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Abstract 

Transmission pipelines carrying natural gas in order to distribute it to the final 

users are routed across the countries, for example highways, populated cities, 

industrial and agricultural areas. Consequently, there are various hazards such as 

natural disasters – for example earthquakes - third parties activities, material defects 

and human errors that are possible to interfere with the integrity of these pipelines. In 

addition, the combination of these hazards and pipeline route might suggest that 

people and the surrounding installations and buildings nearby the pipelines are 

subjected to significant risk in a case of pipeline failure. For all these reasons 

regulatory authorities and pipeline managers in many countries around the world 

endeavored to improve the level of safety of pipelines.  

The present postgraduate thesis is concerned with the problem of natural pipeline 

risk assessment and management. Risk management involves assessing the risk 

sources and designing strategies and procedures to mitigate those risks to an 

acceptable level with the minimum cost. Various methods of qualitative, quantitative 

and semi-quantitative risk assessment methods are presented as well as methods of 

cost – benefit analyses. These methods are also involving the hazard and vulnerability 

analysis as well as the calculation of societal and individual risk. The main aim of this 

research is to point out risk management methodology that would be useful for natural 

gas industries‟ to decide which mitigation measures to implement on the existing 

pipelines with the minimum cost in an acceptable level of hazard. 

Also, this research identifies the hazard and vulnerability factors of a natural gas 

pipeline network, quantifies and prioritizes them through risk assessment methods in 

order to choose the proper mitigation policies while minimizing the total cost and 

maximizing the profit of the mitigation measures (minimize risk level) using a 

knapsack formulation. The proposed model is applied to a natural gas pipeline 

network example.  
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CHAPTER 1 

INTRODUCTION 

1.1 Presentation of the problem 

The framework of the present work encompasses a primarily experience-based 

comparison of risk assessment methods associated with pipeline hazards carrying 

natural gas. The results of this research provide a broader perspective of the natural 

pipeline risk assessment and management method, as well as cost-benefit analysis by 

using a knapsack model. This information can be implemented not only by the natural 

gas industries‟ managers but also by other industries beyond the gas sector. 

Natural gas is a clean energy source with increasing demand in Greece the last 

years and worldwide. The main uses of natural gas are for residential, commercial, 

industrial uses as well as for electricity production. Not only is natural gas cheap for 

the residential consumer, it also has a number of different uses.  

The best known uses for natural gas around the home are natural gas heating and 

cooking. Also, natural gas space and water heating for commercial buildings is very 

similar to that found in residential houses. Natural gas is an extremely efficient, 

economical fuel for heating in all types of commercial buildings. Although space and 

water heating account for a great deal of natural gas use in commercial settings, non-

space heating applications are expected to account for the majority of growth in 

natural gas use in the commercial sector. Moreover, industrial applications for natural 

gas are many, including the same uses found in residential and commercial settings; 

heating, cooling, and cooking. Natural gas is also used for waste treatment and 

incineration, metals preheating (particularly for iron and steel), drying and 

dehumidification, glass melting, food processing, and fuelling industrial boilers. 

Natural gas may also be used as a feedstock for the manufacturing of a number of 

chemicals and products. Gases such as butane, ethane, and propane may be extracted 

from natural gas to be used as a feedstock for such products as fertilizers and 

pharmaceutical products
1
.Three types of companies comprise the natural gas industry: 

extraction companies, pipeline transportation companies and local distribution 

companies.  

                                                 
1
 www.naturalgas.org/overview/uses.asp 
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Installing and operating a pipeline network that transfers big quantities of natural 

gas for residential, commercial and industrial applications, is a safe method of 

transportation and distribution considering the consequences to human factor, 

environment, and infrastructures of a region and to the industry‟s economic activity, 

when buildings, natural gas systems and appliances are constructed, installed and 

maintained properly. Although the use of natural gas, like any flammable fuel, carries 

some risk of fire or explosion. In particular, the major risk that involves a natural gas 

pipeline is a severe leakage or rupture of pipe that could cause fire or explosion.  

Natural gas is lighter than air, and so tends to escape into the atmosphere. But when 

natural gas is confined, such as within a house, gas concentrations can reach explosive 

mixtures and, if ignited, result in blasts that could destroy buildings. The methane, 

that is the basic ingredient of natural gas, is colourless, odourless and flavourless. It 

isn‟t toxic, but it is categorized to the asphyxiating gasses and involves only the 

danger of inhalation. Like all gases, if are inhaled in high concentration, could cause 

lack of oxygen and lead to suffocation, however the probability to be caused by 

leakage is minimal. 

It must be underlined that distribution networks are designed with a degree of 

redundancy that ensures reliable supply of the product. In order to manage the 

operations of a pipeline network compressor, gas pressure is raised in order to offset 

pressure drops due to friction or to pack the lines. Pressure reduction units couple the 

various grade networks and manual or remotely operated valves isolate sub-networks. 

In addition meters at various points and on each service line, are required for charging 

customers and managing the network. All these devices have their own operational 

performance and safety characteristics, usually presented in detail in manufacturers‟ 

manuals. This research is concerned with the management of a technological accident 

in natural gas distribution networks that may have impacts on human factor, 

environment, infrastructures/installations and economic activity of the gas industry. 

Several methods – qualitative, quantitative and semi-quantitative – have been 

developed in order to assess the risk of distributing natural gas via pipeline network. 

Qualitative risk index approaches assign subjective scores to different factors that are 

thought to influence the probability and consequences of a failure
2
. These scores are 

then combined using simple formulas to give an index representing the level of risk. 

                                                 
2
 Muhlbauer, 1992; Cagno et al., 2000; Dey & Gupta, 2001 
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Risk index approaches provide a ranking of the different process components 

based on the perceived level of risk estimated. The ranking obtained by using these 

methods is highly subjective. In addition, these approaches do not provide any 

indication of whether the risk associated with a component is unacceptable and 

consequently no guidance is provided regarding whether any risk reduction action is 

necessary. 

The index system scoring format suggested by Muhlbauer (1992) accounts for the 

use of in-line inspection tools to locate metal loss corrosion by awarding up to 8 

points out of a maximum of 400 points representing resistance to failure (i.e., 2%). 

This underestimates the benefits of high-resolution pigging, which is known to result 

in significant reductions to the large percentage of failures that are attributable to 

corrosion (20–40% of all failures). Therefore, index systems provide at best an 

approximate risk-based ranking of process components, which has serious limitations 

when being used as a basis for integrity management decision making. 

Moreover, current quantitative risk assessment approaches focus on a single aspect 

of the consequence associated with failure. Published studies deal with either loss of 

life risk or economic risk
3
. Integration of environmental damage, human factor safety, 

infrastructure and installations damage as well as economic activities risks has not 

been addressed adequately. Another limitation of quantitative risk assessment 

approaches is that they typically base the estimation of failure probability on historical 

failure rates. 

Another approach to calculate failure probability is based on the concept of 

structural reliability that includes Markovian models and hot spots on a component-

by-component basis
4
. The effect of the correlation from one hot spot to another has 

been investigated by Lotsberg et al. (1998), Faber et al. (1999), Brown and May 

(2000), and Montgomery et al. (2002). Faber et al. (2000, 2003) proposed an informal 

decision analysis where the number of considered elements is reduced in a consistent 

and systematic way. However, due to the numerical effort required and the stability of 

the method such an approach did not prove to be practical. Straub and Faber (2000) 

indicated that an integrated approach to the decision problem that is suitable for 

industrial purposes has not yet been developed. 

                                                 
3
 Hill, 1992; Concord, 1993; Nessim & Stephens, 1995; Pandey, 1998; Nessim et al., 2000 

4
 A number of interesting articles may be seen in Journal of Infrastructure Systems 
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Semi-quantitative approaches were also developed to provide a practical and easy 

tool to be used for designing maintenance programs that optimize the use of resources 

and in the meantime ensure effective and efficient asset management. These 

approaches use semi-quantitative models for consequence estimation as well as failure 

probability calculations. Examples of these approaches can be found in Khan and 

Haddara (2003a, 2003b), Khan and Haddara (2004), and Khan et al. (2004). It is 

easily employed in process plants and to components like pipelines or pressure 

components. These approaches provide a tool to ascertain that the estimated risk of 

failure satisfies a predetermined acceptance criterion
5
.  

During this research we tried to identify the hazard and vulnerability parameters in 

order to assess and prioritize the level of risk in a natural gas pipeline network and the 

better management of "potential disasters" that can be caused by natural gas pipelines 

failure, or in transfer stations of natural gas with the minimum possible cost (available 

financial resources) and the maximum profit by using the knapsack model.  

1.2 Motivation 

The increase in energy demand and the decrease of petroleum deposits lead to 

request of new energy sources. The most popular energy source during the last years, 

is natural gas; currently provides 23% of the European Union‟s primary energy 

consumption and it is anticipated that this will grow to around 28% in 2020. As a 

consequence, gas industry owners and operators will experience considerable 

increases in the use of their distribution networks in the coming years. Even though 

the transportation of natural gas by pipelines is considered the safest method, 

historical evidence has shown that accidents due to hazardous releases during 

transportation can lead to severe consequences on the human factor (deaths, injuries), 

environment (forest fire due to the explosion, but this possibility is minor considering 

the pipeline routing concerns mostly urban areas), infrastructures of the region and the 

natural gas installations, and economic activity of the gas industry.  

Several accidents have happened worldwide in natural gas pipelines with serious 

impacts to the safety of citizens. According to the EGIC report
6
 of venturousness, 

regarding the length of pipelines and their operation age, is 2.77 millions/km per year 

in the European network of pipelines. The total frequency of accidents is 0.41 

                                                 
5
 Khan et al., 2004; Willcocks&Bai, 2000; Dey, 2004 

6
 6th Report of EGIC - Base of Given Accidents European Network of Conductors of Transport of Gas 
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accidents/year/1000 km for the period 1974 - 2004, which however is decreased 

continuously with the passing of time and a tendency of stabilisation, is observed at 

the last years. The most striking example of accident in a natural gas pipeline 

distribution network that has been recorded in the recent years was the one in Japan in 

1995, where the distribution system of natural gas failed due to an earthquake 

(magnitude of 7.2 R) and caused the death of 60.000 people. 

A natural-gas pipeline is actually a system of equipments designed to allow gas 

flow from one location to another. The area of hazard associated with the damage will 

depend on the mode of pipeline failure, time to ignition, environmental conditions at 

failure point and meteorological conditions. The identification of the hazard zones and 

the calculation of individual and societal risk due to natural gas pipeline failure and 

the selection of prevention and mitigation measures can be achieved by applying a 

pipeline risk assessment methods. The failure of a natural gas pipeline may be time 

independent; such as third party damage, ground movements, overpressure or time 

dependent; such as material failure or corrosion. Therefore, regulatory authorities and 

pipeline managers is focused in improving the level of safety of the pipeline. 

If a natural gas pipeline fails, then several severe consequences for individuals and 

society at large is possible to happen. Specifically, damage to natural gas network 

may cause gas leakage within customers‟ facilities. The amount of leakage depends 

on the severity of damage and the operating pressure of the pipelines. In many cases 

for residential appliances, damage may include partial or complete fracture of 

threaded pipe connections, flexible tubing, pipe fittings, and damage to vent piping. 

Also, the risk of a gas-related fire in residential structures following natural gas 

pipeline failure is generally very low because of the numerous conditions necessary 

for gas ignition
7
. The ignition of leaking gas requires an ignitable mixture of gas and 

oxygen between the approximate range of lower (5%) and upper (15%) explosive 

limits and an ignition source. This can occur in the presence of a pilot light or when a 

light switch is turned on or off. The likelihood of ignition is higher in conditions 

where poor air mixing allows formation of higher concentrations of gas. 

Moreover, the most common consequence of severe pipeline failure to the natural 

gas systems is interruption in natural gas supply. Despite the fact that public service 

announcements consistently advise customers to shut off service only if they smell 

                                                 
7
 see, for example, Williamson and Groner, 2000 
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gas, hear gas escaping, see a broken gas line, or observe structural damage to the 

building, customers continue to cut off their gas as a precaution.   

For all the above reasons, risk management of natural gas pipelines is becoming 

more advanced, and many operating and inspection companies are following the trend 

of computerization to assist efforts of risk assessment and management. The main 

task however, before any risk assessment or management model can be implemented, 

is to identify the failure influencing mechanisms affecting a pipeline. Once the outline 

of the model is known it is recommended that further subdivisions be performed in 

order to arrive at a more accurate picture of the risks associated with the pipeline. 

The proposed rules have been reviewed and the probable quantitative benefits may 

not outweigh the probable costs. Because it is difficult to attach financial figures to all 

benefits and values, the legislature has mandated that agencies consider both 

qualitative and quantitative benefits and costs when performing cost benefit analyses, 

as well as the specific directives of the statute being implemented. 

However, there are important probable benefits to these rules that are qualitative 

rather than quantitative. The attached cost benefit analysis largely focuses on the 

probable quantitative benefits and costs of the contingency plan rules. While the 

rules‟ probable costs and expenditures are easily tabulated, converting subjective 

values into monetary equivalent is difficult and, in some cases, not possible. Probable 

qualitative benefits for which we have not assigned a monetary value include: 

effectively responding to a worst case spill scenario, preventing the ongoing 

detrimental impacts of a worst case spill scenario, protecting cultural and spiritual 

values of traditional tribal lands, decreasing impacts to endangered species, preserving 

recreational opportunities, creating a level playing field, and not rolling back 

contingency plan standards to where they were over twelve years ago. 

1.3 Structure of the Postgraduate Thesis 

In Chapter 2, we carry out a literature review of the risk assessment models and 

management methodologies that are applied around the world to prevent and response 

effectively to a natural gas pipeline failure. We present methods of pipeline 

management were summarised prevention and detection practises that are applied in 

natural gas pipelines networks globally, in order to assure the integrity of the pipeline 

regarding the existing circumstances. 
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 In Chapter 3, we make an introduction of the natural gas distribution system basics 

and we present some of the accidents that have recorded to several natural gas 

pipelines globally and had led to a disaster with substantial consequences.Based on 

the literature, there is no unique definition of a severe accident. All definitions include 

various consequence (damage) types (evacuees, injured persons, fatalities or costs) 

and a minimum level for each damage type. The differences between the definitions 

concern both the set of specific consequence types considered and the damage 

threshold. Various types of consequences are covered to differing extents because of 

differences in availability and quality of information. The highest degree of 

completeness is available for fatalities and the economic damage in total. 

In Chapter 4, we present the proposed risk management model that could be 

applied to pipelines networks carrying natural gas. By this model hazard and 

vulnerability factors of a natural gas pipeline failure are  identified and the level of 

risk (risk indicator) is calculated for the main four categories of social and economic 

life of the area; human factor, environment, area‟s infrastructure and gas installations 

as well as the economic activity of the industry. The possible mitigation measures that 

can be taken in order to lower the risk indicator for one or multiple hazard and 

vulnerability parameters are also identified. Then these measures are prioritizing, 

based on the benefit (risk indicator before taking the mitigation measure – new risk 

indicator after the implementation of the mitigation measure), the cost of the 

mitigation measures and the available industry‟s financial capitals. This cost-benefit 

analysis is achieved through the application of the knapsack model.    

In Chapter 5, the hazard parameters that can cause natural gas pipeline failure are 

identified and the method for calculating the possibility of a pipeline failure 

occurrence is presented. The hazard analysis includes a review of potential hazards 

sources associated with natural gas to be processed, used and handled at the peaking 

power plant and associated pipelines and facilities. The main hazard associated with 

the proposed development is related to a leak and ignition of flammable natural gas or 

to a lesser degree, to a leak of combustible liquids (distillate). The hazard 

identification includes a comprehensive identification of possible causes of potential 

incidents to pipeline distribution network and their consequences to human factor, 

environment, infrastructures within the surrounding area and the gas installations and 

the industry‟s economic activity.  
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In Chapter 6, we identify the vulnerability parameters that can increase the impact 

of a pipeline failure and we calculate the possibility of failure consequences to the 

following four (4) main categories: human factor, environment, infrastructure and 

installations and economic activity of the industry. Moreover we describe in detail the 

risk assessment method, which combines the possibility of pipeline failure occurrence 

(hazard, see Chapter 6) and the possibility of vulnerability to disasters considering 

that the failure has occured.  

In Chapter 7, the proposed countermeasures for preventing and mitigating a 

potential accident or disaster that may occur at a pipeline network are presented in 

order to implement a cost – benefit analysis that can lead to the optimization of 

pipeline risk management with the minimum cost within the available amount of 

expenditures that the industry is willing to provide. For this purpose we introduce 

dynamic knapsack model. 

Finally, in Chapter 8 the outcomes of the previous chapters are presented as well as 

some outline guidance regarding the risk management of a natural gas distribution 

network that can assist the gas industry managers to prioritize their needs and to 

allocate the available amount with the most appropriate way.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter begins by outlining some basic approaches used in the pipeline risk 

assessment and management research. We begin with a review of the basic 

methodologies used in the assessment of technological risk. According to this 

perspective, we classify the basic methods used in practise. The relevant literature 

mainly comprises phases in risk assessment and management approaches, qualitative 

approaches, quantitative and semi-quantitative models that represent the likelihood of 

risks on natural gas pipeline distribution system. 

There are many economic actors interested in the assessment and management of 

technological risk of natural gas pipeline distribution network. A list includes natural 

gas production industries, owners and operators of distribution systems, insurance 

companies, safety technology manufacturers, regulatory agencies, applied technology 

research laboratories and institutions and concerned public. 

The risk performance of a pipeline system is assessed by observing process details 

(manufacturing process diagrams), inputs (quality of raw material, level of expertise 

of inspection personnel) and outputs. Risk assessment may measure performance 

indicators directly of it may use estimated provided by experts. At the end, a risk 

indicator is produced that may be simple or complex. The risk indicator is contrasted 

to a comparison basis.  

Moreover, risk assessment is a measuring process and a risk model is a measuring 

tool. The risk associated with pipeline failure doesn‟t depend only on the “failure 

probability” but also from the “vulnerability and failure consequences” of all the 

potential risk scenarios.  When it comes to basic pipeline risk assessment, the main 

consequences of concern are related to public health and safety (injuries and deaths), 

gas installations and infrastructure damage including environmental consideration. 

Risk-based methods aim at identifying, characterizing, quantifying, and evaluating 

the likelihood of the loss caused as a result of the occurrence of a specific event. The 

use of risk-based methods for the management of the process components provides 

reliable quantification of potential risks. This provides an alternative strategy for the 

maintenance of assets instead of the use of simple ranking (prioritizing) based on 

reported failure occurrences.  
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It is important to make the distinction between a hazard and a risk because risk is 

changeable without changing a hazard. For example, ground movement is a hazard for 

a natural gas pipeline network that generates the risk of explosion or leakage. In 

addition, hazard is a characteristic or a group of characteristics that posse threat to 

pipeline integrity. Identified threats can be generally grouped into two categories: 

time-depended failure mechanisms and random failure mechanisms. Hazard analysis 

refers to identifying mechanisms that can lead to a pipeline failure with accompanying 

consequences.   

2.1 Pipeline hazards identification literature 

Several methodologies are available to identify hazards and threats varying in 

approach and degree of formality. Common hazard evaluation tools such as event 

trees, fault trees, “what-if” analysis and Hazard and Operability Studies (HAZOP) are 

used to identify all threats to pipeline integrity.  

 

HAZOP: A hazard and operability study is a team technique that examines all 

possible failure events and operability issues through the use of keywords prompting 

the team for input in a very structured format. Scenarios and potential consequences 

are identified, but likelihood is usually not quantified in HAZOP. Strict discipline 

ensures that all possibilities are covered by the team. When done properly, the 

technique is very thorough but time consuming and costly in terms of person-hours 

expended. HAZOP and failure modes and effects analysis (FMEA) studies are 

especially useful tools when the risk assessments include complex facilities such as 

tank farms and pump/ compressor stations.  

 

Fault-tree / event-tree analysis. Tracing the sequence of events backward from a 

failure yields a fault tree. In an event tree, the process begins from an event and 

progresses forward though all possible subsequent events to determine possible 

failures. Probabilities can be assigned to each branch and then combined to arrive at 

complete event probabilities.  
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2.2 Pipeline risk assessment problem. 

First of all, risk is most commonly defined as the probability of an event that 

causes a loss and the potential magnitude of that loss. By this definition, the risk is 

increased when either probability of the event increases or when the magnitude of the 

potential loss increases. Transportation of products by pipelines includes risk because 

there is a probability of the pipeline failing, releasing its contents and causing 

damage. 

Furthermore, in the most of the scientific researches, risk is referred as a measure 

of human loss and is translated in two quantities: the possibility of pipeline failure and 

the number of fatalities. Moreover, the impacts of a disaster or an accident are 

depending from the scenario parameters such as hole size, time of fire ignition, 

meteorological and environmental conditions at the location of the accident. Due to 

these parameters, the results of the risk assessment study could vary regarding the 

assumptions that have been done at the accident scenario. A great number of 

calculations are sometimes inevitable due to different scenarios and the distribution of 

the risk sources along the pipeline. 

The most commonly accepted definition of risk is often expressed as a 

mathematical relationship:  

Risk event likelihood event consequence  

The risk assessment models for the pipeline failure are divided in three main 

categories; (1) Qualitative, (2) Quantitative and (3) Semi Quantitative. 

2.2.1 Qualitative Approaches 

Qualitative methods may focus only on relative consequences or assess the 

probability and consequences in relative terms, such as high, medium and low. 

Qualitative approaches combining probability and consequences often use numerical 

scoring methods to generate a relative risk ranking of various pipeline segments and 

of various lengths along a pipeline route. Pipeline operators sometimes use these 

methods to set priorities for rehabilitation, repairs, inspection and testing of specific 

line segments. These methods define a number of risk factors, each of which is 

assigned a numerical value. The factors are mathematically combined, usually 

cumulative, to yield a numerical score value for each predefined segment length of the 
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pipeline. In this way, segments can be ranked and grouped according to relative risk 

associated with a leak or spill.  

In addition, qualitative approaches require expert opinions or a knowledgeable 

person‟s views. An expert can be the one who has extensive knowledge about the 

field related to project or who has worked on similar projects in the past. The major 

disadvantages of using qualitative approaches are the amount of subjectivity during 

the project, variation in human judgments, and lack of standardized approach. There 

have been numerous approaches suggested by Chapman (1998), like Delphi 

techniques and nominal group techniques to minimize the biasing, which exists, but 

still these approaches do not reduce the amount of subjectivity present in the process. 

Also, they are comparatively economical and readily applied but are unable to provide 

numerical estimates or relative rankings for the risks identified. 

Qualitative risk index approaches assign subjective scores to the different factors 

that are thought to influence the probability and consequences of failure (Muhlbauer, 

(1992); Cagno et al. (2000); Dey et al. (2001)). These scores are then combined using 

simple formulas to give an index representing the level of risk. Risk index approaches 

provide a ranking of the different process components based on the perceived level of 

risk estimated. The ranking obtained by using these methods is highly subjective. In 

addition, these approaches do not provide any indication of whether the risk 

associated with a component is unacceptable and consequently no guidance is 

provided regarding whether any risk reduction action is necessary. 

The index system scoring format suggested by Muhlbauer (1992) accounts for the 

use of in-line inspection tools to locate metal loss corrosion by awarding up to 8 

points out of a maximum of 400 points representing resistance to failure (i.e., 2%). 

This underestimates the benefits of high-resolution pigging, which is known to result 

in significant reductions to the large percentage of failures that are attributable to 

corrosion (20–40% of all failures). Therefore, index systems provide at best an 

approximate risk-based ranking of process components, which has serious limitations 

when being used as a basis for integrity management decision making. 

2.2.2 Quantitative Approaches 

Quantitative Risk Assessment (QRA) tries to overcome the disadvantages of the 

qualitative risk assessment. Risk rankings, Risk Factors, Probabilistic Risk 
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Assessment (PRA), and Hierarchical Holographic Modeling (HHM) are popular 

approaches that have been successfully implemented in the past by several authors.  

These methods seek to estimate numerical event frequencies or probabilities, for a 

specified time period, associated with specific, measurable consequences and 

determine the level of risk based on direct estimates of the probability and/or 

consequences of failure. For example, the risk of fatality from a pipeline accident can 

be expressed as the annual probability that a fatality might occur. This is the basis of 

the Individual Risk and Social Risk Analysis. 

The major advantages of quantifying the risks are providing an adequate 

understanding of failure, consequences and events, which are difficult to explain by a 

qualitative approach. In addition, it is easier to understand the overall process, reach 

the appropriate decision and allocate resources based on quantitative data rather than 

qualitative opinions. 

Current quantitative risk assessment approaches focus on a single aspect of the 

consequence associated with failure. Published studies deal with either loss of life risk 

or economic risk (Hill (1992); Concord (1993); Nessim et al. (1995); Pandey (1998); 

Nessim et al. (2000)). Integration of environmental damage, life safety, and economic 

risks has not been addressed adequately. Another limitation of quantitative risk 

assessment approaches is that they typically base the failure probability estimates on 

historical failure rates. 

Publicly available databases do not usually allow subdivision of the failure data 

according to the attributes of a specific process component and where adequate 

subdivision is possible, the amount of data associated with a particular attribute set is 

very limited because of the rarity of the failures. Failure probabilities are estimated 

from public data, therefore are not sufficiently specific to represent a given failure in a 

specific process component.  

Another approach to calculate failure probability is based on the concept of 

structural reliability that includes Markovian models and hot spots on a component-

by-component basis. The effect of the correlation from one hot spot to another has 

been investigated by Lotsberg et al. (1998), Faber et al. (1999), Brown et al. (2000), 

and Montgomery et al. (2002). Faber et al. (2000, 2003) proposed an informal 

decision analysis where the number of considered elements is reduced in a consistent 

and systematic way. However, due to the numerical effort required and the stability of 

the method such an approach did not prove to be practical. Straub et al. (2000) 
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indicated that an integrated approach to the decision problem that is suitable for 

industrial purposes has not yet been developed. 

Jo et al. (2005) proposed a quantitative risk assessment for transmission pipeline 

carrying natural gas and introduce parameters for fatal length and cumulative fatal 

length that is defined as the integrated fatality along the pipeline associated with 

hypothetical accidents. Also, the cumulative fatal length is defined as the section of 

pipeline in which an accident leads to N or more fatalities. These parameters can be 

estimated easily by using the information of pipeline geometry and population density 

of a Geographic Information Systems (GIS). The model calculates individual risk in a 

seven step procedure and societal risk in a eight step procedure of natural gas 

pipeline. The main outcome of this method is that may be useful for risk management 

during the planning and building stages of a new pipeline and modification of a buried 

pipeline.In order to demonstrate and evaluate the proposed method, it was applied to a 

sample pipeline and the individual and societal risks have been estimated for the 

historical data of European Gas Pipeline Incident Data Group and BG Transco.  

The Muhlbauer Model (1992) was adopted as the framework for the risk 

assessment process. As first published, the Muhlbauer Model was used to assign 

numerical scores to each of four hazard indices: Third Party Damage; Corrosion; 

Design, and Incorrect Operations. These factors were then numerically combined and 

a “Leak Impact Factor” (consequence factor) was applied to provide a relative 

measure of pipeline risk. The intent of the Muhlbauer Model was to provide a 

comprehensive framework for conducting pipeline risk assessments that could be 

modified to adequately account for unique situations, yet still provide a defensible 

system for relative comparisons between various pipelines or pipeline segments. 

Another approach is the LOPA (layer of protection analysis) that is a simplified 

risk assessment used to identify safeguards to meet the risk acceptance criteria. Safety 

and protection measures in pipelines are formed into a multi-layer protection system 

which functions in a specified sequence. The LOPA assumes that no layer of 

protection is perfect; every layer has some probability failure on demand (PFD). 

Therefore, the risk of the occurrence of unwanted consequences depends on the 

failure of the safeguards. In the determination of the final risk level for a selected 

accident scenario, the event tree method is applied. The application of LOPA for 

pipelines risk assessment as a alternative method to QRA is given by Markowski 

(2003).  
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Risk Ranking 

The most popular pipeline risk assessment technique in current use in the index 

model or some similar scoring technique. In this approach, numerical values (scores) 

are assigned to important conditions and activities on the pipeline system that 

contribute to the risk picture. This includes both risk – reducing and risk – increasing 

teams and variables. Weightings are assigned to each risk variable. The relative 

weight reflects the importance of the item in the risk assessment and is based on 

statistics were available and on engineering judgment where data are not available. 

Each pipeline section is scored based on all of its attributes. The various pipe 

segments may then be ranked according to their relative risk scores in order to 

prioritize repairs, inspections and other risk mitigating efforts. Among pipeline 

operators today, this technique is widely used and ranges from a simple one or two 

factor model (e.g. leak history and population density) to models with hundreds of 

factors considering virtually every item that impact risk.  

The Decision – Analysis Matrix is one of the simplest risk assessment structures. It 

ranks pipeline risks according to the likelihood and the potential consequences of an 

event be a simple scale (high, medium or low) or a numerical scale (e.g. from 1 to 5). 

Each threat is assigned to a cell of the matrix based on its perceived likelihood and a 

high consequence appears higher in the resulting prioritized list. This approach may 

simply use expert opinion or a more complicated application might use quantitative 

information to rank risks. While this approach cannot consider all pertinent factors 

and their relationships, it does help to crystallize thinking by at least breaking one 

problem into 2 parts (probability and consequence) for separate examination   

Risk ranking is the efficient way to set up risk priorities. Florig, et al. (2001) 

developed a method whereby risk experts categorize and define the risks to be ranked, 

identify the related risk attributes, and characterize the risk. This five-step approach 

starts with the iterative process of defining and categorizing the risks to be ranked and 

the set of attributes that describe those risks. Based on risk attributes, the next step is 

to create the risk summarization sheets. Then, participants are selected and risk 

rankings are prepared based on the risk summarization sheets. Finally, a description of 

issues identified and the resulting rankings are prepared. 

The authors also suggested that risk ranking should be viewed as only one input to 

the decision-making process and not for the final recommendations for management 

decision-making priorities. Also, based on higher to lower ranking management can 
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assign the controls and resources to mitigate the risk. Several authors (Webler, et al. 

(1995); Morgan, et al. (2000)) have suggested different risk ranking methodologies 

according to their respective fields. 

 

Figure 2.1 Steps in Risk-Ranking method 

Henselwood et al. (2005) proposed a matrix-based approach of risk assessment that 

has been developed so as to determine the risks associated with high-vapor pressure 

liquids pipelines. The approach involved the development of a matrix representing 

each 100m section of the reviewed pipeline along with approximately 30 risk factors 

that describe that section of the pipeline. Further, a receptor matrix was constructed to 

account for each hectare of land within 1 km of the reviewed pipeline system. This 

approach has allowed the determination of risk as a function of location and 

separation from the pipeline and in turn has allowed for the determination of those 

areas where peak risks exist. In addition, this approach has ensured that the linear 

geometry related to pipeline risks has been accurately modeled. 

One of the keys to the current risk assessment approach is that the length scale 

associated with major events (several 100 m) is significantly larger than the length 

scale associated with the receptor matrix (100m _ 100m units). Increasing the 

resolution of the receptor matrix and working with 1/9
th

 of a hectare unit (same total 

land area covered) resulted in the average occupant vulnerability increasing by less 

than 1% for those events which resulted in the most significant outcomes (late 

ignition - rupture scenarios leading to fire and explosion). As such the selected 

receptor matrix is likely appropriately scaled and represents a balance between 

resolution and source data quality while ensuring calculation requirements are 

manageable.  

The main advantages of indexing models are summarized as follows: 
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 Provide immediate answers 

 Are a low-cost analysis  (intuitive approach using available information) 

 Are comprehensive (allow for incomplete knowledge and is easily modified as 

new information becomes available) 

 Act as a decision support tool for resource allocation modeling 

 Identify and place values on risk mitigation options  

 

Risk Factors 

Risk factorization is a method in which risk experts identify the risks, assign 

weights to those risks, and identify the total risk scores. Based on total risk scores, 

management sets their priorities to allocate the resources and design controls. 

Factorization of risk is a step-by-step approach toward quantifying the risk. Also, 

calculating the Risk factors is the most economical and effective way to identify the 

risk priorities. The risk factorization methodology is a very powerful decision-making 

tool to identify and prioritize the risk factors according to their order from highest to 

lowest, but the major disadvantage of this system is the amount of subjectivity within 

the method.  

The major divisions into which risk factors can be divided are design, construction, 

operation, and maintenance. These four areas are associated with the lifecycle of most 

engineered systems. The design of the system is carried out first, and then the 

construction phase. Next, once the construction is finished, the system has to be 

operated and maintained. Errors in any of the four areas may lead to system‟s failure, 

which may occur instantly or cause its slow degradation. Towards the end of the 

system‟s life more and more failures start occurring, as it nears decommissioning.  

The hazard function illustrates that the amount of risk is associated with an item at 

time t. In the case of manufactured items like pipelines the hazard function takes on a 

bathtub-shaped form, where the hazard function decreases initially and then increases 

as items age. Often manufacturing, design or component defects cause early failures. 

The period in which these failures occur is called the burn-in period. Once items pass 

through this early part of their lifetime, they have a fairly constant hazard function, 

and failures are equally likely to occur at any point of time. Finally, as items continue 

to age, the hazard function increases without limit, resulting in wear-out failures. For 

pipelines, the burn-in period is highly influenced by construction and design errors, 
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while the wear-out period is dependent on maintenance, operation and again, design. 

The reliability of a pipeline is constantly dependent on how accurate the design is, 

therefore the greatest care should be practiced during the system design phase. 

The failure of a high pressure gas pipeline is defined as a leak or rupture caused by 

damage such as external interference, corrosion, fatigue or ground movement. Leaks 

are defined as gas losses through a stable defect and ruptures are defined as gas losses 

through an unstable defect which extends during failure. The escaping gas may ignite, 

resulting in a fireball, crater or jet fire which can generate thermal radiation. 

 

Probabilistic Risk Assessment (PRA) 

The most rigorous and complex risk assessment model is a modeling approach 

commonly referred to as probabilistic risk assessment (PRA) and sometimes also 

called quantitative risk assessment (QRA) or numerical risk assessment (NRA). This 

technique is used in nuclear, chemical and aerospace industries and to some extent to 

petrochemical industry.  

PRA is a rigorous mathematical and statistical technique that relies heavily on 

historical failure data and event-tree/fault-tree analyses. Initiating events such as 

equipment failure and safety system malfunction are flowcharted forward to all 

possible concluding events, with probabilities being assigned to each branch along the 

way. Failures are backward flowcharted to all possible initiating events, again with 

probabilities assigned to all branches. Final accident probabilities are achieved by 

chaining the estimated probabilities of individual events. This model needs extensive 

data and is considered one of the most expensive technique. Its output is usually a 

form whereby its results can be directly compared to other risks such as tornado 

damages. PRA – type techniques are required in order to obtain estimates of absolute 

risk values expressed in fatalities, injuries, property damages etc. per specific time 

period.   

 

Hierarchical Holographic Modeling (HHM) 

Haimes (1981) started his research in the field of HHM that addresses the issues 

related to hierarchical institutional, managerial, organizational or functional decision-

making structures. Kaplan et al. (2001) suggested that HHM has been regarded as a 

general method for identifying the set of risk scenarios and could be viewed as one of 

the methods of Theory of Scenario Structuring (TSS), which is the part of QRA that is 

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 12:40:59 EEST - 18.221.249.126



Page | 29 

 

useful in identifying the set of risk scenario. HHM is particularly useful in modeling 

large-scale, complex, and hierarchical systems. Himes, et al. (2002) suggested that the 

nature and capability of HHM is to identify a comprehensive and large set of risk 

scenarios. To deal with this large set, a systematic process that filters and ranks these 

identified scenarios is needed so that risk mitigation activities can be prioritized.  

The HHM methodology recognizes that most of the organizational as well as of the 

technology-based systems are hierarchical in structure, and thus the risk management 

of such systems must be driven by and responsive to this hierarchical structure. The 

risks associated with each subsystem within the hierarchical structure contribute to 

and ultimately determines the risks of the overall system. 

The major advantage of the HHM framework for risk assessment and management 

is its ability to identify risk scenarios that result from and propagate through multiple 

overlapping hierarchies in real-life systems. In planning, design, or operational 

modes, the ability to model and quantify the risks is contributed by each subsystem 

and facilitates understanding, quantifying, and evaluating the risks of the whole 

system. In particular, the ability to model the intricate relations among the various 

subsystems and the ability to account for all relevant and important elements of risk 

and uncertainty renders this modeling process is more representative and 

encompassing. 

 

Relative risk models Literature 

Numerous factors affect the risks associated with pipeline failures. Information on 

all factors will typically be incomplete. Assumptions and default values will be 

required for some of the input data requirements. This necessarily limits the accuracy 

of the risk estimation for a specific length (segment) of a pipeline. It is very difficult 

to determine the probability associated with a specific short segment of pipe. The 

relationship among the factors that affect the probability of failure and the failure rate 

remains an area of ongoing industry interest and research. Relative risk models have 

been developed that can be used to adjust generic failure rate data to account for 

specific local attributes in a pipeline network.  

An efficient way of evaluating risk along a pipeline is to divide it into segments 

with similar risk characteristics. The number of variables considered in the process 

determines the number of segments. Segmenting criteria include variables such as 

pipe specifications (diameter, wall thickness etc.), coating type, age and population 
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density. There are several approaches of pipeline segmenting such as fixed-length 

method of sectioning, based on rules such as “every mile” or “between block valves”, 

or “between pump stations” is often proposed. While such an approach maybe 

initially appealing it will usually reduce accuracy and increase costs. Inappropriate 

and unnecessary break points that are chosen limit the model‟s usefulness and hide 

risk hot spots if conditions are averaged in the section or risks will be exaggerated if 

worst case conditions are used for the entire length. It will also interfere with the 

efficient ability of the risk model to identify risk mitigation projects.   

Another one is the dynamic segmentation that is the most appropriate method for 

sectioning the pipeline by inserting a break point wherever significant risk changes 

occur. A significant condition change must be determined by the evaluator with 

consideration given to data costs and desired accuracy. The idea is for each pipeline 

section to be unique, from risk perspective, from its neighbors. So, within a pipeline 

section we recognize no differences in risk, from beginning to end of the pipeline. The 

neighboring sections differ in at least one risk variable; it might be a change in pipe 

specification (wall thickness, diameter etc.), population or other factors. Section 

length is not important as long as the selected characteristics remain constant.  

2.2.3 Semi - Quantitative Approaches 

Semi-quantitative approaches were developed to provide a practical and easy tool 

to be used for designing maintenance programs that optimize the allocation of 

resources and in the meantime ensure effective and efficient asset management. These 

approaches use semi-quantitative models for consequence estimation as well as for 

failure probability calculations. Examples of these approaches can be found in Khan 

et al. (2003a, 2003b), Khan et al. (2004), and Khan et al. (2004). It is easily employed 

in process plants and to components like pipelines or pressure components. These 

approaches provide a tool to ascertain that the estimated risk of failure satisfies a 

predetermined acceptance criterion (Khan et al. (2004); Willcocks et al. (2000); Dey 

(2004)).  

The risk-based inspection and maintenance approach was discussed by Willcocks 

et al. (2003) who introduces a failure modes effect analysis to identify the failure 

modes of system components and their consequences. Following, he introduces 

failure patterns and rates to calculate the probability of failure, and determines the risk 

to be used in inspection and maintenance planning. Depending on the level of risk for 
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each mode and pattern of failure, the required analysis, inspection, maintenance, and 

repair tasks are selected. For example, a review of historical failure databases 

indicates that the major failure modes in a pipeline are internal corrosion and external 

impact. Thus, the main efforts (in terms of design, structural modeling, inspections, 

etc.) should be focused on these failure modes. Of course, this is a simple example of 

risk-based inspection and maintenance. 

Dziubinski et al. (2006) presented a risk assessment methodology for dangerous 

substances transportation by long pipelines by combining qualitative (historical data 

analysis, conformance test and scoring system of hazard assessment) and quantitative 

techniques of pipeline safety assessment. This enabled a detailed analysis of risk 

associated with selected hazard sources by using quantitative techniques. The 

proposed methodology comprises a sequence of analyses and calculations used to 

determine basic reasons of pipeline failures and their probable consequences, taking 

individual and societal risk into account. To verify above methodology, complete risk 

analysis was performed for the long distance fuel pipeline in Poland. 

A large number of articles were published on the subject of optimizing 

maintenance through the use of mathematical models (Montgomery et al. (2000); 

Khan (2003a, 2003b); Willcocks (2003); Dey (2004)). Most of the maintenance 

optimization models are based on lifetime distributions or Markovian deterioration 

models. It is often difficult to collect enough data for estimating the parameters of a 

lifetime distribution or the transition probabilities of a Markov chain. This presents an 

obstacle in the way of using these models to design practical maintenance programs. 

The combined use of the reliability index methods and the limit state approach may 

prove helpful in removing this drawback. 

Kirkwood et al. (2006) presented a strategy to maintain and repair a pipeline using 

relative risk assessment and introduced a method that utilized qualitative data thus 

producing risk within pipeline segments relative to one another. Both quantitative and 

qualitative risks are defined. Risk is defined as the combination of the probability 

occurrence of a hazard and the magnitude of the consequences of the failure. Also is 

presented a detailed description of the pipeline hazards used in risk assessment that 

include internal corrosion, external corrosion, fatigue, stress-corrosion cracking, 

mechanical damage, third party intervention and loss of ground support. The total 

probability of failure (Pf) is given as the sum of each of the individual probability 

factors and the breaking down of the individual failure modes allows the model to 
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identify the influence of each mode on the entire pipeline. Moreover the consequence 

of failure is the damage or cost incurred when a pipeline fails and defined as the sum 

of all the feasible consequence factors, that are defined as risk to life, damage to 

property, loss of service, cost of failure and environmental effects. These factors are 

not weighted against each other; rather weighting is decided for each factor by the 

pipeline operator. 

Khan et al. (2006), proposed a risk-based methodology for integrity and inspection 

modeling (RBIIM) to ensure safe and fault-free operation of the facility. This 

methodology uses a gamma distribution to model the material degradation and a 

Bayesian updating method to improve the distribution based on actual inspection 

results. The method deals with the two cases of perfect and imperfect inspections. 

RBIIM aims at modeling inspection tasks to achieve safe operating conditions at 

minimum cost. This approach also provides a means for quantitatively establishing 

future reliability levels for the components. These levels can be used as a basis for 

optimizing re-inspection intervals. The uncertainties associated with the design and 

operation of process components have led to an increasing use of risk based 

approaches in making decisions regarding asset integrity management. 

Semi-quantitative techniques allow some relative risk ranking, but these techniques 

are still unable to provide detailed assessments of large and complicated projects or 

systems. 

2.3 Pipeline Risk Management Research 

Risk management is the process of assessing risk and then designing strategies and 

procedures to mitigate the identified risk factors. Different methodologies have been 

suggested to develop solutions for managing risk. The major two concepts evolving in 

risk management are the use of qualitative approaches and quantitative approaches. 

Two basic classes of risk analysis methods are qualitative and quantitative methods. 

The risk assessment is the core of risk management, the process of evaluating risks 

and allocating resources in a manner that controls risks and costs. As mentioned 

above, out of the three phases of risk management; Risk Identification, Risk 

Assessment, Risk Control and Mitigation, the quantification of risk lies under the risk 

assessment phase.  

Due to the complexity of the large systems, such as a pipeline distribution system, 

the risk management process involves some uncertainty that should be addressed. 
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Many factors increase the uncertainty in the risk management process including the 

changing role of engineering and business processes, the rapid technology evolutions, 

and the global economy. One of the most efficient ways to address this uncertainty in 

the risk management process is through the study of probability concepts. This section 

presents strategies or formulation of risk management subjected to probabilities and 

uncertainty; Monte Carlo Simulation, Bayesian approach, and specialized approaches 

that use the probability concepts are considered. 

In the past, several models have been proposed for the project risk management 

process. Miller et al. (2001) developed an approach that sketches out the various 

components of risks, outlines strategies for coping with risks, and suggests a dynamic 

layering model for managing and shaping the risks in large engineering projects. 

These authors dissected risks into categories such as market related, completion, and 

institutional. After the categorization of risk, they suggested four main risk-

management techniques: shape and mitigate, shift and allocate, influence and 

transform institutions, and diversify through portfolios. Furthermore, after tracing risk 

management in 60 large engineering projects, they identified six primary layers of 

mechanisms used by management for coping with the risks: assess/understand, 

transfer/hedge, diversify/pool, create options/flexibility, transform risk, and embrace 

residual risks. 

Chapman (1979) suggests SCERT (Synergistic Contingency Evaluation and 

Response Techniques), which provides a systematic approach to the planning and 

financial evaluation of large engineering projects involving significant risks. SCERT 

is a four-phase approach includes scope, structure, parameter, manipulation and 

interpretation. All four phases are then divided into specific steps. “Scope” is divided 

into activity identification, primary risk identification, primary response 

identification, secondary risk identification, and secondary response identification. 

The structure phase is composed of minor and major risk identification, specific and 

general response identification, simple and complex decision rule identification, and 

risk/response diagramming. The parameter phase contains desired parameter 

identification, scenario identification, probability estimation, and manipulation. The 

interpretation phase contains risk computation, risk efficiency decision rule 

assessment, risk balance decision rule assessment, and budget contingency sum 

assessment steps. PRA method that is described at the Risk Assessment Literatures 
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supports management to improve the performance of the system as well as optimizes 

the decision-making. 

Jo et al. (2003) presented a simplified equation that relates the diameter, the 

operating pressure and the length of pipeline to the size of the affected area in the 

event of a full-bore rupture. The equation is based on release rate, gas jet and heat flux 

from fire to estimate the hazard area. Hazard area is directly proportional to the 

operating pressure rise to a half power, and to the pipeline diameter rise to five-

fourths power, but inversely proportional to the pipeline length raised to a quarter of 

power. This simplified equation is considered a useful tool for safety management of 

the high-pressure natural-gas pipelines. This research is focused to propose a simple 

and dependable approach for sizing the ground area potentially affected by the failure 

of a high-pressure pipeline carrying natural gas. Also, the hazard model is based on a 

consequence model which consists of three parts; 1) an effective release rate model at 

steady-state for high-pressure pipeline rupture, 2) a jet-dispersion model that relates 

the operating condition of the pipeline and the effective hole size to the contour of the 

lower flammable limit, and 3) a fire model that relates the rate of gas release to the 

heat intensity of the fire as a function of distance from the fire source. 

2.3.1 Monte Carlo Simulation 

Monte Carlo simulation is a useful method for PRA. Monte Carlo simulation is 

designed to propagate the variability and uncertainty associated with each individual 

exposure input parameter in PRA. Monte Carlo simulation draws random variables 

from a probability distribution and includes the observed values in risk analysis. 

Combined with the PRA, it provides risk managers with sufficient data to choose 

from quantile of risk. Several authors (Eschenroeder, et al. (1988), Haas (1997), and 

Binkowithz et al. (2002)) have suggested different Monte Carlo Simulation 

approaches within their respective fields.  

Note that while this method is attractive to ensures, it does not take into account 

the cost of potential human suffering and should not be used as a primary decision 

criterion for safety and health related hazards. Similarly a cost benefit ratio greater 

than 1 is not a valid reason not to implement a safety related improvement. The cost 

benefit ration can at best be used as another tool to help rank priorities amongst a 

range of actions. 
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2.3.2 Bayesian Model 

The Bayesian model allows computation of the posterior probability of an event 

given its prior probability. Bayesian model use the old concept of conditional 

probability. The Bayesian model states that posterior probability is proportional to the 

prior probability and current data, which allows computation of posterior probability 

because it allocates values to prior probability information with new data. Pate-

Cornell et al., (1995) and Pate-Cornell (2002) have suggested Bayesian Model 

approaches. In addition, Greenland (2001) and Linville et al. (2001) have combined 

the Bayesian model and Monte Carlo simulation in the decision analysis. 

2.3.3 Cost/Benefit Analysis Literature 

Cost-benefit analysis is a powerful and flexible analytical tool that provides to 

pipeline managers a systematic way of organizing and viewing the advantages and 

costs of regulatory alternatives. Risk/Cost Benefit Analysis may also be part of a Risk 

Assessment Objective and is often used as a criterion to assist at the selection of the 

most effective control options to address an unacceptable risk. 

If the consequences of the hazard can be meaningfully expressed in economic 

terms, then cost benefit analysis can be used to help set priorities and aid decision 

making. Both the capital cost and ongoing operating costs will need to be taken into 

account. The cost can then be annualized using, for example the remaining plant life. 

The benefit from a countermeasure selection is actually the reduction of the cost of 

the accident consequences and can be determined by computing the annual cost 

before and after. This will require some quantitative risk assessment work, although in 

simple cases estimation can give at least an indication. 

The Potential Loss of Life (PLL) is the number of fatalities that can be expected to 

occur each year, averaged over a long period and is a measure of societal risk. The 

PLL is a useful basis for cost benefit analyses of risk reduction measures, via the 

“Implied Cost of a Fatality” (ICAF = cost of measure/(initial PLL-reduced PLL)). 

Such calculations are often controversial as they appear to require a value to be placed 

on human life, but these calculations are commonly used internationally, and may be 

suitable to aid decision making in regard to adopting control measures for major 

hazards. For example, a low ICAF for a proposed risk reduction measure implies that 

it is highly effective, because the cost is low compared to the risk reduction achieved. 
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Conversely, a high ICAF implies a relatively ineffective risk reduction measure, 

indicating that perhaps the money should be diverted to an alternate. 

The Kiefner-NYGAS (2004) risk assessment model is designed to evaluate the 

relative risk of failure for each pipeline segment in a natural gas transmission system, 

determine the highest threat of failure on each segment, assess the most appropriate 

mitigative strategy for each segment by conducting cost/benefit analyses, and assist in 

prioritizing the order that baseline assessment should follow as well as when 

reassessment should occur. The model is capable of analyzing various scenarios of 

mitigating actions specific to each pipeline segment to reduce risk and bring the 

segments with “high” risk into a more acceptable risk range. Potential costs associated 

with each mitigation measure are also identified, cost benefits are calculated, and 

together with other operator knowledge, logical and specific solutions for each 

segment to improve pipeline integrity are established.  

In spite of the advantages of cost-benefit analysis, it should never be the sole basis 

for decision making. Cost-benefit results are subject to uncertainty, and analyses 

rarely prove conclusively that the benefits of a program exceed the costs (or vice 

versa). Thus, decision makers should not interpret quantitative results too literally nor 

be bounded to a strict cost-benefit test. When used with other tools, however, results 

from cost benefit assessments will assist the decision makers to evaluate both the 

economic efficiency and overall effectiveness of existing and proposed programs and 

regulations. 
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Table 2.1 Pipeline risk assessment and management areas addressed in the Literature 

Risk Assessment 
Risk 

Management 
 Qualitative 

approach 

Quantitative 

approach 

Semi – quantitative 

approach 

Haas (1977)    + 

Chapman (1979)    + 

Haimes (1981)  +   

Chapman (1988) +    

Eschenroeder et al. (1988)    + 

Hill (1992)  +   

Muhlbauer (1992) + +   

Concord (1993)  +   

Nessim et al. (1995)  +   

Pate-Cornell (1995)    + 

Webler et al. (1995)  +   

Lotsberg et al. (1998)  +   

Pandey (1998)  +   

Faber et. al (1999)  +   

Brown et al. (2000)  +   

Cagno et al. (2000) +    

Faber et al. (2000)  +   

Morgan et al. (2000)  +   

Montgomery et al. (2000)   +  

Nessim et al. (2000)  +   

Straub et al. (2000)  +   

Dey et al. (2001) +    

Florig et al. (2001)  +   

Greenland (2001)    + 

Kaplan et al. (2001)  +   

Linville et al. (2001)    + 

Miller et al. (2001)    + 

Binkowithz et al. (2002)    + 

Haimes (2002)  +   

Montgomery et al. (2002)  +   

Pate-Cornell (2002)    + 

Faber et al. (2003)  +   

Jo et al. (2003)    + 

Khan et al. (2003a, 2003b)   +  

Khan et al. (2004)   +  

Markowski (2003)  +   

Willcocks et al. (2003)   +  

Dey (2004)   +  

Kiefner et al. (2004)    + 

Jo (2005)  +   

Henselwood et al. (2005)  +   

Dziubinski (2006)   +  

Kirkwood et al. (2006)   +  

Khan et al. (2006)   +  
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2.4 Conclusions 

In this chapter the basic concepts of risk assessment and management methods are 

introduced and discussed. As it is shown in Table 2.1 the pipeline risk assessment and 

management areas addressed in the Literature are divided in qualitative, quantitative, 

semi-quantitative, and risk management. The risk dimensions and methods were 

presented in order to shape an overall perception of the work needed to quantify the 

risk in order to use mathematical calculations and formatting. 
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CHAPTER 3 

NATURAL GAS PIPELINE BASICS AND ACCIDENTS 

This chapter refers to natural gas distribution network fundamental concepts and to 

the basic components that composes a pipeline network, as well as to the process and 

distribution of natural gas. Some of the most striking accidents that had happened to 

natural gas pipeline distribution networks worldwide are presented and their impacts 

to several areas of social and economical life of the affected areas are discussed.  

3.1Natural gas basics 

Natural gas is an extremely important source of energy for reducing pollution and 

maintaining a clean and healthy environment. In addition to being a domestically 

abundant and secure source of energy, the use of natural gas also offers a number of 

environmental benefits over other sources of energy. 

Moreover, it is a fossil fuel extracted from deep underground wells. It is a physical 

mixture of various gases, typically containing 85 – 95% methane (CH4), 7 – 12% 

ethane (C2H6) and small amounts of propane (C3H8), butane (C4H10), nitrogen and 

carbon dioxide (CO2). The proportions vary from field to field and sometimes from 

well to well.  

Furthermore, natural gas is odorless and colorless when it comes from the 

wellhead. As a safety measure, an odorant, which is a blend of organic chemicals 

containing sulfur (mercaptans), is added so natural gas leaks can be detected. Unlike 

propane, natural gas is lighter than air. Natural gas typically has a specific gravity of 

0.6, meaning that it weighs about 0.6 times as much as air. The term specific gravity 

refers to the weight of the gas as compared to the weight of air. Not all mixtures of 

natural gas and air will burn. Some mixtures have too little quantity of gas, while 

others have so much quantity of gas that there is not enough air left to burn. 
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Table 3.1 Fossil Fuel Emission Levels - Pounds per Billion Btu of Energy Input 

Pollutant  Natural Gas Oil Coal 

Carbon Dioxide 117,000 164,000 208,000 

Carbon Monoxide 40 33 208 

Nitrogen Oxides 92 448 457 

Sulfur Dioxide 1 1,122 2,591 

Particulates 7 84 2,744 

Mercury 0.000 0.007 0.016 
Source: EIA - Natural Gas Issues and Trends 1998 

The two cutoff points between combustible mixtures and non-combustible 

mixtures are called the Explosive Limits;  

• The Lower Explosive Limit (LEL) for natural gas is approximately 5%. At 

concentrations below the LEL, there is insufficient gas to cause a fire or explosion. 

• The Upper Explosive Limit (UEL) for natural gas is approximately 15%. At 

concentrations above the UEL, there is insufficient air to cause a fire or explosion. 

The ideal mixture for combustion of natural gas is approximately 10% and the 

ignition point is 1208° F. 

Table 3.2 Fire and Explosion Hazards of Natural Gas 

Flash point -300 deg F 

Upper Flammable 

or Explosive Limit 
15% 

Lower Flammable 

or Explosive Limit 
5% 

Auto Ignition 

Temperature 
1208° F 

Extinguishing 

Media 

Methane's flammability, wide flammable range, and very low 

flash point represent dangerous fire and explosion risks. Treat 

any fire situation involving rapidly escaping and burning 

methane gas as an emergency. Extinguish methane fires by 

shutting off the source of the gas. Use water sprays to cool fire-

exposed containers and to protect the personnel attempting to 

seal the source of the escaping gas. Dry Chemical, CO2 and 

Halon may also be used to extinguish fires. 

Unusual Fire 

Hazards: 

Methane gas is very flammable with a relatively wide flammable 

range (5% to 15%). The best fire-fighting technique may be 

simply to let the burning gas escape from the pressurized 

cylinder, tank car, or pipelines. Never extinguish the burning gas 

without first locating and sealing its source. Otherwise, the still 

leaking gas could explosively re-ignite without warning and 

cause more damage than if it burned itself out. 

Route of Exposure Primary Entry: Inhalation. 

Potential Health 

Effects 

Acute Effects: The initial symptoms of simple asphyxiant gases' 

effects are rapid respiration and air hunger, diminished mental 

alertness, and impaired muscular coordination. Continuing lack 
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of oxygen causes faulty judgment, depression of all sensations, 

rapid fatigue, emotional instability, nausea, vomiting, 

prostration, unconsciousness, and finally, convulsions, coma, 

and death. 

Summary of risks 

As a simple asphyxiant gas, methane does not cause significant 

physiological responses, but it can displace the minimum 

required atmospheric oxygen level. Significant displacement 

results in an oxygen-deficient atmosphere with no adequate 

warning properties. Asphyxiation can occur especially in 

confined, poorly ventilated, undisturbed spaces infrequently 

entered by workers. Frostbite (cryogenic damage) can result 

from contact with liquid methane's extremely low temperature. 

 

3.2 The natural gas distribution system 

The transportation system of natural gas from its extraction to its end user is very 

complicated. The natural gas is pumped with great diameter pipelines and is 

transferred under high pressure (70 – 100 bar or 69 – 98,7 atm) to peripheral 

distribution stations. The pipelines operate at various pressures throughout the system. 

They are compressed higher when entering transmission pipelines and regulated lower 

when entering distribution pipelines and supplying customers. Under pressure that 

varies from 20mbar (0,0197atm) to 5bar (4,93atm), the natural gas is distributed to 

residential, commercial, industrial and agricultural customers. Depending on the 

operating pressure of the pipeline network, size of the pipe, year of installation and 

other factors, pipe material can be steel, plastic, cast iron or copper. 

Pipelines do not experience many of the safety threats faced by other forms of 

freight transportation because they are mostly underground; but they are subject to 

failures that occur over time - such as leaks and ruptures resulting from corrosion or 

welding defects - and failures that are independent of time - such as damage from 

excavation, land movement, or incorrect operation.  

The main two types of pipelines transport gas products are; (1) gas transmission 

pipelines and (2) local distribution pipelines. Gas transmission pipelines typically 

distribute gas products over long distances from sources to communities and they are 

primarily interstate. They typically operate at a higher stress level (higher operating 

pressure in relation to wall strength). By contrast, local distribution pipelines receive 

gas from the transmission pipelines and distribute it to commercial and residential end 

users. Local distribution pipeline networks, which are primarily intrastate, typically 

operate under lower-stress conditions. Local distribution companies may also operate 
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small portions of transmission pipelines - typically under lower stress - and are 

therefore subjected to the international and national assessment and reassessment 

requirements.  

Moreover, natural gas is delivered to a distribution service area or a local 

distribution company via a number of metering and/or pressure-regulating stations 

along the transmission pipeline. From there natural gas is supplied to customers 

through a grid of distribution pipes, valves and connections usually located 

underground with telecommunications, electricity, water, sewer and other utilities.   

In addition, small-diameter gas service lines connect the gas distribution pipe to 

one or more customers at a gas meter is typically installed near the customer‟s 

facilities. The gas meter assembly has a manual gas service shutoff valve, a pressure 

regulator to reduce pressure from the gas main pipe to standard delivery pressure, a 

gas meter to measure the volume of gas, and a service tee that allows a utility to 

bypass other meters without entering the structure. Customer meters may not have a 

pressure regulator if they are fed from a low-pressure distribution system. The 

customer‟s natural gas houseline piping is attached to the service tee, which is 

typically considered the utility point of delivery and defines the physical boundary 

between utility and customer facilities. 

The transportation of natural gas is shown to figure 3.1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.1  Transportation of Natural Gas 
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The image below is a schematic block flow diagram of a typical natural gas 

processing plant. It shows the various unit processes used to convert raw natural gas 

into sales gas pipelined to the end user markets. 

The block flow diagram also shows how processing of the raw natural gas yields 

the byproduct sulfur, the byproduct ethane, and the natural gas liquids (NGL) 

propane, the butanes and the natural gasoline. 

Figure 3.2  Schematic flow diagram of a typical natural gas processing plant
8
 

As far as the security of the pipeline is concerned, the national natural gas 

company that is responsible for the operation of the natural gas pipeline system is 

conducting patrols in regular basis at gas utilities in order to detect gas leaks. The 

magnitude of the leak is categorized in three (3) levels; Grade 1, Grade 2, or Grade 3. 

Grade 1 leak represents an existing or probable hazard and requires immediate action. 

Grade 2 leak is not hazardous to life or property at the time of detection but requires 

scheduled repair. Grade 3 leak is non-hazardous at the time of detection and is 

expected to remain so. For a large gas distribution system, several hundred Grade 2 or 

Grade 3 leaks may exist at any one time. 

                                                 
8
 http://en.wikipedia.org/wiki/Natural_gas  
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3.3 Natural gas pipeline accidents 

The use of natural gas, like all flammable fuels, involves the danger of fire or 

explosion that may cause severe impacts to pipeline system, infrastructure and 

property damage or cause fatalities and injuries. The background of natural gas use 

worldwide has proved that it is a safe gas for the consumer and the industrial 

applications if a proper construction, installation and maintenance of buildings, 

natural gas systems and appliances is present. 

Nevertheless, several accidents have happened worldwide in natural gas pipelines 

with serious impacts to the citizens‟ safety. According to the EGIC report
9
 of 

venturousness, the total frequency of accidents is 0.41 accidents/year/1000 km for the 

period 1974 - 2004, which however is decreased continuously with the passing of 

time and a tendency of stabilisation, is observed at the last years. 

 

Figure 3.3 Annual Number of Incidents in European natural gas pipeline network, based on 

EGIC data base 

The main causes of accidents in natural gas pipelines are: 50% due to exterior 

factors, 17% due to construction defect and material failure, 15% due to corrosion, 

7% due to ground movement and 6.7% due to other and unknown factors. Also, the 

bigger leak sizes, such as holes and ruptures, are mainly caused by external 

interference while ground movements can also cause pipeline crack, formation of a 

hole or rupture but less frequent
10

.  

                                                 
9
 6

th 
Report of EGIC - Base of Given Accidents European Network of Conductors of Transport of Gas 

10
 6

th
 EGIC Report of the European Gas Pipeline incident data group, 2005 
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Figure 3.4 Distribution of Incidents per Cause, based on EGIC data base 

 

Figure 3.5 Primary Failure Frequencies per cause (up to year), based on EGIC data base 

Based on the severity of the natural gas pipeline failure in terms of fatal accidents, 

based on data from DVGW (2004), the majority of accidents result in no deaths with 

corresponding shares of 73,8% at customer installations and with 90,4% at company 

installations. On the other hand, serious accidents of fatal incidents (≥5) contributes 

with a percentage less than 1% (0,7% in the United Kingdom and 0,4% in the 

European Union) to the total number of accidents. Nevertheless, the accidents of a 
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smaller gravity are the major factor to total fatalities, where of accidents with one 

fatality and to a lesser extent with two fatalities account for most of the fatal incidents. 

 

Figure 3.6 The distribution of natural gas accidents, according to their severity in terms of 

fatalities for the period 1981-2002, based on data from DVGW(2004)
 6
 

In Table 3.3 are summarized the number of the accidents, fatalities and injuries for 

the period 1981-2002 at the customers‟ installations from a natural gas pipeline 

failure. The majority of the incidents were attributed to the type‟s explosion (27%), 

the deflagration (31%) and the exhaust fumes poisoning (29%). Similarly, the number 

of fatalities and injuries were higher for the types of explosions and exhaust fumes 

poisoning. On the contrary the deflagration caused high percentage of injuries and the 

number of fatalities is rather small. Also, the poisoning from the escaped fumes 

presented a continuous reduced tendency since the „90s that could indicate the 

technological progress and the security measures that are applied the last years.  
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Table 3.3 Number of accidents, fatalities and injured for accident types, accident causes and 

installation types at customer installations for the period 1981-2002, based on data from 

DVGW(2004) 

Accident Type # accidents # fatalities # injuries 

Explosion 224 104 487 

Fire 88 10 40 

Deflagration 257 18 158 

Asphyxiation  16 3 20 

Exhaust fumes 

poisoning 

240 179 233 

Not specified 12 0 5 

Total 837 314 943 

Accident Cause # accidents # fatalities # injuries 

Technical Defects 220 44 152 

Installation failures 123 39 173 

Manipulation 

failures 

175 84 143 

Illegal changes of 

installation 

conditions of gas 

appliances 

34 19 18 

Intentional 

interventions at gas 

installations 

202 101 386 

Not specified 19 3 7 

Total 837 314 943 

Installation type # accidents # fatalities # injuries 

Pipes 144 45 187 

Pipe joints 90 55 195 

Valves 28 4 41 

Gas appliances w/o 

exhaust fumes 

system 

136 40 122 

Gas appliances 

with exhaust fumes 

system 

 

311 104 267 

Installation type # accidents # fatalities # injuries 

Exhaust fumes 

system 

55 35 63 

Combustion air 

supply 

3 0 1 

Not specified 70 31 67 

Total 837 314 943 

Some of the most striking examples of natural gas pipeline accidents were related 

to earthquake disasters that stroke the United States of America and Japan. For 

example, the Whittier Narrows earthquake stroke on the morning of October 1
st
 1987, 
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with a magnitude of 5.9R and followed by an earthquake of 5.3R on October 4
th

. 

Approximately 10,000 residential and commercial structures were damaged, including 

123 single-family homes that were damaged beyond repair and another 513 that suffer 

major damage. Southern California Gas Company operates the natural gas distribution 

system in the region, received 20.600 customer calls for service restoration, of which 

about 16,500 were the result of customers shutting off their own gas service in 

response to media safety announcements immediately following the earthquake. The 

service was restored within 10 days by Southern California Gas Company personnel 

working 10hour days. Fortunately, the high pressure gas transmission network was 

not damaged. The distribution system was found to have 22 leaks with corrosion a 

factor in all but one case. Approximately 5,900 leaks were located after the 

earthquake 2,000 of which were attributed to the earthquake. The 75% of the damage 

was related to the connection gas appliances that had shifted during the earthquake. 

Among the low pressure natural gas pipeline network were found 300 leaks in service 

lines between the distribution mains and customer meters. 

 

Table 3.4 Summary of Repairs by Southern California Gas Company Following the Whittier 

Narrows Earthquake 

Damage Number % of Total 

Appliance: Vent 40 2 

Appliance: Miscellaneous 134 7 

Appliance Connector: Range 90 5 

Appliance Connector: Water Heater 385 20 

Appliance Connector: Furnace 127 7 

Appliance Connector: Dryer 46 2 

Appliance Connector: Miscellaneous 97 5 

Piping: Meter Set Assembly 376 20 

Piping: Houseline 505 26 

Piping: Yardline  120 6 

TOTAL 1,920  

 

Another example is the earthquake that hit Loma Prieta in California that occurred 

on October 17
th

 of 1989 at 5:04pm, approximately 97km south of San Francisco with 

magnitude 7.2R. The earthquake caused severe damages to 900 homes near the 

earthquake‟s epicenter and in the San Francisco Bay area. The damage at this area 

was caused by the amplification of the ground motions at the surface by soft soils and 

liquefaction of soils associated with land reclamation projects, some dating back to 
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the 1800s. The victims were more than 60 and the electricity was cut off at the biggest 

area of the north San Francisco Peninsula. Nearly 160,000 natural gas consumers 

were without gas service following the earthquake, mostly due to customers shutting 

off their own service in response to media safety announcements immediately after 

the earthquake. Over a period of nine (9) days, personnel from Pacific Gas and 

Electric Company and six neighboring utilities and contract plumbers restored service 

to more than 156,000 individual customers. From these teams, an average of 1,000 

personnel worked during five of the days. Not surprisingly, the locations of high 

concentrations of gas system repairs were found to coincide with locations of high 

building damage. Nevertheless, the earthquake caused fire ignitions near its epicenter 

and in San Francisco was observed the higher fire injection incidents following the 

earthquake. 

The various causes for the fire ignitions in San Francisco, according to the fire 

incident reports, are shown at Table 3.5. Assuming equal possibility for gas or 

electricity as a cause for “stove” and “unknown,” natural gas could have been a factor 

in 34% of the fire ignitions, while electricity could have been a factor in 56%. 

 

Table 3.5 Causes of Fire Ignitions in San Francisco from the Loma Prieta Earthquake (17 

October 1989) 

Cause Number % of Total 

Electrical wiring 6 19 

Electrical Equipment 8 26 

Stove (Gas or Electric) 9 29 

Water heater 1 3 

Other gas appliances 2 6 

Gas explosion  1 3 

Miscellaneous  4 13 

Unknown 1 3 

Also, Northridge in California was hit by an earthquake with magnitude 6.7R in 

17
th

 January of 1994; the epicenter was located in the city Reseda, near the center of 

the San Fernando Valley. The earthquake caused total loss of electric power to the 

City of Los Angeles and to the adjacent areas. The damages to the gas piping system 

involved 35 failures of the older transmission lines, 123 failures of the steel 

distribution mains, and 117 failures in the service lines. An addition, 394 corrosion 

leaks were observed during the leak surveys following the earthquake. The total 

number of customers that their gas supply was cut off, immediately after the main 
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shock and the aftershocks, exceeded the 150,000 homes, with approximately 133,000 

of the service interruptions initiated by customers as a precautionary measure. 

Approximately 15,000 of the interrupted services were found to have leaks of 

unspecified severity when service was restored. 

 

Table 3.6 Northridge Earthquake Fire Statistics for Structures (17 January 1994) 

Fire Department 
Earthquake Fire 

Ignition 

Gas-related Earthquake Fire 

Ignitions 

Beverly Hills 0 0  

Burbank 0 0 

City of Los Angeles 77 38 

Costa Mesa 0 0 

Covina 1 0 

Glendale 0 0 

El Monte 1 0 

Fillmore 2 1 

Inglewood 1 0 

Long Beach 1 0 

Newport Beach 0 0 

Pasadena 1 ? 

Santa Monica 10 6 

Santa Paula 0 0 

South Pasadena 0 0 

Los Angeles County 15 6 

Ventura County 10 3 

TOTAL 110 54 

A recent accident that was recorded to a natural gas pipeline network happened in 

1995. An earthquake with magnitude of 7.2 in Richter scale, stroke the city of Kobe in 

Japan. The earthquake caused severe impacts to city‟s infrastructure, transportations 

systems and gas networks and more than 60,000 people died and 40,000 injured. The 

estimated damage was 200 billion dollars. In particular, 106 medium pressure gas 

mains were damaged and 26,459 low pressure gas service lines were damaged. It took 

15 hours to shut – down the system that caused many fires and 85 days to restore the 

natural gas service. 

3.4 Conclusions 

Several accidents have happened worldwide in natural gas pipelines with serious 

impacts to the safety of citizens. According to the EGIC report (6th Report of EGIC - 

Base of Given Accidents European Network of Conductors of Transport of Gas) of 

venturousness, regarding the length of pipelines and their operation age is 2.77 
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millions/km per year in the European network of pipelines. The total frequency of 

accidents is 0.41 accidents/year/1000 km for the period 1974 - 2004, which however 

is decreased continuously with the passing of time and a tendency of stabilisation, is 

observed at the last years. 
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CHAPTER 4 

PROPOSED RISK MANAGEMENT METHOD 

In this chapter the proposed risk management method of pipelines networks 

carrying natural gas is introduced. The method involves the hazard and vulnerability 

analysis that compose the risk assessment of the pipeline failure in the selected area. 

After the analytical description of the stepwise risk management method follows the 

identification of the hazard and vulnerability factors of a natural gas pipeline failure 

and the calculation of the risk level (risk indicator) for the main four categories of 

social and economic life of the area, is discussed - human factor, environment, 

infrastructure on the area and gas installations and economic activity of the industry. 

Furthermore, the possible mitigation measures that can be taken in order to lower 

the risk indicator for one or multiple hazard and vulnerability parameters will be 

introduced and discussed in order to prioritize them based on their benefit (risk 

indicator before taking the mitigation measure – new risk indicator after the 

implementation of the mitigation measure), their cost and the available industry‟s 

financial capitals. For this cost-benefit analysis the knapsack model is introduced.    

4.1 Problem Definition 

When it comes to risk management of a pipeline network, it is vital to allocate the 

available resources optimally by receiving mitigation measures and therefore reducing 

the hazard. The “Intelligent spending” practises are needed; that means sufficient 

minimum mitigation measures costs in order to achieve minimization of risk level. 

Determining the cost of risk factors, especially risk-reducing activities during the 

operation and maintenance of a pipeline must become a part of the management 

process. 

The pipeline manager group performs a variety of activities that has an associated 

cost and is driven by initiatives such as ensuring contract obligations, compliance 

with the national and international initiatives and conformance with pipeline industry 

standards. Assigning a cost to pipeline accidents, sometimes a difficult task, and 

including this in the cost of operations, the optimum balance point is the lowest cost 

of operations
11

. The goal of the proposed natural gas pipeline management is the 

                                                 
11

 Muhlbauer, 2003 
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achievement of a judicious balance between the risk of pipeline failure and financial 

gains.  

The core of the risk management is the risk assessment of the pipeline failure. 

Ideally risk assessment specifies the probability of events of different intensities or 

magnitudes occurring and the impact of the direct and indirect impacts of these events 

on the affected interested parties. Societal conditions include the human settlement 

patterns, the built environment, the day-to-day activities and the institutions 

established to deal with natural hazards.  

For the purposes of this research we try to link the risk assessment with risk 

management strategies for reducing the vulnerability of a city or a region where the 

pipeline runs through. In order to determine the vulnerability of such a city or a 

region, in a case of a pipeline failure, it is very important to be aware of the design of 

each structure (e.g. residential, commercial, public sector) and of the infrastructure, 

whether specific mitigation measures are in place or could be utilized, and their 

location in relation to the hazard. (e.g., distance from an earthquake fault line from a 

natural gas pipeline) as well as other risk-related factors. 

Moreover, pipeline company owners/operators need a better understanding of the 

connection between risks to the production and distribution processes for natural gas 

and vulnerabilities inherent in the process control systems managing those processes, 

before they can make the commitment necessary to improve the security. However, 

the relationship is typically quite complex, especially for large and multi-faceted 

operations. As a consequence of this connection being difficult to understand, 

recommendations for mitigating vulnerabilities, or for applying sound design 

principles to architectures and pipeline systems, are frequently discounted, prioritized 

low, or even disregarded. Further, lack of an approach to detect cause-and-effect 

relationships, i.e., of exploited vulnerabilities and the resulting physical or business 

consequences, makes it more difficult for front line risk analysts to convey to 

corporate decision-makers risks to production and distribution operations in terms of 

their usefulness.  

Summarizing, the proposed management method usually seeks to combine the 

qualitative and quantitative approaches to  

 Input pipeline characteristics (diameter, operation pressure, wall thickness, 

location, natural gas characteristics) 
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 Identify hazard parameters (fault tree analyses) 

 Identify consequences (event tree analyses) 

 Calculate failure frequency of each parameter 

 Predict pipeline failure consequences (release flow rate, ignition probability, 

thermal radiation) 

 Calculate reduction factors of risk 

 Calculate individual and societal risk (Young-Do Jo and Bum John Ahn, 2005) 

 Calculate mitigation measures cost 

 Prioritize mitigation measures according to the results of the cost – benefit 

analysis 

4.2 Pipeline management – Proposed Methodology 

Technological risk management involves the prevention of and response to 

unwanted or unexpected consequences arising from failure to sustain normal 

operation of a technological system. Risk management is the process of risk 

assessment and allocation of means and resources (countermeasures) that aim at the 

minimization of risk level and costs.  

Typically incidents are directly caused by design error, operational error or natural 

disasters. In the case of a disaster related event we will assume that the system is at 

normal operational conditions (no simultaneous incident occurrence will be 

considered). The level of care to avoid losses and the level of acceptable risk 

management policies however ranges among people responsible for an incident are 

the ones suffering the heaviest toll of injuries and property losses (e.g. employees 

maintaining a pipeline or contractors digging near operating pipes). The main focus of 

technological risk for pipelines carrying natural gas is on understanding the main 

technical and organizational factors affecting the magnitude and likelihood of 

technological failures.  

Risk reduction is rarely the single consideration in Risk Management. Cost 

effectiveness, corporate strategy, ethics, societal norms, defensibility of corporate 

actions in a court of law or in public meetings, conformance to regulatory rules and 

trends are some of the factors carrying decision weight and important in 

understanding the risk management decision context. Understanding technological 

risk is as fundamental a requirement for the natural gas industry as understanding 
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operational efficiency. A company attains a good reputation for safe and reliable 

operation of a complex technological system after certain time of operation.  

Various attributes of a distribution network, such as pipe material (steel, cast iron, 

plastic), pipe pressure (low, medium, high gas pressure), storage and compression 

technologies, and have significant effect on the nature of the risk a company is posing 

to its surroundings. The network industries and the natural gas distribution systems in 

particular, the technological base changes slowly by adding arcs to the existing 

network or by removing lines from service. Radical network changes tend to be 

prohibitively costly. Changes in the technological base have a significant impact on 

technological risk, but take a long time to implement. This makes maintenance and 

safety improvements to be more attractive risk reduction policies.  

What constitutes risk reduction may vary drastically depending on point of view. 

The various stakeholders of the natural gas companies have different information 

needs and due to their differing skill sets, different verifiability requirements. The 

disaggregated measures of risk, if properly designed, may accommodate different 

point of view. The verifiability gaps, in turn may be reduced by using the least 

common denominator in verifiability requirements, or by bridging the gaps with help 

of third parties of guaranteed impartiality that can credibly attest to the quality of 

information available. 

As we have already mentioned, the current research addresses at the risk 

management problem of a natural gas pipeline network and aims at the calculation of 

societal and individual risk as well as the allocation of the resources in order to 

minimize the risk level. The proposed method is using a combination of different 

qualitative and quantitative models. At this model the possible incidents of gas release 

are presented by an event tree analysis that defines events developed with time. 

The calculation of societal and individual risk is based on the proposed method of 

quantitative risk assessment for transmission pipeline carrying natural gas by Jo and 

Ahn (2005). Furthermore the estimation of loss by calculating the cost of failure is 

based on the proposed by Park, et.al (2004) model, which expresses the risk for a gas 

pipeline in terms of cost; such as the cost of repair, of the supply interruption, of the 

material loss and of the damage to human and buildings.  

The proposed steps in order to achieve the integrated risk management of the 

natural gas pipeline distribution network are summarized in stepwise manner as 

follows: 
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STEP 1: Identify and locate the potential risk sources inside the industry, based on: 

a. Expertise: the kind of pipeline failure occurred in the past, it‟s intensity and 

location in the last 2, 4, 8, 10 or 20 years and if they are likely to occur in the 

next X years where X years is a proposed period of time and depends on the 

magnitude of the pipeline accident and the duration of implementing the 

countermeasures. In this case an expert group will be established and based on 

their experience and knowledge of the hazard sources will decide which 

categories of pipeline failures are crucial to be assessed. 

b. Preliminary hazard analysis by scientific methods that are proposed in Chapter 

5, where all the hazards with positive probability of occurrence the next X 

years are defined.   

It is generally known that a pipeline usually does not have a constant hazard 

potential over its length, unlike the most other facilities assessed.  Since the risk 

level is not uniform along the length of a pipeline; it is necessary to break it a long 

pipeline in shorter sections. The most appropriate method for sectioning the 

pipeline is to insert a break point wherever hazard sources are identified that cause 

differentiation to the risk level. A significant condition change must be determined 

by the evaluator with consideration given to the frequency of occurrence of 

accidents within the industry and along the pipeline that carries natural gas, data 

costs and desired accuracy. This type of sectioning is called dynamic 

segmentation.  

In addition, in most cases of accidents in the natural gas distribution network 

there are not any data base of past accidents, a reliable method for calculating the 

possibility of occurrence is to organize a expert team that based on their 

experience and knowledge will be able to assign a probability or rankings to the 

initial event (hazard) that may lead to a disaster.  

The pipeline can be divided according to the following rules: 

 Insert a section break each time the population density along a 1-mile section 

changes be more than 10%.  

 Insert a section break each time the soil corrosivity changes by 30%. 

 Insert a section break each time a difference in age of the pipeline is identified. 

 Insert a section break each time an important infrastructure is been identified 

along the pipeline (for example a bridge, a highway or an industry area) 
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 Insert a section break each time the pipeline route a seismic zone is crossing. 

STEP 2: Hazard analysis (see Chapt. 5) where the probability of occurrence of the 

accident is arising for the next X years, within the geographical bounds of the area 

that was defined in STEP 1 for a given magnitude (e.g. earthquake with magnitude 6-

6.5 of Richter scale) 

Hazard (H) refers to the probability of occurrence of any future natural event (e.g. 

earthquake) or manmade (explosion), with potential harmful effects on humans, 

environment, infrastructure / facilities and economic activities of the industry, and not 

at the results it could cause. The hazards may be unique, sequential or combined in 

their origin and consequences. The probability of occurrence is characterized by the 

location, intensity and frequency of the incident. 

STEP 3: Estimate by performing vulnerability analysis (see Chapt.6) the probability 

of a unit impact of the disaster in four (4) areas: human factor, environment, structure 

and gas industry‟s economic activity, given that the possible occurrence in STEP 2 is 

becoming a certainty. Vulnerability as it is described in Chapter 6 is a function of how 

exposed are the correspondingly four aggregated areas and what are the capacity of 

the industry management at all levels.  

Generally, vulnerability (V) is considering the circumstances that shape the 

probability for the four socio-economic parameters of the industry; i.e.,   

 Human factor (fatalities, injuries) 

 Environment (per hectare for the soil, per m
3
 for water supplies and the 

atmosphere) 

 Infrastructures/ installations (per block or installation) 

 Financial activity (percentage (%) of economical activity reduction of the 

industry) given that the event has occurred (natural or manmade accident). 

During the vulnerability analysis is essential to take into account the existing 

countermeasures and prevention measures (such as early warning systems) that are 

located in the area/ industry for the response of risks, because they reduce the 

vulnerability of the industry and the affected areas and consequently its risk.  

STEP 4: Perform risk assessment of the natural gas pipeline failure 

Specifically Risk (R) is the possibility of the harmful impacts or anticipated losses 

that arising from a specific event in the above mentioned areas. The risk of pipeline 

failure due to the various hazard zones can be estimated with the following function: 
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Risk = Hazard * Vulnerability (given that the disaster has occurred) 

R = H * (V/H) 

At this stage in accordance with risk assessment results we define the level of risk 

that are concerned negligible, small, medium, significant and high. 

STEP 5: Quantify the impacts to the human factor, to the environment, to the structure 

and to gas installations as well as to the gas industry‟s economic activity based on the 

quantified data of the exposed systems.  

Based on the consequences at the four (4) above systems, a quantitative indicator 

from 1 to 100 at the level of the industry is assigned, which characterizes the overall 

risk of the industry. The following table summarizes the disaster impacts as well as 

the units of measurement.  

Table 4.1 Measurement units per impact category 

Category impact Unit Measurement 

Human factor (Number of fatalities) * (cost of human life) (€) 

(Number of injured) * (hospitalization cost) (€) 

Number of homeless (qualitative analysis) 

Environment Soil: (hectares that have been damaged) * (cost per 

hectare) (€) 

Water resources: (m
3
 of water resources that have been 

polluted) * (cleaning cost of water resources per m
3
) (€) 

Atmosphere: (m
3
 of atmosphere that have been polluted) 

* (cleaning cost of atmosphere per m
3
) (€) 

Infrastructures/ 

installations 

(building blocks for infrastructures or installations that 

have been damaged) * (cost per building block) (€) 

Financial activity  % of Reduction of the financial profit of the industry  

 

In this research we consider that the natural gas pipeline failure has a minor impact 

on the environment due to natural gas physical and chemical properties.  

STEP 6: Estimate benefit and calculate the new risk indicator that emerges from 

implementing each countermeasure, (e.g. what is the reduction of total risk of the 

industry if an early warning system of gas leakage is established).This process 

consists of the following actions: In the beginning the management of the industry 

propose potential countermeasures for the industry vulnerability reduction. 
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Countermeasures are all the response measures and risk reduction measures that refers 

to building measures or tools that are planned and implemented for the avoidance or 

limitation of the disaster impacts. Benefits are studied and defined that comes from 

the countermeasures implementation during the prevention phase for each hazard. 

In order to calculate the benefit of the countermeasures STEP 3 should be repeated 

(“Vulnerability analysis”) but this time the countermeasures will be added and then 

the new Risk indicator is calculated. According to the new Risk indicator the 

responsible for taking decisions will decide which countermeasures will select in 

order to implement to the pipeline network.  

The following table shows indicative benefits that will rise if the countermeasures 

will be taken for the reduction of impacts.  

 

Table 4.2 Indicative benefits of countermeasures implementation per areas 

 

Impacts 

 

 

Benefits 

Human factor 

• death 

• injuries 

• homeless 

• hospitalization 

Reduction of human losses  

Environment 

 Soil pollution   

 Water resources pollution 

 Forest land reduction 

Environmental degradation reduction 

(soil, water or forest)  

Damages to 

infrastructure/installations 

• buildings 

• properties 

• installation 

 

Damage reduction to the installations and 

the infrastructures  

Financial impacts 

• Income loss 

• Industry profit reduction 

 

Cost reduction that is caused by the 

disturbance of services.  
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• Camp costs that will be set up 

for the homeless needs 

• Disturbances to the natural 

gas network services  

 

STEP 7: Estimate the cost of each countermeasure  

When the countermeasures are defined in order to prevent or/and minimize the 

impacts of potential disasters, based on the new risk indicator, their cost will be 

estimated and a cost – benefit analysis (based on a knapsack model) will be 

performed. This method is implemented in order to collect and decide the 

countermeasures to be implemented, balancing the cost of each measure with the 

benefit that arises from it. Generally, the risk management cost must be equal with the 

benefits that are gained from the selected measures.  

Advantage of this method is that it ensures that the industry‟s investment for the 

prevention and risk management will gain greater benefit with the available resources.  

The limitations of the method are the lack of data and methods that are required in 

order to estimate the indirect benefits and costs.  

STEP 8: Priorities based on the combined cost/benefit analysis. The managers 

categorize the potential hazards according with the effectiveness of the potential 

investment at countermeasures in order to achieve the best possible risk management 

within the available investment. 

STEP 9: Resources for each production procedure for the pipeline network based on 

the risk indicator for each segment. 

STEP 10: Finance the countermeasures that gas managers selected for each pipeline 

segment based on the available resources in order to minimize the total risk index of 

the pipeline industry.  

In the following figure the proposed general method for risk management is 

shown. 
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Figure 4.1 Proposed risk management frame 

STEP 1:  
Locating/ identifying the potential risk sources along the pipeline  

STEP 2:  
Hazard analyses (H) 

 

STEP 3:  
Vulnerability analysis (V) 

 

STEP 4:  
Risk assessment (R) 

 

STEP 5:  
Impacts quantification 

Industry Risk Indicators (I.R.I.) 
 

STEP 6:  
Countermeasures 

(The above procedure is been followed for each countermeasure) 
 

 
 

Estimate 
countermeasure 

benefit – repetitive 

procedure 

Repeat STEP 3 «Vulnerability analysis» taking into 
account the proposed measures 

 

Repeat STEP 4 «Risk assessment» 
 

New Industry Risk Indicator  
(new I.R.I.) 

 

STEP 7:  
Estimating the cost of chosen countermeasures 

STEP 8:  
Setting priorities 

 

STEP 9:  

Resource allocation for each pipeline segment according to the new I.R.I.  

STEP 10:  
Funding of the chosen countermeasures  
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4.3 Conclusions 

The above proposed Risk Management method for potential natural gas pipeline 

network failures combines the hazard and vulnerability analysis in order to calculate 

and assess the risk of pipeline failure to the four (4) main areas; human factor, 

environment, infrastructure that is within the hazard area and the gas installation as 

well as to the economic activity of the industry. In addition the proposed cost – 

benefit analysis (based on a knapsack problem) can help the industry‟s decision 

makers to choose the suitable countermeasures with the most benefit and the less cost 

in order to minimize the risk indicator of the pipeline failure.   
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CHAPTER 5 

HAZARD ANALYSIS  

The hazard analysis involves a review of potential hazards sources associated with 

natural gas to be processed, used and handled at the peaking power plant and the 

associated distribution pipelines and facilities. The hazard analysis aims to a 

comprehensive identification of possible causes of potential incidents to pipeline 

distribution networks and their consequences to human factor, environment, 

infrastructures within the surrounding area and the gas installations and the industry‟s 

economic activity as well as outline of the proposed operational and organisational 

safety control required to mitigate the likelihood of the hazardous events from 

occurring.  

Generally, the main hazard associated with the proposed development is related to 

a leak and ignition of flammable natural gas or to a lesser degree, to a leak of 

combustible liquids (distillate). A leak of flammable natural gas would generally only 

have the potential to cause injury or damage if there is an ignition that results in a fire 

or (in case of confinement) an explosion incident.  

The factors involved are: 

 The pipelines, vessel or equipment must fail in a particular mode causing a 

release. There are several possible causes of failure, with the main ones being 

corrosion and damage by external agencies 

 The released material must come into contact with a source of ignition. In some 

cases this may be heat or sparks generated by mechanical damage while in others, 

the possible ignition source could include non-flame proof equipment, vehicles or 

flames some distance from the release 

 Depending on the release conditions, including the mass of flammable material 

involved and how rapidly it is ignited the results may be a localised fire (jet fire), 

a flash fire or an explosion of the vapour cloud formed through the release 

 Finally, for there to be a risk, people must be present within the harmful range 

(consequence distance) of the fire or explosion. How close the people are, will 

determine whether are injuries or fatalities as a result of the pipeline failure. 

Environmental damage from gas fire incidents are generally associated with a 

failure to control fire that resulted from the explosion   
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In more detailed, natural gas pipeline failure constitutes a fire and explosion 

hazard. Natural gas pipeline failures may result in fatalities, injuries and significant 

monetary losses in terms of property damages and lost fuel value. The natural gas 

industry has aggressively persuaded the development of risk reduction practices and 

technologies, in order for the risk of these failures to be minimized.  

Natural gas is a buoyant, flammable gas which is lighter than air (relative density 

0.6). On release into the open the non-ignited gas tends to disperse rapidly at altitude. 

Ignition at the point of release is possible, in which case the gas would burn as a jet 

(or torch) flame. Also, release of natural gas in an enclosed area, an explosion or a 

flash fire is possible. Moreover, the gas is non-toxic, posing only an asphyxiation 

hazard. Due to buoyancy any release of credible proportions from operations of this 

scale, in the open, would not present and asphyxiation hazard. With standard confined 

space entry procedures and appropriate security arrangements to prevent unauthorized 

access to any of the facilities the risk associated with asphyxiation from natural gas 

should be minimal. 

Locally the pressure of the compressed natural gas may be hazardous in case of an 

uncontrolled release. These hazards, while of importance for people working at the 

site, do not have implications beyond the immediate location of the release unless the 

released gas is ignited. Therefore, the risk associated with of non-ignited compressed 

gas does not form part of the scope of the present risk assessment.   

5.1 Identification of Hazard Factors 

The most common hazard factors that influence the pipeline‟s integrity and may 

cause natural gas leakage and consequently explosion or fire are (Fig. 5.1): 

1. Third – party damage 

2. Corrosion 

3. Design 

4. Natural hazards (e.g. earthquakes) 

5. Others (e.g. human error) 
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Figure 5.1 Hazard parameters of pipeline failure mechanism 

 

Following each hazard factor is being discussed (see §5.1.1 - §5.1.5). and the 

probability of failure for each parameter is calculated (see §5.2). 

5.1.1 Third party damage 

Third party damage refers to incidents caused by crews digging near or into the 

pipeline inducing loss of gas containment to a safe pipeline. Damage to a pipeline, 

due to third party activities, can cause punctures, ruptures or breaks depending on its 

size, material and condition. The result will be massive release of natural gas to the 

open air, accompanied possibly by jet fire. The effects of a blow can be immediate or 

delayed, causing corrosion nucleus or a decrease in pipe thickness.  

5.1.2 Corrosion 

The probability for pipeline failure caused by corrosion is perhaps the most 

familiar hazard associated with steel pipelines. Corrosion focuses mainly in the loss of 

metal from pipes and is a main concern because any loss of pipe wall thickness leads 

to a reduction of structural pipeline integrity and an increase of failure probability. 

Non-steel pipeline materials are sometime susceptible to other forms of 

environmental degradation. Some plastics degrade when exposed to sunlight, 
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polyethylene, that is a common material in natural gas pipelines, can be vulnerable to 

hydrocarbons. Also, polyvinyl chloride (PVC) pipe can be attacked by rodents that 

actually gnaw through the pipe wall. In general, pipe materials can be internally 

degraded when transporting an incompatible product.   

5.1.3   Design 

Construction and material defects have been primarily associated with the quality 

of the welding process and joints linking pipe segments to form a line. Additionally, 

defects in the quality of a pipe material may form a default that will cause immediate 

after construction or delayed incidents. Pipeline support depends also on construction 

procedures and the quality of the materials that are used.  

5.1.4    Natural hazards 

Soil subsidence and earth movement are considered significant hazard sub-factors 

for the transportation pipeline networks. For distribution pipelines (particularly cast 

iron mains) soil movement at a smaller scale resulting to loss of pipe support is 

enough to cause a break. All corrosion types are depending on the pipe material. 

Earthquakes can produce ground shaking and permanent ground displacements. The 

severity of hazards at a particular location depends on the magnitude of the 

earthquake, the distance from the earthquake source, and the soil characteristics of the 

concerned area. 

The size of an earthquake is usually expressed in term of magnitude. Among 

several different magnitude scales, moment magnitude is the current standard used to 

measure of the size of an earthquake for engineering and risk management purposes. 

Also, the level of ground shaking is normally expressed in terms of acceleration that a 

rigid object located on the ground surface would experience. Acceleration is often 

expressed as a percentage of gravity (g). A peak horizontal acceleration of 0.4 g on an 

object corresponds to a peak horizontal force of 40% of the weight of the object. The 

ground shaking produced by earthquakes moves in horizontal and vertical directions.  

Earthquakes can also cause permanent ground displacement; abrupt surface ground 

movements along the fault are perhaps the most striking examples. Instability caused 

by the ground shaking typically causes other types of permanent ground displacement. 

Ground settlement, down slope movement of large areas of soil (similar to landslides), 

and sloughing of soil or rock from steep hillsides are other common types of 
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permanent ground displacement. Damage from surface faulting is typically limited to 

a zone within a few tens of meters from the fault. Other forms of permanent ground 

displacement, especially those associated with landslide-like movements, can take 

dimensions of hundreds of meters.  

The ground movement is responsible for the 7% of the total accidents that have 

been recorded to the EGIC data base. The following Graph presents the relation 

among earthquake magnitude, leak size and diameter class. An earthquake is possible 

to cause leakage nonetheless smaller pipe diameter are more prone to ground shaking 

rather than big pipe diameter. 

 

 

Figure 5.2 Relate earthquake – leakage size and diameter class (EGIC data base)
12

 

 

The most common earthquake damage to gas systems results from construction 

defects to the buildings in which the gas system is placed and the equipment to which 

gas lines are connected. Earthquakes can produce ground displacements that can also 

damage natural gas systems directly. Additionally, the most important factor 

contributing to earthquake damage to customer gas installations is the poor 

performance of buildings, other structures, and the gas-fired equipment. As 

demonstrated by recent earthquake experience, shifting or toppling of gas appliances 

such as water heaters, boilers, furnaces, dryers and stoves is the principal cause of 

most gas-related, post-earthquake fire ignitions (e.g. 71% in the Northridge 

earthquake). 

Gas meters are also susceptible to indirect earthquake damage caused by debris 

falling from customer facilities. Potential hazard sources involve unreinforced 

masonry chimneys or facades, falling masonry from damaged walls, falling parapets 

and other architectural features, and falling blocks used to construct residential fences. 
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These modes of damage are less frequently observed and pose a lesser risk because 

they cause release and dispersion of natural gas to the atmosphere. 

Ground shaking is hazardous to aboveground components of the natural gas 

distribution system, which typically include gas measurement and pressure regulation 

facilities. Damage to aboveground components of the natural gas system is rare 

because of the ruggedness typically incorporated into their construction.Ground 

shaking has also been associated with some damage to buried pipelines. Although the 

precise mechanism of the damage is not well understood, it is generally believed that 

soil constraints on a buried pipeline force the pipeline to experience the same ground 

deformations associated with ground shaking. Damage from ground shaking is a 

concern for older pipelines that may have been weakened by corrosion, prior damage, 

or mechanical failures, or were constructed using outdated methods or materials. The 

pipelines that are more susceptible to damage due to ground shaking are made of cast 

iron, aging bare steel pipe, and pipe with threaded connections. 

5.1.5     Others 

Operator errors may take many forms. An example is to load the medium of low 

pressure network in pressure mixing stations with high pressure gas. The same 

category includes other “causes”, among them sabotage. In distribution networks 

tampering with residential meters is not rare and can be the cause of serious accidents, 

especially when it causes leaks that are not discovered timely.  

5.2 Calculation of the probability of failure (Pf) for each risk factor 

The probability of failure is expressed in terms of loss. An event tree analyses 

(ETA) illustrates the possible incidents of a gas release developed with time, for 

example leakage, ignition or delayed ignition. The frequency of incidents is estimated 

in terms of the major identified hazard factors of impact, e.g. corrosion, excavation, 

ground movement. The natural gas is lighter than the air so when it is released seldom 

forms clouds to cause a flash fire or a jet fire. So, natural gas pipeline failure can 

cause fatality, injury, and building damage and long term reduction of the economical 

activity of the natural gas industry. The relative probabilities are provided by the 

European Gas Pipeline Incident Data (EGIC). 
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 Probability of failure due to third party damage 
3if rd party activity

P  

To calculate the probability of pipeline damage due to third-party activity is 

necessary to identify and measure the variables that play a critical role in the threat of 

third-party damages according to the location and type of the pipeline. This could be 

achieved by using scoring algorithms. 

Table 5.1 Third Party Index
12

 

 Parameter % 

Contribution 

Depth of cover 20 

Activity level 20 

Patrol 15 

One-call 15 

Public education 15 

Aboveground exposures 10 

ROW conditions 5 

Third Party Index 100 

 

 Probability of failure due to corrosion 
if corrosion

P  

The corrosion index assesses three general types: atmospheric, internal and 

subsurface corrosion. This reflects three general environment types to which the pipe 

wall is exposed. The probability of pipeline damage due to corrosion is time 

dependent, its probability is estimated by manipulating data obtained by the direct 

current voltage gradient (DCVG) method. If the inspection data are not sufficient 

historical failure data analysis (HFDA) is applied
13

. 

Table 5.2 Corrosion Index Scores 
14

 

 Parameter % 

Contribution 

Atmospheric corrosion 10 

Internal corrosion 20 

Buried pipe corrosion 10 

Coating condition 15 

Cathodic protection 15 

Interference  15 

Mechanical corrosion 5 

Corrosion Index 100 

 

                                                 
12

 Muhlbauer W. K. Pipeline Risk Management Manual. Ideas, Techniques and Resources (3
rd

 Ed.). 

Houston: Gulf Professional Publishing, 2004 
13

 Park, Lee and Jo, 2004 
14

 Muhlbauer W. K. Pipeline Risk Management Manual. Ideas, Techniques and Resources (3
rd

 Ed.). 

Houston: Gulf Professional Publishing, 2004 
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 Probability of failure due to design 
if design

P  

A significant element in the risk picture is the relationship between how a 

pipeline was originally designed and how it is presently being operated. The 

design related parameters are: 

o Safety factor (e.g. pipe diameter and wall thickness, maximum and normal 

pressure, material strength) 

o Fatigue (e.g. diameter/wall thickness ratio, pressure cycle magnitude) 

o Surge potential (e.g. flow rates) 

o Integrity verifications (e.g. pressure test level, in-line inspection technique) 

o Land movements (e.g. seismic shaking, landslide) 

Table 5.3 Design Index Scores 
15

 

Parameter % 

Contribution 

Pipe strength 20 

System safety factor 10 

Fatigue potential 15 

Surge potential 15 

Integrity tests 20 

Earth movements 20 

Design Index 100 

 

 Probability of failure due to seismic activity
if geohazards

P  

In this section, the formulation to compute the probability of failure due to ground 

movement that may affect the pipeline integrity of a structure due to seismic events is 

presented. The probability of failure of a pipeline due to seismic events can be 

computed using the total probability rule as follows:  

Pf=∫SaF(Sa)f(Sa)dSa,
 16

 

where  

f(Sa): annual probability density of Sa at building site 

F(Sa): seismic structural fragility defined as the conditional probability of attaining or   

           exceeding a specified performance level for a given Sa. 

Sa:         spectral acceleration 

 

                                                 
15

 Muhlbauer W. K. Pipeline Risk Management Manual. Ideas, Techniques and Resources (3
rd

 Ed.). 

Houston: Gulf Professional Publishing, 2004 
16

 Williams et al., Decision analysis for seismic retrofit of structures, Structural Safety (2008)  

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 12:40:59 EEST - 18.221.249.126

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V54-4T32DXY-2&_mathId=mml8&_user=83475&_cdi=5776&_rdoc=1&_acct=C000059672&_version=1&_userid=83475&md5=03e07cceda3b1751257c5352aa04a723


Page | 71 

 

 Probability of failure due to incorrect operations 
if error

P  

The assessment of human error involves many variables and it is difficult to 

quantify it. The index assesses the potential for pipeline failure caused by errors 

committed by the pipeline personnel in designing, building, operating and 

maintaining a pipeline.  

Table 5.4 Incorrect Operations Index Score 
17

 

Parameter % 

Contribution 

Construction/Design 10 

Training 20 

Procedures 15 

Maps and records 5 

Overpressure potential 10 

Safety systems 10 

Maintenance 10 

Communications  10 

Mechanical errors 

preventers 
5 

Risk Assessment 5 

Incorrect Operations 

Index 
100 

 

The likelihood of all the hazard sources occurring [P(occurrence)] can be  calculating 

by implementing the reliability theory, under the assumption that each threat is 

relatively independent and that the pipeline could be modeled as a series system, 

using: 

3 .
1 1 1 1 1 1

total of occurance f rd party f corrosion f design f nat hazards f others
P P P P P P

 

The assumption of independence between hazards located in close proximity to 

each other generally provides conservative results, especially if the hazards share a 

common triggering event. 

5.3 Conclusions 

The hazard parameters that can cause natural gas pipeline failure are identified and 

the method for calculating the possibility of a pipeline failure occurrence is discussed. 

This analysis reviews the potential hazards sources associated with natural gas 

                                                 
17

 Muhlbauer W. K. Pipeline Risk Management Manual. Ideas, Techniques and Resources (3
rd

 Ed.). 

Houston: Gulf Professional Publishing, 2004 
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pipeline distribution networks. The hazard parameters of pipeline failure that was 

selected are; third party damage, corrosion, design, natural phenomena, others.  The 

main impacts associated with the occurrence of hazard sources are related to leak and 

ignition of the natural gas or to a lesser degree, to a leak of combustible liquids 

(distillate).  
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CHAPTER 6 

VULNERABILITY ANALYSIS AND CONSEQUENCES  

This chapter aims to identify the selected area‟s vulnerability, where the natural 

gas distribution network passes through. This means that the percentage of the 

effected people, infrastructure, environment and economical activity are rated and it 

includes anyone who enters the area of concern; employees, commuters, visitors, 

shoppers, transient or seasonal workers, inhabitants, forests, protected areas, 

monuments, households, commercial buildings, bridges and others. The population 

with special needs such as hospitals or areas with large non country‟s speaking 

population can be considered because they can be more vulnerable to a disaster. Also, 

inventorying the area‟s assets to determine the number of buildings, their value and 

population or human capacity, in hazard zones will be helpful to determine the 

vulnerability. Another vital task is to identify the critical facilities and installations of 

the natural gas distribution industry because survival of these facilities is essential for 

the distribution of the natural gas. Other items to define include economic elements of 

the industry‟s activity.  

The above vulnerability parameters that can increase the impact of a pipeline 

failure will be identified and discussed in this chapter. Also will be analysed the 

method for calculating the probability of unit impact of the accident to the pipeline 

network given that the hazard has occurred. The vulnerability analysis will involve 

the impacts to the following four (4) main areas: human factor, environment, 

infrastructure and installations and economic activity of the industry. Moreover a 

detailed description of risk assessment method follows, which combines the 

possibility of pipeline failure occurrence (hazard, see Chapt. 5) and the vulnerability 

to disasters considering that the failure of the pipeline has occurred.  

6.1 Vulnerability parameters 

The results of a vulnerability analysis should take into account all feasible events, 

in terms of effect distance (radius) over which people are likely to become casualties, 

the likely degradation of the environment, the anticipated damaged infrastructures and 

gas installations and the reduction of the industry‟s economic activity. This should 

take into account people and installations both outdoors and indoors. Pipelines present 
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a linear risk so where a length of pipeline over which a location-specific accident 

scenario can affect the population, the environment and the infrastructure associated 

with the specific development, the full length over which a pipeline failure could 

affect the above four areas should be considered in the vulnerability analysis. 

The outcome of a natural gas pipeline failure is considered a leak or rupture caused 

by damage such as external interference, corrosion, fatigue or ground movement. 

Leaks are defined as gas lost through a stable defect; ruptures are defined as gas lost 

through an unstable defect which extends during failure. The escaping gas may ignite, 

resulting in a fireball, crater or jet fire which generates thermal radiation. In the 

following figure is shown the event tree of a pipeline failure.  

 

Figure 6.1 Event Tree for a pipeline failure 

The main parameters that increase the vulnerability of the pipeline distribution 

network can be summarized as follow:  

 Pipe characteristics: 

 Wall thickness 

 Length  

 Diameter (e.g. data from previous earthquakes indicates that larger diameter 

pipes are more prone to failure) 
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 Material  

 Age of pipe; considering that age relates to the level of risk, older networks 

have reduced resistance to material degradation, so they are more vulnerable 

to accidents 

 Pipeline joints; networks with steel welding, have better performance in a case 

of a disaster compared to connections formed by flanges or links 

 Crossings; presence of connections and ramifications are presenting 

concentration of stress that may lead to a greater percentage of failures 

 Depth of coverage 

 Operating pressure (low, medium, high pressure network) 

 Area characteristics: 

 Land use 

 Population density 

 Infrastructures that are intersected by the pipeline network 

 Existing prevention and mitigation measures: 

 Frequency of maintenance 

 Systems of leakage detection 

 Monitoring methods and early warning systems that are applied by the 

industry along the pipeline length 

 Environmental characteristics  

 frequency of construction activity 

 frequency of drainage, pile driving, deep plowing, placing dam walls 

 percent of pipe under water table 

 percent of pipe exposed to fluctuating water table 

 percent of pipe exposed to heavy root growth 

 percent of pipe exposed to chemical contamination 

 soil type (sand, clay, peat) 

 pH value of soil 

 resistivity of soil 

 presence of cathodic protection 
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6.2 Consequences of Natural Gas Pipeline Failure 

A natural gas pipeline hazard failure, as it was noted in Chapter 5 can cause 

leakage, ignition and fire. The consequences of these disasters are studied for the 

following four areas: 

1. Human factor. Refers to the number of deaths and injuries of the natural gas 

industries personnel as well as the citizens of the surrounding areas. The cost of 

human factor - includes cost of fatalities, injuries - refers to the case of ignition 

and can be estimated by the Hoffman method, considering age distribution within 

the hazard area of the pipeline 

2. Environment. This involves the degradation of soil, forest and water environment. 

Natural gas is an environmentally friendly fuel and compared to other fossil fuels 

it has a very good performance in terms of pollutants criteria of the lower 

atmosphere (NOx, Ozone, Carbon monoxide). It is also the fossil fuel with the 

highest hydrogen content so its combustion produces the least CO2, which is a 

primary greenhouse gas. The various processes of natural gas distribution systems 

have some adverse effects on the environment. In general, these effects are not 

severe and often do not exceed EPA thresholds. So, in our case due to the fact that 

natural gas is not a toxic gas we suppose that the environment impact is minor. 

3. Infrastructure/ gas installations. The consequences in this category involves the 

cost of buildings and other facilities damage within the potential hazard zone of 

the pipeline failure, as well as the cost of repair of the natural gas installations.  

4. Gas industry‟s economic activity. This category refers to the cost of natural gas 

supply interruption that was caused from the pipeline failure and reduced the 

natural gas industry profit to 10% of the yearly profit of the industry.  

6.3 Vulnerability analysis 

In the context of pipeline networks carrying natural gas it is the ignited releases 

that are of real concern. A vulnerability analysis for calculating consequences should 

model and predict the gas release rate, the characteristics of the resulting fire, the 

radiation field produced and the effects of the radiation on people and buildings 

nearby. Fires which may occur as a result of ignition of a large gas release caused by a 

rupture are defined as follows: 

 fireball, which occurs in the event of immediate ignition of a large gas release 
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 crater fire, which occurs in the event of delayed ignition of the gas flow 

released when this is obstructed in the crater formed by the immediate release, 

or following the immediate ignition fireball 

 jet fire, which occurs in the event of delayed ignition of the gas flow released 

when this is unobstructed in the crater formed by the immediate release. 

The probability of occurrence of a crater or jet fire is dependent on assumptions 

made about sources of delayed ignition close to the release point. Typical assumptions 

result in crater fire probabilities for natural gas is between 0.15 and 0.3. Generally, 

natural gas is lighter than air, even at the low temperatures that would apply after a 

pressurized release, so ingress of gas into buildings is not expected to occur. Fatal 

injury effects are assumed for cases where people are in the open air or in buildings 

are located within the flame envelope from a fireball, crater fire or jet fire. Outside the 

flame envelope, the effects are dependent on direct thermal radiation from the flame 

to the exposed people or buildings. 

As it was described above (see Chapt. 5) probability of failure occurrence are 

determined based on reliability models using fault and event tree analysis. It requires 

number of frequency data for initiating events which are very difficult to establish for 

pipelines. Each failure scenario must take into account protection layers and specified 

conditions, mainly environmental ones that would determine further development of 

the scenario. It is worth noting that real hazard zones caused by overpressure 

(explosion) and thermal radiation (fire) are circular areas of a radius equal to the 

assumed threshold value. 

 

Figure 6.2 Structure of model for calculation of potential consequences of a pipeline failure 
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Figure 6.3 Potential hazard zones for accidental release of natural gas to the air. 

6.4 Risk assessment 

Risk assessment is a comprehensive process, which needs to be thoroughly 

understood both at operative and planning level of natural gas distribution, in order to 

generate and implement efficient risk reduction policies. Risk assessment includes 

both quantitative and qualitative information, which has been collected through 

understanding the concept of risk and its physical, social, economic and 

environmental factors and consequences. The identification of hazards and 

vulnerability/ capacity assessments together constitute risk assessment.  

The calculation of risk at a particular location from an extended pipeline source is 

complicated by the fact that the failure position is unknown in advance. It is necessary 

to consider the effects from the predicted pipeline fire along the interaction length, 

which is the length of pipeline that could pose a hazard to the development or point of 

interest. Individual risk is calculated at specified locations and distances from the 

pipeline, and societal risk can either be calculated generically, based on estimates of 

population density, or in a site-specific manner, taking account of the precise 

locations of buildings, gas installations and people. 

As it was noted to Chapter 3, Risk (R) is the possibility of the harmful impacts or 

anticipated losses that arising from a specific event. The risk of pipeline failure due to 

the various hazard zones can be estimated with the following function: 

Risk = Hazard * Vulnerability (given that the disaster has occurred) 

R = H * V 
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So in accordance with the risk assessment results the level of risk that are 

concerned negligible, small, medium, important, high is calculated. Following, we 

describe the way of estimating individual and societal risk based on the quantitative 

risk assessment method that was developed by Jo and Ahn [Jo et al., 2005] for 

transmission pipeline carrying natural gas.  

Input Data 

We consider a pipeline that carries natural gas and runs through a populated area - it 

could be rural, R or suburb, B - with length L, diameter d, wall thickness s and 

functions under pressure P. 

 
Figure 6.4 The relation of variables 

rh = hazard distance (m) 

h = distance from pipeline to a specified point scaled by square root of effective rate 

gas release (m/kg · s)
1/2

 

l± = ends of interacting section (m) 

H = distance from gas pipeline to populated area (m) 

L0 = leak point 

o Calculation of Individual risk  

The individual risk is defined as the probability of death at any particular location due 

to an accident. It can be expressed as the probability of a person at a specific location 

becoming a casualty within a year. The procedure to calculate the individual risk of 

natural gas pipeline is shown at the following diagram: 

STEP 1: Calculating the effective rate of gas release 

3

, 0
3 2

0

1
1.783 10 max 0.3,

1 4.196 10
eff i p i

i

Q A a p
a L x d

 

Where: 
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,eff iQ  = effective rate of gas release from a hole on the pipeline 

pA  = cross-section area of pipeline (m) 

ia  = dimensionless size of small, medium and great hole resulted from the failure of 

the pipeline, the i denotes the accident scenarios such as small, medium and great hole 

on the pipeline 

0p = stagnation pressure at operating condition (N/m
2
) 

0L  = pipe length from gas supply station to leak point (m) 

x  = distance from 0L as shown to the following figure 

d  = pipe diameter (m)  

 

STEP 2: Calculating the radii of 99%, 50% and 1% fatality 

,99 ,15.3i eff ir Q  

,50 ,30,4i eff ir Q  

,1 ,60.3i eff ir Q  

where: 

 

,99ir  = radius of fatality 99% (m) 

,50ir  = radius of fatality 50% (m) 

,1ir  = radius of fatality 1% (m) 

,eff iQ  = effective rate of gas release from a hole on the pipeline 

STEP 3: Drawing circles of radii of 99%, 50% and 1% fatality with a specified 

location as origin 

STEP 4: Measuring the length of pipeline within the zones of 100%-99%, 99%-50% 

and 50%-1% lethality 

For a straight gas pipeline, the length in each zone can be estimated by using the 

operator, Re, which represents the value of real part in the complex number. 

2

,100 99 ,2 Re 15.3 ii eff il Q h  

2 2

,99 50 ,2 Re 30.4 15.3i ii eff il Q h h  

2 2

,50 1 ,2 Re 60.3 30.4i ii eff il Q h h  

where: 

,i a bl = length of pipeline within the range from a to b% fatality (m) 
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,eff iQ  = effective rate of gas release from a hole on the pipeline 

Re = operator of complex number 

2

ih  = distance scaled by the square root of the effective rate of gas 

release,
,i eff ih h Q , where h is the distance from the pipeline to a specified location 

of interest  

STEP 5: Estimating the fatal length of pipeline 

, ,100 99 ,99 50 ,50 1

0

0.86 0.156

L

FL i i i i iL P dL l l l  

where: 

,FL iL = fatal length scaled by square root of effective rate of gas release 
1

2m kg s  

 

STEP 6: Estimating failure rate 

, , ,i EI i EI d DC WT PD PMK K K K  

where: 

,i EI
 = failure rate caused by third party activity 

, ,i EI d
 = failure rate varying with pipe diameter due to external interference 

DCK  = correction factor of depth of cover 

WTK  = correction factor of wall thickness 

PDK  = correction factor of population density 

PMK  = correction factor of prevention method 

 

STEP 7: Estimating the individual risk 

,FL i ii
IR L  

where: 

IR  = Individual risk 

,FL iL = fatal length associated with accident scenario i  

i  = expected failure rate per unit pipe length (1/year km) associated with accident 

scenario i  

 

o SOCIETAL RISK  

With the risk of multiple fatalities being concerned, the societal risk is defined as 

the relationship between the frequency of an incident and the number of resulting 

casualties. It is usually expressed in the form of graph if cumulative frequency (F) of 
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N or more casualties plotted against N (an “F-N” curve). In the case of hazardous 

pipelines, which have the potential to cause multiple fatalities, the societal risk is 

considered usually more important than the individual risk. The procedure to calculate 

the societal risk of natural gas pipeline is described at the following steps. The STEPS 

1 to 3 are the same as those followed for the calculation of individual risk, as well as 

STEP 7 (societal risk) with STEP 6 (individual risk): 

STEP 1: Calculating the effective rate of gas release 

3

, 0
3 2

0

1
1.783 10 max 0.3,

1 4.196 10
eff i p i

i

Q A a p
a L x d

 

 

STEP 2: Calculating the radii of 99%, 50% and 1% fatality 

,99 ,15.3i eff ir Q  

,50 ,30,4i eff ir Q  

,1 ,60.3i eff ir Q  

STEP 3: Drawing circles of radii of 99%, 50% and 1% fatality with a specified 

location as origin 

STEP 4: Counting the number of people within the zones of 100%-99%, 99%-50% 

and 50%-1% lethality 

STEP 5: Estimating number of fatalities 

,100 99 ,99 50 ,50 10.802 0.142i i i iN N N N  

where: 

iN = number of fatalities from an accident (persons) 

,i a bN = number of people within the range from a to b% fatalities 

i = denotes the small, medium and great hole on the pipeline 

 

STEP 5: Drawing the number of fatalities over the pipeline 

STEP 6: Estimating the cumulative fatal length of pipeline 

 

,

0

L

CFL i i iL N N u N N dL  

 

where: 

,CFL iL  = cumulative fatal length of pipeline (m) 
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iN = number of fatalities from an accident scenario (persons)  

N = number of fatalities 

u  = unit function 

L = pipe length from gas supply station to leak point (m) 

 

STEP 7: Estimating failure rate 

, , ,i EI i EI d DC WT PD PMK K K K  

 

STEP 8: Construction of the societal risk curve of natural gas pipeline 

,i CFL i ii
F L N N  

 

The cumulative fatal length 
,CFL iL  means a length within which an accident leads to 

N or more fatalities.  

Quantified risk assessment (QRA) applied to a pipeline involves the calculation of 

risk resulting from the frequencies and consequences of a complete and representative 

set of credible accident scenarios.  

6.5 Conclusions 

In this chapter the methodology for analysing vulnerability of areas nearby the 

natural gas pipeline network was presented. After the pipeline failure, the scenario 

occurring in the case of rupture, ignition or immediate ignition of the gas is the 

development of a jet-fire, a fireball and crater fire. Whether the impacts of the 

pipeline failure will be significant for the human factor, the environment, 

infrastructure and installations and the economic activity of the industry, depends 

from the various vulnerability factors that were presented in this chapter.  

Moreover the risk assessment method was presented, which combines the 

possibility of pipeline failure occurrence (hazard analysis, see Chapt. 5) and the 

possibility of vulnerability to disasters considering that the failure has happened 

(vulnerability analysis, see Chapt. 6). The assessment of the consequences of releases 

of natural gas is a fundamental requirement for the safe design and operation of 

industrial installations, plants and pipe distribution networks.  
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CHAPTER 7 

MITIGATION MEASURES – COST BENEFIT ANALYSIS  

To mitigate pipe failures, there is a series of possible mitigation measures that can 

be considered on a site by site basis. This chapter refers to the available prevention 

and mitigation measures that are applied worldwide by the natural gas pipeline 

industries in order to manage a potential accident or disaster that may occur at the 

network.  Each of these countermeasures will be discussed and their usability 

concerning the reduction of pipeline failure risk will be analysed.  

Moreover a cost –benefit analysis is introduced that aims to the optimization of 

pipeline risk management with the minimum cost within the available amount of 

available financial capital that the industry is willing to provide. For this purpose we 

introduce a dynamic knapsack model is introduced where benefit is considered the 

reduction of the risk indicator due to the implementation of the selected 

countermeasure and cost is considered the cost of the countermeasures. 

7.1 Available mitigation measures 

The safety technologies and practices can be divided into two categories: passive 

and active safety systems. Passive safety systems attempt to minimize damages after a 

failure has occurred. Active safety systems attempt to minimize the probability of a 

failure occurring in the first place. The latter are preventive approaches. As far as 

passive safety practices are concerned, the best known are; increasing pipe wall 

thickness and using casings. In general, the larger pipe diameter, the stronger a pipe is 

and consequently, the more difficult for it to be accidentally severed by farming or 

construction equipment. A smaller diameter pipe needs more upgrading of its nominal 

thickness to sustain external forces. Casings are either in the form of a larger diameter 

pipe surrounding the gas carrying pipe or in the form of concrete walls covering the 

top and possibly the sides of the pipeline.  

An impressive active safety approach is the one-call system, where contractors can 

learn from a call to the gas utility or transportation company whether the site they are 

about to start construction on is at a the top or near a pipeline. Another practice is 

regular aerial supervision of the pipeline network by pipeline company personnel. It is 
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anticipated that in the future satellite supervision will substitute the present day aerial 

patrols. Today foot patrols are the most common supervision practice.   

Seismic resistant design of pipelines at fault crossings may be the most effective 

compared to landslide and liquefaction areas because fault (particularly strike‐slip 

faults) locations can be determined with reasonable accuracy. The same mitigation 

measures can be employed for areas with high susceptibility to landslides or 

liquefaction/lateral spreading except that the locations of block interfaces may be less 

certain. There may be an opportunity to avoid landslide and liquefaction zones when 

selecting the alignment of new pipelines. Selection of pipe joint design is important in 

mitigating pipe damage due to wave propagation. To mitigate damage due to 

permanent ground deformation (fault movement, landslide, liquefaction) use modern 

welded steel pipe with butt electric arc welded joints. Replace old pipe that has oxy 

acetylene welded joints within the fault zones and several thousand feet beyond.  

Moreover, to avoid corrosion a number of active safety systems are considered a 

standard practice: 

 Lining the pipeline with a coating externally or internally 

 Cathodic protection of pipes by charging them with a constant electric field 

 Inspecting the interior of the pipeline with a pig travelling inside the pipeline by 

the force of the gas behind it. This technique does not require service interruption. 

Technologies are improving, producing faster and more reliable intelligent pigs. 

 Quality control of transported natural gas to avoid sour gas corrosion. 

Also another typical preventive approach is quality control of pipe material, welds, 

joints, valves and other equipment during construction. Regular pipeline integrity 

assessment is also possible through use of hydrostatic testing. The pipe is filled up 

with water slightly over the design pressure. If a leak is observed, the pipeline part it 

was found on is repaired by techniques of varying complexity, from fillings to sleeves 

to complete rehabilitation of the pipe. Leaks and ruptures due to a number of 

predisposing factors, are forced to occur, so the technique of hydrostatic testing, 

manages many failure causes simultaneously.  

Moreover, the primary method of reducing operator error is good training and 

sound management systems. Today, human factor analysis can help task design so 

that safety is maximized. Heavy use of information technology appears to be an 

attractive safety improvement direction to a number of practitioners.  
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Finally, emergency response plans are crucial to minimize damages in the event of 

an accident. Drills on emergency response plans and training help reduce the 

probability of operator error in the difficult to cope with situations that arise after an 

accident. Regional variations in either failure risk or risk of high damage are typically 

managed through different design factors. In areas of higher population density 

medium to low pressure pipelines operate only and is required a lower design factor 

(or higher safety factor) for pipe wall thickness. Similarly, in areas where the soil is 

more corrosive, the design factor decreases. The risk of excessively stressing a 

pipeline during an earthquake increases mainly in areas with certain geological 

characteristics only.  

7.1.1 Technology tools for preventing corrosion  

• Development of Coupons to Read Off-Potentials of Pipelines 

Since 1992, the pipeline industry has devoted a large effort to investigate the 

effectiveness of using steel coupons buried on the outside of the pipeline to monitor 

the effectiveness of cathodic protection. The coupon technology has introduced 

superior methods to measure the adequacy of cathodic protection systems without the 

inefficient interruption of CP current protecting the pipelines. The coupons have also 

proved a valuable tool for investigation of many other CP problems including 

interference stray direct currents (DC) from mining and railways, telluric currents, 

AC interference, and long line detection currents encountered in the depolarization of 

pipeline systems. 

• Alternating Current (AC) Prediction & Mitigation Techniques 

AC mitigation is becoming a major problem as pipeline right-of-way (ROW) is 

harder to acquire, and pipelines are subsequently forced to share power corridors with 

high voltage AC transmission lines. This has created incidences where significant 

voltages have been observed on pipelines in the ROW, raising concerns for both 

personal safety and system integrity. The pipeline industry through collaborative 

work completed development of a user friendly software package in 1997 to assist 

the pipeline operators in resolving two-thirds of the situations while sharing the 

ROW with AC voltage lines.  

• Assuring the integrity of corroded pipe 

The RSTRENG assessment methodology, which was recognized in the federal 

pipeline safety regulations in 1996, has been the primary means for determining the 
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remaining strength of corroded pipe, and as such is critical for pipe repair and 

remediation decisions made both within and without a risk assessment program. This 

has already been incorporated in ASME's B31G code and referenced in 49 CFR 192 

and 195. 

• Cathodic Protection (CP) 

There have been major accomplishments in the area of cathodic protection, 

including: CP Criteria - The pipeline industry devoted over $1 million and thousands 

of hours of research to investigate the CP Criteria to assist NACE (National 

Association of Corrosion Engineers) with the rewrite of RP0169. All of the changes 

are already incorporated in NACE standards and many of the changes were written 

into the Department of Transportation (DOT) code 49 CFR 192 in 19996, to ensure 

pipeline integrity for the pipeline systems.  

• Internal Corrosion Models 

Some of the major results of the work on internal corrosion are: Models to 

estimate the corrosion rates with normal pipeline gas and liquid contaminants and 

expected operating conditions; A Risk Assessment Program to assist pipeline 

operators to choose the most effective internal corrosion mitigation action plans; A 

major study on the Management of Microbiologically Induced Corrosion (MIC). This 

research has been the basis for on-going studies on detection, identification, and 

mitigation of corrosive environments caused by MIC. 

• Pipeline Current Mapper/Stray Current Mapper 

The Pipeline Current Mapper (PCM) and the pending Stray Current Mapper 

(SCM) were developed to overcome some of the limitations and complexity of 

existing CP survey techniques. Limitations of existing CP system troubleshooting 

techniques include: 

1. Labor intensive (multiple connections to pipeline) 

2. Requires highly trained/skilled operator 

3. Subject to user interpretation and error 

The PCM has been implemented by over 20 US operators since its introduction in 

1997. 
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7.1.2 Technology tools for preventing external forces and loads  

• External Force 

External force which includes 3 rd party damage, incorrect operations, and “acts-

of-God”, like floods and landslides, are the most prevalent root cause in the pipeline 

incidents reported to DOT. Studies of the One Call System, sources of External Force 

Damage and methodologies to prevent Excavation Damage have recently been 

completed to identify gaps in the systems that thereby minimize the incident rate. In 

1997, spacing of mainline valves was found to have no effect on improving safety 

even if the valve was closed at the time of a line break A variety of remote 

monitoring systems have been evaluated and some are promising to become 

commercial services. 

• On-bottom Stability of Off-shore Pipelines 

The latest version of the definitive design reference manual for assuring the 

stability of pipelines laid in the subsea environment is presented in a user-friendly, 

state-of-the-art software that addresses all design considerations, including: coatings; 

soil characteristics; and pipe-to-soil interactions. 

• Transportation Crossings 

PC-Pisces, an engineering analysis program, predicts the safe maximum vehicle 

loading when traversing buried pipelines. PC-Pisces has been used to minimize the 

problem of casing shorts and the associated accelerated corrosion by establishing safe 

installation of uncased crossings. PC-Pisces has been adopted in 1993 by the 

American Railway Engineering Association and by the American Petroleum 

Institute. This methodology is being updated. 

 A total of 38 leading practices included in the prevention and detection group that 

are being used by pipeline operators are provided in the following Table: 
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Table 7.1 Prevention/Detection Practice 

Prevention/Detection Practice  Description 

Visual Examination  Includes all visual determinations and measurements 

of pipe and components 

Surface Nondestructive Testing Includes techniques such as magnetic particle and 

shear wave ultrasonic testing to assess external 

anomalies 

Surveillance/Patrol Aerial or foot patrol of ROW, detailed visual 

inspection 

Coating Condition Evaluation All inspections associated with field coating 

evaluation of exposed buried or above ground pipe 

sections. 

Close Interval Survey (CIS) Aboveground potential measurement at close 

intervals. 

Direct Current Voltage Gradient 

(DCVG) 

Aboveground coating integrity assessment. 

 

Bellhop Inspection  
 

 

Exposure of a pipe section for examination. Usually 

includes visual and other NDE methods 

Compliance Audit  Audit conducted by operator personnel to assure 

compliance with regulatory and Company procedures 

CP Test Points. 

 

Required measurement of CP current at fixed test 

points 

Leak Survey Required evaluation for pipeline leaks. 

Geometry Tool Inspection  Inline inspection of pipe to detect obstructions, dents, 

pipe ovality, evaluation of clearances for inline 

inspection, etc. 

Inline Inspection Tool 

(Baseline) 

 

Inline inspection tool run in newly constructed pipe 

to establish initial pipe condition and detect 

construction damage. 

Inline Inspection Tool 

(In-service) 

Periodic inline inspection tool runs for pipeline 

integrity assessment 

Preservice Hydrotest Initial hydrostatic test to validate initial integrity and 

detect construction and defective materials 

Construction Inspection  Inspection effort during pipeline construction to 

assure regulatory and specification compliance. 

Manufacturer Inspection 

 

Active QA/QC during pipe and component 

manufacture to assure initial product quality 

Transportation  

 

Inspection Inspection during pipe/component loading 

to assure proper methods that minimize 

transportation related damage. 

Hydrostatic Retest  

 

Periodic retesting to assure continued integrity or for 

up rating purposes 

Strain Monitoring  

 

Installation and monitoring of the deformation extent 

of pipe or components as a method to assure 

integrity. 
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Table 7.1 Prevention/Detection Practice (continue) 

Prevention/Detection Practice  Description 

Ground Displacement Survey  

 

Use of survey methods to detect and monitor the 

extent of pipe deformation due to unstable soil or 

subsidence. 

Soil Corrosivity Evaluation 

 

Laboratory evaluation of soil samples removed from 

a bellhole to evaluate potential corrosivity 

Resistivity Survey  

 

Over-the-line determination of soil resistivity to 

estimate corrosive potential. 

Rate Predictive Methods  Use of corrosion rate data to predict the time required 

for excessive metal loss and maintenance interval 

estimates. 

External Coupon Monitoring  Installation and monitoring of buried coupons 

adjacent to pipe for corrosion monitoring and IR drop 

estimates. 

Internal Coupon Monitoring Installation and monitoring of coupons inside a 

pipeline to detect and monitor internal corrosive 

conditions. 

Gas Analysis Analytic determination of natural gas composition 

and potentially corrosive components.  

Microbiological Corrosion 

Monitoring 

Process of determining the contribution of 

microbiological organisms to either external or 

internal corrosion. 

Surface Ultrasonic Inspection 

(B-scan) 

Inspection to determine the extent and severity of 

internal corrosion from the outside pipe surface. 

Iron Analysis Determination of iron quantities in the gas stream as 

indicator of internal corrosion at upstream 

location(s). 

Surface Radiography Radiography to determine the presence of internal 

corrosion pitting damage (also pipe construction 

NDE). 

Proper Materials Specifications Specifications establishing required pipe/material 

quality for the facility design conditions. 

Proper Design Specifications Pipeline and facility design specifications that are 

suitable for the intended purpose. 

Effective Public Education A primary tool for third party damage prevention. 

Effective Operator Personnel 

Training 

Formal and on-the-job training processes that 

produce well qualified operations/ maintenance 

personnel. 

Comprehensive Construction 

Procedures 

Complete written methods and procedures to assure 

high quality pipeline construction. 

Comprehensive Emergency 

Procedures 

Complete written procedures covering pipeline and 

facility emergency measures 

Comprehensive Operations and 

Maintenance Procedures 

Complete documented procedures for all pipeline 

operations and remediation. 

One Call System Centralized state operated locations for construction 

activity notification and erosion and washout 

monitoring. 
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The following table summarises how to assure the integrity of a natural gas 

transmission line regarding the existing conditions. 

Table 7.2 Assuring Integrity of Natural Gas Transmission Lines 
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Outside Forces             

3
rd

 party damage X X     Xa  Xc X   

Earth movements Xb Xb     X X     

Metal Loss             

External 

Corrosion 

  X Xf  X    Xd X X 

Internal corrosion     X X X     X 

Gouges      X    Xd X X 

Gas Leakage X X        X   

Coatings   X X      X   

Cracks             

Seam weld          Xe X X 

Girth weld          Xe X X 

Stress corrosion           X X 

Fatigue          Xe   

Selective 

corrosion 

         Xe X X 

Geometry             

Ovality, buckles       X  X X   

Obstructions, 

dents 

      X  X X   

Ovality, wrinkles       X  X X   

Bend radius       X X     

Pipeline 

movement 

       X     

Metallurgical              

Inclusions      X     X X 

Hard spots      X     X X 

Laminations           X  

Source: GRI-91/0366 

Where 

(a) Geometry Pigs are designed to detect dents and ovality 
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(b) Effective for landslides but not for differential settlement 

(c) Designed to detect dents and wall protrusions 

(d) Assumes coating has been removed 

(e) Generally cannot detect without using NDT methods 

(f) Locates possible corrosion resulting from inadequate CP 

 7.2 Cost – benefit analysis. Implementation of “0 – 1” knapsack 

problem 

Cost – benefit analysis is a systematic procedure for evaluating decisions that have 

an impact on the social and economic life of a region. There are different ways to 

conduct a valid cost – benefit analysis, depending on the available information and the 

nature of the problem. A 0 - 1 knapsack problem is introduced in order to illustrate 

this approach. This approach involves the following elements; defining the nature of 

the problem, including the alternative options and interested parties, determining the 

direct cost of the mitigation alternatives; determining the benefits of mitigation, via 

the difference between the risk indicators with and without the countermeasures; and 

finally choosing the best alternatives without exceeding the available industry‟s 

budget.   

Moreover, benefit – cost analysis has traditionally required measures of benefits 

and costs of candidate projects. The knapsack optimization is used to formulate 

problems in which a number of projects might be implemented by judicious 

distribution of resources available. For many applications one seeks to maximize a 

function of benefit, subjected only to the constraints imposed by resource limitations. 

For several years, benefit – cost analysis has been the method of choice for allocation 

of resources to projects in such fashion as to maximize total benefits subjected to 

constraints. The method typically requires a common currency for the measurement of 

benefits and costs. We are interested in the application of benefit – cost analysis to 

guide the simultaneous allocation of a number of resources to a set of mitigation 

actions in several realistic situations, in order to: 

1. Maximize benefit given resource constraints in the form of a budget. It is often 

possible to vary proportions of inputs to obtain the maximum benefit from the 

output  
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2. Decide whether or not to undertake a particular activity, by comparing its costs 

with its benefits.  

3. Select the most productive set of activities with the highest benefit-to-cost 

ratios. This set might be composed of entirely separate activities or they might 

be interdependent in complicated ways. 

The problem of allocating available budget for implementing mitigation measures 

to natural gas distribution networks is not a problem of selecting a unique 

countermeasure but a combination of countermeasures which is optimal. One 

optimum way of selecting the best mix of mitigation measures is using techniques 

based on a 0 - 1 knapsack formulation. The mitigation measures (items) are 

considered indivisible; you either take a mitigation measure or not, so the problem is 

solved with dynamic programming. The basic idea of the knapsack problem is that 

given some items, pack the knapsack to get the maximum total value. Each item has 

some weight (cost) and some value (profit). Total weight is in no more than some 

fixed number W (available budget). So we must consider weights (costs) of items as 

well as their value (profit).  

For each mitigation alternative, one needs to specify the direct cost to implement 

the countermeasure. For the natural gas pipeline network, its owner and operator 

incurs the costs of mitigation. Once the costs are estimated for each mitigation 

measure alternative, the next step is to specify the potential benefits that impact each 

of the interested parties. The benefits, in the case of the pipeline network, will be 

estimated from the reduction of the risk indicator for the pipeline network before and 

after the implementation of the selected countermeasure. In order to calculate the 

attractiveness of mitigation, the nature of the benefits to each of the interested parties 

is estimated and compared to the upfront costs of mitigation.  

Summarizing, the knapsack problem is one that appears to be appropriate for this 

application in combinatorial optimization. In our case the decision management 

problem for allocating the available capital for mitigation strategies introduces the 

knapsack problem in which each variable must equal 0 or 1. The “0-1” knapsack 

problem for our application is formulated as follows: 
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1

max
N

i i

i

b x  

subjected to 
1

N

i i

i

x w W  and 0,1ix  

where: 

ib   is the benefit from implementing countermeasure i  

iw  is the cost of countermeasure i  

W  is the available budget 

N  is the total number of available countermeasure  

The Dynamic Programming (DP) model is constructed considering the following 

elements: 

1. STAGE i  is represented by countermeasure i  

2. STATE iy  at Stage i  is the total cost of the stages , 1,...i i N  

1y W  and 0,1,...iy W for 2,3,...i N  

3. ALTERNATIVE ix  at STAGE i  is 0 if the countermeasure is not selected 

and 1 otherwise.  

We want to select a certain number of each measure in the knapsack so that: 

o The knapsack weight capacity (total available budget) is not exceeded  

o The total benefit is maximal 

Let i if y  the optimal value at STAGES , 1,...i i N  given the STATE iy  

The backward recursive equation is thus given as: 

0,1

0,1,...

max
N

N

N N n n
x

y W

f y b x  

1
0,1

0,1,...

max
i

i

i i i i i i i i
x

y W

f y b x f y w x , 1,2... 1i N  

By solving the 0 – 1 knapsack problem we manage to optimize the allocation of 

resources for mitigation in a case of pipeline failure with the maximum benefit within 

the limits of the available budget that the gas industry is willing to spend for the 

effective minimization of risk level along its pipeline network.  
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7.3 Example 

Consider a pipeline network in an imaginary city with diameter 500mm, operating 

pressure 0.3MPa, cover-depth 100 mm passing through an area with population 

density 2500 persons/km
2
. The network is shown in the following image. The natural 

gas industry wants to spend the amount of 50,000€ for choosing and implementing 

some of the available mitigation measures. In the Table 7.3 is summarized the 

alternatives mitigation measures, their cost and their benefit to the reduction of risk 

indicator in a case of pipeline failure. We suppose that after the pipeline failure a jet 

fire and an explosion occurred.   

 

 

n = 4 (number of mitigation measures - items) 

W = 50,000€ (available industry‟s budget) 
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Table 7.3 Costs and benefits of the mitigation measures 

Available mitigation 

measures 
j 

w (*10
4
 €) 

direct cost of its 

mitigation measure 

b 

(risk indicator after– risk 

indicator before) the 

implementation of the mitigation 

measure 

Aerial Patrols 1 4 2 

SCADA system 2 3 4 

Leak detection system 3 2 3 

Mapping pig 4 1 1 

 

Solution 

Item Weight (*10
4
) Benefit 

1 4 2 

2 3 4 

3 2 3 

4 1 1 

 

 

 STAGE 4 

4

4

4 4 4
0,1

0,1,...4

max
x

y

f y x , 0.1,2,3,4,5W  

4y  
4x  Optimum solution 

0 1 4 4f y  4x  

0 0 - 0 1 

1 0 1 1 1 

2 0 1 1 1 

3 0 1 1 1 

4 0 1 1 1 

5 0 1 1 1 
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 STAGE 3 

3

3 3 3 4 3 3
0,1

max 3 2
x

f y x f y x , 0.1,2,3,4,5W  

3y  
3x  Optimum solution 

0 1 3 3f y  2x  

0 0 + 0 - 0 0 

1 0 + 1 - 1 0 

2 0 + 1 3 + 0 3 1 

3 0 + 1 3 + 1 4 1 

4 0 + 1 3 + 1 4 1 

5 0 + 1 3 + 1 4 1 

 

 STAGE 2 

2

2 2 2 3 2 2
0,1

max 4 3
x

f y x f y x , 5W  

2y  
2x  Optimum solution 

0 1 2 2f y  2x  

0 0 + 0 - 0 0 

1 0 + 1 - 1 0 

2 0 + 3 - 3 1 

3 0 + 4 4  4 (0,1) 

4 0 + 4 4 + 1 5 1 

5 0 + 4 4 + 3 7 1 

 

 

 STAGE 1 

1

1 1 1 2 1 1
0,1

max 2 2
x

f y x f y x , 0.1,2,3,4,5W  

1y  
1x  Optimum solution 

0 1 1 1f y  1x  

5 0 + 7 2 + 4 7 0 
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The results are shown to the following table: 

 COST (€) BENEFIT 

1 0x  0 - 

2 1x  30,000 4 

3 1x  20,000 3 

4 0x  0 - 

 

 

Result 

 The maximal possible benefit is 7. 

 Two possible optimal solutions: 

o Choose item 2; SCADA system, during computation of f(3) in Stage 3 . 

Choose item 3; Leak detection system, in computation of f(2) in Stage 2. 

o Choose item 3; Leak detection system, during computation of f(2) in Stage 2. 

Choose item 2; SCADA system, during computation of f(3) in Stage 3. 

 Both solutions coincide. The natural gas industry in order to achieve the 

maximum possible benefit – with other words the effective reduction of the risk 

level – within the available budget should invest on buying a SCADA system and 

a leak detection system.  

7.4 Conclusions 

In this chapter, the proposed countermeasures for preventing and mitigating a 

potential accident or disaster that may occur at a pipeline network were summarized 

and discussed. Also the 0-1 knapsack problem was introduced in order to perform a 

cost –benefit analysis that can help the natural gas industries to allocate their available 

budget to the countermeasure alternatives that produce the maximum reduction of the 

risk level (benefit). The cost to mitigate is primarily undertaken by owners, but 

everyone in a region benefits from reducing the risk of a pipeline network, from 

uninterrupted or faster restoration of the supply distribution networks after a disaster. 

Therefore, the primary users of this research are owners and operators of the natural 

gas networks; the operators could be government agencies or private sector 

organizations who fund the cost of implementing countermeasures.  
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CHAPTER 8 

CONCLUSIONS 

Many algorithms have been developed in the field of risk assessment aiming at 

calculating individual and societal risk as well as estimating of hazard zones. Most of 

them are based at the Muhlabauer model and guidelines
 
that evaluate various aspects 

of pipeline risk by using risk models that calculate the probability of a pipeline failure 

occurrence as well as the extent of theirs consequences.  

Also for risk assessment is used the Analytic Hierarchy Model (AHP), that was 

developed by Saaty (1980) and is a multiple attribute decision – making technique to 

identify the factors that influence failure on specific segments and analyzes their 

effects be determining probability of risk factors. This technique allows subjective 

and objective factors to be considered in risk analysis and also provide a flexible and 

easily understood way to analyze subjective risk factors.  

Summarizing, a combination of qualitative and quantitative risk assessment is 

beneficial to successfully identifying the risks associated with the process, while 

controlling the cost, time, and resources. Qualitative risk analysis helps with 

understanding the process, and it is highly recommended as first step of the risk 

management process irrespective of the fact that quantitative risk analysis is going to 

be performed. 

The outcome of literature review was that little work has been done on the field of 

estimating cost – risk relationships and even less on models that optimize cost while 

minimizing risk. The proposed Risk Management Method for potential natural gas 

failures combines the hazard and vulnerability analysis in order to calculate and assess 

the risk of pipeline failure to human factors, environment, infrastructure that is within 

the hazard area and the gas installations and to the economic activity of the industry.  

The likelihood of all the hazard sources occurring [P(occurrence)] is calculating by 

implementing the reliability theory, under the assumption that each threat is relatively 

independent and that the pipeline could be modeled as a series system. Through 

vulnerability analysis the possibility of an impact of the pipeline failure on four (4) 

systems: human factor, environment, structure and gas industry‟s economic activity, 

is calculated.  
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Finally, we use a “0-1” knapsack formulation to optimize budget allocation to 

countermeasures with the maximum benefit (reduction of risk level). An example of 

the knapsack problem for a natural gas pipeline network illustrated the applicability of 

the model. This research contributes to the ability to make strategic allocation 

decision – where the diversity of benefits and costs demands inclusive measurement 

and where optimal resource allocation is demanded in the importance of the decisions.  

For future research the proposed risk management method is capable of 

considerable improvement and extension as aspects of pipeline risk are considered; 

for example the effects of additional mitigation measures and operating procedures. 

Also, the estimation of probabilities for the hazard analyses when sufficient historical 

data for statistical analyses are not available, may make its application difficult for 

natural gas companies. The method should be considered more as the basis for 

developing system than a finished product. Although the “0-1” knapsack formulation 

that we are proposing can allocate the budget to mitigation measures by a reliable and 

effective way, it can be revised further to situations when the budget is not defined as 

a single value, but as a range of parallel projects.  

 

 

. 
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APPENDICES 

APPENDIX A 

TERMINOLOGY 
 

A 

Acute Hazard: A potential threat whose consequences occur immediately after 

initiation of an event, e.g. fire, explosion. 

Alternatives: In this context, alternatives refer to any regulatory or non-regulatory 

OPS programs or policies that address pipeline safety. 

B 

Backfill: The soil that is placed over a pipe as one of the final steps in pipeline 

installation. Sand is often used as a backfill material because of the uniform support it 

provides and because it does not damage the pipe coating during installation. 

Baseline: The condition or set of conditions that would exist but for the outcomes 

associated with an alternative or program. In the context of OPS cost-benefit analysis, 

baseline would account for the absence of OPS alternatives designed to improve or 

enhance safety of the interstate natural gas and liquids pipeline system. The baseline 

is rarely static; rather, it is usually characterized by conditions that are either 

improving (i.e., a “rising” baseline) or deteriorating (i.e., a “falling” baseline). 

Benefits: Positive incremental effects that result from the implementation of 

alternatives. Benefits can take the form of avoided costs, i.e., costs that would have 

taken place otherwise but are prevented by an alternative. For cost-benefit analyses, 

benefits are often organized into safety, environmental, and economic/commercial 

categories. 

Benefits transfer: The application of economic data, functions, or models collected 

or defined in one benefit valuation setting, to the valuation of benefits in another, 

similar setting. 

Bounding analysis: A way of interpreting results of cost-benefit analysis that defines 

the lower and upper boundaries of a range of values that represent a cost-beneficial 

outcome. 
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C 

Casing: A pipe completely surrounding the pipeline to provide protection and act as a 

conduit for potential product leaks. These have historically been used primarily where 

a pipeline crosses under a road or railroad. 

Cathodic protection (CP): Method of protection against galvanic corrosion of a 

buried or submerged pipeline. In the CP method, a low-voltage charge is impressed 

on a metal in order to protect it from corrosion. Essentially, the pipeline is turned into 

a cathode by application of protective currents, which prevents the loss of metal. The 

CP system is general comprised of anodes, rectifiers, electrical connections and 

monitoring points. 

Chronic hazard: A potential threat that can continue to cause harm long after the 

initial event, e.g. carcinogenicity, ground water contamination, long term health 

problems. 

Control valves: These valves are designed to operate in the full range of positions 

from closed to fully open. The function of control valves is to control fluid flow rates 

be operating in partially open positions. 

Corrosion: The wearing away of a material, usually by a chemical reaction. 

Costs: Unfavorable effects associated with an alternative or policy change. Stated 

another way, costs are incremental resources used by entities, such as private sector 

firms, government agencies, or the public, in response to alternatives. 

Cost-beneficial: An evaluation criterion describing the net difference between costs 

and benefits (i.e., net social welfare) associated with alternative courses of action. 

Cost-effective: A term used to describe the lower cost of two or more alternative 

courses of action that provide identical benefits. 

Cost-benefit analysis An analytical tool used to define, quantitatively and 

qualitatively, the net change in social welfare resulting from alternatives and policy 

changes, based on the value of their beneficial and unfavorable impacts (i.e., benefits 

and costs). A primary goal of cost-benefit analysis is to inform regulatory decision 

makers about the relative merits of alternative approaches to solving problems. 

 

D 

Discount rate: The rate at which past or future resource flows are converted to 

present values. For cost-benefit analyses, discount rates reflect either public or private 
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valuation tradeoffs (i.e., the value of forgoing future consumption for present 

consumption of public or private resources, respectively). 

Distributional equity: The concept that alternatives may create groups that benefit 

disproportionately as a result of an alternative‟s impacts, and others that suffer 

adverse impacts due to an alternative‟s influence. 

 

DOT: Department of Transportation. The regulatory agency of the U.S. government 

that is charged with regulating aspects of pipeline design, construction and operation. 

The Office of Pipeline Safety (OPS) is the department within DOT charged with 

ensuring pipeline safety. 

E 

EPA: Environmental Protection Agency. The regulatory agency of the U.S. 

government that is charged with regulating activities that may be harmful to the 

environment. 

Economic efficiency: The concept that, for a given alternative or change, the value of 

incremental social welfare benefits must equal or exceed that of the incremental social 

welfare costs created. 

F 

Failure: The point at which a structure is no longer capable of serving its intended 

purpose. Although a pipeline that is actually leaking product is the most obvious 

indication of failure, failure is often also defined as the point at which the material is 

stressed beyond its elastic or yield point – it does not return to its original shape. 

Fatigue: The process of repeated application and removal of stress level, materials 

that must resist such cycles of stress must be specially designed for this service. 

Flaw: A defect in the pipe wall that could be a threat to pipeline integrity, e.g. cracks, 

gouges and metal loss. 

Fracture toughness: The ability of a material to resist cracking. Materials that are 

more ductile can absorb larger amounts of energy before cracks spread. 

G 

General equilibrium models: Models that account for dynamic linkages and 

interrelationships between sectors in the economy, and thus can be used to predict 

indirect impacts associated with alternatives (i.e., changes in prices, outputs, income, 

and employment). 

H 
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HAZ: Heat affected zone. The area of metal around a weld that has been 

metallurgically altered by the heat of the welding process. This area is often more 

susceptible to cracking than the parent metal. 

Hazard: A potential event that can lead to a loss of life, property, income, e.t.c. 

 

I 

Index: One of four general categories to which pipeline accidents can be attributed. 

Aspects of pipeline design, operation and environment are scored to arrive at 

numerical values for the third-party index, corrosion index, design index and incorrect 

operations index. 

Index Sum: A summary number from the risk model that represents an assessment of 

all variables that affect spill probability. Index sums vary between a theoretical low of 

zero (extremely high probability of failure) to a theoretical high of 400 (virtually no 

chance of failure). 

In-line inspection (ILI): The use of an electronically instrumented device, travelling 

inside the pipeline, to measure characteristics of a pipe wall, especially the detection 

of anomalies such as metal loss, due to corrosion, dents, gouges and cracks. Several 

ILI tool technologies are available, each with relative strengths in terms of types of 

anomalies detected, ability to characterize the anomaly and accuracy. 

Incremental (cost or benefit): Denotes an additional change in the value of a 

variable, such as costs or benefits, attributable to an alternative (also known as 

marginal). 

L 

Leak: Loss of containment from a pipeline component; the unintentional release of 

product from the pipeline. Although the terms leak and spill are used interchangeably, 

a distinction could be that a leak is any amount of product escaping a pipeline, 

whereas a spill refers to the results of a leak – the final leaked volume and 

accumulation point, for instance. 

Leak impact factor: A number that represents the overall consequence of a pipeline 

failure in the risk assessment. This factor is a score based on the product hazard and 

the dispersion factor. The leak impact factor is divided into the sum of the four index 

values to arrive at the relative risk score. 
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M 

MAOP: Maximum allowable operating pressure; also called MAWP for maximum 

allowable working pressure. The highest internal pressure to which the pipeline may 

be subjected based on engineering calculations, proven material properties and 

governing regulations. 

N 

Non-use value: The component of a natural resource that is valued by individuals 

apart from any past, present, or anticipated future use of the resource in question. 

P 

Product Hazard: A numerical score that reflects the relative danger of the material 

being transported through the pipeline. The relative ranking of the product 

characteristics considers acute and chronic hazards such as flammability and toxicity. 

psi, psig, psia: Pounds per square inch, pounds per square gauge or pounds per square 

absolute (normal unit of pressure measurement in USA). Zero psig is equal to about 

14.7 psia, depending on the exact atmospheric pressure of the area. 

Public education: The program sponsored by pipeline companies to teach the general 

public about the pipeline industry. The emphasis is usually on how to avoid and report 

threats to the pipeline and what precautions to take should a leak be observed.  

Pipeline: As defined in 49 CFR Part 192 and Part 195, interstate natural gas and 

hazardous liquids pipelines regulated by the U.S. Department of Transportation‟s 

Office of Pipeline Safety. 

Present value: The current, discounted value of a past or future resource flow. 

Primary research: The process of conducting basic research tasks, such as 

quantitative risk modeling or contingent valuation surveys, to answer specific 

research questions. Research methods that rely on values derived from primary 

research studies (e.g., benefits transfer) are referred to as secondary research. 

Q 

Qualitative analysis: Use of qualitative research methods to answer specific research 

questions; use of these methods provides qualitative rather than quantified 

descriptions of variables, parameters, or relationships of interest  

Quantitative analysis: Use of quantitative techniques (or groups of techniques) to 

generate estimates of the actual value of specific variables, parameters, or 

relationships, and to express them in quantified terms (e.g., units of product, euro). 
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Examples of quantitative techniques include, but are not limited to, probabilistic risk 

assessment, decision analysis, and Monte Carlo analysis.  

R 

Risk / Benefit Analysis (RBA): To identify the most cost effective controls for an  

unacceptable risk   

Rectifier: A device that converts AC electricity into DC electricity and delivers the 

current onto the pipeline for purposes of cathodic protection.   

Relative risk value or score: This number represents the relative risk of a section of 

pipeline in the environment and operating climate considered during the evaluation.  

Risk: The probability and consequences of a damaging event.  

ROW: Right of way. The land above the buried pipeline (or below the aboveground 

pipeline), that is under the control of the pipeline owner. This is usually a strip of land 

several yards wide that has been leased or purchased by the pipeline company. 

S 

Safety device: A pneumatic, mechanical ore electrical device that is designed to 

prevent a hazard from occurring or to reduce the consequences of the hazard (e.g. 

pressure relief valves, pressure switches) 

SCADA: Supervisory control and data acquisition. A SCADA system allows 

conditions along the pipeline to be from a central location. This is a system to gather 

information such as pressures and flows from remote field locations and regularly 

transmit this information to a central facility where the data can be monitored and 

analyzed.  

Sensitivity analysis: An approach to characterizing the uncertainty associated with 

estimates of unknown values, based on analysis of the sensitivity of such estimates to 

changes in underlying parameters. Performing sensitivity analysis provides a range of 

plausible values that describe to decision makers the overall influence of specific 

sources of uncertainty on the expected outcome. 

Social welfare A term used by economists that refers to a change in the economic 

well-being of society; social welfare is measured by net changes in producer or 

consumer surplus). 

T 

Third party: Any individual or group not employed by the pipeline owner or 

contracting with the pipeline owner. Third-party damages occur when an individual 
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not associated with the pipeline in any way accidentally strikes the pipeline while 

performing some nonrelated activity. 

U 

Uncertainty: The extent to which the estimated value of a variable, relationship, or 

parameter may differ from its true value. Because the true values of many economic 

and environmental variables (e.g., rate of future climate change) are inherently 

unknowable, results of cost-benefit analyses and other economic analyses are 

generally subject to some uncertainty. 

Use value: The component of value of a natural resource associated with any direct 

past, present, or anticipated future use of, or contact with, that resource. 

W 

Wall thickness: The dimension measurement between a point on the inside surface of 

the pipe and the closest point on the outside surface of the pipe. This is the thickness 

of the pipe material. 

Willingness-to-pay The concept that the value of goods and services not typically 

traded in markets, such as environmental amenities, is equal to what consumers are 

willing to forgo to acquire such goods and services. Willingness-to-pay is a measure 

of a given consumer‟s willingness to incur opportunity costs in order to acquire goods 

or services. 

Y 

Yield point: This is a point, defined in terms of an amount of stress, at which inelastic 

deformation takes place. Up to this point, the material will return to its original shape 

when the stress is removed; past this point, the stress has permanently deformed the 

material.  
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APPENDIX B 

TABLES 
 

Table B.1 Failure frequencies based on failure causes and hole size (EGIC, 1993) 

Failure causes Failure 

frequency 

(1/year km) 

Percentage of 

total failure rate 

(%) 

Percentage of different hole 

size (%) 

Small Medium Great 

External 

interference  
3.0  10

-4 51 25 56 19 

Construction 

defects 
1.1  10

-4
 19 69 25 6 

Corrosion 8.1  10
-5

 14 97 3 <1 

Ground movement 3.6  10
-5

 6 29 31 40 

Others/unknown 5.4  10
-5

 10 74 25 <1 

Total failure rate 5.75  10
-4

 100 48 39 13 

*The hole sizes are defined as follows: small hole, hole size is lower than 2 cm; medium hole, hole size 

ranges from 2 cm up to the pipe diameter; great hole, full bore rupture or hole size is greater than the 

pipe diameter. 

 
Table B.2 Correction values of failure frequencies caused by third party activity 

Factors Correction value Conditions 

Depth of cover  2.54 dc<0.91 m 

0.78 0.91m ≤ dc ≤ 1.22 m 

0.54 dc > 1.22 m 

Wall thickness 

 

 

 

 

1 
mint t  or d > 0.9m 

0.4 6.4mm < t ≤ 7.9mm 

and 0.15m < d ≤ 0.45m 

0.2 
mint t  

Population Density 18.77 Town 

3.16 Suburban 

0.81 Rural 

Prevention Methods 1.03 Market posts only 

0.91 All other methods 

 

Table B.3 Minimum Wall Thickness with pipeline diameter 

d (mm) -150 150-450 450-600 600-900 900-1050 1050 

mint  (mm) 4.8 6.4 7.9 9.5 11.9 12.7 

* dc : depth cover, t : wall thickness of pipeline, d : diameter of pipeline; rural: a population density 

not exceeding 2.5 persons/ha; town: central areas of towns or cities; suburb: area immediate in 

character between rural and town; mint : minimum wall thickness 
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Table B.4 Probit Models for Injury by Thermal Radiation (TNO, 1992)  

Probit Equation Effects 

4

3Pr 39.83 3.0186ln tI   
First – degree burns

 

4

3Pr 43.14 3.0186ln tI  
Second – degree burns 
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