ILA never achieves radio 

silence; even though it is guaranteed to converge, i.e., stop performing migrations. In our 

simulations, we stop running ILA when no migration is accomplished by any node in four 

consequent iterations.

We also employ an exhaustive algorithm that computes the best placement, by starting from an 

unoccupied network and trying out all combinations of agents on nodes, subject to their hosting 

capacity. However, the placement obtained this way may not be actually feasible, because it 

may be impossible to reach from the initial placement by performing a series of eligible agent 

migrations and evictions, due to the capacity constraint (Eq. 4.4). This means that the 

corresponding network cost represents a lower bound on what could be achieved even by an 

optimal algorithm.

4.2 Experiments

In a first set of experiments we compare the placements obtained for the 20-node networks and 

one app-10 application, as the initial hosting capacity of the nodes increases to 1-4 times the 

average agent size in the system. We report the average results for the five different network 

topologies and five different initial placements for each topology (25 runs). No large variances 

were recorded.
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surplus capacity [x avg agent size]

Fig 4.4 Load reduction vs. additional capacity (20 
nodes, app-1 0 ).

surplus capacity [x avg agent size]

Fig 4.5 Load reduction vs. additional capacity (50 
nodes, 15 applications).

Fig 4.4 illustrates the load reduction vs. the initial placement achieved by the algorithms. As it 

can be inferred by the trends, both SP and FL achieve a significant reduction of the network 

load. The improvement over ILA is roughly 30-20% when nodes have a rather modest amount 

of free capacity. Also, when the extra free capacity is (just) 2 times the average agent size, SP 

and FL perform close to the exhaustive algorithm, which is merely 10% better; a very positive 

sign as to their effectiveness. When nodes have considerable free capacity, SP, FL and ILA 

achieve practically equally good placements, a trend observed throughout all our experiments. 

This is natural since the probability of a node becoming the bottleneck for beneficial migrations 

drops as free capacity increases, hence good placements can be reached without (any) agent 

evictions.

surplus capacity [x avg agent size]

Fig 4.6 Migrations vs. additional capacity (50 nodes, 
15 applications).

Fig 4.7 Control messages vs. additional capacity 
(50 nodes, 15 applications).

In the next experiments, we run the algorithms in the 50-node networks where we deploy a mix 

of fifteen applications (five app-50, five app-25 and five app-10 applications). This time we 

increase the free space of each node by 2, 5, 10, 20, 40 and 80 times the average agent size. We 

do not run the exhaustive algorithm due to its prohibitive runtime complexity.
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As it can be seen in Fig 4.5, the trend is similar to the one observed in the small-scale 

experiment. However, the improvement of SP and FL vs. ILA becomes impressive, from 320% 

to 220%, when the hosting capacity of nodes is limited. What is equally important to note is that 

SP performs better placements than FL. In fact, when capacity is tight SP produces placements 

that are almost 1.5x better compared to FL, which in turn produces placements that are close to 

2.5 times as efficient compared to the ones produce by ILA.

The inferiority of FL vs. SP is attributed to the contention introduced by its flooding 

mechanism. In a large-scale system, it is very likely that several migrations and evictions will be 

attempted concurrently, which in turn leads to a large number of conflicts, where beneficial 

migrations are hindered by less beneficial ones (including evictions). Also, given that each such 

conflict leads to the generation of negative replies, the radio silence mechanism may be 

activated prematurely, missing opportunities for migrations/evictions.

The ability of SP to perform a larger number of migrations (and evictions) than FL is clearly 

shown in Fig 4.6, which plots the number of migrations/evictions performed per agent in the 

system. The difference between SP and FL is more pronounced when capacity is tight, which is 

also the case when SP performs notably better than FL. As the free capacity of nodes increases, 

the number of beneficial migrations that can be performed without having to do any evictions 

grows, thus all algorithms perform a comparable number of migrations (and SP starts 

performing fewer migrations in total as the number of evictions drop). ILA performs the 

smallest number of migrations, by far when free capacity is scare, because it does not perform 

any evictions.

We also measure the number of so-called control messages generated by FL, SP and ILA to 

decide about migrations (and evictions). Fig 4.7 shows the ratio of control messages to the 

number of migrations performed. Clearly, SP is more efficient than both FL and ILA, especially 

when nodes have little free capacity. The greater per-migration protocol overhead of FL is 

partly due to the fact that it performs fewer migrations than SP. Moreover, for each beneficial 

migration, FL floods the network with probe requests and replies in order to find the best 

possible series of evictions, whereas SP picks a single path.

The high per-migration protocol overhead of ILA is also due to the fewer migrations 

accomplished compared to SP and FL. This is clearly visible when free capacity is tight. 

However, ILA continues to exhibit a non-negligible overhead even when nodes have abundant 

free capacity and the number of migrations performed is close to that of SP and FL. The reason 

is that even if a node is found occupied, ILA will still consider it (with 0.2 probability) as a
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possible destination for a beneficial agent migration. As a result of contacting nodes in this 

optimistic way, the number of unsuccessful migration attempts remains high.
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Fig 4.8 Load reduction vs. hop limit (50 nodes, cap 
+ 1 0 , app-mix).

Fig 4.9 Migrations vs. hop limit (50 nodes, cap 
+ 1 0 , app-mix).

In a final set of experiments, we measure the impact of limiting the hops of hosting and probe 

requests in SP and FL. We use again the 50-node networks and application mix of the previous 

experiments, while fixing the extra free node capacity to 10 times the average agent size in the 

system. The load reduction achieved, the number of migrations per agent and the number of 

control messages per migration are depicted in Fig 4.8, Fig 4.9 and Fig 4.10, respectively, with 

the hop limit varying from 1 to 8. The behavior of ILA is not affected by this parameter (the 

algorithm only issues 1-hop requests for beneficial migrations).

Both algorithms exhibit a similar performance for small hop limits. As the hop limit increases, 

SP clearly outperforms FL, due to the growing negative effects of the flooding approach. It is 

interesting to observe that the load reduction achieved by SP flattens at 4 hops being practically 

identical to the reduction achieved at 8 hops, despite the larger number of migrations (and 

evictions) performed in the latter case. This is attributed to the fact that, from a certain point 

onwards, additional evictions do not lead to a significantly better application placement. More 

specifically, the average diameter of the 50-node networks used in our simulations is 10. 

Therefore a hop limit of 4 is already sufficient for a node that is not located at the periphery of 

the network to reach almost all other nodes (requests issued by that node can cover an area with 

a diameter of 8). Worthwhile noting is also the fact that the protocol overhead of SP starts 

dropping at 4 hops and this trend continues at 8 hops. The reason is that there are fewer 

opportunities to perform migrations (and evictions) when the hop limit is small, while the 

protocol overhead is amortized as the number of migrations grow at larger hop limits. On the 

other hand, the per-migration overhead of FL increases steadily due to the scalability problems 

of the flooding approach.
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hop limit

Fig 4.10 Control msgs vs. hop limit (50 nodes, cap +10, app-mix).

4.3 Result summary

Both SP and FL produce significantly better placements than ILA when nodes have limited 

hosting capacity. Also, SP consistently outperforms FL, not only in the placement achieved but 

also in the per-migration protocol overhead.

5 Conclusions

Here we described distributed algorithms for migrating agents between the nodes of a wireless 

embedded system in order to reduce application-level network traffic. Our approach introduces 

migrations that are non-beneficial on their own but free enough space on nodes in order to 

enable beneficial migrations, which can eventually lead to an overall better placement. We 

presented and discussed the results of extensive simulations, showing that the proposed 

approach outperforms solutions based solely on beneficial migrations, resulting in placements 

that reduce network traffic significantly.

Part of this work is goint to be submitted in the following conference:

* N. Tziritas, P. Lampsas, S. Lalis, T. Loukopoulos, “Introducing Agent Evictions To 

Improve Application Placement in Wireless Embedded Systems” ICPADS 2011.
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Chapter 5

Online Algorithms for the Agent Migration Problem in 
Wireless Embedded Systems

1 Introduction

Previous works turn their attention to migrate agents without i) laying emphasis on the changes 
of traffic patterns, and ii) taking into account the cost of the migrations performed. However, 
assuming that traffic patterns are not static (they are subject to changes with the pass of time), 
performing migrations without taking their cost into consideration may prove crucial to the 
energy spent over the network. So we focus on the intractable problem of taking online 
decisions to migrate agents in order to reduce the overall network cost, considering the energy 
spent through the process of migrating an agent.
The difficulty of this problem lies in the fact that a decision should be made in advance of any 
knowledge about the future load/traffic changes. The implications of making bad decisions are 
that: i) the agent may be migrated far way from its center of gravity, paying in that way the cost 
of the wireless communication with its distanced relative agents; ii) the network will be 
burdened with the energy spent for mistakenly (due to a bad estimation) transfering an agent 
from some node to another one.
In this chapter we propose two online algorithms to decide which is the point in time that an 
agent should migrate to reduce its communication cost over the network, taking also into 
account its migration cost. Commonly, the algorithms proposed in the context of online decision 
problems are accompanied with their competitive ratios. The competitiveness is used to
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compare the output of online algorithms when coming up against an input chosen by an 

adversary, to the output generated by the offline optimal algorithm. When the competitive ratio 

approximates 1, it means that the behavior of the online algorithm considered comes closer to 

optimal. Therefore, following the current, we evaluate the performance of the proposed 

algorithms by providing for each of them its competitive ratio along with a comprehensive 

proof. Specifically, the first algorithm achieves 1/3 competitive ratio assuming infinite capacity, 

while the second one 1/4 (no assumptions about infinite capacity).

This work is organized as follows. In Section 2 we describe the application and system model. 

Section 3 provides the proposed algorithms and discusses their competitiveness in a detailed 

way. In Section 4 the experimental setup is described along with a thorough evaluation of the 

proposed algorithms. This section also discusses the way we implemented a static offline 

optimal algorithm serving as a yardstick for the quality of our algorithms. Last, Section 5 

concludes our work.

2 Application and System Model

The application and system model is much the same as the one described in Chapter 1. Below, 

we repeat the most relevant elements of the model, and introduce some extensions that are used 

to describe the algorithms and give the worst-case bound proofs.

Let lSk be the number of bytes exchanged between ak hosted by nl and other agents hosted by nj 

in the time-interval [s , t ]. Let Ps  = Σ  lij khj  be the network communication cost due to the
Vj Φί

data exchanged between ak hosted by ni and the agents that are not co-located with ak, under the 

time-interval [s, t ] . Let M ijk specify the migration of ak from ni towards nj. Let B j  be the 

benefit/cost of Mijk, subject to the collected message traffic statistics in the time interval [s, t ] . 

The cost of M ijk at time unit t is captured by M C ‘J k . We assume that the time when a migration 

is performed is independent of the migration cost, therefore M C ]Jk = M C - j k , V s ,  t .

Let d and D specify the hop-awareness of an algorithm and the diameter of the network, 

respectively. If the cost of migrating an agent towards an 1-hop neighbor is equal to X, then the 

cost of migrating the agent in question towards an d-hop neighbor is equal to d*X, which is
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formally stated by MC=  = =ijM C t== 1 1  = 1 · For simplicity, we assume that a migration

occurs “instantly” and that the data traffic within the respective time interval [t_, t+ ] is zero. 

MT denotes the migration threshold, i.e., the minimum required benefit for taking the decision 

to migrate an agent towards its center of gravity.

3 Algorithms

In this section we present three algorithms addressing the problem of taking into account the 

network cost incurred when migrating an agent. We prove also the competitiveness of each 

algorithm against the optimal algorithm.

3.1 Online algorithm based on discrete-time events (ADE)

The first algorithm is designed based on the (unrealistic) assumption that we have infinite 

memory. Based on this assumption, the algorithm, called ADE, can calculate the benefit/cost of 

migrating an agent based on any (sample) time interval ranging from the most recent point in 

time to any point in time in the past.

Let P1 be a property which forces this algorithm to migrate agents iff there is a time interval 

[p , z z ] such that B p  > 2M Cp  | i Φ j  (this is referred to as “migration threshold”). The

drawback of this algorithm is the increased memory complexity, since it needs to keep 

information about the exchanged data (volume of data, source/destination node that 

sent/received the data in question) in a discrete-time fashion; in order to be able to identify any 

[p , z_ ] where P1 is satisfied. Note that z_ should always map to the most recent point in time, 

whilep  can be any point in time past (that’s why this algorithm needs infinite memory).

Theorem 1. ADE is 1/3-competitive.

Proof:

Consider that only one agent does exist into our system (ak), which is hosted on nt. Initially we

let ADE perform a migration iff there is any [p , z~ ] such that BpPZ > 0 (P1’). Obviously, when

both ADE and the optimal algorithm perform no migrations, the competitive ratio is equal to 1. 

Therefore we focus on the case where the loads are such that ADE chooses to perform
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migrations. Assume there is a time interval [x ,  y  ] such that B X y  >  0 ,  which means that ADE

will perform M j k  ( y ~  is the most recent point in tim e). In this case, the optimal algorithm may 

decide to perform or not to perform M ijk.

Assumption 1

Let’s start with the case where ADE decides that M j k  should not be performed. In this case, the 

competitive ratio between the optimal algorithm and ADE becomes:

p s x  i p x  y  
p ik +  p ik +  P k

p s x  i p x  y 
P ik +  P ik +  p j k + + M C j k

Eq. 5.1

We now consider when this ratio becomes as small as possible (the worst case). We observe that 

the smaller the values o f P “  , P ζ  y  , p y  c the smaller the ratio. Note that P l y  >  h tj otherwise 

M j k  would not be performed, which contradicts our assumption that migrations are performed 

when P1’ holds true. Also, we notice that when P yk c increases the ratio decreases. In 

combination with the fact that the value o f enumerator should be kept as small as possible, we 

conclude that only l yik should be greater than zero; else p y  c could not be equal to zero hence 

the enumerator (and the ratio) would increase. O f course this means that there is a time interval 

[y +, c ]  such that B y kc >  0 ,  which means that ADE will perform an additional migration, in the

reverse direction, namely j ^ ik, as dictated by our assumption that ADE performs a migration 

when P1’ holds true. Therefore the ratio is expressed by E q .  5 . 2 ,  which equation implies that the 

ratio is independent o f the hops between n l and n } .

hj *1 + h i  *1 + hjiM Cgm,+hjMCl, 2  +  2 M C g mk
\h

1 Eq. 5.2

If we assume that ADE additionally performs X  such back-and-forth migrations, as the 

previously discussed case, then the ratio becomes:

X

2  X  + 2  X  * M C g mk

1
2  +  2 M C gmk

hgm
Eq. 5.3

In other words, the worse-case ratio is independent of the number o f back-and-forth migrations.
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Assumption 2

Now let’s consider the case where optimal algorithm decides that Mljk should be performed. In 

this case, the ratio becomes:

p s x  . p x  c 
P ik ^  P jk + M C X

p f  +  P k  y ~ +  j  +  M c y

Eq. 5.4

It is obvious that the worst case scenario is that P kx , P J k c are as small as possible, while

P X y , P J k c as large as possible. However we note that the optimal algorithm will 

“immediately” decide for this migration, before ADE collects the “necessary” load information. 

It follows that [ y +, c] ^  [ x +, c] ^  P J k c <  P Jk c, and thus P J k c should be as small as possible 

too.

Here we make an extra assumption: Namely, that the maximum application-level message size 

is smaller than the cost to perform any migration M jik.

Based on this assumption, p X  y cannot be larger than the maximum application-level message,

because ADE takes the decision to perform MJik as soon as P1’ holds true, and this condition is 

checked each time a message is sent/received. Therefore, the ratio becomes:

M C U  _  P h  = 1  Eq. 5.5

2 M C y „ k  21
Note that this is smaller than E q .  5 . 2 .  Also note that in this case, naturally, since both ADE and 

the optimal algorithm decided for a migration, E q .  5 . 5  is independent o f the number of

migrations. Consequently, the worst case is when the benefit B X y  is such that optimal 

algorithm does not perform migration, but ADE decides for a (back-and-forth) migration.

Fine-tuning the migration threshold

Let’s see if  we are able to improve the performance o f ADE, by fine-tuning the migration 

threshold. Consider the case when ADE performs a migration iff there is any [p , z ~  ] such that

B p  >M T  (P1’’). For sake o f simplicity we assume that M T  = p  *x , hence the 

aforementioned ratios described by E q .  5 . 2  and E q .  5 . 5  become:
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x

2  x  + 2 M C g mk 1 h g m  1

M CU
x -  M C ygmk + 2M C I *

I h m  =  1  x  > M C U

Eq. 5.6 

Eq. 5.7

Note that E q .  5 . 6  decreases when M T  increases to the point that x  =  2 M C ygmk (note that the 

enumerator cannot be greater than 2 M C ygmk, independently o f the value of x ) .  Also, E q .  5 . 7  

increases when M T  increases, and remains smaller than E q .  5 . 6  as long as x  <  2 M C lm k  , and

becomes equal to E q .  5 . 6  if  x  =  2 M C y mk. Also, note that in E q .  5 . 7  x  >  M C y mk due to our

assumption that the optimal algorithm performs M jk. Therefore, due to the equality o f E q .  5 . 6  

and E q .  5 . 7, the competitive ratio between the optimal algorithm and ADE is given by E q .  5 . 8 ,

provided that ADE takes the decision for migration iff there is any [p , z - ] such that 

B p  =  2 M C Z k  (in practice, the decision could be taken if  B p  >  2 M C Z k , due to the

transmission/arrival o f a large application-level message). We should point out that E q .  5 . 8  is 

independent o f the number o f migrations. Therefore our assumption of only one agent into our 

system is valid.

M C ygmk _  Eq. 5.8
3 M C y mk 3 1 gm

3.2 Algorithm based on sliding window and discrete-time events (ADE-SW)

Since ADE is non-applicable due to the assumption o f infinite memory, we resort to a modified 

version o f it to bound the memory needed for keeping message traffic statistics. ADE-SW uses 

for each generic agent (ak) a s l i d i n g  w i n d o w  (wk) o f maximum size S k to keep the data

exchanged between this agent and its relatives. Let w 'k and t ( )  denote the ith entry o f w k and

the point in time this entry was inserted into wk, respectively; then t ( w k ) > t ( w j  ) |  i  <  J , v k , j  ,

in other terms j th entry was inserted into wk prior to ith one. An entry w 'k represents a tuple ( a m ,

v d ) ,  whereby v d  is the volume o f data exchanged between am and ak at t ( w 'k )  . Putting it

otherwise, w 'k represents the size o f the message sent/received by ak at t (w 'k  )  , provided that a m
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is the destination/source agent. Let mrk (1 < mrk  <  S k ) be the sliding marker for wk , which 
points to an entry of wk. s(mrk) denotes the number of entries this marker leaves behind 
(including the one it points to) when it slides towards the most aged entry.
Each wk is implemented as a list. Each time a generic agent (ak) sends/receives a message it 
pushes at the back of the list an entry, provided that the new size of the list is not greater than 5k. 
Otherwise, the first entry of the list is removed before inserting the new one at the end of the
list. Initially the marker is set to s(mrk)th entry of wk, provided that this entry does exist;
otherwise is set to the most ancient entry. The entries lying behind the sliding marker (including 
the one it points to) are deemed marked. ADE-SW considers whether the migration threshold of 
an agent has been reached or not, by taking into account only the information associated with 
the marked entries. Each time it decides that ak cannot migrate anywhere (no benefit), it slides 
the respective marker by s(mrk ) entries (i.e. mrk  =  mrk +  s(mrk )), and reconsiders whether the
migration threshold of ak has been exceeded or not. This procedure repeats itself till the marker 
points to the most aged entry, where if the corresponding agent cannot be migrated then the 
sliding marker is reset to s ( mrk )th entry.

In case ADE-SW decides to implement a migration, then the respective agent (ak) is migrated 
along with only the marked entries. There are two reasons for doing so: i) if we don’t transfer 
this information and an agent cannot migrate directly towards its center of gravity (limited hop- 
awareness), then each intermediate migration of its own will be delayed (due to P1); ii) if we 
resort to transfer all entries of the window associated with the migrating agent, then it is 
probable for that agent to migrate back-and-forth, due to outdated information.

Fig 5.1 Application deployment Fig 5.2 Sliding window and marker

79

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 5

Consider the example illustrated in Fig 5.1, whereby ak is a generic agent while the rest non

generic ones. A solid edge means that the involved agents communicate with each other, while a 

dashed edge represents the hosting node of the involved agent. Let the cost of migrating ak 

towards an 1-hop away neighboring node be 4 (M C ygmk = 4,| h = 1, Vy, k ), s{mrk) = 2 and

S  = 6. In Fig 5.2 we set out an example of how an agent is migrated, making use of the

respective sliding window and marker. A column in an upper row represents the point in time 

where ak sent/received a message towards/from an adjacent agent of its own, with ti 

representing the most aged message, while t10 the most recent one. A column in a bottom row 

signifies the respective message size along with the involved destination/source agent. Recall 

that the window slides towards the most recent messages (i.e., t5..t10).

Initially, mrk is set to 2; however due to P1, whereby B23k0 = 4 < 2* M C ^k = 8, M 23k is 

considered non beneficial and the sliding marker is set to 4. Therefore, in the next iteration 

B^j10 = 8, which means that ak is forced to migrate towards n3 (along with the marked entries 

t7...t10). It is worth noticing that without the sliding marker M 23k cannot be identified (since

B23k = —10). In the sequel, the same steps are followed on n3, forcing ak to eventually migrate

towards n4 (along with the marked entries t7...t10), without even needing to collect any extra 

information. It should be stressed that if ak migrated towards n3 a) without the entries of the 

respective window then M  would be procrastinated till there is a tn such that

B?3k" >= 8,ho —tm < tn (case i); b) along with all entries of the respective window, then n3

would decide to migrate ak back to n2, since when mrk = 6 then B32k° = 10. This back-and- 

forth migration would continue in a perpetual way, till new messages arrived (case ii).

3.3 Algorithm based on aggregation of events (AGE)

AGE is designed to reduce the memory requirements of ADE-SW, whereby the information 

about the collected events of same affinity is kept aggregated. Specifically, for each generic 

agent akhosted on node ni and each m-hop neighbor node n2, where 0<=m<=d, where d is equal 

to the network awareness, a load variable Rijk is used to record the accumulated message traffic 

associated with ak between ni and n  as follows:

1) if 0<=m<d, RiJk records the accumulated load between ak and all agents that reside on n;
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2) if m=d, Rijk records the accumulated load between ak and (a) all agents that reside on η  

and (b) all agents that reside on nodes that are more than m hops away from ni and 
communicate with ni via n;·.

Note that if d is equal to the network diameter D, i.e., in case of “full network awareness”, (2) 
becomes equivalent to (1) because no two nodes can be more than d hops away from each other, 
so there can be no case (2b). Finally, Riik records the load between ak and all agents that are co
located with it on ni. Due to the fact that the load is stored in an aggregated fashion, the benefit
of Mijk is now represented by B .jk > 0 (instead of B .̂  > 0), where z“ is the most recent point 
in time.
The algorithm works as follows: Initially, when ak is created on ni, the load variables RiJk for 
each (relevant) neighbor node n  is initialized to 0. From that point onwards, RiJk is updated by 
adding the number of bytes sent/received by ak to/from node n;·.

Each time RiJk is updated, the following checks/actions are made/taken:

i) If BZk > 2MC*k, Mjjk is performed.

ii) if B:lk > 0, the load variables are reset to 0 (on the current host).

iii) Else, if ^  Rijk > RTk, the load variables are reset to 0 (on the current host ni); RTk istj
referred to as the so-called reset threshold

Note that the resetting of the load variables in (ii) and (iii) corresponds to a form of “aging”, 
making sure that a recent change in the application traffic pattern will be considered promptly, 
instead of waiting until it “overrules” the aggregated load history.

Theorem 2. AGE is 1/4 competitive, when d=D and RTk « 3.2MCygmk | hgm = 1.

Proof:

Consider AGE without (ii) and (iii).
We initially assume that AGE performs only one migration Mijk at time unit y. The performance 
of AGE worsens as the value of lSk increases. This is because (i) must hold true, which means

that the network cost produced by ISy (i.e., ISy htj) must become equal to 2MCyk + Vyk htj.
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When hij increases the performance of AGE worsens, so we conclude that the worst-case 

scenario is to have htJ = D  .

Similarly, the performance of AGE keeps worsening the larger the value of (another load 

variable) l^  , f  ^  i, j  ; now, in order for B'Sy = 2MCkk, the network cost produced by lSy

should be equal to 2MCkk + ISy htj + l̂ k hf]. For the sake of proof, we need hfj to be as large as

possible. Note that hj would be equal to D iff nf: (a) is not in the path between ni and nj and (b) 

does not use any node in the path between ni and nj (including nj) as a router for data towards ni. 

This is not possible, though, since then hfj would have to be equal to D+1 (we assumed 

h  = D ). However, it is feasible for hfj to be equal to D-1 (see Fig 5.3) which is the next largest 

possible value. This is the case when: (a) nf is in the path between ni and nj, provided that hif = 1; 

or (b) nf uses a node nu as a router for data towards nj, provided that hm = 1 and h . = D  — 1.

O—Θ
Fig 5.3 when hjf becomes equal to D-1

Note that since l sk can be arbitrarily large, without loss of generality, we can assume that all 

other load variables lA,, f  Φ- i, j ,  f  are equal to zero.

Consequently, in order for AGE to perform M ijk (i.e., for (i) to hold true), nj must produce 

network cost of lSy = l̂ k (D  — 1) + lSy D  + 2MCkk . The worst case for AGE is for the optimal

algorithm to decide Mjjk before nj starts producing any network cost ( lSk = 0), thus incurring

only the migration cost plus l sk which is unavoidable (for both algorithms). Therefore the ratio

vs. the optimal algorithm (which decides for that migration before AGE, ideally when lSk = 0 ), 

becomes:
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+  M C j +  M C j
isy . isy

+  l ijk + M C y isylifi +  Γ sy+ l ifk ( D -1) + li D  +  3 M C yk

Eq. 5.9

Note that E q .  5 . 9  is independent o f the number o f migrations, since for each additional 

migration (following the same rationale) the cost for each algorithm is doubled. Therefore our 

initial assumption o f only one migration does not affect the competitive ratio.

We observe that when lgg = 0 and isy tends to infinity, the ratio tends to 0 (provided that

lggk  = 0). We avoid this case by applying (ii). Then, isy cannot be greater than lgg , hence the

worst case is to have lgg =  lhyk  (provided that l̂  =  0 and l̂y =  0, with z being the point in

time where the optimal algorithm performs Mijk). Let also lSy = X for the sake o f readability. 

As a result, the ratio becomes equal to that expressed by E q .  5 . 1 0  (also taking into account that 

h j  =  D , hence M C l k  =  D  * M C y gmk | h gm = 1 ):

X  + D  * M C ; mk 

2X  * D  +  3 D  *  M C y mk gm

M C gmk | h  =  1

2 X  + 3 M C m  ' gm

Eq. 5.10

Eq. 5.11

When D  tends to infinity the competitive ratio worsens, therefore we reformulate E q .  5 . 1 0  into 

E q .  5 . 1 1 .  By applying (iii) and setting a finite R T k : (a) X cannot be arbitrarily large, which 

means that E q .  5 . 1 1  decreases; and (b) AGE becomes reactive to load changes. It is prudent to 

choose R T k greater than the double cost of migrating a k towards 1-hop neighbor

( R T k  > 2 * M C ym k  | h  =  1 ), else we compromise the performance o f AGE (load variables will 

be reset before being able to decide for any migration). We also note that when resetting the 

load variables there is a case of resetting a variable R ijk, while some B yk  >  0 . The greater the

value o f R T  the greater the loss o f AGE vs. the optimal algorithm, however B  y 

greater than 2 M C  y due to (i).

cannot be

( R T k  -  2 M C g m k  1 ) /  2 1 h gm =  1 Eq. 5 . 1 2

( R T k  -  2 M C g y - 1 ) /  2  + 2 M C g y -  1 \ h y  =  1 Eq. 5 . 1 3
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Therefore, the worst case now becomes that o f having the previous scenario with the difference 

that AGE is forced to reset the load variables as many times as possible before deciding for M ijk,

provided that when these resets take place B zijk is as large as possible. We stress that the worst

point in time (let z ) o f resetting the load variables for AGE is when B .jk = 2 M C j k — 1, else 

AGE would perform M ijk. We should also point out that in order to reset load variables when

B j k  =  2 M C zk  —  1 , we need from some nodes to incur a load given by E q .  5 . 1 2 ,  and for n  to

incur a load given by E q .  5 . 1 3 .  Note that the nodes contributing to E q .  5 . 1 2 :  (a) cannot be in the 

path between n i and n;, and (b) cannot use any node in the path between n i and n  (including nj) 

as a router for data towards n i, else E q .  5 . 1 3  would be increased and property (iii) would be 

violated. It follows that the only node that can contribute to E q .  5 . 1 2  is n i, else AGE would 

create cost greater than that of  E q .  5 . 1 2 .

Summing up, the performance ratio between AGE and the optimal algorithm becomes:

D  *  f  ( R T k  — 2 M C g mk —1 ) /2  + M C i ; k  

D  *  f  [ ( R T k  — ! M C gmk — 1) /  2 + 2 M C g mk — 1] + 3 M C j k
h 1 λ h,. D Eq. 5.14

with f  denoting the number o f resets. For simplicity, we eliminate the “-1”s (without loss of 

generality since the ratio worsens). We can observe that the ratio changes with the variation o f f

and R T k . For the case where R T k is less than 3 M C L  the ratio worsens w h e n f  tends to infinity.

In terms o f case where R T k is equal to or greater than 3 M C yijk the ratio worsens when f  tends to

zero. However we omit the case where f  tends to zero since in that case E q .  5 . 1 4  is dominated 

by E q .  5 . 1 1 ,  which means that the worst-case ratio is given by E q .  5 . 1 1 .  As a result E q .  5 . 1 4  

becomes:

R T k  — 2 M C y m 1  Eq. 5.15

R T k  +  2 M C g m k  1 gm

Due to the fact that X  should be as large as possible without enabling the resetting o f loads, we 

conclude that the resetting threshold should be expressed by E q .  5 . 1 6 .  Therefore E q .  5 . 1 1  is 

transformed into E q .  5 . 1 7 .

R T  =  Γ ν  +  l syR T k  l iik +  l ifk +  2 M C g m k  + 1 ·■ 2  X  +  2 M C s  , |  h  =  1gmk I gm Eq. 5.16
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M C U
R T k + M C gmk

\ \ m = 1 Eq. 5.17

We recall that RTk > 2MCgmk I hgm = 1, else we could not be able to perform migrations across 

the whole network, and therefore the performance of AGE would decrease. We observe that 

when RTk increases Eq. 5.15 decreases, while Eq. 5.17 increases. Given the above, and due to 

the fact that the competitive ratio is given by the smaller equation between Eq. 5.15 and Eq. 

5.17, we turn to equating them to get the value(s) of R T  which maximize(s) the competitive 

ratio. Therefore, two roots result from that operation, the negative and the positive one. Of 

course the negative one is out of consideration, since RTk cannot be negative. The positive root

is roughly equal to 3.2MCygmk | h = 1, with the competitive ratio being approximately equal to 

1/4.

4 Experiments

This section presents an experimental evaluation of the algorithms based on simulations 

performed on top of NS2 [85]. First we describe the experimental setup and then we present and 

discuss the results of indicative experiments.

4.1 Setup

The network topologies and application structures were produced in the same way as for the 

previous chapters. Five different network topologies were generated, while 3 different 

application types were produced with (50, 22), (25, 12) and (10, 5) (non-generic, generic) 

agents, referred to as app50, app25 and app10, respectively. For each application type we 

produced 5 different application structures. The initial agent placement on nodes was random, 

while agents were assigned sizes randomly selected between 100 and 1,000 bytes. For each 

combination network topology and application structure an experiment was conducted (75 in 

total) taking the average of them.

Contrary to the previous chapters, in this one we consider traffic patterns that are not stable 

throughout the duration of an experiment. Unless otherwise stated, we assume that a non

generic agent can change between two modes MH and ML, signifying a change in the frequency
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of the messages are sent out by the respective agent. Specifically, when an agent is in MH mode 

then it sends 10 times more messages against than ML mode. We consider four different types of 

traffic pattern T(UH), T(H), T(L) and T(UL); with these reflecting that an agent changes 

between MH and ML modes in ultra high, high, low and ultra low rate, respectively. Specifically, 

in terms of T(UH) each agent remains in a mode from 1 to 10 time periods, chosen randomly. 

As far as T(H), T(L) and T(UL) are concerned, their corresponding periods range between (1, 

100), (50, 500) and (100, 1000), respectively. We differentiate between three application 

families Fi, F2 and F3, whereby at most 1, 2 and 3, respectively, agents belonging to the same 

parent can be in LH mode simultaneously.

As the main metric for our comparison, we use the network load incurred by the resulting 

placements of our algorithms. We also devise a static offline optimal algorithm serving as a 

yardstick for the quality of the solutions derived by the proposed algorithms. In order to get the 

static offline optimal solution, we resort to GRAL* of which the input is chosen to be slightly 

different against the online algorithms. Specifically, GRAL* takes as input the static load 

associated with each application edge. Specifically, the static load of an edge represents the 

volume of data that would be exchanged between the incident agents to this edge, if we let the 

involved agents exchange messages for a specified time according to an adopted type of traffic 

pattern, e.g., T(H).

We observed that ADE-SW variants have different trend when the traffic is based on T(UH) 

pattern compared to the rest ones, so we chose to plot the results separately for each case.

4.2 Considering T(H), T(L) and T(UL)

ADE-SW can be parameterized into two dimensions, with the first one being the migration 

threshold, which is common for both algorithms; while the second one being the number of 

window entries marked each time the marker slides towards the most aged entries. From now on 

a variant of ADE-SW will be referred to as ADE-SW-(MT, s(mr)); with MT and s(mr) 

reflecting the first and second dimension, respectively. AGE is also parameterized into two 

dimensions, with the first one being also the migration threshold, while the second one being the 

reset threshold. From this time forward a variant of AGE will be referred to as AGE-(MT, RT); 

with RT reflecting the reset threshold. This set of experiments is based on F1 application family.

Fig 5.4 concerns the case where the size of the sliding marker varies between 1 and 500, 

considering all types of traffic patterns excluding T(UH). As observed, the performance of
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ADE-SW variants deteriorates as the size of the sliding marker increases. This is expected since 

such an increase means that the migration decisions will be based on further aged information, 

rendering in that way ADE-SW slower in identifying changes in message traffic pattern. 

Another remark is that the gap between variants is growing as the changes in traffic pattern 

become less intense. This is explained by the fact that the benefit of migrating an agent towards 

a direction is continuously growing as long as its center of gravity does not change into another 

direction. Specifically, an agent’s center of gravity change more vigorously in T(H) pattern, 

rendering some migrations less fruitful, since in that case it is almost the same for an agent to 

remain in a node instead of migrating back and forth due to load changes.

3.E+07

■ζ3 3.E+07 
ro O

2.E+07

2.E+07

<D
1.E+07

5.E+06H
0.E+00

ADE-SW-(0.1,1)
ADE-SW-(0.1,50)
ADE-SW-(0.1,200)

- ADE-SW-(0.1,10)
- ADE-SW-(0.1,100) 
■ ADE-SW-(0.1,500)

T(H) T(L)
T ra ffic  pattern

T(UL)

Fig 5.4 ADE-SW behavior when varying the size 
of sliding marker

—X —AGE-(0.1,0.2) —Δ — AGE-(0.1,10)

AGE-(0.1,50) AGE-(0.1,100)

Fig 5.5 AGE behavior when varying the reset 
threshold

Fig 5.5 shows the behavior of AGE when varying the reset threshold between 0.2 and 500. It is 

observed that the performance worsens when increasing the reset threshold. This is anticipated 

since such an increase incurs a proportional delay when deciding to perform a migration. 

Specifically, an increase to the reset threshold means that the migration decisions are based on 

more outdated information, so the delay is attributed to the time the algorithm needs to offset 

this outdated information and finally take the decision to perform a migration.

Note that we conducted the same experiment for both ADE-SW and AGE keeping fixed the size 

of the sliding marker and the reset threshold at 1 and 0.2, respectively; while varying the 

migration threshold. The results showed that the performance of both algorithms worsens as the 

migration threshold increases. Hence we conclude that the best variants are ADE-SW-(0.1, 1) 

and AGE-(0.1, 0.2). The observation that the variants are more distanced with each other when 

the changes in traffic pattern become less intense is explained through the respective remark in 

the previous paragraph.
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4.3 Considering T(UH)

In this set of experiments the application family continues being Fj, however the traffic patter 

type considered is T(UH). Fig 5.6 shows the behavior of ADE-SW when varying the size of 

sliding marker. It is shown that ADE-SW variants have an opposite trend against the previous 

case (Fig 5.4). This is due to frequent changes in traffic pattern, increasing in that way the 

probability of not amortizing the cost of the agent migrations performed. Therefore it is not 

lucrative for an agent to be reactive to all those changes. Note that, as discussed earlier, an agent 

becomes less reactive to changes when increasing the size of the sliding marker, therefore the 

“variant-500” achieves the best performance with the “variant-200” following closely. This 

performance is attributed to the fact that the greater the size of the sliding marker the less 

reactive the algorithm to traffic changes, and therefore the less the migrations performed (Fig 

5.7).

1.E+06

^S .E + 0 5
CO

_o
^  6.E+05ίΟ

(LI 4.E+05

• 2.E+05

0.E+00

ADE-SW

fo7 fo7 fo7 fo
^ O j  ' SOj "

50

45

40

35

30

25

20

15

10

5

0

7°Oj %  s%j

■  ADE-SW

Fig 5.6 ADE-SW behavior when varying the size of Fig 5.7 migrations performed by ADE-SW when 
sliding marker (the migration threshold is kept varying the size of sliding marker (the migration 

fixed at 0 .1 ). threshold is kept fixed at 0 .1 ).

We conducted the same experiment with that depicted in Fig 5.6 with the difference that we 

kept the size of the sliding marker fixed at 500 (best variant), while varied the migration 

threshold. The results of this experiment are shown in Fig 5.8, whereby the performance of 

ADE-SW degenerates when increasing the migration threshold. This is due to the fact that the 

benefit of migrating agents is kept in low levels due to frequent load changes, therefore an 

increase to the migration threshold may lead to migrations that their cost is hardly (or cannot be) 

amortized.
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Fig 5.8 ADE-SW behavior when varying the 
migration threshold (the size of the sliding marker 

is kept fixed at 500).

Fig 5.9 ADE-SW behavior when varying the 
migration threshold (the size of the sliding marker 

is kept fixed at 1 ).

We also carried out the same experiment with that depicted in Fig 5.8, with the difference that 

the size of the sliding marker is kept fixed at 1 instead of 500. In Fig 5.9 there are two 

observations (i) the trend of this experiment is opposite to the previous one as long as the 

migration threshold is less than or equal to 10; (ii) while these trends coincide when the 

migration threshold is equal to or greater than 20. The first observation is explained by the fact 

that ADE-SW becomes enough reactive to load changes when the size of the sliding marker is 

1; as a result the migration threshold serves as a repressing factor regarding the reactiveness of 

the algorithm to those changes. The second observation is attributed to the fact that when the 

migration threshold becomes enough large, then an agent may be not migrated even in the case 

where all the relative agents of its own belong to the same direction. This is witnessed in Fig 

5.10, where it can be seen that the number of migrations lessens rapidly when increasing the 

migration threshold. It should be stressed that among all these cases, the best results are 

obtained through ADE-SW-(0.1, 500).

89

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 5

1. E+06

-o 8.E+05
roο
ΐ  6.E+05
ο3

4.E+05

ro
2. E+05 

0.E+00

■ AGE

fo
%>0j

to,
>0j

Fig 5.10 Migrations performed by ADE-SW when 
varying the migration threshold (the size of 

sliding marker is kept fixed at 1 ).

Fig 5.11 AGE behavior when varying the reset 
threshold (the migration threshold is

kept fixed at 0 .1 ).

Fig 5.11 shows the performance of AGE when varying the reset threshold, while keeping fixed 

the migration threshold at 0.1. As it can be observed, AGE becomes more fruitful when 

increasing the reset threshold. This increase means that AGE becomes less reactive to frequent 

load changes, thus yielding placements wasting less resources in terms of the wireless 

communication. Note that we decided to omit the rest experiments conducted for AGE, since 

the observations were exact the same as previously. It should be noticed that AGE-(0.1,500) 

outperforms all AGE variants.

4.4 Comparing our algorithms to the offline optimal algorithm

In this set of experiments we pick the best variants of AGE and ADE-SW for each type of 

traffic pattern and draw a parallel between them and the static offline optimal algorithm (i.e., 

GRAL*).

For the first experiment (Fig 5.12) the application family keeps being Fi. A first observation is 

that the performance of AGE and ADE-SW is identical. This is expected since in case of (i) 

T(UH) both algorithms gather enough information in order to decide whether a migration is 

beneficial or not; (ii) T(H), T(L) and T(UH) both algorithms take the decision to migrate an 

agent as early as possible. Another remark is that the offline optimal algorithm outperforms 

AGE and ADE-SW when the load changes take place in a rapid fashion. This is why in such a 

situation it is difficult for an online algorithm to decide whether a migration will bear fruits or 

not. Therefore the best decision is to perform only the essential migrations, however such a 

decision is only applicable in an offline fashion. This is illustrated in Fig 5.13, where in T(UH) 

plot both online algorithms try to perform as less migrations as possible. Of course our
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algorithms are able to adjust their thresholds in such a way to become almost identical with the 

offline algorithm.

It is also observed that online algorithms achieve up to 80 percent load reduction against the 

offline optimal algorithm, provided that the type of traffic pattern is other than T(UH). This is 

attributed to the fact that when load changes become less frequent then online algorithms are 

able, due to their nature, to perform more beneficial migrations than the static offline optimal 

algorithm. This is partly explained through Fig 5.13, whereby online algorithms perform by far 

more migrations against the static offline optimal algorithm, given that traffic changes take 

place in a slower pace than T(UH).

T ra ffic  pa tte rn
Fig 5.12 AGE and ADE-SW against the optimal offline 

algorithm (the application family is kept fixed at Fi).

Fig 5.13 Migrations performed (the application Fig 5.14 AGE and ADE-SW against the optimal 
family is kept fixed at Fi). algorithm when varying the application families

(T(L) is kept fixed).

Last, we ran another experiment where the application family is varied among F1, F2 and F3. 

Taking a look at Fig 5.14, we can see that both algorithms are getting worse when going from
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Fi to F2, and finally to F3. As discussed earlier, the index of an application family reflects the 

maximum number of the sibling agents that can be simultaneously in MH state. Hence, the 

probability of a migration to become less beneficial is increased. Also another remark is that the 

performance of AGE becomes less gainful against ADE-SW. This is ascribed to the inferiority 

of AGE to promptly identify a beneficial agent migration when the involved agent receives 

simultaneously data from more than one relatives of its own. Actually the proof of Theorem 2 is 

based on such a scenario, whereby AGE fails to identify a beneficial migration in a prompt 

manner due to threshold reset.

5 Conclusions

In this work we introduced the problem of deciding which is the point in time that a migration 

should be performed to reduce the total network cost, taking into account the network cost when 

performing a migration. We proposed two online algorithms solving the problem without 

knowing in advance the future traffic changes. The competitive ratios of the proposed 

algorithms are also discussed thoroughly, giving in that way a flavor of the quality of each 

algorithm. Experiments were conducted to take an insight about the performance of our 

algorithms against the static offline optimal algorithm. This work differs from the previous ones 

in that the migration decisions are taken in an online way taking also into account the migration 

cost.

Part of this work is going to be submitted in the following conference:

* N. Tziritas, T. Loukopoulos,P. Lampsas, S. Lalis, “Online Algorithms for the Agent 

Migration Problem in Wireless Embedded Systems” IPDPS 2012.
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Chapter 6

Chapter 6

On Reconfiguring Embedded Application Placement 
on Smart Sensing and Actuating Environments

1 Introduction

In this chapter we introduce the agent reconfiguration problem (ARP), in light of a smart home 

or smart office environment with a central monitoring entity, e.g., a desktop computer or a set

top box. This entity is responsible for deciding about the agents’ placement, having full 

knowledge of the present placement scheme, the network, and the respective smart node 

capabilities. The goal is to place agents in nodes having the required resources (generic or non

generic), so that communication traffic is minimized, thus reducing battery consumption and 

saving bandwidth. The main differences with the previous chapters are: i) that non-generic 

agents are able to migrate, taking into account their non-generic resource demands; and ii) that 

the reconfiguration decision (migrations) is made in a centralized way (on central monitoring 

entity); iii) the application is structured as a general graph instead of a tree.

This work is modeled as a graph coloring problem; where the proposed algorithm is based on to 

perform agent exchanges (i.e., migrations) between nodes to eventually reduce the total network 

cost. It should be stressed that the graph is modeled in such a way to include the migration cost, 

favoring in that way agent migrations of small size. Note also that the knapsack component [56] 

is used to check feasibility issues involving the agent exchanges between nodes.

The rest of this chapter is organized as follows: the rest of Section 1 illustrates the application 

model; Section 2 provides the system model and problem formulation ; Section 3 illustrates two
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algorithmic approaches solving ARP, with the first one being based on the graph coloring 

problem while the second one on greedy techniques In Section 4 both algorithms are evaluated 

on small- and large-scale experiments, where in the former ones an exhaustive algorithm takes 

place for comparison reasons; while in Section 5 we give our conclusions.

1.1 Application Model

In this chapter we use a roughly different application model against the previous ones. 

Specifically, the agents participating into an application may communicate with agents of other 

applications for reusability reasons. Consider two applications are to be deployed into a 

network, with the first one needing to create humidity and temperature gathering agents, while 

the second one brightness and temperature ones. Assume the first application is deployed as 

usual by creating the humidity and temperature agents. It is prudent, in light of scarce resources 

provided by such a network, to force the second application to not create temperature agents but 

use the already existing ones. However, the middleware may set a limitation on the number of 

applications an agent can participate to, due to overloading an agent.

2 Problem Definition

This section first introduces the system model, then proceeds with formulating the ARP 

problem.

2.1 System model

Let the system comprise of N  nodes with sensing/actuating capabilities denoted by ni, 1<i<N, 

and A agents denoted by ak, 1<k<A. Let r(n) depict the level of generic resources available at ni 

(i.e., available memory). Similarly we denote by r(ak) the amount of these resources that must 

be available at a node in order for agent ak to execute correctly. It is straightforward to include 

more than one generic resource constraints in the model if necessary.

A non-generic agent is not only dependent on the computational resources at the destination; it 

requires also that non-generic resources be provided by the destination node (i.e. sensing or 

actuating capabilities). A binary N*A eligibility matrix L is used to encode whether a node has 

the required non-generic resources (thus is eligible to hold the agent) as follows: Lik=1 if ni
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provides the required by ak specific resources, 0 otherwise. Recall also that non-generic agents 

belonging to the same application and providing the same functionality (e.g. temperature 

gathering agent) must not reside at the same node. We model it through an A*A binary mutual 

exclusion matrix F, whereby Fkw=1 if ak must not reside at the same node with aw, 0 if no such 

requirement is necessary.

Nodes communicate with each other via some wireless technology (which is treated as a black 

box). In this work we consider tree-based routing, i.e., there is exactly one path for connecting 

any two nodes. Let hiJ be the length of the path between ni and n;·; equal to 0 for i=j. 

Communication between agents is captured via an A*·A matrix C, where Ckw denotes the data 

units sent on average from agent ak to aw per time unit.

2.2 Problem formulation

A binary N*A matrix P is used to encode agent placement at nodes as follows: P ik=1 if ak is in 

ni, 0 otherwise. The APR problem can then be stated as follows: given an initial placement Pold 

of application agents on nodes, define a new placement Pnew so that the overall network load due 

to agent communication is minimized. As a secondary optimization target we also require that 

the network cost due to the migrations performed in order to switch from the initial placement 

Pold to the new one Pnew is also minimal. The network load T due to agent communication is 

given by Eq. 6.1. Thus, the benefit in agent communication terms by switching from Pold to Pnew 

described by Eq. 6.2.

A single migration incurs a cost proportional to the agent size and the hop distance between the 

start and destination node. We assume that there exists a single monitoring node (let nm) which 

also acts as an entry point for the arriving agents in the system (e.g., for security reasons) and 

keeps an immutable copy of all agents’ code. Migrations are performed by sending a copy of the 

agent’s code from nm and the agent’s status from the node where the agent currently resides. For 

simplicity, we assume that the size of the status is negligible, compared to the code size, which 

is denoted by sk. Therefore, given an initial placement Pold and the one that must be 

implemented Pnew, the total migration cost M  can be computed by Eq. 6.3.

A A N N
t = Σ Σ  ( C k, Σ Σ  h A p ,m. >k=1 m=1 i=1 j=1

B
rj-Old j-inew

Eq. 6.1 

Eq. 6.2
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A  N

M  =Σ Σ  ΡΓ(1 -  P ld
Eq. 6.3

k =1 i =1

Minimizing agent communication cost (Eq. 6.1) and migration cost (Eq. 6.3) are conflicting, 

since Eq. 6.3 is minimized if Pnew is the same as Pold. Intuitively, Eq. 6.3 acts as an overhead 

which can be fully or partially offset by the reduction in agent communication cost (Eq. 6.2), 

depending on whether Pnew will remain unchanged for a sufficient large time. Let a be a 

constant depicting the importance of migration cost over agent communication. Then the APR 

problem can be stated as: given an initial agent placement Pold find a new placement Pmw such 

as Eq. 6.4 is optimized, with respect to constraints described by Eq. 6.5,Eq. 6.6,Eq. 6.7, and Eq.

6.8.

max D  = B  -  y M Eq. 6.4

A
Eq. 6.5Σ  P r r (<*k) £ r ), Vi

k=1

N
Eq. 6 . 6Σ  P 'k~' = 1  Vki=1

>o
'II11

Eq. 6.7

Ρ ^ Ρ Γ Ρ Γ  = 0, Vi, k, w Eq. 6 . 8

Eq. 6.5 states that node capacity constraints should not be violated. Eq. 6.6 enforces that each 

agent should be placed at exactly one node. In addition, this placement must be eligible in terms 

of specific resources (Eq. 6.7) and there should not be conflicts with other agents residing at the 

same node (Eq. 6.8). By Eq. 6.5 it is easy to see that the relevant ARP decision problem is NP- 

complete having (among others) a knapsack component [56]. In the following section we 

present heuristics to tackle it.

3 Algorithms

The proposed algorithms are based on the concept of pair-wise agent exchanges between system 

nodes. We begin our discussion by presenting the core exchange method in a system consisting 

of two nodes, then generalize for a system of N>2 nodes. We also present a greedy method used 

for comparison reasons in the experiments.
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3.1 The ARP problem with 2 nodes

Consider the ARP problem for the case where the system consists of two nodes n1 and n2 and a 

monitoring node nm. All nodes are assumed to have 1-hop distance between each other. Assume 

a total of 5 agents are already placed at the system’s nodes as follows: a1, a2 and a3 are placed at 

n1 and a4, a5 at n2. Table 6.1 depicts the load generated due to agent communication, as well as 

the agents’ resource requirements.

Table 6.1 Agent communication load and resource requirements

riak) a1 a2 a3 a4 a5

2 a1 0 4 0 1 0

1 a2 1 0 0 1 0

2 a3 0 2 0 2 3

3 a4 2 0 4 0 0

2 a5 0 0 5 5 0

Let the capacity of the two nodes (resource wise) be: r(n1)=7 and r(n2)=5. Assuming migrations 

incur no cost and that no specific resources or mutual exclusion constraints do exist, ARP can 

be transformed into a graph coloring problem as follows. In a first phase, the agent 

communication graph G(V, E) is constructed, whereby the vertices of the graph correspond one 

to one with the agents, and an edge (ak, aw) exists if ak and aw communicate with each other. 

Each edge has a weight w(ak, aw) which equals the communication cost between ak and aw 

across both directions, i.e., w(ak, aw) = Ckw + Cwk. Furthermore, each vertex has a weight w(ak) 

equaling the amount of generic resources ak demands. Let Fig 6.1 represent such a graph in 

terms of the agents hosted by n1 and n2.

1 2 1 2

3 2 3 2
Fig 6.1 Agent communication graph Fig 6.2 Extending the communication graph

In a second phase, graph G is extended by adding two vertices, with these vertices 

corresponding to the node pair hosting the agents represented by G. These vertices have 0 

weight and are colored through a 2-color scheme (e.g. red, black). Note that the rest vertices
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(agent-vertices) remain uncolored for the time being. In order to take into account the cost of 

migrating an agent, for each agent-vertex there are two extra edges towards the two node

vertices. Since such an edge represents the migration cost, its weight is set to zero if the incident 

agent-vertex to that edge is not hosted by the incident node-vertex; otherwise the weight equals 

to the cost of migrating the agent represented by the incident agent-vertex, from the monitoring 

node towards the node not hosting it. Fig 6.2 illustrates the above extension, only for the agents 

a3 and a5, assuming that all agent sizes is 8 and that the constant a=0.5. Red vertex («i) is shown 

striped, while black vertex (n2) is shown grayed. Since all migrations are assumed to be 

performed via the monitoring node (hop distance of 1 against n1 and n2), all edges whereby the 

migration cost must be charged have a weight of 4 (equals a*agent size*hop distance).

The specific resources demands (in terms of an agent) are included in the model by coloring the 

respective agent-vertex. For instance, if in the example Z21 = 0 , then a1 vertex will be painted

in red, i.e., a1 will be forced to stay at n1 (red vertex). Finally, mutual exclusion constraints are 

included by adding coloring constraints for the corresponding agents. For example, in modeling 

that F ,  = 0 , it is equivalent to say that ak and aw vertices must have different colours.

Putting all these together, an agent that is differently colored against its current hosting node, 

should migrate towards the other node in the system (same-coloured). Hence, ARP can be re

stated as follows: try to paint each agent-vertex in one of the available colours, with respect to 

our constraints, in such a way that the network communication cost is minimized.

3.2 The agent exchange algorithm

Here we present the agent exchange algorithm (AXA) to come with a solution for the 2-node 

version of ARP. AXA uses the transformation of ARP into the equivalent coloring problem 

presented in Sec. 3.1.

The algorithm works in iterations. In each iteration, the edge with the highest weight is selected 

and the vertices it connects with are merged, since this weight represents a benefit. Specifically 

if the incident vertices to that edge: i) are both agent-vertices, then this benefit comes from 

placing the agents, included on that vertices, on the same node (they communicate heavily); and 

ii) are an agent-vertex and a node-vertex, this benefit comes from placing the agent(s) 

represented by agent-vertex on node represented by node-vertex. In case the merged vertices 

have a mutual exclusion constraint, the merging is not performed and the edge connecting them 

is colored grey (i.e., not to be considered further). Otherwise, the new vertex has the cumulative
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weight o f the previous ones and their remaining edges. If  any o f the vertices belonging to the 

merged vertex is colored then the merged vertex will also be colored (with the same color). In 

case the two vertices to be merged are colored with different color each, merging is not 

performed and the respective edge becomes grey. F i g  6 . 3  shows the resulting graph by merging 

a 3 with a 5.

0

0
Fig 6.3 Resulting graph after merging.

Each time two vertices are merged, AXA attempts to find if  a feasible vertex coloring does exist 

in the new graph. To this end it solves knapsack two times, once for n  and once for n2 , with the 

candidate objects being the ak vertices (the size o f each object being the weight of the vertex). In 

the previous example ( F i g  6 . 3 ) , by solving knapsack on n  (the red node) we get the following 

objects to be placed: {ab a 2 , {a3 , a 5 }}, filling the resource capacity o f n  which is 7. Having 

obtained a knapsack solution for nu the algorithm checks if  the remaining objects fit in n 2 . In 

the example only a 4  remains which fits in n 2 since r(n2 ) was assumed 5. If so, the algorithm 

keeps the merged vertex without coloring it and proceeds with the next iteration. Otherwise, the 

algorithm attempts to find a valid placement by solving knapsack for n 2 (the black node) and 

checking whether the remaining objects fit at n x . If  after trying both knapsack solutions AXA is 

unable to find a valid placement involving all the objects, it backtracks to the graph state before 

merging, marking the edge under consideration as grey.

The algorithm continues in the same fashion till either all the remaining agent-vertices are 

colored, whereby performs the corresponding migrations; or edges are colored in gray, where no 

migrations are performed.

3.3 Extending to N nodes

Tackling the case o f N > 2  nodes is done with the p a i r - w i s e  r e c o n f i g u r a t i o n  a l g o r i t h m  (PRA), the 

pseudocode o f which is shown in F i g  6 . 4 .
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found:=true; 
while (found) 

found:=false; 
for i=1 to N  
for j=1 to N

apply AXA over (n i, n j) pair; 
if D>0 then found:=true; keep AXA changes; 

else discard AXA changes;
endif

endfor
endfor

endwhile

Fig 6.4 Pseudocode of PRA

PRA iterates through all node pairs applying AXA. If during an iteration AXA manages to 

define a better placement according to E q .  6 . 4 ,  the process reiterates, otherwise it ends 

producing the final agent placement. In order for AXA to successfully optimize locally, i.e., 

within a node pair, the agent placement, adaptations are required to the way agent 

communication load and migration costs are modeled. We illustrate them through an example.

Assume the network o f F i g  6 . 5 ,  with 7 nodes plus the monitoring node n m . Let the agents of 

T a b l e  6 . 1  be already placed on n2 and n5 as follows: n 2 has a \ ,  a 2, a 3 and n5 has a 4 and a 5 . In 

other terms, n2 and n5 in this example have the same role as n 1 and n2 in the example o f Sec. 3.1. 

Assuming only these agents exist in the network, the equivalent graph colouring problem is 

similar to the one in F i g  6 . 2 ,  with the exception being that the hop count must be taken into 

account both on edges representing agent communication (ak, aw) and on edges representing 

migration cost (ni, ak). So all w ( a k , aw) edge weights will be multiplied by a factor o f 3 (the hop 

distance between n 2 and n5), while all edge weights w ( n i, ak) will be multiplied by the hop 

distance between nm and the node of the opposite color with which ni was painted. For instance, 

w ( n 2, a 2) will remain 4 since the distance between nm and n5 (the black node) is 1, while w(n5, 

a4) will now be 16 since hm2=4. Fig. 7 depicts the resulting problem graph. For clarity, the edges 

between (a1, a 2, a4) and (n1, n2) are omitted, as previously.

Fig 6.5 Network Fig 6.6 Resulting problem graph

0
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In the general case, agents placed on nodes other than the pair in question (n2 , n5) might 

generate load towards some o f the agents placed on the pair. F i g  6 . 5  gives an example, whereby 

3 more agents exist, namely: a 6 which is placed at n 1, a 7 at n3 and a 8 at n7 . The figure also shows 

the load these agents generate towards the ones placed at n 2 and n5 , specifically: C6 3 + C3 6 =3, 

C65+ C56=2 , C7 3 + C3 7 =4 , C7 5 + C5 7 = 3  and C8 5+ C58=4 .

Such external (to the node pair) load must be incorporated to the graph coloring model in order 

for it to map to ARP correctly. This external load can be viewed as another form o f node related 

cost in the problem graph, as was the case with migration. Consider for instance the migration 

of a 5 from n 5 to n 2 . Aside from the migration cost of 16 to transfer a 5 from n m to n 2 there will 

also be a change on the cost in terms o f the external load directed to/from a 5 . For instance, the 

load generated by (a 5 , a 8) communication will not incur a cost of 8 , but rather a cost o f 2 0  since 

the hop distance between the two agents will increase from 2 to 5. In order to incorporate the 

above case in the problem graph it suffices to augment: i) w(n5 , a 5) by the network cost incurred 

if  a 5 moved to n 2 , i.e., 2 0 ; and ii) w(n2 , a 5) by the incurred load if  a 5 stayed in n5 , i.e., 8 . 

Repeating the process for all the external loads o f a 5 results in w(n5 , a 5) being augmented by a 

factor of: 20 (a 8 ’s load) + 3 (a 7 ’s load) + 2 (a 6 ’s load) for a total o f 25, and w ( n 2, a 5)  being 

augmented by: 8  (a 8 ’s load) + 6  (a 7 ’s load) + 8  (a 6 ’s load) for a total o f 22. F i g  6 . 7  illustrates 

the final graph coloring transformation for the example of Fig. 6 . Again, to avoid cluttering, 

only edges between n 2 , n 5 and a 3 , a 5 are shown.

1 2

0

0

Fig 6.7 Resulting problem graph

However, a subtle change must be made to AXA in order for it to function properly. Recall, that 

AXA selects the link o f highest weight and attempts to merge the incident vertices to that link. 

The rationale for the decision is to attempt to place together agents communicating heavily with 

each other. So, if  a 3 and a 5 are placed together, then the communication load among them will 

be alleviated and a benefit o f w(a3, a 5)=24, will occur. However, the same is not true when 

considering edges involving a node-vertex. For instance, if a 5, n5 are merged the actual benefit 

will not be 31, but rather the cost difference between placing a 5 at n 5 and at n2. According to
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this, AXA may begin the coloring/merging process from a less beneficial edge, thus leading to 

inferior solutions. For instance, in this example AXA will begin with (a5 , n5) having actual 

benefit equal to 9 (31-22), instead of (a5 , a 3 ) having actual benefit equal to 24. For this reason, 

at the sorting step o f AXA all edges o f the form ( n i, a k )  do not participate with their weights, but 

rather with the weight difference: w ( n i, ak) -  w ( n j , ak), assuming n i and n j are the system nodes 

for which AXA runs.

3.4 Greedy algorithmic approach

Thus far, we have shown how the ARP problem from the standpoint o f a node pair can be 

transformed into a graph coloring problem. We also discussed both an algorithm to derive a 

solution to the coloring problem (AXA) and how it can be invoked in order to tackle the ARP 

problem globally (PRA). For comparison reasons here, we discuss another algorithm to solve 

ARP based on the greedy approach.

Starting from the initial placement, G r e e d y  iteratively selects an agent to migrate and performs 

the migration. Specifically, at each iteration all A * N  possible migrations are considered and the 

one that optimizes E q .  6 . 4  the most, subject to the constraints E q .  6 . 5  - E q .  6 . 8 ,  is selected. The 

process is repeated until no further beneficial migration can be defined.

4 Experiments

This section describes the experimental evaluation o f PRA. Section 4.1 presents the 

experimental setup. Section 4.2 gives a comparison o f PRA and Greedy against exhaustive 

search for a small experiment, while in Section 4.3 we compare PRA against Greedy for a larger 

experimental setup. Finally, Sec. 4.4 summarizes the experimental findings.

4.1 Experimental setup

Due to the fact that the POBICOS middleware is currently under development we conducted the 

experimental evaluation using simulation experiments. The details of the simulation setup are 

briefly discussed below.

N e t w o r k  g e n e r a t i o n .  Two types o f networks were constructed, one with 7 and one with 30 

nodes. In both networks an extra node played the role o f the monitoring node. Nodes were
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placed randomly in a 100^100 2D plain and assumed to be in range o f each other if  their 

Euclidean distance was less than 30 distance units. In the resulting network topology graph, a 

spanning tree was calculated and acted as the corresponding tree-based routing topology.

A p p l i c a t i o n  g e n e r a t i o n .  The application tree structure is generated randomly, based on the 

(given) number of non-generic agents. The initial non-generic agents are split in disjoint groups 

o f 5, and for each group 2-5 agents are randomly chosen as children of a new generic agent. In 

next iterations, orphan (generic and non-generic) agents are (again) randomly split in groups of 

5 and the process o f parent creation is repeated, until a single agent remains which becomes the 

root o f the application. With the above method the resulting application is a tree, its leaves 

consisting o f non-generic agents. Since the scope of this work is broader tackling general 

application graphs as opposed to trees, we alter the resulting application tree as follows. For 

each generic agent two more non-generic agents were assumed to be its children, thus, these 

non-generic agents had two (or more) parents. Two different application structures were 

generated with this way a p p - 1 0  and a p p - 4 0 ,  each with 10 and 40 non-generic agents, 

respectively.

A p p l i c a t i o n  t r a f f i c .  We assumed that the communication load between a non-generic and a 

generic agent was between 10 to 50 data units per time unit. For the load between generic 

agents we considered three cases: (i) l a v g :  a generic agent sends the average o f the load 

received from its children, corresponding to a data aggregation scenario; (ii) I s u m :  a generic 

agent sends to its parent the sum of the loads received from its children, corresponding to a 

forwarding scenario; and (iii) I m i x :  half of the generic agents (randomly chosen) generate load 

according to l a v g  and the other half according to l s u m .  Unless otherwise stated, the constant a  

(see (4)) governing the importance o f migration cost versus communication load was set to 

0 .0 1 .

O t h e r  p a r a m e t e r s . The size o f agents varied uniformly between 100 and 1,000 data units. All 

the non-generic agents that have the same parent were assumed to share one common special 

resource requirement and had a mutual exclusion constraint among them. Non-generic agents 

with different parents were assumed to differ in at least one special resource requirement. In the 

experiments we begin with an initial placement and run the algorithms to define a better one. 

This initial placement is derived by placing the non generic agents first. Specifically for every 

group of non-generic agents with the same parent (let n g  in cardinality), ( 1 + f ) n g  nodes 

(randomly selected) were assumed to have adequate special resources to hold the agents, i.e., for 

a node n i and an agent a k such as above, L ik=1. Unless otherwise stated, constant β  takes a value
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of 0.5. In the initial placement the non-generic agents were placed randomly to nodes having the 

required functionality in such a way so as to respect mutual exclusion constraints as well. 

Having placed the non-generic agents, generic agents were placed afterwards, again in a random 

fashion. Last, in the experiments we assume that the computational resource o f interest is 

memory and that all nodes start with an initial capacity equaling the size of the agents assigned 

to them by the initial placement.

4.2 Comparison against the optimal algorithm

In this set of experiments we compare both PRA and Greedy against the optimal solution 

derived through exhaustive search. For this reason we used the smaller 7-node network type and 

app-10 application. Five different network topologies were generated and five different app-10 

applications. Results depict the average o f the combined runs (25 in total).

First we recorded the performance o f the algorithms regarding the quality o f the placement 

scheme they reach, as a percentage o f the optimal performance. Assuming that in the initial 

placement i n i t  communication load is incurred per time unit, that in the optimal scheme o p t  

communication load is incurred and that in the placement calculated by the algorithms a l g  

communication load is incurred, the percentage o f the optimal performance achieved by an 

algorithm is characterized by the ratio: ( i n i t - a l g ) / ( i n i t - o p t ) ,  i.e., how much load reduction an 

algorithm achieves compared to the optimal. T a b l e  6 . 2  presents the results for PRA and Greedy 

for two different load types: l a v g  and I s u m .  We also varied the amount of extra free capacity 

available at the system nodes. So for instance l a v g ( 2 ) ,  means that each node had just enough 

capacity to hold the agents allocated there in the initial placement, plus extra space equaling 2  

times the average agent size.

Table 6.2 Solution quality compared to the optimal

lavg(l) lavg(2) lavg (3) lsum(1) lsum(2) lsum(3)

Greedy 81.7% 88.4% 95.4% 86.8% 86.9% 86.9%
P R A 85.5% 100% 100% 89.8% 100% 100%

We can observe from T a b l e  6 . 2  that PRA constantly outperforms the simpler Greedy algorithm. 

In fact, the difference between PRA and the optimal scheme is not large when capacity is tight 

(plus one extra space for an agent), while with a less tight constraint, PRA achieves the optimal 

performance. It is also worth noting that the Greedy algorithm never achieves an optimal 

performance.
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Table 6.3 Migrations performed

lavg(l) lavg(2) lavg (3) lsum(1) lsum(2) lsum(3)

Greedy 9.2 9.4 10.4 8.7 10.1 10.1
P R A 8.8 10.0 10.0 9.2 9.5 9.5

We also recorded in T a b l e  6 . 3  the number of migrations performed by each o f the algorithms. 

Recall, that the application type used was app-10, involving 10 non-generic agents and roughly 

6  generic, for a total o f 16 agents. Results here are mixed, with PRA doing more or less 

migrations compared to Greedy depending on the scenario. However, the fact that in certain 

cases where PRA achieves the optimal, e.g., l a v g ( 3 ) ,  l s u m ( 3 ) ,  PRA also performs less 

migrations compared to Greedy, illustrates even more the merits of our approach.

4.3 Experiments with a larger network

Here we conducted experiments using the larger network case (30 nodes + the monitor node). 

Five different network topologies were generated and each experiment depicts the average. 

Eight applications o f type app-40 were assumed to be initially placed, while the load model was 

I m i x .  We plot the percentage o f load reduction achieved compared to the initial placement, i.e., 

( i n i t - a l g ) / i n i t . Since the exhaustive algorithm could not produce results within acceptable time, 

we only compared PRA against Greedy.
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F i g  6 . 8  demonstrates the performance of the algorithms as more capacity is added at each node 

e.g., the value o f 4 in the x-axis means that each node has capacity equaling the necessary one to 

hold the agents initially placed there, plus 4 times the average agent size. The first thing to 

notice, is that the achievable saves by both algorithms increase to the surplus capacity at the
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nodes, which is expected since with tighter capacity agents that should have been placed 

together might not be able to do so. Notice that PRA manages to reduce the initial load by more 

than 60% in all cases and by roughly 10% more compared to Greedy, a fact that further 

reinforces the viability o f our approach.

Last, in F i g  6 . 9  we measure the performance o f the algorithms as the special resource 

constraints become less tight. Recall from Sec. 4.1 that each non-generic agent group having the 

same parent is assumed to require the same special resource. Assuming n g  is the group size (5 

in our case) then ( 1 + β ) ^  nodes are assumed to provide such a special resource. In the x-axis of 

Fig. 10 we vary the constant β  by 50%, 100%, 150% and 200% essentially increasing the 

number o f possible hosts (special resource wise) from 5 to 7.5, 10, 12.5 and 15.

As expected, with more candidate locations available for each agent, there is an increased 

optimization potential compared to the random initial placement. Both PRA and Greedy exploit 

this potential resulting in a performance increase (PRA achieves roughly 80% savings by the 

end o f the plot). Again PRA outperforms Greedy with their difference becoming small in the 

150% and 200% case. In a sense, this result means that as the nodes o f the system become more 

homogeneous, Greedy might be a viable alternative, whereas for heterogeneous networks PRA 

is a clear winner.

4.4 Discussion

Summarizing the experiments we can state the following: (i) judging from the optimization 

margin left by the initial placement, any random solution to ARP will probably be particularly 

inefficient; (ii) PRA achieves performance close to optimal particularly if  the computational 

capacity constraint is not very tight; and (iii) simpler algorithms based on a pure greedy 

paradigm cannot achieve equivalent performance compared to PRA, particularly in networks 

with a heterogeneity degree as is usually the case in a smart home environment.

We would also like to mention that the increased performance offered by PRA does not involve 

a prohibitive runtime cost. All the experiments were run in an ordinary laptop carrying an Intel 

Pentium Dual CPU T3200 processor at 2GHz with 3GB of memory. Even in the larger setup of 

Sec. 4.3 the running time o f PRA never exceeded a couple o f seconds.
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5 Conclusions

In this work we tackled the APR problem by iteratively solving it for node pairs. To do so we 

illustrated a graph coloring problem transformation, and proposed an algorithm (AXA) to derive 

a solution for the equivalent problem. Through simulation experiments the final algorithmic 

scheme (PRA) was found to outperform a simpler greedy approach, while achieving the optimal 

solution in many cases. The main differences o f this work against the previous ones are: i) the 

application structure is structured as a graph (instead o f a tree); ii) besides the generic agents, 

the non-generic ones are migratable provided that the destination nodes have the required non

generic resources.

Although we considered the case o f centralized execution, our core contribution (AXA) is 

distributed in nature involving only a node pair. As part o f our future work we plan to 

investigate adaptations to the centralized pairing mechanism (PRA) that will allow the 

algorithm to execute in a fully distributed manner.

Part o f this work has been published in the following book chapter:

* N. Tziritas, S.U. Khan, T. Loukopoulos, “On Reconfiguring Embedded Application 

Placement On Smart Sensing and Actuating Environment”, in Intelligent Decision 

Systems in Large-Scale Distributed Environments, Springer, New York, USA, 20011, 

ISBN 978-3-642-21270-3, Chapter 11.
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Chapter 7

Algorithms for Energy-Driven Agent Placement in 
Wireless Embedded Systems with Memory Constraints

1 Introduction

In this chapter, we address the basic problem o f placing a single new agent (software 

component) in a network o f nodes taking into account both the available memory and remaining 

battery o f each node. Priority is given to agent acceptance while maximizing the lifetime o f the 

first node that will run out o f battery. As it turns out, the problem of accepting a new agent, 

without paying any attention to the communication and battery costs, is quite challenging in 

itself. The reason is that even if  no single node has enough memory to host a new agent, it may 

still be possible to free sufficient space at some node by migrating one or more agents to other 

nodes.

Our solutions are centralized, assuming a single point o f entry, which has sufficient computing 

and energy resources and decides about agent placement having a global overview of the system 

state. For the POBICOS system, this could be a set-top box or a desktop computer which acts as 

the coordinator of the home network, keeping track o f the applications deployed in the system 

in order to take good agent placement decisions. We assume that the node network topology and 

communication traffic between agents is known to the coordinator; in reality, this information 

would have to be collected at runtime using some kind o f monitoring protocol -  but this does 

not change the core o f the problem investigated here.

The rest o f this work is organized as follows: Sec. 2 formulates the agent placement problem; 

Sec. 3 presents algorithms that accept a new agent without making any lifetime optimization;
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Sec. 4 gives two greedy reconfiguration algorithms to optimize node lifetime once an agent is 

successfully placed in the system; Sec. 5 illustrates two branch and bound heuristics that accept 

a new agent while optimizing node lifetime in a “simultaneous” way; Sec. 6  describes how to 

implement the defined placements efficiently; experimental evaluation is included in Sec. 7; 

finally, Sec. 8  includes the concluding remarks.

2 Problem Definition

2.1 System model

Let the system comprise o f N  nodes denoted by n i, 1 < i <  N  and let m ( n )  be the memory 

capacity o f the ith node measured in abstract data units. The agents to be deployed in the system 

are denoted by a k , 1 <  k  <  A  , each having size m(ak). A binary N*A matrix P  is used to encode 

agent placement at nodes as follows: P ik=1 if  ak is hosted by ni, 0  otherwise. Obviously, a node 

can host agents only up to its memory capacity. The communication between agents is captured 

via an A  *A matrix C, where Ckw denotes the data units sent on average from agent ak to aw per 

time unit. Let R  be a N*N*N routing table where an element Rijx denotes the percentage of 

traffic from ni to n } that passes through nx. Multiple routing and network topology scenarios can 

be captured using R . The model and consequently the algorithms in this work do not make any 

particular assumptions on either o f them.

2.2 Battery consumption and node lifetime

Let b ( n )  be the battery level o f node ni, measured as the data units a node can send before its 

battery is depleted. Data transfer consumes the battery o f the source and destination nodes 

where the communicating agents reside, but also the battery o f all intermediate nodes that act as 

routers. Let β  denote the ratio between the cost o f sending and receiving a data unit. So, for 

instance if  β=0.5 it means that the receiving cost is 50% of the sending cost. We assume that the 

cost o f routing is equal to the cost for receiving plus the cost for sending data. For simplicity, 

we ignore the communication cost between co-located agents and the cost o f local agent 

execution.
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Fig 7.1 An example network

As an example o f how battery consumption is captured in our model, consider the topology 

shown in F i g  7 . 1 . Let n 1 send a message o f K  data units to n 3 every time unit. Assuming that the 

battery levels o f all nodes are B  and that β=0.5, n 1 will deplete its battery after B / K time units, n3 

after 2B/K t i m e  units and n 2 after 2B/3K time units.

More formally, let L i denote the lifetime of ni. This depends on the communication load 

incurred at ni, which in turn comprises o f three components: ( 1 ) the load due to the data sent by 

agents located on ni (let X )  (2 ) the load due to the data received by agents located on ni (let Ti), 

and (3) the load due to ni acting as a router (let Zi):

X , = ' t t ]p,k ( 1  -  P  C
k =1 w=1

Y = Σ Σ Ρ *  (i -  P  ) C w k
k =1 w =1

A A

Z  = Σ Σ  (1 -  P k  ) ( 1  -  P w  R C k w  \ P , k  =  1 λ P yw  =  1
k =1 w =1

L  = ---------- ^ ----------
'  χ , + β γ + ( 1 + β ) 2 ,

Eq. 7.1 

Eq. 7.2 

Eq. 7.3 

Eq. 7.4

2.3 Adding a new agent

The addition of a new agent requires that sufficient memory space be found at some node or be 

created through agent migrations. For instance, F i g  7 . 2  shows two nodes with a memory 

capacity o f 2 0  units each, which host five agents in total, leaving 2  units o f free space at n 1  and 

3 units at n2 . Assume that a new agent of size 5 arrives. Clearly, neither n 1 nor n 2 have sufficient 

free space to host the agent. It is however possible to merge the two free memory fragments into 

a single bigger chunk, e.g., by swapping a 5 with a 2 and a 3, in order to make space for the new 

agent to be hosted at n2 as depicted in F i g  7 . 3 .
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The operations that can be used to alter the agent placement scheme are transfers (migrations) 

and deletions. Let Tjk denote the transfer o f ak from n i to n j and D ik the deletion o f ak at ni. In 

order for a transfer Tjk to be feasible, the destination n j must have enough free space to hold ak. 

Note that, given this restriction, it is not possible to implement the transition shown from the 

placement o f F i g  7 . 2  into that o f F i g  7 . 3 ,  because to perform any agent transfer one must first 

perform a deletion. We discussed similar feasibility issues in placement transitions in [78]. 

Tackling them in combination with memory and energy optimization exceeds the scope o f this 

work. Therefore, we assume that the entry point maintains a repository with the code o f all 

agents that have been injected in the system. Thus, the suggested transition could be 

implemented by deleting a 5 from n2 , transferring a 2 and a 3 from n 1 to n2 , and then transferring a 5 

to ni and the new agent (a6 ) to n2 from the entry point, corresponding to the sequence {D2 5 , T1 2 2 , 

Ti2 3 , Tei5 , Te2 6 } where ne is the entry point.

Deletions incur no cost. On the contrary, the cost for performing a transfer is proportional to the 

agent size, affecting source, destination and the intermediate routers. Specifically, the cost 

incurred at ni for a transfer T xyk is given by E q .  7 . 5 .

S i  (T x y k  )  = \

m ( a k  ) ,  i  =  x

P m ( a k  X i  =  y

0  +  P ) m ( a k  ) R x y  , i * x  y

Eq. 7.5

Since an agent migration incurs a communication cost, it also affects the lifetime of nodes in the 

system. Assuming that at a given point in time the battery level o f ni is equal to b ( n ) ,  and that a 

series o f transfers and deletions are performed to place a new agent, the lifetime o f n i for the 

new system configuration (including the new agent which introduces additional communication 

cost due to its interaction with one or more existing agents) is given by E q .  7 .6 .
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b ( n , ) - X S , (T„)
£  _  ______ v T xyt perform ed Eq. η β

L ~  X i +  β ¥ ,  + (1 +  β ) Ζ ,

Notably, our agent migration model ignores for simplicity the cost required for transferring the 
state of an agent (considered negligible compared to the agent code size). However, it is quite 
straightforward to take this aspect into account too, by splitting an agent’s transfer into two 
parts: its status only obtainable by the hosting node, and its code obtainable by the hosting node 
as well as the entry point.

2.4 Problem statement

Let Pold be the existing placement of agents on the nodes of the system and Pnew the placement 
reached after accepting a new agent (if possible). For modeling purposes we let Pold and Pnew be 
(N+1)*(A+1) matrices, where nW1 is the entry point and a A +1 is the new agent to be placed in 
the system; whose code is initially available only at node nN+b i.e.,
P n + \ a +\ =  1 λ  P a +i =  0 V1 < i  < N . Also, the routing matrix R  is extended to include n N+1.

The first target of the agent placement problem (APP) is to define a feasible schedule of agent 
migrations (transfers and deletions) such that, starting from P old, one reaches a placement P new

N

where a A +1 is placed at some node (besides nN+i), i.e., X P " aWi =  1 . The second target is to
i=1

maximize the lifetime of the first node that will deplete its battery resources, as per E q .  7 . 6 . 

Thus, the agent placement problem (APP) can be stated as: Given an initial placement Pold of A  

agents at N  nodes and a special entry point node nN + 1 that holds the code of all agents as well as 
the code of a new agent aA + 1, define a series of transfers and deletions leading to a new 
placement Pnew where aA + 1 is placed at some node ni, 1 < i  <  N , while maximizing min(Zi).
Notably, APP decision is NP-complete even for the first criterion only, i.e., accepting a new 
agent with no concern for node lifetimes. We sketch an informal proof by reduction to the Bin 
Packing-decision (BP-dec) problem which has the following statement: given A  objects of size 
s i and bins of size K , is there an assignment of objects to bins using V bins?
P r o o f  o f  N P - c o m p l e t e n e s s : For each BP-dec instance we build an APP-dec statement as follows. 
The network consists of V+1 nodes, the first V  of which have capacity K, while nV + 1 acts as the 
entry point. Furthermore, for each object in BP-dec there exists a corresponding agent of same 
size. In P old the agents exist only at the entry point, while in P new they must be accepted (placed)
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at nodes n  to nV. Clearly, a solution for accepting all agents exists if  and only if  the equivalent 

BP-dec has a solution with V  bins. Therefore, APP-dec is NP-complete.

3 Algorithms for Accepting Agents

Accepting an agent works in two steps. The first step is to check whether some node has 

sufficient free space to host the agent. If  so, the agent is placed at that node. In case multiple 

candidates exist, the one that results in the longest minimum lifetime as per E q .  7 . 6  is chosen. If 

no node has sufficient memory to hold the new agent, the second step is to create enough space 

at some node, by performing a series o f transfers and deletions as discussed in Sec 2.3. The 

respective heuristics employ a component for solving the knapsack problem through dynamic 

programming [56].

3.1 Pairwise checking algorithm (PCA)

The node with the largest free memory is more likely to provide the space needed for hosting a 

new agent, by moving one or more o f its local agents to another node. Conversely, if  some 

agents must be moved away from a node, it is easier to do so if  the destination has relatively 

ample free space. This is the intuition behind the pairwise-checking algorithm (PCA), the 

pseudocode of which is shown in F i g  7 . 4 .

Algorithm PCA openSpace(node: n1, node: n2)

L:=sort nodes in decreasing order of available memory 
while (L has at least two nodes)

n1 :=L^head; //most capacious node 
n2 :=n1 ^next; //second most 
while (n2^NIL && availMem(n1)<requiredSpace) 

openSpace(n1, n2); 
reinsert(L, n1); reinsert(L, n2); 
if (n1 =L^head && n2 =n1 ^next) n2 :=n2 ^next; 
else if (n1 =L^head) n2 :=n1 ^next; //n2  changed 
else break; //n1 , n2  changed, restart process 
endif

endwhile
if (availMem(n1)> requiredSpace) return; //success
endif
if (n2=NIL) delete(L, n1); //list traversed
endif

endwhile

maxSpace:=maxFreeSpace(n1, n2); 
bestsol: =current placement;
A:=set of agents located at both n1 and n2; 
sol1 :=knapsack(n1, A) and remaining agents at n2; 
sol2:=knapsack(n2, A) and remaining agents at n1; 
if (maxFreeSpace(sol1, n1, n2) > maxSpace) 

bestsol:=sol1 ;
maxSpace := maxFreeSpace(sol1, n1, n2) ;

endif
if (maxFreeSpace(sol2, n1, n2) > maxSpace) 

bestsol:=sol2 ;
maxSpace := maxFreeSpace(sol2, n1, n2) ;

endif
implement bestsol ;

Fig 7.4 Pseudocode for PCA
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Specifically, PCA maintains a list o f nodes sorted in decreasing order of their remaining free 

space. It takes the first node (with the most free space) and attempts to open even more space by 

considering the second node o f the sorted list as a partner for exchanging agents. If  enough 

space is opened at any o f the two nodes, the algorithm terminates successfully. Else, the first 

node is checked against the third node etc., until the last node in the list is checked. Then, the 

first node is removed from the list and the process is repeated (starting with the new first node), 

until either enough free space is opened at some node or the list is empty. After each attempt to 

open space the list is updated with the new free space values (and placements) o f the 

participating nodes. If during the process either the first or second node changes position in the 

list, the iteration restarts with the new first and second nodes.

Agent rearrangement at each considered node pair (openSpace function) is done with the goal to 

maximize the free space at one o f the nodes. This is achieved by solving two different instances 

o f the knapsack problem, with the storage capacity o f the first and respectively second node as 

the knapsack size; the set o f agents to be placed in the knapsack being the union o f agents 

hosted at both nodes, and the benefit of each agent being equal to its size. The two solutions are 

compared to each other and with the initial placement, and the one with the largest free space at 

a node is chosen.

free
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Fig 7.5 Example of knapsack runs: (a) initial state; (b) run on n 1; (c) run on n 2

As an example, consider F i g  7 . 5 a  which continues the example of  F i g  7 . 2  but with the capacity 

o f « 1  and n 2 being 21 and 23 data units, respectively, leaving 3 units o f free space at n 1 and 6  at 

n2. Assume 9 units o f free space are needed to place a new agent. The knapsack run on n 1 ( F i g  

7 . 5 b )  produces a placement whereby agents a 1, a 5 are located at n 1 while a 2, a 3, a 4  are located at 

n2, resulting in a contiguous free space o f 8  units at n2. For the run on n 2 ( F i g  7 . 5 c ) ,  agents a 3, 

a4, a 5 are placed at n2 while a 1, a 2 are placed at n1, leaving a free space of 9 units at n1. Thus, the 

placement resulting from the second run is chosen.
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3.2 Greedy bin packing algorithm (GBPA)

The second algorithm follows a bin packing approach. Starting with all nodes initially empty, 

GBPA iteratively attempts to place all agents, including the newcomer. In the first iteration, 

knapsack is run N  times, once for each node, and the solution that leaves the least free space on 

a node, i.e., fills a node as much as possible, is chosen. The agents selected by that knapsack run 

are placed on that node, and the process is repeated for the rest o f the agents and nodes. The 

algorithm continues until either all agents or all nodes have been considered. In the first case the 

generated placement can be used to accommodate the new agent whereas in the second case a 

solution could not be found. F i g  7 . 6  illustrates the pseudocode of the algorithm.

Algorithm GBPA_____________________________

N:=all nodes;
A:=all agents including the newcomer; 
bestspace:=INFTY; bestnode:=NIL; bestagents:=NIL; 
while (A and N not empty) 

for all nodes ni at N 
knapsack(ni, A); 
if (free space at ni<bestspace) 

bestspace:=free space at ni; 
bestnode:=ni;
bestagents:=agents assigned to ni by knapsack;

endif
endfor
remove bestnode from N; 
remove bestagents from A;

endwhile
if (A=NIL) implement the assignments produced;
endif

Fig 7.6 Pseudocode for GBPA

One can expect that GBPA will alter the initial placement scheme more drastically than PCA, 

because all agents are placed on the nodes essentially from scratch. PCA changes the placement 

o f node pairs and starts doing so using the most promising ones (the ones with the largest free 

space), hence the initial placement scheme could be left relatively unmodified. However, given 

its packing-oriented nature, GBPA is also more likely to reach a solution compared to PCA. For 

comparison reasons we also experiment with two well known bin packing algorithms, FirstFit 

(FF) and BestFit (BF).
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4 Optimizing Node Lifetime

Once the goal o f placing a new agent is accomplished, one may adjust the placement in order to 

maximize the lifetime of the node that will first deplete its battery. The key component o f the 

above optimization is an agent swapping process among node pairs that attempts to move agents 

that communicate heavily “closer” to each other; ideally on the same node. Following we give 

details o f the process and introduce two algorithms that optimize lifetime based on agent 

swapping.

4.1 Agent swaps

Given a pair o f nodes and the agents assigned to them, the problem of redefining the placement 

so that the minimum node lifetime is increased is tackled as follows. For each agent the benefit 

(in node lifetime terms) o f migrating it to the other node o f the pair is calculated. The agent with 

the highest benefit attempts to migrate first. If  the destination node has sufficient free space, the 

migration succeeds. Else, the process attempts to define a group of agents at the destination, 

such that if  the group is swapped with the agent, enough free space opens. If  such a group exists 

and the overall placement remains beneficial, the exchange is performed. The process is 

repeated for the next most beneficial agent and so on. After a migration attempt is successfully 

accomplished, the benefits are updated. The process terminates, when all agents are considered. 

F i g  7 . 7  shows its pseudocode.

swapAgents(node: n1, node: n2)

oldlife:=calculate min lifetime //as per E q .  7 .6  
for all agents ak in n1 and n2

life[k]:=min lifetime if a k changed node; 
benefit[k]:=life[k] - oldlife;

endfor
while (exists ak: benefit[k]>0 ) 

candidate:=max benefit agent; 
if (free capacity at opposite node>size of candidate) 

place candidate at opposite node;
else

g:=group of agents from opposite node such that enough free space is opened; 
newlife:=min lifetime if candidate and agents in g were swapped; 
if (newlife>oldlife)

swap candidate and agents in g;
endif

endif
oldlife:=newlife; 
recalculate life[], benefit[];

endwhile

Fig 7.7 Pseudocode for swapping agents in a node pair
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4.2 Reconfiguration algorithms

All the reconfiguration algorithms (RAs) we consider, work in a greedy fashion by iteratively 

applying the swapAgents method (Sec. 4.1).

g g R A .  The first algorithm called greedy global reconfiguration algorithm (ggRA) considers at 

each iteration, all node pairs ( O ( N 2) )  and for each o f them computes agent swapping as per Sec. 

4.1. The pair for which the application o f swapAgents yielded the maximum benefit with 

respect to minimum node lifetime is selected and the induced agent transfers are performed. The 

algorithm then continues by checking again the agent swapping at all node pairs, selecting the 

best candidate and so on so for, until at some iteration the application o f swapAgents results in 

zero or negative benefit at all node pairs. At this point the algorithm stops and the final 

placement is produced. F i g  1 . 2  shows the pseudocode o f the algorithm.

Algorithm ggRA

oldlife:=calculate min lifetime //as per Eq. 7.6 
found:=true; 
while (found) 

found:=false; 
bestlife:=0 ;
for all node pairs (ni, nj) 

sol:=swapAgents(ni, nj); 
newlife:=calculate min lifetime of sol; 
if (newlife>bestlife)

bestsol:=sol; bestlife:=newlife; 
endif 

endfor
if (bestlife>oldlife) 

implement bestsol; 
oldlife:=bestlife; 
found:=true;

endif
endwhile

Fig 7.8 Pseudocode for ggRA

g l R A .  The second algorithm we consider called greedy local reconfiguration algorithm (glRA) 

works in a similar manner to ggRA. Again at each iteration it computes swapAgents for node 

pairs. However, contrary to ggRA which must check all node pairs before deciding the best one, 

glRA selects the first pair that incurs a positive benefit in swapAgents, perform the required 

transfers and reiterates.

Comparing the two reconfiguration algorithms we expect that glRA will be considerably faster 

compared to ggRA, without however, achieving the same solution quality.
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5 Accepting Agents and Optimizing Lifetime 
Simultaneously

The algorithms presented so far can be used to tackle APP in a two step fashion: first the new 

agent is placed at some node, using the algorithms of Sec. 3 to create enough space if necessary; 

then some RA to optimize the resulting placement in terms o f node lifetime. The algorithms 

presented here are based on the branch and bound paradigm and combine both steps at the same 

time.

s B B A .  The simple branch and bound algorithm (sBBA) works as follows. Beginning with the 

initial placement (excluding the new agent), a solution tree is built. At the first level, all node 

pairs are considered, and sBBA runs for each node pair the openSpace process (Sec. 3). Then, it 

selects the best candidates, which are expanded to produce the next level o f the tree, by adding 

one o f the remaining nodes. F i g  7 . 9  depicts the structure o f such a tree. Whenever a partial 

solution (tree node) with i  nodes is expanded to produce a partial solution with i+ 1  nodes (e.g., 

from a pair to a triplet) the agent placement is updated by running openSpace for opening space 

among the node that was added to produce the expansion and the node with the largest free 

space in the previous solution.

skyline

min node lifetime

Fig 7.9 Solution tree with 10 nodes Fig 7.10 Skyline example

sBBA decides which partial solutions (tree nodes) to expand by evaluating them across two 

metrics: the maximum free space at a node belonging to the partial solution and the minimum 

node lifetime in all nodes of the network. At each tree level, only partial solutions at the skyline 

(no other solution is better in both dimensions) of the above two dimensional space are 

considered for expansion (see F i g  7 . 1 0 ) . F i g  7 . 1 1  illustrates the algorithm in pseudocode.
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Algorithm sBBA

P:=all partial solutions consisting of single nodes; 
c:=1;//minimum cardinality of a partial solution at P 
while (requiredSpace not opened)

while (P contains partial solutions of cardinality c) 
pi:=a partial solution of cardinality c; 
while (not all nodes considered for expansion) 

expand pi with node nj; 
for all nodes nx e  pi

openSpace(nx, nj) //as per F i g  7 .4  

endfor
if (requiredSpace opened)

finalsol:=expanded pi + all nodes £ pi 
return;

endif
endwhile
subtract pi from P 
add pi’s expansions to P 

endwhile
prune from P partial solutions not belonging to the skyline 
c:=c+1 ;

endwhile

Fig 7.11 Pseudocode for sBBA

i B B A .  The improved branch and bound algorithm (iBBA) follows the same general procedure 

with sBBA, nevertheless, it differs in two major ways. The first one concerns the way a final 

solution (involving all nodes) is defined, once in a partial solution (tree node) the required free 

space is opened. sBBA stops at this point and leaves the placement on the nodes not belonging 

in the final solution untouched. So, for instance in F i g  7 . 9  if  the partial solution < n 3, n 4, n 2, n 5>  

opens the required space, the final solution o f sBBA will consist o f the placement described at 

the partial solution for the nodes < n 3 , n 4 , n 2 , n 5> and the initial placement at the remaining nodes 

<ni, n6 ,.., n 1 0>. This might be inefficient liefetime-wise, since in the remaining nodes 

optimization possibilities might exist. iBBA takes advantage o f such optimization potential by 

defining the final solution as follows. It adds to the partial solution e.g., <n3 , n4 , n2 , n5> one by 

one all remaining nodes in a random order (in the example 6  in total). At each such addition 

swapAgents ( F i g  7 . 7 )  is run between the agent that is added and the existing agents at the partial 

solution.

iBBA also differs in another way compared to sBBA. Namely, while sBBA stops if  a partial 

solution involves the desired free space, iBBA continues exploring further possibilities. To do 

so, the partial solution that opened the desired space, as well as all its successors do not take 

part in the skyline criterion. To bound the running time, iBBA stops after k  such alternative 

solutions are defined and implements the best among them.
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6 Implementing a New Placement

A subtle issue concerns how the computed placements are actually implemented. Recall that all 

algorithms start from an initial placement P old and try to define a new one P new that includes the 

new agent. It is possible to trace the execution steps o f the algorithms to perform the 

corresponding agent migrations, albeit at a high implementation cost. This is especially true if 

the algorithms run as a “pipeline”, e.g., ggRA on top o f GBPA, since the placement produced 

by the algorithm that runs first, will be altered afterwards. Instead, we tackle the implementation 

of P new as a separate problem, which can be stated as: given P old and the P new derived by the 

algorithm(s) of Sec. 3-5, perform a series o f agent transfers and deletions so that P new is reached 

with the lowest possible cost.

In [78] we explored various algorithms for a similar problem where multiple copies must be 

created for a given object. Here we adopt the following variation. Starting from the set of all 

required agent migrations (agent ak must move to n i if  P '° ° d  = 0 and P ”™  = 1), a migration is

picked randomly and performed by transferring the agent code from a suitable source. Two 

sources may exist for fetching the code o f an agent: the node that hosted the agent in P old 

(provided the agent has not been deleted), and the entry point which keeps a copy of all agents. 

If both options apply, the algorithm selects the source corresponding to the transfer path that 

contains the node with the longest minimum lifetime. In case the destination does not have 

enough free space, the algorithm randomly deletes one or more agents that must not be hosted at 

that node according to P new. Finally, having performed all the required transfers, to reach P new, 

the algorithm deletes any superfluous copies of agents (at their old hosts).

7 Experiments

The presented algorithms were evaluated through simulations for a network o f 31 nodes (one 

being the entry point). A total of 5 different networks were generated as follows. The nodes 

were randomly placed in a 100x100 2D plane and assumed to be in range o f each other if  their 

Euclidean distance was less than 30. Based on the resulting connectivity graph, the minimum 

(hop-wise) spanning tree was defined as the routing topology. Nodes were assumed to have a 

battery lifetime enough to transfer/receive (both costs assumed equal) 1GB o f data (roughly the 

case o f an Imote2 platform supported with 3 AAA alkaline batteries [1]) and 256KB of
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memory. The size o f agents varied uniformly between 10KB and 150KB (unless stated 

otherwise). Each agent communicated with 5 other randomly selected agents, generating a load 

uniformly distributed between 1 0  and 1 0 0  bytes per time unit per agent.

In the following experiments we discuss the performance of PCA, GBPA, sBBA, iBBA, BF and 

FF, both as standalone algorithms and in conjunction with ggRA and glRA (denoted as 

PCA+ggRA etc.). Unless otherwise stated, the maximum number o f final solutions explored by 

iBBA was set to 5. Each experiment was repeated 4 times per generated network (total 20 

times), each with a different agent setup and results were averaged. As a reference, we also 

include results obtained for a naive algorithm (RAND) which randomly places a new agent as 

long as there is a node with enough space to host it.

7.1 Performance on acceptance criterion

Starting from an empty system, we investigate the scenario where one new agent arrives every 

100 time units, for 500 agents. The algorithms do not stop when the first agent is rejected, but 

continue until all agents have been considered (in their arrival sequence).

T a b l e  7 .1  shows the sequence number (average o f 20 runs) of the first agent that was rejected by 

each algorithm. It shows that RAND, BF and FF start dropping agents earlier on, with a value 

between 92 and 93, while BBAs, GPBA and PCA are able to place roughly 4 more agents 

before rejecting the first one. Among them, GBPA has the best performance with the relevant 

differences being small. This experiment was also performed with all the algorithms’ 

combinations with ggRA and glRA. Results showed that the application o f RAs had a negligible 

(mostly positive) effect to the acceptance metrics o f all algorithms but RAND, whereby it 

results in performance deterioration. This is because RAND never changes the placement of 

agents, hence cannot “repair” possible fragmentation o f free space caused by RA in its attempt 

to optimize node lifetime.

T a b l e  7 .1  also shows the number o f agents that were rejected, while the total free fragmented 

space was greater than their size (tentative wrong rejections). Also, the ratio o f the respective 

agent sizes to the total free memory at the point of rejection is shown, as a measure o f difficulty 

for the placement that failed. It can be seen that GBPA is almost optimal with only 1 agent 

being a tentative wrong rejection for the total o f the 20 runs (0.05 average) while the total 

available space was barely enough to host it (0.97 ratio).
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Table 7.1 Acceptance metrics

first
rejection

tentative wrong 
rejections

agent size / 
available memory

R A N D 92.5 298.9 0.53
R A N D +ggR A 88.05 318.75 0.48
R A N D + glR A 88.4 300.35 0.49
PC A 96.3 4.15 0.89
G B PA 96.6 0.05 0.97
sB B A 96.05 30.7 0.78
iB B A 96.3 21.25 0.81
BF 92.65 294.3 0.53
FF 92.7 300.1 0.52

To further evaluate the algorithms concerning their acceptance capability we performed a 

“domination” test. An algorithm A is said to dominate another algorithm B if  any sequence of 

agent arrivals that is accepted by B, is accepted by A as well. In order to test algorithm 

domination, we recorded in the previous experiment all the agents accepted by each algorithm. 

Recall that the simulation didn’t terminate upon an agent’s rejection but continued until all 500 

agents were considered. Therefore, different algorithms accepted (most likely) different agents 

in each o f the 20 runs conducted. We used the agents accepted by an algorithm as input to the 

others and recorded whether the sequence was accepted or not.

T a b l e  7 . 2  gives the percentage o f the sequences that were accepted by another algorithm. Table 

columns depict which algorithm’s accepted agents were used as an input sequence to the 

algorithm mentioned in the relevant row. Each value represents the result o f all 20 such 

sequences. So, for instance PCA accepted only 15% (0.15 value in the relevant cell) of the 20 

sequences involving the agents accepted by GBPA, while all algorithms obviously have a 

domination percentage o f 1 against themselves. RAND was excluded from the experiment since 

it was dominated by all others.

Table 7.2 Domination percentage

PCA GBPA sBBA iBBA BF FF

PCA 1 0.15 0.7 0 . 6 1 1

GBPA 0.95 1 0.95 0.95 0.95 1

sBBA 0.35 0.05 1 0.5 1 1

iBBA 0 . 2 0.05 0.55 1 1 1

BF 0 0 0 0 1 0.25
FF 0 0 0 0 0.75 1
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The first thing to notice is that no algorithm dominates absolutely all others. The second thing is 

that GBPA offers the highest domination ratio accepting 19 out of 20 sequences corresponding 

to PCA and BBAs (0.95 value in the table). A peculiar result is that while BF and FF are totally 

dominated (value of 1) by PCA and BBAs, GBPA fails to accept one o f the BF sequences (0.95 

value). By delving into the experimental data, we found out that there is only one agent GBPA 

rejected, which agent is accepted by PCA, BBAs and BF. Nevertheless, the domination rate of 

GBPA is still the highest. Furthermore, what is more important is to observe the domination of 

the other algorithms versus GBPA. PCA accepts only 15% of GBPA’s sequences, while BBAs 

accept only 5%. This reinforces our intuition in Sec. 3.2 that GBPA is the most powerful 

algorithm in opening space to accommodate new agents. T a b l e  7 . 2  also shows PCA coming 

second followed by BBAs, while BF and FF being particularly bad, unable to accept any o f the 

remaining algorithms’ sequences.

Table 7.3 Average algorithm behavior in the domination test

domination
percentage rejected agents size of rejected 

agents

PCA 0.69 0.31 10.15
GBPA 0.96 0.04 5.96
sBBA 0.58 0.42 17.31
iBBA 0.56 0.46 19.97
BF 0.05 2.53 233.7
FF 0.15 2 . 2 2 224.43

T a b l e  7 . 3  records the average domination percentage o f an algorithm against the sequences of 

all others (5*20=100 total), together with the average number o f rejected agents per sequence 

and their size. One thing that deserves explanation is the fact that iBBA has a slightly smaller 

average domination behaviour compared to sBBA. This is an acceptable tradeoff, since iBBA 

results in placements more optimized towards energy efficiency against sBBA. Overall, T a b l e  

7 . 3  confirms the previous remarks concerning the relevant algorithm performance on accepting 

agents, i.e., GBPA is first, followed by PCA, followed by BBAs, while BF and FF are 

particularly bad with the latter being better than the first. Henceforth, RAND, BF and FF will be 

mostly omitted from the experiments.
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Fig 7.12 Number of tentative wrong rejections for various agent sizes

As a last test for the ability o f the algorithms to accept a newcomer agent, F i g  7 . 1 2  shows the 

number o f tentative wrong agent rejections for 5 different agent size (uniform) distributions. In 

the cases where agent size could take both small and large values (10..100 and 10..150 

distributions), all algorithms had almost zero tentative wrong rejections. This is a particularly 

encouraging result indicating that the algorithms achieved the optimal performance. In the 

10..50 case the best performance was by GBPA followed by PCA. For the 50..150 and 100..150 

distributions, where the maximum agent size is greater than half node capacity, a significant 

number o f tentative wrong rejections appear, their number increasing with the average agent 

size. This behaviour is expected because the problem of creating enough space to fit an average 

sized agent becomes harder. GBPA either outperforms or is equal to the rest, which further 

confirms its merits in accepting agents. Notice, that the high rejection rate observed is a bit 

misleading. In the 100..150 case all algorithms left a total (at all nodes) free space o f merely 

179.95 i.e., enough to place one additional agent with the largest size, while in the 50..150 case 

the total free space left varied from between 64 (GBPA) and 88.7 (sBBA), i.e., enough to store 

one agent o f the smallest size.

7.2 Performance on energy criterion

In order to evaluate the algorithms in terms o f maximizing the lifetime of the first node that 

depletes its battery, we stop our simulation when the first agent is rejected by some algorithm 

(on average at the 96th agent). At that point, all placements are guaranteed to contain the same
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(communicating) agents, and thus can be fairly compared as to the energy consumption 

criterion.

F i g  7 . 1 3  shows the minimum node lifetime for GBPA, PCA, sBBA, iBBA and their glRA 

variants. When executed as standalone, iBBA achieves the best results with a performance 

difference o f more than 20% compared to the second best which is sBBA. Standalone PCA 

outperforms GBPA by roughly 12.7%, however, both algorithms result in marginally inferior 

solutions agenst iBBA and sBBA (by more than 141%). These results confirm the premise of 

BBAs, i.e., that they can tackle both acceptance and energy optimization criteria at the same 

time. Next, observe that the application o f glRA considerably improves the performance o f all 

algorithms by between 30.8% in iBBA and 227% in PCA. The best combination is 

sBBA+glRA, with iBBA+glRA coming second, PCA+glRA third and GBPA+glRA last. An 

interesting thing to notice is that standalone iBBA outperforms GBPA+glRA by 30.1% and 

loses to PCA+glRA by 13%. As it will become apparent in Sec. 7.3, the application of glRA 

affects significantly the running time o f the algorithms. Therefore, when a compromise between 

running time and energy efficiency is needed, standalone iBBA is a valid choice. Finally, we 

would like to mention that the apparently low performance o f GBPA, even after the application 

o f glRA is rather expected since GBPA redefines the total placement from scratch each time it 

accepts an agent, therefore it makes it harder for glRA to optimize the placement and also 

requires more (costly) migrations to do so.

Fig 7.13 Minimum node lifespan Fig 7.14 Average node battery consumption per
time unit

To further characterize the algorithms in terms o f energy efficiency, F i g  7 . 1 4  shows the average 

battery consumption at each node per time unit, measured from the time when the first agent is 

accepted up to the time where the first node runs out o f battery. Again, iBBA achieved the best 

performance among standalone algorithms, while sBBA+glRA was the best combination with
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iBBA+glRA following closely. This means that BBAs and their combinations are not only 

superior in maximizing the lifetime of the first dying node, but also in minimizing energy 

consumption across the whole network (iBBA had 32.3% less consumption against PCA and 

42% against GBPA).

7.3 Other experiment and metrics

Thus far we presented results with glRA as the reconfiguration algorithm. F i g  7 . 1 5  shows the 

relevant performance differences between ggRA and glRA when applied over PCA, GBPA, 

sBBA and iBBA. Concerning the main energy related metrics, i.e., min node lifetime and 

average battery consumption at all nodes, ggRA gives mixed results. For instance, BBAs+ggRA 

is better at improving the lifetime o f the first node that dies compared to BBAs+glRA (by less 

than 10%), while when applied over PCA and GBPA the results are the opposite, i.e., the glRA 

combination is superior (negative values in the plot). However, glRA is faster than ggRA, 

regardless o f the algorithm applied to, and is therefore a more viable option.
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Fig 7.15 Comparison between ggRA and glRA

Next, we evaluate iBBA’s performance with regards to the number o f the final solutions (that is, 

the k  variable we are referred to in last paragraph o f Sec. 5) the algorithm is allowed to explore 

before terminating. F i g  7 . 1 6  plots the achievable node lifespan, while F i g  7 . 1 7  plots the average 

running time for accepting/rejecting a single agent o f iBBA. Concerning the later we can notice 

that it increases linearly to the number o f final solutions the algorithm outputs, while
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performance on the node lifetime criterion ( F i g  7 . 1 6 )  exhibits a knee. The results mean that 

after a certain number o f final solutions are achieved, the relevant performance gains by 

continuing the exploration o f the solution space are small and might be offset by the 

corresponding increase in the running time o f the algorithm. In all our experiments we used the 

value o f the knee, i.e., 5 final solutions as a stopping criterion o f iBBA.
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Fig 7.17 Running time of different iBBA versions

Last, we discuss two more performance parameters. The first parameter is the communication 

cost incurred by the algorithms due to agent migrations, which is essentially the overhead for 

achieving the resulting placement. F i g  7 . 1 8  shows the number o f migrations and F i g  7 . 1 9  the 

percentage o f migration cost in the total communication load (including agent-level traffic) for 

three different battery levels: 1, 0.5 and 0.1 GB. In all cases the placement overhead ( F i g  7 . 1 9 )  

increases as the battery level decreases, because nodes (and agents) die sooner and as a 

consequence the system cannot amortize the agent migration cost paid. glRA variants incur 

significantly higher overhead compared to standalone algorithms due to the increased number of 

migrations performed; more than an order o f magnitude compared to standalone algorithms as 

shown in F i g  7 . 1 8 .  Among the standalone algorithms GBPA is the most expensive migration 

wise. This confirms the assumption that bin packing alters considerably the existing placement, 

making it much harder for RAs to optimize it.
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Finally, we measure the running time of the algorithms. F i g  7 . 2 0  presents the average time it 

took for the algorithms to accept (reject) one agent, measured for three distinct node sizes: 

256KB, 512KB, 1024KB. Note, that the running time o f most algorithms increases for larger 

node sizes (more agents accepted). Among the standalone variants, PCA is the fastest, with 

GBPA second and sBBA, iBBA following in that order. It is interesting however to notice that 

iBBA is faster compared to all algorithms that achieve comparable performance on the lifetime 

metric with it, i.e., glRA variants ( F i g  7 . 1 3 ) . Overall glRA increases the running time of all 

standalone versions by between 1 and 3 orders o f magnitude. Nevertheless, the actual values 

even for the slowest combination (about 3 secs for GBPA+glRA) are still small enough for a 

real-world system.

7.4 Discussion

Summarizing we can state the following: (i) the classic bin packing solutions BF and FF, as well 

as the random algorithm have noticeably inferior performance compared to GBPA, PCA and 

BBAs, accepting fewer agents; (ii) GBPA is better in accepting agents than PCA and BBAs but 

has higher running time and is less able to save energy; (iii) BBAs are the most energy efficient 

algorithms, achieve comparable (but smaller) to GBPA and PCA performance on the agent 

acceptance criterion, but have higher running times compared to them; (iv) among BBAs, iBBA 

is slower compared to sBBA, but achieves considerably better performance on the lifetime 

criterion; (v) PCA is a tradeoff between GBPA and BBAs concerning acceptance and energy 

management, while being considerably faster compared to them; (vi) RAs improve the energy 

efficiency o f all algorithms without affecting the acceptance criterion much, at the expense o f a 

higher running time; (vii) among the RAs, glRA offers the better trade-off between running time 

and solution quality.

Thus, whenever the acceptance criterion is the absolute determining factor GBPA (and possibly 

GBPA+glRA or GBPA+ggRA) is the algorithm to choose, whereas if  energy efficiency is 

equally important iBBA (and possibly sBBA+glRA) offer viable alternatives. Finally, PCA (and 

possibly PCA+glRA) is a good choice whenever a decent trade-off between acceptance, energy 

optimization and computation time is required.
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8 Conclusions

In this chapter we introduced the agent placement problem (APP) which has two different 

components: (i) finding/creating enough space for hosting an agent and (ii) optimizing energy 

consumption due to agent communication and migration. Heuristics were proposed for tackling 

the two performance aspects both independently (GBPA, PCA, RAs) and simultaneously 

(BBAs). Through simulated experiments, different tradeoffs were identified (BBAs offered a 

particularly promising one), while all algorithms outperformed two well known bin packing 

heuristics (best and first fit) as well as random placement. In previous works the objective 

function was the reduction o f the energy spent over the network, while this chapter does not 

take this optimization into account at all.

Part o f this work has been published in the following workshop and journal proceedings:

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Agent Placement in Wireless 

Embedded Systems: Memory Space and Energy Optimizations,” in Proc. 9th Int. 

Workshop on Performance Modeling, Evaluation, and Optimization ofUbiquitous 

Computing and Networked Systems ( P M E O 2 0 1 0 ) ,  I P D P S  w o r k s h o p s .

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Algorithms for energy-driven 

agent placement in wireless embedded systems with memory constraints,” S i m u l a t i o n  

M o d e l l i n g  P r a c t i c e  a n d  T h e o r y  ( E l s e v i e r ) ,  2011
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Chapter 8

Agent Manager System Implementation and 
Evaluation

1 Introduction

POBICOS [91] is a platform that focuses on applications running on top o f a networking system 

consisting o f cooperating objects in the field of wireless embedded systems. An application 

consists o f a number o f mobile code entities (called agents) structured in a tree-like manner. The 

main targets o f POBICOS is to provide: i) a user-friendly environment to install/un- 

install/monitor applications without needing the presence o f an expert; ii) an opportunistic 

programming model enabling the application programmer to write an application of its own 

preference without knowing in advance which objects will host the application in question, and 

also the connectivity graph o f that objects.

The core o f this project is the middleware lying between the application(s) and the operating 

system (TinyOS). Specifically the most significant components o f the middleware are shown in: 

i) the r u n t i m e  which is responsible for executing the code of an agent; ii) the a g e n t  m a n a g e r  

whose functionality is to enable the interaction between agents either they are co-located or not; 

iii) the c o d e  t r a n s p o r t  which is invoked by agent manager to download agent binaries; iv) the 

n e t w o r k  a b s t r a c t i o n  which is responsible for the communication between objects. In the sequel 

we give a coarse-grained description about the basic functionalities o f network and runtime 

component which are central to the agent manager functionality.
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The networking layer provides two different messaging services: reliable and best-effort. In the 

case o f former, a datagram is (re-)transmitted from the source node to the destination one, till 

either an acknowledgment travels back from the destination node to the source one to confirm 

that the datagram has been successfully delivered; or the maximum number o f retransmissions 

has been reached, where the delivery is declared unsuccessful. Datagram ordering and filtering 

o f duplicates is handled by that service. As far as the best-effort service is concerned, a 

datagram is sent towards the destination node without retransmission attempts, and therefore 

without guarantees that the datagram will be ever delivered. This service provides neither 

ordering nor filtering o f duplicates.

The agent manager interacts with the runtime component through commands/events in order for 

the former to: i) issue a request (via a command) about the allocation and removal o f an agent 

instance; ii) request the suspend/resume of the execution flow o f an agent instance when needed 

(e.g. performing an agent migration); inquire about locally available (generic and non-generic) 

resources and the local node descriptor.

Fig 8.1 Key middleware components and interactions for supporting agent mobility.

2 System Implementation

The POBICOS middleware is developed for TinyOS v2.1 running on Crossbow iMote2 nodes 

at 104MHz. Thanks to a component that provides transparent access to external memories (e.g., 

Flash), the core RAM requirements can be kept below 8 KB, which makes it possible to port the
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middleware to more resource-constrained devices. Wireless communication is via an external 

ZigBee modem from the Z430-RF2480 demo kit o f Texas Instruments [110].

We should notice that AGE has been developed into the agent manager, besides the protocols 

elucidated further down.

2.1 Data types and data structures

This section gives an overview of the data types and data structures o f the POBICOS 

middleware that are relevant for the purpose o f agent management. Data structures are specified 

in a high-level fashion, without focusing on any implementation details.

2.1.1 Agent identifiers
The identifiers o f agents are 4-byte unsigned integers. The most significant 2 bytes are set equal 

to the address o f the node where the agent is created. The least significant 2 bytes are assigned 

the value o f an agent seed number, which is incremented each time a new agent is created. This 

number is stored in persistent memory to guarantee uniqueness o f agent identifiers despite node 

reboots.

2.1.2 Agent descriptors
For each locally hosted agent, a descriptor is used to keep all relevant information, such as the 

agent’s identifier, the node address and identifier o f its parent, as well as the node addresses, 

identifiers and group identifiers o f its children. Agent descriptors are stored in volatile memory. 

When a node reboots, this information (along with all runtime information associated with 

agents) is lost. (Note: POBICOS agents are not persistent.)

2.1.3 Creation request descriptors
For each agent creation request issued by a locally hosted agent, a descriptor is used to keep all 

relevant information, such as the identifier o f the agent that issues the request, the parameters of 

the request, the remaining lifetime of the request, and the current state o f the request. Creation 

request descriptors are stored in volatile memory. When a node reboots, this information is lost.

2.1.4 Message queues, sequence numbers, epoch numbers
For each node, a message queue is maintained where agent-level (and other special) messages 

are placed for transmission in FIFO order over the network. Each queue is associated with a 

local sequence number that is increased for each message sent via the queue, and with a remote
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sequence number that is updated each time a message from that node is received. Message 

queues and their sequence numbers are stored in volatile memory, hence do not survive reboots.

A message queue is initialized when the node reboots or the respective remote node becomes 

“unreachable” (according to the network abstraction layer), in which case both the local and 

remote sequence numbers are reset to 0. To let remote nodes infer such resets, each message 

queue is also associated with a local and remote epoch number. The local epoch is attached 

(together with the local sequence number) to all messages which must be delivered in FIFO 

order. The local epoch number is stored in persistent memory and increases each time the node 

reboots. It is also increased when a remote node is declared “unreachable”, in which case the 

epoch o f the corresponding message queue is updated (the epoch numbers of other queues are 

left intact). The epoch numbers o f remote nodes do not need to be stored in persistent memory. 

They are initialized when the first a message is received from that node and are updated when a 

message arrives carrying an epoch that is greater the previously recorded value (indicating a 

reset in the remote sequence numbering).

2.1.5 Report lists
For each report list created by a local agent, a corresponding data structure is maintained for 

storing and retrieving reports. These data structures are all kept in volatile memory. When a 

node reboots, this information is lost.

2.2 Host Candidate Discovery Protocol

This protocol is used to discover the nodes that are candidates for hosting an instance o f a given 

agent type, subject to size constraints and (for non-generic agents) the non-generic resource 

requirements and the object qualifier expression provided by the application.

2.2.1 Description
To find candidates for hosting an instance o f a given agent type, the middleware broadcasts a 

H o s t P r o b e R e q u e s t  message to the POBICOS network and waits for H o s t P r o b e R e p l y  messages 

for a certain amount o f time. H o s t P r o b e R e q u e s t  messages carry information about the agent 

type, size and non-generic requirements as well as the object qualifier specified by the 

application and the application’s priority. Due to the limited size o f broadcast messages, it may 

be possible to sent only part o f the non-generic requirements and/or object qualifier, in which 

case this first phase will produce “inaccurate” results (i.e., false positives).
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Each H o s t P r o b e R e p l y  received is added in a candidate list. When the waiting time elapses, the 

candidate list is traversed to find the “best” candidate. Notably, there is no need to wait for the 

entire waiting time to elapse, and waiting can be terminated as soon as a “good enough” 

candidate replies. This is implementation specific.

When the middleware receives a H o s t P r o b e R e q u e s t  message, it checks whether the locally 

available generic computing resources are sufficient to host the agent’s code and static data. 

Also, if  the agent type is non-generic, it checks whether the local node matches the object 

qualifier expression and meets the corresponding non-generic resource requirements; also that 

there is no other locally hosted non-generic agent o f equal or higher priority that employs a 

conflicting non-sharable primitive. If  all checks are successful, a H o s t P r o b e R e p l y  is sent back to 

the sender o f the request, carrying the matching result (this can be further processed to pick the 

“best” reply). Notably, a reply serves just as a hint, i.e., the replying node does not reserve any 

local resources.

The H o s t P r o b e R e q u e s t  message is broadcast as an unreliable datagram while the 

H o s t P r o b e R e p l y  message is sent as a reliable datagram, using the corresponding service o f the 

networking abstraction layer. A simple sequence numbering scheme is used to verify that a 

H o s t P r o b e R e p l y  message corresponds to the most recently sent H o s t P r o b e R e p l y  message.

2.2.2 Message sequence diagram
The prototypical interaction for this protocol is as follows:
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Fig 8.2 Message diagram for the Host Candidate Discovery protocol

2.3 Agent Creation Protocol

This protocol is used to create a new agent instance on a (specific) candidate node.

2.3.1 Description
Having picked a candidate for hosting an agent to be created (see Host Candidate Discovery 

Protocol), the middleware sends an A g e n t C r e a t i o n R e q u e s t  message to it and waits for an 

A g e n t C r e a t i o n R e p l y  message. If  the reply is positive, the child information o f the local parent 

agent is updated and the agent is notified accordingly about child creation. If the reply is 

negative, the next candidate (if any) is considered.

When the middleware receives an A g e n t C r e a t i o n R e q u e s t  message, it checks that the object 

qualifier (if any) matches against the local object descriptor. Then, it fetches the code (if not 

already locally available) and the configuration settings for that agent type. Finally, it checks 

whether the local generic computing resources are sufficient to host the agent type, and, if  the 

agent type is non-generic, whether the local node meets the corresponding non-generic resource 

requirements, and that there is no other locally hosted non-generic agent o f equal or higher 

priority that employs a conflicting non-sharable primitive. If these checks are successful, a new
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agent o f the requested type is created locally (via calls to the runtime) and an 

A g e n t C r e a t i o n R e p l y  message is sent back to the sender o f the request carrying the identifier of 

the newly created agent. If  any o f these checks fail or the transfer of the agent code or its 

configuration settings fail or the runtime failed to instantiate the requested agent instance, the 

value zero (0 ) is returned instead o f an agent identifier.

The A g e n t C r e a t i o n R e q u e s t  and A g e n t C r e a t i o n R e p l y  messages are sent as reliable datagrams 

using the corresponding service o f the networking abstraction layer (it is assumed that the entire 

information o f a request fits within a reliable message; note that requests do not carry the non

generic requirements since these are extracted locally by the host, once the agent code is 

fetched). A  simple sequence numbering scheme is used to verify that an A g e n t C r e a t i o n R e p l y  

message corresponds to the most recently sent A g e n t C r e a t i o n R e q u e s t  message.

While waiting for a reply from a node, P i n g  messages are sent periodically to it in order to 

check its operation, making sure that it (still) makes sense to wait for a reply. If  the network 

reports that it was unable to deliver a P i n g  message to the destination, the next candidate (if 

any) is considered.
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2.3.2 Message sequence diagram
The prototypical interaction for this protocol is as follows:

Fig 8.3 Message diagram for the Agent Creation protocol (ping messages are not shown)

2.4 Heartbeat Protocol

This protocol is used to refresh the lifetime o f child agents as well as to detect the fact that an 

agent (parent or child) is unreachable.

2.4.1 Description
The liveness o f agents is explicitly confirmed by periodically transmitting a H e a r t b e a t  message 

from the parent to its children. The middleware does this automatically, without any explicit 

request from the application.

When the middleware receives a H e a r t b e a t  message from the parent of a local agent, it extends 

the lifetime o f that agent by a certain amount o f time. If  the lifetime of a local agent expires, i.e.,
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a “sufficiently” long period o f time passes by without having received a heartbeat from its 

parent, the agent is declared orphan. Consequently it is finalized and removed.

If the middleware receives a H e a r t b e a t  message for an agent that is not hosted locally, a 

corresponding N A c k  message is sent back to inform the sender that the agent does not exist, 

carrying some information about its non-existence, if  possible. When the middleware receives a 

N A c k  message for a child o f a local agent, it notifies the agent that the child is unreachable.

H e a r t b e a t  messages are sent as reliable datagrams whereas N A c k  messages are sent as 

unreliable datagrams. To avoid causal inconsistencies, N A c k  messages are delivered in a FIFO 

manner behind agent-level messages and thus carry corresponding sequencing information 

(epoch and sequence numbers). The sequencing logic is discussed in the sequel, as a part o f the 

agent-level message transport protocol.

2.4.2 Message sequence diagrams
The prototypical interaction for this protocol is as follows:

Fig 8.4 Message diagram for the Heartbeat protocol

2.4.3 Node-level heartbeats
A single or multiple local agents may have created several children on the same node. To avoid 

sending several heartbeat messages to the same node, each heartbeat (or application-level 

message) sent from a local parent to a child on a node also serves (i) as a heartbeat from that

141

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 8

parent to any other o f its children that happen to be on that node, as well as (ii) a heartbeat from 

all other local parents to all o f their children on the same node.

2.5 Agent-level Message Transport protocol

This protocol is used to transport (reliable and unreliable) agent-level messages (commands and 

reports) as well as negative acknowledgement messages.

2.5.1 Description
For each (reliable or unreliable) agent-level message, the middleware prepares a corresponding 

A g e n t M s g  message and queues it up for transmission towards the node where the destination 

agent is hosted.

An A g e n t M s g  message also serves as a heartbeat (see previous section). This means that the 

recipient is expected to generate a N A c k  message if  the destination agent does not exist, just like 

for a H e a r t b e a t  message (see heartbeat protocol). Note that in this case, a N A c k  message may be 

issued towards a parent (indicating, as in the heartbeat protocol, that the child does not exist) as 

well as towards a child (indicating that the parent does not exist).

2.5.2 Sequencing
To achieve FIFO delivery, every message queue is associated with local and remote sequence 

number. The local sequence number is incremented each time an A g e n t M s g  (or N A c k )  message 

is added in the queue, and the sequence number is also attached to the message itself.

The queue is traversed to forward messages to the network layer for transmission. Message 

transmission is suspended when a reliable message is handed over to the network layer, until its 

delivery is explicitly confirmed or the network layer reports a problem (see failure handling 

below).

When the middleware receives an A g e n t M s g  (or N A c k )  message it checks its sequence number 

and accepts it only if  it is greater or equal to the next expected sequence number for that 

(remote) node. Else the message must be dropped.

Due to the transmission policy on the sending side, it is impossible for an unreliable message to 

overtake a reliable message. As a consequence, only unreliable messages may arrive out of 

order, and can be dropped without violating the application-level delivery semantics. 

Nevertheless, a clever implementation can buffer out o f order (unreliable) messages and wait 

for “late” messages to arrive.
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A g e n t M s g  messages are sent as reliable or unreliable messages, as requested by the application. 

N A c k  messages are also sent as unreliable datagrams. To avoid causal inconsistencies, N A c k  

messages are queued behind agent-level messages and thus carry corresponding sequencing 

information.

2.5.3 Network and node failures
When the network reports that it was not possible to successfully transmit a reliable datagram, 

the corresponding remote node is declared “unreachable” . In this case, messages queued up for 

transmission towards this node are dropped. Also, all agents known to be hosted on that node 

are declared “unreachable”. If  such an agent is the father o f a local agent, the child is considered 

orphan and is terminated/finalized and removed. Else, if  such an agent is the child o f a local 

agent, the child is removed from the child list and the agent is notified about the child being 

“unreachable”.

To deal with network failures and reboots, the middleware maintains a local epoch number. 

Each message queue is associated with a local and remote epoch number. When the middleware 

initializes (the local node boots) it increments its epoch number and assigns this value to each 

message queue. When a remote node is declared unreachable, the local epoch is incremented 

and assigned to the local epoch of the corresponding message queue while the local sequence 

number is reset to 0. The local epoch number associated with a message queue is attached 

together with the sequence number to all A g e n t M s g  and N A c k  messages sent via that queue.

When the middleware receives from a node a message with a smaller than expected epoch 

number, it drops it. Messages with the expected epoch number are processed as usual (see 

sequencing). Finally, if  a message with a greater than expected epoch number is received, the 

middleware knows that the remote node has declared the local node as unreachable, handles this 

case appropriately (as if it had also declared that node unreachable, but without increasing the 

local epoch), updates the epoch for that remote node and resets the corresponding sequence 

number to 0 .

Notably, this approach allows a node to safely declare another node as unreachable, using 

whatever criterion is considered more realistic, without causing any serious inconsistency even 

if  the node is actually alive. The price for doing this too “eagerly” is that nodes (and agents) can 

be declared as unreachable even if  this is not the case in reality. It is up to the middleware 

implementation to decide when to declare a node as unreachable, e.g., when the network fails to 

deliver a reliable message to the destination node (after some number o f attempts or a timeout).
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2.5.4 Message sequence diagram
The prototypical interaction for this protocol is as follows:

Fig 8.5 Message diagram for the Agent-level Message Transport protocol

2.6 Agent Migration Protocol

This protocol is used to move a locally hosted (generic) agent to a specific (given) remote node 

in a transparent fashion. The protocol works in multiple phases: (i) acquisition o f the agent code 

and configuration settings; (ii) notification o f the agent’s parent and children that the migration 

starts; (iii) actual migration; (iv) notification o f the agent’s parent and children that the 

migration finished. The last phase also serves as a tie-break, in case migration succeeds but the 

old host nevertheless believes (due to a network partition or message transmission failure) that 

migration has not been completed successfully, letting the parent act as a common 

synchronization point.

Notably, this protocol does not address the problem of finding a suitable destination for a 

locally hosted agent, which is the subject of the so-called Agent Migration Algorithm (several 

options are discussed in the respective chapter o f this document).

2.6.1 Description
When the middleware wishes to move a locally hosted agent to a given destination, it performs 

a series o f communication rounds, as follows.
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In a first step, the agent’s host sends a G e t C o d e R e q u e s t  message to the destination and waits for 

a G e t C o d e R e p l y  message. When the middleware receives a G e t C o d e R e q u e s t  message, it fetches 

the code o f the agent to be migrated (see reusable data item transfer protocol), if  not already 

available, as well as the configuration settings for that agent. The result is communicated back 

to the host o f the agent via a G e t C o d e R e p l y  message. The reachability o f the destination is 

monitored (via P i n g  messages, as in the agent creation protocol). In case o f a failure, the 

migration is aborted.

In a second step, the agent’s host informs the nodes o f the agent’s parent and children about the 

(planned) migration via a M i g N o t i f y  message and waits for corresponding M i g N o t i f y A c k  replies. 

When the middleware receives a M i g N o t i f y  message, it starts buffering all messages towards 

that agent (except heartbeats) until further notice, and replies with a M i g N o t i f y A c k  message. If 

any o f the nodes hosting the agent’s parent or children become unreachable (again, this is 

detected via the periodic transmission o f P i n g  messages), the migration is aborted, and the 

agent’s host sends M i g F a i l e d  messages to the nodes o f the agent’s parent and children.

When the agent’s host receives all M i g N o t i f y A c k  replies, it suspends the agent and retrieves its 

runtime state via the proper calls to the local runtime. Then, it waits until all outgoing messages 

issued by that agent are sent over the network.

In a third step, a M i g R e q u e s t  message is sent to the destination node, followed by one or more 

A g e n t S t a t e  messages1 carrying the full state o f the agent (i.e., pending creation requests, 

children information, report lists and their contents, and runtime state). Upon receipt o f these 

messages, the destination (to become the agent’s new host) fetches the code and configuration 

settings o f that agent type, creates a new instance, and initializes it using the state received. The 

result is reported via a M i g R e p l y  message. If  the M i g R e p l y  is negative, the old host o f the agent 

sends M i g F a i l e d  messages to the nodes o f the agent’s parent and children. Else, if  the M i g R e p l y  

is positive it simply removes the agent.

If the M i g R e p l y  is positive, in a fourth step, the new host sends a M i g D o n e  message to the node 

o f the agent’s parent and waits for a M i g A c k  or M i g N A c k  reply. Upon receipt o f a M i g A c k  

message, it sends M i g D o n e  messages to the hosts o f the agent’s children and resumes the 

execution of the agent (including the transmission o f heartbeats to its children). Else, if  a 

M i g N A c k  message is received, indicating that the old host believes the migration has not been

1 T he reason  fo r th is  fragm entation  (sending  the  m igra tion  request and  ag en t’s state u sing  d iffe ren t m essages and  splitting the 
sta te in m ore than  one m essages) is th a t th e  curren t n e tw ork  abstraction  does n o t support arb itrarily  large reliab le  datagram s neither 
does i t  p rovide a  reliab le  stream  abstraction.
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completed and already notified the parent about this, the new host removes the agent (still in a 

suspended state).

The old host monitors the reachability o f the new host (via P i n g  messages) until it receives a 

M i g R e p l y .  In case o f a failure, it (conservatively) assumes that migration has not been 

completed successfully. To “complete” the migration, it sends a M i g D o n e  message to the node 

that hosts the agent’s parent (advertising its own address), and waits for a M i g A c k  or M i g N A c k  

message. Upon receipt o f a M i g A c k  message, it sends M i g D o n e  messages to the hosts o f the 

agent’s children and resumes the execution o f the agent. Else, if  a M i g N A c k  message is 

received, indicating that the new agent successfully completed the migration and notified the 

parent about this, the old host removes the agent (still in a suspended state).

When a node receives a M i g F a i l e d  message it resumes agent-level message transmission to it. 

When a node receives a M i g D o n e  message, it does the same after adjusting the agent’s node 

address. In addition, if  the node is the agent’s parent, it sends a M i g A c k  message as a 

confirmation, before resuming normal message transmission. If the parent receives an 

unexpected M i g D o n e  message (for a child that is not under migration), it replies with a 

M i g N A c k  message.

All messages are sent as reliable datagrams. Also, all messages except the ones related to the 

agent code transfer phase ( G e t C o d e R e q  and G e t C o d e R e p l y )  carry a sequence number that is 

used to drop old messages (generated as a part of a previous instance of the migration protocol). 

Finally, M i g N o t i f y A c k  messages are sent using the FIFO transport mechanism used for 

A g e n t M s g  messages, so that their receipt also serves as a guarantee that there are no other 

A g e n t M s g  messages in transit for the agent to be migrated. In the same spirit, the M i g D o n e  

messages towards the children are also sent via the FIFO transport mechanism used for 

A g e n t M s g  messages, so that they are guaranteed to precede any messages sent by the agent once 

it is resumed.
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2.6.2 Message sequence diagram
The prototypical interaction for this protocol is as follows:
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2.7 Migration algorithms

We have implemented the £-hop variant o f AGE algorithm, which assumes knowledge about 

the network routing structure within a k-hop radius and picks migration destinations in this 

range. Note that in ZigBee tree networks, routing information can be gained without extra 

communication, by exploiting the addressing scheme [8 6 ]; in essence, a node that receives a 

message can reconstruct the path to the source based on its address.

3 Middleware Evaluation

The evaluation o f the agent manager takes place through conducting measurements about (i) the 

performance o f the agent creation and migration mechanism (ii) the load reduction achieved 

when using agent migrations in context o f a real application.

3.1 Performance measurements

This section presents measurements on the performance of agent creation and migration. The 

network topology is a 4-node chain, with the ZigBee coordinator at the one end as the source 

and other nodes as the destinations o f the mobility operations.

The protocol cost is reported in bytes both for the Network Abstraction and ZigBee modem 

interface; the difference is due to datagram fragmentation. As a reference for the reported 

delays, the 1-hop throughput via the Abstract Network (incl. headers) is about 26Kbps and 

15Kbps for unreliable and reliable datagrams, respectively. This poor performance is attributed 

to delays in accessing the CC2480 chip via SPI, but also middleware overheads, such as 

datagram fragmentation and software retransmission.
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3.1.1 Agent creation overhead
In a first set o f experiments, we measure the overhead for creating a non-generic agent with just 

one special resource need (e.g., a user activity sensor). The results for generic agents are similar. 

The delay for creating an agent locally is about 1ms.

Table 8.1 Agent creation cost breakdown and overhead for different agent sizes.

a g e n t c o d e  
siz e  (B )

c o d e  tra n sp o r t  
p ro to c o l c o s t (B )

s ig n a lin g  
p ro to c o l c o s t  (B )

re la tiv e  p ro to c o l 
o v e rh e a d  (B )

a b s tra c t Z ig B e e ab s tra c t Z ig B e e a b s tra c t Z ig B e e

3 00 352 4 8 4 71 107 4 1 % 9 7 %
6 00 684 9 12 71 107 2 6 % 7 0 %
9 00 1032 1392 71 107 2 3 % 6 7 %

- Θ — 300B 
- Δ —600B 
- a — 900B 
—*— cached

hop distance between source and destination

Fig 8.7 Agent creation delay as a function of hop distance for different agent sizes.

T a b l e  8 . 1  analyzes the protocol cost for different agent sizes. The signaling overhead is constant 

and relatively low, corresponding to one host probe and one agent creation request-reply 

interaction. Clearly, the dominating part is the code transfer cost, which grows as expected to 

the agent size. The relative protocol overhead drops as code size increases, but the conversion of 

datagrams to ZigBee packets costs 35-40%.

F i g  8 . 7  plots the creation time, including the host probe phase, as a function o f the hop distance 

between the source and the destination node for different agent sizes. It can be seen that the 

routing overhead is non-negligible. Naturally, the delay rises as the code size increases, yet with 

an economy of scale: about 21% and 24% for a 600B and a 900B agent vs. a 300B agent. Code 

transfer requires 3, 5 (+2) and 8  (+3) reliable datagrams (chunks) for 300B, 600B and 900B, 

which is why the creation o f the 600B agent is slightly faster in relation.

We also performed measurements when the agent binary is cached at the destination node. In 

this case, the cost is solely due to the signaling protocol as per T a b l e  8 . 1 . The respective delay,
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shown in F i g  8 . 7, is considerably smaller, yielding an average speedup of 3.7x, 5.8x and 8.4x 

for a 300B, 600B and 900B agent, respectively.

3.1.2 Agent migration overhead
In a second set o f experiments, we measure the migration overhead for a generic agent that is 

co-located with its parent and has one child on a remote node to which it migrates directly. The 

runtime state is fixed at 256B. The delay for a corresponding agent suspend-create-init-resume 

cycle is about 2 ms when performed locally.

The breakdown of the protocol cost is listed in T a b l e  8 . 2 .  Naturally, the code transfer numbers

Table 8.2 Agent migration cost breakdown and overhead for different agent
agent code 
+ runtime 
size (B)

code transport s 
protocol cost (B)

signaling + state trans. 
protocol cost (B)

relative protocol 
overhead (B)

abstract ZigBee abstract ZigBee abstract ZigBee
300+256 352 484 387 543 33% 85%
600+256 684 912 387 543 25% 70%
900+256 1032 1392 387 543 23% 67%

hop distance between source and destination

300B 
— £s—  600B 
- o — 900B
—*— cached

Fig 8 . 8  Agent migration delay as a function of hop distance for different agent sizes. 

are the same as for agent creation. The signaling cost is much higher though because it includes 

the synchronization with the agent’s parent and child, but also the transfer o f the 256B state. As 

a result, the code transfer cost is less dominant compared to agent creation, amounting to 47% 

(vs. 82%), 67% (vs. 89%) and 72% (vs. 92%) of the protocol cost for a 300B, 600B and 900B 

agent, respectively.

F i g  8 . 8  plots the agent migration time as a function o f the hop distance for different agent sizes. 

The trends are the same as for agent creation with the respective delays being longer due to the 

increased signaling and state transfer cost. The delay rises to the code size, but with a greater 

economy of scale compared to agent creation, about 35% and 43% for a 600B and a 900B agent 

vs. a 300B agent, due to the higher signaling cost. For the same reason, while caching reduces
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the migration time, the speedup is less impressive: 1.7x, 2.2x and 2.9x for a 300B, 600B and 

900B agent.

It is worth noting that a 2-hop migration is 32% faster compared to two 1-hop migrations, and a 

3-hop migration is 40% faster than three 1-hop migrations. This holds even more if  agent 

binaries are cached, the savings being 33% and 45%, respectively. This clearly speaks in favor 

o f performing a single long-distance migration vs. several shorter-distance ones.

We also measured the migration time for a 600B agent with 256B runtime state for a varying 

number o f its children residing on different 1-hop neighbors (using a star topology). The delay 

is 843ms, 874ms, 945ms and 974ms for 1, 2, 3 and 4 children, respectively (345, 400, 430 and 

485 for a cached agent), rising due to the extra signaling needed for each child. The non

linearity from 2 to 3 children is due to the increase in the child information which happens to 

exceed the datagram payload limit, requiring an additional reliable transmission during the state 

transfer.

3.1.3 Summary
The results show that agent creation is fast enough to support the build-up and evolution o f the 

application tree at runtime. Creation is very quick if  a node has the binary cached (e.g., because 

it hosted such an agent in the past). Agent migration is also reasonably fast. Most importantly, 

since agents remain fully operational during the code transfer phase, the application is affected 

only by the signaling and state transfer delay; well under 1 second in our experiments (see the 

values reported for caching). This is acceptable for the applications we wish to support using 

our middleware, which have rather slack and soft real-time requirements. Note that an agent 

will notice the delay o f a migration only if  it expects to receive a message at the same point in 

time. Finally, the 1-hop throughput o f the agent mobility operations, implemented largely using 

reliable datagrams, is 12-14Kbps. This is close to the throughput o f our communication 

subsystem, which seems to be the main bottleneck. The practically instantaneous local creation 

and suspend-create-init-resume operations further attest to this fact.

151

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 8

3.2 Application scenario

In this section we put the benefit and cost of agent mobility in context o f a concrete application 

scenario. Both the application and the network are kept simple in order to easily follow the 

operation o f the POBICOS middleware. Still, the results are indicative o f the potential gains in 

more complex and larger scale scenarios.

3.2.1 Application, network topology and test scenario
The test scenario involves an application to infer user absence based on all possible user activity 

sensors in a home: the root agent (R) creates a generic agent (I) for inferring user inactivity, 

which in turn creates an open number o f non-generic user activity sensing agents (A). F i g  8 . 9 a  

illustrates the corresponding tree structure.

As long as a sensing agent does not detect activity, it sends to the inference agent a 1-byte report 

every 5 seconds. When user activity is detected, the reporting frequency rises to 1 report per 2 

seconds. Based on the reports received from its children, the inference agent sends a 1-byte

multiple
instances

(a) (b)
Fig 8.9 Experiment setup: (a) application tree; (b) nodes, network topology, 

and agent placement at different stages of the test scenario.

status report to the root every 10 seconds. The size o f the root, inference, and user activity 

sensing agent is 50B, 240B and 24B, respectively.

F i g  8 . 9 b  shows the object/node network used to deploy and run the application. Nodes n 2 , n3 

and n6 represent objects with a user activity sensor, which can host a user activity sensing agent. 

The root remains fixed on n5  from where the application is launched, while the generic inference 

agent can be placed on any node.

The initial node/network topology is that of  F i g  8 . 9 b  without n3, which is added and removed at 

later stages. The relevant stages o f the test scenario are as follows:
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The application is launched from n 5 . The root and the inference agent are created on n 5 , while 

user activity sensing agents are created on n 2 and n6 . Since the traffic with its children is larger 

than the traffic with its parent, the inference agent migrates on n4 .

The agent on n 2 detects user activity and starts reporting at a higher frequency. In turn, this 

increase in traffic drives the inference agent to migrate on n 2 .

User activity stops, and the sensing agent on n 2 reverts to the normal reporting frequency. 

Consequently, the inference agent moves back on n4 .

Node n3 (with a user activity sensor) is added to the network, leading to the creation o f a sensing 

agent on it. As a result o f this new child, the traffic for the inference agent via node n 1 becomes 

larger than the traffic with n5 and n 6 , so the inference agent migrates on n 1 .

Finally, n3 is removed, the local user activity sensing agent is killed, and the inference agent 

moves back on n4 .

F i g  8 . 9 b  shows the migrations and placements of the inference agent for each stage.

3.2.2 Results
Table 3 lists the results. It can be seen that the migration o f the inference agent leads to 

considerable savings in network traffic, also at a cost that can be recovered within a relatively 

short amount o f time of stable operation. Moreover, when the inference agent returns to a node 

where it was previously hosted (stages 3  and 5 ), caching halves the migration cost, also 

shortening the respective amortization time.

Table 8.3 Cost and benefit for each migration of the inference agent in the test scenario, 
as well as the time of stable operation required in order to amortize each migration.

sc en a rio
s tag es

m ig ra tio n  
o f  in fe ren c e  

a g e n t

m ig ra tio n
co s t

(B  x  h o p s)

a b s o lu te  tra ff ic  
red u c tio n  

(B  x  h o p s  /  m in )

re la tiv e  tra ff ic  
red u c tio n  

(% )

m ig ra tio n
am o rtiz a tio n

(m in s )
1 Π5 —— Π4 873 558 3 0 % 1.5
2 Π4 —— Π2 1495 522 2 2 % 2 .7
3 Π2 —— Π4 769 4 8 6 2 7 % 1.6
4 n  —  n1 1007 174 8% 5.8
5 n1 —  n 511 2 7 0 17% 1.9

In terms o f real-time performance (not shown here), the average delay for creating a remote user 

activity agent is about 200ms. The migration delay for the inference agent is 620ms on average 

vs. 390ms when the code is cached at the destination. In both cases, migration delays were
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unnoticeable at the application level, and are too insignificant to affect the respective 

amortization times.

O f course, a migration may turn out to be non-beneficial if  the agent tree or traffic pattern 

changes fast. In our implementation we have two criteria for suppressing migrations that are 

unlikely to be beneficial, namely a migration is not performed unless it (i) reduces the amount 

o f network traffic above a threshold and (ii) can be amortized within a certain amount o f time, 

assuming stable operation. These checks can be computed locally. The network traffic after a 

migration can be computed based on the known agent message traffic while an estimate o f the 

migration cost can be calculated using an analytical formula. Both checks are disabled in the 

experiment; they simply lead to fewer migrations, depending on the threshold settings.

4 Conclusions

In this chapter we briefly described how micro-agents are to be managed internally by 

POBICOS middleware. We also discussed, in a comprehensive way, the protocols used for the 

corresponding interaction between different instances o f the middleware residing on different 

nodes. A number o f experiments was conducted to evaluate the performance o f agent creation 

and migration protocol, which comprise the most heavy (in terms o f messages exchanged) 

functionalities o f not only the agent manager, but also the POBICOS middleware. Among the 

algorithms proposed in the previous chapters, we chose AGE to be implemented in POBICOS 

middleware due to its eminent features: i) it is a fully distributed algorithm; ii) it needs only a 

small amount o f both computational and storage resources; iii) it makes a decision to migrate an 

agent in an online manner. Finally, an indicative experiment was conducted to see AGE 

behaviour in a real system
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Chapter 9

Related work

1 Systems that Support Mobile Code/Agents

Mobile code based systems are subsumed in the general category o f systems that afford 

programming abstractions for WSNs [84]. Mate [6 6 ] is a general event-driven stack-based 

architecture allowing a user to select the bytecodes and execution events in order to build a 

virtual machine of his own preference. It focuses on simplifying application development via a 

high-level program representation, which allows the nodes o f a network to be reprogrammed in 

a dynamic fashion. Rovers [27] is a middleware for tiny resource-constrained communicating 

nodes. Its agent-based programming model aims at freeing the programmer from the concept of 

the physical node by providing ontology-driven representation o f sensors and actuators and 

implicit resource discovery.

One.world [41] is an architecture designed from the ground up to provide system support for 

pervasive application development. One o f the system services, afforded by one.world is 

migration that moves or copies an environment (represents units o f local computation) and all 

its contents to a different device. In [52] a system based on mobile code units, called Smart 

Messages, is described. Smart Messages (SMs) correspond to agents in our terminology. A key 

operation in the SM programming model is multi-hop migration, which implements routing 

using tags. An SM names the nodes o f interest by tags, and then calls a high-level migrate 

function to route itself to a node that has the desired tags through multiple one hop migrations.

Agilla [36], adopts a mobile agent-based paradigm where programs are composed o f agents that 

can migrate across nodes. A context manager determines the node location and maintains the
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list o f reachable neighbours. Migration is accomplished either by reliably relocating the agent, 

or by cloning it. Both strong and weak mobility is supported. Strong mobility ensures that the 

execution state is retained across movement, enabling the agent to resume execution right after 

the migration instruction. Instead, weak mobility moves only the agent code, whose execution 

restarts from scratch. A similar approach is adopted by Olympus framework [92] a high-level 

programming model for Active Spaces (i.e. a physically-bounded collection, such as a room of 

devices, objects, users, services and applications), while in SensorWare [20] only weak 

mobility is supported.

The above systems support user triggered/defined agent placement/migration. A small number 

o f systems exist that automatically partitions an application into components (agents) and 

decide on their placement. The Pleiades compiler [60] performs data-flow analysis to partition 

the program in independent execution units called nodecuts, each running on a single node. The 

compiler assigns nodecuts to nodes based on the expected communication cost for accessing 

variables at remote nodes. MagnetOS [73] automatically and transparently partitions 

applications into components and dynamically places them on nodes to reduce energy 

consumption. The MagnetOS runtime also provides an explicit interface by which application 

writers can manually direct component placement. DFuse [96] is an architectural framework for 

dynamic application-specified data fusion in sensor networks. It can be used for developing 

advanced fusion applications (aggregation on data o f possibly different types) that take into 

account the dynamic nature o f applications and sensor networks. One o f its main components is 

the distributed algorithm for fusion function placement and dynamic relocation that attempts to 

optimally place the fusion functions in the network nodes so that communication is minimized.

Summarizing, many systems provide support for mobile code and migration (strong mobility), 

adopting a 1-hop or k-hop network awareness (and migration) model. Some systems, such as 

Agilla, one.world, Smart Messages, Olympus, SensorWare, Pushpin and Mobile-C, let 

placement and/or migration be defined/triggered by the programmer. Other systems, such as 

MagnetOS, Pleiades and DFuse, automatically place and move code between nodes based on 

some optimization objective, typically related to the reduction o f communication that takes 

place over the network. However to the best o f our knowledge none of the systems reviewed 

considers: i) the case o f storage constrained nodes; ii) the migration o f a group o f agents; iii) 

online algorithms to migrate agents; iv) maximize the network lifetime.
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2 Data Placement and Replica Placement Problems

Algorithmic wise the agent migration problem (AMP) belongs to the general family of 

placement problems, whereby given a set o f possible hosting entities and a set o f objects, the 

problem is to place the objects at the entities so that performance is optimized. Placement 

problems have been studied in various fields, some of them not directly related to computer 

science, e.g., the facility location problem in operation research [ 1 0 1 ].

2.1 Data placement

In computer science one o f the first placement problems to attract research interest was the so 

called file allocation problem (FAP). The first problem statements date the late 60’s. [24] is one 

o f the pioneering works tackling the problem of assigning files (single copies) to computers in a 

multi-computer environment in order to minimize the cost o f answering user requests (read 

only) under storage constraints. They prove that under their formulation the problem 

experiences monotonic behaviour, i.e., each assignment reduces the cumulative cost and 

propose a branch and bound algorithm to solve it optimally. Extensions to the basic formulation 

included considering multiple file copies (replication), update requests, distinguishing between 

code and data allocation etc. A survey o f early works in FAP can be found in [29]. [10] 

considers distributed FAP with read and write requests. An online Steiner-tree is built on which 

requests and replica creations are performed. To achieve competitiveness the algorithm bounds 

the cost o f updates by deleting all object replicas when a write request is issued.

The above early works on allocation/placement are not directly related to the work on AMP we 

present here. However, they do provide a background as far as constructing a useful cost model 

concerns.

With the advent o f the Internet and the World Wide Web, placement problems got renewed 

interest. Two main problem families were studied. The first aimed at placing network entities 

optimally. Papers in this subject include: [48], [67], [94], [107]. [67], [94] and [107] aimed at 

placing Web proxies at the network in order to improve user experienced response time, while 

[48] aimed at placing monitoring tools at the Internet in order to be able to estimate all-pair host 

distances based on accurately measuring a small portion o f them. Typically, these papers use 

variations o f the k-median problem [115] which can be briefly stated as: given a network graph 

with node weights representing user requests and link weights denoting a distance cost between
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nodes, place k servers at the nodes so that the total cost o f satisfying user requests (a function of 

node weights and distance), is minimized. For the case of a tree network, transitive distance 

cost, i.e., if  d(u,v) is the distance between nodes u and v and d(v,w) is the distance between 

nodes v and w, then d(u,w)=d(u,v)+d(v,w), and linear target function o f distance*node weight, 

exact solutions can be obtained by dynamic programming [115], [48].

Overall, we found k-median formulations less than useful, both for the centralized and the 

distributed problem versions we tackle. Nevertheless, it was important at the designing step to 

consider similar formulations even if we didn’t adopt them.

2.2 Replica placement

The second family o f placement problems that was extensively studied in the Web context was 

related to FAP with multiple file copies, often called replica placement. Solutions to the replica 

placement problem included both static centralized algorithms and dynamic distributed ones.

[53] consider the problem of allocating Web objects at distributed Web servers with the aim of 

minimizing the background network traffic. The solution proposed was static and based on the 

greedy paradigm. [76] considered a similar static model and proposed a genetic algorithm to 

decide on object placement. They also gave extensions to the basic genetic algorithm which 

targeted at incrementally altering object allocation whenever slight changes in user request 

patterns occur. [55] evaluates different replica placement heuristics with the aim being network 

traffic cost, user response time, or server load balancing. [128] illustrates algorithms that decide 

separately on the number o f object replicas and the locations they should be placed. Finally, 

[50] considers object placement in a tree-network with read and write requests. They give a 

dynamic programming algorithm for the uncapacitated case and prove that the problem is NP- 

hard when servers have capacity constraints.

Combinations o f problems where object/replica placement is considered as a component have 

also been studied. [13] discussed the combined effects o f static replica placement together with 

LRU caching. Their aim was to define the optimal split o f storage space for long term 

replication and on demand caching. [77] tackled placement together with the implementation 

cost o f it. Their goal was to define placements that are not expensive to implement, i.e., do not 

require many object transfers. The same authors also studied the implementation o f placement 

by means o f transfers and deletions as a separate problem in [78]. Notice, that in the centralized 

AMP once a newcoming agent is accepted, agent placement is altered in order to maximize the 

minimum node lifetime. This involves agent transfers which consume battery and affect the
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optimization target function. Thus, the problem has a similar component to the one discussed in 

[78]. In fact RA adopts a simple algorithm to decide upon transfers that is inspired from [78]. 

Last, [107] considers both proxy and data placement in a k-median inspired manner.

The above works on object/replica placement make static assumptions regarding user request 

patterns and lead to centralized solutions. Although close in spirit to our work for the 

centralized AMP, AMP is different in a number o f ways. The most important perhaps is the fact 

that the primary goal is to find/open space for a new agent. In the previous work creating an 

object replica is rather optional and is done only if  it helps improving the optimization function. 

In our case accepting an agent is almost compulsory, therefore, the bin packing aspect o f the 

problem is more important than the pure placement one.

A number o f works exist on the dynamic/distributed replica placement. [109] proposes and 

compares static versus dynamic greedy heuristics for replica placement. [118] introduces the 

ADR algorithm, which creates, migrates and deletes replicas depending on the traffic direction 

and the relevant read to write ratio. [95] proposed a distributed algorithm that attempt to reduce 

simultaneously both the network traffic and server load imbalance. The core idea is that aside 

from deciding what to replicate where, a request routing scheme must be defined to judiciously 

distribute the load at the created replicas.

Some of the ideas used in the algorithms for distributed AMP are also found in the above works, 

namely, the migration towards the center o f gravity o f the communication load, or single hop 

migrations [118]. However, we differ from the above works in many ways. The most important 

one is that in the above works load is considered to originate from system nodes. In our case we 

might consider that the traffic between non-generic and generic agents is essentially traffic 

between nodes and generic agents, however, we also have traffic between generic agents or, put 

it in another way, the objects to be placed communicate with each other. As a result, algorithms 

that consider for migration each object separately are less powerful compared to the ones that 

form groups o f objects/agents.

3 Energy Driven Algorithms

This section gives a flavour o f the most related problems against the one introduced in Chapter 

7. Specifially, our work is related to the greater area o f energy management in wireless 

embedded systems, which is attracting much research interest. Most o f the papers are dealing
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with the problem o f energy-aware routing. Existing work attempts to optimize power 

consumption mostly at routing level.

A wide number o f papers address the problem of minimum energy routing [12], [97], [63], [32] 

to name but a few. [7] deals with the data-centric routing and proposes an algorithm building a 

special rooted broadcast tree with many leaves. By doing so, this algorithm keeps active only 

the relaying nodes while it turns off the radio on the leaves. Benerjee and Misra [16] argue that 

minimum-energy routing algorithms should not be based solely on the energy spent in a single 

transmission but on the total energy spent for a packet to be delivered to its final destination. 

[51] investigates the problem of energy-efficient broadcast routing over wireless static ad hoc 

network. It provides a globally optimal solution to the problem maximizing a static network 

lifetime through a graph theoretic approach. The case o f power-aware georouting, whereby 

routing is done based on location and not address (thus no need to maintain routing information) 

is the objective of  [26].

The approach o f the above works is to minimize the energy spent on the network. However, 

there are a lot of papers, in the context o f power-aware routing, aiming at maximizing the 

network lifespan [1], [69], [88], [22], [116] to name a few. In [1] the problem of maximizing 

system’s lifespan (measured as the time when the first node dies) was formulated as a linear 

program. An optimal probabilistic data propagation algorithm maximizing network lifespan was 

proposed in [92], while [69] tackles the case where energy is replenished in a dynamic fashion. 

In [88] the authors study the impact of cooperative routing for maximizing the network lifetime 

in sensor networks. Chang and Tassiulas proposed a shortest cost path routing algorithm which 

uses link costs that reflect both the communication energy consumption rates and the residual 

energy levels at the two end nodes. Differently from previous solutions, the purpose of [116] is 

to maximize network lifetime by exploiting sink mobility. Specifically, the authors give a linear 

programming formulation for the joint problems of determining the movement o f the sink and 

the sojourn time at different points in the network that induce the maximum network lifetime.

Other papers related to energy-driven algorithms are [17], [47], [49], [35], [46], [64]. [17] 

studies the problem of reducing energy dissipation by losslessly compressing data prior to 

transmission. The authors in [47] present an algorithm which automatically maps the IPs/cores 

onto a generic regular Network on Chip (NoC) such that the total communication energy is 

minimized. At the same time they try to not violate the constraints in terms o f bandwidth 

reservation. [49] describes DE-MAC which is based on media access control technique. 

Specifically, DE-MAC treats the nodes having scarce energy resources differently in a

160

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 9

distributed manner, i.e., a weaker node should be used less frequently in a routing in order to 

accomplish load balancing. [35] shows how applications can dynamically modify their behavior 

to conserve energy. An energy-aware spanning tree algorithm is proposed by Lee and Wong 

[64] in the context o f data aggregation. Specifically, this algorithm constructs a spanning tree 

based on the residual energy on nodes. The authors in [114] introduce energy-aware fault- 

tolerance heuristics in the context of real-time systems. [87] considers the problem of average 

throughput maximization per total consumed energy in sensor networks.

There are also papers that target at power management to achieve reduction in energy spent on 

machines. Sharma et al [99] investigate adaptive algorithms for dynamic voltage scaling in 

QoS-enabled Web servers to minimize energy consumption subject to service delay constraints; 

while [46] proposes power-aware algorithms that adapt its voltage and frequency setting to 

achieve reduction in energy dissipation with minimal impact on performance.

The papers dealing with the problem o f minimizing the energy dissipation in wireless sensor 

networks are close to our works (excluding Chapter 7). However there are a lot o f differences 

ranging from node storage constraints up to mutual agent dependencies. In terms o f the 

aforementioned papers the ones related to the network lifespan maximization are rather similar 

to the work described in Chapter 7. Again the scope o f our work is rather different from these 

papers since we try to both i) maximize the lifespan of the network by changing the placement 

o f the application components; ii) make defragmentation in order for the nodes to be able to 

host as many application components as possible.

4 Load Balancing Problems

A significant part o f the literature focuses on migrating jobs to distribute workload across 

multiple workstations (commonly known as load-balancing). An important part o f the load

balancing strategy is the migration policy, which determines when migrations occur and which 

processes are migrated. There are two kind of strategies, the first one involves the preemptive 

migration where an active process may be suspended and migrate to another host [65], [61], 

[10] [15]; the second one concerns the non-preemptive load distribution which is based on 

initial placement o f processes on the machines [106], [7], [28], [71], [82]. Another part concerns 

the selection o f a new host for the migrated process, where [127] and [62] claim that the target
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host should be the one with the shortest CPU run queue. [127] and [105] study load-balancing 

policies using a priori information about job lifetimes.

Most recent papers turn focus on distributing traffic among a set o f diverse paths (i.e., routing 

with load balancing), especially when the target is a wireless sensor network due to its limited 

resources in terms o f bandwidth. In [90] the authors provide an analytic model for evaluating 

the load balance as regards single shortest path routing in an ad hoc network. In terms of multi

path routing, they assume that load is uniformly distributed without considering the number of 

paths used and the way these paths are chosen. [38] is a relevant work to [90], where the authors 

propose an analytic model showing that multi-path routing results in a better load balance 

compared to single-path routing in case there is a very large number of paths between any 

source-destination pair nodes. While [45] proposes a load-balancing routing algorithm that 

lowers the bandwidth blocking rate to maximize network utilization. Last, in [44] two 

distributed algorithms are proposed for routing and load balancing in dynamic communication 

networks. Specifically The first algorithm is based on round trip routing agents that update the 

routing tables by backtracking their way after having reached the destination; while the second 

one relies on forward agents that update routing tables directly as they move towards their 

destination.

The papers dealing with the problem of migrating jobs to balance the load in a system are the 

most relative to our works, since the jobs and machines can be viewed as agents and nodes, 

respectively. However, our works differs from the above ones in that the agents are structured as 

a tree/graph and that there are two kind of agents (generic and non-generic).

5 Online Decision Problems

This section is directly related to Chapter 5, and discusses a lot o f online algorithmic problems. 

The difficulty of the online decision problems lie in the fact that the input is only partially 

available because some relevant input data arrives in the future and is not accessible at present. 

Therefore an online algorithm should take a decision without knowledge o f the entire output. 

The quality of such an online algorithm is usually evaluated using competitive analysis. The 

idea of competitiveness is to compare the output generated by an online algorithm to the output 

produced by an offline algorithm that knows the entire input data in advance and can compute
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an optimal output. The better an online algorithm approximates the optimal solution, the more 

competitive this algorithm is [4]. A survey on online algorithms is given by [5].

One from the most renowned problems in the context o f online decision problems is that of 

deciding which pages to keep in a memory o f k pages in order to minimize the number o f faults 

(i.e., paging problem). Sleator and Tarjan [102] provide two theorems, whereby the first one 

says that LRU and FIFO are k-competitive; while the second shows that no deterministic online 

algorithm for the paging problem can achieve a competitive ratio smaller than k. [33] proposes a 

randomized algorithm, called marking algorithm, and shows that it is 2Hk-competitve where Hk 

denotes the kth harmonic number.

Scheduling has received a lot o f research interest in the context o f online strategies. 

Specifically, the problem is to assign jobs on machines in such a way as to minimize the 

makespan, which is the completion time of the last job that finishes in the schedule. Graham 

[25] proposed the elegant Greedy algorithm and analized its performance. Specifically, this 

algorithm assigns a new job to the least loaded machine and is (2 - 1 /m)-competitive, where m  

represents the machines. Graham also showed that the competitive ratio o f Greedy is not smaller 

than 2-1/m. In recent years the research community has focused on devising algorithms that 

achieve a competitive ratio asymptotically smaller than 2 [98], [3], [54], [34].

Online load-balancing can be viewed as a type of scheduling problem, where we have to 

minimize the maximum load instead of minimizing the makespan. [9] Studies the problem of 

minimizing the load on machines for the case where the tasks have limited duration. While [11] 

study the same problem provided that the task durations are not known upon their arrival. The 

authors prove also that the competitive factor o f their algorithm is at most 4c, provided c  >  5. 

Caragiannis et al [21] introduce the problem of how much the quality o f load balancing is 

affected by selfishness and greediness. They prove that for any e  >  0 , greedy load balancing 

has competitiveness at least 17/3 - e , while greedy load balancing on identical servers has

competitiveness at most 2 / 3>/21 + 1 .

The most recent years a significant part of research community has turned its attention towards 

online decision problems in the context o f WSNs. Even though the online routing problems 

have received a lot o f interest [37], [8 ], [83], [6 8 ], [117]; there are also works that focus on 

other issues related to WSNs. For example, in [18] the authors analyze the theoretical 

complexity for the problem of gathering data in WSNs in a distributed fashion, and devise 

online algorithms solving this problem. [23] provides an online algorithm for the time interval
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top-k query optimization to maximize the network lifetime through striking balance between the 

total energy consumption and the maximum energy consumption. Another work [58] presents 

an online algorithm to minimize the total transmission energy in a broadcast network by 

dynamically adjusting each node’s transmission power and rate on a per-packet basis. Finally, 

[75] deals with the problem o f mining frequent sensor value sets from a large sensor network.

None o f the above papers is related to the problem o f deciding in an online fashion whether the 

cost of an agent migration would be amortized in the future or not. However, they provided us 

some useful insights into devising the competitiveness o f our algorithms. Last, if  we were asked 

to say which is the most relevant work to ours, then we would refer to the papers dealing with 

the problem o f online load balancing on machines (see previous section).

6 Query Optimization in Distributed Databases and WSNs

Generic agents in the POBICOS programming model carry the core application decision logic. 

Commonly, such logic involves filtering and aggregation o f the data collected from sensors. 

Therefore, from the standpoint o f data processing our work is related to database research on 

query optimization in general distributed systems [31] and (more recently) sensor networks 

[103].

Centralized query processing aims at defining the optimal sequence o f filtering operations 

(WHERE clause in an SQL statement) as well as JOIN operations so that the query is answered 

in the minimum possible time. In doing so, the key parameters involved are table sizes and the 

selectivity o f each filtering operation. Query answer time is usually assumed to be a function of 

the involved table sizes and the cost o f the operation(s) on them. In distributed query processing 

network delays are taken into account. Each node only stores a portion o f the database scheme. 

Answering a query might involve multiple nodes. An optimal query plan must decide whether a 

node should send its data elsewhere or must acquire data from other nodes and perform a partial 

join. [6 ] discussed the problem o f optimally placing table fragments (data) in distributed nodes, 

assuming a fixed query plan that involves fetching all the necessary fragments to compute joins. 

[70] considered allocation when query plans involve partial join computations at intermediate 

nodes. For surveys on query optimization techniques including distributed query optimization 

the interested reader is referred to [39] and [59].
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In the context o f sensor networks much work has been done on how to efficiently perform 

aggregations, e.g., [79], [92], [30] to name a few. Usually, the aim is to reduce the amount of 

data sent by a node through either using special data structures, or delaying transmissions until 

absolutely necessary. Under the context o f acquisitional query processing [80] discusses how 

often data must be propagated to query operators that (aside from simple aggregations) might 

involve complex filtering and joins. Reducing the cost o f join operators in sensor networks has 

also seen much research activity, e.g., [123] while multiple query optimization in this context 

has been tackled in [120]. The above papers fall in the category o f optimizing the execution of 

specific operators and/or joins. In doing so, they usually assume a fixed operator placement and 

discuss execution strategies that reduce the amount o f transmitted data.

Perhaps the closest to our works from the query optimization literature are the ones tackling 

operator placement, e.g., [103], [1], [124] to name a few. In [103] the authors consider the 

problem of optimally placing query operators on the nodes o f a sensor network given estimated 

operator costs. [1] proposed a greedy algorithm to solve the same problem, while [124] 

considered caching at intermediate nodes to reduce the fetching requirements o f operators. The 

authors o f [103] also studied the operator placement problem in the context o f Web Services 

giving an optimal algorithm to perform Select-Project-Join queries [104]. In the POBICOS 

framework each operator is implemented as a generic agent. Therefore, at a first glance the two 

problems, i.e., o f placing operators and o f placing agents appear to be very similar. There is 

however, one important difference between works on operator placement and our work on 

AMP. Namely, there is a difference in scope. In our case, we attempt to optimize the placement 

o f agents (operators) the behaviour o f which is not known in advance since it is up to the user to 

decide. Therefore, we can only view the agents as black boxes and decide on their placement 

not according to their functionality, but rather according to their interaction with their 

environment, i.e., the load they incur.

7 Agent/Task Migrations

The concept of migrating agents instead o f moving raw data to processing elements for data 

integrations is discussed in [93]. [119] takes a step forward, in the context of the previous work, 

by introducing the problem of computing a route for the mobile agent in terms o f maximizing 

the received signal strength while keeping path loss and energy consumption low. They propose
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a genetic algorithm to solve this problem since it turns out to be NP-hard. The same problem is 

considered in [ 1 2 1 ] and [ 1 2 2 ], with the difference that they focus on dynamic mobile agent 

planning techniques, which are distributed and dynamic in nature. They evaluate their 

algorithm’s performance using three metrics: energy consumption, network lifetime, and the 

number o f hops. [ 1 0 0 ] is a quite different work against the previous ones, since they consider 

agent migrations in the context o f increasing efficiency o f systems. However, the objectives of 

the above papers are completely different with the works discussed in this thesis.

The task allocation problem can be also viewed as the agent migration problem, since a 

migrating task may be represented by a migrating agent. In [43], [62], and [74] the authors 

consider the problem of mapping communicating tasks to homogeneous computing nodes in 

order to minimize execution time, while [108] considers the same problem in a heterogeneous 

environment. In [2] the authors tackle task allocation in an underlying torus network with the 

target o f reducing both task communication and network congestion. In [42] the authors address 

the problem o f finding a robust task allocation absorbing large changes o f the environment 

without needing reallocation.

The fact that in the task allocation problem the tasks communicate with each other brings this 

problem closer to our works against the aforementioned agent migration problems which have 

no similarity to our ones. However these papers differ from the problems studied in this thesis 

either in the network and application structure assumed [43], [62], [74], [108], [2] as well as in 

scope [42].

8 Summary

Even though the area o f energy management in sensor network systems is attracting a lot of 

research interest, there is no other work on either distributed or centralized agent migration 

algorithms aiming at bringing the communicating agents close to each other to reduce the 

energy spent over the network by considering solutions where i) the agents can migrate in 

groups; ii) the nodes have limited storage constraints; iii) agents can be evicted to create room 

to other agents which can eventually reduce the total network load; iv) the migration decisions 

are taken in an online fashion. Also, to the best o f our knowledge there is no work that considers 

maximizing at the same time both the number o f agents that a sensor network can host, and the 

lifespan o f the later.
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Chapter 10

Conclusions 

1 Overview

The most crucial factors in terms o f the sustainability o f an application running on a sensor 

network are: i) the energy spent over the embedded nodes due to the communicating agents, 

since wasteful energy consumption may render a battery-powered node no operational; ii) as 

well as the limited resources the embedded nodes provide, since they may remove the right 

from an agent to be placed/migrated on a desired node. Inspired by the aforementioned issues, 

this thesis focuses on the agent migration problem to handle them in an efficient way.

In the first two chapers we proposed fully distributed algorithms to alleviate the total energy 

spent over the network, by performing beneficial migrations o f agents or group of thems 

towards their center o f gravity. The proposed algorithms are enhanced with two locking 

schemes to deal with the resource-constrained nodes. The third chapter discusses the bound of 

the proposed algorithms in a detailed way, and provides a modification o f the grouping 

algorithm to make agent migration decisions in an optimal way.

In the sequel, though, we realized that when the nodes o f the system provides scarce 

resources,then there is a lot of room for improving the solutions produced by the locking 

schemes studied in Chapter 1 and 2. This insight came through the fact that GRAL performed 

migrations in an almost optimal way when the nodes o f the system provided a considerable 

amount o f resources, while in the opposite case there was a discernible difference when 

comparing the placements resulted by GRAL and the optimal algorithm. Therefore we resorted
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to the agent evictions (i.e. possibly no beneficial migrations) to enable a beneficial agent 

migration which eventually reduces the total network cost (taking into account the cost o f the 

former ones). The algorithms proposed in Chapter 4 are based in the concept of agent evictions 

and they result in agent placements that are by far better in terms of energy dissipation against 

the aforementioned locking schemes.

Chapters 5 and 6 deal also with the problem of energy consumption but taking also into account 

the cost o f the migrations performed. However, there are a lot o f differences between them, 

since Chapter 5 proposes distributed algorithms that migrate only generic agents in an online 

fashion, while Chapter 6 focuses on offline centralized solutions based on the graph coloring 

problem, which aim at the network load reduction through migrating both generic and non

generic agents. Also, in Chapter 6 we adopt applications structured as a graph instead o f a tree, 

unless otherwise stated.

Chapter 7 differs from the above works, since it formulates the agent migration problem for the 

two optimization goals o f accepting a new agent and maximizing network longevity.

Finally, Chapter 8 discusses the implementation issues o f how an agent migration/creation can 

take place in a POBICOS-enabled sensor network. AGE has also been implemented in 

POBICOS middleware, proving that some of the algorithms proposed in this thesis can be 

implemented in resource-constrained embedded systems.

2 Future Work

The distributed solutions dealing with the energy minimization problem assume tree-like 

structures for both the application and the underlying network. It would be challenging to devise 

new distributed algorithms along with their bounds when both application and network are 

organized as a graph. Also another future work would be to enhance the proposed distributed 

algorithms to consider non-generic agent migrations.

As regards the online decision problem discussed in Chapter 5, we plan to investigate 

algorithms that automatically learn to recognize patterns and make intelligent decisions based 

on their learning experience. Actually, such an algorithm could dynamically change parameters 

like migration threshold or reset threshold, which parameters turn out to be crucial for the
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performance o f the online algorithms. It would be also interesting to develop online algorithms 

for the problem of maximizing the network lifetime.

As part o f our plans is the investigation o f a distributed protocol that takes advantage o f the 

distributed nature o f PRA when considering migrations between node pairs. There is also a lot 

o f room for the problem discussed in Chapter 7, since it would be quite challenging to deal with 

it through distributed solutions.

The root agent o f an application may experience delay from the time the data are sensed till they 

are accessible (in a fused manner) to it. However, such a delay may prove crucial for the 

functionality o f a real-time application. Therefore a future direction could be the energy 

minimization without violating some pre-specified delay constraints. Also, this problem could 

be investigated in its own right (without considering the energy minimization aspect), through 

algorithms that dynamically reform the application structure to meet delay constraints.
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