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Abstract

Wireless sensor systems have drawn much attention from a considerable part of scientific
community during the last years. The advances in this field range from the design of battery-
powered embedded nodes to the development of software (i.e. operating system, middleware,
etc) especially designed to run on such resource-constrained devices. One of the most
challenging parts for both hardware and software oriented work is to maximize the lifetime of
such nodes. This thesis focuses on the design and implementation of mobile code placement and
migration algorithms for distributed applications in order to reduce the amount of application-
level communication performed over the network. Since the largest part of a node’s energy
expenditure is attributed to the wireless communication (not code execution), reducing the
energy consumption becomes of paramount importance, leading in that way to an increased
system lifetime. In the sequel, we give a brief overview of the application model, the algorithms

and the middleware designed and implemented in the context of this thesis.

The model adopted in this work is inspired by the POBICOS [91] platform, where the
application is organized as a set of software entities (agents) that communicate with each other
to implement the desired functionality. An agent can be “non-generic” or “generic”. Non-
generic agents use special resources of a node, e.g. a sensor measuring a physical quantity or an
actuator controlling a device or function. On the contrary, generic agents perform computational

tasks and decision making at a higher level, without relying on special resources.

Chapter 1 introduces the agent migration problem stated as follows: given an application that is
deployed in a sensor network, perform generic agent migrations in order to reduce the data
exchanged over the network due to the application-level communication between agents. We
propose fully distributed algorithms that migrate an agent towards its center of gravity (in terms
of communication load), thereby reducing the network cost. Also, two protocols are presented

for handling the case of nodes with storage constraints (for hosting agents).
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Chapter 2 examines the same (above) problem, with the difference that it considers migrations
of agent groups instead of single agent migrations. The algorithms in question deal with co-
located agents that are “mutually dependent”, which in the case of the simpler algorithms may

hinder migration, leading to noticeably inferior placements.

Chapter 3 discusses the competitiveness of the aforementioned algorithms versus the optimal
algorithm. Also, it presents an enhancement of the group migration algorithms in order for them
to produce an optimal agent placement (in terms of the network cost incurred by the
application). It should be stressed that this enhancement guarantees optimality only if nodes do

not have storage constraints, else the problem is NP-complete.

Chapter 4 proposes fully distributed algorithms for the problem of generic agent migrations for
resource-constrained nodes, introducing the concept of “evictions”. Specifically, agent
migrations are considered that are not beneficial in their own right but free space which can be
used to perform additional (beneficial) migrations. Of course, the ultimate goal is to reduce the
network load, so the total benefit of the migrations must be greater than the cost of the non-

beneficial ones.

In Chapter 5 we focus on the problem that the aforementioned algorithms are not able to
“guess” whether a (group) migration will turn out to actually reduce the network cost. They
simply assume that the structure and communication pattern of the application remains stable
for a “sufficiently” long time, so as to amortize the migration cost. As a consequence, frequent
changes in the application-level load may lead to frequent agent migrations, thereby increasing
the network cost (instead of reducing it). For example, an agent may continuously “oscillate”
between two nodes due to periodic changes of the communication load with other agents
(changing its center of gravity), before the respective migration cost is amortized. For this
reason, we propose online algorithms, along with a discussion of their competitiveness versus

the offline optimal algorithm.

In Chapters 6 and 7 we propose centralized algorithms tackling more complex problems.
Specifically, chapter 6 addresses the problem of reducing the network cost through migrations
of both generic and non-generic agents, considering that the nodes of the system have storage
capacity limitations. The proposed algorithms use graph coloring techniques. In Chapter 7, a
two-dimensional problem is considered, the objectives being: (a) to maximize the number of
agents hosted by the nodes of the system; and (b) to maximize the network lifetime (maximize
the lifetime of the first node that depletes its battery). We propose algorithms solving each

dimension (sequentially) in an independent way, along with a branch-and-bound algorithm

v
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tackling the problem concurrently in both dimensions. Regarding the first dimension of the
problem, a considerable part of the algorithms involves the de-fragmentation of the nodes’

storage capacity, through agent migrations.

Chapter 8 describes the implementation of the component of the POBICOS middleware that
provides full-fledged, distributed, agent management functionality, on top of the TinyOS
embedded operating system. Specifically, we describe: 1) the mechanism for creating agents on
cligible nodes; i1) the mechanism for transporting agent-level messages; iii) the mechanism
detecting and destroying “orphan” agents; and iv) the mechanism for the migration of generic

agents with full transparency for the application.

Finally, Chapter 9 discusses works related to this thesis, while Chapter 10 includes an overview

of this dissertation and future directions.
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Hepidnyn

Ta tehevtoio, gPOVIO. Evo ONUOVTIKO WEPOG TNG EMIOTIHOVIKNG KOWOTNTOG EXEL OTPEYEL TO
EVOLPEPOV TNG TPOG TO, acvpuate olktva, awonmpov (wireless sensor networks). Ot
TEYVOLOYIKEG CEMERIC o8 0VTO TOV TOWED EEKIVOUV OO TNV GYESLOOT] EVOMUOTOUEVOY KOUPOV
OV PELUATOSOTOVVTOL MECH MAOTOPIOG KOL QTAVOUV UEXPL TNV  avamtuln AOYIoUIKOU
(AettovpYIKQOV GLGTNUATOV, EVOLOUECOD AOYIGUIKOVD, KAT) E101KE GYESLOOUEVOD Y10, VO, WITOPEL
VO EKTELEITOL UE TOVG TEPIOPIGUEVOLG TTOPOLG CLTAV TV cvokevwv. H ueyiotomoinon g
duapretag {omMg tov kOpPov anoterel TPOKANON TO00 GE ENIMESD VKOV OGO KOl O ERITESO
royiopucod. H mapovoo dtatpipn apopd oty oyediaom kot avartoln aiyopiBuwy tomobétnong
KOl UETOVACTEVONG KMOIKO KOTOVEUNUEVOV EQUPUOYDV LE OTOYO TNV UEIWON TOV GOPTOL
EMKOWMVIOG TNG EQUPUOYNG TTOV TPLLYLOTOTOIELTAL TOV® 0t 10 acvpuato diktvo. Kabbg 1o
UEYOAVTEPO HEPOG TNG EVEPYELOG TV KOuPwv Eodevetar cuvnbmg oty emukovovia (OyL otV
EKTELEOT] KOOIKW), HE OUTO TO TPOTO WEUDVETOL 1] KOTOVOAMON EVEPYEWNG Kol ovEdveral 1)
Swapreler (ong tv KOUPOV TOV GLOTAUOTOG XTIN OLVEYELN, mopabétovpe pwe cOVIOUN
TEPLYPO.PT] TOV HOVTEAOV EQUPHOYNG, TOV UAYOPIOU®MY Kol TOL EVOLIUEGOV AOYIGHIKOU TOL

oyeddoTkay Kot ovortiydnkay ota maaiolo g SoTpiPng.

To poviého mov vobétel 1 gpyacio eival eunvevopévo and v mroteopua POBICOS [91],
oMoV M ePOpUOY oYEAGLETOL MG EVO CUVOLO ammd TUNMOTH AOYLOHIKOL (TPAKTOPES) 7OV
EMKOWVMVOLV petadld Tovg Yo va viomomoovy v embountn Aetrovpyucotnra. Ot TpdKtopeg
Stay@pilovial o «EOKOVGY Kol «yeviKougy. Ot e101k0l TPAKTOPES YPNOIUOTOIOVV EOIKOVG
TOPOVG EVOG KOUPOV, Ty, Evav custnTipa OV dlvel TIES Yo Eva pUotkd péyebog N Eva ehey
oG cLoKELNG N Aettovpyiag. Avtibeta, ol YeEviKOl TPAKTOPEG TPOLYIUTOTOIOVV AETOVPYIEG
eneéepyaciog Kol MYNG amoQdoemy oe mo YNid eninedo, y®PIg v amatoly E101KOVG TOPOVG.
Ov mpdxtopeg G epapuoyng katovépoviar (SUVOUIKA) oTovg KOUPOVE TOV GLOTNUATOG

aVAAOYO [E TOVG TOPOVE TTOL 0VTOL SLobETOLV.
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To kepdiato 1 ec@ysl 10 TPOPANUO UETUKIVIIONG TPOKTOPMY 7OV OUTUADVETOL O NG
dobnoag oG epaproyng mov &xet avartvyel og éva diktvo arstntpwv, o nroduevo eivor va
TPOYUOTOTON HOUV HETAKIVI|OELS YEVIKOV TPUKTOP®V OOTE Vo, petmbel 10 k661og dikthov Adyw
¢ enKovaviag o€ eminedo epapuoyng. [poteivovpe Thnpmg KoTovEUNIEVOLG aAyoplBIovS pE
oTOYO TNV UETOKIVION TOL KGbe TPAKTOP TTPOG TO KEVIPO Papovg Tov (dcoV apopd T0 KOGTOG
EMKOWMVIOG), TPAYUO OV EACYIOTOMOIEL KOl TO GUVOAIKO KOGTOG EMIKOWVOVING OE EMITEdO
dwcrvov. Emiong mapovoialoviar SO mTpmTOKOLLY Y10 TOV YEPLCUO TNG TEPITT®GNG OOV 01

KkopPot Srabérovv TEPIOPIGEVT] OTOONKEVTIKT YOPNTIKOTNTA Y10, TV PLAOEEVIH TPAKTOPWV.

To xepdiaio 2 apopd oto 1510 (mapomdvm) TpoPinua, pe m dopopd 0Tt eCeTalEl HETOKIVIGELS
amd opadeg TPOKTOPOV avti omd pepovouévovg mpaktopes. Ot ev mpokewéve akyopuol
avtpetomilovy v «apoPaic eEGPTNONY TPAKTOPOV OV PLLOEEVODVTUL GTOV 1010 KOUPo Kot
EMKOWVMVOULV UETOED TOVG, TPAYLLO, TTOV, GTOVG MO UMA0VG aAYopiOuovg, wmopel va eunodicel

TNV UETOKIVNOT) TOVG, EYOVING MG AMOTEAEGILO, pia (oMpovTuce) xeypdtepn tomobétnon.

To xepdhowo 3 eetdlel v avIoyOVICTIKOTITO, TMV TUPOTEV® aiyopifuwmy oe oyéon Ue tov
Béktioro aiyopiBuo. Emiong, mopovotdlel pio tpomomoinot mwov a@opd Tovg ohyopifuovg
opadomoinong &tol MoTe oVTol Vo Katainyovv ot Pértiotn tomobénon twv TPoKTOpWY
(avoQopIKd Ue TO GUVOMKSO QPOPTO EMKOVOVIAG TNG EPUPUOYNG TTave amd 10 diktvo). Na
TOVIoTEL TG VTN M Tpomonoinen kabiotd tovg akyopifuovg opadomoinong PELTIGTOVE HOVO
otav dev egetalovpe KOUPOVE e TEPLOPICUEVT] YOPNTIKOTITA, SOPOPETIKE TO TPOPANUa Elvar

NP-complete.

To xepdioio 4 TPOTEIVEL TANPOE KATAVEUNUEVOLS CAY0 piOUOVG Yia TV TomobéTnon TpoKTdOpwv
oe kOuPovg meEPOPoUEVS OmOMKEVTIKNG YOPNTIKOTNTAG, EL0GYOVTIOG TNV &vvold T1g
«&Ewongy. Tho ovykekpuuéva, eCetdlovial LETAKIVICELS TPOUKTOP®V OV EIVOL UEUOVOUEVO,
aoOPPOPES OAAG Pmopel Vo amelevdepOoovy YMPO OV 0T CLVEXELD UTOPEL VO, xprotpuortomdel
Yo TV peTokivnon diimv mpaxtopmv. Befaing, o andtepog oxomdg eéaxorovlel va glval 1
HEI®MON TOL KOGTOVG EMKOVMVING, EMOUEVIS OTOUTELTAL TO GUVOAMKSO OQELOC TV UETUKIVI|CEMV

va VTEPPAIVEL TO KOGTOG TV AOOUPOPMY HETOKIVIIGEWDY.

210 ke@dhoio 5 eotidlovpe oto TPOPANU Tov OTL o1 TPoUvaEePHEVTEG ahyoplipol dev Exovv
TV IKOVOTITO VO «UOVTEYOLVY av pia (opadikn)) petakivnon Oa amofel tehikd Tpocodoedpa 1
oyt Amha vrobétovv 0Tt 0 apliudg TV TPOKTOPWV Kot 0 POPTOS EXKOVOVING HeTaly tovg Ba
TOPOUEVOUY oTabepd Yio Eva «OpKETE» HEYAO %povIKO JGoTNIY, £TCL MOTE VO, amocPechel to
01010 KOGTOG LETAKIVIIONG TOV TPaKTOpOV. Emopévmg, ovyveg arlayég oTO oynua Kol pOPTo

EMKOWMVIOG TNG EQOPUOYNG UTOPEL VO ONYNOOLV TOVG TUPUTOVE Chyopidpovg oe cuyvég

viil
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UETOKIVIGELS TTPOKTOPWOV IOV TEAMKG OVEAVOLV T0 KOGTOG EMKOIVAVIOS TEV® amd 10 dKTLO
(avtl va 10 ueiwvouv). o Topadetyuo, Evag TPOAKTOPUG WTOPEL VO, «TOAVOPOUED GUVEXDG
petaly 600 KouPmv, Loy TEPOIKGY UALOYDY OTO POPTO ETKOWVOVING e AAAOVE TPAKTOPES
(arialovtog 10 Kévepo Papog Tov), ywpig moté va, omooPévetol To K6oTog petakivions o
aUToO 10 A0Y0, Tpoteivoupe online akyopifuovg, deiyvoviag EmionNg TOCO CVTAYMVIOTIKOL Eival

oe oyéon ue tov offline Béiticto ahydpiuo.

Xt0, keQOiow 6 Kol 7 TPOTEIVOLUE KEVIPIKOTOUUEVOLS olyopibuovg mov Avvovv mo
morvmhoke mpofinuato. Eidukotepa, 1o Keporoo 6 Kotamidverar pe 1o TPOPANUO g
EAOLOTOTTOINGNG TOV KOGTOVS SIKTVOV HEGH HETOKIVIIGEWDY TPUKTOPMY Oyl UOVO YEVIKOD GALY
Kot €01KoV TOmoL, dtav o1 kKopPot dabétovy meplopiopévn amobtnkevtua) yopnrikdtnta. Ot
aAyOPlOUOL TOV TPOTEIVOVTAUL KAVOLV YPTOT TEXVIKOV YPOUATICUOD YPAPOL. XT0 KEQGAUO 7
e€etaletan éva mpoPfinua dvo daoctdoemv, émov to {nroduevo eival (o) vo prkoéevnbodv 6co
yivetol mEPLecdTEPOL TPAKTOPEG 0TOVE KOUPoLg Tov Suctvov, kat (B) va avénbel 1 didprela
{omg tov cvotuartog (nradn va peyietorombel o ypdvog {omng Ttov TpdTov KouPov wov Ba
eCavtinoel ) umatapio tov). [poteivovior okyopldpol mov Avvovy 10 mpdfinua Eexmplotd
(cepraxd) o kabe didotaot, poli pe éva alyoppo branch-and-bound wov Avvel 1o Tpdfinua
TAVTOYPOVE, Kol OTIG dVO JUOTACELS TOV. 'Eva onuovtiko Tuiua tev oiyopibumv g Tpog v
TPOTN AACTACT TOV TPOPINIOTOC APOP, OTIV UTOKEPUATOTOINGCT) TOV AmoONKEVTIKOD ¥OPOL

oT0VG KOUPOVE TOV SIKTVOV, HECH PETUKIVIICEDV TPUKTOPMV.

To xepdioio 8 meptypael TNV VAOTONMGOT] TOV TUNIATOS TOV evolauecov hoytopukod POBICOS
OV TOPEYEL MO OAOKANPOUEVT], KOUTAVEUNUEVT], OLOXEIPLOT TOV TPAKTOPMV TNG EPUPHOYNG,
OV OO TO EVOMUATOUEVO Aertovpyikd cvotnua TinyOS. Zvykekpiyéva, teptypaoovtat; 1) o
UNYOVIoUOS dNUIOVPYIOG VEMV TPOKTOPOV G& KOUPOVE HE TOVG KOTAAANAOVG TWOPOLS, 11) O
WNYOVIOUOS ovTaALOYNG UMVORATOV HETAE) TPUKTOP®V, 1i1) O UNYOVIGUOG OVIVELOTG Kol
KOTAGTPOPNG «OPOOVAOV» TPUKTOPAOV, KOl 1V) O WNXOVIGHOG UETAKIVIONG YEVIKMV TTPOKTOPWY

WE TANPN OPAVELD, LETAKIVIIONG OF EMIMESO EQPUPUOTNG.

Téhog, 10 KEPUANIO 9 aVOPEPEL EPYUCIEC WOV EIVOL GUVAQEIS LE TNV TTapovod SaTpiPn, Eved To

Kkepdiao 10 moapéyet To YEVIKG COUTEPACILOTO Y10 TIV TOPOVOH SOVAEL.
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Chapter 1

Chapter 1

On Deploying Tree Structured Agent Applications in
Networked Embedded Systems

1 Introduction

Mobile code technologies for networked embedded systems, like Aggila [36], SmartMessages
[52], Rovers [27] and POBICOS [91], allow the programmer to structure an application as a set
of mobile components that can be placed on different nodes based on their computing resources
and sensing/actuating capabilities. From a system perspective, the challenge is to optimize such
a placement (through migrating the mobile components) taking into account the message traffic
between application components. It should be stressed that this work focuses on non-highly
volatile environments, ¢.g., home or office environments. Therefore, we can expect that: (i) the
arrival of new applications is rather infrequent; (i) an application is expected to be resident for

a fairly large amount of time (enough to offset any potential migration overhead).

This chapter presents distributed algorithms for the dynamic migration of mobile components,
referred to as agents, in a system of networked nodes with the objective of reducing the network
load due to agent-level communication. The proposed algorithms are simple so they can be
implemented on nodes with limited memory and computing capacity. Also, modest assumptions
are made regarding the knowledge of routing paths used for message transport. The algorithms
rely on information that can be provided by even simple networking or middleware logic

without incurring (significant) additional communication overhead.

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 1

The contributions of this work are the following: (i) we identify and formulate the agent
placement problem (APP) in a way that is of practical use to the POBICOS middleware but can
also prove useful to other work on mobile agent systems with placement constraints, (ii) we
present a distributed algorithm that relies on minimal network knowledge and extend it so that it
can exploit additional information about the underlying network topology (if available), (ii1) we

evaluate both algorithm variants via simulations and discuss their performance.

2 Application and System Model, Problem Formulation

This section introduces the type of applications targeted in this work and the underlying system
and network model. It then formulates the agent placement problem (APP) and the respective

optimization objectives.

2.1 Application model

We focus on applications that are structured as a set of cooperating agents organized in a
hierarchy. For instance, consider a demand-response client which tries to reduce power
consumption upon request of the energy utility. A simplified possible structure is shown in Fig
1.1. The lowest level of the tree comprises agents that periodically report individual device
status and power consumption to a room agent, which reports (aggregated) data for the entire
room to the root agent. When the root decides to lower power consumption (responding to a
request issued by the electric utility), it requests some or all room agents to curve power
consumption as needed. In turn, room agents trigger the respective actions (turn off devices,
lower consumption level) in the end devices by sending requests to the corresponding device

agents.
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root D/R
room 1 D/R room n D/R
device 1 device m
(sense & control)| " | (sense & control)

Fig 1.1 Agent tree structure of an indicative sensing/control application.

Leaf (sensing and actuating) agents interact with the physical environment and must be placed
on nodes that provide some specific resources (e.g. sensing or actuating capabilities), hence are
called “non-generic”. On the other hand, intermediate agents perform their tasks using just
general-purpose computing resources which can be provided by any node; thus we refer to these

agents as “generic”. In Fig /.1, device agents are non-generic while all other agents are generic.

Agents can migrate between nodes to offload their current hosts or to get closer to the agents
they communicate with. In our work we consider migration only for generic agents because
their operation is location- and node-independent by design, while non-generic agents remain
fixed on the nodes where they were created. Still, the ability to migrate generic agents creates a

significant optimization potential in terms of reducing the overall communication cost.

2.2 System model

We assume a network of capacitated (resource-constrained) nodes with sensing and/or actuating
capabilities. Let #; denote the 7" node, 1<i<N and (»;) its resource capacity (processing power
or memory size). The capacity of a node imposes a generic constraint to the number of agents it

can host.

Nodes communicate with each other on top of a (wireless) network that is treated as a black
box. The underlying routing topology is abstracted as a graph, its vertices representing nodes
and each edge representing a bidirectional routing-level link between a node pair. In this work
we consider free-based routing, i.e., there is exactly one path for connecting any two nodes. Let
D be a NxNxN boolean matrix encoding the routing topology as follows: Dj,=1 iff the path

from »; to »; includes 7y, else Dix=0. Since we assume that the network is a tree Djjx = Djix. Also,
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Dii=1, Dy=1 and D;=0. Let h; be the path length between n; and n;; equal to 0 for i=j.
Obviously, 4; = hj;.

Each application is structured as a set of cooperating agents organized in a tree-like structure,
the leaf agents being non-generic and all other agents being generic. Assuming an enumeration
of agents whereby generic agents come first, let o be the £ agent, 1<k<A+S, with 4 and S
being equal to the total number of generic and non-generic agents, respectively. Let r(ay) be the
capacity required to host a. Agent-level traffic is captured via an (4+5)x(4+S) matrix C, where
Cym denotes the load from ¢, to a, (measured in data units over a time period). Note that Cy,

need not be equal to Cry.. Also, Ci=0 since an agent does not send messages to itself.

2.3 Problem formulation

For the sake of generality we target the case where all agents are already hosted on some nodes,

but the current placement is non-optimal.

Let P be an Nx(A4+S) matrix used to encode the placement of agents on nodes as follows: ;=1
iff n; hosts ay, 0 otherwise. Let /i (£q. 1.1) denote the load associated with agent a, hosted at
node »; for a neighbor node #;; specifically, this load involves the volume of data exchanged
between a, and the agents using #; as either a hosting or routing node to communicate with

ay.'The total network load L incurred by the application for a placement P can then be expressed

by Eg. 1.2:
A+S -
l]k Z(C +ka) ixj > xm - q .
A+S A+S o 19
k=1 m=1

A placement P is valid iff each agent is hosted on exactly one node and the node capacity
constraints are not violated:
N

> Po=1 Vk, 1sk<A+S Eq. 13

i=1

Por(a)<r(n), Vi, 1<i<N Eq. 14

M=

k=1
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Also, a migration is valid only if starting from a valid placement P it leads to another valid

agent placement P without moving any non-generic agent:

P =P

=P, Vk, A<k<A+S Eq. 1.5

The agent placement problem (APP) can then be stated as: starting from an initial valid agent
placement P°, perform a series of valid agent migrations, eventually leading to a new valid
placement P™" that minimizes Eq. /.2. In that sense the agent placement problem (APP) can be
renamed to the agent migration problem (AMP). The decision for migrating a, from #; to #; is
taken iff /; is greater than the total load with all other neighbors of #; plus the local load

associated with ay:

Ly>Lo+ D L, h=h =1 Eq. 1.6

ixk> "f
X#1, ]

The intuition behind E£q. 1.6 is that by moving ay from its current host #; to a neighbor »;, the
distance for the load with »; decreases by one hop while the distance for all other loads,
including the load that used to take place locally, increases by one hop. If Eg. /.6 holds, the
cost-benefit of the migration is positive, hence the migration reduces the total network load as

per Eq. 1.2.

Note that the resulting optimal placement of APP may be an unreachable placement, meaning
that starting from an initial (sub-optimal) placement the optimal one can be reached by only
performing a non-feasible “swap” of agents (the involved nodes cannot perform this “swap”
because they don’t have enough free capacity). A similar feasibility issue is discussed in [78]
but in a slightly different context. Also, Fg. /.2 does not take into account the cost for
performing a migration. This is because we target scenarios where the application structure,
agent-level traffic pattern and underlying routing topology are expected to be sufficiently stable

to amortize the migration costs.

3  Uncapacitated 1-hop Agent Migration Algorithm

This section presents an agent migration algorithm for the case where nodes can host any
number of agents, i.c., without taking into account capacity limitations. In terms of routing
knowledge, each node knows only its immediate (1-hop) neighbors involved in transporting
inbound and outbound agent messages; we refer to this as /-hop network awareness. This

information can be provided by even a very simple networking layer. A node does not attempt
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to discover additional nodes but simply considers migrating agents to one of its neighbors. An

agent may nevertheless move to distant nodes via consecutive 1-hop migrations.

Description. The /-hop agent migration algorithm (AMA-1) works as follows. A node records.
for each locally hosted agent, the traffic associated with cach neighboring node as well as the
local traffic, due to the message exchange with remote and local agents, respectively.
Periodically, this information is used to decide if it is beneficial for the agent to migrate to a

neighbor.

o
&)

D_/\

ay as g a; - / - h

Fig 1.2 Application agent structure Fig 1.3 Agent placement on the network

Consider the application depicted in /ig /.2 which comprises four non-generic agents (@, as, dg,
as). two intermediate generic agents (a» a;) and a generic root agent (). and the actual agent
placement on nodes shown in Fig /.3. Let each non-generic agent generate 2 data units per time
unit towards its parent, which in turn generates 1 data unit per time unit towards the root (edge
values in Fig [.2). Assume that »; runs the algorithm for a; (striped). The load associated with
as for the neighbour node 7, and 5 is /125=2 respectively /133=3 while the local load is /,13=0.
According to Eg. 1.6 the only beneficial migration for a; is for it to move on n;. Continuing the
example, assume that a; indeed migrates to #; and is (again) checked for migration. This time
the relevant loads are /515=2, l55:=2. L;=0. /535=1, thus a; will remain at n;. Similarly, a; will
remain at »#; while a; will eventually migrate from #,4 to 7, then to #; and last to »;, resulting in a
placement where all generic agents are hosted at »;. This placement is stable since there is no

beneficial migration as per Eg. 1.6.

Implementation and complexity. For each local agent it is required to record the load with
cach neighboring node and the load with other locally hosted agents. This can be done using a

A'x(g+1) load table, where 4 is the number of local generic agents and g is the node degree
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(number of neighbors). The destination for each agent can then be determined as per £¢q. /.6ina
single pass across the respective row of the load table, in O(g) operations or a total of O(gd ) for
all agents. Note that the results of this calculation remain valid as long as the underlying

network topology, application structure and agent message traffic statistics do not change.

Convergence. For the time being, the algorithm does »nof guarantee convergence because it is
susceptible to live-locks. Revisiting the previous example, assume that the application consists
only of the right-hand sub-tree of Fig /.2, placed as in Fig /.3. Node n; may decide to move a;
to n; while #; may decide to move a; to »;. Later on, the same migrations may be performed in

the reverse direction, resulting in the old placement etc.

We expect such livelocks to be rare in practice, especially if neighboring nodes invoke the
algorithm at different intervals. Nevertheless, to guarantee convergence we introduce a
coordination scheme in the spirit of a mutual exclusion protocol. When »; decides to migrate ay
to m; 1t asks for a permission. To avoid “swaps” #; denies this request if: (i) it hosts an agent ai
that is the child or the parent of ¢, (i1) it has decided to migrate ay- to #;, and (iii) the identifier
of n; is smaller than that of »; (j<7). Else, n; grants permission to »; and does not consider
migrating any child or parent of ay to »; before the granted migration completes. It is important
to note that any migration is guaranteed to lead to a better placement only if agents that
communicate with each other directly (in the application tree) are not allowed to change hosts
concurrently. Convergence is guaranteed since it is no more possible to perform swaps and each
migration that is not a swap reduces the network load as per £q. /.2. It is worth pointing out that
such a protocol can be implemented quite efficiently by piggybacking requests and replies on

other messages that need to be exchanged anyway in order to perform the actual migration.

4  Uncapacitated A-hop Agent Migration Algorithm

This section introduces an extension of the 1-hop algorithm for the case where a node is
assumed to know the routing topology within a k-hop radius. We refer to this as k-hop network
awareness. Note this information may be collected in a lazy fashion, incurring a minimal
communication overhead, by piggybacking the & most recent node identifiers when a (small)
message travels through the network. In fact, this information comes for free by employing a
naming scheme that encodes path information into node identifiers (¢.g., as in ZigBee networks

with hierarchical routing).
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Description. The k-hop agent migration algorithm (AMA-k) is a straightforward extension of
AMA-1 that exploits k-hop awareness. The difference is that for each agent a,, hosted at node #;,
AMA-k considers as possible candidates all nodes up to £-#ops away from »; which are involved

in the message traffic of ay,.

The algorithm chooses the destination for a,, by iteratively evaluating £q. /.6 for neighbour
nodes, starting from 1-hop neighbours and working its way to more distant neighbours,
following the most beneficial outbound direction. Each iteration determines whether it is
beneficial to move a,, to a node that is 1 hop further away from #; assuming a,,, were hosted on
the node picked in the previous iteration. The algorithm stops after £ iterations or earlier when it
is no longer beneficial to migrate a,,, AMA-k is expected to lead to fewer migrations than
AMA-1 because an agent can (directly) move on a distant node in a single migration; as

opposed to performing several 1-hop migrations to reach the same destination.

Returning to the previous example of Fig /.3, assume that node ny runs AMA-5 for agent a,.
The first iteration will determine that a, should migrate (from #,) to #,, the second iteration will
determine that a, should migrate (from #;) to #;, the third iteration will determine that a, should
move on #;, and finally the fourth iteration will decide that it is not beneficial for a, to migrate

any further. At this point the algorithm stops, suggesting the migration of a, from »4 to #;.

Implementation and complexity. AMA-£ requires the same type of load information as AMA-
1 but for all &-hop instead of just 1-hop neighbors, rendering g* the space complexity of AMA-1
(note that a refined, asynchronous, implementation, could store only the loads of the neighbors
that are relevant for the computation of each iteration, requiring the same amount of memory as
AMA-1). The destination for an agent is chosen in up to & iterations, each time evaluating Fq.
1.6 for the relevant, up to g, neighbor nodes, yielding a total time complexity of O(kg) for
determining the most beneficial destination for a local agent, i.c., AMA-k is k£ times slower than

AMA-1.

Convergence. It is straightforward to infer that the algorithm converges provided that race

conditions are tackled as per AMA-1.
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S Handling Capacity Constraints

This section discusses how AMA-1 and AMA-t can be extended to handle node capacity
constraints. When running the algorithms, some assumptions must be made regarding the free
capacity of remote nodes to drop infeasible solutions. Notably, these assumptions could be
invalid and must be confirmed in order to actually perform a migration. In this work we

investigate two different schemes, as follows.

Inquire-Lock Before (ILB). Before running the algorithm, a request is sent to all potential
destinations, 1-hop or k-hop neighbours depending on the algorithm, inquiring about their free
capacity and requesting to reserve up to the amount needed to host a// locally hosted agents that
could be selected for migration. Nodes reply with their available free capacity, if any, which
they reserve until further notice. The selection of the destination for each locally hosted agent is
done as described in the previous subsections, having a consistent and guaranteed view of node
capacitics. When the destinations are chosen, all other nodes are informed to release the
reserved capacity, while destinations release the capacity that is left over after accepting the

agents assigned to them.

Inquire-Lock After (ILA). The algorithm runs based on a previous, possibly outdated, view of
free node capacities. Destinations are then contacted to reserve the capacity needed for hosting
the agents assigned to them. Initially, all nodes are assumed to have an infinite free capacity.
This view, along with the nominal capacity of each node, is updated based on the replies
received for each request. To avoid excluding destinations due to outdated information, with a
certain probability nodes are assumed to have their full nominal capacity free, independently of
the local view. Of course, this means that a migration might be decided based on invalid
information, in which case the destination will send a negative reply when contacted to actually

reserve capacity (and perform the migration).

Algorithmic adaptations. When AMA-1 picks a destination for a locally hosted agent, the
migration is performed only if that node indeed has sufficient free capacity. Else, the agent is
not considered for migration because all other destinations are guaranteed to lead to a load
increase; £g. 1.6 holds for at most one 1-hop neighbor or put in other words there can be at most
one beneficial migration direction in a tree network. In contrast, AMA-% can fall back to the
next best option in that path. For instance, in Fig /.3, ny would consider first #3, then »; and

finally », as destinations for the migration of a,. Notably, the destinations chosen by ILB are
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guaranteed to be able to host the agents assigned to them, while ILA may pick destinations that

turn out not to have sufficient free capacity to host the agent(s) assigned to them.

Notably, both schemes are subject to starvation due to locking collisions. To reduce the
probability of such live-locks, each node invokes the algorithm in random intervals (within a
larger time period). The random selection of algorithm invocation, guarantees convergence, but
only eventually (the probability that convergence is reached at some point becomes one for
infinite time) and without an apriori bound on communication. Convergence can also be
achieved more conservatively, by adding a simple rule such as: “stop migration attempts after ¢

collisions™, which obviously guarantees convergence, even with “systematic” collisions.

6 Experiments

This section presents an experimental evaluation of the algorithms based on simulations
performed on top of NS2 [85]. First we describe the experimental setup and then we present and

discuss the results of indicative experiments.

6.1 Setup

Two types of networks are considered with 20 and 50 nodes placed randomly in a 80x80 and
120120 plane, respectively. Nodes are in range of each other if their Euclidean distance is less
than 30. The tree-based routing topology is obtained by calculating a spanning tree over the
connectivity graph. Five topologies are generated for each network type. Each experiment is
performed on all topologies. The average diameter for the 20- and 50-node networks is 6 and

15, respectively.

The application structure is generated as follows. Starting from an initial set of non-generic
(leaf) agents, agents are split in disjoint groups of 5, and for each group 2-5 agents are randomly
chosen, removed from the set, and labeled as children of a new generic agent that is added to the
set. This process is repeated until the set comprises a single agent which becomes the root (we
check to make sure that this is indeed a generic agent). Three application structures are
generated with (50, 22), (25, 12) and (10, 5) (non-generic, generic) agents, referred to as app50,

app25 and app10, respectively. The initial agent placement on nodes is random.

10
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In terms of application-level traffic, we let each non-generic (leaf) agent send 10-50 messages
per time unit to its parent and each generic (intermediate) agent send to its parent the average of
the load received from its children (perfect aggregation). Also, each parent agent sends 1
message per time unit to its children (representing a heartbeat protocol). For simplicity, all
messages are of equal size. The traffic pattern is stable throughout the whole duration of the

experiments.

Nodes invoke the algorithm every 7 time units. Each node starts its periodic invocation with a
different offset, randomly set between O and 7' If an attempted migration fails due to resource
constraints, the node backs-off for a number of periods 7, chosen randomly between 1 and 5.
Finally, in ILA, the probability for considering a node assuming that its full nominal capacity is

free (as opposed to its free capacity according to the local view) is set to 20%.

As the main metric for our comparison, we measure the network load that corresponds to the
agent placement produced by the algorithms vs. the load of the initial random placement but
also vs. the optimal solution obtained via an exhaustive search algorithm (only for small-scale
experiments). For experiments without capacity constraints, convergence is inferred when all
nodes invoke the algorithm without attempting any migration. In experiments with capacity
constraints, where algorithms employ the ILB or ILA scheme and convergence is not
guaranteed, the simulation is stopped when each node invokes the algorithm 4 consecutive
times without managing to perform a migration. The overhead of algorithms is captured via the
number of agent migrations performed to reach the final placement as well as the number of

(control) messages exchanged to avoid swaps and to reserve and release capacity.

6.2 Results without capacity constraints

In a first experiment we compare the placements obtained by the uncapacitated algorithms for
the 20-node networks and one appl10 application. Table 1.1 summarizes the results for different
degrees of network awareness (average values for the 5 different topologies). All algorithms
perform close to optimal, even though the initial random placement is very bad, incurring more

than twice the load of the optimal solution.

11
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Table 1.1 Performance in the uncapacitated case (20 nodes, app10).

Algorithm Total Load Migrations Control Msgs
Initial 106,6 - -
AMA-1 45 10 20
AMA-2 444 6,8 13,6
AMA-3 448 52 104
AMA-4 448 5 10
Optimal 43,6 - -

The (slightly) inferior placement achieved by AMA-1 is due to the fact that it forces distant
migrations to occur in iterations, moving agents one hop at a time. In the meantime, other agents
that communicate with the agent “under migration” might migrate too, leading to a suboptimal
lock-in. Greater network awareness reduces the probability of such lock-ins but does not
guarantee their absence, ¢.g., note that AMA-3 and AMA-4 produce a (slightly) worse
placement than AMA-2.

As expected, greater network awareness leads to fewer migrations because agents can be placed
directly on nodes further away from their original hosts, if desired. Notice that the number of
control messages (in this case generated to avoid swaps) equals twice the number of migrations,

indicating that no migration was turned down.

6.3 Results with capacity constraints — small scale experiments

In a second experiment, for capacitated nodes, we compare AMA-1 and AMA-2 vs. the optimal
solution for the same topology and application as before, for both ILB and ILA schemes. All
agents have identical capacity requirements. The results are plotted as node capacity is
increased so that each node can host 1, 2, 3 and 4 additional agents compared to the initial

placement.

As it can be seen in Fig 1.4, all algorithms produce sub-optimal results when node capacity is
scarce, but the gap shrinks quite rapidly as capacity becomes abundant, approaching the results
of the exhaustive search algorithm. Once again, the placements achieved by AMA-2 are better
than those of AMA-1. Somewhat surprisingly, ILB consistently outperforms ILA only for
AMA-1 but not for AMA-2. When capacity is tight, AMA-2 produces better results with ILA
than ILB, even though ILA works with possibly outdated node capacity information. This can
be explained due to the greedy locking approach of ILB which leads to more collisions
compared to ILA, as network awareness increases and a node can receive capacity reservation

requests from a larger number of nodes.
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Another negative effect of ILB is shown in Fig 1.5 which plots the number of generated control
messages. ILB clearly incurs a significantly higher overhead compared to ILA, by 1.5-2 orders
of magnitude. This is due to the fact that ILB pro-actively inquires about and attempts to reserve
free capacity on all neighbor nodes within a 4-hop radius, while ILA mainly relies on
information acquired through previous communications and tries to lock enly the nodes that are

actually selected as destinations.

6.4 Results with capacity constraints — large scale experiments

We also performed experiments for the 50-node networks and an application mix of five
instances of app10. app235 and app30. We compare the performance of AMA-, fork=1, 2, 5,
10. Given the bad scalability of ILB. obvious from the previous results, only ILA is used. In the
spirit of the previous experiments, the algorithms were tested for the case where each node is

capable of hosting 5, 10, 20 and 40 additional agents compared to the initial random placement.

Fig 1.6 and Fig 1.7 depict the load corresponding to the placements achieved (the initial
placements amounted to an average load of 11.000) and the number of migrations performed to
reach them, respectively. As expected. greater network awareness results in better placements
and fewer migrations. The differences in placement quality are more pronounced for limited
capacity and shrink as capacity increases. while the opposite trend holds for the number of
migrations. Note that capacity constraints have a greater impact for smaller values of k. This is
because, as discussed in Sec. 6.2, low network awareness is more likely to lead to suboptimal
lock-ins. but now this may also waist capacity that could have cnabled more beneficial
migrations. Indeed this effect is more visible when capacity is scarce and diminishes as capacity

increases.
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The number of control messages is plotted in Fig 1.8, AMA-1 and AMA-2 follow opposite
trends compared to AMA-5 and AMA-10, with the first pair incurring less overhead when
capacity 1is tight, but then increasingly more as capacity becomes abundant. This is due to two
recasons. On the one hand, the number of migrations. and that of (successful) capacity
reservations in ILA, increases more steeply for low network awareness, as shown in Fig /.7. On
the other hand, the number of unsuccessful reservations, initially larger for the greater
awareness, generally decreases with increasing capacity. This is confirmed in Fig /.9 which
shows the percentage of control messages that resulted in a back-off. The net effect results in

the observed behaviour,
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6.5 Result summary

Based on the presented results we can state that: (i) AMA-k achieves close to optimal
performance when there are no capacity constraints; (ii) with capacity constraints, AMA-£
considerably improves agent placement from an initial random placement; (iii) greater network
awareness leads to better placements while requiring fewer migrations, but this performance
advantage shrinks rather quickly for larger values of ; (iv) the ILA scheme scales better than
ILB, and in fact leads to better placements for increased network awareness when node capacity

18 scarce.

7  Conclusions

In this work we formulated the problem of placing cooperating mobile agents on nodes as to
minimize the network load due to agent-level message traffic under node capacity constraints.
We proposed and evaluated corresponding distributed algorithms for agent migration that can
take advantage of basic routing-level information. Given their simplicity, these algorithms are
suitable for resource constrained embedded systems. AMA-k combined with the ILA capacity
inquiry and reservation scheme is a particularly attractive candidate since it achieves good
results for relatively small (compared to the network diameter) values of &, incurring a modest

communication overhead and being quite efficient in terms of memory and runtime complexity.
Part of this work has been published in the following conference:

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “On Deploying Tree Structured
Agent Applications in Networked Embedded Systems,” in Proc. FUROPAR 2010.
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Chapter 2

GRAL: A Grouping Algorithm to Optimize
Application Placement In Wireless Embedded Systems

1 Introduction

This chapter considers the agent placement/migration problem (introduced in the previous
chapter) in a more sophisticated way against the aforementioned simple algorithms.
Specifically, it pinpoints the problem induced when having groups of “mutually” dependent
agents (communicating heavily with each other), whereby the involved agents are located on
their center of gravity in their own right, but not when considered as a whole. Therefore,
migrating such a group of agents towards its center of gravity, network load reduction is further

achieved.

Of course, the challenge is to identify such unbalanced groups of “mutually” dependent agents
and then migrate them towards their center of gravity. To this end, a fully distributed grouping
algorithm (GRAL) is proposed which considers both single and group agent migrations to
minimize the network traffic. Given unlimited general-purpose resources, the algorithm utilizes
only information available locally at each node, while in the more realistic constrained case, the

resource status of potential destinations must be discovered/estimated.

The contributions of this work include the following: (i) we present two versions of the GRAL
migration algorithm each assuming different network knowledge, given unlimited resources at
nodes; (ii)) we discuss various mechanisms to tackle migrations towards storage/resource

constrained nodes; (iii) we evaluate the different approaches through simulation experiments,
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comparing their performance against: a) optimal assignment derived through exhaustive search;
b) AMA [113] which is an algorithm we have proposed in the previous chapter tackling the

same problem in a different approach.

2 Application Model, System Model and Problem
Formulation

This section is identical with the respective section of Chapter 1, with the difference that the
system model is a little bit further extended as follows. An edge is called /ocal edge when its
incident agents are co-located, otherwise this edge is named remote edge. A collection/group of
co-located generic agents is called non-partitioned when all the agents participating into that
collection are connected with each other through local edges. Let h;; denote the distance in hops

between #; and 7;.

3  Motivation example

Consider the example depicted in Fig 2./ where an application of three agents has been
deployed into a network of two nodes; with white and black rectangles representing generic and

non-generic agents, respectively. The number beside an edge denotes the communication load
(per time unit) between the involved agents (¢.g. in the example C, +C,, =20). As it can be

observed both a; and a, are located on their center of gravity, with that placement yielding a
cost of 10. However, there is a group of “mutually” dependent agents (¢, a,), which is not
located on its center of gravity, since the network cost could be reduced at zero if both a; and a,
migrated towards »;. Recall that this work assumes only generic agents can migrate, hence a3
cannot migrate towards ;. It should be stressed that AMA doesn’t consider group migrations,

thus we propose an algorithm tackling this case.

18

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 2

a1
N4 Ns
20
10

Fig 2.1 Application placement

4 GRAL Migration Algorithm

This section presents GRAL for the case where nodes can host any number of agents without
taking into account capacity limitations. In terms of routing information, a node knows only its
immediate (1-hop) neighbours involved in transporting both inbound and outbound agent
messages. This information can be typically provided by even a simple networking layer.
GRAL is a completely different approach against AMA [113], with the former considering
migrations in a grouping manner taking into account agent dependencies, in contradistinction to

latter where the migrations are performed in a single agent fashion.

4.1 Beneficial single agent migrations

GRAL performs single agent migrations in the same way as AMA algorithm (described in the

previous chapter).

4.2  Beneficial group migrations

The algorithm first identifies disjoint application sub-trees hosted locally, and for each sub-tree
produces a group (that may be a subset of the sub-tree). For each group, a single destination is
chosen as a host for all agents that are part of the group. More specifically, the algorithm works

in several steps, as follows:
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Sub-tree Identification. First, one or more disjoint sets of communicating locally-hosted generic
agents (belonging to the same application) are identified. Each such set corresponds to a part of
the application tree, henceforth referred to as a sub-tree. Specifically the sub-tree identification
takes place as follows: i) create a sub-tree rooted on a locally-hosted generic agent not
belonging to an already identified sub-tree; ii) add to this sub-tree each locally-hosted generic
agent adjacent to one of the agents belonging already to this sub-tree. Repeat phase (ii) till no
agent can expand this sub-tree. After the expansion of a sub-tree completes, repeat phase (i) and
(i1) accordingly, till all generic agents have been considered. Note that each sub-tree consisting
of only one agent is discarded, since this agent will be considered by the single agent migration
mechanism. Observe that each of the remaining sub-trees is a non-partitioned collection of co-

located generic agents.

Selection of destination. For each sub-tree, the most promising I-hop destination node is
determined by comparing the load between subtree’s agents and that node versus all other
neighbours, as well as the load with (immobile) locally hosted non-generic agents. Let /;x(4)
and /;;(S) denote the components of /j; due to the local communication of a; with generic
respectively non-generic agents hosted at »;. Then, both £q. 2.1 and Eg. 2.2 must hold true to

select #; as a destination for a subtree G hosted at 7;:

DLy > D Ly lh =1Ah, =1Vx#i,j Eq. 2.1
Vka,eG Vika,eG

Dle> D L (S)]h =1 Eq.2.2
Vika eG Vi eG

Namely, E£q. 2.1 says that the aggregate load between the agents of the sub-tree and the
destination #; should be greater than the respective load for any other neighboring node. The
aforementioned aggregate load involves the data exchanged between the agents of the sub-tree
and the agents using #; as either a hosting or routing node to communicate with the former ones
While Eq. 2.2 says that this load should be also greater than the locally incurred one due to the

communication with (immobile) non-generic agents hosted at #;.

Partial benefit calculation. Having chosen the best promising 1-hop destination pn;, the

respective affinity and partial benefit value is computed for each agent a, of the sub-tree:

affye =l —1 ()= 3 1y |, =1nh, =1 Eq. 2.3
Vx#i, j
pbijr = a-](z"jr _liir (A) | hij :l Eq 24
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The affinity aff;x is equal to the load associated with a, for pn; minus (1) the local
communication load in terms of local (immobile) non-generic agents; and ii) the respective load
for all other neighbors. It provides an upper bound on the positive impact the migration of a;
from #; to n; can have, provided that the entire subtree moves to #;. If all agents have negative
affinity then no beneficial group migration exists within the subtree. Else, the partial migration
benefit is calculated for each agent in a top down fashion. Eq. 2.4 is used to calculate the partial
benefit of the root a, of the sub-tree, which corresponds to the benefit if only a, migrates to pn;
while all other agents of the subtree it communicates with (i.e. its children) remain on »,. To
calculate the partial benefit of every other agent a,, of the subtree we make use of Eg. 2.5, with

pr. being equal to 1 if a, is the parent of a,, (in terms of that subtree), otherwise 0. Specifically,

this equation corresponds to the load impact if both a,, and its parent a, migrate to pn; while all

other agents a,, cooperates with (i.¢., its children) remain on #;.

By construction, these values can be used to calculate the actual benefit obtained by migrating
on pn; any part of the subtree. Specifically, the actual benefit for migrating any agent a,
together with all its predecessors (in the path) up to the root a, is equal to the sum of the
respective partial migration benefit values. Also, the benefit of migrating any agent a,, together
with all its predecessors up to agent a, (u=) is equal to the sum of the partial benefits minus
two times the load between a, and its parent (that does not belong to the part being considered

for migration).

Group Selection. The algorithm processes the subtree by merging leafs with their parent in a
bottom-up fashion. Each merge produces a so-called group node with a respective migration
benefit. The best grouping combination is recorded and updated correspondingly. Nodes with a
negative benefit value are pruned. The grouping phase terminates when a single group node

remains, and the best grouping is returned.
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Fig 2.2 Application structure

As an example, consider the application tree shown in Fig 2.2, where generic agents are denoted
in capitals and (multiple instances of) non-generic agents in small case letters. Edge values

stand for the communication load between two agents.

Let the application be deployed on a network as illustrated in g 2.3. Two disjoint subtrees are
hosted at nl: (4, B, C, D, F, G, H) and (I, J, K), hence two groupings will be produced, one for
cach subtree (note that AMA cannot improve the placement depicted in Fig 2.3).

A7B7C7D7F7G7
H,1,J,K;a,g,f k

Fig 2.3 Agent placement

In the sequel we illustrate this process for the first sub-tree (4, B, C, D, F, G, H). Table 2.1
gives the relevant load components for these agents, i.¢., the load coming from each neighbour
of n,, i.e., n; and n;, together with the load from #; itself (local load). The last load is split into
the load due to communicating with generic agents (#;(A)) and the load due to communicating
with non-generic agents (#;(S)). For instance, [C, n;(A)] is 8 due to the local communication

with generic agents 4 and /7 on n;, [F, n;(S)] is 2 due to the local communication with non-
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generic agent fon n;, and [H, ;] is 10 due to the remote communication with agents /4 on ns and

n7 (via ny).

Table 2.1 Load components

Agent nl(A) nl(S) n2 n3
A 15 1 0 0
B 15 0 2 15
C 8 0 3 0
D 16 0 0 0
F 5 2 0 0
G 1 1 0
H 12 0 0 10

First, the destination for (4, B, C, D, F, G, H) is chosen. The two possible options are 7, and #;.
Based on the given loads, the best destination as per £g. 2./ and Eg. 2.2 is n;, since it accounts
for an aggregated load of 25 as opposed to 6 for 7, and this load is greater than the total local
load incurred between the entire sub-tree and the non-generic agents hosted at »;, which is equal

to 4.

Then, the partial benefits are computed by starting from the root of the subtree, in this case A
which has an affinity of -1 (aff154 = /134 — 1114(S) — 124 = 0 — 1 — 0 = -1). The partial migration
benefit of A as per Eq. 2.4 1s =16 (phs4 = affizy — [114(4) = -1-5 = —16). The partial benefits of
all other agents are calculated as per Lq. 2.5; for instance this is 22 for B: (ph;sz = aff1ss —
I118(A) +2%(Cgy + Cyg) = 13— 15 + 12*2 = 22). The results are shown in Fig 2.4 with node
values denoting the respective partial migration benefits. The sub-tree is then processed to
produce the best grouping option. Fig 2.5 depicts the result of the first iteration, which leads to
the creation of group nodes DH and CF.

-16

A -16A
228/ \C—S 228/ \

e J CF 2
10 /
D F3 12
RN DH
-1 S W 22
Fig 2.4 Tree construction phase for group Fig 2.5 Tree contraction phase

(AD BD CD DD FD GD H)
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Notice that G was pruned since it had negative partial benefit. In the second iteration CF will be
pruned and BDH created with a benefit of 34. Finally, A will be merged with BDH and the
resulting group node ABDH will have an actual benefit of 18.

Convergence. Notably, for the time being the algorithm does not guarantee convergence as it is
susceptible to race conditions. Consider for instance two communicating node neutral agents
residing at neighboring nodes. If the load between them is high enough and the nodes invoke the
algorithm with the same period it is possible that these agents will swap places at one period,

only to re-swap back to their original positions at the next period and so on so for.

We expect such live-locks to be rare in practice, especially if neighboring nodes invoke the
algorithm at random intervals. To guarantee convergence though, we introduce a coordination
scheme between nodes in the spirit of a mutual exclusion protocol. Namely, when #; decides to
migrate a group to n; it asks »; for a permission. In turn, n; rejects such a request if all the
following is true: (i) it hosts an agent ¢, that is the child or parent of an agent belonging in the
group to be transferred, (i1) it has decided to migrate a; to »; and has requested a respective
permission, and (iii) the id of »; is smaller than that of »; (j<i). Else, n; grants permission to »;
and does not consider migrating any agent to »; which has parent or child relation with an agent
of the group in question till the later completes its migration. Convergence is guaranteed
because conflicting migrations cannot be performed concurrently and each (non-conflicting)

migration reduces the network load.

Complexity. For each locally hosted generic agent, one needs to record the load with each
neighbor node as well as the load aggregates for local generic and non-generic agents. This
requires a A x(N'+2) table, where 4’ and N’ is the number of local generic agents and
neighbors, respectively, in the spirit of 7able 2./. In addition, parent-child loads must be
recorded for each pair of locally hosted cooperating generic agents. This can be done via a
separate tree structure for each subtree, with pointers to the respective locations of the load

table, requiring O(4 ) memory in total.

The destination for each subtree can be chosen in one pass of the corresponding tree structure
and respective load table entries, in O(4 'N’) for all subtrees. The calculation of the affinity and
partial benefit values requires one more pass. Similarly, the grouping of each subtree can be
done in a single pass of the tree structure in O(A”), while the best grouping combination can be

updated in O(1) for each step. Hence the asymptotic time complexity of GRAL is O(4 'N').
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S  Handling increased network knowledge

In this section we consider the case where each node not only knows its immediate neighbors,
but also every node within £-hops. Such &-hop information may be collected without significant
extra communication, €.g., by (occasionally) piggybacking node identifiers as a message travels
through the network, or by employing a naming scheme that directly encodes path information
into node identifiers as done in ZigBee for the case of hierarchical routing [129]. We proceed by
presenting a variation of GRAL that explores such increased knowledge, referred to as GRAL-
k. GRAL-k extends GRAL to: (i) take advantage of k-hop awareness, and (i1) potentially assign
different parts of the group to different destinations (i.c., suggesting that some agents of the

group migrate to different nodes).

For each subtree G, all neighbors within £ hops of the local host and which are involved in the
load associated with G are considered as potential destinations. The respective affinity and
partial benefit values for each destination node #; are calculated in the spirit of GRAL, however

Eq. 2.3, Eq. 2.4 and Eq. 2.5 are adjusted to consider the fact that 7; need not be a neighbour of

;.
a-fz"jm = lz’jmhij _liim (S )hij - Z lixmhij -
Vi, j Dy, =0Ahy =1 Eq 26
Z (lzxm _lzum)(h]x_hzx) l‘l)xju :l/\hxu :l/\uil’]
Vi, j: Dy, =1
pbijr = a-](z"jr - liir (A)hzj Eq 27
pbijm = a-](z"jm _liim (A)hzj + 2(C'vm +Cmv)hij | prr: :l Eq 28

Where in Eq. 2.6 n, 1s the next hop node in the path from #, to n;, in Eq. 2.7 a, is the root of the
sub-tree, and in Eq. 2.8 a, is the parent of a,, in the sub-tree. Recall, that the affinity aff;,
represents the benefit of migrating am from #; to 7, assuming the entire sub-tree also moves on
n;. Once again, three load components are considered: (i) the load associated with a,, that goes
through 7;, minus (i1) the load due to the local communication with non-generic agents hosted at
n; and (ii1) the additional load going through other nodes n,. The first two components remain
the same as in £q. 2.3, multiplied by the hop distance between »; and »;. The third component
now comprises two terms, handling two different cases. If #, is a neighbor of #; in a different
outbound direction than #,, the load for », remains the same and is multiplied by the extra
distance travelled (the distance between #; and #,). Else, if 7, is between »; and 7, the additional

penalty is the difference between the load for #, and the next hop node », towards 7; multiplied
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by the corresponding hop difference; this actually corresponds to a benefit, if », is closer to »;
than »;. Note that Eq. 2.6 maps to L£q. 2.3 in case »; is a neighbour of »; (the last term
disappears). The partial benefit formulas £q. 2.7 and Eq. 2.8 are straightforward extensions of
Eq. 2.4 and Eq. 2.5, taking into account the distance between #; and ;.

The partial benefit values for each agent and destination node can be stored using a single tree
structure, where the partial benefit of an agent is a vector; each element indicating the partial
benefit for a different destination node. The grouping process follows the same principle as in
GRAL, but when merging two nodes the best destination for the leaf is selected for each
destination option of the next-level node, producing an equal number of combined placements
and partial benefit values for the resulting group node. The most beneficial vector’s entry of

final contracted node 1s chosen.

During the grouping phase, the benefit values are calculated based on the fact that each merge
“links” the parent agent a,, in the leaf node with the parent agent a, in the next-level node (a,, is
the child of a,, both hosted at »,). Let 1, and 7, denote the nodes (forming a sub-tree) that contain
these agents, and 1, denote the node that results after merging 7, with ¢,. Also, let pbt,,, be the
partial benefit of ¢, if a,, moves from #; on n,, and pbt,, the partial benefit for ¢, if a, moves

from #; on #,. Then the corresponding combined partial benefit for 7, 1s:

bl s = Db, + pBL,, —(C,, +C, )R, +h, +h,)| pr, =1 Eq. 2.9
To explain the third term, recall that pbf,,, is calculated as per E£q. 2.7 assuming that a,, (a child
of a,) remains at »; while, a, moves from »; on n,, and pbt,,, is calculated as per Eg. 2.8
assuming that a,, (the parent of «,,) will also migrate from #; on #, together with a,,. If this is not
the case (v=1), the benefit must be adjusted by (i) crediting the cost (C,,,+C,,)h;, assumed in
Eq. 2.7, (i1) subtracting the benefit (C,,,+C,,)h, assumed in Eg. 2.8, and (iii) subtracting the
load (C,,,+C,.,)h,, that will actually be incurred between a,, and a, from their new hosts. Note
that the third term disappears for v=u in which case the partial benefit of ¢,,,, equals the sum of

the individual partial benefits, as usual.

We illustrate how the algorithm works by revisiting the previous example (of Fig 2 Zand Fig
2.3) for k=2. Assume that »; invokes the algorithm for the sub-tree (7, J, K). The candidate
destination nodes, involved in the message traffic associated with one or more agents of this
sub-tree, are n,, n; and #1;5 (1, incurs no load and is omitted). 7able 2.2 lists the load and affinity

value for each agent and destination candidate. For instance, [J, /;5] is 3 due to the
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communication with agent j on ns, and [J, affis] is 6 (affis; = Lisihus — LidShis — Lizhys — (s
Lis)(his=hss) = 3%2—0%2 - 0*2— (6-3)*(1-1) = 0).

Table 2.2 Load cocfficients for the subtree

Agent (Lo, affy,) (L, aff;3) (Iis, affys)
1 (1, 1) ©, -1 0, -2)
J 0, -6) (6, 6) 3, 6)
K ©.-12) (6. 0) . -12)

Fig 2.6 depicts the initial state of the sub-tree where each node is associated with 3 different
partial benefit values, one for each of the candidate destinations nodes (listed below the
respective values). For instance, the partial benefits for n; are: —16 for I (ph;5; = affisi — L1u(A)h;s
=-2—(6+1)*2) as per Eq. 2.7, 18 for J (pb;s; = affiss — L(A)hys +2(Cy+Cyy Jhys = 6 —6%2
+2%6*2) as per Eg. 2.8, 10 for K (pbisk = affisk — Lix(A)hs +2(Cxy+Cyy Jhys = —12 —1%2
+2*1*2) as per Eq. 2.8.

Each merge produces 3 combinations whereby cach agent is scparately assigned to a
destination. Fig 2.7 shows the result of merging tree node K with / into a group node /K. Put in
other words, if / migrates on 7, the best destination for K is #; yielding a combined partial
benefit of -7, if I moves on #n; the best destination for K is #2; with a partial benefit of =7, and if 7
moves on #;5 the best destination for K 1s #; with a benefit of —15. The vector of final contracted
node IKJ becomes <11, 11, 3>, with the agent assignment on nodes being < (n,, n3, ns), (ns, ns,
ns), (ns, n3, ns)>. Hence, the algorithm will choose either the first or second entry, since both
carry the same migration benefit. For instance, if the first entry is chosen as the most beneficial
ong, this means that 7, K, J will migrate to #,, n;, ns, respectively; with the actual migration

benefit being 11.

<6, -8, -16> <-7,-7,-15>
<Nz, N3, Ns> <(ng2, na), (na, N3), (Ns, N3)>
I /IK
J/ \K J
<0, 12, 18>
<0,12,18> <-11,1, -10> <me e
N2, N3, N>
<Nz, N3, Ns> <Nz, N3, N5>
Fig 2.6 Tree construction phase Fig 2.7 Tree contraction phase

In terms of space complexity, for each group node the partial benefit vector is O(N’) in size, and

O(N ) of space is required to store the various placement combinations, where N’ is the number
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of nodes that are k hops away from the local node. Thus the aggregate space complexity is
O(A°'N*). The time complexity of the algorithm is dominated by the grouping phase because
cach merge involves calculating the partial benefits of O(N~) combinations, each individual

calculation done in O¢17). This yields a total of O(4 N *) for all locally hosted subtrees.

6 Handling capacity constraints

This section discusses how GRAL can be extended to tackle node capacity constraints. In a
nutshell, four main elements must be added: (i) infeasible migrations must be dropped; (ii) the
available free capacity of nodes must be “discovered” dynamically; (iii) capacity reservations
must be made before initiating a migration; (iv) we keep in a special vector the most beneficial
feasible merged node along with its actual migration benefit when considered as a standalone

entity.

GRAL checks the capacity constraint during the grouping phase of a subtree. If a leaf contains
agents that exceed the capacity of the destination, it is pruned. When running the algorithm,
some assumptions must be made regarding the free capacity of remote nodes. These
assumptions are then used to drop infeasible solutions. Obviously, these assumptions may be
invalid and must be confirmed in order to actually perform a migration. In terms of (iv), ecach
time two nodes are merged, we update the special vector to keep the merged node with the best
actual migration benefit. Finally, when the contraction phase completes, the merged node with
the best actual migration benefit is returned. The motivation behind this is that the finally
merged node may be an infeasible solution, therefore in that way we are able to choose the most
beneficial feasible solution. The algorithms are enhanced with the two locking schemes

proposed in the previous chapter (ILA and ILB).
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7  Experiments

The setting for the experimental setup took place in the same way as in Chapter 1.

7.1  Results without capacity constraints

In a first experiment we compare the placements obtained by the GRAL and AMA variants, and
the optimal algorithm without taking into account capacity constraints. Due to time complexity

owed to the exhaustive algorithm, we choose small-scale experiments (20-nodes, app-10).

Table 2.3 Peformance for Lavg and the 20-node network

Algorithm  Total Migrations Control Conv.

Load Msgs Time

initial 173.6 N/A N/A N/A

AMA-1 65.6 104 20.8 24
GRAL-1 582 14.8 228 2.6
AMA-2 61 7 14 24
GRAL-2 582 9.8 15.6 24
optimal 58.2 N/A N/A N/A

Table 2.3 summarizes the results of the aforementioned algorithms for an initial (random)
placement and the /avg model. The first observation is that the initial placement is quite bad,
incurring more than twice the total load of the optimal solution. In fact, both grouping variants
GRAL-1 and GRAL-2 consistently achieve an optimal result. In case of AMA, the 2-hop
variant produces better placements than the 1-hop variant, illustrating that in this case greater
network awareness is less prone to suboptimal lock-ins compared to lower awareness. This is
because the latter must perform hop-by-hop migrations in order for an agent to reach its final

destination, while former can transfer it through 2-hop jumps.

As expected, the 2-hop variants perform a smaller number of migrations compared to their 1-
hop counterparts, because they allow agents to move further away from their original hosts in a
single migration. The grouping migration (GM) algorithms result in more migrations than their
AMA counterparts, hinting to the fact that grouping avoids suboptimal lock-ins to which single
agent algorithms are vulnerable. Further attesting to this fact is the observation that GM
algorithms exhibit a lower control message per migration ratio than AMA, showing that it was
indeed possible to form groups assigned to the same destination (2 control messages are needed
per destination due to the protocol for avoiding swaps). In absolute numbers, however, GM

algorithms result in slightly more control messages than AMA algorithms, which is due to the
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larger number of migrations performed. A final observation is that the algorithms have much the

same convergence time (~2.5 periods).

The same experiment was conducted for the rest load models (Isum and /mix), with the optimal
algorithm being marginally better than GRAL variants. Specifically, the optimal algorithm
achieved 1% and 5% better performance against GRAL over /sum and /mix, respectively.
However, it was interesting to notice that AMA variants did not manage to bear fruit in /sum
and /mix load models, yielding an enough inferior performance of 30% and 22%, respectively,
against grouping variants. This is due to the fact that in these models the “bonds™ among the
relative agents become stronger, especially when the load between generic agents and their
parents is relatively heavy; exposing in that way the drawback of considering migrations in a
single agent manner, like AMA variants do. Hereafter, in the experiments we will always be

using the /avg model.

Finally, the experiment was also repeated for the special case where all generic agents are
initially placed on the same node (chosen randomly). GM algorithms once more achieved very
good results, close to optimal (compared to the exhaustive algorithm). AMA algorithms were

particularly bad due to their inherent lock-in problem.

7.2 Small-scale experiments

In the second set of experiments we compare the performance of the AMA-1, AMA-2, GRAL-1
and GRAL-2 algorithms for the ILB and ILA schemes versus the optimal solution obtained by
exhaustive search. To reduce simulation time (for the exhaustive algorithm), we choose again
the experimental setup to consist of a 20 node network and appl0. The evaluation is performed
for varying levels of “tightness™ of the capacity constraint. More specifically, we start with the
nodes having just enough capacity to store the agents defined in the initial placement and add

additional capacity to hold 1, 2, 3, 4 extra agents at each node.

Fig 2.8 depicts the percentage of load reduction achieved by the 1-hop variants. All algorithms
reduce significantly the load by more than 40% even in the case where the capacity constraint is
tight. Comparing against exhaustive search, we notice that the performance difference between
the algorithms and the optimal solution rapidly decreases as more capacity becomes available.
For instance, with surplus capacity of 1 the difference between GRAL-1 (ILB) and the optimal
result is more than 15% while with a surplus capacity of 4 it is less than 5%. This is due to the

fact that when capacity is scarce it is also more likely that nodes will be filled. A filled node
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essentially acts as a bottleneck separating the tree network into two parts. For [-hop algorithms
this means that these network parts cannot exchange agents: therefore, it is more likely to reach
a suboptimal solution. Obviously, exhaustive search doesn’t perform any real migrations in
order to find the optimal solution. thus doesn’t suffer from the effects of bottleneck nodes. The
increase in load reduction for exhaustive search should be attributed to the “generally
improved” optimization potential as the capacity of nodes increases and the setting gradually

shift towards the unconstrained case.

70 1000 -~
. 65
§ o | x"/x——l—)‘e—"x ::unn
(- g n\-ﬁ_ﬂ_—ﬁ
S =g | §100
g 50 | =
° —— AMA- —
g AMA-1 (ILB) = i 53
= 45 —B- AMA-1 (ILA) £ 10 -
" 40 - —A— GRAL-1(ILB) = —o—AMA-1(ILB) —B~ AMA-1(ILA)
Q —>%— GRAL-1 (ILA) o
35 - %~ opitimal —A—GRAL-1(ILB) —— GRAL-1(ILA)
30 T T T 1 1 T T T T
1 2 3 4 1 2 3 4
Surpl i ;
urplus capacity Surplus capacity
Fig 2.8 Load reduction Fig 2.9 Control messages exchanged
(20 nodes. app-10) (20 nodes. app-10)
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_ E 40 - —A—GRAL-2 (ILB) —>— GRAL-2 (ILA)
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2 30 : . : :
1 2 3 4 1 2 3 4
Surplus capacity Surplus capacity
Fig 2.10 Migrations performed Fig 2.11 Load reduction
(20 nodes. app-10) (20 nodes. app-10)

Concerning the relative performance of the 1-hop algorithms in Fig 2.9 we can observe the
following: (i) ILB achieves better placements than ILA for both AMA-1 and GRAL-1, and (i1)
GRAL-1 consistently outperforms AMA. except in the case of ILA and surplus capacity of 1.
Both observations are due to the fact that ILA works with estimates about the free capacity of
nodes, thus it may be impossible to perform the decided migrations. While through each failed
migration (and capacity reservation) attempt ILA updates its capacity information, this also

leads to a back-off. This delay might prove vital since in the meantime a bottleneck node could
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be created. This particularly affects GRAL-1 (ILA) because group migrations (two or more
agents destined for the same node) are more likely to fail due to outdated capacity information
when capacity is tight. AMA-1 (ILA) is less vulnerable to this effect because it only considers
single agent migrations. However, it is worth noting that the negative performance impact of
ILA in both AMA-1 and GRAL-1 applies only when capacity is scarce and diminishes when

capacity increases.

Unfortunately, the performance of the ILB scheme comes at a non-negligible cost. Fig 2.9 plots
the control messages generated in order to reserve capacity and avoid swaps. It can be seen that
ILB requires roughly one order of magnitude more messages compared to ILA. This is because
ILB greedily attempts to obtain locks from all neighbors, before running the actual algorithm
that determines the destinations for agent migrations, i.¢., regardless whether these nodes will be
chosen as migration targets or not. On the contrary, ILA tries to lock capacity only at the nodes
that have been selected as destinations for one or more agent migrations. It is also worth noting
that AMA-1 and GRAL-1 generate roughly the same amount of control messages. Another
interesting observation is that the number of control messages for ILB tends to decrease as
capacity increases. This is attributed to the fact that with larger free capacity a larger number of
migrations will succeed without experiencing back-offs or lock-ins due to filled nodes and it is
more likely to reach a good placement where agents will not need to move away from their
hosts. This is in line with Fig 2.1/ which plots the number of migrations. As it can be seen, the
number of migrations rises as capacity increases. It can also be seen that when capacity
becomes abundant, the GM algorithms are able to perform more migrations than the SAM

algorithms which suffer from lock-ins.

Fig 2.11 shows the results for the 2-hop variants, i.c., AMA-2 and GRAL-2. Most of the general
trends discussed for the 1-hop variants hold here too, so we choose to not show the figures
about control messages and migrations. Note, however, that the performance difference between
ILA and ILB becomes minimal for both AMA-2 and GRAL-2. This is a very encouraging result
considering the fact that ILB is very expensive in terms of control messages. To explain this
note that with 2-hop network awareness the number of capacity reservation conflicts for ILB
increases as a node can receive requests from a larger number of nodes. Thus, it is likely that
some agents will not migrate to the destination(s) assigned to them but rather to a (less optimal)
one hop neighbor of it, or not at all. This induces a similar effect to the one observed for ILA for
1-hop awareness. Namely, once back-offs occur and agent migrations are delayed, node

capacity may be filled with other agents thereby hindering migrations that would be more
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beneficial overall. In fact. notice that ILA quickly closes on and eventually overtakes ILB for

GRAL-2 as capacity increases. approaching an optimal result.

7.3 Large-scale experiments

In this set of experiments we gencrated networks of 50 nodes. Also, we deploy 5 applications
for each application structure (app-10. app-25. app-30) to svnthesize a mix of 15 applications
(app-mix). The algorithms being cevaluated remain the same (excluding optimal) under a
different range of surplus capacity (2, 3, 10, 20). The performance of the algorithms in this
setting a little bit different compared to the previous one: specifically the load reduction (Fig
2.12) ranges between 10 and 50 instead of 40 and 60 percentage units, respectively. This is
because in the previous setting, the proportion of agents needing migration per total surplus
capacity is less than this one, thus leading in a more tight placement, and therefore in less
migrations. Also, taking a look at the differences of locking schemes between Fig 2./2 and Fig
2.8, we notice that ILB scheme deteriorates with the increase of the network topology (we

attribute this to the increasing reservation conflicts).
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Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 2

~J
(=]

10000

——AMA-1(ILB)  —E—AMA-1(ILA) 1—e—AMA (ILB)
0 —A—GRAL-1(ILB) ——GRAL-1 (ILA) £ 60 - —EH-AMA(ILA)
£ = —A— GRAL(ILB)
@ Q—W 6 50 -
a o —>— GRAL (ILA)
2 1000 245 -
S H
= < 30 < -
8 ©
920
100 10 . . . . .
’ Su Iasca acitym % + 2 3 . 19
P P k-hop awareness
Fig 2.14 Control messages exchanged Fig 2.15 Load reduction
(50 nodes. app-mix) (50 nodes. app-mix)

In terms of control messages. we notice in Fig 2./3 that ILB continues sending much more
messages against ILA. with ILA having a more steep inclination compared to ILB. This is
claborated through the following remarks: i) the number of migrations increases in a linear
fashion (Fig 2.14) and the number of control messages, concerning ILA, are exactly twice the
number of migrations (request/reply messages). b) in ILB scheme, the number of locking
messages is amortized as the number of parallel migrations per node increases, since a node will
not send double reservation messages in case it trics to migrate concurrently more than one
agents. Summing up the aforementioned remarks, the control messages sent over ILA are linear
to the number of migrations, in contradistinction to ILB which is not the case as discussed
carlier. Therefore the aforesaid remarks explain ILA’s bland increase. Also, due to the fact that
we have observed a much similar behavior between 1-hop and 2-hop variants we chose to not

show the figures accounting for the control messages and migrations.

For the last experiment we fix the surplus capacity to 5 agents per node and vary nodes’
awareness to be between | and 10 hops. As we can see in Fig 2.15, GRAL achieves by far the
better performance compared to AMA, in both ILA and ILB schemes. More specifically, for
k=5 GRAL achieves roughly double the load reduction of AMA. The reduction itself is also
quite impressive (roughly 65% of the random initial placement). Notably. the load reduction
increases rapidly as hop awareness increases from | to 2 and 3 hops, stabilizing from 35
onwards. This means that modest network awareness (in this case, 1/3 of the network diameter)
is sufficient to reach good solutions, which is also quite important considering the

corresponding memory and runtime complexity implications.
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Conceming the capacity reservation schemes. ILA clearly outperforms ILB for both AMA and
GRAL with the difference becoming more pronounced as network awareness increases. [ig
2.16 also shows that ILB exhibits an exponential trend with regards to control messages

rendering this scheme inherently non-scalable.

Looking at Iig 2.17, which plots the number of migration performed, note that GRAL exhibits a
rapid increase as hop awareness increases from 1 to 3, then stabilizing and dropping afterwards.
The trend up to 3-hop awareness is due to the fact that increased hop awareness enables the
flexible placement of even more agents at even better destinations. Once a good placement is
reached. a further increase in hop awareness does not considerably enhance placement quality
(see plateau in Fig 2.15) but only has the cffect of decreasing the number of performed
migrations (or more precisely, the consecutive migrations an agent must do in order to reach a
good destination: a trend which is more clear for AMA). The above indicate an essential
property of k-hop aware algorithms, namely that significant load reduction can be achieved with
a relatively small value for k. Even larger k-hop awareness is not entirely without a positive
effect, since it results in a reduced number of migrations and a smaller number of control

messages for ILA.

A final remark concerns that the larger number of migrations performed by GRAL (ILB)
compared to GRAL (ILA) for k=3.4.5, actually leads to an inferior agent placement. We
attribute this to capacity reservation conflicts which become more likely for ILB as hop
awareness increascs. Such conflicts may lead to a suboptimal mapping of agents on nodes, with
increasing probability as hop awareness increases, on nodes that are further away from their
ideal destinations (and closer to their original hosts). In turn this may create bottlenecks that

hinder more beneficial migrations, without necessarily blocking them completely. Even though
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ILA can miss opportunities due to outdated capacity information, with increasing probability as
hop awareness increases, hence is likely to perform a smaller number of migrations than ILB,
precisely for that reason it is also less vulnerable to reservation conflicts thus is more likely to
perform migrations that are more beneficial/effective than those of ILB. The net effect seems to

be in favor of ILA even when performing fewer migrations compared to ILB.

7.4  Discussion

Summarizing the above, we can conclude on the following: (i) ILA is the more promising
locking scheme, in fact, ILB is only applicable for small network awareness; (ii) algorithms
using grouping outperform their counterparts in most cases but the ones where no network
awareness exists and the capacity is very restricted; (iii) network awareness especially when
applied to grouping algorithms together with ILA, drastically increase the quality of the
produced placement, while performing comparably fewer migrations and control message
exchange compared to non-network aware algorithms; (iv) in the unconstrained case GRAL-1

and GRAL-2 achieve optimal or close to optimal performance.

8 Conclusions

In this work we tackled (as in the previous chapter) the problem of placing the agents
comprising an embedded application to the available nodes. We proposed distributed
asynchronous algorithms to tackle both uncapacitated and capacitated versions of the problem,
considering agent migrations in the form of a group instead of standalone entities (Chapter 1).
Algorithms based on group migrations, outperform the ones considering migrations in a single
agent manner, with their performance being optimal in most cases when the nodes have no
capacity limitations; and near-optimal when nodes have enough capacity to host more than one
agents (group of agents). Also, grouping algorithms are in the process of being implemented in
POBICOS middleware, bestowing an extra quality on it against other similar systems, since

such an attribute proves to be of great importance regarding the energy depletion.
Part of this work has been published in the following conference:

* N. Tziritas, T. Loukopoulos,S. Lalis and P. Lampsas, “GRAL: A Grouping Algorithm to
Optimize Application Placement in Wireless Embedded Systems,” In Proc. IPDPS 201 1.
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Chapter 3

Identifying the worst-case bounds for AMA and
GRAL, and devising an optimal algorithm

1 Introduction

In this chapter we give an extensive analysis through lemmas and theorems about the
approximation ratios of AMA and GRAL against the optimal algorithm. Specifically we prove
that the worst-case scenario of AMA against the optimal algorithm is not bounded. As regards
the approximation ratio of GRAL against the optimal algorithm, it proves to be that expressed
by Eg. 3.1. With G denoting the number of generic agents into our system, while 5/2 being the
maximum number of the data an agent can send towards another one, each time the respective
network routine is called. It should be stressed that the aforementioned approximation ratio is
expressed Eq. 3.4, under the restriction that an agent cannot communicate with more than N
other agents (at most N incident edges). Also, we give some details as to why GRAL is not

optimal, and introduce a modification of GRAL (called GRAL*) which proves to be optimal.

Section 2 describes the application and system model as usual. Section 3 proves that the
communication cost difference between AMA and the optimal algorithm tends to infinity. In
Section 4 we modify GRAL into GRAL* and prove that the later is optimal when having no
capacity limitations; while Section 5 provides two worst case bounds of GRAL, with the first
ong concerning the case where an agent can have an arbitrarily large number of relatives; while
the second one considering the case that an agent is allowed to have at most N relatives. Finally

Section 6 concludes our work.
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; Eq.3.1
(G-2)*2B

1 Eq.3.2
(G_(w—‘_z)*ZB
N

2 Application and System Model

The application and system model continue being the same as that of Chapter 1, with the system
model being a little bit extended. Let /(a;) be the hosting node of a;. G and NG denote the
number of generic and non-generic agents, respectively. e, equals 1 when there is an edge
between a, and ay, otherwise 0. g, captures the data exchanged between a, and ay (g = Gy =
CytCyy). Let Eq. 3.3 represent the data exchanged between a; and the non-generic agents it
communicates with. £g. 3.4 and Eq. 3.5 capture the data exchanged between an agent (let ;)
and the generic agents it communicates with, with Fg. 3.5 excluding the co-located agents

communicating with a;. M denotes the migration of a, from »; towards »;.

Os, = 2 4yle, =1 Eq.33
a,eNG

Ov,=2.4,le, =1 Eq. 3.4
aeG

QN',j :Zqij |h(ai)¢h(aj)/\eij =1 Eq.3.5
a,€G

Let D be the diameter of the network, while B/2 be the maximum data an agent can send
towards another one, each time it calls the respective network routine, assuming that there is an
edge connecting those agents. Therefore the maximum volume of data can pass through an edge
at any instance of time is equal to B, with this happening when both involved agents send
towards one another B/2 data simultaneously. We say that an agent is individually balanced if
located on its center of gravity; otherwise we say that this agent is unbalanced. An agent (let a,)
is considered fofally balanced if thefollowing hold: a) it is individually balanced; b) there is no
subtree that contains a, after the contraction phase completes (see Sec. 4 in the previous
chapter). From now on we will interchangeably use the terms stabilization and balance,

rendering the same meaning.
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Definition1. The same equations/properties apply for either an individual agent or a group of

agents.

A group of co-located agents can be thought of as a super-agent, provided that these agents are
non-partitioned. The construction of a super-agent occurs by merging all the agents of the group
as follows: a) each edge that originates from any agent of the group and ends up on another one
not belonging to that group becomes an incident edge to that super-agent (originates from the
super-agent instead of that agent); b) we ignore any edge that originates from and ends up on an
agent belonging to that super-agent (internal edges). Without loss of generality we can assume a
super-agent is possessed of the same properties (equations) holding true for a regular agent. Let
A; denote such a super-agent. From now on, we will use interchangeably the terms super-agent

and group of agents.

3 Identifying the worst-case bound of AMA

Initially we prove AMA cannot be optimal through the following lemma.

Lemma 1: If the agents of an application are individually but not totally balanced, then it could

be found a migration of group of agents, which reduces the total network communication cost.

Proof. Assume a; and a, (non-generic agents) are hosted by #; and #;, respectively; while a,
and a; (generic agents) are hosted by #,, with the application and network structure being
illustrated in Fig 3.1 and Fig 3.2. Now assume the following hold: ¢,; > ¢,,,4;, and q;, >¢,,.
Observe that there is no beneficial single agent migration, since a, and a; are stabilized due to

the fact that there is no #; such that: /, , >/1,, + > L, and L, ;>1,,+ > 1, ;. Therefore,

x£j,2 x#=j,2
AMA cannot migrate any generic agent, with the total network cost being ¢,, + ¢,, . However if

we were able to migrate both a, and a; towards #; then the total network cost would become
2q,, > q,, +q,, . Hence, the total network cost could be further reduced by considering a group

agent migration.
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@ d23 as
O ¥ e
Lay | L ay |
Fig 3.1 Network structure Fig 3.2 Application structure

Corollary 1. AMA is not optimal.
Proof. It stems directly from Lemma 1.

Lemma 2. A placement of agents is optimal iff there is no agent or super-agent (group of

agents) being unbalanced (i.¢., the placement is totally balanced/stabilized).

Proof. It is similar to show that if a placement of agents (let P,) is totally balanced/stabilized,
then there is no other placement reducing further the total communication cost. Proof tries to
show this through contradictions of three assumptions described further down. Specifically, the
three assumptions to be contradicted, provided that the initial placement is totally balanced, are:
a) there is an agent/group migration that results in another balanced placement where the
network cost is reduced; b) there is at least one agent/group migration which leaves intact the
network cost on its own right, but reduces it via the help of other ones; ¢) the same as (b) with
the difference that there is at least one agent/group migration increases the network cost instead
of leaving it intact. For simplicity, to show the above contradictions we make use of only single

agent migrations (not groups), without loss of generality due to Definition 1.

Assumption A: Consider a migration of an agent ¢, from », towards an 1-hop neighbor 7,
under the assumption that the new placement is also totally balanced. Assume also that this
migration reduces the total network cost. Since @ is balanced independently of whether it is

located on 7y or n,, then the following hold:

lxuk = l)ock + Z lxmk Eq 3.6
mEU,x
mEu,x
lxuk > l)ock + Z lxmk Eq 38
mEU,x
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Since we claimed that the migration in question reduces the total communication load, then the
equation Fgq. 3.8 must hold true, which comes in contradiction with Eq. 3.6. Therefore a
migration like that cannot reduce the communication cost on its own, hence we consider the
case where such a migration cause other migration(s), where all of them reduce network cost. It

is straightforward to show that these case holds true when 7, is a k-hop neighbor.

Assumption B: Consider the previous case with the difference that instead of », we have an k-
hop neighbor (let ) and M, leaves the network cost intact. Assume also that after M, takes
place, a,, migrates due to stabilization issues (changes in load patterns), which means that a,,
has an edge towards a.. However, a,, cannot be located on any node other than #, due to the
following facts: 1) if a.,, was located on any node (like », depicted in Fig 3.3) across the path
between n, and n,, then M., would increase the network cost, which contradicts with our
assumption that M., does not increase/decrease the cost; ii) the same would hold if @, was
located on any node (like »¢ in Fig 3.3) using ny as a router to reach n,, with the restriction that
this node must not use 7, as a router; iii) if a,, was located on any node (like ;) before the path
between n, and #,, or after that path (like n,), then @, would not initially be balanced
(contradiction); iv) if a,, was hosted by #,, then a,, could not migrate anywhere since a,,, would
be eventually co-located with ¢, (contradiction). Therefore, we result in the fact that «,, should
be hosted by n,. However the migration of both «a,, and ¢ cannot reduce the network cost; since
that would mean that a group of agents is not stabilized which contradicts with the assumption
of an initial totally balanced placement. It is self-evident that the same holds in case we have

more than one agent (like a,,,) to be migrated.

Fig 3.3 Network

Assumption C: We omit the case where M, increases the communication cost without causing
any other migration, since in that case the final network cost will increase (our proof is based on
network cost reduction). Hence, assume M., increases network cost, with that migration

causing an extra migration of the agent a,, (with a,, having an edge towards a,, as previously)
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due to load changes, which finally reduces the initial network cost (i.e. the cost before M,
takes place). However such a situation could not happen since it is obvious that in the best case
(assume that there are only two agents into our system a, and &) a,, would amortize the cost
caused by My,. While in the worst case either My, should be “revoked” (by performing M.y,
or the migration of a,, would cause other migrations like the ones caused by M. As we can
observe such a kind of migrations may be performed in a recursive fashion till the boundaries of
the application tree are reached (root agent and non-generic agents), however without eventually

reducing the final network cost.

Summing up: It was shown that if an algorithm results in a totally balanced placement, then
there is no migration or a series of migrations of agents (or super-agents by making use of
Definition 1) that can take place to reduce the network cost further more. Therefore, we
conclude that a placement is optimal when all the agents are totally balanced (there is no

agent/group being unbalanced).

Theorem 1. The worst-case bound between AMA and the optimal algorithm is

(G-1D)*2B*D*T', with T denoting the maximum number of times the agents can send B/2

data units over the network.

Proof. Assume that in our system there are no unbalanced individual agents (without loss of
generality since AMA always results in a placement of no unbalanced individual agents), while
there exist one unbalanced group (let super agent A;). Since AMA cannot identify such a group
to migrate it to its center of gravity, the worst-case scenario is for 4, to be as farther from its
centre of gravity as possible (it is obvious that the optimal algorithm will decide to migrate this
group of agents to its centre of gravity). In order for AMA to incur as large network cost as
possible, while for optimal as small as possible, we need to decide which node will host A and
which node(s) will host the adjacent agents to 4. The best case for optimal algorithm is for the
adjacent agents of 4, to be co-located on the same node (let 7,), hence the optimal algorithm will
take the decision to migrate A, towards #,, with the network cost being zero. The worst-case for

AMA results by consulting the following function:

fG, )=t ~Lh— > L h -

sy iis” if ixs” ij

ini,j:Dy)C =0nhy, =1 Eq 39
Z (lixs _lius)(hjx_hix)|iju :lAhxu:l/\ui-]

Vi, j: Dy, =1
Let Eq. 3.9 be a function yielding the benefit/cost of migrating A, from #; to »;. The first factor

concerns the benefit of M;;; due to the load associated with A, and directed to #; when »; hosts 4.
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The second factor captures the cost of migrating A, due to the communication load with its co-
located agents. Third factor concerns the cost of moving A4, towards an opposite direction
against the nodes hosting agents communicating with 4, (excluding #;). Finally, the forth factor
signifies the benefit/cost — benefit when #, is closer to »;; while cost when it is closer to 7, —

of moving 4 towards #; in terms of the nodes located in-between #; and #;.

We demand that Fg. 3.9 be as large as possible in order for AMA to incur as large
communication cost as possible. Looking carefully on Eq. 3.9 it is obvious that when the first
factor increases then also the cost increases, while second and third factor contribute negatively

to the communication cost. In terms of 4™ factor, note that the following equation holds always

true /i, —h, <h,, hence it is worse (in terms of cost) to host an agent on #; instead of 7.

Therefore the worst-case is to have the relative agents of 4, located on #;, and the hop-distance

between #; and #; to be as large as possible, i.e., D.

Assumption A: Assume all generic agents participate into A, therefore all adjacent agents to A,
should be non-generic agents. Let #; be the initial hosting node of 4. Note that in order for each

agent g, participating into 4 to be individually balanced Eg. 3.70 should hold true:

Og + 0y < Z dulag,a, A Eq. 3.10
Vxieg=1
Y Q4 +0y)D Eq.3.11
Vkaped,
Qu+Owi= 2. B, Vk:a €4 Eq.3.12

Vxeg=lra,cA4;
Specifically Eq. 3.10 denotes that, Qg and Q- (considering that ¢, participates in the
unbalanced group) should be equal to or less than the accumulated communication load between
ay and each generic agent belonging into the unbalanced group. Eg. 3.7/ represents the network
cost induced by AMA due to the external load (Osx + Owk) of each agent a, participating into
A;. From now on, any reference to network cost will be inextricably linked with the fact that any
agent is able to send B/2 data units (towards each adjacent agent of its own) at most one time, 7’
= 1. The factor D in Eq. 3.11 is justified by an earlier remark that the adjacent agents to A
should be hosted by a node that is D hops away against the node hosting A;. Therefore the
worst-case scenario for AMA is for O, and Oy to be as large as possible, since AMA cannot
identify a migration to save this load/cost. Namely, given that: a) at most B data units can travel

over an edge (B/2 for each agent incident to that edge); b) each g, should be as large as possible
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(provided that gy and a; belong into 4;); we conclude that each such g, should be equal to B,

hence Eq. 3.10 becomes Eq. 3.12.

unbalanced group of generic
agents hosted by the same node

Qs 1 Qn 1 Qs> Qw2 Qs m Qn
Fig 3.4 Unbalanced group 4,

Initially we assume that only two generic agents do exist into our system (m = 2 in Fig 3.4).

Therefore, Eq. 3.1/ becomes equal to 2B*D, since Qg +0,,=¢,=B and
O, + Oy, =q, =B . In case of 3 generic agents (m = 3 in Fig 3.4) AMA results in a
placement where the network cost is equal to 4B*D, since Oy +0,, =q, =B,

O, + Oy, =G, +q45s =28, and O, +0,,; =q,, = B . For 4 generic agents the network cost

becomes 6B*D, and so on. Hence, we observe that for each internal edge of A, AMA incurs
2B*D additional cost. Therefore, due to the fact that our application is structured as a tree (in a
tree of G nodes G-/ edges there exist), the largest difference (in terms of cost) between AMA
and the optimal algorithm is equal to (G-1)*2B*D. Note also that the cost incurred by AMA is
independent of how the agents belonging into 4, are connected with each other, since it depends

only on the number of 4" internal edges.

Assumption B: In the sequel we proceed with the case that {a;..a5.,} belong to 4s, while ag not

to. Therefore, ag is either located on the same node hosting A4, or on another one.

Assumption Bl: In the first case the optimal algorithm will decide to migrate 4, from
towards the center of gravity (let »;). Note that the ideal case for the optimal algorithm is to
migrate also ag onto #;, however it could not make such a decision since in that case as would
belong into A, which comes in contradiction with Assumption B. This means that the load Osg
cannot come from #;, also One cannot be greater than Osg (since in that case ag would belong

into Ay). The worst case for AMA (best for the optimal algorithm) is the Ong to be as high as

possible, and a¢ to migrate as close to 1; as possible (let this node be n,) with 42, =1, and with
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n, being the source for the external load (Uss. As a result, the cost incurred by the optimal
algorithm is that of the communication between ag and the agents belonging to 4 (Eq. 3.13).
While AMA incurs cost equal to the external load of both 4; and as multiplied by the hops
traversed (h;; and i respectively); the external load of A is equal to (G-1)*2B, while the

G-1
external load of ag cannot be greater than Z q.les =1na, € A due to the fact that ag must
i=1

be individually balanced on #; (our initial assumption). Note also that ag cannot be connected
with more than one agent belonging to 4, due to the fact that: a) the application is structured as

a tree; and b) the agents belonging to A; must be non-partitioned (Definition 1). Therefore the
external load of ag cannot be greater than ¢, |e,, =1na, € A . As a result the communication

cost of AMA is represented by Eg. 3.74, which is less than (G-1)*2B*D.

G-1

hszin |eiG =1ra e As Eq.3.13
-1

(G—Z)*ZB*hij +B*h, =(G-2)*2B*D+B*(D-1) Eq.3.14

(G=2)*2B*h; +B*h, =(G-2)*2B*D+B*D Eq.3.15

Assumption B2: Consider now the second case where a; is initially hosted by a node other than
n;. In order for the optimal algorithm to pay no cost, the best-case scenario is for #; to initially
host ag. The worst-case scenario for AMA is for ag to be as far away in terms of #; as possible
(i.e on ;). Following the same rationale as that of £q. 3./4, with the difference that /;, must be
replaced by /4, we end up on Eg. 3.15 which is less than (G-1)*2B*D.

Summing up: the worst-case scenario of AMA is that described in Assumption A (all the
generic agents belong into the unbalanced group). Note also that in case that 7" tends to infinity
the communication cost difference between AMA and the optimal algorithm tends also to

infinity.

4 GRAL*: Modifying GRAL to become optimal

Lemma3. The way GRAL chooses the destination node (the most promising neighboring node)

for a potential migrating group may lead GRAL to result in a sub-optimal placement.
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Proof. When GRAL runs on a node it chooses for each non-partitioned collection of locally-
hosted generic agents (disjoint subtree) the most promising destination node in order to proceed
with the subtree construction/contraction phase. Specifically, when GRAL runs on a node (let
ny) records: a) for any neighboring node (let ) the communication load exchanged between the
generic agents located on node 7, and the generic or non-generic agents located on either #, or
on a node using »y as a router; b) the load exchanged between #,’s locally-hosted generic and
non-generic agents (without taking into account the load between locally-hosted generic

agents). For example, assume that only two nodes does exist into our system (#; and ny).
Consider that », hosts the agents a;, @,,, a, and a; depicted in Fig 3.5, while a, and a, are

hosted by 7,. Note that the current network cost is equal to 20, while in case of migrating both
a, and a; towards 7, the network cost becomes 1. Note that GRAL is not able to identify this
beneficial migrating group due to the fact that when GRAL runs on 7, it finds out that the most
promising destination node for any potential migrating group is #, itself; since the accumulated
local load is totaled 100 which is greater than the accumulated remote load associated #,, which
amounts to 20. A solution to this drawback is for GRAL to proceced with a tree

construction/contraction phase for all the neighboring nodes of the node it runs on.

unbalanced group of generic
agents hosted by the same node

1 10
aj \ ay as
100 10 10

Fig 3.5 Unbalanced group of 3 agents

Lemma 4. The fact that the root agent of a sub-tree cannot be pruned (when contraction phase

takes place) may lead GRAL to result in a sub-optimal placement.

Proof. The only agent that cannot be pruned when contraction phase takes place is the root
agent. Consider again the example of Lemma 3 where GRAL is possessed of the ability to

proceed with the tree construction/contraction phase for all the neighboring nodes of the running
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node. Assume again the example described previously and depicted in Fig 3.5. Let GRAL
construct a sub-tree (rooted on a;) for the potential destination node », (Fig 3.6). Observe that
when the contraction phase completes the final merged/contracted node has negative benefit
which leads GRAL to cancel the decision to migrate this group. However if GRAL constructs a

sub-tree rooted on a, (Fig 3.7), it is able to identify a beneficial migrating group and result in a

better placement.
-101 -1 -1
a 101 o o
1 a -80 19
a - > | a1, a2, a3 ’ h, &
21
-99 20 20
ar, A
20 2, U3
a [42] a3
as
Fig 3.6 subtree rooted on a, Fig 3.7 subtree rooted on a,

Lemma 5. If the root agent of an identified sub-tree belongs to an unbalanced group (let 4;) of
agents, then after the contraction phase GRAL will identify a beneficial migrating group (and

migrate it in an optimal way) which is identical to 4.

Proof. Recall that in the construction phase of a sub-tree, each agent belonging to that sub-tree
is assigned a partial benefit for its migration towards a promising destination (let pn,). Due to
the nature of partial benefit calculation, if an agent is located at the bottom level of the sub-tree,
then the partial benefit of that agent corresponds to the upper bound benefit of its migration

towards pn,.

Assumption 1: Consider that GRAL decides to construct a sub-tree of only two levels based on
pn,. Assume also that a part of this sub-tree represents an unbalanced group of agents where the
optimal algorithm will decide to migrate it towards #, (with the root agent belonging to the

unbalanced group). This part of the sub-tree is called optimal migrating group.

If there are agents at the bottom level of the sub-tree, which have partial benefit equal to or less
than zero, then GRAL will take the decision to prune them. Note that the optimal algorithm will
decide to remove these agents from the optimal migrating group as well, since their upper
bound migration benefit will be less than or equal to zero. Therefore GRAL’s decision to prune
them is correct. The rest bottom-level agents have positive partial benefit each, which means
that if their parent (in terms of the sub-tree structure) migrate also, then their actual migration

benefit should be greater than zero. It is obvious that the optimal algorithm will decide to
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include these agents into the optimal migrating group, with the latter being consisted of the
agents in question plus the root agent. According to GRAL’s contraction phase, these agents
will be merged (along with their partial benefits) with the root agent. Of course, in order for
GRAL to perform the migration of the group represented by the final contracted node, the
partial benefit of the latter should be greater than zero. Note that this partial benefit is equal to
the actual benefit of migrating the group represented by that node. According to the optimal
algorithm this actual migration benefit is positive, therefore GRAL will take the optimal

decision to migrate that group.

Assumption 2: The same as Assumption [ with the difference that the sub-tree is consisted of
three levels instead of 2. In the first step GRAL will proceed with the merge/pruning of the
bottom level of the tree. As said earlier, each leaf contributing negatively will be pruned (the
optimal algorithm will take the same decision). The rest bottom-level agents will be merged
with the next upper-level nodes (which nodes represent agents), since they have positive partial
benefit. Therefore, we result in a case identical to that of Assumption 1, with the difference that
some of the bottom-level nodes may represent super-agents instead of individual ones. By
making use of Definition 1, we conclude that GRAL will migrate the same agents with the

optimal algorithm.

Assumption 3: The same as assumption B with the difference that the sub-tree is consisted of 4
levels instead of 3. Following the same rationale as previously, we conclude that this case is

reduced to the case of Assumption 2. Therefore, GRAL again takes the optimal decision.

Iteratively, in general the case where the sub-tree is consisted of » levels is always reduced to
Assumption 1. As a result, we conclude that if the root agent of a sub-tree belongs to an

unbalanced group, then GRAL will identify and migrate this group in an optimal way.

Definition 2. GRAL* is a modification of GRAL tackling the drawbacks brought out by lemma
3 and lemma 4 through the following way. For each possible pair (4;, n5)— where 4; is an
identified sub-tree and #4 is the potential destination node of that sub-tree — GRAL* constructs
as many sub-trees (containing the same agents with A,) as the number of the agents belonging to

A, with each such sub-tree being rooted on a different agent.
Lemma 6. Each unbalanced group is contained in one of GRAL’s sub-trees.

Proof. According to the sub-tree identification phase (described in Chapter 2, sec 4.2), GRAL

organize all the locally hosted agents into sub-trees (co-located non-partitioned generic agents).
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Since an unbalanced group is consisted of non-partitioned locally hosted agents, it is obvious

that each unbalanced group should be contained by some GRAL’s sub-tree.
Theorem 2. GRAL* results always in an optimal placement.

Proof. According to Lemma 6 and Definition 2, for each unbalanced group there is always a
GRAL¥*’s sub-tree where a) it includes this unbalanced group, and b) the root agent of this sub-
tree belongs to this unbalanced group. Combining the above with Lemma 5, we conclude that
GRAL* will identify all the unbalanced groups and take the optimal decision for them. This
means that GRAL* will always result in a totally balanced placement, which in combination

with Lemma 2 prove GRAL*’s optimality.

5 Identifying the worst-case bound of GRAL

Theorem 3. The approximation ratio between GRAL and the optimal algorithm is

1

—— for G >2, otherwise GRAL is optimal.
(G-2)*2*B

Proof.

Part A: In this part we prove that GRAL is optimal when G <2 GRAL. It is obvious that when
G =1 AMA is optimal (it stems from Lemma 2) so GRAL is optimal too, so we need to
consider only the case where (G =2 . Since sub-optimality of GRAL is attributed to Lemmas 3
and 4 (GRAL* becomes optimal by overcoming the drawbacks brought out by these lemmas),
we only need to show that these lemmas do not hold true for the case of G =2 . Getting started
with Lemma 3, we can observe that in case GRAL cannot identify any promising neighboring
node, then either both generic agents are individually and totally balanced, or one of them
misleads GRAL to take the decision that the promising destination node is the local one. This
means that only one generic agent is unbalanced, in which case both AMA and GRAL are able
to identify such an individually unbalanced agent, and hence Lemma 3 does not hold true.
Proceeding with Lemma 4 we predicate that it also does not hold true. As regards Lemma 4, it
doesn’t hold true (in terms of (G =2) as well; this is due to the fact that when the identified
sub-tree 1s rooted on an agent not belonging to an unbalanced group, then it is obvious that only
individually unbalanced agents there can be. Hence, it is self-evident that Lemma 4 does not

hold true.
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Part B: Here we see the case where G > 2. We extend Fig 3.5 into Fig 3.8 in order for both
data exchanged between agents and the number of agents to be arbitrarily large. Let /oc(Qs))
and ex#(Qs;) denote the local respectively remote load attributed to the data exchanged between
a; and its adjacent non-generic agents. Assume the case where only 3 generic agents there exist,
and they are hosted by some node »n,. Let m=2 in Fig 3.8, then a; and a, will belong to the
unbalanced group, while a; will be totally balanced. Note that in our case O,,, (V1) is equal to
0, since all generic agents are assumed to be co-located. Also in order for GRAL to not be able

to identify that unbalanced group (for the sake of proof) we need Eq. 3.16 to hold true.

QS,m+1 + QN',m+l = (G _2) *2B Eq. 3.16
2.ext(Qs )+ 5 *D Eq. 3.17
Y ext(Q;,)+2B*D Bq. 318
> ext(Qs )+, ¥ D
: Eq.3.19
Y ext(Qs,)+2%*B* D
1 Eq. 3.20
(G-2)*2B q.3.

According to those discussed in the previous paragraph, the optimal algorithm and GRAL will
result in a placement where the communication cost is equal to that expressed by Eg. 3.17 and
Eq. 3.18, respectively; with 2B*D stemming from Eg. 3.7/2, by following the same rationale as
that of assumption A in Theorem 1. Therefore their ratio is given by Eq. 3.19, which lessens in
case both external loads and ¢, 5 are equal to zero. However ¢, 5 could not be equal to zero since
in that case GRAL would identify the unbalanced group, resulting in that way in an optimal
placement. Hence, ¢,5 is set to 1 (the minimum feasible value) with the worst-case bound

becoming 1/2B. Following the same rationale as above we conclude that for G=4 (m=3 in

Fig 3.8) the worst-case bound becomes 1/4B, while for G =35 we have 1/6B. Finally, by

reduction to an arbitrarily large G, we conclude that the worst-case ratio is given by Eq. 3.20.

Following the same reasoning as in 7heorem [ we conclude that a) the network cost incurred by
the resulting placement of GRAL is independent of how the agents belonging into the
unbalanced group are connected with each other; b) the more the agents belonging to the

unbalanced group the more the network cost incurred by the resulting placement of GRAL; ¢)
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the totally balanced agent (a.,+1) should be adjacent with only one agent of the unbalanced
group. Else, the collection of a;..a,, would be partitioned due to the tree-structured application;
in other words, the number of the agents belonging to the unbalanced group could not be greater
than G-1, lessening in that way the worst-case bound (not desired).

unbalanced

group
QS,m+l QN’,m+

qm,m+ 1

Am+1

Fig 3.8 Unbalanced group of G agents

1
(G—(MW—Z)*ZB
N

under the following restrictions: 1) the number of incident edges to an agent is at most N and at

least 3; and i) G > 2.

Theorem 4. The approximation ratio of GRAL is equal to

Proof. In order for GRAL to result in a non optimal placement (the same rationale as in
previous proof), it is required £q. 3.2/ to hold true. Also, due to the fact that an agent cannot
have more than N adjacent agents, £q. 3.22 should hold true as well. Equating Eq. 3.2/ with Egq.
3.22 we get Eq. 3.23. Specifically, the positive part of the latter equation specifies the external
load of the agents participating into the unbalanced group, while the negative part concerns the
local load of the totally balanced agent. However, Eg. 3.23 does not hold true for any possible
combination (G, N), thus enabling GRAL to identify the unbalanced group depicted in Fig 3.8
(which spoils the proof). So it is needful for Eg. 3.23 to be modified to hold true for any
combination (G, N).

This can be achieved by having the negative part of Eg. 3.23 to always surpass the positive one.
Note that the positive part of that equation decreases when the number of agents participating
into the unbalanced group decreases; of course this means that the number of agents belonging
to the totally balanced group increases proportionally. Therefore, assuming (G—1—Fk agents

participate into the unbalanced group instead of G —1, Eq. 3.21 is transformed into Eq. 3.24.
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Note that the number of totally balanced agents (called totally balanced group) is k£ +1, instead
of 1, consequently Fg. 3.22 is transformed into Fq. 3.25. Fig 3.9 illustrates such a scenario, with
the unbalanced agents being m=G-—1—k, while the totally balanced ones being
n—(m+1)=k+1. Note that the second part of Eq. 3.25 is attributed to the fact that when the

totally balanced group is consisted of k£ +1 agents, then all these agents are able to have a total
k

of at most Z (N —2)+(N —1) adjacent non-generic agents. Putting these all together, we infer
i=1

that for each agent being transferred from the unbalanced group to the totally balanced one, the

positive part of Eg. 3.2/ decreases by 2B since the internal edges of the unbalanced group

decrease by 1; while the negative part decreases by (N —2)* B . As aresult, Eg. 3.21 becomes

Eq. 3.26 (by equating Eq. 3.24 with Eq. 3.25), with k denoting the agents transferred from the

unbalanced group to the totally balanced one.

QS,m+1 +QN',m+1 2 (G—Z) *2B Eq 3.21
QS,mﬂ +QN',m+1 < (N_l) *B Eq 322
(N-1D)*B>(G-2)*2B=>(G-2)*2B—(N-1)*B<0 Eq.3.23
k+1
Z(Qs,mﬂ' +QN',m+i) 2 (G_ 2_k) *2B Eq 3.24
i=1
k+1 k
Z(Qs,mﬂ' +QN',m+i) = Z((N_z)*B)_(N—l)*B Eq 3.25
i=1 i=1
k
(G-2-k)*2B—(N-1)*B-)> (N-2)*B<0 Eq. 3.26
i=0
p | (G=D*2B(N-D*B :(ZG—N—3—‘ Eq. 327
2B+(N-2)*B N
1
— N = Eq. 3.28
(G—(ZGN]H—‘—Z)*ZB

What it remains is to decide the value of & in order for Fg. 3.26 to hold always true, keeping at
the same time this equation as close to zero as possible in order for GRAL to be as worse as
possible. This value is given by Eq. 3.27 which says that assuming an unbalanced group of
G —1 agents and a totally balanced group of only 1, how many agents we need to transfer from

the unbalanced group to the totally balanced one in order for that equation to become equal to
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or less than 0. Recall that for each such transfer, the positive part of £g. 3.26 decreases by 2B,
while the negative one decreases by (N —2)* B, giving a total decrease of 2B+ (N —-2)*B.
Putting all these together, we infer that the unbalanced group is able to have at most G—k —2
internal edges. Following the same rationale as in Theorem 3 — that is, for each internal edge

(G —k —2 in total) inside unbalanced group, GRAL incurs network cost equal to 2B — we
conclude that the approximation ratio is given by Eq. 3.28.

unbalanced group
of co-located node-
neutral agents

%Iy balanced

group of co-located
node-neutral agents

Fig 3.9 Unbalanced and totally balanced groups

6 Conclusions

In this chapter we discussed the bounds for the algorithms proposed in Chapter land Chapter 2,
and showed that AMA can not be bounded. We also proposed two simple changes for the

GRAL algorithm, making it in that way to result always in the optimal placement.
Part of this work is going to be submitted in the following journal:

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Identifying the worst-case bounds
for AMA and GRAL, and devising an optimal algorithm,” to be submitted in IEEE

Transactions on Parallel and Distributed Systems.
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Chapter 4

Introducing Agent Evictions to Improve Application
Placement in Wireless Embedded Systems

1 Introduction

In the previous chapter we proved that GRAL can be transformed into an optimal algorithm
(GRAL*), provided that there are no storage-constrained nodes. However, the agent migration
problem continues being intractable for the case where the nodes of the system have storage
capacity limitations. Specifically, we prove that the agent migration problem is NP-complete
through its reduction to the well-known knapsack problem [56], considering no capacious (in
terms of memory) nodes. The algorithms proposed in this chapter are designed in a more

sophisticated way against the solutions proposed in previous ones.

This work introduces the concept of “evictions”. Specifically, the term “eviction” represents a
migration of an agent without aiming at reducing network cost, but at increasing the free storage
capacity of the current hosting node. Of course such a migration it does not come for free
(network cost increases), since it is distanced from its center of gravity. It should be stressed
that an agent eviction takes place iff there is a guarantee that the induced network cost will be
amortized by some other migration. The former migration is also called space-effective, while

the latter one 1s named cost-effective.

The algorithms proposed take the decision for migrating an agent based on a fully distributed
manner. Specifically, a cost-effective migration is considered in the same way as a migration in

Chapter 1, while the decision for a space-cffective one is taken in a different way described in
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the following sections. Note that these algorithms are enhanced with a mechanism to stop/start,
in a dynamic way, the dispatch of control messages exchanged for discovering potential
destination nodes with enough free capacity to host a migrating agent. This mechanism is
referred to as a radio silence mechanism, and can be also applied to ILA and ILB protocols to

decrease considerably their control messages.

The rest of this work is structured as follows: section 2 describes the problem formulation,
application and system model; section 3 presents the proposed distributed algorithms; section 4

section provides the experimental evaluation of the proposed algorithms through simulation.

2 Application, System Model and Problem Formulation

Since the application model of this chapter is the same with the previous ones we referred the

reader to Chapter 1.

2.1 System model

The system consists of nodes with special sensing/actuating capabilities and limited storage
capacity. Let n,and ¢(n;) denote the i node and its hosting capacity, respectively. Note that the
capacity of a node imposes a generic constraint to the number of both node-neutral and node-

specific agents it can host.

Nodes communicate with each other via short-range radio. We assume a tree-based routing
structure, whereby any two nodes are connected via a single, possibly multi-hop, path. Let #;
denote the number of hops between n; and n;. We assume that the links of the routing structure

are bidirectional, thus »;=r;;. Also, r;=0.

The system can host several applications, each one having its own node-neutral and node-
specific agents. Let ay, s(ay), h(oy) be the £ agent in the system, its size and the node hosting it,
where 1<k<NA and NA+1<k< NA+SA enumerates all node-neutral and all node-specific agents,
respectively. An agent o may exchange messages with its relatives (parent or children) in the
application tree, let RS.. Also, let 7 be a (NA+SA)x(NA+SA) matrix that encodes the
communication between agents. Specifically, 7%, denotes the unidirectional traffic from a; to
O, 1.€., the number of data units o, sends to a,, over a specific period (note that, in the general

case, 1T
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2.2  Problem formulation

The objective is to reduce the amount of wireless traffic between nodes due to the application-
level communication, i.¢., the messages exchanged between agents. Without loss of generality,
we assume the agents of an application are placed on the nodes of the system in a non-optimal
way. Then, our goal is to perform a series of agent migrations in order to achieve a better agent

placement that reduces (ideally, minimizes) the wireless network traffic.

In the sequel we provide a proof sketch that the agent placement problem is NP-hard by
reduction to the knapsack problem. Assume a knapsack instance with £ objects, each denoted
with o0;. Let s;, v; be the size and value of o; and § the size of the knapsack. The knapsack
problem consists of finding the collection of objects of maximum value V' that fits in the
knapsack. We can transform any such statement to an equivalent statement of the agent
placement problem studied in this work, as follows. The application tree consists of the root and
two more levels. In the first level, k& generic agents (let @) exist, corresponding one to one to the
knapsack objects. In the second level, £ non-generic agents (let ;) exist, such as each generic

agent ¢; communicates with exactly one non-generic agent a; and vice versa.

The communication cost between the tree root and the generic agents is set to be e, where
e<min(v;), and between the generic agent ¢; and the non generic a; is set to be vi-e. Two nodes
exist in the network #; and »,. All the generic agents initially rest at »;, while 7, holds all non-
generic agents together with the application root. The size of a generic agent a; is set to the

corresponding knapsack’s object size (s;), the size of the root agent is set to: 1+Y_s, , while the
Vi

size of the non-generic agents can be any positive number. Finally, the capacity of »; is set to

D5, , 1., just enough to hold the generic agents allocated there, while the capacity of », is set
Vi

so that ' free capacity remains. In the constructed agent placement problem instance, the
network load is due to the agents of the first level (that rest in 77) communicating with the root
agent and the agents of the second level (that rest at #,). The total load of this assignment is

> (v, —e)+ > e=>v,. In order to minimize this load the only possible migrations involve the
Vi Vi Vi

agents of the first level moving from #, to n,. This is due to the fact that the agents of the second
level are non-generic (thus cannot move), while the root agent has size greater than the capacity
of ny. It is easy to see that each migration of ¢; from #n; to #,, decreases the network cost by v;

and can only be done provided that the free space S at », is not covered. Thus, a solution to the
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aforementioned agent placement problem instance provides a solution the initial knapsack

nstance.

2.3 Migration benefit/penalty and eligibility

We focus on a distributed solution whereby each node decides locally which agents to migrate

on which nodes, based on the agents’ incoming and outgoing load with other agents

Using the previous notations, the load that g, incurs into the system if hosted by #; can be

expressed as follows:

=2 Gt )0, Eq. 4.1

a, €RS,
Let M refer to the migration of a from »; to n;. The benefit/penalty of M, in terms of the load
difference (positive or negative) of the placement obtained after M takes place compared to

the current placement, is given by:

By =17 -If Eq. 4.2
For M,.’J‘. to be eligible, a; should be node-neutral and the destination node »; should have
enough free capacity:

a,. 1<k <NA Eq. 43

cn,) = s(a,) +N/iSA s(a,) | h(a,) =n, Eq. 4.4

m

Each migration M leads to a new placement, which may incur a lower or perhaps a higher
agent-level communication over the network, depending on whether B is positive or negative.

In the former case we refer to the migration as beneficial else non-beneficial. But note that not

all beneficial migrations are ¢ligible, due to the capacity constraint (Eg. 4.4).

2.4 Evictions

To alleviate this problem we consider performing possibly non-beneficial migrations that free
node capacity. We refer to such migrations as evictions. The idea is to exploit the capacity being
released this way to perform beneficial migrations. Obviously, per definition, evictions cannot

(by themselves) reduce the amount of application-level traffic over the network. In order to
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achieve this, evictions must be followed by at least one migration with a benefit that outweighs

their penalty.

In the sequel we give an example to illustrate this scenario. Assume the application depicted in
Fig 4.1, which comprises four node-specific (as, a, as, ag) and two node-neutral (a;, a-) agents.
The link weights represent the message traffic between agents (as the number of data units
exchanged per time unit, ¢.g., bytes per second). Also assume the application is deployed in a
network of seven nodes as shown in Fig 4.2, where each node has enough capacity to host only

one agent.

a4

N2 Nz
Fig 4.1 Application structure and traffic Fig 4.2 Initial application placement

Let us first consider node-neutral agent «;. There is no better placement for it, because every
migration of a; away from #; is non-beneficial as per £q. 4.2. Let us now consider agent ¢-. In
this case, a migration from #, to #; would vicld a benefit of 9 as per Eg. 4.2. But note that M,
is not feasible due to the capacity constraint (£q. 4.4) for n;. However, this can be made feasible
by evicting a; to n4 at a penalty of 1. If both migrations are performed (M) followed by M2, )a
better placement will be obtained for the application, with a benefit of 8 vs. the current

placement.

3  Heuristics

In this section we proposc heuristics that consider evictions, which in turn enable a beneficial

migration so that the cumulative benefit/penalty is positive.
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3.1 Single path algorithm (SP)

In this algorithm each node iterates through the list of locally hosted node-neutral agents to find
the one (if any) that is most beneficial to migrate to a neighboring node. Then, it sends to the
respective destination a hosting request with the identifier of the agent to be migrated, its size

and the benefit of the migration as per £q. 4.2.

When a node receives a hosting request it checks if it has enough free capacity to host the agent
in question, in which case it sends a positive reply. Else, it considers one or more evictions (in
increasing order of their penalty) until enough free capacity is secured (or the cumulative
penalty outweighs the benefit of the request). Then, or each such eviction, a hosting request is
issued carrying the remaining benefit (used to decide for more evictions downstream). If all
replies are positive and the total penalty does not exceed the benefit, a positive reply is sent

back to the node that issued the hosting request.

When a node responds positively to a hosting request, it reserves the capacity required to host
the agent in question, including the capacity (still) being used for the agents that are to be
evicted. This ensures that it will be possible to perform the respective migration, if the node that
issued the hosting request decides to proceed. Such reservations are cancelled when a node
receives a negative reply. Also, in the case of eviction groups, if a single reply is negative then a

cancellation message is sent the nodes that replied positively.

Finally, to avoid races, an agent is not considered for several migration or eviction processes
simultancously. Also, we limit the degree of “recursive” forwarding of hosting requests via a

hop limit specified by the nodes that initiates the migration process.

Table 4.1 Pscudocode description of SP

protocol execution on source node 7z
for each local node-neutral agent a;, {
for each neighbor node n, {
calculate potential benefit B,
update most beneficial migration m

3

h

if (m.benefit > 0) {
send (m.dst, [HostReq, m.aid, m.asize, m.benefit]);
recv(m.dst, [HostReply, res, penalty]);
if (res=OK) { start migrationm }

b
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destination n,; receives from n, [HostReq, aid, asize, benefit]
if (freeSpace > asize) {

reserveSpace(asize);

send (1, [HostReply, OK, 0));
b
else {

evict == {}; espace = 0; penalty = 0;,

do ¢

for each local node-neutral agent o, not in evict §
for each neighbor node r,- #n; {

calculate potential benefit B,

update most beneficial migration m

3

h
penalty = penalty — m.benefit, // >0 for evictions

if (penalty >= benefit) { break; }

evict = evict + {m};

espace = espace + m.asize,
} while (espace + freeSpace <= asize);
if (penalty >= benefir) { send (n,, [HostReply, NOK, 0]); }
else {

reserveSpace(fireeSpace + espace);

rembenefit .= benefit — penalty;,

for each m in evict {

send (m.dst, [HostReq, m.aid, m.asize, rembenefit]),

replies ;= {};

for each eviction m in evict {
recv(m.dst, [HostReply, res, penalty2));
penalty .= penalty + penalty2;
replies = replies + {res};

h

if (all replies are OK) and (benefit > penalty) {
send(n,, [HostReply, OK, penalty));,
for each m in evict { start migration m }

b

else {
send(n,, [HostReply, NOK, 0]);
for each m in evict { cancel reserved space }

b

b
b

3.2 Network flooding algorithm (FL)

In SP a node chooses to evict agents in increasing order of the respective penalty. However, the
latter is calculated locally, without knowing what the actual penalty of such migrations will be
(an eviction may lead to further evictions downstream). To address this problem, we propose an
algorithm where the agent to be evicted is chosen based on the smallest “total” penalty of this

action.
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The main difference compared to SP is that the algorithm determines the cost of an agent
eviction by investigating all possible destinations; not just the most promising one according to
local knowledge. More specifically, a so-called probe request is sent to cach destination that is a
candidate for hosting the agent to be evicted. When all replies arrive, the one with the greatest
benefit (smallest penalty) is selected and the corresponding node is appointed as the destination

for the migration/eviction in question.

Probe replies travel back the same way hosting replies do, with the difference that a reply also
includes, besides the cumulative penalty, the respective eviction list. Eventually, the node that
started the process (issued the probe request for the beneficial migration) receives such a reply.
If this is positive, a hosting request is sent downstream. ¢lse the migration is (silently) cancelled.
Unlike in SP, a hosting request specifies the evictions to be performed, therefore a node knows

which agent(s) it has to evict to which nodes.

For example, consider an application that is deployed in a network of nodes as shown in Fig
4.3. Assume that each node is able to host one agent, and that all agents depicted in Fig 4.3 are
node-neutral and of the same size. Also, without going into the details of the agent-level

message traffic, let the benefit/penalty of agent migrations is as listed in 7Table 4.2.

Table 4.2 Benefit/penalty per migration

M), M}, M, M3, M M,
20 -7 -2 -1 -5 -5

PrRp(OK. 1. {M35}) PrRp(OK.0.{})
(5)« (4) <

PRGMEI3 (o) PRAM12) 5,

PrRp(OK.8, {M3,,M3}) f
8)———— N3 .
N4 o as ) Ny
e L i

PrRq(M],.20) ) n 5| g N

5 »(2) p »(3) — . P4
PrRq(M,,18) PrRq(M j.13) PrRq(M,.8)
(7) §R K10 M4 M (G 5 s ®)
TRp(OK.10. M M _3) PrRp(OK.5,{MS,}) PrRp(OK.0. {}

Fig 4.3 Example with probe requests/replics

Given that the only beneficial migration is that of a; from n; to n,, node n; will send a probe
request to n; with a benefit value of 20. Since #> does not have enough free capacity to host a,.,

it will consider evicting @, to n; with a penalty of 7, or to n, with a penalty of 2. Since both
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penalties are smaller than the benefit of the probe request, in turn, 7, sends a probe to both
destinations, with a remaining benefit of 13 and 18, respectively. In the same spirit, when #;
receives the request from n,, it considers evicting as to ns with a penalty of 1, and sends a
corresponding probe request with a remaining benefit of 12. Given that #;5 has sufficient free
capacity to host a;, thus sends back a positive reply with a penalty of 0 and an empty eviction
list. When n; receives this reply, it sends to 7, a positive reply with the cumulative penalty of 1

and an updated eviction list that includes A7Z; . Similarly, 7, will receive from #n, a positive reply
with a cumulative penalty of 10 and the respective eviction list { M, M., }. n> will chose the

reply with the smallest penalty, i.e., that of »;, and will reply positively to »; with a cumulative

2

2., M. }. Finally, upon receipt of a positive reply, n; will

penalty of 8 and the eviction list { A7
issue a respective hosting request that will be propagated down the chosen path (not shown in
Fig 4.3). Note that in this example SP would choose to evict a, towards 7, leading to an inferior

placement.

Unlike in SP, an agent may be considered for eviction in the context of several different
requests at the same time. This is to reduce excessive “locking conflicts” that would occur due
to the flooding nature of the algorithm. More specifically, a host request can be issued for an
agent that is already involved in a probe request for which no reply has been received yet. In
other words, hosting requests have precedence over probe requests. However, to avoid having
numerous races, which in turn may result in many failed hosting requests, a hosting request
cannot concern an agent involved in another pending hosting requests and a probe request
cannot concern an agent involved in a pending probe or hosting request. We also note that probe
replies not do guarantee any capacity reservation. As a consequence a node may receive a

hosting request for an agent that is no longer hosted locally (in which case it sends a negative

reply).

3.3 Convergence

Migrations and evictions are performed to reduce the application-level message traffic over the
network. The algorithms decide for one or more evictions in the context of a beneficial
migration, only if the series of migrations and evictions will reduce the total network load by at
least 1. Hence, assuming a stable communication pattern between the agents of the application
totaling x data units per time unit, at most x beneficial migrations can take place. While each

beneficial migration may trigger a number of evictions, this number is also bounded by the
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network diameter (there are no cycles). It follows that the total number of migrations is

bounded, therefore, eventually, there will be no more migrations (or evictions) to perform.

It is important to note that a beneficial migration as per £q. 4.2 is guaranteed to lead to a better
placement only if agents that communicate with each other directly (in the application tree) are
not allowed to change hosts concurrently. Else, it would be possible to have a never ending loop
of “swaps”. The algorithms can be easily extended to satisfy this constraint, e.g., by notifying

the relatives of an agent before commencing with the actual migration process.

3.4 Radio silence

Both algorithms are extended with a mechanism that stops the respective protocols from
producing messages (ad infinitum) once convergence is reached. This works as follows: (a)
cach time a negative reply is sent to a node, the node is added to an update list; (b) when a node
receives a negative reply, it adds the sender to a block list (blocked nodes are not considered as
candidates for probe and hosting requests); (¢) when a node frees capacity (due to the migration
of a local agent to a remote node), it sends an update message to each node in the update list,
and clears the list; and (d) when a node receives an update message, it removes the sender from

its block list, and forwards the update to its neighbors.

Due to convergence, eventually, no more migrations will take place. The source(s) of the last
beneficial migration(s) will issue update messages due to the hosting capacity that is freed
locally, triggering the generation of host/probe requests at other nodes. But given that
convergence has been reached, no more migrations can be decided. Therefore, each node from
which a hosting/probe request originated will receive a negative reply, and will henceforth
suppress the generation of new requests due to the blocking policy. When this final
communication phase is over, there are no nodes that can generate any new update messages or

hosting/probe requests, hence radio silence is achieved.
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4 Evaluation

The settings for the experimental setup took place in the same way as in Chapter 1.

4.1 Reference algorithms

As a reference for the results achieved by SP and FL, we run the ILA algorithm, described in
detail in Chapter 1. ILA chooses to perform only beneficial migrations, in the same way a
beneficial migration is decided in the SP and FL algorithms. Information about the free capacity
of neighboring nodes is acquired in a lazy fashion, through the replies received in response to
migration requests (initially, all neighbors are assumed to have their full nominal capacity free).
ILA does not have a mechanism for notifying nodes when capacity is freed. Instead, with a
certain probability (0.2 in our experiments) each neighboring node is optimistically assumed to
have enough free capacity. Then, the best candidate, as per Eq. 4.2, is contacted to check
whether it can actually host the agent in question. As a consequence ILA never achieves radio
silence; even though it is guaranteed to converge, i.e., stop performing migrations. In our
simulations, we stop running ILA when no migration is accomplished by any node in four

consequent iterations.

We also employ an exhaustive algorithm that computes the best placement, by starting from an
unoccupied network and trying out all combinations of agents on nodes, subject to their hosting
capacity. However, the placement obtained this way may not be actually feasible, because it
may be impossible to reach from the initial placement by performing a series of eligible agent
migrations and evictions, due to the capacity constraint (£g. 4.4). This means that the
corresponding network cost represents a lower bound on what could be achieved even by an

optimal algorithm.

4.2 Experiments

In a first set of experiments we compare the placements obtained for the 20-node networks and
one app-10 application, as the initial hosting capacity of the nodes increases to 1-4 times the
average agent size in the system. We report the average results for the five different network
topologies and five different initial placements for each topology (25 runs). No large variances

were recorded.
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Fig 4.4 illustrates the load reduction vs. the initial placement achieved by the algorithms. As it
can be inferred by the trends. both SP and FL achieve a significant reduction of the network
load. The improvement over ILA is roughly 30-20% when nodes have a rather modest amount
of free capacity. Also. when the extra free capacity is (just) 2 times the average agent size, SP
and FL perform close to the exhaustive algorithm, which is merely 10% better; a very positive
sign as to their effectiveness. When nodes have considerable free capacity, SP, FL and ILA
achieve practically equally good placements, a trend observed throughout all our experiments.
This is natural since the probability of a node becoming the bottleneck for beneficial migrations
drops as free capacity increases. hence good placements can be reached without (any) agent

evictions.
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Fig 4.6 Migrations vs. additional capacity (50 nodes.  Fig 4.7 Control messages vs. additional capacity
15 applications). (50 nodes. 15 applications).

In the next experiments, we run the algorithms in the 50-node networks where we deploy a mix
of fifteen applications (five app-30, five app-25 and five app-10 applications). This time we
increase the free space of each node by 2, 5. 10, 20, 40 and 80 times the average agent size. We

do not run the exhaustive algorithm due to its prohibitive runtime complexity.
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As it can be seen in Fig 4.5, the trend is similar to the one observed in the small-scale
experiment. However, the improvement of SP and FL vs. ILA becomes impressive, from 320%
to 220%, when the hosting capacity of nodes is limited. What is equally important to note is that
SP performs better placements than FL. In fact, when capacity is tight SP produces placements
that are almost 1.5x better compared to FL, which in turn produces placements that are close to

2.5 times as efficient compared to the ones produce by ILA.

The inferiority of FL vs. SP is attributed to the contention introduced by its flooding
mechanism. In a large-scale system, it is very likely that several migrations and evictions will be
attempted concurrently, which in turn leads to a large number of conflicts, where beneficial
migrations are hindered by less beneficial ones (including evictions). Also, given that each such
conflict leads to the generation of negative replies, the radio silence mechanism may be

activated prematurely, missing opportunitics for migrations/evictions.

The ability of SP to perform a larger number of migrations (and evictions) than FL is clearly
shown in Fig 4.6, which plots the number of migrations/evictions performed per agent in the
system. The difference between SP and FL is more pronounced when capacity is tight, which is
also the case when SP performs notably better than FL. As the free capacity of nodes increases,
the number of beneficial migrations that can be performed without having to do any evictions
grows, thus all algorithms perform a comparable number of migrations (and SP starts
performing fewer migrations in total as the number of evictions drop). ILA performs the
smallest number of migrations, by far when free capacity is scare, because it does not perform

any evictions.

We also measure the number of so-called control messages generated by FL, SP and ILA to
decide about migrations (and evictions). Fig 4.7 shows the ratio of control messages to the
number of migrations performed. Clearly, SP is more efficient than both FL and ILA, especially
when nodes have little free capacity. The greater per-migration protocol overhead of FL is
partly due to the fact that it performs fewer migrations than SP. Moreover, for each beneficial
migration, FL floods the network with probe requests and replies in order to find the best

possible series of evictions, whereas SP picks a single path.

The high per-migration protocol overhead of ILA is also due to the fewer migrations
accomplished compared to SP and FL. This is clearly visible when free capacity is tight.
However, ILA continues to exhibit a non-negligible overhead even when nodes have abundant
free capacity and the number of migrations performed is close to that of SP and FL. The reason

is that even if a node is found occupied, ILA will still consider it (with 0.2 probability) as a
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possible destination for a beneficial agent migration. As a result of contacting nodes in this

optimistic way. the number of unsuccessful migration attempts remains high.
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+10, app-mix). +10, app-mix).

In a final set of experiments, we measure the impact of limiting the hops of hosting and probe
requests in SP and FL. We use again the 50-node networks and application mix of the previous
experiments, while fixing the extra free node capacity to 10 times the average agent size in the
system. The load reduction achieved, the number of migrations per agent and the number of
control messages per migration are depicted in Fig 4.8, Fig 4.9 and Fig 4.10, respectively, with
the hop limit varying from 1 to 8. The behavior of ILA is not affected by this parameter (the

algorithm only issues 1-hop requests for beneficial migrations).

Both algorithms exhibit a similar performance for small hop limits. As the hop limit increases,
SP clearly outperforms FL. due to the growing negative cffects of the flooding approach. It is
interesting to observe that the load reduction achieved by SP flattens at 4 hops being practically
identical to the reduction achicved at 8 hops. despite the larger number of migrations (and
evictions) performed in the latter case. This is attributed to the fact that, from a certain point
onwards, additional evictions do not lead to a significantly better application placement. More
specifically, the average diameter of the 50-node networks used in our simulations is 10.
Therefore a hop limit of 4 is already sufficient for a node that is not located at the periphery of
the network to reach almost all other nodes (requests issued by that node can cover an area with
a diameter of 8). Worthwhile noting is also the fact that the protocol overhead of SP starts
dropping at 4 hops and this trend continues at 8 hops. The reason is that there are fewer
opportunities to perform migrations (and evictions) when the hop limit is small, while the
protocol overhead is amortized as the number of migrations grow at larger hop limits. On the
other hand. the per-migration overhead of FL increases steadily due to the scalability problems

of the flooding approach.
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4.3 Result summary

Both SP and FL produce significantly better placements than ILA when nodes have limited
hosting capacity. Also, SP consistently outperforms FL, not only in the placement achieved but

also in the per-migration protocol overhead.

S Conclusions

Here we described distributed algorithms for migrating agents between the nodes of a wireless
embedded system in order to reduce application-level network traffic. Our approach introduces
migrations that are non-beneficial on their own but free enough space on nodes in order to
enable beneficial migrations, which can eventually lead to an overall better placement. We
presented and discussed the results of extensive simulations, showing that the proposed
approach outperforms solutions based solely on beneficial migrations, resulting in placements

that reduce network traffic significantly.
Part of this work is goint to be submitted in the following conference:

* N. Tziritas, P. Lampsas. S. Lalis. T. Loukopoulos. “Introducing Agent Evictions To
Improve Application Placement in Wireless Embedded Systems™ ICPADS 20171,
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Chapter 5

Online Algorithms for the Agent Migration Problem in
Wireless Embedded Systems

1 Introduction

Previous works turn their attention to migrate agents without 1) laying emphasis on the changes
of traffic patterns, and ii) taking into account the cost of the migrations performed. However,
assuming that traffic patterns are not static (they are subject to changes with the pass of time),
performing migrations without taking their cost into consideration may prove crucial to the
energy spent over the network. So we focus on the intractable problem of taking online
decisions to migrate agents in order to reduce the overall network cost, considering the energy

spent through the process of migrating an agent.

The difficulty of this problem lies in the fact that a decision should be made in advance of any
knowledge about the future load/traffic changes. The implications of making bad decisions are
that: 1) the agent may be migrated far way from its center of gravity, paying in that way the cost
of the wireless communication with its distanced relative agents; ii) the network will be
burdened with the energy spent for mistakenly (due to a bad estimation) transfering an agent

from some node to another one.

In this chapter we propose two online algorithms to decide which is the point in time that an
agent should migrate to reduce its communication cost over the network, taking also into
account its migration cost. Commonly, the algorithms proposed in the context of online decision

problems are accompanied with their competitive ratios. The competitiveness is used to
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compare the output of online algorithms when coming up against an input chosen by an
adversary, to the output generated by the offline optimal algorithm. When the competitive ratio
approximates 1, it means that the behavior of the online algorithm considered comes closer to
optimal. Therefore, following the current, we evaluate the performance of the proposed
algorithms by providing for each of them its competitive ratio along with a comprehensive
proof. Specifically, the first algorithm achieves 1/3 competitive ratio assuming infinite capacity,

while the second one 1/4 (no assumptions about infinite capacity).

This work is organized as follows. In Section 2 we describe the application and system model.
Section 3 provides the proposed algorithms and discusses their competitiveness in a detailed
way. In Section 4 the experimental setup is described along with a thorough evaluation of the
proposed algorithms. This section also discusses the way we implemented a static offline
optimal algorithm serving as a yardstick for the quality of our algorithms. Last, Section 5

concludes our work.

2 Application and System Model

The application and system model is much the same as the one described in Chapter 1. Below,
we repeat the most relevant elements of the model, and introduce some extensions that are used

to describe the algorithms and give the worst-case bound proofs.

Let / ;,i be the number of bytes exchanged between ay hosted by 7; and other agents hosted by #;

in the time-interval [s,7]. Let P, = I3 h, be the network communication cost due to the

Yj#i
data exchanged between a, hosted by #; and the agents that are not co-located with ., under the
time-interval [s,/]. Let My specify the migration of ay from n; towards n;. Let B;,i be the
benefit/cost of My, subject to the collected message traffic statistics in the time interval [s,7].

The cost of M at time unit 7 is captured by MC;.k . We assume that the time when a migration

is performed is independent of the migration cost, therefore MC ;k =MC; Vst .

ijk>

Let d and D specify the hop-awareness of an algorithm and the diameter of the network,
respectively. If the cost of migrating an agent towards an 1-hop neighbor is equal to X, then the

cost of migrating the agent in question towards an d-hop neighbor is equal to d*X, which is
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t

formally stated by MCy, =hMC,, |h, =1. For simplicity, we assume that a migration

occurs “instantly” and that the data traffic within the respective time interval [¢,¢"] is zero.

MT denotes the migration threshold, i.e., the minimum required benefit for taking the decision

to migrate an agent towards its center of gravity.

3 Algorithms

In this section we present three algorithms addressing the problem of taking into account the
network cost incurred when migrating an agent. We prove also the competitiveness of each

algorithm against the optimal algorithm.

3.1 Online algorithm based on discrete-time events (ADE)

The first algorithm is designed based on the (unrealistic) assumption that we have infinite
memory. Based on this assumption, the algorithm, called ADE, can calculate the benefit/cost of
migrating an agent based on any (sample) time interval ranging from the most recent point in

time to any point in time in the past.
Let P1 be a property which forces this algorithm to migrate agents iff there is a time interval
[p,z ] such that Bl =2MC}, |i# j (this is referred to as “migration threshold”). The

drawback of this algorithm is the increased memory complexity, since it needs to keep
information about the exchanged data (volume of data, source/destination node that

sent/received the data in question) in a discrete-time fashion; in order to be able to identify any
[ p,z ] where P1 is satisfied. Note that z~ should always map to the most recent point in time,
while p can be any point in time past (that’s why this algorithm needs infinite memory).
Theorem 1. ADE is 1/3-competitive.

Proof:

Consider that only one agent does exist into our system (a;), which is hosted on #;. Initially we
let ADE perform a migration iff there is any [ p, z” ] such that B;,fi >0 (P1°). Obviously, when
both ADE and the optimal algorithm perform no migrations, the competitive ratio is equal to 1.

Therefore we focus on the case where the loads are such that ADE chooses to perform
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migrations. Assume there is a time interval [x, y | such that B;{ > 0, which means that ADE

will perform Mj; (¥ is the most recent point in time). In this case, the optimal algorithm may

decide to perform or not to perform Mj,.

Assumption 1

Let’s start with the case where ADE decides that M should not be performed. In this case, the

competitive ratio between the optimal algorithm and ADE becomes:

X tyT +
Pl +h 7 +R Eq. 5.1
SX xty v ¥y
Br + B + P+ MC,

We now consider when this ratio becomes as small as possible (the worst case). We observe that
the smaller the values of P | PX” P2 the smaller the ratio. Note that P* > h; otherwise
M would not be performed, which contradicts our assumption that migrations are performed
when P17 holds true. Also, we notice that when P]{” increases the ratio decreases. In
combination with the fact that the value of enumerator should be kept as small as possible, we
conclude that only l]f.;” should be greater than zero; else P2 could not be equal to zero hence
the enumerator (and the ratio) would increase. Of course this means that there is a time interval

[y*,c] such that B%° >0, which means that ADE will perform an additional migration, in the
Jik

reverse direction, namely My, as dictated by our assumption that ADE performs a migration
when P1” holds true. Therefore the ratio is expressed by Eg. 5.2, which equation implies that the

ratio is independent of the hops between #; and 7;.

hy*1 1 _ Eq.52
h;*1+h, *l—l—hjl.MCy'

= h =
o TMCY 2+ 2MC g

gmk
If we assume that ADE additionally performs X such back-and-forth migrations, as the

previously discussed case, then the ratio becomes:

X _ 1 b, =1 Eq. 5.3
2X+2X*MC; . 2+2MC),

In other words, the worse-case ratio is independent of the number of back-and-forth migrations.
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Assumption 2

Now let’s consider the case where optimal algorithm decides that My should be performed. In

this case, the ratio becomes:

P 4Py 4 MCE
P 4 PYY 4 Pl MC

ik

Eq. 5.4

It is obvious that the worst case scenario is that B,ixf,Pj’,fc are as small as possible, while

ny 7,P]{c as large as possible. However we note that the optimal algorithm will

“immediately” decide for this migration, before ADE collects the “necessary” load information.
It follows that [y*,c]C[x",c]= Pj{” <sz+€’ and thus P]{” should be as small as possible

t00.

Here we make an extra assumption: Namely, that the maximum application-level message size

is smaller than the cost to perform any migration M.

Based on this assumption, B,fy ~ cannot be larger than the maximum application-level message,

because ADE takes the decision to perform M as soon as P1” holds true, and this condition is

checked each time a message is sent/received. Therefore, the ratio becomes:

MC;, —l|h . Eq. 5.5
2MCE 2
g

Note that this is smaller than Eg. 5.2. Also note that in this case, naturally, since both ADE and
the optimal algorithm decided for a migration, Eg. 5.5 is independent of the number of
migrations. Consequently, the worst case is when the benefit B;ii is such that optimal

algorithm does not perform migration, but ADE decides for a (back-and-forth) migration.

Fine-tuning the migration threshold

Let’s see if we are able to improve the performance of ADE, by fine-tuning the migration

threshold. Consider the case when ADE performs a migration iff there is any [ p,z | such that
BZ” >MT (P1”). For sake of simplicity we assume that M7 = h;*x, hence the

ik

aforementioned ratios described by Fg. 5.2 and Eq. 5.5 become:
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X . |hgm:l Eq. 5.6
2x+2MC;,,
MC?
. gmk -~ |hgm — l,x 2]\4 ;/mk Eq 57
X=MC?, +2MC?,

Note that £g. 5.6 decreases when MT increases to the point that x = 2MC?

o (note that the

enumerator cannot be greater than 2MC

independently of the value of x). Also, Eq. 5.7

y

ot » and

increases when M7 increases, and remains smaller than Eg. 5.6 as long as x < 2M(

becomes equal to Eq. 5.6 if x=2MC; . Also, note that in Eq. 5.7 x>MC},, due to our

assumption that the optimal algorithm performs M. Therefore, due to the equality of Eg. 5.6
and Eq. 5.7, the competitive ratio between the optimal algorithm and ADE is given by Eg. 5.8,

provided that ADE takes the decision for migration iff there is any [p,z ] such that

BI =2MC?, (in practice, the decision could be taken if B2 >2MC:

ik i ik iik > due to the
transmission/arrival of a large application-level message). We should point out that Fg. 5.8 is
independent of the number of migrations. Therefore our assumption of only one agent into our

system is valid.

MCQ, leh 1 Eq.5.38
3MCE, 3¢

3.2 Algorithm based on sliding window and discrete-time events (ADE-SW)

Since ADE is non-applicable due to the assumption of infinite memory, we resort to a modified

version of it to bound the memory needed for keeping message traffic statistics. ADE-SW uses

for each generic agent (a) a sliding window (wy) of maximum size S, to keep the data
exchanged between this agent and its relatives. Let w,i and Z(w,i) denote the i entry of w, and
the point in time this entry was inserted into wy, respectively; then #(w,) >t(w})|i < j,Vi, j
in other terms j™ entry was inserted into wy. prior to i one. An entry w,i represents a tuple (ay,
vd), whereby vd is the volume of data exchanged between a,, and a; at #(w,). Putting it

otherwise, W, represents the size of the message sent/received by a; at #(w, ) , provided that ay,
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is the destination/source agent. Let mr, (1<mr, <S§,) be the sliding marker for wy, which

points to an entry of wy. s(mr,) denotes the number of entries this marker leaves behind

(including the one it points to) when it slides towards the most aged entry.

Each w, is implemented as a list. Each time a generic agent (a,) sends/receives a message it
pushes at the back of the list an entry, provided that the new size of the list is not greater than S

Otherwise, the first entry of the list is removed before inserting the new one at the end of the
list. Initially the marker is set to s(mr,)” entry of wy, provided that this entry does exist;

otherwise is set to the most ancient entry. The entries lying behind the sliding marker (including
the one it points to) are deemed marked. ADE-SW considers whether the migration threshold of
an agent has been reached or not, by taking into account only the information associated with

the marked entries. Each time it decides that ¢, cannot migrate anywhere (no benefit), it slides
the respective marker by s(mr,) entries (i.e. mr, =mr, +s(mr,)), and reconsiders whether the

migration threshold of @, has been exceeded or not. This procedure repeats itself till the marker

points to the most aged entry, where if the corresponding agent cannot be migrated then the

sliding marker is reset to s(mr, )" entry.

In case ADE-SW decides to implement a migration, then the respective agent (ay) is migrated
along with only the marked entries. There are two reasons for doing so: 1) if we don’t transfer
this information and an agent cannot migrate directly towards its center of gravity (limited hop-
awareness), then each intermediate migration of its own will be delayed (due to P1); ii) if we
resort to transfer all entries of the window associated with the migrating agent, then it is

probable for that agent to migrate back-and-forth, due to outdated information.

window (w) marker; mrn=2

bt | 6]t ] 6] t]t

fo | tie
alzl‘alzl‘a2:8‘a2:8 a2:9‘a2:9‘a4:2‘a4:2

1* entry
marker: mr=4

0202020 NN s

alzllalzl‘a2:8‘a2:8 a2:9‘a2:9 acllanl acllag?

Fig 5.1 Application deployment Fig 5.2 Sliding window and marker
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Consider the example illustrated in Fig 5./, whereby ay is a generic agent while the rest non-
generic ones. A solid edge means that the involved agents communicate with each other, while a

dashed edge represents the hosting node of the involved agent. Let the cost of migrating ay
towards an 1-hop away neighboring node be 4 (MC,,, =4,|h,, =1,Vy,k), s(mr,)=2 and

S, =6. In Fig 5.2 we set out an example of how an agent is migrated, making use of the

respective sliding window and marker. A column in an upper row represents the point in time
where a; sent/received a message towards/from an adjacent agent of its own, with t;
representing the most aged message, while t;, the most recent one. A column in a bottom row
signifies the respective message size along with the involved destination/source agent. Recall

that the window slides towards the most recent messages (i.¢., ts..to).

Initially, mr, is set to 2; however due to P1, whereby Byl =4 <2*MCJ,, =8, M,,, is
considered non beneficial and the sliding marker is set to 4. Therefore, in the next iteration
B> =8, which means that ay is forced to migrate towards 75 (along with the marked entries
t7...t10). It is worth noticing that without the sliding marker M ,,, cannot be identified (since
B%’,?" =—10). In the sequel, the same steps are followed on 73, forcing ¢, to eventually migrate

towards »4 (along with the marked entries t;...t;0), without even needing to collect any extra

information. It should be stressed that if a, migrated towards »n; a) without the entries of the

respective  window then Af,,, would be procrastinated till there is a t, such that
B >=81,, <t <, (case i); b) along with all entries of the respective window, then ;

would decide to migrate a, back to n,, since when mr, =6 then By =10. This back-and-

forth migration would continue in a perpetual way, till new messages arrived (case ii).

3.3 Algorithm based on aggregation of events (AGE)

AGE is designed to reduce the memory requirements of ADE-SW, whereby the information
about the collected events of same affinity is kept aggregated. Specifically, for each generic
agent a; hosted on node #; and each m-hop neighbor node n;, where 0<=m<=d, where d 1s equal
to the network awareness, a load variable Ry is used to record the accumulated message traffic

associated with a, between »; and #; as follows:

1) if 0<=m<d, Ry records the accumulated load between a; and all agents that reside on 7;;
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2) if m=d, Ry records the accumulated load between a, and (a) all agents that reside on #;
and (b) all agents that reside on nodes that are more than m hops away from #; and

communicate with #; via n;.

Note that if d is equal to the network diameter D, i.¢., in case of “full network awareness”, (2)
becomes equivalent to (1) because no two nodes can be more than d hops away from each other,
so there can be no case (2b). Finally, R;; records the load between a, and all agents that are co-

located with it on #;. Due to the fact that the load is stored in an aggregated fashion, the benefit
of My is now represented by B, >0 (instead of Bj; >0), where z~ is the most recent point
in time.

The algorithm works as follows: Initially, when a, is created on »,, the load variables R;; for
each (relevant) neighbor node #; is initialized to 0. From that point onwards, R;; is updated by

adding the number of bytes sent/received by a; to/from node #;.

Each time Ry is updated, the following checks/actions are made/taken:
i) If B}, =2MC?, , My is performed.

1) If Bf,; >0, the load variables are reset to 0 (on the current host).

I

ii1)Else, if ZRijk > R1, , the load variables are reset to 0 (on the current host n); R7, is
vj

referred to as the so-called reset threshold

Note that the resetting of the load variables in (i1) and (iii) corresponds to a form of “aging”,
making sure that a recent change in the application traffic pattern will be considered promptly,

instead of waiting until it “overrules” the aggregated load history.

Theorem 2. AGE is 1/4 competitive, when d=D and R7, ~3.2MC, , |h,, =1.

&

Proof:
Consider AGE without (i1) and (ii1).
We initially assume that AGE performs only one migration Mj; at time unit y. The performance

of AGE worsens as the value of lzf increases. This is because (1) must hold true, which means

that the network cost produced by £} (i, [ h;) must become equal to 2MC}, +17, I, .
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When 4 increases the performance of AGE worsens, so we conclude that the worst-case

scenario is to have hl.j =D.

Similarly, the performance of AGE keeps worsening the larger the value of (another load

variable) I , f #1, j: now, in order for B}, =2MC;,

- 7> the network cost produced by 1%

ik
should be equal to 2MC}, +15 h, +1% h, . For the sake of proof, we need /g to be as large as
possible. Note that /2; would be equal to D iff n¢: (a) is not in the path between #; and 7;; and (b)

does not use any node in the path between #; and #; (including 7;) as a router for data towards 7;.

This is not possible, though, since then /; would have to be equal to D+1 (we assumed

hl.j = D). However, it is feasible for 4 to be equal to D-1 (see Fig 5.3) which is the next largest

possible value. This is the case when: (a) n¢is in the path between »; and n;, provided that hie= 1;

or (b) nruses a node 7, as a router for data towards »;, provided that /2, =1 and s, =D-1.

hfj =D-1

O O

Fig 5.3 when hy¢ becomes equal to D-1
Note that since I;{ can be arbitrarily large, without loss of generality, we can assume that all
other load variables ll;y,];, f #i,j,f areequal to zero.

Consequently, in order for AGE to perform My (i.e., for (1) to hold true), n; must produce

network cost of [ =13 (D—1)+1;; D+2MC;, . The worst case for AGE is for the optimal
algorithm to decide Mj before n; starts producing any network cost (l;,z; =0), thus incurring

only the migration cost plus I;{ which is unavoidable (for both algorithms). Therefore the ratio

vs. the optimal algorithm (which decides for that migration before AGE, ideally when l;,f =0),

becomes:
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Iy ¥MC Ly AMG, Eq. 5.9
Ly +lg +MC Iy 15 (D=1 +15 D+3MC

Note that Eq. 5.9 is independent of the number of migrations, since for each additional
migration (following the same rationale) the cost for each algorithm is doubled. Therefore our

initial assumption of only one migration does not affect the competitive ratio.

We observe that when /7 =0 and /7 tends to infinity, the ratio tends to O (provided that
17 =0). We avoid this case by applying (ii). Then, /7 cannot be greater than ll.;ykf , hence the
worst case is to have [} =17 (provided that /3 =Oand /3 =0, with z being the point in

time where the optimal algorithm performs M, ). Let also I;{ = X for the sake of readability.
As a result, the ratio becomes equal to that expressed by Eq. 5.170 (also taking into account that

hl.j =D, hence MC}, =D*MC" |hgm =1):

ik g

X +D*MC?,,

. . 5 |hgm =1 Eq. 5.10
2X*D+3D*MC),

Mcgmk | 7 = Eq. 5.11
2X+3MC,

When D tends to infinity the competitive ratio worsens, therefore we reformulate £g. 5.7/0 into
Eq. 5.11. By applying (iii) and setting a finite R7, : (a) X cannot be arbitrarily large, which
means that F2g. 5.1/ decreases; and (b) AGE becomes reactive to load changes. It is prudent to

choose R, greater than the double cost of migrating o, towards 1-hop neighbor
(RT, >2*MC,, | h,, =1), else we compromise the performance of AGE (load variables will
be reset before being able to decide for any migration). We also note that when resetting the

load variables there is a case of resetting a variable R;;, while some Byy,; > 0. The greater the

value of R7, the greater the loss of AGE vs. the optimal algorithm, however Bl.]y.,; cannot be

greater than 2MC, due to (i).
(RT, —2MC;,  —1)/2|h,, =1 Eq.5.12
(RT, —2MC,,,. —1)/2+2MC;,, —1|h,, =1 Eq. 5.13
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Therefore, the worst case now becomes that of having the previous scenario with the difference

that AGE is forced to reset the load variables as many times as possible before deciding for My,

provided that when these resets take place BUZ,; is as large as possible. We stress that the worst

point in time (let z™) of resetting the load variables for AGE is when BUZ,; =2MC,, -1, else
AGE would perform M,;. We should also point out that in order to reset load variables when

B, =2MC?

ik s —1, we need from some nodes to incur a load given by Eg. 5.12, and for »; to
incur a load given by Eq. 5.13. Note that the nodes contributing to Eq. 5.7/2: (a) cannot be in the
path between »; and 7;, and (b) cannot use any node in the path between »; and #; (including n;)
as a router for data towards #;, else Eg. 5.13 would be increased and property (iii) would be
violated. It follows that the only node that can contribute to Eq. 5.12 is n;, else AGE would

create cost greater than that of Eg. 5.72.

Summing up, the performance ratio between AGE and the optimal algorithm becomes:

D* f(RT, —2MC?, —1)/2+MC?,
8 i |hm:1/\hi':D Eq.5.14
D* fI(RT, —2MC?, —1)/ 24 2MC?,, —1]+3MC}, = © 4

ik

with f denoting the number of resets. For simplicity, we eliminate the “-1”s (without loss of

generality since the ratio worsens). We can observe that the ratio changes with the variation of f

and RT, . For the case where RT, is less than 3MC, the ratio worsens when ftends to infinity.

In terms of case where R7, is equal to or greater than 3MC l.]y.k the ratio worsens when ftends to

zero. However we omit the case where ftends to zero since in that case £q. 5./4 is dominated
by Eq. 5.11, which means that the worst-case ratio is given by Eq. 5.71. As a result Eg. 5.14

becomes:

RT, —2MC?, Eq.5.15

gmk |

RT, +2MC3,, "

gmk

Due to the fact that X should be as large as possible without enabling the resetting of loads, we
conclude that the resetting threshold should be expressed by Eg. 5.16. Therefore £q. 5.11 is
transformed into Eg. 5.17.

RT, =13 +1 +2MC?,

i gmk

+1~2X +2MC%, | b, =1 Eq. 5.16
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MC?
ek p oo Eq.5.17
RT, +MC? %

gmk
We recall that RT, >2MC , |h,, =1, else we could not be able to perform migrations across

the whole network, and therefore the performance of AGE would decrease. We observe that
when R, increases Eq. 5.15 decreases, while £q. 5.17 increases. Given the above, and due to
the fact that the competitive ratio is given by the smaller equation between Eq. 5.15 and Egq.
5.17, we turn to equating them to get the value(s) of R7, which maximize(s) the competitive
ratio. Therefore, two roots result from that operation, the negative and the positive one. Of

course the negative one is out of consideration, since 7, cannot be negative. The positive root

is roughly equal to 3.2AMC ;,mG | h,,, =1, with the competitive ratio being approximately equal to

1/4.

4 Experiments

This section presents an experimental evaluation of the algorithms based on simulations
performed on top of NS2 [85]. First we describe the experimental setup and then we present and

discuss the results of indicative experiments.

4.1 Setup

The network topologies and application structures were produced in the same way as for the
previous chapters. Five different network topologies were generated, while 3 different
application types were produced with (50, 22), (25, 12) and (10, 5) (non-generic, generic)
agents, referred to as app50, app25 and appl0, respectively. For each application type we
produced 5 different application structures. The initial agent placement on nodes was random,
while agents were assigned sizes randomly selected between 100 and 1,000 bytes. For each
combination network topology and application structure an experiment was conducted (75 in

total) taking the average of them.

Contrary to the previous chapters, in this one we consider traffic patterns that are not stable
throughout the duration of an experiment. Unless otherwise stated, we assume that a non-

generic agent can change between two modes My and My, signifying a change in the frequency
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of the messages are sent out by the respective agent. Specifically, when an agent is in My mode
then it sends 10 times more messages against than M; mode. We consider four different types of
traffic pattern T(UH), T(H), T(L) and T(UL); with these reflecting that an agent changes
between My and M modes in ultra high, high, low and ultra low rate, respectively. Specifically,
in terms of T(UH) each agent remains in a mode from 1 to 10 time periods, chosen randomly.
As far as T(H), T(L) and T(UL) are concerned, their corresponding periods range between (1,
100), (50, 500) and (100, 1000), respectively. We differentiate between three application
families Fy, F, and F;, whereby at most 1, 2 and 3, respectively, agents belonging to the same

parent can be in Ly mode simultaneously.

As the main metric for our comparison, we use the network load incurred by the resulting
placements of our algorithms. We also devise a static offline optimal algorithm serving as a
yardstick for the quality of the solutions derived by the proposed algorithms. In order to get the
static offline optimal solution, we resort to GRAL* of which the input is chosen to be slightly
different against the online algorithms. Specifically, GRAL* takes as input the static load
associated with each application edge. Specifically, the static load of an edge represents the
volume of data that would be exchanged between the incident agents to this edge, if we let the
involved agents exchange messages for a specified time according to an adopted type of traffic

pattern, e.g., T(H).

We observed that ADE-SW variants have different trend when the traffic is based on T(UH)

pattern compared to the rest ones, so we chose to plot the results separately for each case.

4.2 Considering T(H), T(L) and T(UL)

ADE-SW can be parameterized into two dimensions, with the first one being the migration
threshold, which is common for both algorithms; while the second one being the number of
window entries marked each time the marker slides towards the most aged entries. From now on
a variant of ADE-SW will be referred to as ADE-SW-(MT, s(mr)); with MT and s(mr)
reflecting the first and second dimension, respectively. AGE is also parameterized into two
dimensions, with the first one being also the migration threshold, while the second one being the
reset threshold. From this time forward a variant of AGE will be referred to as AGE-(MT, RT);
with RT reflecting the reset threshold. This set of experiments is based on F; application family.

Fig 5.4 concemns the case where the size of the sliding marker varies between 1 and 500,

considering all types of traffic patterns excluding T(UH). As observed, the performance of
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ADE-SW variants deteriorates as the size of the sliding marker increases. This is expected since
such an increase means that the migration decisions will be based on further aged information.
rendering in that way ADE-SW slower in identifving changes in message traffic pattern.
Another remark is that the gap between variants is growing as the changes in traffic pattern
become less intense. This is explained by the fact that the benefit of migrating an agent towards
a direction is continuously growing as long as its center of gravity does not change into another
direction. Specifically, an agent’s center of gravity change more vigorously in T(H) pattern,
rendering some migrations less fruitful, since in that case it is almost the same for an agent to

remain in a node instead of migrating back and forth due to load changes.

307 —Y—ADE-SW-(0.1,1)  —E ADE-SW-(0.1,10) ——AGE-(0.1,02) —A—AGE-{0.1,10)
|—&—ADE-SW-(0.1,50) —6— ADE-SW-(0.1,100) —o—AGE-{0.1,50)  —¥— AGE-(0.1,100)
o 3.E+07 |—%—ADE-SW-(0.1,200) —6~ADE-SW-(0.1,500) T 30B07 71 g ,cpi61200) —B-AGE(0.1,500)
E SR O 2.6E+07 -
H E 2.2E407
g 2 18E+07 -
2 16407 T 1.4E+07 -
o o .
L — g 1.0E+07
= ~ 6.0E+06 -
EN : : ' 2.0E+06 :
T(H) Tk TG T(H) T(L) T(UL)
Traffic pattern Traffic pattern
Fig 5.4 ADE-SW behavior when varying the size Fig 5.5 AGE behavior when varying the reset
of sliding marker threshold

Fig 5.5 shows the behavior of AGE when varying the reset threshold between 0.2 and 500. It is
observed that the performance worsens when increasing the reset threshold. This is anticipated
since such an increase incurs a proportional delay when deciding to perform a migration.
Specifically. an increase to the reset threshold means that the migration decisions are based on
more outdated information, so the delay is attributed to the time the algorithm needs to offset

this outdated information and finally take the decision to perform a migration.

Note that we conducted the same experiment for both ADE-SW and AGE keeping fixed the size
of the sliding marker and the reset threshold at 1 and 0.2, respectively: while varying the
migration threshold. The results showed that the performance of both algorithms worsens as the
migration threshold increases. Hence we conclude that the best variants are ADE-SW-(0.1, 1)
and AGE-(0.1, 0.2). The observation that the variants are more distanced with each other when
the changes in traffic pattern become less intense is explained through the respective remark in

the previous paragraph.
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4.3 Considering T(UH)

In this set of experiments the application family continues being F,, however the traffic patter
type considered is T(UH). Fig 5.6 shows the behavior of ADE-SW when varying the size of
sliding marker. It is shown that ADE-SW variants have an opposite trend against the previous
case (Fig 5.4). This is due to frequent changes in traffic pattern, increasing in that way the
probability of not amortizing the cost of the agent migrations performed. Therefore it is not
lucrative for an agent to be reactive to all those changes. Note that, as discussed earlier, an agent
becomes less reactive to changes when increasing the size of the sliding marker, therefore the
“variant-5007 achieves the best performance with the “variant-200” following closely. This
performance is attributed to the fact that the greater the size of the sliding marker the less

reactive the algorithm to traffic changes. and thercfore the less the migrations performed (Fig

5.7).
1.E+06 - 50 -
45 4 ¥ ADE-SW
= ADE-SW
o8 E05 - o 40 -
m c 35
o @
= an
fG.E+05 1 m 30 4
g E 25
E4.E+05 . 2 20 A
= 9 15
® ©
+ 2 E+05 ® 10 -
° oo
’_ - 5 -
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6] ] ] 1G] (¢}
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“Z) .(0) 'SQ.‘ .

Fig 5.6 ADE-SW behavior when varying the size of  Fig 5.7 migrations performed by ADE-SW when
sliding marker (the migration  threshold is kept varying the size of sliding marker (the migration
fixed at 0.1). threshold is kept fixed at 0.1).

We conducted the same experiment with that depicted in Fig 5.6 with the difference that we
kept the size of the sliding marker fixed at 500 (best variant), while varied the migration
threshold. The results of this experiment are shown in Fig 5.8, whereby the performance of
ADE-SW degenerates when increasing the migration threshold. This is due to the fact that the
benefit of migrating agents is kept in low levels due to frequent load changes, therefore an
increase to the migration threshold may lead to migrations that their cost is hardly (or cannot be)

amortized.
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Fig 5.8 ADE-SW behavior when varying the Fig 5.9 ADE-SW behavior when varying the
migration threshold (the size of the sliding marker migration threshold (the size of the sliding marker
is kept fixed at 500). is kept fixed at 1).

We also carried out the same experiment with that depicted in Fig 3.8, with the difference that
the size of the sliding marker is kept fixed at 1 instead of 500. In Fig 5.9 there are two
observations (i) the trend of this experiment is opposite to the previous one as long as the
migration threshold is less than or equal to 10: (ii) while these trends coincide when the
migration threshold is equal to or greater than 20. The first observation is explained by the fact
that ADE-SW becomes enough reactive to load changes when the size of the sliding marker is
1; as a result the migration threshold serves as a repressing factor regarding the reactiveness of
the algorithm to those changes. The second observation is attributed to the fact that when the
migration threshold becomes enough large. then an agent may be not migrated even in the case
where all the relative agents of its own belong to the same direction. This is witnessed in Fig
5.10. where it can be seen that the number of migrations lessens rapidly when increasing the
migration threshold. It should be stressed that among all these cases, the best results are
obtained through ADE-SW-(0.1, 500).
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Fig 5.10 Migrations performed by ADE-SW when Fig 5.11 AGE behavior when varying the reset
varying the migration threshold (the size of threshold (the migration threshold is
sliding marker is kept fixed at 1). kept fixed at 0.1).

Fig 5.11 shows the performance of AGE when varying the reset threshold, while keeping fixed
the migration threshold at 0.1. As it can be observed, AGE becomes more fruitful when
increasing the reset threshold. This increase means that AGE becomes less reactive to frequent
load changes, thus vielding placements wasting less resources in terms of the wireless
communication, Note that we decided to omit the rest experiments conducted for AGE, since
the observations were exact the same as previously. It should be noticed that AGE-(0.1.500)

outperforms all AGE variants.

4.4 Comparing our algorithms to the offline optimal algorithm

In this set of experiments we pick the best variants of AGE and ADE-SW for each type of
traffic pattern and draw a parallel between them and the static offline optimal algorithm (i.e..
GRAL¥).

For the first experiment (/ig 5.12) the application family keeps being F,. A first observation is
that the performance of AGE and ADE-SW is identical. This 1s expected since in case of (i)
T(UH) both algorithms gather enough information in order to decide whether a migration is
beneficial or not; (it) T(H), T(L) and T(UH) both algorithms take the decision to migrate an
agent as carly as possible. Another remark is that the offline optimal algorithm outperforms
AGE and ADE-SW when the load changes take place in a rapid fashion. This is why in such a
situation it is difficult for an online algorithm to decide whether a migration will bear fruits or
not. Therefore the best decision is to perform only the essential migrations, however such a
decision is only applicable in an offline fashion. This is illustrated in Fig 5.13, where in T(UH)

plot both online algorithms try to perform as less migrations as possible. Of course our
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algorithms are able to adjust their thresholds in such a way to become almost identical with the

offline algorithm.

It is also observed that online algorithms achieve up to 80 percent load reduction against the
offline optimal algorithm, provided that the type of traffic pattern is other than T(UH). This is
attributed to the fact that when load changes become less frequent then online algorithms are
able. due to their nature, to perform more beneficial migrations than the static offline optimal
algorithm. This is partly explained through Fig 5.13, whereby online algorithms perform by far
more migrations against the static offline optimal algorithm, given that traffic changes take

place in a slower pace than T(UH).
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Fig 5.12 AGE and ADE-SW against the optimal offline
algorithm (the application family is kept fixed at F)).
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Fig 5.13 Migrations performed (the application Fig 5.14 AGE and ADE-SW against the optimal
family is kept fixed at F;). algorithm when varying the application families
(T(L) is kept fixed).

Last, we ran another experiment where the application family is varied among F,. F; and F;.

Taking a look at Fig 5./4, we can see that both algorithms are getting worse when going from
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F; to F,, and finally to F;5. As discussed earlier, the index of an application family reflects the
maximum number of the sibling agents that can be simultancously in My state. Hence, the
probability of a migration to become less beneficial is increased. Also another remark is that the
performance of AGE becomes less gainful against ADE-SW. This is ascribed to the inferiority
of AGE to promptly identify a beneficial agent migration when the involved agent receives
simultaneously data from more than one relatives of its own. Actually the proof of Theorem 2 is
based on such a scenario, whereby AGE fails to identify a beneficial migration in a prompt

manner due to threshold reset.

5 Conclusions

In this work we introduced the problem of deciding which is the point in time that a migration
should be performed to reduce the total network cost, taking into account the network cost when
performing a migration. We proposed two online algorithms solving the problem without
knowing in advance the future traffic changes. The competitive ratios of the proposed
algorithms are also discussed thoroughly, giving in that way a flavor of the quality of each
algorithm. Experiments were conducted to take an insight about the performance of our
algorithms against the static offline optimal algorithm. This work differs from the previous ones
in that the migration decisions are taken in an online way taking also into account the migration

cost.
Part of this work is going to be submitted in the following conference:

* N. Tziritas, T. Loukopoulos,P. Lampsas, S. Lalis, “Online Algorithms for the Agent
Migration Problem in Wireless Embedded Systems™ IPDPS 20/ 2.
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Chapter 6

Chapter 6

On Reconfiguring Embedded Application Placement
on Smart Sensing and Actuating Environments

1 Introduction

In this chapter we introduce the agent reconfiguration problem (ARP), in light of a smart home
or smart office environment with a central monitoring entity, ¢.g., a desktop computer or a set-
top box. This entity is responsible for deciding about the agents’ placement, having full
knowledge of the present placement scheme, the network, and the respective smart node
capabilitics. The goal is to place agents in nodes having the required resources (generic or non-
generic), so that communication traffic is minimized, thus reducing battery consumption and
saving bandwidth. The main differences with the previous chapters are: i) that non-generic
agents are able to migrate, taking into account their non-generic resource demands; and ii) that
the reconfiguration decision (migrations) is made in a centralized way (on central monitoring

entity); iii) the application is structured as a general graph instead of a tree.

This work is modeled as a graph coloring problem; where the proposed algorithm is based on to
perform agent exchanges (i.c., migrations) between nodes to eventually reduce the total network
cost. It should be stressed that the graph is modeled in such a way to include the migration cost,
favoring in that way agent migrations of small size. Note also that the knapsack component [56]

is used to check feasibility issues involving the agent exchanges between nodes.

The rest of this chapter is organized as follows: the rest of Section 1 illustrates the application

model; Section 2 provides the system model and problem formulation ; Section 3 illustrates two
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algorithmic approaches solving ARP, with the first one being based on the graph coloring
problem while the second one on greedy techniques In Section 4 both algorithms are evaluated
on small- and large-scale experiments, where in the former ones an exhaustive algorithm takes

place for comparison reasons; while in Section 5 we give our conclusions.

1.1  Application Model

In this chapter we use a roughly different application model against the previous ones.
Specifically, the agents participating into an application may communicate with agents of other
applications for reusability reasons. Consider two applications are to be deployed into a
network, with the first one needing to create humidity and temperature gathering agents, while
the second one brightness and temperature ones. Assume the first application is deployed as
usual by creating the humidity and temperature agents. It is prudent, in light of scarce resources
provided by such a network, to force the second application to not create temperature agents but
use the already existing ones. However, the middleware may set a limitation on the number of

applications an agent can participate to, due to overloading an agent.

2  Problem Definition

This section first introduces the system model, then proceeds with formulating the ARP

problem.

2.1 System model

Let the system comprise of N nodes with sensing/actuating capabilities denoted by #;, 1<i<N,
and A agents denoted by ay, 1<k<A4. Let () depict the level of generic resources available at »;
(i.e., available memory). Similarly we denote by r(a;) the amount of these resources that must
be available at a node in order for agent &, to execute correctly. It is straightforward to include

more than one generic resource constraints in the model if necessary.

A non-generic agent is not only dependent on the computational resources at the destination; it
requires also that non-generic resources be provided by the destination node (i.e. sensing or
actuating capabilities). A binary Nx4 eligibility matrix L is used to encode whether a node has

the required non-generic resources (thus is eligible to hold the agent) as follows: Ly=1 if #;
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provides the required by ay specific resources, 0 otherwise. Recall also that non-generic agents
belonging to the same application and providing the same functionality (¢.g. temperature
gathering agent) must not reside at the same node. We model it through an AxA4 binary mutual
exclusion matrix F, whereby Fi,=1 if ax must not reside at the same node with ay, 0 if no such

requirement is necessary.

Nodes communicate with each other via some wireless technology (which is treated as a black
box). In this work we consider tree-based routing, i.c., there is exactly one path for connecting
any two nodes. Let /; be the length of the path between »; and n; equal to 0 for i=j.
Communication between agents is captured via an 4x4 matrix C, where Cy,, denotes the data

units sent on average from agent ay to ay, per time unit.

2.2  Problem formulation

A binary Nx4 matrix P is used to encode agent placement at nodes as follows: Py=1 if ¢ is in
n;, 0 otherwise. The APR problem can then be stated as follows: given an initial placement P°
of application agents on nodes, define a new placement P™" so that the overall network load due
to agent communication is minimized. As a secondary optimization target we also require that
the network cost due to the migrations performed in order to switch from the initial placement
P to the new one P™" is also minimal. The network load 7' due to agent communication is
given by Eq. 6.1. Thus, the benefit in agent communication terms by switching from P° to P™"

described by £q. 6.2.

A single migration incurs a cost proportional to the agent size and the hop distance between the
start and destination node. We assume that there exists a single monitoring node (let 72,,) which
also acts as an entry point for the arriving agents in the system (e.g., for security reasons) and
keeps an immutable copy of all agents’ code. Migrations are performed by sending a copy of the
agent’s code from 7, and the agent’s status from the node where the agent currently resides. For
simplicity, we assume that the size of the status is negligible, compared to the code size, which
is denoted by s.. Therefore, given an initial placement P°® and the one that must be

implemented P™", the total migration cost M can be computed by Eg. 6.3.

A 4 N N Ea 6.1
T:ZZ(CkmzzhyEk[)jm) 4. ©.

B=T7% -7 Eq. 6.2
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A N
M= P (=B,
k=1 i=1

Eq. 6.3

Minimizing agent communication cost (£g. 6./) and migration cost (£q. 6.3) are conflicting,
since Eq. 6.3 is minimized if P™" is the same as P°“. Intuitively, Eq. 6.3 acts as an overhead
which can be fully or partially offset by the reduction in agent communication cost (£q. 6.2),
depending on whether P™" will remain unchanged for a sufficient large time. Let @ be a
constant depicting the importance of migration cost over agent communication. Then the APR
problem can be stated as: given an initial agent placement P° find a new placement P™” such

as Egq. 6.4 is optimized, with respect to constraints described by £q. 6.5,Eq. 6.6,Eq. 6.7, and Eq.

6.8.

max D=5-yM Eq. 6.4
A
Z e r(a) <r(n), Vi Eq. 6.5
k=1

N
> B =1,k Eq. 6.6
i=1
EZW (l _Lik) =0, Viak Eq. 6.7
FkWPi:ewPi\:lﬂew = O? VZ;‘ k> w Eq 6.8

Lq. 6.5 states that node capacity constraints should not be violated. Eg. 6.6 enforces that each
agent should be placed at exactly one node. In addition, this placement must be eligible in terms
of specific resources (£q. 6.7) and there should not be conflicts with other agents residing at the
same node (Fg. 6.8). By Eq. 6.5 it is easy to sce that the relevant ARP decision problem is NP-
complete having (among others) a knapsack component [56]. In the following section we

present heuristics to tackle it.

3 Algorithms

The proposed algorithms are based on the concept of pair-wise agent exchanges between system
nodes. We begin our discussion by presenting the core exchange method in a system consisting
of two nodes, then generalize for a system of N>2 nodes. We also present a greedy method used

for comparison reasons in the experiments.
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3.1 The ARP problem with 2 nodes

Consider the ARP problem for the case where the svstem consists of two nodes 7, and »n, and a
monitoring node #,,. All nodes are assumed to have 1-hop distance between each other. Assume
a total of 5 agents arc already placed at the system’s nodes as follows: a,, a, and a; are placed at
m and ay, as at n,. Table 6.1 depicts the load generated due to agent communication, as well as

the agents™ resource requirements.

Table 6.1 Agent communication load and resource requirements

rlay) ay s a3 dy ds
2 a 0 - 0 1 0
1 a; 1 0 0 1 0
2 a3 0 2 0 2 3
3 ay 2 0 4 0 0
2 ds 0 0 3 5 0

Let the capacity of the two nodes (resource wise) be: r(n,)=7 and r(n,)=5. Assuming migrations
incur no cost and that no specific resources or mutual exclusion constraints do exist, ARP can
be transformed into a graph coloring problem as follows. In a first phase. the agent
communication graph G(V, F) is constructed, whereby the vertices of the graph correspond one
to one with the agents, and an edge (ay. @) exists if @, and @, communicate with each other.
Each edge has a weight w(ay. a,) which equals the communication cost between a, and «,,
across both directions, i.e.. w(ay., a,,) = C\, + Cy.. Furthermore, each vertex has a weight w(ay)
equaling the amount of generic resources a, demands. Let Fig 6./ represent such a graph in

terms of the agents hosted by #;, and #,.

1 2 1 2
§ R 2 3 T . il ; = \ 4 '_""-._I
Y‘_ a —— a3 y a —2—{as) 2 (m)o
2 (a) 1|1 6 8 2 () 1 6 8
0
(ag —— as ) L ay | ds {2 )0
! 2 3 2
Fig 6.1 Agent communication graph Fig 6.2 Extending the communication graph

In a second phase. graph G is extended by adding two vertices, with these vertices
corresponding to the node pair hosting the agents represented by G. These vertices have 0

weight and are colored through a 2-color scheme (e.g. red. black). Note that the rest vertices
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(agent-vertices) remain uncolored for the time being. In order to take into account the cost of
migrating an agent, for each agent-vertex there are two extra edges towards the two node-
vertices. Since such an edge represents the migration cost, its weight is set to zero if the incident
agent-vertex to that edge is not hosted by the incident node-vertex; otherwise the weight equals
to the cost of migrating the agent represented by the incident agent-vertex, from the monitoring
node towards the node not hosting it. Fig 6.2 illustrates the above extension, only for the agents
a; and as, assuming that all agent sizes is 8 and that the constant @=0.5. Red vertex (#;) is shown
striped, while black vertex (n;) is shown grayed. Since all migrations are assumed to be
performed via the monitoring node (hop distance of 1 against 7, and #,), all edges whereby the

migration cost must be charged have a weight of 4 (equals a*agent size*hop distance).

The specific resources demands (in terms of an agent) are included in the model by coloring the
respective agent-vertex. For instance, if in the example L,, =0, then a; vertex will be painted

in red, 1.¢., ¢; will be forced to stay at »; (red vertex). Finally, mutual exclusion constraints are

included by adding coloring constraints for the corresponding agents. For example, in modeling

that /7, =0, it is equivalent to say that & and a,, vertices must have different colours.

Putting all these together, an agent that is differently colored against its current hosting node,
should migrate towards the other node in the system (same-coloured). Hence, ARP can be re-
stated as follows: try to paint each agent-vertex in one of the available colours, with respect to

our constraints, in such a way that the network communication cost is minimized.

3.2 The agent exchange algorithm

Here we present the agent exchange algorithm (AXA) to come with a solution for the 2-node
version of ARP. AXA uses the transformation of ARP into the equivalent coloring problem

presented in Sec. 3.1.

The algorithm works in iterations. In each iteration, the edge with the highest weight is selected
and the vertices it connects with are merged, since this weight represents a benefit. Specifically
if the incident vertices to that edge: 1) are both agent-vertices, then this benefit comes from
placing the agents, included on that vertices, on the same node (they communicate heavily); and
1) are an agent-vertex and a node-vertex, this benefit comes from placing the agent(s)
represented by agent-vertex on node represented by node-vertex. In case the merged vertices
have a mutual exclusion constraint, the merging is not performed and the edge connecting them

is colored grey (i.e., not to be considered further). Otherwise, the new vertex has the cumulative
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weight of the previous ones and their remaining edges. If any of the vertices belonging to the
merged vertex is colored then the merged vertex will also be colored (with the same color). In
case the two vertices to be merged are colored with different color each. merging is not

performed and the respective edge becomes grey. Fig 6.3 shows the resulting graph by merging

(25 with ds.
0
1 [ “
7:\ 2 \ /
<4 a_, 1 |d3.as) 4
\ 11 s
, =
a-l / ! ||’ < B
) \ Dz
3 -.‘_2/
0

Fig 6.3 Resulting graph after merging,

Each time two vertices are merged. AXA attempts to find if a feasible vertex coloring does exist
in the new graph. To this end it solves knapsack two times, once for #, and once for »,. with the
candidate objects being the ¢ vertices (the size of each object being the weight of the vertex). In
the previous example (/g 6.3), by solving knapsack on », (the red node) we get the following
objects to be placed: {a,, a,. {as. as}}. filling the resource capacity of #, which is 7. Having
obtained a knapsack solution for #,. the algorithm checks if the remaining objects fit in »,. In
the example only a, remains which fits in », since r(n,) was assumed 5. If so, the algorithm
keeps the merged vertex without coloring it and proceeds with the next iteration. Otherwise, the
algorithm attempts to find a valid placement by solving knapsack for #, (the black node) and
checking whether the remaining objects fit at »,. If after tryving both knapsack solutions AXA is
unable to find a valid placement involving all the objects, it backtracks to the graph state before

merging, marking the edge under consideration as grey.

The algorithm continues in the same fashion till either all the remaining agent-vertices are
colored, whereby performs the corresponding migrations: or edges are colored in gray, where no

migrations are performed.

3.3 [Extending to N nodes

Tackling the case of N>2 nodes is done with the pair-wise reconfiguration algorithm (PRA), the

pseudocode of which is shown in Fig 6.4.
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found:=true;
while (found)
found:=false;
fori=lto N
fori=l1to NV
apply AXA over (n;, nj) pair:
it D=0 then found:=true; keep AXA changes:
else discard AXA changes:
endif
endfor
endfor
endwhile

Fig 6.4 Pscudocode of PRA

PRA iterates through all node pairs applyving AXA. If during an iteration AXA manages to
define a better placement according to FEg. 6.4, the process reiterates, otherwise it ends
producing the final agent placement. In order for AXA to successfully optimize locally, i.e.,
within a node pair, the agent placement, adaptations are required to the way agent

communication load and migration costs are modeled. We illustrate them through an example.

Assume the network of Fig 6.5. with 7 nodes plus the monitoring node #,,. Let the agents of
Table 6.1 be already placed on m, and #s as follows: 1, has a,. a,, a; and #ns has a4 and as. In
other terms. 7, and #5 in this example have the same role as #; and #» in the example of Sec. 3.1.
Assuming only these agents exist in the network, the equivalent graph colouring problem is
similar to the one in Fig 6.2, with the exception being that the hop count must be taken into
account both on edges representing agent communication (a, a,) and on edges representing
migration cost (7. a). So all w(a,. a,) edge weights will be multiplied by a factor of 3 (the hop
distance between #; and ms), while all edge weights w(m;, ay) will be multiplied by the hop
distance between n,,, and the node of the opposite color with which #, was painted. For instance,
w(n,, az) will remain 4 since the distance between m,, and »s (the black node) is 1, while w(ns,
a,) will now be 16 since h,,=4. Fig. 7 depicts the resulting problem graph. For clarity, the edges

between (a,, a». a,) and (n,, n,) are omitted, as previously.

a - — a; - - et
. . . — = 0
|y f {1z | M3 } Ny s ) e e 16 i

- \ | day f | as ‘l s J,I 0

Fig 6.5 Network Fig 6.6 Resulting problem graph
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In the general case, agents placed on nodes other than the pair in question (#7,, ns) might
generate load towards some of the agents placed on the pair. Fig 6.5 gives an example. whereby
3 more agents exist, namely: as which is placed at n,, a; at n; and as at n7. The figure also shows
the load these agents generate towards the ones placed at #, and ns. specifically: Cgt C56=3,

(.-‘5_-1"' (_-.'_-1{,:2, C?_‘.‘,+ (._'_:,?:4_ (.-'75+ (—';7:3 a]"ld (‘fs-'.'{' C‘53:4,

Such external (to the node pair) load must be incorporated to the graph coloring model in order
for it to map to ARP correctly. This external load can be viewed as another form of node related
cost in the problem graph, as was the case with migration. Consider for instance the migration
of as from ns to n,. Aside from the migration cost of 16 to transfer as from #,, to #, there will
also be a change on the cost in terms of the external load directed to/from as. For instance, the
load generated by (as, as) communication will not incur a cost of 8, but rather a cost of 20 since
the hop distance between the two agents will increase from 2 to 5. In order to incorporate the
above case in the problem graph it suffices to augment: i) w(#s. as) by the network cost incurred
if as moved to m». 1.e.. 20; and 11) w(n,. as) by the incurred load if as stayed in ns. 1.¢.. 8.
Repeating the process for all the external loads of as results in w(#s, as) being augmented by a
factor of: 20 (as’s load) + 3 (a;'s load) + 2 (as's load) for a total of 25, and w(n..as) being
augmented by: 8 (as’s load) + 6 (a7’s load) + 8 (as's load) for a total of 22. Fig 6.7 illustrates
the final graph coloring transformation for the example of Fig. 6. Again, to avoid cluttering,

only edges between #,, ns and as, as are shown.

_-.1

Fig 6.7 Resulting problem graph

However, a subtle change must be made to AXA in order for it to function properly. Recall, that
AXA selects the link of highest weight and attempts to merge the incident vertices to that link.
The rationale for the decision is to attempt to place together agents communicating heavily with
cach other. So. if a; and a5 are placed together, then the communication load among them will
be alleviated and a benefit of w(as, as)=24. will occur, However, the same is not true when
considering edges involving a node-vertex. For instance, if as, ns are merged the actual benefit

will not be 31, but rather the cost difference between placing as at #s and at #,. According to

101

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 6

this, AXA may begin the coloring/merging process from a less beneficial edge, thus leading to
inferior solutions. For instance, in this example AXA will begin with (as, ns) having actual
benefit equal to 9 (31-22), instead of (as, a;) having actual benefit equal to 24. For this reason,
at the sorting step of AXA all edges of the form (v, ;) do not participate with their weights, but
rather with the weight difference: w(n;, ai) — w(nj, ai), assuming »; and »; are the system nodes

for which AXA runs.

3.4 Greedy algorithmic approach

Thus far, we have shown how the ARP problem from the standpoint of a node pair can be
transformed into a graph coloring problem. We also discussed both an algorithm to derive a
solution to the coloring problem (AXA) and how it can be invoked in order to tackle the ARP
problem globally (PRA). For comparison reasons here, we discuss another algorithm to solve

ARP based on the greedy approach.

Starting from the initial placement, Greedy iteratively selects an agent to migrate and performs
the migration. Specifically, at each iteration all A*N possible migrations are considered and the
one that optimizes Eg. 6.4 the most, subject to the constraints £q. 6.5 - Eq. 6.8, is selected. The

process is repeated until no further beneficial migration can be defined.

4 Experiments

This section describes the experimental evaluation of PRA. Section 4.1 presents the
experimental setup. Section 4.2 gives a comparison of PRA and Greedy against exhaustive
search for a small experiment, while in Section 4.3 we compare PRA against Greedy for a larger

experimental setup. Finally, Sec. 4.4 summarizes the experimental findings.

4.1 Experimental setup

Due to the fact that the POBICOS middleware is currently under development we conducted the
experimental evaluation using simulation experiments. The details of the simulation setup are

briefly discussed below.

Network generation. Two types of networks were constructed, one with 7 and one with 30

nodes. In both networks an extra node played the role of the monitoring node. Nodes were
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placed randomly in a 100x100 2D plain and assumed to be in range of each other if their
Euclidean distance was less than 30 distance units. In the resulting network topology graph, a

spanning tree was calculated and acted as the corresponding tree-based routing topology.

Application generation. The application tree structure is generated randomly, based on the
(given) number of non-generic agents. The initial non-generic agents are split in disjoint groups
of 5, and for each group 2-5 agents are randomly chosen as children of a new generic agent. In
next iterations, orphan (generic and non-generic) agents are (again) randomly split in groups of
5 and the process of parent creation is repeated, until a single agent remains which becomes the
root of the application. With the above method the resulting application is a tree, its leaves
consisting of non-generic agents. Since the scope of this work is broader tackling general
application graphs as opposed to trees, we alter the resulting application tree as follows. For
cach generic agent two more non-generic agents were assumed to be its children, thus, these
non-generic agents had two (or more) parents. Two different application structures were
generated with this way app-10 and app-40, each with 10 and 40 non-generic agents,

respectively.

Application traffic. We assumed that the communication load between a non-generic and a
generic agent was between 10 to 50 data units per time unit. For the load between generic
agents we considered three cases: (i) /avg: a generic agent sends the average of the load
received from its children, corresponding to a data aggregation scenario; (ii) /sum: a generic
agent sends to its parent the sum of the loads received from its children, corresponding to a
forwarding scenario; and (iii) /mix: half of the generic agents (randomly chosen) generate load
according to /avg and the other half according to /sum. Unless otherwise stated, the constant a
(see (4)) governing the importance of migration cost versus communication load was set to

0.01.

Other parameters. The size of agents varied uniformly between 100 and 1,000 data units. All
the non-generic agents that have the same parent were assumed to share one common special
resource requirement and had a mutual exclusion constraint among them. Non-generic agents
with different parents were assumed to differ in at least one special resource requirement. In the
experiments we begin with an initial placement and run the algorithms to define a better one.
This initial placement is derived by placing the non generic agents first. Specifically for every
group of non-generic agents with the same parent (let ng in cardinality), (1+f5)ng nodes
(randomly selected) were assumed to have adequate special resources to hold the agents, i.¢., for

anode #; and an agent a, such as above, L,=1. Unless otherwise stated, constant /5 takes a value
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of 0.5. In the initial placement the non-generic agents were placed randomly to nodes having the
required functionality in such a way so as to respect mutual exclusion constraints as well.
Having placed the non-generic agents, generic agents were placed afterwards, again in a random
fashion. Last, in the experiments we assume that the computational resource of interest is
memory and that all nodes start with an initial capacity equaling the size of the agents assigned

to them by the initial placement.

4.2 Comparison against the optimal algorithm

In this set of experiments we compare both PRA and Greedy against the optimal solution
derived through exhaustive search. For this reason we used the smaller 7-node network type and
app-10 application. Five different network topologies were generated and five different app-10

applications. Results depict the average of the combined runs (25 in total).

First we recorded the performance of the algorithms regarding the quality of the placement
scheme they reach, as a percentage of the optimal performance. Assuming that in the initial
placement init communication load is incurred per time unit, that in the optimal scheme opt
communication load is incurred and that in the placement calculated by the algorithms alg
communication load is incurred, the percentage of the optimal performance achieved by an
algorithm is characterized by the ratio: (init-alg)/(init-opt), .., how much load reduction an
algorithm achieves compared to the optimal. 7able 6.2 presents the results for PRA and Greedy
for two different load types: /avg and Isum. We also varied the amount of extra free capacity
available at the system nodes. So for instance /avg(2), means that each node had just enough
capacity to hold the agents allocated there in the initial placement, plus extra space equaling 2

times the average agent size.

Table 6.2 Solution quality compared to the optimal

lavg(l) lavg(2) lavg(3) Isum(1) Isum(2) Isum(3)
Greedy 81.7% 88.4% 95.4% 86.8% 86.9% 86.9%
PRA 85.5% 100% 100% 89.8% 100% 100%

We can observe from 7able 6.2 that PRA constantly outperforms the simpler Greedy algorithm.
In fact, the difference between PRA and the optimal scheme is not large when capacity is tight
(plus one extra space for an agent), while with a less tight constraint, PRA achieves the optimal
performance. It is also worth noting that the Greedy algorithm never achieves an optimal

performance.
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Table 6.3 Migrations performed

lavg(l) lavg(2) lavg(3) Isum(1) Isum(2) Isum(3)
Greedy 92 9.4 10.4 8.7 10.1 10.1
PRA 8.8 10.0 10.0 92 235 9.5

We also recorded in Table 6.3 the number of migrations performed by each of the algorithms.
Recall, that the application type used was app-10, involving 10 non-generic agents and roughly
6 generic, for a total of 16 agents. Results here are mixed, with PRA doing more or less
migrations compared to Greedy depending on the scenario. However, the fact that in certain
cases where PRA achieves the optimal, e.g., lave(3). Isum(3), PRA also performs less

migrations compared to Greedy. illustrates even more the merits of our approach.

4.3 Experiments with a larger network

Here we conducted experiments using the larger network case (30 nodes + the monitor node).
Five different network topologics were generated and each experiment depicts the average.
Eight applications of type app-40 were assumed to be initially placed, while the load model was
Imix. We plot the percentage of load reduction achieved compared to the initial placement. i.c.,
(init-alg)/init. Since the exhaustive algorithm could not produce results within acceptable time,

we only compared PRA against Greedy.
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Fig 6.8 Performance of the algorithms against Fig 6.9 Performance of the algorithms when
increased node capacity relaxing special resource constraints

Fig 6.8 demonstrates the performance of the algorithms as more capacity is added at each node
¢.g.. the value of 4 in the x-axis means that each node has capacity equaling the necessary one to
hold the agents initially placed there. plus 4 times the average agent size. The first thing to

notice. is that the achievable saves by both algorithms increase to the surplus capacity at the
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nodes, which is expected since with tighter capacity agents that should have been placed
together might not be able to do so. Notice that PRA manages to reduce the initial load by more
than 60% in all cases and by roughly 10% more compared to Greedy, a fact that further

reinforces the viability of our approach.

Last, in Fig 6.9 we measure the performance of the algorithms as the special resource
constraints become less tight. Recall from Sec. 4.1 that each non-generic agent group having the
same parent is assumed to require the same special resource. Assuming #g is the group size (5
in our case) then (1+5)ng nodes are assumed to provide such a special resource. In the x-axis of
Fig. 10 we vary the constant £ by 50%, 100%, 150% and 200% essentially increasing the

number of possible hosts (special resource wise) from 5 to 7.5, 10, 12.5 and 15.

As expected, with more candidate locations available for each agent, there is an increased
optimization potential compared to the random initial placement. Both PRA and Greedy exploit
this potential resulting in a performance increase (PRA achieves roughly 80% savings by the
end of the plot). Again PRA outperforms Greedy with their difference becoming small in the
150% and 200% case. In a sense, this result means that as the nodes of the system become more
homogeneous, Greedy might be a viable alternative, whereas for heterogencous networks PRA

1s a clear winner.

4.4 Discussion

Summarizing the experiments we can state the following: (i) judging from the optimization
margin left by the initial placement, any random solution to ARP will probably be particularly
inefficient; (i1)) PRA achieves performance close to optimal particularly if the computational
capacity constraint is not very tight; and (iii) simpler algorithms based on a pure greedy
paradigm cannot achieve equivalent performance compared to PRA, particularly in networks

with a heterogeneity degree as is usually the case in a smart home environment.

We would also like to mention that the increased performance offered by PRA does not involve
a prohibitive runtime cost. All the experiments were run in an ordinary laptop carrying an Intel
Pentium Dual CPU T3200 processor at 2GHz with 3GB of memory. Even in the larger setup of

Sec. 4.3 the running time of PRA never exceeded a couple of seconds.
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5 Conclusions

In this work we tackled the APR problem by iteratively solving it for node pairs. To do so we
illustrated a graph coloring problem transformation, and proposed an algorithm (AXA) to derive
a solution for the equivalent problem. Through simulation experiments the final algorithmic
scheme (PRA) was found to outperform a simpler greedy approach, while achieving the optimal
solution in many cases. The main differences of this work against the previous ones are: 1) the
application structure is structured as a graph (instead of a tree); ii) besides the generic agents,
the non-generic ones are migratable provided that the destination nodes have the required non-

generic resources.

Although we considered the case of centralized execution, our core contribution (AXA) is
distributed in nature involving only a node pair. As part of our future work we plan to
investigate adaptations to the centralized pairing mechanism (PRA) that will allow the

algorithm to execute in a fully distributed manner.
Part of this work has been published in the following book chapter:

* N. Taziritas, S.U. Khan, T. Loukopoulos, “On Reconfiguring Embedded Application
Placement On Smart Sensing and Actuating Environment”, in Intelligent Decision
Systems in Large-Scale Distributed Environments, Springer, New York, USA, 20011,
ISBN 978-3-642-21270-3, Chapter 11.
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Chapter 7

Algorithms for Energy-Driven Agent Placement in
Wireless Embedded Systems with Memory Constraints

1 Introduction

In this chapter, we address the basic problem of placing a single new agent (software
component) in a network of nodes taking into account both the available memory and remaining
battery of each node. Priority is given to agent acceptance while maximizing the lifetime of the
first node that will run out of battery. As it turns out, the problem of accepting a new agent,
without paying any attention to the communication and battery costs, is quite challenging in
itself. The reason is that even if no single node has enough memory to host a new agent, it may
still be possible to free sufficient space at some node by migrating one or more agents to other

nodes.

Our solutions are centralized, assuming a single point of entry, which has sufficient computing
and energy resources and decides about agent placement having a global overview of the system
state. For the POBICOS system, this could be a set-top box or a desktop computer which acts as
the coordinator of the home network, keeping track of the applications deployed in the system
in order to take good agent placement decisions. We assume that the node network topology and
communication traffic between agents is known to the coordinator; in reality, this information
would have to be collected at runtime using some kind of monitoring protocol — but this does

not change the core of the problem investigated here.

The rest of this work is organized as follows: Sec. 2 formulates the agent placement problem;

Sec. 3 presents algorithms that accept a new agent without making any lifetime optimization;
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Sec. 4 gives two greedy reconfiguration algorithms to optimize node lifetime once an agent is
successfully placed in the system; Sec. 5 illustrates two branch and bound heuristics that accept
a new agent while optimizing node lifetime in a “simultancous” way; Sec. 6 describes how to
implement the defined placements efficiently; experimental evaluation is included in Sec. 7,

finally, Sec. 8 includes the concluding remarks.

2  Problem Definition

2.1 System model

Let the system comprise of N nodes denoted by n;, 1<i <N and let m(n;) be the memory

capacity of the /™ node measured in abstract data units. The agents to be deployed in the system
are denoted by o, 1<k < A, each having size m(a,). A binary Nx4 matrix P is used to encode
agent placement at nodes as follows: Py=1 if ¢ is hosted by #;, 0 otherwise. Obviously, a node
can host agents only up to its memory capacity. The communication between agents is captured
via an Ax4 matrix C, where Cy,, denotes the data units sent on average from agent ¢, to a,, per
time unit. Let R be a NxNxN routing table where an element R, denotes the percentage of
traffic from #; to »; that passes through 7,. Multiple routing and network topology scenarios can
be captured using R. The model and consequently the algorithms in this work do not make any

particular assumptions on ¢ither of them.

2.2  Battery consumption and node lifetime

Let A(m;) be the battery level of node #;, measured as the data units a node can send before its
battery is depleted. Data transfer consumes the battery of the source and destination nodes
where the communicating agents reside, but also the battery of all intermediate nodes that act as
routers. Let f denote the ratio between the cost of sending and receiving a data unit. So, for
instance if 5=0.5 it means that the receiving cost is 50% of the sending cost. We assume that the
cost of routing is equal to the cost for receiving plus the cost for sending data. For simplicity,
we ignore the communication cost between co-located agents and the cost of local agent

execution.
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N
Fig 7.1 An example network
As an example of how battery consumption is captured in our model, consider the topology
shown in Fig 7.1. Let n; send a message of K data units to #; every time unit. Assuming that the

battery levels of all nodes are B and that 5=0.5, n; will deplete its battery after B/K time units, #;
after 2B/K time units and », after 2B/3K time units.

More formally, let Z; denote the lifetime of n;. This depends on the communication load
incurred at 7;, which in turn comprises of three components: (1) the load due to the data sent by
agents located on #; (let X)), (2) the load due to the data received by agents located on #; (let 1)),
and (3) the load due to #; acting as a router (let Z)):

A A4
X ZZ k(l Ckw Eq.7.1

k=1 w=1

A A
ZZ k(l w ka Eq 72

k=1 w=1

N
Ma;

A
> A-P)A-PIR,C,, | Py =1AP, =1 Eq.7.3
=1

Pv‘

=1 w

_ b(n,)
"X+ BY+(1+ B)Z,

Eq. 7.4

2.3 Adding a new agent

The addition of a new agent requires that sufficient memory space be found at some node or be
created through agent migrations. For instance, Fig 7.2 shows two nodes with a memory
capacity of 20 units each, which host five agents in total, leaving 2 units of free space at #; and
3 units at 77,. Assume that a new agent of size 5 arrives. Clearly, neither 7, nor 7, have sufficient
free space to host the agent. It is however possible to merge the two free memory fragments into
a single bigger chunk, ¢.g., by swapping as with a; and a3, in order to make space for the new

agent to be hosted at n, as depicted in Fig 7. 3.
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Fig 7.2 Placement (a) Fig 7.3 Placement (b)

The operations that can be used to alter the agent placement scheme are transfers (migrations)
and deletions. Let Tjj denote the transfer of ay from »; to n; and Dj. the deletion of ay at n;. In
order for a transfer 7Tjj to be feasible, the destination »; must have enough free space to hold a.
Note that, given this restriction, it is not possible to implement the transition shown from the
placement of Fig 7.2 into that of Fig 7.3, because to perform any agent transfer one must first
perform a deletion. We discussed similar feasibility issues in placement transitions in [78].
Tackling them in combination with memory and energy optimization exceeds the scope of this
work. Therefore, we assume that the entry point maintains a repository with the code of all
agents that have been injected in the system. Thus, the suggested transition could be
implemented by deleting a; from n,, transferring a, and a; from »; to 7., and then transferring as
to m; and the new agent (ag) to #, from the entry point, corresponding to the sequence {D-s, 712,

T2, Te1s, Teas where n. is the entry point.

Deletions incur no cost. On the contrary, the cost for performing a transfer is proportional to the
agent size, affecting source, destination and the intermediate routers. Specifically, the cost

incurred at »; for a transfer 7. 1s given by Eq. 7.5.

m(a,),i=x
S, (Txyk) = Bm(a,), i=y Eq. 7.5
(1 +,B)m(ak)Rw., i=Xxy
Since an agent migration incurs a communication cost, it also affects the lifetime of nodes in the
system. Assuming that at a given point in time the battery level of #; is equal to b(»;), and that a
series of transfers and deletions are performed to place a new agent, the lifetime of #; for the
new system configuration (including the new agent which introduces additional communication

cost due to its interaction with one or more existing agents) is given by Eq. 7.0.
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b(ni)_ ZSZ(Txyk)
VT,tyk performed Eq 7.6

L =
CX Y+ P,

Notably, our agent migration model ignores for simplicity the cost required for transferring the
state of an agent (considered negligible compared to the agent code size). However, it is quite
straightforward to take this aspect into account too, by splitting an agent’s transfer into two
parts: its status only obtainable by the hosting node, and its code obtainable by the hosting node

as well as the entry point.

2.4 Problem statement

Let P° be the existing placement of agents on the nodes of the system and P™" the placement
reached after accepting a new agent (if possible). For modeling purposes we let P and P™" be
(N+1)x(A+1) matrices, where my,; is the entry point and a,.; is the new agent to be placed in

the system; whose <code is initially available only at node my,, 1e,

P;ﬁ) =1 /\Eiﬁl =0V1<i<N. Also, the routing matrix R is extended to include 7y,

The first target of the agent placement problem (APP) is to define a feasible schedule of agent

migrations (transfers and deletions) such that, starting from P, one reaches a placement P™"

N

where aa.1 1s placed at some node (besides nyi1), 1., ZR"XI =1. The second target is to
i=1

maximize the lifetime of the first node that will deplete its battery resources, as per Eg. 7.6.
Thus, the agent placement problem (APP) can be stated as: Given an initial placement P°* of A
agents at NV nodes and a special entry point node #y,; that holds the code of all agents as well as
the code of a new agent a,.1, define a series of transfers and deletions leading to a new

placement P™" where a,.1 is placed at some node #;, 1 <i < N, while maximizing min(L;).

Notably, APP decision is NP-complete even for the first criterion only, i.e., accepting a new
agent with no concem for node lifetimes. We sketch an informal proof by reduction to the Bin
Packing-decision (BP-dec) problem which has the following statement: given A objects of size

s; and bins of size K, is there an assignment of objects to bins using V bins?

Proof of NP-completeness: For each BP-dec instance we build an APP-dec statement as follows.
The network consists of V+1 nodes, the first J of which have capacity K, while #v.; acts as the
entry point. Furthermore, for each object in BP-dec there exists a corresponding agent of same

size. In P° the agents exist only at the entry point, while in 2™ they must be accepted (placed)
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at nodes #; to ny. Clearly, a solution for accepting all agents exists if and only if the equivalent

BP-dec has a solution with J bins. Therefore, APP-dec is NP-complete.

3  Algorithms for Accepting Agents

Accepting an agent works in two steps. The first step is to check whether some node has
sufficient free space to host the agent. If so, the agent is placed at that node. In case multiple
candidates exist, the one that results in the longest minimum lifetime as per £g. 7.6 is chosen. If
no node has sufficient memory to hold the new agent, the second step is to create enough space
at some node, by performing a series of transfers and deletions as discussed in Sec 2.3. The
respective heuristics employ a component for solving the knapsack problem through dynamic

programming [56].

3.1 Pairwise checking algorithm (PCA)

The node with the largest free memory is more likely to provide the space needed for hosting a
new agent, by moving one or more of its local agents to another node. Conversely, if some
agents must be moved away from a node, it is easier to do so if the destination has relatively
ample free space. This is the intuition behind the pairwise-checking algorithm (PCA), the

pseudocode of which is shown in Fig 7.4.

Algorithm PCA

openSpace(node: nl, node: n2)

L:=sort nodes in decreasing order of available memory
while (L has at least two nodes)
nl:=L—head; //most capacious node
n2:=nl—next; //second most
while (n2#NIL && availMem(n] )<requiredSpace)
openSpace(nl, n2),
reinsert(L, n1); reinsert(L, n2),
if (n1=L—head && n2=nl—next) n2:=n2—next,
else if (n1=L—head) n2:=n1—next; /2 changed
else break; //n1, n2 changed, restart process
endif
endwhile
if (availMem(n1 > requiredSpace) return; //success
endif
if (n2=NIL) delete(L, nl); //list traversed
endif
endwhile

maxSpace:=maxkreeSpace(nl, n2),
bestsol:=current placement;
A:=set of agents located at both n1 and n2;
soll:=knapsack(nl, A) and remaining agents at n2;
sol2:=knapsack(n2, A) and remaining agents at nl;
if (maxFreeSpace(soll, nl, n2) > maxSpace)
bestsol:=soll;
maxSpace := maxFreeSpace(soll, nl, n2);
endif
if (maxFreeSpace(sol2, n1, n2) > maxSpace)
bestsol:=so0l2;
maxSpace := maxFreeSpace(sol2, nl,n2);
endif
implement bestsol ;

Fig 7.4 Pseudocode for PCA
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Specifically, PCA maintains a list of nodes sorted in decreasing order of their remaining free
space. It takes the first node (with the most free space) and attempts to open even more space by
considering the second node of the sorted list as a partner for exchanging agents. If enough
space is opened at any of the two nodes, the algorithm terminates successfully. Else, the first
node is checked against the third node etc., until the last node in the list is checked. Then, the
first node is removed from the list and the process is repeated (starting with the new first node),
until either enough free space is opened at some node or the list is empty. After each attempt to
open space the list is updated with the new free space values (and placements) of the
participating nodes. If during the process either the first or second node changes position in the

list, the iteration restarts with the new first and second nodes.

Agent rearrangement at each considered node pair (openSpace function) is done with the goal to
maximize the free space at one of the nodes. This is achieved by solving two different instances
of the knapsack problem, with the storage capacity of the first and respectively second node as
the knapsack size; the set of agents to be placed in the knapsack being the union of agents
hosted at both nodes, and the benefit of each agent being equal to its size. The two solutions are
compared to each other and with the initial placement, and the one with the largest free space at
a node is chosen.

tree

space: 6 free free space: 0
[ space: 1 space: 9
as. 6
as: 13
as: 13 as: 13
ag 4 a7 as 4
nq n2 nq na nq n2

@ (b ©
Fig 7.5 Example of knapsack runs: (a) initial state; (b) run on 7; (¢) run on 7,

As an example, consider Fig 7.5a which continues the example of Fig 7.2 but with the capacity
of n; and n, being 21 and 23 data units, respectively, leaving 3 units of free space at #; and 6 at
n,. Assume 9 units of free space are needed to place a new agent. The knapsack run on #; (Fig
7.5b) produces a placement whereby agents a1, as are located at n; while a,, as, a, are located at
n,, resulting in a contiguous free space of 8 units at 7,. For the run on »n, (Fig 7.5¢), agents as,
a,, as are placed at n, while a4, a, are placed at »;, leaving a free space of 9 units at »;. Thus, the

placement resulting from the second run is chosen.
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3.2  Greedy bin packing algorithm (GBPA)

The second algorithm follows a bin packing approach. Starting with all nodes initially empty,
GBPA iteratively attempts to place all agents, including the newcomer. In the first iteration,
knapsack is run N times, once for each node, and the solution that leaves the least free space on
anode, i.¢., fills a node as much as possible, is chosen. The agents selected by that knapsack run
are placed on that node, and the process is repeated for the rest of the agents and nodes. The
algorithm continues until either all agents or all nodes have been considered. In the first case the
generated placement can be used to accommodate the new agent whereas in the second case a

solution could not be found. Fig 7.6 illustrates the pseudocode of the algorithm.

Algorithm GBPA

N:=all nodes;
A:=all agents including the newcomer;
bestspace:=INFTY, bestnode:=NIL; bestagents:=NIL;
while (A and N not empty)
for all nodes ni at N
knapsack(ni, A),
if (free space at ni<bestspace)
bestspace:=free space at ni;

bestnode:=ni;
bestagents:=agents assigned to ni by knapsack;
endif
endfor

remove bestnode from N;

remove bestagents from A;
endwhile
if (A=NIL) implement the assignments produced,
endif

Fig 7.6 Pseudocode for GBPA

One can expect that GBPA will alter the initial placement scheme more drastically than PCA,
because all agents are placed on the nodes essentially from scratch. PCA changes the placement
of node pairs and starts doing so using the most promising ones (the ones with the largest free
space), hence the initial placement scheme could be left relatively unmodified. However, given
its packing-oriented nature, GBPA is also more likely to reach a solution compared to PCA. For
comparison reasons we also experiment with two well known bin packing algorithms, FirstFit

(FF) and BestFit (BF).
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4  Optimizing Node Lifetime

Once the goal of placing a new agent is accomplished, one may adjust the placement in order to
maximize the lifetime of the node that will first deplete its battery. The key component of the
above optimization is an agent swapping process among node pairs that attempts to move agents
that communicate heavily “closer” to each other; ideally on the same node. Following we give
details of the process and introduce two algorithms that optimize lifetime based on agent

swapping.

4.1 Agent swaps

Given a pair of nodes and the agents assigned to them, the problem of redefining the placement
so that the minimum node lifetime is increased is tackled as follows. For each agent the benefit
(in node lifetime terms) of migrating it to the other node of the pair is calculated. The agent with
the highest benefit attempts to migrate first. If the destination node has sufficient free space, the
migration succeeds. Else, the process attempts to define a group of agents at the destination,
such that if the group is swapped with the agent, enough free space opens. If such a group exists
and the overall placement remains beneficial, the exchange is performed. The process is
repeated for the next most beneficial agent and so on. After a migration attempt is successfully
accomplished, the benefits are updated. The process terminates, when all agents are considered.

Fig 7.7 shows its pseudocode.

swapAgents(node: nl, node: n2)

oldlife:=calculate min lifetime //as per Fq. 7.6
for all agents ¢y in nl and n2
life[k]:=min lifetime if @, changed node;
benefit[k]:=life[k] - oldlife;
endfor
while (exists a: benefit[k]>0)
candidate:=max benefit agent;
if (free capacity at opposite node>size of candidate)
place candidate at opposite node;
else
g:=group of agents from opposite node such that enough free space is opened,
newlife:=min lifetime if candidate and agents in g were swapped,
if (newlife>oldlife)
swap candidate and agents in g;
endif
endif
oldlife:=newlife;

recalculate life[], benefit[];
endwhile

Fig 7.7 Pseudocode for swapping agents in a node pair
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4.2 Reconfiguration algorithms

All the reconfiguration algorithms (RAs) we consider, work in a greedy fashion by iteratively

applying the swapAgents method (Sec. 4.1).

ggRA. The first algorithm called greedy global reconfiguration algorithm (ggRA) considers at
cach iteration, all node pairs (O(NV?)) and for each of them computes agent swapping as per Sec.
4.1. The pair for which the application of swapAgents vielded the maximum benefit with
respect to minimum node lifetime is selected and the induced agent transfers are performed. The
algorithm then continues by checking again the agent swapping at all node pairs, selecting the
best candidate and so on so for, until at some iteration the application of swapAgents results in
zero or negative benefit at all node pairs. At this point the algorithm stops and the final

placement is produced. Fig /.2 shows the pseudocode of the algorithm.

Algorithm ggRA

oldlife:=calculate min lifetime //as per Eq. 7.6
found:=true;
while (found)
found:=false;
bestlife:=0;
for all node pairs (ni, nj)
sol:=swapAgents(ni, 1)),
newlife:=calculate min lifetime of sol;
if (newlife>bestlife)
bestsol:=sol; bestlife:=newlife;
endif
endfor
if (bestlife>oldlife)
implement bestsol,
oldlife:=bestlife;
found:=true;

endif
endwhile

Fig 7.8 Pscudocode for ggRA

gIRA. The second algorithm we consider called greedy local reconfiguration algorithm (gIRA)
works in a similar manner to ggRA. Again at each iteration it computes swapAgents for node
pairs. However, contrary to ggRA which must check all node pairs before deciding the best one,
glRA selects the first pair that incurs a positive benefit in swapAgents, perform the required

transfers and reiterates.

Comparing the two reconfiguration algorithms we expect that gIRA will be considerably faster

compared to ggRA, without however, achieving the same solution quality.
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5  Accepting Agents and Optimizing Lifetime
Simultaneously

The algorithms presented so far can be used to tackle APP in a two step fashion: first the new
agent is placed at some node, using the algorithms of Sec. 3 to create enough space if necessary;
then some RA to optimize the resulting placement in terms of node lifetime. The algorithms
presented here are based on the branch and bound paradigm and combine both steps at the same

time.

sBBA. The simple branch and bound algorithm (sBBA) works as follows. Beginning with the
initial placement (excluding the new agent), a solution tree is built. At the first level, all node
pairs are considered, and sBBA runs for each node pair the openSpace process (Sec. 3). Then, it
selects the best candidates, which are expanded to produce the next level of the tree, by adding
one of the remaining nodes. Fig 7.9 depicts the structure of such a tree. Whenever a partial
solution (tree node) with i nodes is expanded to produce a partial solution with i+1 nodes (e.g.,
from a pair to a triplet) the agent placement is updated by running openSpace for opening space
among the node that was added to produce the expansion and the node with the largest free

space in the previous solution.

skyline

max node free space

min node lifetime

Fig 7.9 Solution tree with 10 nodes Fig 7.10 Skyline example

sBBA decides which partial solutions (tree nodes) to expand by evaluating them across two
metrics: the maximum free space at a node belonging to the partial solution and the minimum
node lifetime in all nodes of the network. At each tree level, only partial solutions at the skyline
(no other solution is better in both dimensions) of the above two dimensional space are

considered for expansion (see Fig 7.10). Fig 7.11 illustrates the algorithm in pseudocode.
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Algorithm sBBA

P:=all partial solutions consisting of single nodes;
c:=1://minimum cardinality of a partial solution at P
while (requiredSpace not opened)
while (P contains partial solutions of cardinality c)
pi:=a partial solution of cardinality c;
while (not all nodes considered for expansion)
expand pi with node nj;
for all nodes nx € pi
openSpace(nx, nj) //as per Fig 7.4
endfor
if (requiredSpace opened)
finalsol:=expanded pi + all nodes & pi
return;
endif
endwhile
subtract pi from P
add pi’s expansions to P
endwhile
prune from P partial solutions not belonging to the skyline
ci=ctl;
endwhile

Fig 7.11 Pseudocode for sSBBA

iBBA. The improved branch and bound algorithm (iBBA) follows the same general procedure
with sBBA, nevertheless, it differs in two major ways. The first one concerns the way a final
solution (involving all nodes) is defined, once in a partial solution (tree node) the required free
space is opened. SBBA stops at this point and leaves the placement on the nodes not belonging
in the final solution untouched. So, for instance in Fig 7.9 if the partial solution <ws, 1y, 15, ns>
opens the required space, the final solution of sSBBA will consist of the placement described at
the partial solution for the nodes <w;, n4, 1, ns> and the initial placement at the remaining nodes
<m, #s,.., mo>. This might be inefficient liefetime-wise, since in the remaining nodes
optimization possibilitics might exist. iBBA takes advantage of such optimization potential by
defining the final solution as follows. It adds to the partial solution e.g., <#s, n4, 1, ns> one by
oneg all remaining nodes in a random order (in the example 6 in total). At ecach such addition
swapAgents (Fig 7.7) is run between the agent that is added and the existing agents at the partial

solution.

iBBA also differs in another way compared to sBBA. Namely, while sBBA stops if a partial
solution involves the desired free space, iBBA continues exploring further possibilities. To do
so, the partial solution that opened the desired space, as well as all its successors do not take
part in the skyline criterion. To bound the running time, iBBA stops after &£ such alternative

solutions are defined and implements the best among them.
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6 Implementing a New Placement

A subtle issue concerns how the computed placements are actually implemented. Recall that all
algorithms start from an initial placement P° and try to define a new one P™" that includes the
new agent. It is possible to trace the execution steps of the algorithms to perform the
corresponding agent migrations, albeit at a high implementation cost. This is especially true if
the algorithms run as a “pipeline”, e.g., ggRA on top of GBPA, since the placement produced
by the algorithm that runs first, will be altered afterwards. Instead, we tackle the implementation
of PV as a separate problem, which can be stated as: given P and the P™" derived by the
algorithm(s) of Sec. 3-5, perform a series of agent transfers and deletions so that P*" is reached

with the lowest possible cost.

In [78] we explored various algorithms for a similar problem where multiple copies must be

created for a given object. Here we adopt the following variation. Starting from the set of all
required agent migrations (agent @, must move to #; if P7“ =0 and P/ =1), a migration is

picked randomly and performed by transferring the agent code from a suitable source. Two
sources may exist for fetching the code of an agent: the node that hosted the agent in P
(provided the agent has not been deleted), and the entry point which keeps a copy of all agents.
If both options apply, the algorithm selects the source corresponding to the transfer path that
contains the node with the longest minimum lifetime. In case the destination does not have
enough free space, the algorithm randomly deletes one or more agents that must not be hosted at
that node according to P™". Finally, having performed all the required transfers, to reach P™",

the algorithm deletes any superfluous copies of agents (at their old hosts).

7  Experiments

The presented algorithms were evaluated through simulations for a network of 31 nodes (one
being the entry point). A total of 5 different networks were generated as follows. The nodes
were randomly placed in a 100x100 2D plane and assumed to be in range of each other if their
Euclidean distance was less than 30. Based on the resulting connectivity graph, the minimum
(hop-wise) spanning tree was defined as the routing topology. Nodes were assumed to have a
battery lifetime enough to transfer/receive (both costs assumed equal) 1GB of data (roughly the
case of an Imote2 platform supported with 3 AAA alkaline batteries [1]) and 256KB of
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memory. The size of agents varied uniformly between 10KB and 150KB (unless stated
otherwise). Each agent communicated with 5 other randomly selected agents, generating a load

uniformly distributed between 10 and 100 bytes per time unit per agent.

In the following experiments we discuss the performance of PCA, GBPA, sBBA, iBBA, BF and
FF, both as standalone algorithms and in conjunction with ggRA and glRA (denoted as
PCA+ggRA etc.). Unless otherwise stated, the maximum number of final solutions explored by
iBBA was set to 5. Each experiment was repeated 4 times per generated network (total 20
times), each with a different agent setup and results were averaged. As a reference, we also
include results obtained for a naive algorithm (RAND) which randomly places a new agent as

long as there is a node with enough space to host it.

7.1 Performance on acceptance criterion

Starting from an empty system, we investigate the scenario where one new agent arrives every
100 time units, for 500 agents. The algorithms do not stop when the first agent is rejected, but

continue until all agents have been considered (in their arrival sequence).

Table 7.1 shows the sequence number (average of 20 runs) of the first agent that was rejected by
cach algorithm. It shows that RAND, BF and FF start dropping agents earlier on, with a value
between 92 and 93, while BBAs, GPBA and PCA are able to place roughly 4 more agents
before rejecting the first one. Among them, GBPA has the best performance with the relevant
differences being small. This experiment was also performed with all the algorithms’
combinations with ggRA and gIRA. Results showed that the application of RAs had a negligible
(mostly positive) effect to the acceptance metrics of all algorithms but RAND, whereby it
results in performance deterioration. This is because RAND never changes the placement of
agents, hence cannot “repair” possible fragmentation of free space caused by RA in its attempt

to optimize node lifetime.

Table 7.1 also shows the number of agents that were rejected, while the total free fragmented
space was greater than their size (tentative wrong rejections). Also, the ratio of the respective
agent sizes to the total free memory at the point of rejection is shown, as a measure of difficulty
for the placement that failed. It can be seen that GBPA is almost optimal with only 1 agent
being a tentative wrong rejection for the total of the 20 runs (0.05 average) while the total

available space was barely enough to host it (0.97 ratio).
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Table 7.1 Acceptance metrics

first tentative wrong agent size /
rejection rejections available memory
RAND 925 298.9 0.53
RAND+ggRA 88.05 318.75 0.48
RAND+gIRA 88.4 300.35 0.49
PCA 96.3 4.15 0.89
GBPA 96.6 0.05 0.97
sBBA 96.05 30.7 0.78
iBBA 96.3 21.25 0.81
BF 92.65 2943 0.53
FF 92.7 300.1 0.52

To further evaluate the algorithms concerning their acceptance capability we performed a
“domination” test. An algorithm A is said to dominate another algorithm B if any sequence of
agent arrivals that is accepted by B, is accepted by A as well. In order to test algorithm
domination, we recorded in the previous experiment all the agents accepted by each algorithm.
Recall that the simulation didn’t terminate upon an agent’s rejection but continued until all 500
agents were considered. Therefore, different algorithms accepted (most likely) different agents
in each of the 20 runs conducted. We used the agents accepted by an algorithm as input to the

others and recorded whether the sequence was accepted or not.

Table 7.2 gives the percentage of the sequences that were accepted by another algorithm. Table
columns depict which algorithm’s accepted agents were used as an input sequence to the
algorithm mentioned in the relevant row. Each value represents the result of all 20 such
sequences. So, for instance PCA accepted only 15% (0.15 value in the relevant cell) of the 20
sequences involving the agents accepted by GBPA, while all algorithms obviously have a
domination percentage of 1 against themselves. RAND was excluded from the experiment since

it was dominated by all others.

Table 7.2 Domination percentage

PCA GBPA sBBA iBBA BF FF
PCA 1 0.15 0.7 0.6 1 1
GBPA 0.95 1 0.95 0.95 0.95 1
sBBA 0.35 0.05 1 0.5 1 1
iBBA 02 0.05 0.55 1 1 1
BF 0 0 0 0 1 0.25
FF 0 0 0 0 0.75 1
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The first thing to notice is that no algorithm dominates absolutely all others. The second thing is
that GBPA offers the highest domination ratio accepting 19 out of 20 sequences corresponding
to PCA and BBAs (0.95 value in the table). A peculiar result is that while BF and FF are totally
dominated (value of 1) by PCA and BBAs, GBPA fails to accept one of the BF sequences (0.95
value). By delving into the experimental data, we found out that there is only one agent GBPA
rejected, which agent is accepted by PCA, BBAs and BF. Nevertheless, the domination rate of
GBPA is still the highest. Furthermore, what is more important is to observe the domination of
the other algorithms versus GBPA. PCA accepts only 15% of GBPA’s sequences, while BBAs
accept only 5%. This reinforces our intuition in Sec. 3.2 that GBPA is the most powerful
algorithm in opening space to accommodate new agents. 7Table 7.2 also shows PCA coming
second followed by BBAs, while BF and FF being particularly bad, unable to accept any of the

remaining algorithms’ sequences.

Table 7.3 Average algorithm behavior in the domination test

domination rejected agents size of rejected
percentage agents

PCA 0.69 0.31 10.15

GBPA 0.96 0.04 5.96

sBBA 0.58 0.42 17.31

iBBA 0.56 0.46 19.97

BF 0.05 2.53 233.7

FF 0.15 2.22 224.43

Table 7.3 records the average domination percentage of an algorithm against the sequences of
all others (5*20=100 total), together with the average number of rejected agents per sequence
and their size. One thing that deserves explanation is the fact that iBBA has a slightly smaller
average domination behaviour compared to sBBA. This is an acceptable tradeoff, since iBBA
results in placements more optimized towards energy efficiency against SBBA. Overall, 7able
7.3 confirms the previous remarks concemning the relevant algorithm performance on accepting
agents, i.c., GBPA is first, followed by PCA, followed by BBAs, while BF and FF are
particularly bad with the latter being better than the first. Henceforth, RAND, BF and FF will be

mostly omitted from the experiments.
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Fig 7.12 Number of tentative wrong rejections for various agent sizes

As a last test for the ability of the algorithms to accept a newcomer agent, Fig 7./2 shows the
number of tentative wrong agent rejections for 5 different agent size (uniform) distributions. In
the cases where agent size could take both small and large values (10..100 and 10..150
distributions), all algorithms had almost zero tentative wrong rejections. This is a particularly
encouraging result indicating that the algorithms achieved the optimal performance. In the
10..50 case the best performance was by GBPA followed by PCA. For the 50..150 and 100..150
distributions, where the maximum agent size is greater than half node capacity, a significant
number of tentative wrong rejections appear, their number increasing with the average agent
size. This behaviour is expected because the problem of creating enough space to fit an average
sized agent becomes harder. GBPA either outperforms or is equal to the rest, which further
confirms its merits in accepting agents. Notice, that the high rejection rate observed is a bit
misleading. In the 100..150 case all algorithms left a total (at all nodes) free space of merely
179.95 i.e.. enough to place one additional agent with the largest size, while in the 50..150 case
the total free space left varied from between 64 (GBPA) and 88.7 (sBBA). i.c.. enough to store

one agent of the smallest size.

7.2 Performance on energy criterion

In order to evaluate the algorithms in terms of maximizing the lifetime of the first node that
depletes its battery, we stop our simulation when the first agent is rejected by some algorithm

(on average at the 96th agent). At that point, all placements are guaranteed to contain the same
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(communicating) agents, and thus can be fairly compared as to the energy consumption

criterion.

Fig 7.13 shows the minimum node lifetime for GBPA. PCA, sBBA, iBBA and their glRA
variants. When executed as standalone, iBBA achieves the best results with a performance
difference of more than 20% compared to the second best which is sBBA. Standalone PCA
outperforms GBPA by roughly 12.7%, however, both algorithms result in marginally inferior
solutions agenst iBBA and sBBA (by more than 141%). These results confirm the premise of
BBAs, i.¢., that they can tackle both acceptance and energy optimization criteria at the same
time. Next, observe that the application of glRA considerably improves the performance of all
algorithms by between 30.8% in iBBA and 227% in PCA. The best combination is
sBBA+gIRA, with iBBA+gIRA coming second, PCA+gIRA third and GBPA+gIRA last. An
interesting thing to notice is that standalone iBBA outperforms GBPA+gIRA by 30.1% and
loses to PCA+gIRA by 13%. As it will become apparent in Sec. 7.3, the application of gIRA
affects significantly the running time of the algorithms. Therefore, when a compromise between
running time and energy efficiency is needed. standalone iBBA 1is a valid choice. Finally. we
would like to mention that the apparently low performance of GBPA, even after the application
of glRA is rather expected since GBPA redefines the total placement from scratch each time it
accepts an agent, therefore it makes it harder for glRA to optimize the placement and also

requires more (costly) migrations to do so.
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To further characterize the algorithms in terms of energy efficiency, Fig 7./4 shows the average
battery consumption at each node per time unit, measured from the time when the first agent is
accepted up to the time where the first node runs out of battery. Again, iBBA achieved the best

performance among standalone algorithms, while sSBBA+gIRA was the best combination with
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iBBA+gIRA following closely. This means that BBAs and their combinations are not only
superior in maximizing the lifetime of the first dying node, but also in minimizing energy
consumption across the whole network (iBBA had 32.3% less consumption against PCA and

42% against GBPA).

7.3  Other experiment and metrics

Thus far we presented results with glRA as the reconfiguration algorithm. Fig 7.15 shows the
relevant performance differences between ggRA and gIRA when applied over PCA, GBPA,
sBBA and iBBA. Concerming the main energy related metrics. i.c., min node lifetime and
average battery consumption at all nodes, ggRA gives mixed results. For instance, BBAs+ggRA
is better at improving the lifetime of the first node that dies compared to BBAs+gIRA (by less
than 10%). while when applied over PCA and GBPA the results are the opposite. i.c., the gIRA
combination is superior (negative values in the plot). However, gIRA is faster than ggRA,

regardless of the algorithm applied to, and is therefore a more viable option.
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Fig 7.15 Comparison between ggRA and gIRA

Next, we evaluate iBBAs performance with regards to the number of the final solutions (that is,

the & variable we are referred to in last paragraph of Sec. 5) the algorithm is allowed to explore

before terminating. Fig 7.16 plots the achievable node lifespan, while Fig 7./7 plots the average

running time for accepting/rejecting a single agent of iBBA. Concerning the later we can notice

that it increases linearly to the number of final solutions the algorithm outputs, while
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performance on the node lifetime criterion (Fig 7.16) exhibits a knee. The results mean that
after a certain number of final solutions are achieved, the relevant performance gains by
continuing the exploration of the solution space are small and might be offset by the
corresponding increase in the running time of the algorithm. In all our experiments we used the

value of the knee. i.¢.. 5 final solutions as a stopping criterion of iBBA.
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different iBBA versions

Last, we discuss two more performance parameters. The first parameter is the communication
cost incurred by the algorithms due to agent migrations, which is essentially the overhead for
achieving the resulting placement. /ig 7./8 shows the number of migrations and Fig 7.19 the
percentage of migration cost in the total communication load (including agent-level traffic) for
three different battery levels: 1, 0.5 and 0.1 GB. In all cases the placement overhead (Fig 7.19)
increases as the battery level decreases. because nodes (and agents) dic sooner and as a
consequence the system cannot amortize the agent migration cost paid. glRA variants incur
significantly higher overhead compared to standalone algorithms due to the increased number of
migrations performed: more than an order of magnitude compared to standalone algorithms as
shown in Fig 7.18. Among the standalone algorithms GBPA is the most expensive migration
wise. This confirms the assumption that bin packing alters considerably the existing placement,

making it much harder for RAs to optimize it.
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Finally, we measure the running time of the algorithms. Fig 7.20 presents the average time it
took for the algorithms to accept (reject) one agent, measured for three distinct node sizes:
256KB, 512KB, 1024KB. Note, that the running time of most algorithms increases for larger
node sizes (more agents accepted). Among the standalone variants, PCA 1is the fastest, with
GBPA second and sBBA, iBBA following in that order. It is interesting however to notice that
iBBA is faster compared to all algorithms that achieve comparable performance on the lifetime
metric with it, i.e., glRA variants (Fig 7.7/3). Overall gIRA increases the running time of all
standalone versions by between 1 and 3 orders of magnitude. Nevertheless, the actual values
even for the slowest combination (about 3 secs for GBPA+gIRA) are still small enough for a

real-world system.

7.4  Discussion

Summarizing we can state the following: (i) the classic bin packing solutions BF and FF, as well
as the random algorithm have noticeably inferior performance compared to GBPA, PCA and
BBAs, accepting fewer agents; (i1) GBPA is better in accepting agents than PCA and BBAs but
has higher running time and is less able to save energy; (iii) BBAs are the most energy efficient
algorithms, achieve comparable (but smaller) to GBPA and PCA performance on the agent
acceptance criterion, but have higher running times compared to them; (iv) among BBAs, iBBA
is slower compared to sBBA, but achieves considerably better performance on the lifetime
criterion; (v) PCA is a tradeoff between GBPA and BBAs concerning acceptance and energy
management, while being considerably faster compared to them; (vi) RAs improve the energy
efficiency of all algorithms without affecting the acceptance criterion much, at the expense of a
higher running time; (vii) among the RAs, gIRA offers the better trade-off between running time

and solution quality.

Thus, whenever the acceptance criterion is the absolute determining factor GBPA (and possibly
GBPA+glRA or GBPA+ggRA) is the algorithm to choose, whereas if energy efficiency is
equally important iBBA (and possibly sSBBA+gIRA) offer viable alternatives. Finally, PCA (and
possibly PCA+glRA) is a good choice whenever a decent trade-off between acceptance, energy

optimization and computation time is required.
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8 Conclusions

In this chapter we introduced the agent placement problem (APP) which has two different
components: (i) finding/creating enough space for hosting an agent and (ii) optimizing energy
consumption due to agent communication and migration. Heuristics were proposed for tackling
the two performance aspects both independently (GBPA, PCA, RAs) and simultancously
(BBAs). Through simulated experiments, different tradeoffs were identified (BBAs offered a
particularly promising one), while all algorithms outperformed two well known bin packing
heuristics (best and first fit) as well as random placement. In previous works the objective
function was the reduction of the energy spent over the network, while this chapter does not

take this optimization into account at all.
Part of this work has been published in the following workshop and journal proceedings:

* N. Taziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Agent Placement in Wireless
Embedded Systems: Memory Space and Energy Optimizations,” in Proc. 9th Int.
Workshop on Performance Modeling, Evaluation, and Optimization ofUbiquitous

Computing and Networked Systems (PMEQO2010), IPDPS workshops.

* N. Tziritas, T. Loukopoulos, S. Lalis and P. Lampsas, “Algorithms for energy-driven
agent placement in wireless embedded systems with memory constraints,” Simulation

Modelling Practice and Theory (Elsevier), 2011
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Chapter 8

Agent Manager System Implementation and
Evaluation

1 Introduction

POBICOS [91] is a platform that focuses on applications running on top of a networking system
consisting of cooperating objects in the field of wireless embedded systems. An application
consists of a number of mobile code entities (called agents) structured in a tree-like manner. The
main targets of POBICOS is to provide: i) a user-friendly environment to install/un-
install/monitor applications without needing the presence of an expert; ii) an opportunistic
programming model enabling the application programmer to write an application of its own
preference without knowing in advance which objects will host the application in question, and

also the connectivity graph of that objects.

The core of this project is the middleware lying between the application(s) and the operating
system (TinyOS). Specifically the most significant components of the middleware are shown in:
1) the runtime which is responsible for executing the code of an agent; ii) the agent manager
whose functionality is to enable the interaction between agents either they are co-located or not;
ii1) the code tfransport which is invoked by agent manager to download agent binaries; iv) the
network abstraction which is responsible for the communication between objects. In the sequel
we give a coarse-grained description about the basic functionalities of network and runtime

component which are central to the agent manager functionality.
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The networking layer provides two different messaging services: reliable and best-effort. In the
case of former, a datagram is (re-)transmitted from the source node to the destination one, till
either an acknowledgment travels back from the destination node to the source one to confirm
that the datagram has been successfully delivered; or the maximum number of retransmissions
has been reached, where the delivery is declared unsuccessful. Datagram ordering and filtering
of duplicates is handled by that service. As far as the best-effort service is concemed, a
datagram is sent towards the destination node without retransmission attempts, and therefore
without guarantees that the datagram will be ever delivered. This service provides neither

ordering nor filtering of duplicates.

The agent manager interacts with the runtime component through commands/events in order for
the former to: 1) issue a request (via a command) about the allocation and removal of an agent
instance; i1) request the suspend/resume of the execution flow of an agent instance when needed
(e.g. performing an agent migration); inquire about locally available (generic and non-generic)

resources and the local node descriptor.

allocate/free
agent slot

init/start

Agent Manager

suspendfresume
get state of agent

check resources

request
download code

Agent Runtime

l retrieve code

Agent Code

Transport

| !

‘ Network Abstraction ‘

Fig 8.1 Key middleware components and interactions for supporting agent mobility.

2 System Implementation

The POBICOS middleware is developed for TinyOS v2.1 running on Crossbow iMote2 nodes
at 104MHz. Thanks to a component that provides transparent access to external memories (€.g.,

Flash), the core RAM requirements can be kept below 8KB, which makes it possible to port the
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middleware to more resource-constrained devices. Wireless communication 1s via an external

ZigBee modem from the Z430-RF2480 demo kit of Texas Instruments [110].

We should notice that AGE has been developed into the agent manager, besides the protocols
elucidated further down.

2.1 Data types and data structures

This section gives an overview of the data types and data structures of the POBICOS
middleware that are relevant for the purpose of agent management. Data structures are specified

in a high-level fashion, without focusing on any implementation details.

2.1.1 Agent identifiers

The identifiers of agents are 4-byte unsigned integers. The most significant 2 bytes are set equal
to the address of the node where the agent is created. The least significant 2 bytes are assigned
the value of an agent seed number, which is incremented each time a new agent is created. This
number is stored in persistent memory to guarantee uniqueness of agent identifiers despite node

reboots.

2.1.2 Agent descriptors

For cach locally hosted agent, a descriptor is used to keep all relevant information, such as the
agent’s identifier, the node address and identifier of its parent, as well as the node addresses,
identifiers and group identifiers of its children. Agent descriptors are stored in volatile memory.
When a node reboots, this information (along with all runtime information associated with

agents) is lost. (Note: POBICOS agents are not persistent.)

2.1.3 Creation request descriptors

For each agent creation request issued by a locally hosted agent, a descriptor is used to keep all
relevant information, such as the identifier of the agent that issues the request, the parameters of
the request, the remaining lifetime of the request, and the current state of the request. Creation

request descriptors are stored in volatile memory. When a node reboots, this information is lost.

2.1.4 Message queues, sequence numbers, epoch numbers
For each node, a message queue is maintained where agent-level (and other special) messages
are placed for transmission in FIFO order over the network. Each queue is associated with a

local sequence number that is increased for each message sent via the queue, and with a remote
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sequence number that is updated cach time a message from that node is received. Message

queues and their sequence numbers are stored in volatile memory, hence do not survive reboots.

A message queue is initialized when the node reboots or the respective remote node becomes
“unreachable™ (according to the network abstraction layer), in which case both the local and
remote sequence numbers are reset to 0. To let remote nodes infer such resets, each message
queue is also associated with a local and remote epoch number. The local epoch is attached
(together with the local sequence number) to all messages which must be delivered in FIFO
order. The local epoch number is stored in persistent memory and increases each time the node
reboots. It is also increased when a remote node is declared “unreachable”, in which case the
epoch of the corresponding message queue is updated (the epoch numbers of other queues are
left intact). The epoch numbers of remote nodes do not need to be stored in persistent memory.
They are initialized when the first a message is received from that node and are updated when a
message arrives carrying an epoch that is greater the previously recorded value (indicating a

reset in the remote sequence numbering).

2.1.5 Report lists
For each report list created by a local agent, a corresponding data structure is maintained for
storing and retrieving reports. These data structures are all kept in volatile memory. When a

node reboots, this information is lost.

2.2  Host Candidate Discovery Protocol

This protocol is used to discover the nodes that are candidates for hosting an instance of a given
agent type, subject to size constraints and (for non-generic agents) the non-generic resource

requirements and the object qualifier expression provided by the application.

2.2.1 Description

To find candidates for hosting an instance of a given agent type, the middleware broadcasts a
HostProbeRequest message to the POBICOS network and waits for HostProbeReply messages
for a certain amount of time. HostProbeRequest messages carry information about the agent
type, size and non-generic requirements as well as the object qualifier specified by the
application and the application’s priority. Due to the limited size of broadcast messages, it may
be possible to sent only part of the non-generic requirements and/or object qualifier, in which

case this first phase will produce “inaccurate”™ results (i.e., false positives).

136

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 8

Each HostProbeReply received is added in a candidate list. When the waiting time elapses, the
candidate list is traversed to find the “best” candidate. Notably, there is no need to wait for the
entire waiting time to clapse, and waiting can be terminated as soon as a “good enough”

candidate replies. This is implementation specific.

When the middleware receives a HostProbeRequest message, it checks whether the locally
available generic computing resources are sufficient to host the agent’s code and static data.
Also, if the agent type is non-generic, it checks whether the local node matches the object
qualifier expression and meets the corresponding non-generic resource requirements; also that
there is no other locally hosted non-generic agent of equal or higher priority that employs a
conflicting non-sharable primitive. If all checks are successful, a HostProbeReply is sent back to
the sender of the request, carrying the matching result (this can be further processed to pick the
“best” reply). Notably, a reply serves just as a hint, i.¢., the replying node does not reserve any

local resources.

The HostProbeRequest message is broadcast as an unreliable datagram while the
HostProbeReply message is sent as a reliable datagram, using the corresponding service of the
networking abstraction layer. A simple sequence numbering scheme is used to verify that a

HostProbeReply message corresponds to the most recently sent HostProbeReply message.

2.2.2 Message sequence diagram

The prototypical interaction for this protocol is as follows:
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Fig 8.2 Message diagram for the Host Candidate Discovery protocol

2.3 Agent Creation Protocol

This protocol is used to create a new agent instance on a (specific) candidate node.

2.3.1 Description

Having picked a candidate for hosting an agent to be created (see Host Candidate Discovery
Protocol), the middleware sends an AgentCreationRequest message to it and waits for an
AgentCreationReply message. If the reply is positive, the child information of the local parent
agent is updated and the agent is notified accordingly about child creation. If the reply is

negative, the next candidate (if any) is considered.

When the middleware receives an AgentCreationRequest message. it checks that the object
qualifier (if any) matches against the local object descriptor. Then, it fetches the code (if not
already locally available) and the configuration settings for that agent type. Finally, it checks
whether the local generic computing resources are sufficient to host the agent type. and, if the
agent type is non-generic, whether the local node meets the corresponding non-generic resource
requirements, and that there is no other locally hosted non-generic agent of equal or higher

priority that employvs a conflicting non-sharable primitive. If these checks are successful. a new
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agent of the requested type is created locally (via calls to the runtime) and an
AgentCreationReply message is sent back to the sender of the request carrying the identifier of
the newly created agent. If any of these checks fail or the transfer of the agent code or its
configuration settings fail or the runtime failed to instantiate the requested agent instance, the

value zero (0) is returned instead of an agent identifier.

The AgentCreationRequest and AgentCreationReply messages are sent as reliable datagrams
using the corresponding service of the networking abstraction layer (it is assumed that the entire
information of a request fits within a reliable message; note that requests do not carry the non-
generic requirements since these are extracted locally by the host, once the agent code is
fetched). A simple sequence numbering scheme is used to verify that an AgentCreationReply

message corresponds to the most recently sent AgentCreationRequest message.

While waiting for a reply from a node, Ping messages are sent periodically to it in order to
check its operation, making sure that it (still) makes sense to wait for a reply. If the network
reports that it was unable to deliver a Ping message to the destination, the next candidate (if

any) is considered.
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2.3.2 Message sequence diagram

The prototypical interaction for this protocol is as follows:
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\\ create agant instance

AgentCreationReplyhMsg |
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|
|:|> add child |
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|
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Fig 8.3 Message diagram for the Agent Creation protocol (ping messages are not shown)

2.4 Heartbeat Protocol

This protocol is used to refresh the lifetime of child agents as well as to detect the fact that an

agent (parent or child) is unreachable.

2.4.1 Description
The liveness of agents is explicitly confirmed by periodically transmitting a Heartbeat message
from the parent to its children. The middleware does this automatically, without any explicit

request from the application.

When the middleware receives a Heartbeat message from the parent of a local agent, it extends

the lifetime of that agent by a certain amount of time. If the lifetime of a local agent expires, i.c..
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a “sufficiently” long period of time passes by without having received a heartbeat from its

parent, the agent is declared orphan. Consequently it is finalized and removed.

If the middleware receives a Heartheat message for an agent that is not hosted locally, a
corresponding NAck message is sent back to inform the sender that the agent does not exist,
carrving some information about its non-existence, if possible. When the middleware receives a

NAck message for a child of a local agent, it notifies the agent that the child is unreachable.

Heartbeat messages are sent as reliable datagrams whereas NAck messages are sent as
unreliable datagrams. To avoid causal inconsistencies, NAck messages are delivered in a FIFO
manner behind agent-level messages and thus carry corresponding sequencing information
(epoch and sequence numbers). The sequencing logic is discussed in the sequel, as a part of the

agent-level message transport protocol.

2.4.2 Message sequence diagrams

The prototypical interaction for this protocol is as follows:

POBICOS Middleware PO M T

pick local agant

|
I
[D pick (remate) child of local agent
I
I
I
I
]
I
I
I
|
|

HearbeatMsg

|
|
|
|
|
|
|
|
|
|
|
|
|
el
|
[D update lifetime of local (child) agent
|

\
b———— {agent does not exist)
NAckMsg |

____________________ {
|
update child info of kecal agent |
|
|
| |
| |

Fig 8.4 Message diagram for the Heartbeat protocol

2.4.3 Node-level heartbeats
A single or multiple local agents may have created several children on the same node. To avoid
sending several heartbeat messages to the same node. each heartbeat (or application-level

message) sent from a local parent to a child on a node also serves (i) as a heartbeat from that
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parent to any other of its children that happen to be on that node, as well as (ii) a heartbeat from

all other local parents to all of their children on the same node.

2.5 Agent-level Message Transport protocol

This protocol is used to transport (reliable and unreliable) agent-level messages (commands and

reports) as well as negative acknowledgement messages.

2.5.1 Description
For each (reliable or unreliable) agent-level message, the middleware prepares a corresponding
AgentMsg message and queues it up for transmission towards the node where the destination

agent is hosted.

An AgentMsg message also serves as a heartbeat (see previous section). This means that the
recipient is expected to generate a NAck message if the destination agent does not exist, just like
for a Heartheat message (see heartbeat protocol). Note that in this case, a NAck message may be
issued towards a parent (indicating, as in the heartbeat protocol, that the child does not exist) as

well as towards a child (indicating that the parent does not exist).

2.5.2 Sequencing
To achieve FIFO delivery, every message queue is associated with local and remote sequence
number. The local sequence number is incremented each time an AgentMsg (or NAck) message

is added in the queue, and the sequence number is also attached to the message itself.

The queue is traversed to forward messages to the network layer for transmission. Message
transmission is suspended when a reliable message is handed over to the network layer, until its
delivery is explicitly confirmed or the network layer reports a problem (see failure handling
below).

When the middleware receives an AgentMsg (or NAck) message it checks its sequence number
and accepts it only if it is greater or equal to the next expected sequence number for that

(remote) node. Else the message must be dropped.

Due to the transmission policy on the sending side, it is impossible for an unreliable message to
overtake a reliable message. As a consequence, only unreliable messages may arrive out of
order, and can be dropped without violating the application-level delivery semantics.
Nevertheless, a clever implementation can buffer out of order (unreliable) messages and wait

for “late” messages to arrive.

142

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 13:56:28 EEST - 3.14.13.79



Chapter 8

AgentMsg messages are sent as reliable or unreliable messages, as requested by the application.
NAck messages are also sent as unreliable datagrams. To avoid causal inconsistencies, NAck
messages are queued behind agent-level messages and thus carry corresponding sequencing

information.

2.5.3 Network and node failures

When the network reports that it was not possible to successfully transmit a reliable datagram,
the corresponding remote node is declared “unreachable™. In this case, messages queued up for
transmission towards this node are dropped. Also, all agents known to be hosted on that node
are declared “unreachable”. If such an agent is the father of a local agent, the child is considered
orphan and is terminated/finalized and removed. Else, if such an agent is the child of a local
agent, the child is removed from the child list and the agent is notified about the child being

“unreachable”.

To deal with network failures and reboots, the middleware maintains a local epoch number.
Each message queue is associated with a local and remote epoch number. When the middleware
initializes (the local node boots) it increments its epoch number and assigns this value to each
message queue. When a remote node is declared unreachable, the local epoch is incremented
and assigned to the local epoch of the corresponding message queue while the local sequence
number is reset to 0. The local epoch number associated with a message queue is attached

together with the sequence number to all AgentMsg and NAck messages sent via that queue.

When the middleware receives from a node a message with a smaller than expected epoch
number, it drops it. Messages with the expected epoch number are processed as usual (see
sequencing). Finally, if a message with a greater than expected epoch number is received, the
middleware knows that the remote node has declared the local node as unreachable, handles this
case appropriately (as if it had also declared that node unreachable, but without increasing the
local epoch), updates the epoch for that remote node and resets the corresponding sequence

number to 0.

Notably, this approach allows a node to safely declare another node as unreachable, using
whatever criterion is considered more realistic, without causing any serious inconsistency even
if the node is actually alive. The price for doing this too “eagerly” is that nodes (and agents) can
be declared as unreachable even if this is not the case in reality. It is up to the middleware
implementation to decide when to declare a node as unreachable, ¢.g., when the network fails to

deliver a reliable message to the destination node (after some number of attempts or a timeout).
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2.5.4 Message sequence diagram

The prototypical interaction for this protocol is as follows:

POBICOS Middleware BICOS Middleware

|
|
|
pick next msg in gueue :
|
|
|

Agentthisg

A

[D deliver message to local agent

|

e i s {agent does not axist)
NAckMsg |

____________________ 1
\ |

update child or parent info of local agent |

|

|

|

|

Fig 8.5 Message diagram for the Agent-level Message Transport protocol

2.6  Agent Migration Protocol

This protocol is used to move a locally hosted (generic) agent to a specific (given) remote node
in a transparent fashion. The protocol works in multiple phases: (i) acquisition of the agent code
and configuration settings: (ii) notification of the agent’s parent and children that the migration
starts; (iii) actual migration; (iv) notification of the agent’s parent and children that the
migration finished. The last phase also serves as a tie-break, in case migration succeeds but the
old host nevertheless believes (due to a network partition or message transmission failure) that
migration has not been completed successfully, letting the parent act as a common

svnchronization point.

Notably, this protocol does not address the problem of finding a suitable destination for a
locally hosted agent, which is the subject of the so-called Agent Migration Algorithm (several

options are discussed in the respective chapter of this document).

2.6.1 Description
When the middleware wishes to move a locally hosted agent to a given destination, it performs

a series of communication rounds, as follows.
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In a first step, the agent’s host sends a GetCodeRequest message to the destination and waits for
a GetCodeReply message. When the middleware receives a GetCodeRequest message, it fetches
the code of the agent to be migrated (see reusable data item transfer protocol), if not already
available, as well as the configuration settings for that agent. The result is communicated back
to the host of the agent via a GetCodeReply message. The reachability of the destination is
monitored (via Ping messages, as in the agent creation protocol). In case of a failure, the

migration is aborted.

In a second step, the agent’s host informs the nodes of the agent’s parent and children about the
(planned) migration via a MigNotify message and waits for corresponding MigNotifyAck replies.
When the middleware receives a MigNotify message, it starts buffering all messages towards
that agent (except heartbeats) until further notice, and replies with a MigNofifyAck message. If
any of the nodes hosting the agent’s parent or children become unreachable (again, this is
detected via the periodic transmission of Ping messages), the migration is aborted, and the

agent’s host sends Miglailed messages to the nodes of the agent’s parent and children.

When the agent’s host receives all MigNotifyAck replies, it suspends the agent and retrieves its
runtime state via the proper calls to the local runtime. Then, it waits until all outgoing messages

issued by that agent are sent over the network.

In a third step, a MigRequest message is sent to the destination node, followed by one or more
AgentState messages' carrying the full state of the agent (i.e., pending creation requests,
children information, report lists and their contents, and runtime state). Upon receipt of these
messages, the destination (to become the agent’s new host) fetches the code and configuration
settings of that agent type, creates a new instance, and initializes it using the state received. The
result is reported via a MigReply message. If the MigReply is negative, the old host of the agent
sends MigFuailed messages to the nodes of the agent’s parent and children. Else, if the MigReply

is positive it simply removes the agent.

If the MigReply is positive, in a fourth step, the new host sends a MigDone message to the node
of the agent’s parent and waits for a Migdck or MigNAck reply. Upon receipt of a MigAck
message, it sends MigDone messages to the hosts of the agent’s children and resumes the
execution of the agent (including the transmission of heartbeats to its children). Else, if a

MigNAck message is received, indicating that the old host believes the migration has not been

! The reason for this fragmentation (sending the migration request and agent’s state using different messages and splitting the
state in more than one messages) is that the current network abstraction does not support arbitrarily large reliable datagrams neither
does it provide a reliable stream abstraction.
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completed and already notified the parent about this, the new host removes the agent (still in a

suspended state).

The old host monitors the reachability of the new host (via Ping messages) until it receives a
MigReply. In case of a failure, it (conservatively) assumes that migration has not been
completed successfully. To “complete” the migration, it sends a MigDone message to the node
that hosts the agent’s parent (advertising its own address), and waits for a MigAck or MigNAck
message. Upon receipt of a MigAck message, it sends MigDone messages to the hosts of the
agent’s children and resumes the execution of the agent. Else, if a MigNAck message is
received, indicating that the new agent successfully completed the migration and notified the

parent about this, the old host removes the agent (still in a suspended state).

When a node receives a Miglailed message it resumes agent-level message transmission to it.
When a node receives a MigDone message, it does the same after adjusting the agent’s node
address. In addition, if the node is the agent’s parent, it sends a MigAck message as a
confirmation, before resuming normal message transmission. If the parent receives an
unexpected MigDone message (for a child that is not under migration), it replies with a

MigNAck message.

All messages are sent as reliable datagrams. Also, all messages except the ones related to the
agent code transfer phase (GefCodeReq and GetCodeReply) carry a sequence number that is
used to drop old messages (generated as a part of a previous instance of the migration protocol).
Finally, MigNoftifyAck messages are sent using the FIFO transport mechanism used for
AgentMsg messages, so that their receipt also serves as a guarantee that there are no other
AgentMsg messages in transit for the agent to be migrated. In the same spirit, the MigDone
messages towards the children are also sent via the FIFO transport mechanism used for
AgentMsg messages, so that they are guaranteed to precede any messages sent by the agent once

1t 1s resumed.
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2.6.2 Message sequence diagram

The prototypical interaction for this protocol is as follows:
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Fig 8.6 Message diagram for the Agent Migration protocol
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2.7  Migration algorithms

We have implemented the £-hop variant of AGE algorithm, which assumes knowledge about
the network routing structure within a k-hop radius and picks migration destinations in this
range. Note that in ZigBee tree networks, routing information can be gained without extra
communication, by exploiting the addressing scheme [86]; in essence, a node that receives a

message can reconstruct the path to the source based on its address.

3 Middleware Evaluation

The evaluation of the agent manager takes place through conducting measurements about (i) the
performance of the agent creation and migration mechanism (ii) the load reduction achieved

when using agent migrations in context of a real application.

3.1 Performance measurements

This section presents measurements on the performance of agent creation and migration. The
network topology is a 4-node chain, with the ZigBee coordinator at the one end as the source

and other nodes as the destinations of the mobility operations.

The protocol cost is reported in bytes both for the Network Abstraction and ZigBee modem
interface; the difference is due to datagram fragmentation. As a reference for the reported
delays, the 1-hop throughput via the Abstract Network (incl. headers) is about 26Kbps and
15Kbps for unreliable and reliable datagrams, respectively. This poor performance is attributed
to delays in accessing the CC2480 chip via SPI, but also middleware overheads, such as

datagram fragmentation and software retransmission.
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3.1.1 Agent creation overhead
In a first set of experiments, we measure the overhead for creating a non-generic agent with just
one special resource need (e.g., a user activity sensor). The results for generic agents are similar.

The delay for creating an agent locally is about lms.

Table 8.1 Agent creation cost breakdown and overhead for different agent sizes.

- code transport signaling relative protocol
ag-:,nl E'I(;)‘“ protocol cost (B) protocol cost (B) overhead (B)
size (E :
abstract  ZigBee  abstract ZigBee abstract  ZigBee
300 352 484 71 107 41% 97%
600 684 912 71 107 26% 70%
900 1032 1392 71 107 23% 67%
1650 1 :
1550 =
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1350
1250
7 e
£ 1150
E 1050 //’/u —a— 3008
2o ——— —a— 6008
2 750 S i —=— 9008
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hop distance betweensource and destination

Fig 8.7 Agent creation delay as a function of hop distance for different agent sizes.

Table 8.1 analyzes the protocol cost for different agent sizes. The signaling overhead is constant
and relatively low. corresponding to one host probe and one agent creation request-reply
interaction. Clearly, the dominating part is the code transfer cost, which grows as expected to
the agent size. The relative protocol overhead drops as code size increases, but the conversion of

datagrams to ZigBee packets costs 35-40%.

Fig 8.7 plots the creation time, including the host probe phase. as a function of the hop distance
between the source and the destination node for different agent sizes. It can be seen that the
routing overhead is non-negligible. Naturally. the delay rises as the code size increases, yet with
an ecconomy of scale: about 21% and 24% for a 600B and a 900B agent vs. a 300B agent. Code
transfer requires 3, 5 (+2) and 8 (+3) reliable datagrams (chunks) for 300B, 600B and 900B,

which is why the creation of the 600B agent is slightly faster in relation.

We also performed measurements when the agent binary is cached at the destination node. In

this case, the cost is solely due to the signaling protocol as per Table 8.1. The respective delay,
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shown in Fig 8.7, is considerably smaller. vielding an average speedup of 3.7x, 5.8x and 8 .4x
for a 300B, 600B and 900B agent, respectively.

3.1.2 Agent migration overhead

In a second set of experiments. we measure the migration overhead for a generic agent that is
co-located with its parent and has one child on a remote node to which it migrates directly. The
runtime state is fixed at 256B. The delay for a corresponding agent suspend-create-init-resume

cycle is about 2ms when performed locally.

The breakdown of the protocol cost is listed in 7able 8. 2. Naturally, the code transfer numbers

Table 8.2 Agent migration cost breakdown and overhead for different agent

agent code code transport signaling + state trans.  relative protocol
- runtime protocol cost (B) protocol cost (B) overhead (B)
size (B)  abstract  ZigBee  abstract ZigBee  abstract ZigBee
300+256 352 484 387 543 33% 85%
600+256 684 912 387 543 25% 70%
900+256 1032 1392 387 543 23% 67%
2100 -
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T o
< i =
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hop distance between source and destination
Fig 8.8 Agent migration delay as a function of hop distance for diffcrent agent sizes.

are the same as for agent creation. The signaling cost is much higher though because it includes

the synchronization with the agent’s parent and child. but also the transfer of the 256B state. As

a result, the code transfer cost is less dominant compared to agent creation, amounting to 47%

(vs. 82%). 67% (vs. 89%) and 72% (vs. 92%) of the protocol cost for a 300B, 600B and 900B

agent, respectively.

Fig 8.8 plots the agent migration time as a function of the hop distance for different agent sizes.
The trends are the same as for agent creation with the respective delays being longer due to the
increased signaling and state transfer cost. The delay rises to the code size, but with a greater
economy of scale compared to agent creation, about 35% and 43% for a 600B and a 900B agent

vs. a 300B agent. due to the higher signaling cost. For the same reason, while caching reduces
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the migration time, the speedup is less impressive: 1.7x, 2.2x and 2.9x for a 300B, 600B and
900B agent.

It is worth noting that a 2-hop migration is 32% faster compared to two 1-hop migrations, and a
3-hop migration is 40% faster than three 1-hop migrations. This holds even more if agent
binaries are cached, the savings being 33% and 45%, respectively. This clearly speaks in favor

of performing a single long-distance migration vs. several shorter-distance ones.

We also measured the migration time for a 600B agent with 256B runtime state for a varying
number of its children residing on different 1-hop neighbors (using a star topology). The delay
is 843ms, 874ms, 945ms and 974ms for 1, 2, 3 and 4 children, respectively (345, 400, 430 and
485 for a cached agent), rising due to the extra signaling needed for cach child. The non-
lincarity from 2 to 3 children is due to the increase in the child information which happens to
exceed the datagram payload limit, requiring an additional reliable transmission during the state

transfer.

3.1.3 Summary

The results show that agent creation is fast enough to support the build-up and evolution of the
application tree at runtime. Creation is very quick if a node has the binary cached (¢.g., because
it hosted such an agent in the past). Agent migration is also reasonably fast. Most importantly,
since agents remain fully operational during the code transfer phase, the application is affected
only by the signaling and state transfer delay; well under 1 second in our experiments (see the
values reported for caching). This is acceptable for the applications we wish to support using
our middleware, which have rather slack and soft real-time requirements. Note that an agent
will notice the delay of a migration only if it expects to receive a message at the same point in
time. Finally, the 1-hop throughput of the agent mobility operations, implemented largely using
reliable datagrams, is 12-14Kbps. This is close to the throughput of our communication
subsystem, which seems to be the main bottleneck. The practically instantancous local creation

and suspend-create-init-resume operations further attest to this fact.
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3.2 Application scenario

In this section we put the benefit and cost of agent mobility in context of a concrete application
scenario. Both the application and the network are kept simple in order to easily follow the
operation of the POBICOS middleware. Still, the results are indicative of the potential gains in

more complex and larger scale scenarios.

3.2.1 Application, network topology and test scenario

The test scenario involves an application to infer user absence based on all possible user activity
sensors in a home: the root agent (R) creates a generic agent (1) for inferring user inactivity,
which in turn creates an open number of non-generic user activity sensing agents (A). Fig 8.9a

illustrates the corresponding tree structure.

As long as a sensing agent does not detect activity, it sends to the inference agent a 1-byte report
every 5 seconds. When user activity is detected, the reporting frequency rises to 1 report per 2

seconds. Based on the reports received from its children, the inference agent sends a 1-byte

added later

multiple
instances

appl. launch point

(a) (b)
Fig 8.9 Experiment setup: (a) application tree: (b) nodes. network topology.
and agent placement at different stages of the test scenario.

status report to the root every 10 seconds. The size of the root, inference, and user activity

sensing agent is 50B, 240B and 24B, respectively.

Fig 8.9b shows the object/node network used to deploy and run the application. Nodes n,, n;
and ng represent objects with a user activity sensor, which can host a user activity sensing agent.
The root remains fixed on ns from where the application is launched, while the generic inference

agent can be placed on any node.

The initial node/network topology is that of Fig 8 9h without ns, which is added and removed at

later stages. The relevant stages of the test scenario are as follows:
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The application is launched from ns. The root and the inference agent are created on ns, while
user activity sensing agents are created on n, and ng. Since the traffic with its children is larger

than the traffic with its parent, the inference agent migrates on ny.

The agent on n, detects user activity and starts reporting at a higher frequency. In turn, this

increase in traffic drives the inference agent to migrate on ns.

User activity stops, and the sensing agent on n, reverts to the normal reporting frequency.

Consequently, the inference agent moves back on ny.

Node n; (with a user activity sensor) is added to the network, leading to the creation of a sensing
agent on it. As a result of this new child, the traffic for the inference agent via node n; becomes

larger than the traffic with ns and ne, so the inference agent migrates on n;.

Finally, n; is removed, the local user activity sensing agent is killed, and the inference agent

moves back on ny.

Fig 8.9b shows the migrations and placements of the inference agent for each stage.

3.2.2 Results

Table 3 lists the results. It can be seen that the migration of the inference agent leads to
considerable savings in network traffic, also at a cost that can be recovered within a relatively
short amount of time of stable operation. Moreover, when the inference agent returns to a node
where it was previously hosted (stages 3 and 5), caching halves the migration cost, also

shortening the respective amortization time.

Table 8.3 Cost and benefit for ecach migration of the inference agent in the test scenario,
as well as the time of stable operation required in order to amortize each migration.

. migration migration  absolute traffic  relative traffic migration
SCENATIO  ,p inference cost reduction reduction amortization
stages agent (B x hops) (B x hops/ min) (%) (mins)
1 ns — ny 873 558 30% 1.5
2 ng — ny 1495 522 22% 2.7
3 ny, —ny 769 486 27% 1.6
4 ng — ng 1007 174 8% 5.8
5 nyg —ny 511 270 17% 1.9

In terms of real-time performance (not shown here), the average delay for creating a remote user
activity agent is about 200ms. The migration delay for the inference agent is 620ms on average

vs. 390ms when the code is cached at the destination. In both cases, migration delays were
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unnoticeable at the application level, and are too insignificant to affect the respective

amortization times.

Of course, a migration may turn out to be non-beneficial if the agent tree or traffic pattern
changes fast. In our implementation we have two criteria for suppressing migrations that are
unlikely to be beneficial, namely a migration is not performed unless it (i) reduces the amount
of network traffic above a threshold and (i1) can be amortized within a certain amount of time,
assuming stable operation. These checks can be computed locally. The network traffic after a
migration can be computed based on the known agent message traffic while an estimate of the
migration cost can be calculated using an analytical formula. Both checks are disabled in the

experiment; they simply lead to fewer migrations, depending on the threshold settings.

4 Conclusions

In this chapter we briefly described how micro-agents are to be managed internally by
POBICOS middleware. We also discussed, in a comprehensive way, the protocols used for the
corresponding interaction between different instances of the middleware residing on different
nodes. A number of experiments was conducted to evaluate the performance of agent creation
and migration protocol, which comprise the most heavy (in terms of messages exchanged)
functionalities of not only the agent manager, but also the POBICOS middleware. Among the
algorithms proposed in the previous chapters, we chose AGE to be implemented in POBICOS
middleware due to its eminent features: 1) it is a fully distributed algorithm; ii) it needs only a
small amount of both computational and storage resources; iii) it makes a decision to migrate an
agent in an online manner. Finally, an indicative experiment was conducted to see AGE

behaviour in a real system
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Chapter 9

Related work

1  Systems that Support Mobile Code/Agents

Mobile code based systems are subsumed in the general category of systems that afford
programming abstractions for WSNs [84]. Mate [66] is a general event-driven stack-based
architecture allowing a user to select the bytecodes and execution events in order to build a
virtual machine of his own preference. It focuses on simplifying application development via a
high-level program representation, which allows the nodes of a network to be reprogrammed in
a dynamic fashion. Rovers [27] is a middleware for tiny resource-constrained communicating
nodes. Its agent-based programming model aims at freeing the programmer from the concept of
the physical node by providing ontology-driven representation of sensors and actuators and

implicit resource discovery.

One.world [41] is an architecture designed from the ground up to provide system support for
pervasive application development. One of the system services, afforded by one.world is
migration that moves or copies an environment (represents units of local computation) and all
its contents to a different device. In [52] a system based on mobile code units, called Smart
Messages, is described. Smart Messages (SMs) correspond to agents in our terminology. A key
operation in the SM programming model is multi-hop migration, which implements routing
using tags. An SM names the nodes of interest by tags, and then calls a high-level migrate

function to route itself to a node that has the desired tags through multiple one hop migrations.

Agilla [36], adopts a mobile agent-based paradigm where programs are composed of agents that

can migrate across nodes. A context manager determines the node location and maintains the
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list of reachable neighbours. Migration is accomplished either by reliably relocating the agent,
or by cloning it. Both strong and weak mobility is supported. Strong mobility ensures that the
execution state is retained across movement, enabling the agent to resume execution right after
the migration instruction. Instead, weak mobility moves only the agent code, whose execution
restarts from scratch. A similar approach is adopted by Olympus framework [92] a high-level
programming model for Active Spaces (i.¢. a physically-bounded collection, such as a room of
devices, objects, users, services and applications), while in  SensorWare [20] only weak

mobility is supported.

The above systems support user triggered/defined agent placement/migration. A small number
of systems exist that automatically partitions an application into components (agents) and
decide on their placement. The Pleiades compiler [60] performs data-flow analysis to partition
the program in independent execution units called nodecuts, each running on a single node. The
compiler assigns nodecuts to nodes based on the expected communication cost for accessing
variables at remote nodes. MagnetOS [73] automatically and transparently partitions
applications into components and dynamically places them on nodes to reduce energy
consumption. The MagnetOS runtime also provides an explicit interface by which application
writers can manually direct component placement. DFuse [96] is an architectural framework for
dynamic application-specified data fusion in sensor networks. It can be used for developing
advanced fusion applications (aggregation on data of possibly different types) that take into
account the dynamic nature of applications and sensor networks. One of its main components is
the distributed algorithm for fusion function placement and dynamic relocation that attempts to

optimally place the fusion functions in the network nodes so that communication is minimized.

Summarizing, many systems provide support for mobile code and migration (strong mobility),
adopting a 1-hop or k-hop network awareness (and migration) model. Some systems, such as
Agilla, one world, Smart Messages, Olympus, SensorWare, Pushpin and Mobile-C, let
placement and/or migration be defined/triggered by the programmer. Other systems, such as
MagnetOS, Pleiades and DFuse, automatically place and move code between nodes based on
some optimization objective, typically related to the reduction of communication that takes
place over the network. However to the best of our knowledge none of the systems reviewed
considers: 1) the case of storage constrained nodes; ii) the migration of a group of agents; iii)

online algorithms to migrate agents; iv) maximize the network lifetime.
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2 Data Placement and Replica Placement Problems

Algorithmic wise the agent migration problem (AMP) belongs to the general family of
placement problems, whereby given a set of possible hosting entities and a set of objects, the
problem is to place the objects at the entities so that performance is optimized. Placement
problems have been studied in various fields, some of them not directly related to computer

science, ¢.g., the facility location problem in operation research [101].

2.1 Data placement

In computer science one of the first placement problems to attract research interest was the so
called file allocation problem (FAP). The first problem statements date the late 60°s. [24] is one
of the pioneering works tackling the problem of assigning files (single copies) to computers in a
multi-computer environment in order to minimize the cost of answering user requests (read
only) under storage constraints. They prove that under their formulation the problem
experiences monotonic behaviour, i.¢., each assignment reduces the cumulative cost and
propose a branch and bound algorithm to solve it optimally. Extensions to the basic formulation
included considering multiple file copies (replication), update requests, distinguishing between
code and data allocation etc. A survey of early works in FAP can be found in [29]. [10]
considers distributed FAP with read and write requests. An online Steiner-tree is built on which
requests and replica creations are performed. To achieve competitiveness the algorithm bounds

the cost of updates by deleting all object replicas when a write request is issued.

The above early works on allocation/placement are not directly related to the work on AMP we
present here. However, they do provide a background as far as constructing a useful cost model

concems.

With the advent of the Internet and the World Wide Web, placement problems got renewed
interest. Two main problem families were studied. The first aimed at placing network entities
optimally. Papers in this subject include: [48], [67], [94], [107]. [67], [94] and [107] aimed at
placing Web proxies at the network in order to improve user experienced response time, while
[48] aimed at placing monitoring tools at the Internet in order to be able to estimate all-pair host
distances based on accurately measuring a small portion of them. Typically, these papers use
variations of the k-median problem [115] which can be briefly stated as: given a network graph

with node weights representing user requests and link weights denoting a distance cost between
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nodes, place k servers at the nodes so that the total cost of satisfying user requests (a function of
node weights and distance), is minimized. For the case of a tree network, transitive distance
cost, 1.¢., if d(u,v) is the distance between nodes u and v and d(v,w) is the distance between
nodes v and w, then d(u,w)=d(u,v)+d(v,w), and linear target function of distance*node weight,

exact solutions can be obtained by dynamic programming [115], [48].

Overall, we found k-median formulations less than useful, both for the centralized and the
distributed problem versions we tackle. Nevertheless, it was important at the designing step to

consider similar formulations even if we didn’t adopt them.

2.2 Replica placement

The second family of placement problems that was extensively studied in the Web context was
related to FAP with multiple file copies, often called replica placement. Solutions to the replica
placement problem included both static centralized algorithms and dynamic distributed ones.
[53] consider the problem of allocating Web objects at distributed Web servers with the aim of
minimizing the background network traffic. The solution proposed was static and based on the
greedy paradigm. [76] considered a similar static model and proposed a genetic algorithm to
decide on object placement. They also gave extensions to the basic genetic algorithm which
targeted at incrementally altering object allocation whenever slight changes in user request
patterns occur. [55] evaluates different replica placement heuristics with the aim being network
traffic cost, user response time, or server load balancing. [128] illustrates algorithms that decide
separately on the number of object replicas and the locations they should be placed. Finally,
[50] considers object placement in a tree-network with read and write requests. They give a
dynamic programming algorithm for the uncapacitated case and prove that the problem is NP-

hard when servers have capacity constraints.

Combinations of problems where object/replica placement is considered as a component have
also been studied. [13] discussed the combined effects of static replica placement together with
LRU caching. Their aim was to define the optimal split of storage space for long term
replication and on demand caching. [77] tackled placement together with the implementation
cost of it. Their goal was to define placements that are not expensive to implement, i.¢., do not
require many object transfers. The same authors also studied the implementation of placement
by means of transfers and deletions as a separate problem in [78]. Notice, that in the centralized
AMP once a newcoming agent is accepted, agent placement is altered in order to maximize the

minimum node lifetime. This involves agent transfers which consume battery and affect the
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optimization target function. Thus, the problem has a similar component to the one discussed in
[78]. In fact RA adopts a simple algorithm to decide upon transfers that is inspired from [78].

Last, [107] considers both proxy and data placement in a k-median inspired manner.

The above works on object/replica placement make static assumptions regarding user request
patterns and lead to centralized solutions. Although close in spirit to our work for the
centralized AMP, AMP is different in a number of ways. The most important perhaps is the fact
that the primary goal is to find/open space for a new agent. In the previous work creating an
object replica is rather optional and is done only if it helps improving the optimization function.
In our case accepting an agent is almost compulsory, therefore, the bin packing aspect of the

problem is more important than the pure placement one.

A number of works exist on the dynamic/distributed replica placement. [109] proposes and
compares static versus dynamic greedy heuristics for replica placement. [118] introduces the
ADR algorithm, which creates, migrates and deletes replicas depending on the traffic direction
and the relevant read to write ratio. [95] proposed a distributed algorithm that attempt to reduce
simultaneously both the network traffic and server load imbalance. The core idea is that aside
from deciding what to replicate where, a request routing scheme must be defined to judiciously

distribute the load at the created replicas.

Some of the ideas used in the algorithms for distributed AMP are also found in the above works,
namely, the migration towards the center of gravity of the communication load, or single hop
migrations [118]. However, we differ from the above works in many ways. The most important
ong is that in the above works load is considered to originate from system nodes. In our case we
might consider that the traffic between non-generic and generic agents is essentially traffic
between nodes and generic agents, however, we also have traffic between generic agents or, put
it in another way, the objects to be placed communicate with each other. As a result, algorithms
that consider for migration each object separately are less powerful compared to the ones that

form groups of objects/agents.

3  Energy Driven Algorithms

This section gives a flavour of the most related problems against the one introduced in Chapter
7. Specifially, our work is related to the greater arca of energy management in wireless

embedded systems, which is attracting much research interest. Most of the papers are dealing
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with the problem of energy-aware routing. Existing work attempts to optimize power

consumption mostly at routing level.

A wide number of papers address the problem of minimum energy routing [12], [97], [63], [32]
to name but a few. [7] deals with the data-centric routing and proposes an algorithm building a
special rooted broadcast tree with many leaves. By doing so, this algorithm keeps active only
the relaying nodes while it turns off the radio on the leaves. Benerjee and Misra [16] argue that
minimum-energy routing algorithms should not be based solely on the energy spent in a single
transmission but on the total energy spent for a packet to be delivered to its final destination.
[51] investigates the problem of energy-efficient broadcast routing over wireless static ad hoc
network. It provides a globally optimal solution to the problem maximizing a static network
lifetime through a graph theoretic approach. The case of power-aware georouting, whereby
routing is done based on location and not address (thus no need to maintain routing information)

is the objective of [26].

The approach of the above works is to minimize the energy spent on the network. However,
there are a lot of papers, in the context of power-aware routing, aiming at maximizing the
network lifespan [1], [69], [88], [22], [116] to name a few. In [1] the problem of maximizing
system’s lifespan (measured as the time when the first node dies) was formulated as a linear
program. An optimal probabilistic data propagation algorithm maximizing network lifespan was
proposed in [92], while [69] tackles the case where energy is replenished in a dynamic fashion.
In [88] the authors study the impact of cooperative routing for maximizing the network lifetime
in sensor networks. Chang and Tassiulas proposed a shortest cost path routing algorithm which
uses link costs that reflect both the communication energy consumption rates and the residual
energy levels at the two end nodes. Differently from previous solutions, the purpose of [116] is
to maximize network lifetime by exploiting sink mobility. Specifically, the authors give a linear
programming formulation for the joint problems of determining the movement of the sink and

the sojourn time at different points in the network that induce the maximum network lifetime.

Other papers related to energy-driven algorithms are [17], [47], [49], [35], [46]. [64]. [17]
studies the problem of reducing energy dissipation by losslessly compressing data prior to
transmission. The authors in [47] present an algorithm which automatically maps the IPs/cores
onto a generic regular Network on Chip (NoC) such that the total communication energy is
minimized. At the same time they try to not violate the constraints in terms of bandwidth
reservation. [49] describes DE-MAC which is based on media access control technique.

Specifically, DE-MAC treats the nodes having scarce energy resources differently in a
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distributed manner, i.e., a weaker node should be used less frequently in a routing in order to
accomplish load balancing. [35] shows how applications can dynamically modify their behavior
to conserve energy. An energy-aware spanning tree algorithm is proposed by Lee and Wong
[64] in the context of data aggregation. Specifically, this algorithm constructs a spanning tree
based on the residual energy on nodes. The authors in [114] introduce energy-aware fault-
tolerance heuristics in the context of real-time systems. [87] considers the problem of average

throughput maximization per total consumed energy in sensor networks.

There are also papers that target at power management to achieve reduction in energy spent on
machines. Sharma et al [99] investigate adaptive algorithms for dynamic voltage scaling in
QoS-cnabled Web servers to minimize energy consumption subject to service delay constraints;
while [46] proposes power-aware algorithms that adapt its voltage and frequency setting to

achieve reduction in energy dissipation with minimal impact on performance.

The papers dealing with the problem of minimizing the energy dissipation in wireless sensor
networks are close to our works (excluding Chapter 7). However there are a lot of differences
ranging from node storage constraints up to mutual agent dependencies. In terms of the
aforementioned papers the ones related to the network lifespan maximization are rather similar
to the work described in Chapter 7. Again the scope of our work is rather different from these
papers since we try to both 1) maximize the lifespan of the network by changing the placement
of the application components; ii) make defragmentation in order for the nodes to be able to

host as many application components as possible.

4 Load Balancing Problems

A significant part of the literature focuses on migrating jobs to distribute workload across
multiple workstations (commonly known as load-balancing). An important part of the load-
balancing strategy is the migration policy, which determines when migrations occur and which
processes are migrated. There are two kind of strategies, the first one involves the preemptive
migration where an active process may be suspended and migrate to another host [65], [61],
[10] [15]; the second one concerns the non-preemptive load distribution which is based on
initial placement of processes on the machines [106], [7], [28], [71], [82]. Another part concerns

the selection of a new host for the migrated process, where [127] and [62] claim that the target
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host should be the one with the shortest CPU run queue. [127] and [105] study load-balancing

policies using a priori information about job lifetimes.

Most recent papers turn focus on distributing traffic among a set of diverse paths (i.e., routing
with load balancing), especially when the target is a wireless sensor network due to its limited
resources in terms of bandwidth. In [90] the authors provide an analytic model for evaluating
the load balance as regards single shortest path routing in an ad hoc network. In terms of multi-
path routing, they assume that load is uniformly distributed without considering the number of
paths used and the way these paths are chosen. [38] is a relevant work to [90], where the authors
propose an analytic model showing that multi-path routing results in a better load balance
compared to single-path routing in case there is a very large number of paths between any
source-destination pair nodes. While [45] proposes a load-balancing routing algorithm that
lowers the bandwidth blocking rate to maximize network utilization. Last, in [44] two
distributed algorithms are proposed for routing and load balancing in dynamic communication
networks. Specifically The first algorithm is based on round trip routing agents that update the
routing tables by backtracking their way after having reached the destination; while the second
one relies on forward agents that update routing tables directly as they move towards their

destination.

The papers dealing with the problem of migrating jobs to balance the load in a system are the
most relative to our works, since the jobs and machines can be viewed as agents and nodes,
respectively. However, our works differs from the above ones in that the agents are structured as

a tree/graph and that there are two kind of agents (generic and non-generic).

5 Online Decision Problems

This section is directly related to Chapter 5, and discusses a lot of online algorithmic problems.
The difficulty of the online decision problems lie in the fact that the input is only partially
available because some relevant input data arrives in the future and is not accessible at present.
Therefore an online algorithm should take a decision without knowledge of the entire output.
The quality of such an online algorithm is usually evaluated using competitive analysis. The
idea of competitiveness is to compare the output generated by an online algorithm to the output

produced by an offline algorithm that knows the entire input data in advance and can compute
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an optimal output. The better an online algorithm approximates the optimal solution, the more

competitive this algorithm is [4]. A survey on online algorithms is given by [5].

One from the most renowned problems in the context of online decision problems is that of
deciding which pages to keep in a memory of k pages in order to minimize the number of faults
(i.c., paging problem). Sleator and Tarjan [102] provide two theorems, whereby the first one
says that LRU and FIFO are k-competitive; while the second shows that no deterministic online
algorithm for the paging problem can achieve a competitive ratio smaller than k. [33] proposes a
randomized algorithm, called marking algorithm, and shows that it is 2Hy-competitve where Hy

denotes the kth harmonic number.

Scheduling has received a lot of research interest in the context of online strategies.
Specifically, the problem is to assign jobs on machines in such a way as to minimize the
makespan, which is the completion time of the last job that finishes in the schedule. Graham
[25] proposed the elegant Greedy algorithm and analized its performance. Specifically, this
algorithm assigns a new job to the least loaded machine and is (2-1/m)-competitive, where m
represents the machines. Graham also showed that the competitive ratio of Greedy is not smaller
than 2-1/m. In recent years the research community has focused on devising algorithms that

achieve a competitive ratio asymptotically smaller than 2 [98], [3], [54], [34].

Online load-balancing can be viewed as a type of scheduling problem, where we have to
minimize the maximum load instead of minimizing the makespan. [9] Studies the problem of
minimizing the load on machines for the case where the tasks have limited duration. While [11]
study the same problem provided that the task durations are not known upon their arrival. The
authors prove also that the competitive factor of their algorithm is at most 4c, provided ¢ >5.
Caragiannis et al [21] introduce the problem of how much the quality of load balancing is
affected by selfishness and greediness. They prove that for any e >0, greedy load balancing

has competitiveness at least 17/3 -e, while greedy load balancing on identical servers has

competitiveness at most 2/3+/21+1.

The most recent years a significant part of research community has tumed its attention towards
online decision problems in the context of WSNs. Even though the online routing problems
have received a lot of interest [37], [8], [83], [68], [117]; there are also works that focus on
other issues related to WSNs. For example, in [18] the authors analyze the theoretical
complexity for the problem of gathering data in WSNs in a distributed fashion, and devise

online algorithms solving this problem. [23] provides an online algorithm for the time interval
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top-k query optimization to maximize the network lifetime through striking balance between the
total energy consumption and the maximum energy consumption. Another work [58] presents
an online algorithm to minimize the total transmission energy in a broadcast network by
dynamically adjusting each node’s transmission power and rate on a per-packet basis. Finally,

[75] deals with the problem of mining frequent sensor value sets from a large sensor network.

None of the above papers is related to the problem of deciding in an online fashion whether the
cost of an agent migration would be amortized in the future or not. However, they provided us
some useful insights into devising the competitiveness of our algorithms. Last, if we were asked
to say which is the most relevant work to ours, then we would refer to the papers dealing with

the problem of online load balancing on machines (see previous section).

6 Query Optimization in Distributed Databases and WSNs

Generic agents in the POBICOS programming model carry the core application decision logic.
Commonly, such logic involves filtering and aggregation of the data collected from sensors.
Therefore, from the standpoint of data processing our work is related to database research on
query optimization in general distributed systems [31] and (more recently) sensor networks

[103].

Centralized query processing aims at defining the optimal sequence of filtering operations
(WHERE clause in an SQL statement) as well as JOIN operations so that the query is answered
in the minimum possible time. In doing so, the key parameters involved are table sizes and the
selectivity of each filtering operation. Query answer time is usually assumed to be a function of
the involved table sizes and the cost of the operation(s) on them. In distributed query processing
network delays are taken into account. Each node only stores a portion of the database scheme.
Answering a query might involve multiple nodes. An optimal query plan must decide whether a
node should send its data elsewhere or must acquire data from other nodes and perform a partial
join. [6] discussed the problem of optimally placing table fragments (data) in distributed nodes,
assuming a fixed query plan that involves fetching all the necessary fragments to compute joins.
[70] considered allocation when query plans involve partial join computations at intermediate
nodes. For surveys on query optimization techniques including distributed query optimization

the interested reader is referred to [39] and [59].
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In the context of sensor networks much work has been done on how to efficiently perform
aggregations, ¢.g., [79], [92], [30] to name a few. Usually, the aim is to reduce the amount of
data sent by a node through cither using special data structures, or delaying transmissions until
absolutely necessary. Under the context of acquisitional query processing [80] discusses how
often data must be propagated to query operators that (aside from simple aggregations) might
involve complex filtering and joins. Reducing the cost of join operators in sensor networks has
also seen much research activity, e.g., [123] while multiple query optimization in this context
has been tackled in [120]. The above papers fall in the category of optimizing the execution of
specific operators and/or joins. In doing so, they usually assume a fixed operator placement and

discuss execution strategies that reduce the amount of transmitted data.

Perhaps the closest to our works from the query optimization literature are the ones tackling
operator placement, ¢.g., [103], [1], [124] to name a few. In [103] the authors consider the
problem of optimally placing query operators on the nodes of a sensor network given estimated
operator costs. [1] proposed a greedy algorithm to solve the same problem, while [124]
considered caching at intermediate nodes to reduce the fetching requirements of operators. The
authors of [103] also studied the operator placement problem in the context of Web Services
giving an optimal algorithm to perform Select-Project-Join queries [104]. In the POBICOS
framework each operator is implemented as a generic agent. Therefore, at a first glance the two
problems, i.c., of placing operators and of placing agents appear to be very similar. There is
however, one important difference between works on operator placement and our work on
AMP. Namely, there is a difference in scope. In our case, we attempt to optimize the placement
of agents (operators) the behaviour of which is not known in advance since it is up to the user to
decide. Therefore, we can only view the agents as black boxes and decide on their placement
not according to their functionality, but rather according to their interaction with their

environment, i.¢., the load they incur.

7  Agent/Task Migrations

The concept of migrating agents instead of moving raw data to processing elements for data
integrations is discussed in [93]. [119] takes a step forward, in the context of the previous work,
by introducing the problem of computing a route for the mobile agent in terms of maximizing

the received signal strength while keeping path loss and energy consumption low. They propose
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a genetic algorithm to solve this problem since it turns out to be NP-hard. The same problem is
considered in [121] and [122], with the difference that they focus on dynamic mobile agent
planning techniques, which are distributed and dynamic in nature. They evaluate their
algorithm’s performance using three metrics: energy consumption, network lifetime, and the
number of hops. [100] is a quite different work against the previous ones, since they consider
agent migrations in the context of increasing efficiency of systems. However, the objectives of

the above papers are completely different with the works discussed in this thesis.

The task allocation problem can be also viewed as the agent migration problem, since a
migrating task may be represented by a migrating agent. In [43], [62], and [74] the authors
consider the problem of mapping communicating tasks to homogenecous computing nodes in
order to minimize execution time, while [108] considers the same problem in a heterogeneous
environment. In [2] the authors tackle task allocation in an underlying torus network with the
target of reducing both task communication and network congestion. In [42] the authors address
the problem of finding a robust task allocation absorbing large changes of the environment

without needing reallocation.

The fact that in the task allocation problem the tasks communicate with each other brings this
problem closer to our works against the aforementioned agent migration problems which have
no similarity to our ones. However these papers differ from the problems studied in this thesis
either in the network and application structure assumed [43], [62], [74], [108], [2] as well as in
scope [42].

8 Summary

Even though the area of energy management in sensor network systems is attracting a lot of
research interest, there is no other work on either distributed or centralized agent migration
algorithms aiming at bringing the communicating agents close to each other to reduce the
energy spent over the network by considering solutions where 1) the agents can migrate in
groups; i) the nodes have limited storage constraints; iii) agents can be evicted to create room
to other agents which can eventually reduce the total network load; iv) the migration decisions
are taken in an online fashion. Also, to the best of our knowledge there is no work that considers
maximizing at the same time both the number of agents that a sensor network can host, and the

lifespan of the later.
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Chapter 10

Conclusions

1 Overview

The most crucial factors in terms of the sustainability of an application running on a sensor
network are: 1) the energy spent over the embedded nodes due to the communicating agents,
since wasteful energy consumption may render a battery-powered node no operational; ii) as
well as the limited resources the embedded nodes provide, since they may remove the right
from an agent to be placed/migrated on a desired node. Inspired by the aforementioned issues,

this thesis focuses on the agent migration problem to handle them in an efficient way.

In the first two chapers we proposed fully distributed algorithms to alleviate the total energy
spent over the network, by performing beneficial migrations of agents or group of thems
towards their center of gravity. The proposed algorithms are enhanced with two locking
schemes to deal with the resource-constrained nodes. The third chapter discusses the bound of
the proposed algorithms in a detailed way, and provides a modification of the grouping

algorithm to make agent migration decisions in an optimal way.

In the sequel, though, we realized that when the nodes of the system provides scarce
resources,then there is a lot of room for improving the solutions produced by the locking
schemes studied in Chapter 1 and 2. This insight came through the fact that GRAL performed
migrations in an almost optimal way when the nodes of the system provided a considerable
amount of resources, while in the opposite case there was a discernible difference when

comparing the placements resulted by GRAL and the optimal algorithm. Therefore we resorted
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to the agent evictions (i.e. possibly no beneficial migrations) to enable a beneficial agent
migration which eventually reduces the total network cost (taking into account the cost of the
former ones). The algorithms proposed in Chapter 4 are based in the concept of agent evictions
and they result in agent placements that are by far better in terms of energy dissipation against

the aforementioned locking schemes.

Chapters 5 and 6 deal also with the problem of energy consumption but taking also into account
the cost of the migrations performed. However, there are a lot of differences between them,
since Chapter 5 proposes distributed algorithms that migrate only generic agents in an online
fashion, while Chapter 6 focuses on offline centralized solutions based on the graph coloring
problem, which aim at the network load reduction through migrating both generic and non-
generic agents. Also, in Chapter 6 we adopt applications structured as a graph instead of a tree,

unless otherwise stated.

Chapter 7 differs from the above works, since it formulates the agent migration problem for the

two optimization goals of accepting a new agent and maximizing network longevity.

Finally, Chapter § discusses the implementation issues of how an agent migration/creation can
take place in a POBICOS-cnabled sensor network. AGE has also been implemented in
POBICOS middleware, proving that some of the algorithms proposed in this thesis can be

implemented in resource-constrained embedded systems.

2  Future Work

The distributed solutions dealing with the energy minimization problem assume tree-like
structures for both the application and the underlying network. It would be challenging to devise
new distributed algorithms along with their bounds when both application and network are
organized as a graph. Also another future work would be to enhance the proposed distributed

algorithms to consider non-generic agent migrations.

As regards the online decision problem discussed in Chapter 5, we plan to investigate
algorithms that automatically learn to recognize patterns and make intelligent decisions based
on their learning experience. Actually, such an algorithm could dynamically change parameters

like migration threshold or reset threshold, which parameters turn out to be crucial for the
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performance of the online algorithms. It would be also interesting to develop online algorithms

for the problem of maximizing the network lifetime.

As part of our plans is the investigation of a distributed protocol that takes advantage of the
distributed nature of PRA when considering migrations between node pairs. There is also a lot
of room for the problem discussed in Chapter 7, since it would be quite challenging to deal with

it through distributed solutions.

The root agent of an application may experience delay from the time the data are sensed till they
are accessible (in a fused manner) to it. However, such a delay may prove crucial for the
functionality of a real-time application. Therefore a future direction could be the energy
minimization without violating some pre-specified delay constraints. Also, this problem could
be investigated in its own right (without considering the energy minimization aspect), through

algorithms that dynamically reform the application structure to meet delay constraints.
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