
Engineering Search Algorithms for Web Data

Leonidas Akritidis

Supervisor: Assoc. Prof. Panayiotis Bozanis
Department of Computer and Communication Engineering

University of Thessaly

Doctoral Committee:

Panayiotis Bozanis, Chair
Elias Houstis
Catherine Housti
Dimitrios Katsaros
Yannis Manolopoulos
Athena Vakali
Charalampos Konstantopoulos

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

c© Leonidas Akritidis 2013

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

In memory of my father, Gervassios
to my wife, Dimitra

to my mother, Maria, and my sister, Efthimia

2
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

ACKNOWLEDGEMENTS

At the end of this long endeavor, I would like to express my sincere gratitude to a
group of people who provided me with their valuable assistance, guidance, support and
encouragement. Without their help it is certain that this dissertation would never have
started, and/or it would never have reached the required levels of quality.

First of all, I would like to express my gratitude to my thesis supervisor, Professor
Panayiotis Bozanis for his vital guidance and support. Without his enormous encourage-
ment this research effort would never have been achieved. Although I did not graduate from
this Department and he was not aware of my skills, Professor Bozanis initially accepted
me as a PhD student, and in the sequel he provided me with all the necessary knowledge
required to conduct a scientific research at the PhD scale. It was not only the scientific
advices and guidance, but also the important financial support (from the projects I partici-
pated) which ensured the production of this dissertation. Professor Bozanis is an excellent
scientist and a valuable collaborator; but above all he is a true supporter. In case this text is
being read by an undergraduate student who desires to start or continue an academic career,
I definitely suggest that he/she visits Professor Bozanis.

This effort would never have started without the encouragement of Lecturer Dimitrios
Katsaros. He was the first who saw an alpha version of QuadSearch, a search system which
I developed to assist a friend of mine in his MSc studies. He brought me to the Department
and suggested Professor Bozanis for the supervision of my PhD. Lecturer Katsaros was
a co-author in several of our publications; his contribution was really valuable, whereas
his notes on my manuscripts assisted me in understanding the most important concepts of
technical writing. I definitely appreciate his excellence in science and I deeply thank him
for his sincere support.

I also thank my thesis committee members, Elias Houstis, Catherine Housti, Yannis
Manolopoulos, Athena Vakali, and Charalambos Konstantopoulos for reading my disserta-
tion and for providing valuable comments which assisted me in enhancing its quality.

I would like to write an entire chapter to describe the sincere support of my wife Dim-
itra, but since this is an acknowledgements section in a PhD dissertation, I must limit my
gratitude to only a small paragraph. Dimitra was always there to accept my disappointment

3
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

in the hard moments of my research, but she always had a (usually humorous) comment of
encouragement to make. I apologize for these unpleasant moments and also, for the time I
spent in studying and researching instead of investing it to her. Undoubtedly, a considerable
part of this dissertation belongs to her and I express my thanks for her patience, support
and devotion.

This dissertation is dedicated to the memory of my father Gervassios, who deceased
during this research. His death was a great loss for me; fortunately, the encouragement
of the other members of my family, my mother Maria, and my sister Efthimia helped me
continue and finish this work. I really owe them my gratitude.

Finally, but most importantly, I would like to thank God, His Son and The Holy Spirit
whose constant presence in my life enlightens my path and gives me hope.

Leonidas Akritidis
BSc in Electrical and Computer Engineering

PhD in Computer and Communication Engineering
Volos, 2013

4
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

TABLE OF CONTENTS

DEDICATION . 2

ACKNOWLEDGEMENTS . 3

LIST OF FIGURES . 9

LIST OF TABLES . 12

ABSTRACT . 17

ABSTRACT (GREEK) . 19

CHAPTER

I. Introduction . 1

1.1 Information production, dissemination and searching in World Wide
Web . 1

1.2 Contributions of this dissertation 3

II. Compressing Block-Based Inverted Indexes 8

2.1 Introduction . 8
2.2 Preliminaries and related work 10
2.3 PFBC: Positions Fixed Bit Compression 13

2.3.1 Compressing the positional data with PFBC 13
2.3.2 Accessing the positional data with PFBC 15

2.4 Document zones . 17
2.5 Integrating zones within the inverted index 18
2.6 TZP: compression of zoneID-position pairs 19

2.6.1 Compressing zoneIDs and positional data with TZP . . . 19
2.6.2 Accessing zoneIDs and positional data with TZP 20

2.7 Experiments . 23
2.7.1 Experimental index setups 24
2.7.2 Compression effectiveness of PFBC 26

5
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

2.7.3 Compression effectiveness of TZP 27
2.7.4 Query throughput in positional indexes with PFBC . . . 30
2.7.5 Query throughput in enriched indexes with TZP 33

2.8 Conclusions . 35

III. Influence Flow in Social Networks . 37

3.1 Introduction . 37
3.2 Related work . 39
3.3 Identifying the influential bloggers 40

3.3.1 Factors measuring a blogger’s influence 41
3.3.2 The MEIBI and MEIBIX metrics 42
3.3.3 Experimental evaluation 44

3.4 The problem of bloggers classification 54
3.4.1 Identifying and classifying influential bloggers 55
3.4.2 Blogger productivity and influence 56
3.4.3 Experimental evaluation 58

3.5 Blog Site Quality Scores . 68
3.5.1 Experimental Evaluation 71

3.6 Conclusions . 71

IV. Ranking . 73

4.1 Introduction . 73
4.2 Probabilistic Web retrieval . 75

4.2.1 The BM25 function . 75
4.2.2 Zone weighting . 76
4.2.3 Term proximity scoring 77
4.2.4 Combining term proximity with zone weighting 79
4.2.5 Experimental Evaluation 81

4.3 Opinionated blog post retrieval 82
4.3.1 Related work . 83
4.3.2 Preliminaries . 85
4.3.3 Query Independent Quality Scores (QUIQS) 86
4.3.4 Combining opinion and relevance scores with QUIQS . 87
4.3.5 Experiments . 89

4.4 Conclusions . 99

V. Scientometrics and Knowledge Extraction 101

5.1 Introduction . 101
5.2 The f -index . 103

5.2.1 The notion of coterminal citations 104
5.2.2 The f -index . 106
5.2.3 Experiments . 109

6
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

5.3 Computing scientometrics in large-scale academic search engines
with MapReduce . 111

5.3.1 Related work . 112
5.3.2 MapReduce basics . 113
5.3.3 Computing scientometrics with MapReduce 114
5.3.4 Optimizing the performance 117
5.3.5 Experiments . 119

5.4 Identifying attractive research areas for new scientists 123
5.4.1 Related work . 124
5.4.2 Problem formulation 126
5.4.3 Problem statement . 128
5.4.4 Identifying attractive research areas 128
5.4.5 Experiments . 134

5.5 Research articles classification 145
5.5.1 Related work . 146
5.5.2 Classification algorithm 147
5.5.3 Experimental evaluation 153

5.6 Conclusions . 157

VI. Rank Aggregation Methods . 159

6.1 Introduction . 159
6.2 Preliminaries and related work 162
6.3 KE algorithm and variations . 165

6.3.1 KE Algorithm vs Borda Count 165
6.3.2 Antispam version of KE algorithm 166
6.3.3 The GeoKE method 166
6.3.4 The weighted KE method 168
6.3.5 The URL-aware KE method 169

6.4 The QuadRank scoring . 170
6.4.1 Dealing with individual rankings 170
6.4.2 Zone weighting . 172
6.4.3 URL analysis . 174
6.4.4 QuadRank scores . 176
6.4.5 QuadRank vs. Borda count 176
6.4.6 QuadRank vs. Outranking approach 177

6.5 Experimental Evaluation . 177
6.5.1 Retrieval effectiveness evaluation with TREC data . . . 178
6.5.2 Retrieval effectiveness evaluation with test queries . . . 180

6.6 QuadSearch . 190
6.6.1 Architecture . 190
6.6.2 Features . 195
6.6.3 Efficiency Evaluation 197

6.7 Conclusions . 200

7
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

VII. Conclusions . 201

APPENDICES . 208
A.1 Publications in journals and transactions 209
A.2 Publications in international conferences 210
A.3 Chapters in books . 210
A.4 Publications in national conferences 211
A.5 Technical reports . 211

BIBLIOGRAPHY . 212

8
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

LIST OF FIGURES

Figure

2.1 Partitioning an inverted list into T blocks of postings (block-based or-
ganization). In the upper part we depict the skip table which stores two
pointers per block: one pointing at the docIDs and one pointing at the
frequency values. 12

2.2 First phase of TZP; Encoding a single term occurrence (position-zone
pair) in a 32-bit space for zb = 3 and pb = 29. 19

2.3 Partitioning an inverted list into T blocks of postings (block-based or-
ganization) according to TZP. The positional and zone data are packed
separately at the end of the inverted list. For each block Bi of the list, we
store within the skip table (a) a pointer RBi pointing at the starting bit of
the corresponding occurrence data and (b) the number of bits CBi used to
encode each occurrence of the block. 22

2.4 The adversary block-based organization approaches. The positional data
are encoded by using either OptP4D, or VSEncoding. The positions look-
up structure stores pointers which point at the beginning of the positional
sub-blocks. Each sub-block consists of 128 positional values, unless it is
defective. 24

2.5 Expanding the partitioned inverted list of Figure 2.1 to store zones. Apart
from the three standard chunks which store the docIDs, frequencies, and
positions, we allocate one more to store the desired values. 26

2.6 Compressed inverted file sizes per shard (Left), and total index sizes for
all ten shards (Right) for our four experimental setups. 28

2.7 Sizes of the auxiliary data structures used by our four examined indexes
per shard. 29

2.8 Occurrence look-up structure: Average seek times for positional and zone
data per query and per shard. 34

9
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

3.1 Influential bloggers’ blogging behavior over 2008, according to MEIBI. . 53

3.2 Influential bloggers’ blogging behavior over 2008, according to MEIBIX. 53

3.3 The 3-D space where the bloggers classes are located. 55

3.4 Time distribution of posts and inlinks. 60

3.5 Time distribution of comments. 61

3.6 Classification of the bloggers of Engadget (left) and Techcrunch (right). . 67

3.7 Classification of the bloggers of Engadget (left) and Techcrunch (right)
for February 2010. 69

4.1 Authors Ranking according to the BP and BI indices. 95

5.1 Citing extremes: (Left) No overlap at all. (Right) Full overlap. 105

5.2 Citing articles with author overlap. 106

5.3 Running times of the four methods in a small local cluster (Left), and a
Web cluster infrastructure (Right). 122

5.4 Graphical representation of the examined universe 126

5.5 Number of Authors vs Number of Research Areas 135

5.6 Popular Research Fields in the last 3 years by number of published pa-
pers (left) number of incoming citations (center), and number of distinct
authors (right) . 140

5.7 The 20 most popular research fields according to Sfn1,Y in the 3 last years . 142

6.1 Measurements of Precision@10 and Precision@20 for various search en-
gines for the query “tickets for uefa champions league final 2010” 183

6.2 Measurements of Precision@10 and Precision@20 for various search en-
gines for the query “distributed index construction” 186

6.3 Measurements of Precision@10 and Precision@20 for various search en-
gines for the query “lungs cancer symptoms” 189

6.4 (Left) Architecture of QuadSearch. (Right) Quad Search’s homepage. . . 191

10
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

6.5 (Left) Quad Bot’s structure. (Right) Object Builder’s architecture. 192

6.6 (Left) Classification Module. (Right) Presentation Module. 194

6.7 The results’ page . 195

6.8 Part of the options’ page is where the Ranking Algorithm Selector and
the Engine Bombing Protection lay. 196

11
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

LIST OF TABLES

Table

2.1 Zones of a typical Web page . 18

2.2 Overall space requirements (expressed in GB) of our experimental index
setups . 27

2.3 Total auxiliary data structure sizes for all ten shards. 30

2.4 Total inverted index sizes expressed in GB, for all ten shards. 30

2.5 Positional data access and decompression times per query and per posting
for different values of K. 31

2.6 Positional data access and decompression times per query and per posting
in case the queries are submitted as exact phrase searches. 33

2.7 Number of postings involved in the second phase of query processing for
K = 200 and K = 1000. 34

2.8 Occurrence decompression times per query and per posting, forK = 200
and K = 1000. 35

3.1 Summary of the used symbols . 43

3.2 Time distribution of posts and inlinks. 45

3.3 The age of the incoming links with respect to the publication date of the
post they cite. 46

3.4 Bloggers ranking based on the number of posts submitted (active bloggers). 48

3.5 Bloggers ranking based on the h-index. 49

3.6 Bloggers ranking based on the MEIBI index. 50

12
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

3.7 Bloggers ranking based on the MEIBIX index. 51

3.8 Correlation of rankings . 51

3.9 Bloggers ranking according to: TUAW (left). Influence-flow model (cen-
ter). MEIBI and MEIBIX (right). 52

3.10 Corellation of rankings . 52

3.11 Incoming links and comment age with respect to the publication date of
the original post. 58

3.12 Dataset characteristics. 59

3.13 Bloggers ranking based on the number of posts submitted (active blog-
gers) for Engadget (left) and Techcrunch (right). 62

3.14 Bloggers ranking based on h-index for Engadget (left) and Techcrunch
(right). 63

3.15 Bloggers ranking (February 2010) according to: Engadget (left). Influence-
flow model (center). MEIBI and MEIBIX (right). 64

3.16 Bloggers ranking (February 2010) according to: Techcrunch (left). Influence-
flow model (center). MEIBI and MEIBIX (right). 64

3.17 Correlation of rankings for Engadget (February 2010) according to Spear-
man’s rho. 65

3.18 Correlation of rankings for Techrunch ((February 2010)) according to
Spearman’s rho. 66

3.19 Bloggers categorization for Engadget (left) and Techcrunch (right). 67

3.20 Statistics of the Engadget bloggers between 01/01/2010 and 28/03/2010. . 68

3.21 Blogs impact rankings according to: BIF (left) and SBI-Rank based on
MEIBI (left). 71

4.1 Notation. 76

4.2 Parameter setting for the various ranking methods (Left) and zone weight-
ing scenario for the BM25F and BM25TOPF functions (Right). 81

13
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

4.3 Performance of different retrieval methods for the 50 queries of the Ad-
hoc Task of TREC-2009 Web Track. 82

4.4 Summary of the used symbols . 85

4.5 Required metadata for computing QUIQS: For each post we store its in-
teger identifier, the internal TREC identifier, the three QUIQS for the
author, the blog site, and the post itself, and a pointer value which stores
the location of the full text of the post. 90

4.6 Intermediate metadata required to construct the structure of Table 4.5. . . 92

4.7 The ten most influential blog posts of the TREC blogs08 dataset accom-
panied by the numbers of incoming links, comments, and their corre-
sponding MEIBI and MEIBIX values. 93

4.8 Bloggers influence rankings according to: MEIBI (left), and MEIBIX
(right) . 94

4.9 Three example QUIQS combinations applied for opinionated retrieval
evaluation. 96

4.10 Evaluation of the retrieval effectiveness using different ranking methods. . 97

4.11 The zone weighting scheme for the field opinion scores. 98

5.1 Computer scientists’ ranking based on h-index. 108

5.2 Computer scientists’ ranking based on fs2 . The fs3 value is represented too.109

5.3 Largest relocations w.r.t. rank position: Most positions up. 110

5.4 Largest relocations w.r.t. rank position: Most positions down. 111

5.5 List of the most frequent symbols . 114

5.6 Setting the partial paper scores in the map phase for various scientometrics 115

5.7 Problem input-output statistics . 121

5.8 Record counts and data sizes for the four examined methods 121

5.9 Summary . 127

5.10 Summary of metrics for evaluating the work of a scientist 133

14
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

5.11 Authors rankings (all research areas) according to h-index (left), contem-
porary h-index (center), trend h-index (right). 136

5.12 Authors ranking according to TSh-index for various research areas. 137

5.13 Authors ranking according to Trend TSh-index for various research areas. 138

5.14 Journals Ranking according to h-index 139

5.15 Journals Ranking for 2009 according to impact factor 139

5.16 Attractive research fields for new scientists according to Sfn2,ν,µ scores, for
various author and journal evaluation metrics. Left: ν = 1, µ = 1. Right:
ν = 3, µ = 1. 143

5.17 Attractive research fields for new scientists according to Sfn2,ν,µ scores, for
various author and journal evaluation metrics. Left: ν = 1, fn, µ = 1.
Right: ν = 3, fn, µ = 1. 143

5.18 Attractive research fields for new scientists according to Sfn3,ν,µ scores, for
various author and journal evaluation metrics. Left: ν = 1, µ = 1. Right:
ν = 3, µ = 1. 144

5.19 Attractive research fields for new scientists according to Sfn3,ν,µ scores, for
various author and journal evaluation metrics. Left: ν = 1, fn, µ = 1.
Right: ν = 3, fn, µ = 1. 145

5.20 Summary . 148

5.21 Optimal tuning of the wk, wa, and wj parameters for the three employed
taxonomy structures and for training sets of different sizes. 154

5.22 Trained Model Statistics . 156

5.23 Classification results for the three experimental taxonomy structures, for
ε = 1: (i) Left: C11, (ii) Center: C81, and (iii) Right: C276 156

5.24 Classification results for the three experimental taxonomy structures for
ε = 0.85: (i) Left: C11, (ii) Center: C81, and (iii) Right: C276 156

6.1 Summary . 171

6.2 Example . 171

15
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

6.3 Zones . 172

6.4 Performances of the 10 best runs of the WA task of TREC-2009. 179

6.5 Performance of different rank aggregation methods for m = 72 and vari-
able numbers of retained documents. 180

6.6 Top-20 list and relevant documents for the query “tickets for uefa cham-
pions league final 2010” when the QuadRank algorithm is applied. 182

6.7 Relevant Documents in the Top-10 Lists for the Query “tickets for uefa
champions league final 2010”. 183

6.8 Rankings Correlation for the Query “tickets for uefa champions league
final 2010”. 184

6.9 The top-20 list for the query “distributed index construction” when the
QuadRank Algorithm is Applied. 185

6.10 Relevant documents in the engines’ top-10 lists for “distributed index
construction”. 186

6.11 Rankings Correlation for the Query “distributed index construction”. . . 187

6.12 The top-20 list for the query “lungs cancer symptoms” when the Quad-
Rank algorithm is applied. 188

6.13 Relevant documents in the engines’ top-10 lists for “lungs cancer symp-
toms”. 188

6.14 Rankings Correlation for the query “lungs cancer symptoms”. 190

6.15 QuadSearch response times for various rank aggregation methods and 30
requested results per engine. 198

6.16 QuadSearch response times for various rank aggregation methods and
100 requested results per engine. 199

16
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

ABSTRACT

Engineering Search Algorithms for Web Data
by

Leonidas Akritidis

Supervisor: Prof. Panayiotis Bozanis

The massive growth of the information produced and disseminated through the World Wide
Web (WWW) has rendered Information Retrieval (IR) one of the most important and chal-
lenging research fields in modern computer science. As hundreds of Gigabytes are being
published on the Web in a daily basis and billions of users require access to this huge
amount of data, search engines have to constantly scale up in terms of both efficiency and
effectiveness.

In this dissertation we present novel engineering algorithms which contribute to the
solution of key problems related to the current Web search engines. These algorithms
lead to improvements in the query throughput of these systems (that is, the rate at which
they serve the incoming queries), and the quality of the results they produce in response
to these queries. In particular, we introduce PFBC, an efficient algorithm for organizing
and compressing the positional data stored within an inverted index. In the sequel, we
expand PFBC with the aim of supporting additional data within an inverted list posting
such as the field (or zone) of a document where a word occurs. The new algorithm, namely
TZP, exhibits a wide range of advantages against the current state-of-the-art generic integer
compression methods. Based on TZP, we introduce BM25TOPF, a probabilistic ranking
function which in contrast to the existing probabilistic functions of the Okapi family, takes
into consideration the word ordering in the query, and combines term proximity with zone
scoring.

Furthermore, we examine the essential problems related to vertical searching, that is,
searching for information by accounting only a specific portion of the Web. In particu-
lar, we study the problem of quantifying the influence flow in Blogosphere by taking into
consideration the particular features which characterize Blogosphere such as the rapid blog

17
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

post production and the temporal instability of this environment. We propose three such
metrics: MEIBI, MEIBIX and the BP/BI-index. In the sequel, we examine how the pro-
posed models for quantifying the bloggers’ influence can be employed by a vertical blog
search engine to improve the quality of the generated results.

Another vertical search system which gained our attention is academic search engines.
In this dissertation we conducted a three-way research; The first part includes proposal of
new scientometrics that is, metrics which measure the quality of the work of a scientist. We
introduce the f -index, a novel metric which embodies coterminal citations and presents
them as a generalization of self-citations and of co-citation. In addition, we introduce
the topic-sensitive extensions, special versions of the most important scientometrics which
attempt to evaluate the work of a scientist in only one particular research field. In the sequel,
we discuss four strategies for computing these metrics in large-scale datasets by using a
special-purpose algorithm parallelization framework (Hadoop/MapReduce). Finally, our
last contribution regards a supervised machine-learning algorithm for classifying research
papers. The results of all these three parts of our research can be utilized by all the current
academic search engines and digital libraries to enhance their functionality.

The final contribution of this dissertation concerns the problem of rank aggregation, or
rank fusion. Here we present a family of algorithms which provide an effective manner for
combining and re-ranking the results coming from multiple search engines. The new algo-
rithms, QuadRank and the KE family take into consideration both statistical data (i.e. the
individual rankings of each item and the number of its appearances) and document-related
information (i.e. zone weighting, URL, etc). All these algorithms have been implemented
within QuadSearch, a prototype metasearch engine which we have developed as a testbed
for evaluating new rank aggregation methods and generic solutions related to the wider
problem of metasearching.

18
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

PERILHYH

Algorijmikèc Teqnikèc Anaz thshc PlhroforÐac se Dedomèna tou Pagkìsmiou IstoÔ

Suggraf :

LewnÐdac AkritÐdhc

Epiblèpwn: Panagi¸thc Mpoz�nhc

H meg�lh diìgkwsh thc plhroforÐac pou par�getai kai diakineÐtai mèsw tou Pagkìsmiou

IstoÔ katèsthse to episthmonikì pedÐo thc An�kthshc PlhroforÐac (Information Re-
trieval, IR) èna apì ta shmantikìtera sth montèrna epist mh twn Upologist¸n. Kaj¸c

ekatont�dec Gigabytes dhmosieÔontai ston Pagkìsmio Istì se kajhmerin b�sh kai

disekatommÔria qrhst¸n apaitoÔn �mesh prìsbash sthn paraqjeÐsa plhroforÐa, oi

sÔgqronec mhqanèc anaz thshc prèpei na epitugq�noun suneq klim�kwsh tìso se apote-

lesmatikìthta, ìso kai se apodotikìthta.

Se aut th diatrib parousi�zoume nèouc kai kainotìmouc algorÐjmouc oi opoÐoi

suneisfèroun sthn epÐlush shmantik¸n problhm�twn pou sqetÐzontai me tic trèqousec

mhqanèc anaz thshc. Oi algìrijmoi pou parousi�zontai ed¸ odhgoÔn se beltÐwsh tìso

thc taqÔthtac ap�nthshc twn erwthm�twn (dhlad tou rujmoÔ me ton opoÐo oi mhqanèc

anaz thshc exuphretoÔn ta eiserqìmena erwt mata), ìso kai thc poiìthtac twn apote-

lesm�twn pou epistrèfoun oi mhqanèc se apìkrish aut¸n twn erwthm�twn. Pio sug-

kekrimèna, eis�goume ton PFBC, èna apodotikì algìrijmo gia thn org�nwsh kai th

sumpÐesh twn dedomènwn jèshc pou eÐnai apojhkeumèna sto anestrammèno euret rio

miac mhqan c anaz thshc. Sth sunèqeia, epekteÐnoume ton PFBC algìrijmo me skopì

thn upost rixh epiprìsjethc plhroforÐac mèsa se mia anestrammènh lÐsta tou eu-

rethrÐou. H epiprìsjeth plhroforÐa afor� sto pedÐo (sth z¸nh) enìc eggr�fou mèsa

sto opoÐo sunant�tai mÐa lèxh. O nèoc algìrijmoc pou onom�zetai TZR, parousi�zei èna

meg�loc eÔroc pleonekthm�twn ènanti twn treqous¸n, korufaÐwn kai genik¸n mejìdwn

sumpÐeshc akeraÐwn. Me b�sh ton algìrijmo TZR eis�goume thn BM25TOPF pijan-

otik sun�rthsh kat�taxhc h opoÐa se antÐjesh me tic up�rqousec sunart seic thc

oikogèneiac Okapi, lamb�nei upìyh thc th seir� me thn opoÐa diat�ssontai oi lèxeic

19

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

sta upoblhjènta erwt mata kai sundu�zei thn eggÔthta ìrwn (term proximity) kai thn
apìdosh b�rouc stic z¸nec (zone weighting).

Epiplèon, exet�zoume orismèna apì ta pio ousiastik� probl mata pou sqetÐzontai

me tic k�jetec anazht seic, dhlad tic anazht seic pou pragmatopoioÔntai lamb�nontac

upìyh mìno èna sugkekrimèno tm ma tou Pagkìsmiou IstoÔ. Melet�me to prìblhma thc

posotikopoÐhshc thc ro c thc epirro c sth Blogosphere sumperilamb�nontac upìyin

ta idiaÐtera stoiqeÐa pou th qarakthrÐzoun ìpwc thn taqÔtath paragwg eggr�fwn

kai th qronik ast�jeia tou perib�llontoc. ProteÐnoume trÐa diaforetik� metrik�:

to MEIBI, to MEIBIX kai to deÐkth BP/BI. Sth sunèqeia exet�zoume mejodologÐec me

tic opoÐec eÐnai dunat h ekmet�lleush twn proteinìmenwn montèlwn apì mÐa k�jeth

mhqan anaz thshc istologÐwn, ¸ste na beltiwjeÐ h poiìthta twn paragìmenwn apote-

lesm�twn.

àna �llo k�jeto sÔsthma anaz thshc to opoÐo kèrdise thn prosoq mac eÐnai oi

akadhmaðkèc mhqanèc anaz thshc. H èreuna pou pragmatopoi same se aut th diatrib

sugkroteÐtai apì trÐa diaforetik� mètwpa: To pr¸to mètwpo perilamb�nei prot�seic

nèwn bibliometrik¸n deikt¸n, dhlad metrik¸n ta opoÐa epiqeiroÔn na metr soun thn

antikeimenik axÐa thc sunolik c ergasÐac enìc epist mona. Eis�goume to deÐkth f (f -
index) o opoÐoc enswmat¸nei thn ènnoia twn sun-termatik¸n anafor¸n kai tic parousi�zei
san mÐa genÐkeush twn autì-anafor¸n (self-citations) kai twn sun-anafor¸n (co-citations).
Epiprosjètwc, eis�goume nèec epekt�seic stouc pio diadedomènouc bibliometrikoÔc deÐktec,

oi opoÐec epitrèpoun thn axiolìghsh tou episthmonikoÔ èrgou k�je ereunht kat�

episthmonikì pedÐo. Sto epìmeno st�dio parousi�zoume tèsseric strathgikèc gia ton

par�llhlo upologismì twn bibliometrik¸n deikt¸n se meg�la sÔnola dedomènwn, qrhsi-

mopoi¸ntac to Hadoop/MapReduce, èna genikoÔ skopoÔ sÔsthma katanom c algorÐjmwn
se poluplhjeÐc om�dec upologist¸n. Sto trÐto kai telikì st�dio parousi�zoume èna

nèo algìrijmo ekm�jhshc mhqan c (machine-learning algorithm, MLA) gia thn kathgo-

riopoÐhsh twn ereunhtik¸n �rjrwn. Ta apotelèsmata kai twn tri¸n met¸pwn èreunac

pou parousi�zontai ed¸ mporoÔn na qrhsimopoihjoÔn apì tic sÔgqronec akadhmaðkèc

mhqanèc anaz thshc kai tic yhfiakèc biblioj kec ¸ste na belti¸soun thn poiìthta twn

pareqomènwn uphresi¸n touc.

H teleutaÐa suneisfor� pou parousi�zoume se aut th diatrib afor� sto prìblhma

thc enopoÐhshc kai thc sÔgkrishc list¸n apotelesm�twn. Parousi�zoume mÐa oikogèneia

algorÐjmwn oi opoÐoi parèqoun apotelesmatikì sunduasmì kai anakat�taxh twn apote-

lesm�twn pou proèrqontai apì pollaplèc diaforetikèc mhqanèc anaz thshc. Eis�goume

th mèjodo QuadRank kai thn oikogèneia KE ta opoÐa lamb�noun upìyin touc tìso

statistik� dedomèna (ìpwc tic memonwmènec katat�xeic k�je antikeimènou kai to pl joc

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

twn emfanÐse¸n tou), ìso kai plhroforÐec sqetikèc me ta anakthjènta èggrafa (z¸nec

emf�nishc twn ìrwn anaz thshc, URL, klp). Oi algìrijmoi autoÐ èqoun ulopoihjeÐ

mèsa sthn QuadSearch, èna prwtìtupo sÔsthma meta-anaz thshc pou anaptÔxame me

skopì thn axiolìghsh nèwn mejìdwn sÔgkrishc katat�xewn, all� kai genik¸n lÔsewn

se probl mata pou sqetÐzontai me to eurÔtero z thma thc meta-anaz thshc.

21
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

CHAPTER I

Introduction

1.1 Information production, dissemination and searching in World
Wide Web

Since its invention at CERN in 1989, the World Wide Web (WWW, Web) has evolved
into the largest repository of information worldwide. Its size is reflected by both the huge
volumes of data scattered across hundreds of millions servers, and the rapid rates at which
this data grows. Furthermore, billions of users connect to the Web daily to gain access to
a portion of this data, whereas their demands for fast and accurate retrieval of qualitative
information sources increase over time.

However, the explosion which led to the Web’s present form was triggered by the par-
ticipatory concept introduced by Web2.0, where users not only access the provided infor-
mation, but also they produce it. The birth of Web2.0 contributed to the creation of multiple
interactive services including social networks, blog sites and communities, forums, wikis,
media sharing sites and countless others. On the other hand, the traditional server-based
applications such as search engines evolved with the aim of taking into consideration the
users’ preferences, click through data, explicit feedback, previous attitude, search history,
etc.

In such a huge and highly volatile environment, the wide research area of Information
Retrieval (IR) obtained a crucial role in modern computer science. Unless it is easily ac-
cessible, the information published on the Web is close to useless. On the other hand, the
users require swift and effortless identification of sources which satisfy their information
needs. To sustain such heavy workloads and to achieve high user satisfaction, the search
systems are required to constantly improve in terms of both efficiency and effectiveness.

Efficiency is a measure which is primarily reflected by query throughput, that is, the
speed at which a system responds to an incoming request. Accepting queries at rates touch-

1
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

ing tens of thousands per second, it is well understood that the underlying data structures
and query processing algorithms of a search engine must be fully optimized. On the other
hand, effectiveness mainly concerns the quality of the generated results. Since the Web
expands at enormous rates and the user expectations grow, the ranking methods of search
engines must constantly evolve to provide unbiased and qualitative results. In this disserta-
tion we describe strategies which contribute to the improvement of both of these attributes.

Moreover, the diversity of the information published on the Web led to the creation
of specific-purpose search services called vertical search engines. These systems oper-
ate similarly to the traditional Web search engines, however, they limit the range of their
functionality to only a particular portion of the Web. For instance, a blog search engine
allows its users to search among blog posts, communities and authors. Another example
of a rather popular vertical search engine are the digital libraries and the academic search
engines which provide focused search capabilities for scientific documents and researchers.

Regarding blog search, one of the most important problems is the identification of the
most influential authors (bloggers); the influentials are usually connected in large virtual
communities and hence, they can play a special role in multiple ways. For instance, com-
mercial companies and organizations can turn their interest in gaining the respect of the
influentials to become their “unofficial spokesmen”, instead of investing huge amounts of
money and time to advertise their products to thousands of potential customers. The influ-
entials could also be responsible for forging political agendas by affecting the other peo-
ples’ voting behavior. Therefore, the identification of the bloggers, who exhibit remarkable
activity and influence, is of great importance and can lead to the development of innova-
tive business opportunities (related to the commercial transactions and traveling). In this
dissertation we propose three methodologies for identifying the most influential bloggers
in community blog sites.

Another field of research conducted within this dissertation concerns the academic
search engines, digital libraries, and scientific databases. Following the evolution of the
Web search engines, these services have significantly enriched the content of their result
pages. Hence, the problems related to the quality of a research article or the estimation of
the influence of an author have became particularly important. In this work we introduce
several methods which contribute to the issue of evaluating the research work of a scientist.

On the other hand, the constantly growing repositories of the academic search engines
posed new issues, such as the parallelization of the algorithmic solutions of the aforemen-
tioned problems. Here we study for first time the topic of the parallel computation of
the scientists’ evaluation metrics by using MapReduce, the well-established parallelization
framework of [41]. We propose four different strategies and we show that the usage of

2
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

in-Mapper Combiners facilitates efficient execution thus improving both running times and
network bandwidth.

We also examine the interesting problem of research articles’ classification by introduc-
ing a novel supervised machine-learning approach. Our algorithm includes a training phase
which employs a set of labeled documents and trains a model according to the articles’ key-
words, its authors previous papers, co-authorship information, and journal history. In the
sequel, it exploits the trained model to assign labels to the unlabeled articles. The proposed
classification method was compared against the two state-of-the-art machine-learning algo-
rithms, Support Vector Machines and AdaBoost and was found more accurate in research
article categorization by approximately 10%.

This method was used in another research topic of this dissertation, the identification
of the scientific fields which are attractive for starting scholars. In this study we carefully
examine the characteristics of the new scientists and the attributes which render an area
of research “hot” for them. The outcome of this interesting work was that not all popular
and emerging fields are suitable for new scientists; instead, we must take into consideration
the lack of experience and the lack of trust by the rest of the academic community. Our
experimental evaluation was based on a large publicly available dataset and the included
articles were classified by exploiting the aforementioned machine-learning algorithm.

The metasearch engines comprise another set of particularly interesting search engines.
Designed with the aim of combining the power of the plain Web search engines, these
services offer increased Web coverage (since the full coverage of the Web is considered
impossible for a single search engine) and improved retrieval effectiveness because they
exploit the strengths of their component engines. In the last chapter of this dissertation we
discuss the rank aggregation problem in the context of metasearching and we introduce a
family of effective algorithms. We also present QuadSearch, a prototype metasearch engine
which have been developed in order to attest the usefulness of our proposed methods.

1.2 Contributions of this dissertation

In this section we briefly refer to the most important contributions of this dissertation
and we provide a general description of its organization.

In chapter II we study efficiency issues related to the Web search engines with the aim
of improving their query throughput, that is, the rate at which they answer queries. We state
that one of the strategies for achieving this goal is the introduction of robust organization
and compression algorithms for the primary data structure of a search engine, its inverted
index. More specifically:

3
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

• We state that the most efficient algorithms for compressing integers are the block-
based approaches, i.e., those which are capable of encoding entire bundles of integers
such as PForDelta and VSEncoding. We report that although these methods work
well for the docIDs and the frequency values of an inverted list, they are not practical
for encoding the positional data because during query processing we are interested
in decoding only limited data, and the decompression of whole blocks of integers
is redundant. Furthermore, these methods do not allow direct access to the desired
data; a separate and costly look-up operation is required (section 2.2).

• We introduce PFBC (Positions Fixed Bit Compression), a method which encodes the
positions of an inverted list block by using a fixed number of bits. We show that with
this organization and by maintaining a limited number of pointers within the list’s
skip table, we are allowed direct access to the positional data, and also, we decode
only the information actually needed (section 2.3).

• In section 2.4 we study the potential of including additional information within the
inverted list in an effective and efficient manner. In particular, we replace the plain
positional value within a posting by the notion of occurrence. In this dissertation the
introduced occurrences consist of both the positional data and the physical location
of a document where a word occurs (field or zone).

• We introduce TZP, a method for compressing the aforementioned word occurrences.
TZP dictates that each document zone is assigned a unique zoneID value and that
each zoneID is accompanied by the corresponding positional value. This position-
zoneID pair is encoded by using a fixed number of bits, in a fashion similar to that
of PFBC. Due to this strategy TZP exhibits the same advantages over the competitor
compression algorithms, as PFBC (section 2.6).

• We conduct exhaustive experiments by using a large document collection comprised
of about 50 million Web documents, ClueWeb09. Our experiments demonstrate
that both PFBC and TZP outperform PForDelta, an optimized PForDelta variant
(OptP4D), and VSEncoding in terms of positional data access and decompression
speed by a large margin, whereas they introduce infinitesimal losses in the overall
size of the index.

In chapter III we address the problem of identifying the influential bloggers in a commu-
nity by taking into consideration the special features of Blogosphere. The most important
contributions of this chapter are:

4
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

• We study an early influence estimation model, the influence-flow model and we ex-
pose its main drawbacks. We state that for the identification of the most influential
bloggers it is required that we consider all the publications of a blogger, and not
just the best one. In addition, we take into consideration the temporal aspects of the
Blogosphere.

• Based on the previous analysis, we introduce two novel metrics for identifying the
influentials; MEIBI and MEIBIX. These metrics address both of the aforementioned
drawbacks of the influence-flow model. The former takes into consideration the age
of a blog post (in days), whereas the latter depends on the age of the incoming ref-
erences of a post. Furthermore, the definitions of MEIBI and MEIBIX take into
account all the posts of a blogger (section 3.3).

• We introduce the BP/BI-index, a two-dimensional metric which combines the influ-
ence of a blogger with his/her productivity. This metric is also time-sensitive and
classifies the bloggers into four classes: A (currently influential and productive), B
(influential but not productive), C (productive but not influential) and D (nor produc-
tive nor influential). See section 3.4 for more details.

• We attest the usefulness of our approaches by experimenting with real-world data
obtained from three blog communities; The Unofficial Apple Weblog, Engadget, and
Techcrunch technology forum.

The problem of ranking in Web search engines and the vertical blog search services is
the main subject of chapter IV. Here we apply the contributions of chapter II (combination
of positional and field data) and of chapter III (bloggers’ influence evaluation metrics) with
the aim of improving the retrieval effectiveness. In short, the contributions discussed in this
chapter are:

• We investigate the potential of combining term proximity scoring, correct term order-
ing, and zone weighting into a single probabilistic ranking function. We introduce
BM25TOPF, a function which takes into consideration the proximity of the query
terms in a document (similarly to BM25TP), the location of a document where the
query terms occur (similarly to BM25F), and the ordering of the query terms in a
document (section 4.2).

• We perform effectiveness measurements by using data from the WebTrack task of
the TREC 2009 conference. Our findings indicate that BM25TOPF outperforms both
BM25F and BM25TP by at least 8%.

5
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

• We attempt to apply the bloggers influence evaluation metrics of chapter III to a
vertical blog search engine in order to enhance retrieval effectiveness. In this case
we are mainly interested in retrieving opinionated blog entries, that is, articles which
are considered relevant to a given query, only in case they contain an opinion (either
positive or negative) about the subject of the query (section 4.3).

• We perform effectiveness measurements by using data from the BlogTrack task of the
TREC 2009 conference. Our findings indicate that our retrieval model outperforms
other state-of-the-art approaches by around 6%.

The academic search engines and numerous related problems are the primary research
issue of chapter V. The contributions of chapter V are summarized into the following list:

• We to propose effective metrics for evaluating the research work of a scientist in a
fair and unbiased manner. We introduce the notion of coterminal citations and we
show their connection to co-citations and self-citations. We present the f -index, a
metric which embodies and quantifies the impact of coterminal citations in scientists
ranking (section 5.2).

• We enhance the existing state-of-the-art scientometrics by introducing their Topic-
Sensitive extensions. These extensions allow us to estimate the impact of the work
of an author in a particular area of research.

• Due to the constantly increasing sizes of the scientific databases, the calculation of
the aforementioned scientometris becomes more complex, since the volumes of the
involved data cannot be handled by a single workstation. We identify the problem
and we propose four strategies to support the parallel computation of scientometrics
by using Hadoop/MapReduce, a fault-tolerant framework for data and algorithms
distribution (section 5.3).

• We formulate the problem of identifying attractive research areas for new scientists.
Initially, we provide a detailed description of the provided data and in the sequel, we
formally state the problem itself along with its component issues. Our proposed solu-
tion is designed to take into consideration several aspects regarding the attractiveness
of a research area and the characteristics of the new scientists (section 5.4).

• We study the issue of research articles’ classification, a key component for every suc-
cessful digital library or academic search engine. We present a supervised machine-
learning classification approach which achieves more accurate categorization of the

6
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

unlabeled articles compared to the traditional Support Vector Machines and Ad-
aBoost (section 5.5).

Finally, in chapter VI we discuss the problem of metasearching and we introduce a
family of rank aggregation methods. More specifically:

• We introduce the KE algorithm, a rank aggregation formula which combines the
results lists coming from different sources. The method incorporates several features
including the individual ranking each item was assigned, the number and length of
the component results’ lists, as long as the total number of the appearances of each
item in all lists. Furthermore, we provide three more KE variants: the GeoKE which
combines the aforementioned features with the locality of the user and the origination
of the item, the weighted KE which assigns weights to the component lists and the
URL-Aware KE which takes into consideration of the URL structure of each item
(section 6.3).

• We present another rank aggregation method, namely QuadRank which is primar-
ily oriented towards Web metasearching. QuadRank incorporates the most effective
features of the KE family and injects new features such as zone weighting. The
experimental evaluation of QuadRank demonstrates its superiority against other ad-
versary approaches such as Borda Count, the Condorcet method and the Outranking
Approach (sections 6.4 and 6.5).

• We present the primary architectural components and design issues of QuadSearch,
our prototype metasearch engine and we perform a detailed benchmark indicating
the system’s efficiency (section 6.6).

7
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

CHAPTER II

Compressing Block-Based Inverted Indexes

2.1 Introduction

Nowadays, the repositories of the major search engines accommodate tens of billions
of documents [40] and as the Web expands and the crawling technology evolves, these
repositories are expected to grow further. Furthermore, search engines accept and answer
thousands of queries per second attempting to quickly retrieve the most suitable documents
for each submitted query. In such a dynamic environment where the available information,
the workload and the user expectations continuously grow, search engines have to con-
stantly scale up in terms of both efficiency (query throughput) and effectiveness (quality of
query results).

The inverted index is the primary data structure used by search engines for storing
document related data and metadata. According to [147, 159], an appropriately constructed
inverted index can improve the performance of query processing dramatically. Due to the
importance of the inverted index in the overall efficiency of a search system, there has been
a lot of research conducted towards its optimization. Optimization primarily regards two
critical issues: compression and organization. The former is a key issue for reducing the
overall index size and minimizing the transfer costs from either disk or main memory. The
latter enables partial access of the index structure, that is, a query can be answered without
having to traverse all the available information stored in it.

The benefits of these methods are magnified in the case where we store positional data
within the index, because the size of the positions is several times larger than that of do-
cIDs and frequencies and the indexes containing positional values are about 3 to 5 times
larger than the non-positional ones [154]. Therefore, it is extremely important to devise an
effective mechanism to organize and compress the positional data, since a naive solution
could lead to prohibitively large indexes and reduced query throughput.

8
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

In this chapter we demonstrate that although the current state-of-the-art compression
methods (such as PForDelta [69] and VSEncoding [129]) are both effective and efficient
when applied at docIDs and frequencies, they do not perform equally well when they oper-
ate on the positional data of an inverted list. We introduce PFBC, a scheme which encodes
the positions of an inverted list block by using a fixed number of bits allowing us to a)
access the required data instantly and b) decode only the data actually needed, without
touching any unnecessary information. Through extensive experimentation, we demon-
strate that with a small cost in space, PFBC outperforms all the adversary compression
methods in terms of speed when applied on the positional data of the index.

In addition, several engineers (see for instance [40]) have stated that the information
stored within the indexes of the modern commercial search engines has tripled during the
past few years. However, in the literature we mainly encounter strategies and algorithms
concerning typical inverted indexes, which almost always store very limited data: docu-
ment identifiers, word-document frequencies and word positions in a document. Compared
to the hundreds of the parameters employed by the major search engines for ranking their
documents [149], this data is apparently inadequate.

In this chapter we also study the potential of including additional information within
the inverted index. In particular, we adopt the idea of partitioning a Web document into
locations of special interest, namely fields or zones. The document zones were initially
introduced in [92], but to the best of our knowledge, issues regarding the compression and
organization of such indexes have never been studied before. We investigate the meaning
of a word’s appearance within a document and we replace the plain positional data by the
occurrences, a piece of information which contains both the position and the zone of the
document where this specific word appears.

In the sequel, we propose a method which allows compact storage of zones along with
the corresponding word positions. Our approach, namely TZP, operates in a spirit similar
to PFBC and is designed to support all the inverted list partitioning strategies that have
been proposed so far (refer to [100, 26, 19, 154, 32]). TZP operates in two steps: In the
first step, the compressor packs each position-zone pair of a block into a 32-bit space and
in the next phase, these packets are encoded together by employing a fixed number of bits.
This scheme enables the direct access of the occurrence data for each posting, by using a
limited number of pointers (one pointer per block).

As a summary, the contributions of this chapter are:

• We introduce PFBC, an algorithm for efficient compression of the positional data in
an inverted index without look-ups.

9
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

• We introduce a two-level encoder for positions and zones, namely TZP. TZP com-
presses the data by using a fixed number of bits for each position-zone pair of the
same block of an inverted list.

• We show that the fixed-bit policy adopted by PFBC and TZP allow very fast decom-
pression, whereas they also facilitate direct access to the data actually required for
processing a query. Both methods introduce a formula which allow us to compute the
exact location of the desired data, thus saving the cost of look-ups. Moreover, we do
not decode redundant information (i.e blocks of integers), but only the data actually

needed.

• All our contributions are experimentally evaluated by using the Clueweb09-T09B
document collection consisting of roughly 50 million documents.

The rest of the chapter is organized as follows: In section 2.2 we refer to the state-
of-the-art methodologies for organizing inverted indexes and we cite the relevant work.
In section 2.3 we present the principles of PFBC, whereas in section 2.4 we provide a
description of the document zones. In section 2.5 we show how the zones can be integrated
within the inverted index and in section 2.6 we present the TZP compression algorithm
for zones and positions. The chapter closes with with the experimental evaluation of our
methods in section 2.7, and our conclusions in section 2.8.

2.2 Preliminaries and related work

The inverted index is the primary data structure constructed and maintained by the
search engines for serving user queries. There is a significant amount of research regarding
the efficient organization of the inverted index and in this section we briefly describe some
basic elements deriving from the related theory.

A typical inverted index structure consists primarily of two components: (i) the lexicon,
a list sorted in ascending lexicographical order containing all the distinct words appearing
in the collection and (ii) the inverted file, that stores all the occurrences of each word in
the collection. These occurrences are organized in inverted lists. In its simplest form, an
inverted list It of a term t stores a list of postings which contain the integer identifiers of
the documents (docIDs) where t appears into.

To support ranked query processing, we store additional information within an inverted
list: (i) the term-document frequency (or just frequency) fd,t, which reveals how many
times a term t appears in document d i.e. each posting Si is of the form (di, fi) and (ii)

10
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

some positional data, pi,k indicating the position of the term in the document. In this case
the postings are of the form (di, fi, pi,0, pi,1, ..., pi,fi−1). The inverted lists can be sorted
either by docID, or by another attribute (frequency or another scoring value [30]. Here we
consider the situation where the inverted lists are sorted by increasing docID order; this
setup allows more effective index compression (refer to [147, 32]) and supports the parallel
traversal of all of the query terms’ inverted lists during query processing [92].

The inverted lists are stored in a highly compressed form either on disk, or in main
memory. Compression has multiple advantages since it does not only reduce the storage
requirements, but it also decreases transfer costs [147]. However, the compressed data
needs to be quickly accessed and decompressed when a query is submitted and in case of
improper implementation, decoding could be a serious bottleneck for query throughput in
search engines.

There are two primary methods exploiting the inverted index to evaluate a query: term-

at-a-time and document-at-a-time [140]. The first approach initially orders the query terms
in increasing frequency order; in the sequel the inverted list of each term is repeatedly
merged with the lists of the other terms, leading to the final result list (see [147] for a de-
tailed description). On the other hand, in the latter method, the inverted lists are scanned in
parallel sequentially retrieving the documents which are relevant to the query. Document-
at-a-time evaluation is essential for large document collections where we can predict the
number of documents that could be retrieved (by using statistical methods) and the op-
eration can be terminated as soon as adequate qualitative documents have been retrieved
[26].

To perform efficient parallel scanning of several inverted lists, it is beneficial that we
maintain a mechanism which allows us to skip large portions of the list by seeking the first
docID larger than or equal to a given one. In this way we avoid decoding useless portions of
the list and we are able to quickly access the desired information. For this reason, multiple
works such as [96, 100, 26, 19, 154, 32] propose the partitioning of the inverted list into
a series of adjacent blocks and the maintenance of one or more pointers pointing to the
beginning of each block. During the evaluation of a query, the processor makes use of
these pointers to locate the correct block and decode only the data actually needed.

A block-based inverted list organization is depicted in Figure 2.1. The data in each
block is stored in three chunks: the first chunk is used to store the docIDs, the second chunk
stores the corresponding frequency values, whereas the third chunk contains the positional
data. Since the number of the occurrences of a term within a document can be infinitely
large, an important issue posed by the usage of a block-based scheme is to identify the
location of the positional data for a particular posting. The problem becomes even more

11
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

B
1

Block

B1
SPostings

Freq Ptr

DocID Ptr

Block B
2

Postings S B2

Freq Ptr

DocID Ptr

Block B
T

Postings S BT

Freq Ptr

DocID Ptr

77,64,83,119,....,250,1,1

1,1,2,1,3,1, ... 3,1,4,1

1,1,7,1,1,59,...,1,323,1 1,1,605,3

1,3,3,13,3,1,10,1,3,...,3,14,1,1

21,15,144,1055,117,10,24,... 84,87,96,55,69,72, 57,61 ,... 15,25,73,111,57,64,,118,9

Positions

Figure 2.1: Partitioning an inverted list into T blocks of postings (block-based organiza-
tion). In the upper part we depict the skip table which stores two pointers per
block: one pointing at the docIDs and one pointing at the frequency values.

challenging in case the corresponding data is compressed, because we need to locate the
desired information within the compressed byte sequence.

To address this issue, the researchers have proposed two basic ways to organize the data:
(a) interleaving, i.e. the positional data of a particular block are stored after the docIDs
and the frequencies of the same block, and (b) creating a completely separate structure
for positions with its own lookup mechanism. For instance, [148] propose interleaving,
and they introduce a fairly standard hierarchical look-up structure to access the positions.
For each block of an inverted list, this structure stores one docID and one pointer to the
beginning of the block. Furthermore, within each block the positional data is organized into
sub-blocks of B postings. For each of these sub-blocks, a pointer is used to store its offset
from the beginning of the block. To retrieve the positional data of a specific posting we
first search for the correct sub-block and then we decode all the positions for the postings
of this sub-block. Then the positions of the particular posting are retrieved by using the
aforementioned offset value. Nevertheless, this look-up operation is quite expensive and
can decelerate query processing especially in case B is small. Furthermore, this additional
structure occupies extra space in memory.

On the other hand, [136] organizes the positions by employing a separate structure,
namely indexed list. This list consists of two levels; the upper level contains pointers
pointing to the data stored at the lower level. That is, for each posting they store a pointer
which shows the location of the corresponding positional values. Although this approach
offers direct access to the positional data without look-ups, it requires even more space
than the aforementioned look-up structure since storing one pointer per posting is very
expensive.

In this chapter we propose a hybrid between interleaving and data structures. In par-
ticular, we choose to store the positional data contiguously (i.e. not in blocks), but along

12
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

with each block we also record a pointer which in combination with our encoding method,
it allows us to access directly the positions of a specific posting. This renders our approach
much more economic than that of [136], since instead of requiring one pointer per posting,
it requires one pointer per block.

On the other hand, the problem of selecting appropriate block sizes has been widely
studied: For instance, the work of [96] proposes setting skip pointers every

√
Nt postings of

the inverted list, where Nt is the number of documents containing t. A number of research
articles [154, 43, 148] place skips each time a fixed number of postings (i.e. 128) has been
encountered. Other papers study the issue of dynamically setting skip pointers in a fashion
which maximizes query throughput. For instance, [26] embed compressed perfect skip lists
in an inverted list to increase the processing speed, whereas [129] introduced a novel class
of encoders which partition the list in an optimal way that maximizes decompression rates
by using dynamic programming.

Here we do not examine in depth the issue of inverted list partitioning. We rather focus
on the efficient representation of positions and zones which allows fast query evaluation.
However, notice that all the aforementioned skipping/partitioning techniques can be used
in combination with our proposals with no additional effort.

2.3 PFBC: Positions Fixed Bit Compression

In this section we describe PFBC, a simple, yet efficient approach for encoding and
organizing the positional data of an inverted list. Initially we present the ideas and the
algorithm that characterize the compression part, and in the sequel, we show how this
method allows fast access to the required data.

2.3.1 Compressing the positional data with PFBC

Now let us present the manner PFBC operates during the compression phase; the
method is designed to encode the positional values of an inverted list block by using a
fixed number of bits. PFBC also requires the existence of a pointer which shows the loca-
tion of the first position of this block. With this information, we will later demonstrate how
we can access the positional data of an arbitrary posting within this block.

Our analysis begins by considering the block-based list organization of Figure 2.1. Sup-
pose that the inverted list It of a term t is partitioned into BIt blocks and each block
Bi ∈ BIt is comprised of SBi

postings. Here we do not study the manner an inverted
list is partitioned into blocks, however to render our proposals compatible with the existing

13
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

partitioning approaches, we assume that SBi
is not equal for all blocks (i.e. the blocks of

the list may include variable numbers of postings).
In the sequel, we identify the highest positional value |pBi

|max for each block Bi of
the inverted list. Based on |pBi

|max, we allocate a number of CBi
= dlog2(|pBi

|max − 1)e
bits to produce a binary representation of each occurrence in that block, and we store these
representations into a compressed storage.

A pseudocode demonstrating how PFBC is used to encode a bundle of K positional
values is presented in Algorithm 1.

Algorithm 1 Encoding a bundle of K positional values with PFBC. After the identification
of maximum positional value (steps 3-8), PFBC calculates C, which is the smallest number
of bits required to encode all K integers (step 9). In the sequel, the function write() in step
13 is used to store each pi value into a compressed sequence P by using C bits.

byte PFBC − Encode(K, p[K])

1. int i← 0, pmax ← 0, C ← 0
2. byte P
3. while (i < K) {
4. if (pi > Pmax) {
5. pmax = pi
6. }
7. i+ +
8. }
9. C ← dlog2(pmax − 1)e
10. P ← allocate dKC/8e bytes
11. i← 0
12. while (i < K) {
13. write(pi,P, C)
14. i+ +
15. }
16. return P

The fixed bit compression methodology of PFBC is expected to introduce some com-
pression loss in comparison to PForDelta. Actually, the latter encodes the largest integers
of a list as exceptions and the rest of them by using a fixed-bit scheme, similar to the one we
described. This operation is proved to be very effective in the case of docIDs, because in
the docIDs blocks the number of large integers is small (due to the d-gap encoding). How-
ever, when P4D is applied at blocks of positional data, the benefits are diminished because
in such blocks the number of large integers cannot be predicted. Indeed, as we demonstrate
in our experimental section, PFBC is outperformed by P4D in terms of compressed index
sizes by only a small margin.

14
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

2.3.2 Accessing the positional data with PFBC

Here we describe how PFBC can be employed to locate the positional data of a partic-
ular posting. Recall that our primary objective is to avoid any costly look-ups which will
decelerate query processing. For this reason, we introduce a mechanism which allows us
to pre-compute the location of the required data and decode it without touching any un-
necessary data. Note that the current state-of-the-art block compression methods such as
PForDelta and VSEncoding do not meet this requirement, since they are only capable of
decoding bundles of integers.

To achieve this, it is required that we store two values for each block Bi of the list:
(a) the aforementioned CBi

value which denotes the number of bits we used to encode the
positions belonging to the block Bi, and (b) a pointer RBi

pointing at the beginning of
the positional data of Bi. Exploiting this limited amount of information, we are able to
calculate the location of the positional data for any posting belonging to Bi. The following
equation provides the exact bit Sj where the positions associated to an arbitrary posting j
start from:

Sj = RBi
+ CBi

j−1∑
x=0

fx,Bi
(2.1)

where fx,Bi
is the xth frequency value stored within Bi. Consequently, to locate the

positional data for an arbitrary posting j we first need to dereference the corresponding
RBi

pointer value. Then, we sum up all the frequency values of the previous postings;
this sum reveals the number of the positional values stored between the beginning of the
block and the location of the desired data. Since the compressed positions are stored by
using a fixed number of bits, we just need to multiply the sum by CBi

to locate the first
compressed position of the posting. The operation ends by decoding the next fj,Bi

CBi
bits

and the positions are retrieved. The algorithm used by PFBC is illustrated in Table 2.
Our proposed methodology exhibits a wide range of advantages over the adversary

compression approaches:

• It facilitates direct access to the positional data by using equation 2.1. No expen-
sive look-ups for positions in tree-like structures are required. Consequently, query
processing is accelerated;

• It saves the space cost of maintaining a separate look-up structure [149], since the
involved pointers can be stored within the skip table;

• It uses much fewer pointers than the indexed lists of Transier and Sanders [136]; and

15
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Algorithm 2 Using PFBC to decode the positional data of the jth posting of the block Bi.
Initially, we sum up all the frequency values of the previous postings (steps 2-5) of Bi, and
we locate the bit where the occurrences of the jth posting start from (step 6). Then, we
employ the read() function to read each encoded position from the bit-vector P , starting
from different points each time (steps 8-12).

int PFBC −Decode(j, Bi,P)

1. int x← 0, s← 0
2. while (x < j) {
3. s← s+ fx,Bi

4. x+ +
5. }
6. int start← RBi + sCBi

7. x← 0
8. while (x < fj,Bi) {
9. p[x]← read(P, CBi , start)
10. start← start+ CBi

11. x+ +
12. }
13. return p

• It enables decoding of the information actually needed, without the need to decom-
press entire blocks or sub-blocks of integers (unlike other compression techniques
such as PForDelta [69]).

The final issue to address is to determine how the required RBi
and CBi

values should
be stored. A straightforward solution is to create a special data structure for this reason.
However, in that case additional space and a look-up operation would be required; conse-
quently the benefits of our method would be partially limited. Therefore, we decided to use
the skip structure (upper part of Figure 2.1) and for each entry of the table, we also record
these two values. This strategy is both effective and efficient; no extra space is required, but
only the room occupied by the values themselves. Furthermore, in case the query processor
decides that a posting belonging to a particular block should be exhaustively evaluated by
decoding its corresponding positional data, we are able to immediately accessRBi

andCBi
.

Algorithm 2 includes a pseudocode which demonstrates how PFBC is used to decom-
press the positional data for a specific posting. Let us describe the basic steps of this algo-
rithm. Assume that we need to access and decode the positions for the jth posting which
belongs to the blockBi of the inverted list. Initially, we accumulate all the frequency values
of the previous j − 1 postings of the block. In the sequel, we read the RBi

and CBi
values

from the skip table and we locate the required data as indicated by Equation 2.1. If fj,Bi
is

the associated frequency value of the jth posting, we sequentially read fj,Bi
groups of CBi

16
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

bits from the compressed sequence; each group represents an encoded positional value of
this posting.

2.4 Document zones

There are several features that differentiate Web documents from plain textual docu-
ments: the former include hyper-links allowing the reader to quickly navigate from one
page to another, and they also possess a visual structure determined by the usage of HTML
tags. A typical Web page usually includes a title, some anchor text associated with its out-
going links, headings and other locations of special interest such as meta-tags and URL.
Apparently, the appearance of a word in different locations of such a document is of dif-
ferent importance. For instance, the words used in a document’s title usually represent its
content and an effective search engine should treat these words in a different way than the
ones occurring in the normal text.

The structure of the Web documents have gained very little attention by the inverted
index researchers and engineers. The vast majority of the relevant work takes into con-
sideration only the position of a word to describe its occurrence within a document. One
exception to this rule is the early work of [30] which introduced plain and fancy hits to
identify words appearing in a document’s text and title respectively. However, this work
ignores the rest of the physical locations of a document whereas it limits the maximum
position value to an upper bound of 12 bits.

To address this problem, [92] partitioned each document into several parts of special
interest called fields or zones. Zones are distinct, arbitrary locations of a Web document
containing free text and delimited by page formatting tags. It is not mandatory to be con-
tiguous (they can span across multiple locations of the document), but they cannot overlap.
Unfortunately, the aforementioned work does not address the issue of the efficient repre-
sentation of zones within the inverted index.

Table 2.1 records some the most typical zones that a Web page can be partitioned into.
Each of these zones is assigned a unique integer value, the zoneID. Notice that for the case
we are studying (Web pages), we consider these eight zones only. Nevertheless, with a
slight modification our approach can support more zones and larger zoneIDs.

In this chapter we examine how zones can be used to improve the retrieval effectiveness
of a search engine. Moreover, we study efficient methodologies of including them within
the inverted index, the primary data structure that search engines employ to answer user
queries.

17
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Zone zoneID HTML
Body (Normal Text) 0 <body>...</body>
Anchor Text 1 <a>...
Title Text 2 <title>...</tile>
Document’s URL 3 -
Headings 4 <h1>...</h1>,<h2>...</h2>,...
Page Description 5 <meta name="Description" Content="...">
Image Description 6 <img alt="..." ...
Label Text 7 <label>...</label>

Table 2.1: Zones of a typical Web page

2.5 Integrating zones within the inverted index

We now show how a typical inverted index can be enriched by including zones. Within
each posting Si of the inverted list It of a term t, we replace the positional data with a more
general quantity hi,j , describing the jth occurrence of t within a document di. Therefore,
the new form of the posting Si is:

Si : (di, fi, hi,0, hi,1, ..., hi,fi−1) (2.2)

Since we desire to describe the occurrence of a term by using both positions and zones,
hi,j is of the form:

hi,j : pi,j, zi,j (2.3)

that is, each term occurrence is now described by a position-zone pair and not by just
using positional values. From now on, we shall use the word occurrence to refer to such
position-zone pairs. Compared to a typical inverted index, this enriched form provides
additional features and functionality, since:

• It is capable of answering a wider range of queries, for example “Retrieve all the

documents having the terms University AND Thessaly in title AND the term gr in

their URL”

• We can exploit more sophisticated and effective ranking functions such as the BM25F
[89], or fabricate other robust scoring approaches by taking the additional parameters
into consideration (see chapter IV).

The inclusion of additional information makes index organization and compression
more challenging. The requirements of Web-scale search engines include compactness

18
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

(i.e. the new data must be stored as effectively as possible) and speed (i.e. we must be
able to quickly access and decode the index data). In the following subsections we discuss
further these requirements.

2.6 TZP: compression of zoneID-position pairs

In this section we introduce TZP, an efficient algorithm for encoding the position-zone
pairs of the postings of equation 2.3. Initially we develop the encoding algorithm and in the
sequel, we show how we can access and decode the occurrence data of a particular posting.

2.6.1 Compressing zoneIDs and positional data with TZP

Inevitably, the inclusion of zoneIDs in an inverted list will lead to an increase of the
overall size of the index. In this subsection we study how we can minimize this effect and
preserve high decompression rates.

Let us return to the posting scheme described by Equations 2.2 and 2.3. A naive ap-
proach for encoding each term occurrence (Equation 2.3) would suggest using two separate
integers, one for storing the positional value and one for storing the zoneID. Undoubtedly,
this approach is prohibitively expensive since we cannot afford wasting 64 bits1 for each
term occurrence.

For this reason, we suggest a two-level compression scheme, namely TZP, which ini-
tially encodes one position-zone pair into a 32-bit space, and then, for each block of the
inverted list, it employs a fixed number of bits to encode the occurrences of that block.
Fixed-bit compression such as Packed Binary [20] has two major advantages; at first, it al-
lows fast decompression since the decoding process is fairly simple and second, it enables
access to the positional data of a particular posting without look-ups and without decod-
ing useless data. We shall defend these claims shortly, especially the second one which is
extremely important since look-ups could drastically decelerate query processing [148].

p
b
=29 bits z

b
=3 bits

3130292827262524 2322212019181716 1514131211100908 0706050403020100

Position

p−z pair

ZoneID

Figure 2.2: First phase of TZP; Encoding a single term occurrence (position-zone pair) in
a 32-bit space for zb = 3 and pb = 29.

Our analysis begins again by considering the block-based list organization of Figure

1in this work we assume that each integer occupies 32 bits.

19
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

2.1. Now we demonstrate how the occurrences hBi included in the postings SBi of a block
Bi can be efficiently encoded by using our proposed TZP approach. During the first phase
and for every term occurrence hj ∈ hBi , we reserve the zb least significant bits of a 32-bit
integer to encode the zoneID zj , whereas the rest pb = 32 − zb bits are used to represent
the positional value pj . In this work we mainly focus on standard Web pages with eight
zones at most, thus a setting of zb = 3 suffices. However, for different types of documents
alternative setups could be selected. Finally, applying this method to all the occurrences of
the block results in a sequence of new integers having values equal to |hj| = 2zbpj + zj .

At the second phase, we first select the highest occurrence value |hBi|max for each block
Bi of the inverted list. In the sequel, we useCBi = dlog2(|hBi|max)e bits to produce a binary
representation2 of each occurrence in that block, and we store these representations into a
bit vector. This operation is very similar to the Packed Binary approach.

A pseudocode demonstrating how TZP is used to encode position-zone pairs is pre-
sented in Algorithm 3. The operators that we use in our algorithm representation, include
bitwise AND (&), bitwise OR (|), left-shift of a value v by b bits (Lb(v)) and right-shift of
value v by b bits (Rb(v)).

TZP is not designed to operate on single integers; we can rather think of it as a method
which effectively compresses two correlated integers from which one of them has an upper
bound. In our examined occasion, we restrict zones to occupy only three bits. TZP can be
generalized to encode more than two integers. Therefore, if we have N integers which all
describe a single phenomenon (i.e. term occurrence in a document) and N − 1 of them can
be restricted to have an upper bound and relatively small values, TZP provides an efficient
mechanism for their compression.

2.6.2 Accessing zoneIDs and positional data with TZP

Now we show how our fixed-bit encoding allows access to the occurrences of a particu-
lar posting without look-ups. For each block Bi ∈ BIt of an inverted list, we associate two
values: (a) a pointer RBi which points at beginning of the occurrence data of Bi, and (b) a
value CBi which represents the fixed number of bits used to encode each occurrence of Bi.
With this information we can compute the location where the occurrences of a particular
posting SjBi start from, and avoid searching for it during query processing. The following
equation provides the exact bit where the occurrences of SjBi start from:

LjBi = RBi + CBi

j−1∑
x=0

fx,Bi (2.4)

2Recall that we are able to encode every positive integer ranging from 0 . . . N − 1 by using dlog2Ne bits.

20
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Algorithm 3 Encoding a bundle of K position-zone pairs with TZP. The function
Encode Occurrence encodes a single pair with respect to the number of bits zb that we
reserve for zones (in our case zb = 3). Encode Occurrences compresses an entire bundle
of K position-zones pairs; after the the maximum occurrence value hmax and the number
of the required bits C have been determined (steps 9-10), we store the binary representation
of each occurrence within the bit vectorH (steps 12-15). WriteBits is a typical bit-writer
function which stores an integer intoH by using C bits.

int Encode Occurrence (p, z, zb)

1. int h← 0
2. h← Lzb(p)
3. h← h | z
4. return h

byte Encode Occurrences(p[K], z[K],K)

1. int i← 0, hmax ← 0
2. while (i < K) {
3. h[i] = Encode Occurrence (p[i], z[i], 3)
4. if (h[i] > hmax) {
5. hmax = h[i]
6. }
7. i+ +
8. }
9. int C ← dlog2(hmax − 1)e
10. byteH ← allocate dKC/8e bytes
11. i← 0
12. while (i < K) {
13. WriteBits(H, h[i], C)
14. i+ +
15. }
16. returnH

where fx,Bi is the xth frequency value stored within Bi. Equation 2.4 informs us that to
locate the occurrence data for a particular posting, we first need to retrieve the associated
RBi pointer value; then, we sum up all the frequency values of the previous postings of the
current block Bi. This sum of frequencies reveals the number of the occurrences between
the beginning of the block and the location of the desired data. Since each of these occur-
rences is represented by a fixed number of bits, we just need to multiply the sum by CBi to
locate the first compressed occurrence of the posting. The operation ends by decoding the
next fj,BiCBi bits and the occurrences are retrieved.

Similarly to PFBC, our proposed methodology has a series of advantages over other
organization approaches:

• It allows us to directly access the desired data by using Equation 2.4 without look-

21
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

77,64,83,119,....,250,1,1

1,1,2,1,3,1, ... 3,1,4,1

1,1,7,1,1,59,...,1,323,1

3,3,1,10,1,3,...,3,14,1,1

1,1,605,3

1,3,3,1

B1
Pointer R

B1
COcc. Bits

2BPointer R

B1
Postings S

B
1

Block

2BCOcc. Bits

Postings S B2

Block B
2

BT
Pointer R

BT
COcc. Bits

Postings S BT

Block B
T

(21,0)(15,0)(144,1)(155,1),(117,1),...,(84,0)(87,1)(96,0)(55,1)(69,4)(72,1),...,(15,2)(25,0)(73,0)(111,0),..

Freq Ptr

DocID Ptr

Freq Ptr

DocID Ptr

Freq Ptr

DocID Ptr

Position−Zone Pairs

Figure 2.3: Partitioning an inverted list into T blocks of postings (block-based organiza-
tion) according to TZP. The positional and zone data are packed separately at
the end of the inverted list. For each block Bi of the list, we store within the
skip table (a) a pointer RBi pointing at the starting bit of the corresponding oc-
currence data and (b) the number of bits CBi used to encode each occurrence of
the block.

Algorithm 4 Decoding position-zone pairs for the jth posting of a block Bi according to
TZP. Initially we sum up all the frequency values of the previous postings (steps 2–5) of
the current block Bi, and we locate the bit where the occurrences of the jth posting start
from (step 6). Then, we employ the ReadBits function to read each encoded occurrence
from the bit-vector H, starting from different points each time (steps 8–12). In the second
phase, we extract the positional and zone data out of each occurrence (steps 14–18).

int Decode Occurrences(j,Bi,H)

1. int x← 0, s← 0
2. while (x < j) {
3. s← s+ fx,Bi
4. x+ +
5. }
6. int start← RBi + sCBi
7. x← 0
8. while (x < fj,Bi) {
9. h[x]← ReadBits(H, CBi , start)
10. start← start+ CBi
11. x+ +
12. }
13. x← 0
14. while (x < fj,Bi) {
15. z[x]← h[x] & 0x00000007
16. p[x]← R3(h[x])
17. x+ +
18. }
19. return p, z

22
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

ups. Consequently, query processing is accelerated.

• It saves the space cost of maintaining a separate look-up structure [148].

• It uses much fewer pointers than the approach of [136] which employs indexed lists.

• It enables decoding of the information actually needed, without the need to decom-
press entire blocks or sub-blocks of integers (unlike other compression techniques
such as PForDelta [69, 160]).

Another important issue is to determine where we should store RBi and CBi . A conve-
nient location is within the skip structure (upper part of Figure 2.3); for each entry of the
table, we also record these two values and in case the processor decides that a block should
be scanned, we are able to immediately retrieve them.

Similarly to encoding, the decoding process of TZP also involves two phases. Algo-
rithm 4 includes a pseudocode describing the entire operation. Suppose that we need to
access the positional and zone data for the jth posting of block Bi. Initially, we locate the
data as indicated by Equation 2.4. If fj,Bi is the associated frequency value of SjBi , we
sequentially read fj,Bi groups of CBi bits from the compressed sequence; each group repre-
sents an encoded occurrence of this posting. In the next phase, we extract the desired zone
and positional data out of each occurrence.

2.7 Experiments

In this section we attest the proposed PFBC and TZP approaches against some of the
most successful general-case compression methods. The experimentation is divided in two
phases where we measure the compression effectiveness and the query processing effi-
ciency of our two approaches. We mainly focus on presenting the space and time benefits
deriving from the usage of PFBC and TZP in terms of both compression effectiveness and
speed of data access and decompression.

All the results we present in this work are obtained by using a machine equipped with
a CoreI7 920@2.66 GHz processor (having the additional processing cores and Hyper-
Threading disabled) and 12 GB of RAM. The system was running the 64-bit distribution
of Ubuntu Linux 10.04 LTS. The sample document collection we employed in our experi-
ments is the Clueweb09-T09B data set, which is a subset of a larger collection, Clueweb09.
This subset consists of 50,220,423 pages written in English and occupies approximately
1.42 TB in uncompressed form.

23
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

In the real-world Web search engines, each machine typically searches a subset of the
collection, consisting of up to tens or hundreds of millions of Web pages [154]. Each query
server maintains its own part of the index, hence the entire index is partitioned into shards
[40]. Since in this work we desired to simulate a large-scale search system as precisely as
possible, we follow a similar strategy for constructing the index and we provide separate
measurements for each shard. In total, the generated index structures in this work consist
of ten shards.

2.7.1 Experimental index setups

To achieve unbiased measurements for PFBC we created three separate positional in-
dexes having their docIDs and frequencies organized in the same manner. In particular, we
fragmented each inverted list into blocks of 128 postings and we employed P4D to encode
the d-gaps and the associated frequencies. In the first two experimental index setups, we
applied the state-of-the-art position organization and compression methods encountered in
the literature. Namely,

77,64,83,119,....,250,1,1

1,1,2,1,3,1, ... 3,1,4,1 3,3,1,10,1,3,...,3,14,1,1

1,1,7,1,1,59,...,1,323,1 1,1,605,3

1,3,3,1

B1
Postings S

B
1

Block

Postings S B2

Block B
2

Postings S BT

Block B
T

B
1

Block Block B
2

Block B
T

Freq Ptr

DocID Ptr

Freq Ptr

DocID Ptr

Freq Ptr

DocID Ptr

DocumentIDs

Frequencies

Positions

S
k
ip

 T
ab

le

Sub−block Ptr 2

Sub−block Ptr 1 Sub−block Ptr 1

Sub−block Ptr 2

Sub−block Ptr 1

Num Sub−blocks: 1Num Sub−blocks: 2Num Sub−blocks: 2

21,10,15,144,155,117,17,36,10,25,..., 14,87,96,55,69,72,88,134,313,73,.,.. 15,25,53,111,64,410,557,29

P
o
si

ti
o
n
s

L
o
o
k
−

U
p

Figure 2.4: The adversary block-based organization approaches. The positional data are
encoded by using either OptP4D, or VSEncoding. The positions look-up struc-
ture stores pointers which point at the beginning of the positional sub-blocks.
Each sub-block consists of 128 positional values, unless it is defective.

• The strategy proposed by [149], i.e. the positions are compressed with OptP4D and
accessed by using a separate look-up structure. The original P4D algorithm encodes

24
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

integer groups having sizes that are multiples of 32 [69]. Typical implementations
employ P4D to encode bundles of 128 values; however, there are occasions where we
have fewer than 128 integers to encode. In such cases the encoder constructs a de-

fective compressed block of integers [26] by filling up the empty space with dummy
entries. These dummy entries introduce a remarkable overhead which in turn leads to
compression losses. To reduce these losses, [149] propose a variant of P4D, namely
OptP4D, which automatically adapts to under full chunks by using another compres-
sion method such as Simple16. To locate the positional data of a particular posting,
we need a set of pointers pointing at multiple points in the compressed positions and
a look-up structure similar to the one described in [149].

• The positions are encoded according to VSEncoding [129]. In contrast to the other
encoding schemes, this one automatically determines the size of each block by com-
puting the optimal manner that a list of integers should be partitioned, with respect to
the value of a cost function. In the sequel, VSEncoding encodes the integers of each
block by utilizing a fixed number of bits (according to the largest value in the block).
Although VSEncoding is found to perform well in decompressing docIDs, in this
work we use it to encode the positional data of an inverted list with the aim of com-
paring it against PFBC. Regarding the issue of organization, we observed that, due
to the random distribution of the positional values, VSEncoding constructs a large
number of small blocks of integers. In particular, for each block of an inverted list,
the algorithm in question organizes the respective positional data by constructing on
average 41 sub-blocks; consequently, for the entire inverted index we need to waste
more than 20.3 GB of space just to store pointers to each of these sub-blocks. For
this reason, we store pointers in a way identical to the one we apply at the OptP4D
case (that is, we set pointers per 128 compressed positions).

These organization strategies are illustrated in Figure 2.4. In the following experiments
we compare them against our introduced PFBC approach in terms of both space costs and
consumed times during query processing.

Regarding TZP, we expanded both of the aforementioned index organization approaches
with the aim of supporting zones. In particular, for each block of the inverted list we ap-
pended a fourth chunk as illustrated in Figure 2.5. This fourth chunk is used to store the
encoded sequence of the zoneIDs. To locate the positional and zone data we employ a
look-up structure similar to the one proposed in [149]. The difference is that apart from the
regular pointers showing the location of the positional data, it is also required to store an
equal number of pointers pointing at the respective zone data.

25
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Block B
2

Postings S B2

Freq Ptr

DocID Ptr

B
1

Block

B1
SPostings

Freq Ptr

DocID Ptr

Block B
T

Postings S BT

Freq Ptr

DocID Ptr

4,2,0,6,0,0,0,0

15,25,73,91,57,64,...

1,1,605,3

1,3,3,1

Positions

ZoneIDs

21,15,144,1055,117,10,24,...

0,0,1,1,1,0,0,2,,... 0,1,0,0,0,2,2,4,0,...

77,64,83,119,...,250,1,1

1,1,2,1,3,1, ... ,3,1,4,1

1,1,7,1,1,59,...,1,323,1

3,3,1,10,1,3,...,3,14,1,1

84,87,96,55,69,72, 57,...

Figure 2.5: Expanding the partitioned inverted list of Figure 2.1 to store zones. Apart from
the three standard chunks which store the docIDs, frequencies, and positions,
we allocate one more to store the desired values.

Finally, to demonstrate the overall growth in the size of an index caused by the inclusion
of zones, we also constructed a standard positional index for our experiments. The setup
we selected is similar to the one of Figure 2.1. DocIDs and frequencies are encoded by
using the P4D method, whereas the positional data are organized by using interleaving and
compressed by applying the OptP4D variant.

2.7.2 Compression effectiveness of PFBC

Now let us evaluate the performance of PFBC against the adversary state-of-the-art
approaches in terms of compression effectiveness. Apart from the size of the inverted
file, we also measure the space occupied by the accompanying data structures required
for efficient query processing (i.e. skip table, pointers to positions, and position look-up
structure).

In Table 2.2 we record the overall space requirements of each index setup that we ex-
amine. The first row concerns the accumulated inverted file size for all the ten shards
comprising our index. The next rows illustrate the sizes of the accompanying data struc-
tures. Notice that each organization approach does not make use of all data structures. For
instance, our PFBC approach does not require the existence of a positions look-up struc-
ture, whereas all strategies employ a skip table. The absence of a data structure is denoted
by using a dash symbol.

Among our examined encoding algorithms, VSEncoding achieved the best compression
performance; the ten inverted files of all shards occupy in total roughly 90.2 GB. On the
other hand, OptP4D performed imperceptibly worse resulting in an inverted file which

26
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Data Structure OptP4D VSEncoding PFBC
Inverted Index 90.8 90.2 92.0
Skip Table 1.7 1.7 1.7
Pointers to positions - - 2.1
Positions look-up 4.1 4.1 -
Total 96.6 96.0 95.8

Table 2.2: Overall space requirements (expressed in GB) of our experimental index setups

occupied less than 1% more space. As we anticipated, the fixed-bit compression strategy
adopted by PFBC introduced some slight losses. Compared to VSEncoding, the inverted
files of PFBC occupied in total approximately 2% more space.

Furthermore, we examine the sizes of the data structures which accompany each index
organization scheme. The PFBC scheme suggests storing the positional data in a con-
tiguous manner (i.e. without interleaving) and maintaining only one pointer per block to
access the positional data of a particular posting. This pointer, along with the correspond-
ing value representing the number of bits we use to encode the positional values of the
block, are stored within the skip table itself. However, OptP4D and VSEncoding encode
groups of elements hence in an interleaving scheme a block can contain multiple positional
sub-blocks. For each of these sub-blocks, it is required that we store a separate pointer to be
able to access their positional data. In other words, we are usually obliged to store multiple
positional pointers for each block of the inverted list. These pointers are kept within the
separate look-up structure we describer earlier.

In Table 2.2 we report the sizes of the auxiliary data structures for all of the 10 shards
of our examined indexes. The skip table which includes the positional pointers (recall the
upper part of Figure 2.4) is much more economic than the look-up structures themselves.
As a matter of fact, this data structure occupies approximately 65% of the space occupied
by the data structures of the OptP4D and VSEncoding approaches (skip table plus the
positions look-up structure = 5.8 GB). In the last row of Table 3 we present the overall
index sizes (inverted file plus auxiliary data structures) for each of the examined schemes.
In conclusion, we notice that the superiority of OptP4D and VSEncoding over PFBC in
terms of compressed sizes is compensated by the significantly smaller data structures that
accompany our proposed index scheme. As a result, PFBC presents marginal savings of
0.02-0.08%.

2.7.3 Compression effectiveness of TZP

In this subsection we record the inverted file sizes for both positional and enriched
indexes, to evaluate the benefits deriving from the usage of TZP. In the sequel, we measure

27
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Index Type Size (GB)
TZP 104.68
OptP4D 101.30
P4D 108.88
Positional OptP4D 92.91

Figure 2.6: Compressed inverted file sizes per shard (Left), and total index sizes for all ten
shards (Right) for our four experimental setups.

the space occupied by the accompanying data structures, that is, the skip table and the
positions (and zones) look-up structure.

2.7.3.1 Compressed inverted file sizes

The left part of Figure 2.6 illustrates the inverted file sizes expressed in GB for each of
the ten constructed shards. Furthermore, in the right part of the same Figure, we present
the overall index sizes for each organization approach.

The comparison of TZP against P4D and OptP4D shows that our method is more ef-
fective than the plain P4D approach. P4D encodes groups of 128 integers; for each group,
we select a parameter b in a manner that the large majority of the data elements (i.e. 90%)
can be coded by using b bits. The rest of the elements are called exceptions and are coded
by employing 8, 16, or 32 bits. On the other hand, TZP encodes the word occurrences by
using a fixed number of bits, regardless of their values. Therefore, one could expect that
P4D would perform better than TZP.

Nevertheless, this is not valid, since P4D cannot deal effectively with the groups that
have fewer than 128 elements each (defective groups). In these groups, the empty space
is padded with dummy entries and this leads to significant wasted space. As we already
mentioned, OptP4D addresses this problem by using P4D to encode the regular groups
containing 128 values, but instead switches to a different code for the defective ones.

In comparison with P4D, TZP produced an index that is about 3.9% smaller. On the
other hand, OptP4D outperformed our method by a margin of 3.2%. However, both P4D
and OptP4D require a look-up structure in order to identify the positional and zone data of
a particular posting. As we will show shortly, this structure has remarkable space require-
ments, therefore the overall space occupied by these indexes is increased.

The standard positional index occupies in total approximately 92 GB. In comparison

28
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 2.7: Sizes of the auxiliary data structures used by our four examined indexes per
shard.

to the other three approaches, we conclude that the inclusion of zones within the inverted
index leads to an increase to the occupied space by a margin that fluctuates between 8.3%
(for OptP4D) and 14.7% (for P4D).

2.7.3.2 Sizes of the auxiliary data structures

In this subsection we examine the space requirements of the auxiliary data structures.
The auxiliary structures include the skip table which allows us to partially access and de-
code the inverted list data during query processing, and the positions look-up structure
which enables us to access the positional and zone data for a particular posting. Recall that
P4D and OptP4D require both of these structures, whereas TZP is accompanied only by
the skip table of Figure 2.3.

Our TZP approach suggests storing the occurrence data contiguously (i.e. not inter-
leaving) and maintaining only one pointer per block to locate the desired data per post-
ing. However, P4D and OptP4D encode groups of 128 elements, hence, in an interleaving
scheme, a block can contain multiple positional and zone chunks. For each of these chunks,
it is necessary to store a separate pointer to be able to access their data. In other words,
we are usually obliged to store multiple positional and zone pointers for each block of the
inverted list.

Figure 2.7 depicts the sizes of the auxiliary data structures for all of the 10 shards of
our examined indexes. Moreover, in the Table 2.3 we present the overall auxiliary data
structure sizes for all ten shards. In the second column of this Table we record the type
of the index which makes use of a specific data structure. For instance, the TZP approach

29
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Data Structure Index Size (GB)
Skip Table All except TZP 1.69
Skip Table + Pointers TZP 2.60
Positions Look-Up Positional OptP4D 3.21
Skip Table + Positions Look-Up Positional OptP4D 4.90
Occurrences Look-Up P4D/OptP4D 4.58
Skip Table + Occurrences Look-Up P4D/OptP4D 6.27

Table 2.3: Total auxiliary data structure sizes for all ten shards.

exploits the skip table along with the pointers we described in subsection 2.6.2, whereas
OptP4D employs both the skip table and the occurrence look-up structure.

Notice the difference between the occurrence and position look-up structures. The
former stores pointers pointing at the positional and zone data, whereas the latter maintains
pointers pointing only at the positional data. The inclusion of these additional zone pointers
causes an increase of about 30% to the look-up structure (3.21 GB vs 4.58 GB).

The skip table which includes pointers (recall the upper part of Figure 2.3) is much more
economic than the look-up structures themselves. As a matter of fact this data structure
occupies approximately 53% of the space occupied by the data structures of the positional
P4D approach (skip table plus the positions look-up structure, 4.9 GB) and only the 41.4%
of the space occupied by the auxiliary structures of the P4D approach (skip table plus the
occurrences look-up, 6.27 GB).

In Table 2.4 we present the overall index sizes (inverted file plus auxiliary data struc-
tures) for each of the four examined schemes. We notice that the superiority of the OptP4D
over TZP in terms of compressed sizes is compensated by the significantly smaller data
structures that accompany our proposed index scheme.

Index Type Inverted Files Data Structures Total
TZP 104.68 2.60 107.28
OptP4D 101.30 6.27 107.57
P4D 108.88 6.27 115.15
Positional OptP4D 92.91 4.90 97.81

Table 2.4: Total inverted index sizes expressed in GB, for all ten shards.

2.7.4 Query throughput in positional indexes with PFBC

In this subsection we examine the performance of PFBC against the adversary ap-
proaches in terms of speed during query processing. This issue is of critical importance
since high query evaluation speeds lead to increased query throughput for the entire search

30
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

system. Our experimentation was divided in two parts: on the first part we submitted a set
of 50 conjunctive queries and measured several statistics such as the decompression times
and the size of the accessed data. On the second part, we repeated the previous experiment
by submitting the same 50 queries expressed as exact phrase searches.

For the requirements of the first stage we have implemented the two stage query pro-
cessing method discussed earlier. Therefore, during the first phase we traverse the inverted
lists of the query terms by employing the document-at-a-time strategy, and we quickly iden-
tify the most relevant results by accessing docIDs and frequency values only. In the second
phase we apply more complex ranking schemes such as BM25TP [31] to the best results
determined in the previous stage by retrieving the positional values. We experimented with
two values of K ; the first one is K = 200 and was selected because in [149] the authors
prove that higher values do not lead to any further precision gains. Furthermore, since the
major Web search engines return at most 1000 results, we also choose to set K = 1000.

For the needs of this experiment we employed the set of queries of the Web Adhoc
Task of the TREC-2009 Web Track. This set consists of 50 distinct queries; each query
contains on average two terms (102 terms in total). Since the inverted indexes we con-
structed were comprised of ten shards, we repeated our experiments ten times; each time
the query processor was assigned a different index shard.

For all the compression methods, we measure several statistics including the number of
the positional values we access and decode, along with the corresponding decompression
rates. We also record the latency of the look-up operation; that is, the time consumed by
each approach to locate the positional data for each posting. The results of our experiments
are illustrated in Table 2.5.

K OptP4D VSEncoding PFBC

K = 200

Decompressed positions 2,756,128 2,756,128 374,251
Decompressed positions/query 55,123 55,123 7,485
Total access time (msec) 0.11 0.11 0
Total decompression time (msec) 5.56 5.14 1.01
Average time per query (msec) 0.11 0.10 0.02

K = 1000

Decompressed positions 11,192,608 11,192,608 1,044,234
Decompressed positions/query 223,852 223,852 20,885
Total access time (msec) 0.31 0.31 0
Total decompression time (msec) 23.94 21.10 4.02
Average time per query (msec) 0.48 0.42 0.08

Table 2.5: Positional data access and decompression times per query and per posting for
different values of K.

Table 2.5 is divided in two parts; the upper part contains the results we recorded for
K = 200, whereas the lower one includes the results for K = 1000. The first line repre-

31
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

sents the total number of positional values accessed by each method for all the ten index
shards, whereas the second line shows the number of the decompressed positions per query.
PFBC outperforms the adversary approaches by a significant margin, since the fixed-bit
compression scheme allows us to locate exactly the data we need to access and we do not
have to decode entire blocks of integers. In total, the organization method with the look-up
structure employed by OptP4D and VSEncoding touched approximately 7.4 times more
data than the one applied by PFBC for K = 200. In case we set K = 1000, PFBC is even
more efficient, since the other methods decode about 10.7 times more data.

The next line reveals the average position look-up times consumed by each method per
query. The algorithm of Table 2 allows PFBC to calculate the location of the positional data
without searching for it, consequently, the latency is nullified in this case. Regarding the
other two approaches which employ the aforementioned look-up structure, they introduce
a latency of about 0.11 msec per query for K = 200 and 0.31 msec for K = 1000. Note
here that the look-up times do not scale proportionally to the value of K (the value of K
increases fivefold whereas the latency tripled). This is explained by the fact that for some
of our test queries, the query processor returns fewer than 1000 results.

Now let us examine the decompression rates achieved by each method. The lines 3 and
7 of Table 2.5 include the total amount of time required to decode the positional values for
all the 50 queries of our experiment. Furthermore, lines 4 and 8 reveal the average decom-
pression time per query. On average, VSEncoding outperformed the OptP4D approach by a
margin ranging between 1% and 2% for different values ofK. PFBC was the fastest among
the evaluated schemes, since it achieved about 5 times faster decompression compared to
VSEncoding for both settings of K. This is mainly due to the limited number of positional
data it decodes per query and due to the fixed-bit scheme.

In the sequel, we repeated the previous experiment by submitting the same queries
as exact phrase searches. In other words, the documents identified as results, not only
must contain the query terms, but also, the query terms must appear as an exact phrase (or
sentence) within them. To process such phrase queries, it is essential that we retrieve all the
positions for each candidate document; then, a candidate document is identified as a result
only in the case the difference between the positional values of the postings is equal to the
positional difference expressed in the query.

Since we must access all the positional values for all postings, there is no meaning
in employing the two-stage query processing method applied in the earlier experiment.
Instead, the query is answered in a single step by locating and decoding all the involved
positional data. For this reason, these queries are much more intensive than the simple
conjunctive queries. However, since as many as 10% of web queries are phrase queries and

32
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

many more are implicit phrase queries (such as person names), [92], a search engine must
support this functionality in a both effective and efficient manner.

OptP4D VSEncoding PFBC
Decompressed positions 2,374,318,680 2,374,318,680 89,143,576
Decompressed positions/query 47,486,373 47,486,373 1,782,872
Total access time (msec) 62.86 62.86 0
Total decompression time (msec) 7,194.36 6,874.92 1,066.14
Average time per query (msec) 143.88 137.50 21.32

Table 2.6: Positional data access and decompression times per query and per posting in case
the queries are submitted as exact phrase searches.

Comparing the results of Table 2.5 and Table 2.6 we notice the huge increase in the
amount of the accessed positional data; in contrast to the two-stage query processing
scheme with K = 1000, PFBC now touches 85 times more data. On the other hand,
the OptP4D and VSEncoding methods have to decode approximately 860 times more posi-
tions. PFBC is still much more economic than the adversary approaches, since it is required
that we decompress roughly 27 times fewer positional values.

We also notice a great increase in the look-up and decompression times. OptP4D and
VSEncoding consumed about 63 milliseconds to locate the required positional values, in
contrast to PFBC, which is still free on any look-up latencies. PFBC spent more than 1 sec-
ond to decode all the positional values for all 50 exact phrase queries, leading to an average
decompression time of 21.32 msec per query. The other block-based compression schemes
were outperformed by a significant margin. OptP4D and VSEncoding consumed about 7.2
and 6.9 seconds to decompress the involved positional values for all the 50 queries respec-
tively (average decompression times per query are 143.88 and 137.50 msec respectively).

2.7.5 Query throughput in enriched indexes with TZP

In this subsection we discuss the performance gains deriving from the omission of the
occurrence look-up structure in enriched indexes. The positional and zone data are required
during the second phase of query processing therefore, by avoiding to constantly seek for
these values leads to significant benefits during this phase only. Recall that TZP allows di-
rect access to the occurrence data without look-ups and moreover, it enables decompression
only of the data actually needed during query processing.

To measure the imposed time penalty during query processing, we have implemented
this look-up structure for positions and zoneIDs. In Figure 2.8 we illustrate the average
times consumed to search for the desired data per query, when K is assigned different
values.

33
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 2.8: Occurrence look-up structure: Average seek times for positional and zone data
per query and per shard.

K = 200 K = 1000

Queries 50 50
Query Terms 102 102
Postings 19,568 89,969
Postings per Query 391.36 1,799.38

Table 2.7: Number of postings involved in the second phase of query processing for K =
200 and K = 1000.

The average seek times per query and per shard are 0.1 and 0.3 milliseconds for K =

200 and K = 1000, respectively. Similarly to the positional index situation, notice that the
average times do not scale proportionally to the values of K, since the value of K increases
fivefold whereas the times tripled. This is explained by the fact that some of our test queries
produce fewer than 1000 results.

The seek penalty illustrated in Figure 2.8 is avoided by employing TZP and the method-
ology described in subsections 2.6.1 and 2.6.2. Recall that our proposed techniques allow
us to pre-calculate the location where the desired data is stored. Hence, no look-up opera-
tions are required at the second phase and the speed gains are significant, especially in the
case where the system receives thousands of queries per second.

Until now we have shown that the avoidance of occurrences look-ups during query
evaluation offers an acceleration to the entire operation. We now demonstrate how our
model provides faster occurrence decompression and leads to even better performances.
Initially, in Table 2.7 we present the number of postings processed in the second phase of
query evaluation, forK = 200 andK = 1000, for all the 50 queries that we have submitted
to the system.

In subsection 2.6.2 we discussed that when encoding occurrences, TZP dominates over
the group-based compression schemes such as P4D because we can access only the data

34
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

K TZP OptP4D P4D

K = 200

Decompressed Occurrences 374,251 2,756,128 2,834,432
Total Decompression Time (msec) 1.64 8.57 8.34
Average Time per Query (msec) 0.0328 0.1714 0.1668
Average Time per Posting (msec) 0.0838 0.4379 0.4262

K = 1000

Decompressed Occurrences 1,044,234 11,192,608 12,394,752
Total Decompression Time (msec) 6.04 35.92 34.07
Average Time per Query (msec) 0.1208 0.7184 0.6814
Average Time per Posting (msec) 0.0671 0.3992 0.3787

Table 2.8: Occurrence decompression times per query and per posting, for K = 200 and
K = 1000.

actually required and we do not need to decode entire groups of possibly unnecessary
values. On the other hand, in case P4D is selected, we need to decode an entire block of
128 elements, even if only one value is required to process the query.

In Table 2.8 we record the values of several interesting characteristics of the second
phase of query processing for our three examined index setups. The first four rows of the
table concern the setting K = 200, whereas the next four rows represent our measurements
for K = 1000.

The first row shows the sum of the decompressed occurrences for all 50 queries of our
test set. TZP accesses much fewer values than the other approaches since in general, it
decodes 7 to 12 times less data that P4D and OptP4D. Hence, we expect that our method
would decode the desired information much faster than its opponent setups.

Indeed, in case we set K = 200 consumed approximately 1.64 milliseconds to decom-
press the occurrence data for all the 50 submitted queries, a value which is translated to an
average of 0.033 milliseconds per query and 83.8 nanoseconds per posting. On the other
hand OptP4D and P4D were roughly 5.2 and 5.1 times slower, respectively. Similar speed
differences are also observed in the case of K = 1000; TZP decodes the positional and
zone data in times which are 5.9 and 5.6 times faster than the respective ones of OptP4D
and P4D, respectively.

2.8 Conclusions

In this chapter we studied several efficiency issues concerning the compression and or-
ganization of an inverted index. We have stated that although the block-based compression
methods such as PForDelta and VSEncoding achieve excellent performance when applied
at document IDs and frequency values, they are not equally effective when they are uti-
lized in positional data. This is happens because the access to the positional data during

35
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

query processing is particularly expensive, hence, we avoid touching it for all candidate
documents; we do so only for the most promising ones. Since the aforementioned meth-
ods operate on entire bundles of integers, they decompress redundant information during
query processing. In addition, to begin the decompression step, the current state-of-the-art
methods require that we first locate the desired data, thus appending an additional look-up
cost.

We addressed both of these problems by introducing PFBC, a method which employs
a fixed number of bits and a limited number of pointers to encode the positional values of
an inverted list. We have demonstrated theoretically and experimentally that PFBC out-
performs both PForDelta and VSEncoding in terms of decompression speeds, whereas, it
eliminates the additional look-up cost, and decodes only the data actually required without
touching redundant information.

In the sequel, we studied the possibility of integrating additional information within an
inverted list. We replaced the plain positional value by the occurrence, a quantity which
embodies both the position and the field (or zone) of the document where a word occurs. We
showed how we can enrich the inverted list postings with the occurrences and we introduced
TZP, an expansion of PFBC which enables direct compression of the positional and zoneID
value.

TZP retains the advantages of PFBC over the adversary compression algorithms, whereas
it manages to keep the overall inverted index size at reasonable levels. We demonstrated
that such an enriched inverted index which has its occurrence data compressed by TZP is
only 9% times larger than a plain positional index. Compared to other experimental en-
riched indexes which had their occurrence data encoded by PForDelta and VSEncoding,
our proposed index setup achieves 5 times faster decompression of the occurrence data and
also, it exhibits further benefits by eliminating the look-up costs.

36
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

CHAPTER III

Influence Flow in Social Networks

3.1 Introduction

During the last years, we have witnessed a massive transition in the applications and
services hosted on the Web. The obsolete static Web sites have been replaced by numerous
novel, interactive services whose common feature is their dynamic content. The social and
participatory characteristics that were included in these services, led to the generation of
virtual communities, where users share their ideas, knowledge, experience, opinions and
even media content. Examples include blogs, forums, wikis, media sharing, bookmarks
sharing and many others, which are collectively known as the Web 2.0.

Blogs are locations on the Web where individuals (the bloggers) express opinions or
experiences about a subject. Such entries are called blog posts and may contain text, im-
ages, embedded videos or sounds and hyperlinks to other blog posts and Web pages. On
the other hand, the readers are provided with the ability to submit their own comments in
order to express their agreement or disagreement to the ideas or opinions contained in the
blog post. The comments are usually placed below the post, displayed in reverse chrono-
logical order. The virtual universe that contains all blogs is known as the Blogosphere and
accommodates two types of blogs [4]: a) individual blogs, maintained and updated by one
blogger (the blog owner), and b) community blogs, or multi-authored blogs, where several
bloggers may start discussions about a product or event. Since in the former type of blogs,
only the owner can start a new line of posts, the present article focuses only on community
blogs.

In a physical community, people use to consult others about a variety of issues such as
which restaurant to choose, which medication to buy, which place to visit or which movie
to watch. Similarly, the Blogosphere is a virtual world where bloggers buy, travel and make
decisions after they listen to the opinions, knowledge, suggestions and experience of other

37
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

bloggers. Hence, they are influenced by others in their decision making and these others
are defined in [77] as the influentials.

The identification of the influentials is of significant importance, because they are usu-
ally connected in large virtual communities and thus they can play a special role in many
ways. For instance, commercial companies can turn their interest in gaining the respect of
the influentials to become their “unofficial spokesmen”, instead of spending huge amounts
of money and time to advertise their products to thousands of other potential customers. It
can also lead to the development of innovative business opportunities (related to commer-
cial transactions and traveling) can assist in finding significant blog posts [48, 67], and can
even be used to influence other peoples’ voting behavior.

The issue of identifying influential bloggers is very recent and despite it seems simi-
lar to problems like the identification of influential blog sites [62] and the identification of
authoritative Web pages [79], the techniques proposed for these problems can not be ap-
plied to the identification of influential bloggers. The problem of identifying the influential
bloggers has been introduced in [5], and the literature lacks other sophisticated solutions.
That initial model, mentioned here as the influence flow method, explicitly discriminated
the influential from the active (i.e., productive) bloggers, and considered features specific
to the Blogosphere, like the blog post’s size, the number of comments, and the incoming
and outgoing links. Nevertheless, this model fails to incorporate temporal aspects which
are crucial to the Blogosphere and does not take into account the productivity as another
factor which affects the influence.

Motivated by these observations, this chapter proposes two new metrics called MEIBI

and MEIBIX, for identifying influential bloggers in community blogs. The proposed ap-
proaches take into consideration both the temporal and productivity aspects of the blogging
behavior, along with the inter-linkage among the blogs posts. Furthermore, we expand the
problem of categorizing the bloggers according to their recent activity and influence by in-
troducing four representative classes. These classes are formed with respect to the current
blogging activity of a writer and the current influence flowing from his posts. To categorize
a blogger into a class, we propose time-aware metrics by considering both the temporal
and productivity aspects of the blogging behavior, along with the inter-linkage among the
blogs posts.

All three proposed methods are evaluated against the aforementioned initial model
(which is the only competitor so far) using data from real-world blog sites.

38
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

3.2 Related work

The recent explosion of the Blogosphere has attracted a surge of research on issues re-
lated to Blogosphere modeling, mining, trust/reputation, spam blog recognition, and many
others [4]; these issues though are not directly relevant to the present work. The specific
problem of identifying the influential bloggers in a blog site draws analogies from the
problems of identifying influential blog sites and identifying authoritative Web pages (Web
ranking). The identification of influential blog sites [62] and the related study of the spread
of influence among blog sites [63, 64, 72, 83] are orthogonal to the problem considered
here, since we are interested in identifying influential bloggers in a single blog site, which
might be or might not be an influential blog site. Similarly, the eigenvector-based methods
for identifying authoritative Web pages [79], like PageRank and HITS, “are not useful to

our problem, since blog sites in Blogosphere are very sparsely linked” [78]. Finally, it is
obvious that the works which propose methodologies for discovering and analyzing blog
communities [86, 157] can not be exploited/tailored to our problem.

The only work directly relevant to our problem is that reported in [5], which intro-
duced the problem. To solve it, the authors proposed an intuitive model for evaluating
the blog posts. This model is based on four parameters: Recognition (proportional to the
incoming links), Activity Generation (proportional to the number of comments), Novelty
(inversely proportional to the outgoing links) and Eloquence (inversely proportional to the
post’s length). These parameters are used to generate an influence graph in which the
influence flows among the nodes. Each node of this graph represents a single blog post
characterized by the four aforementioned properties. An influence score is calculated for
each post; the post with the maximum influence score is used as the blogger’s representa-
tive post. The influence score I(p) of a blog post p that is being referenced by ι posts and
cites θ external posts, is determined by the following equation:

Sι,d = w(Ld)
(
wcCd + win

|Dc,d|∑
m=1

Sι,dm − wout
|Dr,d|∑
n=1

Sι,dn

)
(3.1)

where w(Ld) is a weight function depending on the length Ld of a post d and wc de-
notes a weight that can be used to regulate the contribution of the number of comments
(Cd). Finally, win and wout are the weights that can be used to adjust the contribution
of incoming and outgoing influence respectively. The calculation of this influence score
is recursive (positive reinforcement from incoming links and negative reinforcement from
outgoing links), similar to the PageRank definition. This score is the ιIndex metric, which
can be later used to identify the most influential bloggers. Isolating a single post to identify

39
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

whether a blogger is influential or not, is an oversimplistic approach, and so it would be if
they have used gross metrics, like average, median and so on. A blogger may have pub-
lished only a handful of influential posts and numerous others of low quality, whereas other
bloggers may have published several tens of influential blogs only, whose score though
is lower than the score of the most influential blog of the former blogger. Therefore, the
productivity of bloggers is a significant issue that has been overlooked by this preliminary
model.

Another drawback of this preliminary model is that its output depends highly on user
defined weights. The value change of the above properties can lead to different rankings.
Hence, its outcome is not objective, as tuning the appropriate weights the model identifies
influential bloggers with different characteristics. In other words this model cannot provide
a satisfactory answer to the question “who is the most influential blogger?”; but it can give
answers to questions of type “who is the most influential blogger according to the number

of comments that his/her posts received?”.
But, most importantly, this model (and also the naive models which are based on the k

most active bloggers), ignore one of the most important factors in Blogosphere: Time. As
already known [4], the Blogosphere expands at very high rates, as new bloggers enter the
communities and some others leave it. Hence, an effective model that identifies influential
bloggers should take into consideration the date that a post was submitted and the dates
that the referencing posts were published, in order to be able to identify the now-influential

bloggers. Additionally, with such requirements it is mandatory to have fast methods (even
on-line methods) for the discovery of the influentials, which precludes the use of demand-
ing and unstable recursive definitions, like that used by the influence-flow method proposed
in [5].

3.3 Identifying the influential bloggers

In this section we introduce our first two contributions for identifying the influential
bloggers, namely MEIBI and MEIBIX. Initially we discuss the main factors which de-
termine the essence of influence in Blogosphere, and in the sequel we present the afore-
mentioned approaches. In the last part of this section we experimentally demonstrate the
usefulness of of these methods by comparing their performance against the existing influ-
ence flow model.

40
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

3.3.1 Factors measuring a blogger’s influence

Beyond any doubt, the number of incoming links to a blog post is strong evidence of its
influence. Similarly, the number of comments made to a post is another strong indication
that this blog post has received significant attention by the community. The case of outlinks
is more subtle. In Web ranking algorithms like PageRank and HITS, the links are used only
as a recognition of (or to convey) authority. The influence-flow method of [5] assigns two
semantics to a link: it is the means of conveying authority, and it is also a means of reducing
the novelty. This mechanism results in two significant problems: a) it misinterprets the
intention of the link creators, and b) it causes stability and convergence problems to the
algorithm for the influence score calculation. It is characteristic that the authors admit ([5,
page 215]) that the presence of outlinks in novel posts is quite common and it is used “to
support the post’s explanations”. Therefore, we argue that the outlinks are not relevant to
the post’s novelty, and all links should have a single semantic, that of implying endorsement
(influence).

It is generally acceptable that the longer documents are more possibly of higher infor-
mational value than the shorter ones. This intuition is also present in some of the most
successful Web ranking functions such as BM25 , where the length of a document is a
factor that determines its score during query processing. Regarding blog communities, al-
though the length of a post is not a safe indication of its influence, we accept here that
longer posts are likely to cause stronger reactions from other bloggers or readers, than the
shorter ones.

The temporal dimension is of crucial importance for identifying the influentials in
rapidly changing environment such as Blogosphere. Time is related to the age of a blog post
and also, to the age of the incoming links to that post. Moreover, the age of the comments
made to a post is also of significant importance. In the former case, the time involves the
age of the post (e.g., in days since the current day) and in the latter case, the time involves
the age (e.g., in days since the current day) of the incoming links and of the comments.

An influential blogger is recognized as such if s/he has written influential posts recently,
or if the posts have had an impact recently. In the Blogosphere, we identify two forms of
impact:

• Impact inside community: Denotes the influence that a blogger has on the regular
members/readers of the community. It is mainly visible by the comments made to a
post.

• Impact outside community: Denotes the influence that a blogger has on other blog-
gers outside the community. The incoming links that a post receives is a strong

41
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

indication of this type of impact. There are also some other indications revealing the
impact that a post has outside the community (such as the number of Facebook1 or
Twitter2 shares), but these characteristics are supported only by a small number of
blog communities and are not considered in this work.

There is another observation evident by the analysis presented in [5]: many of the
influential bloggers were also active (i.e., productive) bloggers (see Table 1 and Tables
3–5 of [5]). Although, productivity and influence do not coincide, there is quite a strong
correlation between them. Therefore, productivity should somehow be taken into account
when seeking for influential bloggers.

3.3.2 The MEIBI and MEIBIX metrics

Let us begin our analysis by introducing the universe B which represents Blogosphere.
Within Blogosphere we define two sets: The first one is A and contains all bloggers,
whereas the second one is D and is composed of all the blog entries. From these main
sets we identify two important subsets, Da ⊂ D which accommodates the blog posts au-
thored by a blogger a, and Db ⊂ D which includes the set of posts published by a blog site
b.

For each blog entry d ∈ D we formulate a set of properties which includes: i) the
number of comments Cd submitted by the post readers, ii) the number of other postsDc,d ⊂
D and Dc,d ⊂ D referring to and referenced by d, and iii) td which represents the date and
time when the post was published expressed as a time stamp3. The elapsed time since the
creation of a post d (i.e. the age of a post) is symbolized as ∆td and is expressed in seconds.
In case we need to convert ∆td in another metric unit, we use the quantity (t − td + θ)/θ

where t is the current time stamp and θ is a constant tuned to express the time difference
in the desired unit. For example, in case it is required to express ∆td in days, we set
θ = 86400.

As already mentioned, the map in Blogosphere changes rapidly, in a manner that a blog-
ger who would currently considered as an influential, is not guaranteed to remain influential
in the future. New bloggers enter the community and thousands of posts are submitted ev-
ery day. In section 3.3.3 it is demonstrated that a blogger may submit up to hundreds (or
even thousands) of posts yearly. In this dynamic environment, the date that a blogger’s post
was submitted is crucial, since a blog post becomes “old” very quickly. An issue being

1http://www.facebook.com
2http://www.twitter.com
3The time stamp is a 32-bit integer which represents the number of the elapsed seconds since January 1st,

1970

42
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Symbol Meaning
A the set which contains all bloggers
D the set which contains all blog posts
a a blogger a ∈ A
d a blog post d ∈ D
Da the set which contains all the blog posts of the blogger a
Cd the set of comments to the post d
Dc,d the set of posts referring (have a link) to the post d
Dr,d the set of posts referenced by the post d
Ld the length (in words) of the post d
td the time stamp of d
Sd a score value of the post d
ha a metric for the evaluation of the blogger a

Table 3.1: Summary of the used symbols

discussed in a blog post at the present time and is now of major importance, may be totally
outdated after two months. To account for this, we assign a score Sd to the a post of a
blogger as follows:

SM,d = γ(Cd + 1)|Dc,d|
(θ

t− td + θ

)δ
(3.2)

The parameter γ is not absolutely necessary, but it is used to grant to the quantities
SM,d a value large enough to be meaningful. Similarly, the parameter δ does not affect the
relative score values in a crucial way, but it is used to allow for fast decaying of older posts.
Both parameters do not need complicated tuning, since they are not absolutely necessary;
in our experiments, γ and δ are assigned values equal to 4 and 1, respectively. Since a
post may receive no comments at all, we add one to the factor that counts the number of
comments to prevent null scores.

Using the definition of scores SM,d, we introduce a new metric MEIBI4 for identifying
influential bloggers. The definition of MEIBI follows:

Definition 1. A blogger a has MEIBI index equal to hM,a, if hM,a of his/her Da posts
get a score SM,d ≥ hM,a each, and the rest Da − hM,a posts get a score of SM,d < hM,a.

This definition awards both influence and productivity of a blogger. Moreover, a blog-
ger will be influential if s/he has posted several influential posts recently.

But an old post may still be influential. How could we deduce this? Only if we examine
the age of the incoming links to this post. If a post is not cited anymore, it is an indication
that it negotiates outdated topics or proposes outdated solutions. On the other, if an old
post continues to be linked to presently, then this is an indication that it contains influential

4Metric for Evaluating and Identifying a Blogger’s Influence.

43
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

material. Based on the ideas developed for the MEIBI metric, we work in an analogous
fashion. Instead of assigning to a blogger’s old posts smaller scores depending on their
age, we can assign to each incoming link of a blogger’s post a smaller weight depending
on the link’s age. This idea is quantified into the following equation:

SMX,d = γ(Cd + 1)
∑
∀r∈Dc,d

(θ

t− tr + θ

)δ
(3.3)

Based on equation 3.3 the definition of the MEIBIX (MEIBI eXtended) metric is formu-
lated as follows:

Definition 2. A blogger a has MEIBIX index equal to hMX,a, if hMX,a of his/her Da

posts get a score SMX,d ≥ hMX,a each, and the rest Da − hMX,a posts get a score of
SMX,d < hMX,a.

The introduction of the MEIBI and MEIBIX generates a straightforward policy for
evaluating the influence of both blog posts and bloggers. No user-defined weights need to
be set before these metrics provide results, whereas the most sound features of Blogosphere
are considered. Moreover, the calculation of the metrics can be performed in an online
fashion, since they do not involve complex computation and they do not present stability
problem like those encountered when using eigenvector-based influence scores. Note that
the developed metrics are similar in spirit with the h-index and its variations (see [146]) that
recently became popular in the scientometrics literature, but the challenges in Blogosphere
are completely different: there are comments associated with each blog post, the time
granularity is finer, the author of a post is a single person, the resulting graph might contain
cycles, and many more.

There is also the possibility of taking into account the time that each comment was writ-
ten, but such an extension does not contribute significantly to the strength of the model,
since the time-varying interest to the post is captured by the time-weighting scheme to
the incoming links, and moreover, it introduces the problem of having to handle two time
scales, i.e., days for the links and the posts themselves, and hours or minutes for the com-
ments. In the sequel, we will evaluate the effectiveness of the proposed metrics to a real-
world dataset, comparing it with its only competitor [5].

3.3.3 Experimental evaluation

The evaluation of the methods proposed here, but in general, of a lot others developed
in the context of information retrieval, is tricky, because there is no ground truth to compare
against; things are more challenging in this case, since there is only alternative [5] to con-
trast with. Nevertheless, we firmly believe that our evaluation is useful and solid as long as

44
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Year Posts Posts with inlinks Inlinks
2008 3676 3653 53297
2007 4497 662 259
2006 4354 186 18
2005 4307 77 1
2004 997 8 0
Total 17831 4586 53575

Table 3.2: Time distribution of posts and inlinks.

the proposed methods reveal some latent facts that are not captured by the competitor and
by some straightforward methods, which result in different rankings for the final influential
bloggers. In the sequel of this section, we first describe the real data we collected for the
experiments, and then present the actual experiments and the obtained results.

3.3.3.1 Data characteristics

Millions of blog sites exist. The Technorati5 blog search engine claims to have indexed
more than 115 million blogs. Since it is impossible to crawl the entire Blogosphere to
obtain a complete dataset, it is essential to detect an active blog community that provides
blogger identification, date and time of posting, number of comments and outlinks. The
Unofficial Apple Weblog6 (TUAW) is a community that meets all these requirements; the
same source of data was used also in [5]. Although we use data from only one blog, the
proposed methods can be appplied to every blog community having characteristics similar
to these of TUAW. We crawled7 TUAW and collected approximately 160 thousand pages,
from which we extracted 17831 blog posts authored by 51 unique bloggers. This accounts
for approximately 350 posts per blogger on average. Moreover, the posts received totally
269449 comments (15 comments per post on average); only 1761 posts (ratio 10%) were
left uncommented. To obtain the incoming links to each blog post, we used the Technorati
API8. Apart from the number of the incoming links, we also retrieved the date that the
referring post was submitted and its author’s name. This information is necessary for the
calculation of the MEIBI and MEIBIX metrics. From the total 17831 blog posts, only 4586
of them had incoming links. Table 3.2 depicts the time distribution of both the blog posts
and the incoming links.

It is interesting to note, that 80% of the total posts which have received at least one in-

5http://technorati.com
6http://www.tuaw.com
7December 7th, 2008.
8http://technorati.com/developers/api/cosmos.html

45
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Age Inlinks Percentage
0 days 26346 49,2%
1 day 13470 25,1%
between 1 and 7 days 6653 12,4%
between 7 and 30 days 2406 4,5%
between 30 and 60 days 928 1,7%
between 60 and 365 days 2523 4,7%
over 365 days 1249 2,3%
Total 53575 99,9%

Table 3.3: The age of the incoming links with respect to the publication date of the post
they cite.

coming link (3653 posts out of the total 4586), were submitted within the year 2008. Con-
sequently, either TUAW was not so popular before 2008 and the bloggers were unaware
of the information published there, or the posts submitted before 2008 were of medium or
low quality, so that only a few other bloggers referred to them. Hence, time-aware influ-
ence metrics which measure time difference in days, are indeed necessary to differentiate
between influential bloggers.

We investigate also the temporal distribution of the incoming links for a blog post mea-
suring the intermediate time between the date a post was submitted and the date it received
each of the incoming links. The results are depicted in Table 3.3. Almost half of the total
inlinks were received (published) the same day that the post was submitted. Only a per-
centage of 2.3% of all inlinks are dated one or more years after the publication of the post.
These results prove the necessity of time-aware metrics for the identification of the influ-
entials; since the posts are influential for a few days, it is not particularly useful to identify

influentials for the whole lifetime of the blog site, but it is more substantial to identify the

now-influential bloggers of the blog site.

3.3.3.2 Identifying the influential bloggers

In this subsection we apply the proposed methods on the acquired dataset. Apart from
the proposed methods, we also examine a naive method which ranks the bloggers by us-
ing only their activity, i.e. number of published posts – the activity index, one ranking
method which is a straightforward adaptation of a method coming from the bibliometric
literature – the h-index [146] (we call these two methods as the plain methods), and a more
sophisticated method, proposed in [5].

We divide the experimentation into three parts: in the first part, we compare the in-
fluential bloggers indicated by the proposed methods, to the bloggers found by the plain

46
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

methods. We use the entire dataset as a baseline experiment, examine whether temporal
considerations are worthy examining; in the second part, we compare the influential blog-
gers indicated by the proposed methods, with those found by the influence-flow method
using the posts published in November 2008, to prove that even for small time intervals the
rankings are different; finally, we examine the temporal evolution of the influential blog-
gers identified by the proposed methods during the year 2008, to examine whether the most
influential bloggers lose their lead in influence and strengthen even more the necessity for
temporal considerations.

3.3.3.3 The new methods vs. the plain ones

Table 3.4 includes the ten most influential bloggers based solely on their activity (i.e.,
productivity) measured by the number of posts they have published in TUAW. We also
provide the dates that the first post (fourth column) and the last post (fifth column) of each
blogger was published. Although S. McNulty is ranked first, he has not submitted any posts
during the last 4.5 months. A similar observation of inactivity holds also for other top-
10 influential bloggers, like D. Chartier who is inactive about 1.4 year and C.K. Sample,

III, who has no post in the last 2.7 year. Recall, that both S. McNulty and D. Chartier,
were ranked among the top-5 influential bloggers with the information-flow method ([5,
Table 1]).

Table 3.5 presents a ranking of the ten most influential bloggers when the h-index [146]
metric is used; recall that this metric examines the number of posts of each blogger and
the number of incoming links to each posts, awarding both productivity and influence. The
third column of Table 3.14 displays the value of the h-index metric for each blogger and
the next two columns show the total number of posts he/she has submitted in TUAW and
how many of them have been cited by other posts respectively. Finally, the last column
illustrates the total number of incoming links that all the posts of a blogger have received.

Comparing Table 3.5 to Table 3.4, some significant differences derive. These differ-
ences justify that productivity and influence do not coincide. The most active blogger, S.

McNulty is ranked 8th when the ranking is done in decreasing h-index order. According to
the h-index metric, the most influential blogger is E. Sadun who has 31 articles that has at
least 31 incoming links each. E. Sadun is the fourth most active blogger in TUAW, though
she has posted nothing in the last 2.5 months. Although she has been inactive recently, she
is still the most influential according to the h-index metric. This proves that the h-index can
indicate the most influential blogger, but cannot identify bloggers who are both influential
and active.

In the sequel, we apply the two proposed metrics MEIBI and MEIBIX in our dataset.

47
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Bloggers Da First Last
1 S. McNulty 3037 06/01/2005 31/07/2008
2 D. Caolo 2242 07/06/2005 04/12/2008
3 D. Chartier 1835 26/08/2005 30/08/2007
4 E. Sadun 1560 09/11/2006 26/09/2008
5 C.K. Sample III 1057 01/03/2005 05/06/2006
6 M. Lu 1043 13/12/2006 04/12/2008
7 L. Duncan 954 19/09/2004 23/01/2007
8 C. Bohon 793 24/02/2004 04/12/2008
9 M. Rose 793 29/11/2006 05/12/2008

10 M. Schramm 648 07/06/2007 04/12/2008
11 Barb Dybwad 529 05/11/2004 05/03/2005
12 Sean Bonner 449 30/01/2004 25/08/2004
13 Robert Palmer 354 06/05/2008 04/12/2008
14 Victor Agreda, Jr. 314 01/02/2005 05/12/2008
15 Steven Sande 304 06/05/2008 04/12/2008
16 Damien Barrett 252 22/10/2005 01/08/2006
17 Brett Terpstra 226 28/12/2007 24/11/2008
18 Jan Kabili 186 30/08/2005 02/09/2006
19 Fabienne Serriere 148 22/10/2005 29/04/2006
20 Dan Lurie 143 10/06/2006 10/07/2007

Table 3.4: Bloggers ranking based on the number of posts submitted (active bloggers).

The ranking of the bloggers according to the MEIBI metric is displayed in Table 3.6.
The data displayed in Table 3.6 indicate that the blogger whose posts were the most

influential recently, is C. Bohon. This is partially explained by the fact that 676 out of the
total 793 posts, have received 9439 references; it is the highest number of incoming links
among the other bloggers. Furthermore, all posts have been commented 14745 times.

On the other hand, E. Sadun, the most influential blogger according to the h-index
metric, falls in the fourth position; considering the fact that she has remained relatively
inactive in the past 2.5 months, this is a satisfactory result. R. Palmer and S. Sande occupy
the second and third position respectively. All top-three bloggers have submitted posts
within December 2008. This is an indication that the MEIBI index not only identifies the
most influential bloggers, but also the most active. It is a metric that suits very well to
our case, as Blogosphere changes rapidly and our metric manages to keep track of these
changes by handling the ages of the posts and the comments that they receive.

Table 3.7 presents the most influential bloggers according to the MEIBIX index. One
may detect several similarities between Table 3.6 and Table 3.7. The most active blogger
of TUAW, S. McNulty, is not among the top-10 influential bloggers when the ranking is
performed according to either MEIBI or MEIBIX. Consequently, although S. McNulty is

48
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Bloggers hh,a |Da| Cited Inlinks
1 E. Sadun 31 1560 489 5759
2 C. Bohon 29 793 676 9439
3 M. Schramm 25 648 339 4322
4 R. Palmer 25 354 354 4809
5 M. Rose 24 793 364 4222
6 D. Caolo 23 2242 459 4907
7 M. Lu 23 1043 397 4282
8 S. McNulty 23 3037 334 3212
9 B. Terpstra 22 226 223 3013
10 C. Warren 22 133 112 1605
11 Steven Sande 22 304 304 3775
12 Nik Fletcher 18 128 72 1048
13 Chris Ullrich 14 54 31 475
14 Victor Agreda, Jr. 14 314 68 700
15 Joshua Ellis 13 28 28 431
16 Giles Turnbull 12 41 40 440
17 Jason Clarke 9 14 12 144
18 Lisa Hoover 9 30 16 196
19 TUAW Blogger 8 11 11 113
20 David Chartier 7 1835 113 279

Table 3.5: Bloggers ranking based on the h-index.

an active blogger, he has not submitted influential posts recently. Table 3.5 though, reveals
that the blogger in question, is the 8th most influential when the ranking is determined by
the plain h-index metric.

Finally, we computed the correlation of the rankings produced by h-index, MEIBI and
MEIBIX by using the Spearman’s rho metric. The results (Table 3.8) indicate that MEIBI
and MEIBIX produce similar rankings, but both of them diverge from the h-index ordering
significantly.

3.3.3.4 The new methods vs. the influence-flow method

For the comparison of the proposed metrics against the basic competitor, i.e., influence-
flow method [5], we select a subset of the real data in order to be fairer. It was obvious
by the experimentation of the previous paragraphs, that the inactivity has a dramatic ef-
fect upon the final ranking. The real question concerning the usefulness of the proposed
methods is whether in a small period of time, say a month, these methods would provide
different rankings than those of the influence-flow method. Thus, we selected to work upon
the blog posts of November 2008 only. For comparison purposes, we present in Table 3.9

49
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Bloggers hM,a Comments
1 C. Bohon 49 14745
2 R. Palmer 46 9916
3 S. Sande 36 7246
4 E. Sadun 34 32432
5 M. Rose 30 13499
6 M. Schramm 30 12838
7 C. Warren 28 4857
8 D. Caolo 27 27985
9 M. Lu 25 17966
10 B. Terpstra 17 3770
11 Scott McNulty 17 41813
12 Victor Agreda, Jr. 14 23359
13 Chris Ullrich 11 1824
14 Nik Fletcher 10 3033
15 Giles Turnbull 9 1382
16 TUAW Blogger 8 2640
17 Joshua Ellis 7 627
18 Jason Clarke 6 347
19 Lisa Hoover 6 822
20 Alberto Escarlate 3 437

Table 3.6: Bloggers ranking based on the MEIBI index.

the top-10 of active (most productive) bloggers during November 2008 as this ranking is
provided by the TUAW site itself.

In Table 3.9 we present the most influential bloggers for November 2008 as they are pro-
vided by the influence-flow method and the MEIBI and MEIBIX metrics. Neither MEIBI
nor MEIBIX generate rankings that agree with the TUAW ranking of bloggers. TUAW con-
cerns R. Palmer as more influential than S. Sande. On the other hand, MEIBI concerns R.

Palmer and S. Sande to be equally influential. The former has authored more posts which
received more comments, whereas the latter’s posts although fewer, have been referenced
more times by other posts. The ranking produced by MEIBIX positions S. Sande into the
second place, higher than R. Palmer. We could state that MEIBIX is more sensitive to the
number of incoming references than MEIBI.

Comparing the rankings produced by the proposed methods with the ranking accord-
ing to the influence-flow model, we can state that this model assigns to C. Bohon the first
position of the list. The model concerns R. Palmer as the second most influential blogger
for the period of November of 2008 and agrees with TUAW. Despite S. Sande has pub-
lished more articles that received more incoming links, M. Lu’s posts have attracted more
comments. Hence, we conclude that M. Lu is primarily influential inside the TUAW com-

50
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Bloggers hMX,a

1 C. Bohon 48
2 R. Palmer 47
3 S. Sande 37
4 E. Sadun 33
5 C. Warren 30
6 M. Rose 29
7 M. Schramm 27
8 M. Lu 26
9 D. Caolo 25
10 B. Terpstra 15
11 Scott McNulty 15
12 Victor Agreda, Jr. 13
13 Nik Fletcher 10
14 Chris Ullrich 9
15 Giles Turnbull 9
16 TUAW Blogger 8
17 Joshua Ellis 7
18 Jason Clarke 6
19 Lisa Hoover 6
20 Alberto Escarlate 3

Table 3.7: Bloggers ranking based on the MEIBIX index.

Methods ρ

h-index – MEIBI 0.478788
h-index – MEIBIX 0.321212
MEIBI – MEIBIX 0.951515

Table 3.8: Correlation of rankings

munity, whereas S. Sande has published influential posts that stimulated other bloggers to
refer to them.

D. Caolo has authored less posts than S. Sande. Although his articles attracted both less
comments and inlinks, the influence-flow model assigns him a higher rank than S. Sande.
Obviously, the model’s determination of influential bloggers, by taking into consideration
only the best post and discarding all others, leads to erroneous rankings.

The Spearman’s rho metric was used to compute the correlation of the rankings of
Table 3.9. The results illustrated in Table 3.10, reveal that MEIBI and MEIBIX produce
rankings that diverge significantly from the one generated by the influence-flow model.

51
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Bloggers Da

1 C. Bohon 47
2 R. Palmer 42
3 S. Sande 34
4 M. Schramm 29
5 D. Caolo 20
6 M. Rose 19
7 B. Terpstra 15
8 C. Warren 8
9 M. Lu 8
10 V. Agreda 5

Blogger
1 C. Bohon
2 R. Palmer
3 M. Lu
4 C. Warren
5 D. Caolo
6 C. Ullrich
7 S. Sande
8 M. Rose
9 V. Agreda
10 Jason Clarke

Blogger M
1 C. Bohon 26
2 R. Palmer 20
3 S. Sande 20
4 D. Caolo 17
5 M. Schramm 16
6 M. Rose 13
7 M. Lu 8
8 B. Terpstra 7
9 C. Warren 7

10 V. Agreda 4

Blogger X
1 C. Bohon 27
2 S. Sande 20
3 R. Palmer 19
4 D. Caolo 18
5 M. Schramm 16
6 M. Rose 13
7 M. Lu 8
8 B. Terpstra 7
9 C. Warren 7

10 V. Agreda 4

Table 3.9: Bloggers ranking according to: TUAW (left). Influence-flow model (center).
MEIBI and MEIBIX (right).

Methods ρ

TUAW – influence-flow model 0.284848
TUAW – MEIBI 0.948485
TUAW – MEIBIX 0.939394
influence-flow model – MEIBI 0.418182
influence-flow model – MEIBIX 0.357576
MEIBI – MEIBIX 0.987879

Table 3.10: Corellation of rankings

3.3.3.5 Temporal evolution of the rankings produced by MEIBI and MEIBIX

Finally, it is interesting to examine how the rankings generated by the proposed metrics
vary over time. Figures 3.1 and 3.2 depict the top-10 influence rankings of the bloggers in
the past 11 months (from January 2008 to November 2008), when MEIBI and MEIBIX are
applied respectively. The columns in Figures 3.1 and 3.2 represent the progression of time,
whereas the rows contain the bloggers, ordered according to the time they were recognized
as influential. Therefore, the (i, j)-th cell stores the rank of the ith blogger in the jth time
window. The dash symbol signifies that the particular blogger was not among the top-10
of that period.

MEIBI and MEIBIX produce similar rankings; MEIBIX is more affected by the number
of incoming links, whereas MEIBI assigns better scores to the posts that attracted more
comments.

Studying the blogger rankings fluctuation over time, composes a valuable tool for dis-
tinguishing bloggers that have been influential for a very long or very short time. The
former can be considered as more influential, as compared to the latter which are proved

52
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 3.1: Influential bloggers’ blogging behavior over 2008, according to MEIBI.

more trustworthy. Certainly, many other categories of bloggers can be derived from the ret-
rospection of their activity through time and many potential applications can be developed
using these categories.

Figure 3.2: Influential bloggers’ blogging behavior over 2008, according to MEIBIX.

53
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

3.4 The problem of bloggers classification

We have already mentioned that detecting the influence in the Blogosphere is important,
since it may be exploited by companies, organizations, and advertisers for various purposes.
However, there is a set of questions that somehow blurs the term “influence”. For example,
is a formerly influential blogger as significant as a blogger who is currently influential?
How can we classify a blogger who has stopped publishing his thoughts, but his posts are
still being read, commented and referenced? Should two influential bloggers with different
publishing activity be treated equally?

These issues were some of our strongest motivations and to address them, we introduce
the following four classes of bloggers:

• ClassA: Currently Active - Currently Influential: In this class we integrate the blog-
gers who are currently publishing many posts (i.e. they are highly productive) and
the majority of these posts have strong impact inside and outside the community (i.e.
they are highly influential). Here we encounter the most significant bloggers.

• Class B: Not Active Currently - Currently Influential: The bloggers who were once
active but their posts still have significant impact inside and outside the community,
belong to this category. These writers are also important, since although they have
stopped their activity, the subjects described and analyzed in their posts some time
ago are still interesting.

• Class C: Currently Active - Not Influential Currently: Here we categorize the blog-
gers who publish many posts currently, but these posts have no or small impact to
other bloggers or readers. Note that some of the bloggers of this class, could have
been influential in the past, but for some reason they have lost their ability to attract
others.

• Class D: Not Active Currently - Not Influential Currently: This category includes all
the other bloggers, even those who were once active or influential, or both.

After we have formed the bloggers classes, we set a new problem: Given a set A of
bloggers in a community and the four aforementioned classes A, B, C and D, how can we
categorize the bloggers of the set within one of these classes at a specific time moment t?

The novelty introduced by these classes is that now we do not simply try to identify
which bloggers are (or were) influential, but we are interested in discovering the authors
who are both influential and productive currently. We firmly believe that the usage of this
set of categories can lead to much more informative and useful conclusions.

54
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

�����������������������
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

Imin Imax

Pmin

Pmax

k
2
Imax

Pmaxk
1

AC

D B

t

A‘

B‘

C‘

D‘

i

p

Figure 3.3: The 3-D space where the bloggers classes are located.

Apparently, the influence-flow model which considers only the best post of a blogger
and does not take into account the temporal aspects related to the post, its incoming links
and its comments, is not suitable to confront the problem we pose. Moreover, the usage of
simple metrics such as MEIBI and MEIBIX can turn problematic when we try to express a
multi-dimensional problem with a single numeric value.

3.4.1 Identifying and classifying influential bloggers

In this subsection we provide our solution to the problem we have set. Suppose that
there is a way to evaluate the productivity and the influence of a blogger a in an arbitrary
time instance, P a

t and Iat respectively (in the next section we provide detailed description
of how we can estimate them both).

To confront the problem, we adopt a geometric solution by considering a three dimen-
sional space determined by three vertical axes: the productivity axis p̂, the influence flowing
from this productivity î and time t̂. Figure 3.3 illustrates this three dimensional space (pit)

where our four introduced classes are located in this space. On the productivity axis we
distinguish two points: P t

max and P t
min which denote the productivity values of the most

and less productive blogger respectively, during time instance t. Similarly, on the influence
axis we place the points I tmax and I tmin which symbolize the influence values of the most
and less influential blogger.

The areas A, B, C and D of the figure represent our introduced family of classes
presently (i.e. t = 0), whereas the areas A′, B′, C ′ and D′ represent the same classes in

55
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

a previous moment t = t1 sometime in the past. The co-ordinates of the points that deter-
mine the regions occupied by each class at an arbitrary instance t, are given below:

A
[
(Pmax, k2Imax, t)(Pmax, Imax, t)(k1Pmax, Imax, t)(k1Pmax, k2Imax, t)

]
B

[
(k1Pmax, k2Imax, t)(k1Pmax, Imax, t)(Pmin, Imax, t)(Pmin, k2Imax, t)

]
C
[
(Pmax, Imin, t)(Pmax, k2Imax, t)(k1Pmax, k2Imax, t)(k1Pmax, Imin, t)

]
D

[
(k1Pmax, Imin, t)(k1Pmax, k2Imax, t)(Pmin, k2Imax, t)(Pmin, Imin, t)

]
(3.4)

where k1, k2 are two predefined parameters receiving values lower than 1. These param-
eters determine the strictness of the bloggers classification and our experimentation with
several different blog communities, has proved that typical values providing satisfactory
results are k1 = 0.7 and k2 = 0.65.

Within this space, the blogging activity of an individual at a given time instance is rep-
resented by a single point lying on the pi plane. The co-ordinates P j

t , Ijt of this point,
namely BEP j

t (Blogger Evaluation Point), reflect both the temporal productivity and tem-
poral influence of a blogger a, at a specific time instance t.

3.4.2 Blogger productivity and influence

In this subsection we present a set of metrics that will assist us in categorizing the
bloggers. More specifically, we examine how we can evaluate the productivity and the
influence of a blogger with respect to the unique characteristics of the Blogosphere. The
methods proposed here satisfy the requirements described in the previous subsections and
the formulae used to estimate the productivity and the influence of a blogger are devel-
oped in a way that keeps computational requirements at low levels, without concerning the
stability and convergence issues encountered in the implementation of the influence-flow
model.

As already mentioned, the map in the Blogosphere changes rapidly, in a manner that a
blogger who would currently be considered as productive or influential, is not guaranteed to
remain productive or influential in the future. New bloggers enter the community whereas
others leave it and thousands of posts are submitted every day. In this dynamic environment,
the time that a blogger’s post was submitted is crucial, since a blog post becomes “old” very
quickly. An issue being discussed in a blog post at the present time and is now of major
importance, may be totally outdated after two months. Similarly the submission date of
the incoming links and the comments is also significant, since it reveals in general how

56
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

influential a blogger is presently.
To account for this, we assign a time-varying score SBP,d to a post d of a blogger a as

follows:

SBP,d = γ
Ld

L

(θ

t− td + θ

)δ
(3.5)

where the parameters γ, δ and θ are defined as previously. The definition of the scores
SBP,d embodies the correlation between the value of a post and its age; the scores decay
over time. Based on this definition, we introduce a new metric, BP-Index (Blogger’s Pro-

ductivity Index) for evaluating the productivity of an individual blogger. The definition of
BP-Index follows:

Definition 3. A blogger a is has BP -index hBP,a, if hBP,a of his Da posts get a score
SBP,d ≥ hBP,a, and the rest Da − hBP,a posts get a score SBP,d < hBP,a.

This definition awards the productivity of a blogger and according to it, a blogger will
be currently productive if s/he has posted several long posts recently.

In the sequel, we examine how the influence of a blogger can be evaluated. As we have
already mentioned the influence of a blog post has a dual nature and its is comprised of the
impact it has inside the community (revealed by the comments it receives) and its impact
outside the community, which is expressed by the number and the age of the incoming
links. If a post is not cited or commented anymore, it is an indication that it negotiates
outdated topics or proposes outdated solutions. On the other hand, if an old post continues
to be linked until presently, then this is an indication that it contains influential material.
Equation 3.6 reflects this dual nature by assigning to each blog post a score determined by
both the comments and the inlinks.

SBI,d = wl
∑
∀r∈Dc,d

(θ

t− tr + θ

)δ
+ wc

∑
∀c∈Cd

(θ

t− tc + θ

)δ
(3.6)

The parameterswl andwc function similarly to γ; that is, they are used to grant the score
SBI,d a reasonably large value. However, one may argue that a comment is not as valuable
as an incoming link, and these parameters can be used to regulate the desired balance. In
our experiments we have used the combination wl = 100 and wc = 10, which means that
each incoming link is considered as important as ten user comments.

Based on equation 3.6 the definition of the BI-Index (Blogger’s Influence Index) metric
is formulated as follows:

Definition 4. A blogger a is has BI-index hBI,a, if hBI,a of his Da posts get a score
SBI,d ≥ hBI,a, and the rest Da − hBI,a posts get a score SBI,d < hBI,a.

57
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Age Engadget Techcrunch
Inlinks Comments Inlinks Comments

0 days 132,204 2,693,745 43,080 483,451
1 day 40,360 476,896 43,614 164,889
between 2 and 7 days 39,470 208,834 40,371 49,028
between 8 and 30 days 26,866 46,169 19,894 14,336
between 31 and 60 days 14,535 26,192 10,182 5,023
between 61 and 365 days 43,320 171,291 27,730 18,485
over 365 days 23,125 49,692 8,906 11,349
Total 319,880 3,672,819 193,777 746,561

Table 3.11: Incoming links and comment age with respect to the publication date of the
original post.

This definition will reward the bloggers whose posts are receiving many comments and
incoming links presently. Therefore, it covers the matter of identifying currently influential
bloggers and in combination with BP-Index it will assist us in categorizing them into the
proposed classes.

Based on these two definitions, we can now categorize the bloggers by setting a point
on the pi plane of Figure 3.3. This point describes the recent blogging behavior of an
individual and its co-ordinates are determined by the BP-Index and BI-Index. The region
where the point is located, specifies the class the blogger belongs.

The introduction of this family of metrics generates a straightforward policy for eval-
uating the temporal productivity and influence of the bloggers. No user-defined weights
need to be set before these metrics provide results, whereas the most sound features of the
Blogosphere are considered. Moreover, the calculation of the metrics can be performed in
an online fashion, since they do not involve complex computation and they do not present
stability problems like those encountered when using eigenvector-based influence scores.
Note that the developed metrics are similar in spirit with the h-index and its variations
(see [146]) that recently became popular in the scientometrics literature, but the challenges
in the Blogosphere are completely different: there are comments associated with each blog
post, the time granularity is finer, the author of a post is a single person, the resulting graph
might contain cycles, and much more.

3.4.3 Experimental evaluation

In this section we evaluate our metrics against the influence flow model and several
scientometrics. Since millions of blog sites exist, it is impossible to crawl the entire Bl-
ogosphere to obtain a complete dataset. Hence, in order to attest our proposed methods,

58
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Engadget Techcrunch
Bloggers 93 107
Posts 63,358 19,464
Inlinks 319,880 193,777
Comments 3,672,819 746,561
Comments per Post 57.97 38.36
Inlinks per Post 5.05 9.96
Posts per Author 681.27 181.91
Average Post Length (words) 180.52 380.76

Table 3.12: Dataset characteristics.

it is essential to detect active blog communities that provide all the required data charac-
teristics, such as the publication date of a post, its corresponding author, and the number
of comments that each post received along with their submission date and the user voting
data. Engadget9 and the Techcrunch10 technology blog are two communities that meet all
these requirements. We collected all the blog posts and the desired data from two com-
munities, to confirm that the proposed methods can be applied to every blog community
having similar characteristics.

So, we performed a full crawl of the entire Engadget Web site and from the document
collection that we obtained, we extracted 63,358 blog posts published by 93 distinct blog-
gers. This accounts for approximately 681 posts per blogger on average). Some posts were
spanning across multiple pages, due to the large number of the submitted comments; in
total, we gathered about 3.67 million comments which means that each post of Engadget
receives on average roughly 58 comments. Similarly, we also crawled11 Techcrunch and
mined 19,464 posts, authored by 107 writers (average 182 posts per blogger). The com-
ments that were made to these posts were 746,561 and the average number of comments
per post is approximately 38.

After these procedures, the only information that was missing from our dataset, was
the total number and publication date of the incoming links. To obtain it, we employed
the Google’s blog search service by requesting the posts including references to the posts
of our dataset. Apart from the number of the incoming links, we also retrieved the date
that the referring post was submitted and its author’s name. This information is neces-
sary for the calculation of the MEIBI and MEIBIX metrics. Finally, we collected roughly
320 thousands inlinks for the posts of Engadget and about 193 thousands for the posts of
Techcrunch. The precise sizes of our dataset are recorded in Table 3.12. The final row

9http://www.engadget.com
10http://www.techcrunch.com
11Both crawls were performed on March 28, 2010

59
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 3.4: Time distribution of posts and inlinks.

indicates the average post length in words, including the title.
The writers of Engadget are more productive, since they publish on average more posts

than those of Techcrunch and their posts are more commented by the readers. However,
the posts of Techcrunch attract on average about double references compared to those of
Engadget and are much longer.

3.4.3.1 Temporal characteristics of inlinks and comments

Before we start evaluating our proposed methods, we will examine the importance of
our motivations. In other words, we shall try to figure out whether temporal aspects are
worth studying and if they are really important when we try to identify influential bloggers
in online communities.

Initially, we present the publication dates of the posts and the incoming links for both
communities. Figure 3.4 illustrates the time distribution of the posts and their inlinks. If
we exclude 2010 which is not yet completed, the most productive year was 2009.

Similarly, Figure 3.5 depicts the time distribution of all the comments made to the
original posts for both communities. As before, 2009 was the most productive period,
since in that year the readers submitted the most comments.

We also investigate the temporal distribution of the incoming links for a blog post, by
measuring the intermediate time between the date a post was submitted and the date it
received each of the incoming links. The results for both Engadget and Techcrunch are
recorded in Table 3.11 (the numbers within parentheses denote the corresponding percent-
age with respect to the total number of inlinks, or comments). Regarding Engadget, about

60
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 3.5: Time distribution of comments.

41% of the total inlinks were received (published) the same day that the post was submit-
ted. Furthermore, we observe that the posts of Engadget receive the 66% of their total
inlinks within the first week after their publication. Only a percentage of 7.2% of all in-
links are dated one or more years after the publication of the post. The results are similar
for the Techcrunch blog: 65% of the total citations are made within the first week after the
submission of the post, and only 1.4% of them has age greater than one year.

Moreover, the posts of both communities are mainly commented for only two days after
their publication: approximately 86% of all the comments are submitted within this small
period. On the other hand, a small percentage of roughly 8% of the comments have age
greater than one month.

These results prove the necessity of time-aware metrics for the identification of the
influentials; since the posts are influential for a few days, it is not particularly useful to

identify influentials for the whole lifetime of the blog site, but it is more substantial to iden-

tify the now-influential bloggers of the blog site. Moreover, our time-aware influence met-
rics, which measure time difference in days, are indeed necessary to differentiate between
influential bloggers.

3.4.3.2 Identifying the influential bloggers

In this subsection, we apply the proposed methods on the acquired dataset, in order
to categorize the bloggers of the two blog communities to the introduced classes. Apart
from the proposed metrics we also examine a naive method which ranks the bloggers by
considering only their activity, i.e., number of published posts—the activity index—, one

61
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Bloggers N First Last
1 D. Murph 11555 10/07/2006 28/03/2010
2 P. Rojas 5897 02/03/2004 24/10/2007
3 R. Block 5643 02/03/2004 30/07/2009
4 P. Miller 5000 21/09/2005 25/03/2010
5 D. Melanson 4856 15/12/2004 28/03/2010
6 T. Ricker 4798 04/05/2005 26/03/2010
7 N. Patel 3091 19/04/2007 24/03/2010
8 E. Blass 2269 05/09/2005 13/02/2008
9 M. Perton 2122 13/12/2004 16/05/2006
10 J. Topolsky 2057 18/06/2007 25/03/2010

Bloggers N First Last
1 M. Arrington 4903 11/06/2005 28/03/2010
2 E. Schonfeld 2685 24/09/2007 28/03/2010
3 J. Kincaid 1821 09/04/2008 28/03/2010
4 M. Siegler 1435 12/04/2009 28/03/2010
5 R. Wauters 1379 20/10/2008 28/03/2010
6 D. Riley 1275 02/05/2007 28/05/2008
7 L. Rao 1260 28/01/2009 28/03/2010
8 J. Biggs 698 15/08/2006 28/03/2010
9 M. Hendrickson 579 24/07/2007 21/10/2009

10 N. Gonzalez 458 05/10/2006 18/05/2009

Table 3.13: Bloggers ranking based on the number of posts submitted (active bloggers) for
Engadget (left) and Techcrunch (right).

ranking method which is a straightforward adaptation of a method coming from the biblio-
metric literature—the h-index [146]— (we call these two methods as the plain methods),
the solution proposed in [5] and the two time-sensitive metrics appeared in [12].

We divide the experimentation into three parts: in the first part, we compare the in-
fluential bloggers indicated by the proposed methods, to the bloggers found by the plain
methods, MEIBI and MEIBIX. We use the entire dataset as a baseline experiment to ex-
amine whether temporal considerations are worth examining; in the second part, we com-
pare the influential bloggers indicated by the proposed methods, with those found by the
influence-flow method using the posts published in February 2010, to prove that even for
small time intervals the rankings are different; finally, we examine the temporal evolution
of the influential bloggers identified by the proposed methods during the year 2009, to ex-
amine whether the most influential bloggers lose their lead in influence and strengthen the
necessity for temporal considerations even more.

Table 3.13 includes the ten most influential bloggers based solely on their activity (i.e.,
productivity) measured by the number of posts they have published in the Engadget and
Techrunch blogs. We also provide the dates that the first post (fourth column) and the last
post (fifth column) of each blogger was published.

Although P. Rojas is the second most active of Engadget, he has not submitted any
posts for the last 2.5 years. A similar notification of inactivity can also be made for other
top-10 influential bloggers of both communities, like R. Block of Engadget who is inactive
for about 8 months and D. Riley of Techcrunch, who has not posted in the last 22 months.
Apparently, this ranking is not suitable in our case, since it does not take into considera-
tion the matter of recency in blogging activity and also, it is impossible to identify which
bloggers are influential or not.

Table 3.14 presents a ranking of the ten most influential bloggers of each of the exam-
ined communities, when the h-index [146] metric is used; recall that this metric examines
the number of posts of each blogger and the number of incoming links to each posts, award-

62
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Bloggers hh,a |Da| (Cited) Inlinks Cmnts
1 R. Block 53 5643 (3197) 25251 577288
2 J. Topolsky 52 2057 (1980) 20858 264644
3 T. Ricker 42 4798 (4200) 36175 178198
4 N. Patel 42 3091 (2970) 26381 181447
5 P. Miller 40 5000 (4302) 30946 209522
6 D. Murph 34 11555 (10895) 63028 631108
7 C. Ziegler 33 1997 (1891) 14560 130673
8 R. Miller 27 1385 (1245) 9722 68795
9 V. Savov 26 944 (926) 8277 46436
10 D. Melanson 24 4856 (4196) 21878 147491

Bloggers hh,a |Da| (Cited) Inlinks Cmnts
1 M. Arrington 91 4896 (4458) 71618 248552
2 E. Schonfeld 53 2667 (2455) 28440 94843
3 M. Siegler 43 1414 (1285) 15194 71363
4 J. Kincaid 39 1805 (1651) 14383 61788
5 D. Riley 36 1275 (1189) 11631 32721
6 R. Wauters 34 1356 (1219) 9432 44990
7 M. Hendrickson 31 579 (532) 5371 18641
8 L. Rao 27 1240 (1062) 6498 27011
9 M. Kirkpatrick 26 447 (422) 3935 11387

10 G. Author 25 158 (139) 2307 12824

Table 3.14: Bloggers ranking based on h-index for Engadget (left) and Techcrunch (right).

ing both productivity and influence. The third column of Tables 3.14 displays the value of
the h-index metric for each blogger of Engadget (left) and Techcrunch (right). The next
column shows the total number of posts he/she has submitted and how many of them have
been cited by other posts respectively. Finally, the two last columns illustrate the total
number of incoming links and comments that all the posts of a blogger have attracted.

The comparison of Table 3.13 with the Table 3.14 reveals some significant differences.
These differences justify that productivity and influence do not coincide. According to the
h-index metric, the most influential blogger of Engadget is R. Block who has written 53
articles having at least 53 incoming links each. R. Block is the third most active blogger
in Engadget, though he has posted nothing in the last 8 months. Although he has been
inactive recently, he is still the most influential according to the h-index metric. Similar
notifications can be made for the Techcrunch blog (i.e. note that M. Kirkpatrick is the ninth
most influential according to h-index, but he is not among the top-10 productive).

All these indications prove that h-index can indicate the most influential blogger, but
cannot identify bloggers who are both influential and active. In addition, it ignores the
temporal aspects characterizing each blogger.

To compare the proposed metrics against the influence-flow method [5], we select a
subset of the real data in order to conduct fairer experiments. It was obvious by the experi-
mentation of the previous paragraphs, that the inactivity has a dramatic effect upon the final
ranking. The real question concerning the usefulness of the proposed methods is whether
in a small period of time, say a month, these methods would provide different rankings
than those of the influence-flow method. Thus, we selected to work upon the blog posts
of February 2010 only. For comparison purposes, we also present in Tables 3.15 and 3.16
the top-10 of active (most productive) bloggers during February 2010 as this ranking is
provided by the sites themselves.

In Tables 3.15 and 3.16 we present the most influential and productive bloggers of
Engadget and Techcrunch respectively, for February 2010 as they are provided by the
influence-flow method and the MEIBI and MEIBIX metrics. Neither MEIBI nor MEIBIX

63
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Bloggers |Da| Inlinks Com
1 D. Murph 172 1179 8203
2 V. Savov 146 1194 7518
3 D. Melanson 102 643 4716
4 C. Ziegler 101 1197 5839
5 T. Stevens 73 404 2699
6 R. Miller 70 454 2710
7 T. Ricker 58 641 3820
8 N. Patel 55 550 4350
9 P. Miller 52 445 2684
10 J. Flatley 41 196 1483

Blogger
1 J. Topolsky
2 R. Lai
3 D. Murph
4 N. Patel
5 V. Savov
6 L. June
7 T. Stevens
8 D. Melanson
9 J. Stern

10 T. Ricker

Blogger hM,a

1 C. Ziegler 45
2 D. Murph 42
3 V. Savov 41
4 D. Melanson 32
5 N. Patel 32
6 T. Ricker 32
7 P. Miller 26
8 R. Miller 24
9 T. Stevens 23

10 J. Stern 23

Blogger hMX,a

1 C. Ziegler 46
2 D. Murph 43
3 V. Savov 41
4 D. Melanson 33
5 N. Patel 32
6 T. Ricker 32
7 P. Miller 26
8 R. Miller 25
9 T. Stevens 23

10 J. Stern 21

Table 3.15: Bloggers ranking (February 2010) according to: Engadget (left). Influence-
flow model (center). MEIBI and MEIBIX (right).

Bloggers |Da| Inlinks Com
1 L. Rao 116 271 1603
2 M. Siegler 114 808 5380
3 R. Wauters 93 441 2949
4 E. Schonfeld 74 397 3038
5 J. Kincaid 69 431 2981
6 M. Arrington 53 513 4400
7 M. Butcher 23 59 562
8 G. Author 13 89 776
9 D. Coldewey 9 68 685

10 S. Lacy 8 35 439

Blogger
1 M. Arrington
2 J. Kincaid
3 D. Coldewey
4 R. Wauters
5 E. Schonfeld
6 M. Siegler
7 V. Wadhwa
8 G. Author
9 J. McKenna
10 M. Burns

Blogger hM,a

1 M. Siegler 32
2 E. Schonfeld 22
3 M. Arrington 21
4 J. Kincaid 19
5 R. Wauters 19
6 G. Author 9
7 L. Rao 9
8 D. Coldewey 8
9 G. Kumparak 8

10 M. Butcher 7

Blogger hMX,a

1 M. Siegler 33
2 E. Schonfeld 22
3 M. Arrington 22
4 R. Wauters 20
5 J. Kincaid 19
6 G. Author 9
7 L. Rao 9
8 D. Coldewey 8
9 G. Kumparak 8

10 M. Butcher 7

Table 3.16: Bloggers ranking (February 2010) according to: Techcrunch (left). Influence-
flow model (center). MEIBI and MEIBIX (right).

generate rankings that agree with the ranking provided by the blog sites themselves. For
instance, Engadget concerns D. Murph as more influential than C. Ziegler in contrast to
the rankings generated by MEIBI and MEIBIX. Indeed, although C. Ziegler has authored
fewer posts than D. Murph, his posts received more references from other posts. A simi-
lar notification can be made for N. Patel and T.Stevens; MEIBI and MEIBIX consider the
former as more influential than the latter, since his posts, although fewer, have attracted
more incoming links and comments. The simple productivity-based ranking provided by
Techcrunch is also ineffective, since although L. Rao is slightly more productive than M.

Siegler, his posts gathered much fewer inlinks and comments.
The comparison of MEIBI and MEIBIX against the influence-flow model reveals many

remarkable differences. Based on the score of the best post of a blogger (thus only only one
post is considered), the ranking that the model generates appears ineffective. For instance,
the model considers J. Topolsky as the most influential blogger of Engadget. Indeed, J.

Topolsky has authored the best post of the entire community for February 2010, where he
describes his impressions regarding Windows Phone 7 Series. The post has attracted 148
inlinks and 697 reader comments, whereas one outgoing link was included. However, J.

Topolsky was not very productive during that period since he posted 17 times compared
to the rich activity of D. Murph who has published 172 posts. Regarding influence, we
firmly believe that a single post is not a safe indication of a blogger’s influence; the posts

64
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

of other bloggers were cited and commented more frequently than those of J. Topolsky.
Similar notifications can be made for other bloggers of Engadget (e.g. R. Lai, L. June) and
Techcrunch (e.g V. Wadhwa, J. McKenna and M. Burns).

Now, let us examine how our proposed methods perform in this limited portion of
the dataset. The left and right diagrams of Figure 3.7 illustrate the classification of the
bloggers of Engadget and Techcrunch, respectively. Regarding Engadget, six bloggers are
characterized as both productive and influential, thus they are categorized in class A. The
most influential blogger of Engadget according to the BI-Index is C. Ziegler in agreement
to the rankings of MEIBI and MEIBIX. Although D. Melanson is not as productive as
the other six, his posts gathered many incoming links and comments, hence this blogger
belongs to class B. In addition, there are five more bloggers that are highly productive,
but their posts are not cited or commented sufficiently. On the other hand, Techcrunch
has five bloggers who are both productive and influential (class A) and two more whose
high productivity is not accompanied by equally high influence. Once more, there is no
blogger of Techcrunch who can be categorized in class B. The reliability of our methods is
confirmed by the data recorded on the left parts of Tables 3.15 and 3.16. BP-Index awards
the bloggers who are really highly productive, whereas BP-Index assigns high scores to the
influential ones.

Finally, to evaluate the correlation between the different rankings produced by each
method, we employed the Spearman’s rho metric. The results illustrated in Table 3.17 and
Table 3.18 record the correlation between the different rankings produced by the examined
models for Engadget and Techcrunch, respectively, during February 2010. The experiment
reveals that MEIBI and MEIBIX produce rankings that diverge significantly from the one
generated by the influence-flow model.

Methods ρ

Engadget – influence-flow model 0.56
Engadget – MEIBI 0.73
Engadget – MEIBIX 0.73
influence-flow model – MEIBI 0.20
influence-flow model – MEIBIX 0.20
MEIBI – MEIBIX 1.00

Table 3.17: Correlation of rankings for Engadget (February 2010) according to Spearman’s
rho.

65
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Methods ρ

Techcrunch – influence-flow model 0.24
Techcrunch – MEIBI 0.68
Techcrunch – MEIBIX 0.68
influence-flow model – MEIBI 0.36
influence-flow model – MEIBIX 0.36
MEIBI – MEIBIX 1.00

Table 3.18: Correlation of rankings for Techrunch ((February 2010)) according to Spear-
man’s rho.

3.4.3.3 Bloggers classification

In the sequel, we apply our proposed metrics to the posts of our dataset and we examine
whether these metrics are suitable for categorizing bloggers. Table 3.19 contains the 15 top-
ranked bloggers of Engadget and Techcrunch along with the corresponding values of BP-
Index, BI-Index, MEIBI and MEIBIX. The second column of each table denotes the class
each blogger belongs according to the values of BP-Index and BI-Index. Moreover, the left
and right diagrams of Figure 3.6 illustrate the classification of the bloggers of Engadget
and Techcrunch respectively.

The first conclusion that derives from both diagrams, is that Class D is the most multi-
tudinous category. In other words, the vast majority of the bloggers are neither productive
nor influential compared to the top-ranked ones. On the other hand, only a limited number
(3 out of 93 for Engadget and 4 out of 107 for Techcrunch) are categorized in Class A and
only these are characterized as both productive and influential recently. Our initial claim
that productivity does not coincide with influence is verified by the bloggers belonging to
Classes B and C. Engadget has six such bloggers (three are influential but not productive
and the other three are productive but not influential), whereas the Techcrunch community
includes two writers having high productivity but medium recent influence.

The classification based on the BP-Index and BI-Index does not agree with the rankings
based on MEIBI and MEIBIX metrics (Table 3.19) and this is something that we partially
anticipated: MEIBI does not account for recent influence, since it does not consider the age
of the incoming links of each post. On the other hand, MEIBIX does not account for recent
productivity and, furthermore, both metrics ignore the age of the comments made to each
post, hence they do not award the recency of influence inside the communities. J. Topolsky

of Engadget is one of the three top-ranked influential bloggers according to MEIBI and
MEIBIX (values 113 and 125 respectively), however our new methods place him in Class
D. A similar disagreement between the rankings also holds for N. Patel. Regarding the
bloggers of the Techcrunch community, the rankings of MEIBI and MEIBIX coincide with

66
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 3.6: Classification of the bloggers of Engadget (left) and Techcrunch (right).

the classification of the new methods.
To discover the truth, we examined the statistics of our bloggers in the last three months

(since January 1st, 2010). The results displayed in Table 3.20 indicate that the combination
of BP-Index and BI-Index achieves a more accurate classification of the Engadget bloggers.
Although MEIBI considers D. Murph, C.Ziegler and J. Topolsky equally influential, we no-
tice that the last one has published much fewer posts which attracted fewer incoming links
and comments than the posts of the other two. Therefore, we conclude that J. Topolsky is
not productive recently and definitely not as influential as D. Murph and C.Ziegler. Re-
garding the rest of the bloggers, the rankings generated by MEIBI and MEIBIX somehow
agree with the proposed blogger classification.

Bloggers Class hBP,a hBI,a hM,a hMX,a

1 D. Murph A 32 114 113 134
2 C. Ziegler A 26 94 113 129
3 V. Savov A 26 90 101 122
4 P. Miller C 25 68 89 105
5 J. L. Flatley C 24 58 55 67
6 T. Stevens D 21 64 60 68
7 J. Stern D 21 41 45 50
8 T. Ricker B 20 79 92 107
9 J. Topolsky D 20 72 113 125
10 R. Miller D 20 55 77 85
11 D. Melanson D 19 64 67 80
12 S. Hollister D 19 45 41 41
13 L. June B 17 90 79 81
14 N. Patel B 17 75 105 123
15 R. Lawler D 15 39 40 43

Bloggers Class hBP,a hBI,a hM,a hMX,a

1 MG Siegler A 32 76 97 114
2 M. Arrington A 31 71 114 137
3 L. Rao C 29 41 32 42
4 J. Kincaid A 25 53 55 64
5 E. Schonfeld A 24 57 72 86
6 R. Wauters C 23 47 51 60
7 G. Author D 20 34 42 45
8 J. Biggs D 15 32 31 36
9 M. Butcher D 15 20 16 18

10 D. Coldewey D 13 25 27 28
11 P. Carr D 13 20 23 23
12 S. Lacy D 13 22 19 19
13 G. Kumparak D 12 26 29 31
14 S. O’Hear D 11 8 4 5
15 V. Wadhwa D 11 20 19 19

Table 3.19: Bloggers categorization for Engadget (left) and Techcrunch (right).

Another remarkable issue is that Engadget includes three bloggers who are not produc-
tive recently, but their posts continue to attract incoming links and comments from their

67
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

readers. For instance, T. Ricker has authored 171 posts in the last three months; 2152 ex-
ternal posts included references to these posts, whereas 12940 comments were submitted
by the readers to express their agreement or disagreement. On the other hand, notice that
Techcrunch does not include bloggers belonging to Class B and, in general, the most pro-
ductive bloggers are also the most influential. Two exceptions to this notification are L. Rao

and R. Wauters who are categorized in Class C (productive, but not influential recently).

Bloggers Posts Inlinks Comments
1 D. Murph 464 3901 24123
2 V. Savov 406 3940 21810
3 C. Ziegler 312 3889 21117
4 D. Melanson 296 1982 13246
5 T. Stevens 287 1931 12901
6 P. Miller 217 2161 24346
7 N. Patel 204 3287 22950
8 R. Miller 193 1616 9698
9 J. L. Flatley 180 1210 7415
10 T. Ricker 171 2152 12940
11 J. Stern 120 1222 5312
12 L. June 110 937 21737
13 R. Lawler 85 820 2907
14 J. Topolsky 64 1927 16737
15 S. Hollister 53 429 2243

Table 3.20: Statistics of the Engadget bloggers between 01/01/2010 and 28/03/2010.

3.5 Blog Site Quality Scores

Although the generic problem of evaluating a Web site has been extensively studied
in the past and many effective solutions exist now (such as PageRank and its variants, or
HITS), the issue of the evaluation of a blog site is still an open research problem. This
is due to the inappropriateness of the aforementioned eigenvector-based methods for two
reasons [78]: At first, these methods treat blogs as typical interlinked Web pages and do
not consider blog-specific information. And second, the blog entries graph is very sparse,
hence, the performance of the traditional Web ranking methods is decreased.

In [78] the authors presented BlogRank, a method for ranking weblogs based on the
link graph and on several similarity characteristics between weblogs. In this method, the
blog graph is initially enhanced with implicit links, that is, virtual links which reveal the
participation of the bloggers and the commentators in multiple blog services. In the sequel,

68
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 3.7: Classification of the bloggers of Engadget (left) and Techcrunch (right) for
February 2010.

they define the BlogRank SBR,b of a blog site which has N incoming links in a PageRank
recursive manner:

SBR,b = (1− E) + E
N∑
n=1

P (n→ b)SBR,n (3.7)

where E is a damping factor with a typical value equal to 0.85. P (n → b) represents
the probability that a user who is currently in the blog site n will visit b. In the original
PageRank method, we set P (n → b) = 1/M where M is the total number of outlinks of
n; that is, the user may follow each outlink with equal probability. However, in BlogRank
it is assumed that a user has a higher probability to visit a post which shares the same topic
with n. For this reason, the blog graph is further enhanced by adding bidirectional links
between the blogs which share the same thematic categories.

Now let us introduce our methods for evaluating a blog site. The first method is based
on the idea that a blog site is as important as its member bloggers are. In other words,
the impact of a blog site is determined by the influence of the blogger/s who publish posts
in this specific site. For instance, a blog community which includes numerous influential
bloggers is apparently of high importance. Based on this idea, we introduce SBI-Rank

(Summed Bloggers Influence), a metric which accumulates the influences of the member
bloggers of a blog site into a single quantity SSBI,b:

SSBI,b =
∑
∀a∈Ab

ha (3.8)

69
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Within Blogosphere we encounter two types of blogs [4]: a) the community blogs, or
multi-authored blogs, where several bloggers may start discussions, and b) the individual
blogs, maintained and updated by one blogger. In the latter case, the SBI-Rank of a blog
site is identical to the influence score of its unique author. Furthermore, if the influence
metric ha is time-aware (i.e. MEIBI, MEIBIX, etc), then SBI-Rank is also time-aware
since it rewards blog sites which include presently influential authors.

Our second blog evaluation method embodies the spirit of the journal impact factor (IF)

[57], a metric which ranks scientific journals. The IF is based on the average number of
citations received by each article of a journal within a given time period. More specifically,
if the IF of a journal in a year Y is k, then the articles published in the years Y − 1 and
Y − 2 received on average k citations in the year Y .

Nevertheless, this metric is impractical for evaluating blog sites for two reasons: The
first one is that in contrast to the research papers, the vast majority of the blog posts become
old very quickly [12]. Consequently, the posts published one or two years ago are probably
never read or referenced in the present. The second reason is that IF is only based on
citations and does not account for the user comments which are also an indication of a
post’s impact. We can easily overcome the first problem by replacing the years with a
smaller time window (i.e. month or week). Regarding the second issue, we remind that the
impact of a blog post has a dual nature, reflected by the number of incoming links and the
comments. To integrate this dual nature into our analysis, we introduce the impact units, a
linear combination between the inlinks and the comments.

Id = wrDc,d + wcCd (3.9)

where wr and wp are two constants similar to the ones used in the BI-scores which
regulate the balance between the inlinks and the comments. Now, we are ready to introduce
our second blog quality metric, Blog Impact Factor (BIF), which is formally phrased as
follows:

Definition 5: A blog site b has BIF equal to SBIF,b in a time window w, if the posts
published in the two previous windows w− 1 and w− 2 received on average SBIF,b impact
units within w.

For instance, in case a blog site b has SBIF,b = 5 in March, then the posts published in
the two previous months (January and February) received on average 5 impact units during
March.

70
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Blog SBIF,b
blogs.adobe.com 23
www.thehindu.com 22
www.planetmysql.org 20
www.mvblogs.org 15
sportsblogs.org 15
planetsun.org 14
planet.haskell.org 14
www.finextra.com 11
www.planetnetbeans.org 11
www.businessweek.com 11

Blog SSBI,b
sportsblogs.org 1546
planetsun.org 1499
www.autosport.com 1335
fashionplanet.worldofSL.com 1009
www.order-order.com 1007
www.libertaddigital.com 878
www.mvblogs.org 780
minagi.akari-house.net 725
www.golem.de 659
www.thehindubusinessline.com 656

Table 3.21: Blogs impact rankings according to: BIF (left) and SBI-Rank based on MEIBI
(left).

3.5.1 Experimental Evaluation

The dataset we used is the TREC blogs08, a repository comprised of approximately
28.5 million blog posts (documents or permalinks) and 1.3 million blog feeds. The perma-
links and the feeds occupy roughly 1,445 GB and 808 GB in uncompressed forms respec-
tively.

The experiments described here is part of a wider study which is described in details
in subsection 4.3.5 in Chapter IV. For further information regarding the dataset processing
and the methodology followed in these experiments, the interest reader can also refer there.

In Table 3.21 we present two rankings with the most qualitative blog sites of the dataset
according to the proposed BIF (left table) and SBI-Rank (right table). The former rewards
the blog sites which contain recently referenced post posts and according to it, the site
having the greatest impact is http://www.newyorker.com; the posts published on Novem-
ber and December of 2008 attracted on average 23 incoming links on January 2009. The
second and third most influential blog sites on January 2009 were www.thehindu.com and
www.planetmysql.org with 22 and 20 incoming links per post respectively. Now regarding
SBI-Rank which is based on the influence of the member of bloggers of a community, we
used the MEIBI index for our calculations. The corresponding ranking shows that accord-
ing to this metric, the most influential blog site is sportsblogs.org with SSBI,b = 1, 546,
followed by planetsun.org and www.autosport.com (SSBI,b = 1, 499 and SSBI,b = 1, 335

respectively).

3.6 Conclusions

In this chapter we discussed the issue of identifying the influential bloggers in blog
communities. We studied an early model (influence-flow model) which assigned influence

71
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

scores to bloggers according to a number of his/her posts attributes (incoming and out-
going links, length and number of submitted comments) and we exposed its drawbacks.
Considering the unstable nature of Blogosphere and the rapid changes which happen in
shorts periods of time, our discussion focused on introducing temporal aspects in the iden-
tification of the influentials. Furthermore, this early model estimated the influence of a
blogger by taking into account only the highest scoring blog post and ignored the rest of
them; we stated that such a policy overlooks the blogger’s productivity; a blogger may have
authored only one highly influential post, whereas others, may have published hundreds of
less influential posts.

Initially, we introduced MEIBI and MEIBIX, two time-sensitive metrics which ad-
dressed the issue of productivity by taking into consideration all the posts a blogger has
authored. The former assigned scores to all the posts of a blogger by computing their age
(i.e. the time elapsed since their publication), whereas the latter is based on the age the
incoming links; if an old post continues to be cited in the present, then it is considered
influential now.

In the sequel, we expanded these two metrics by introducing two interrelated metrics,
BP-index and BI-index. This new approach attempts to graphically solve the problem of
identifying the bloggers who are presently productive and influential. Therefore, the com-
putation of these two metrics leads to a classification model which categorizes a blogger
into one of four classes: A (both productive and influential), B (influential but not produc-
tive), C (productive but not influential), and D (nor productive, nor influential).

All our proposed approaches were attested against the influence-flow model and some
of the most popular scientometrics by using data crawled from real-world blog commu-
nities. The experiments demonstrated the usefulness of our methods by providing more
sensible and effective blogger rankings.

72
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

CHAPTER IV

Ranking

4.1 Introduction

The issue of returning results of high quality is of primary importance for search en-
gines. It is broadly acceptable that the success of these systems is mainly determined by
their capability on generating results which are relevant to an incoming query, thus satisfy-
ing the information needs of the users. The operation which is responsible for identifying
relevant documents within a document storage is called ranking. Ranking is one of the main
principles which distinguish search engines from databases; whereas the latter are usually
required to return all the results which are relevant to a query, the former must return the
top-k best results.

Nowadays, ranking in Web search engines is a particularly complex task, as it depends
on multiple features; the relevancy of a document to a query, its overall objective value,
its previous usefulness to the users as a result, etc. The common strategy followed by the
modern Web search engines dictates that the system initially identifies the documents which
are most suitable to the query by taking into consideration only a limited set of parameters.
This initial step must be highly optimized since the retrieval requires traversal of huge
inverted lists and furthermore, the complete evaluation of all candidate results would lead
to prohibitive processing durations. Having identified the top-K most relevant results on
the previous stage, the system performs a full evaluation of these K results by exploiting
additional information such as positional and field information (stored in the index), click
through data and relevance feedback. Finally, it returns the top-k list comprised of the most
promising results.

In this chapter we examine some state-of-the-art probabilistic retrieval functions, such
as BM25 (firstly introduced [115]), a variant which takes into consideration the zone
of the document where a term appears (BM25F, [89]), and another variant which takes
into consideration term proximity, namely BM25TP ([31]). In the sequel, we introduce

73
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

BM25TOPF, a method which assigns scores to the candidate results by taking into con-
sideration a) both positional and zone data, and b) the ordering of the words in the query.
BM25TOPF builds upon the TZP compression algorithm we presented in Chapter II. Re-
call that TZP replaces the position of a word in a document by its occurrence which encodes
both positional and zone data. BM25TOPF captures the spirit of both BM25F and BM25TP
and combines them within a single ranking formula.

One of our main motives which led us in the introduction of BM25TOPF was to ex-
amine whether the usage of the additional information can really lead to search results of
higher quality. Another motive was that the discovery of a ranking function which com-
bines many different parameters (i.e. frequencies, term proximity, zone weighting, docu-
ment lengths, etc.) is a quite challenging task.

Furthermore, in this chapter we examine the issue of improving the retrieval effec-
tiveness of the blog vertical search engines. Here we are not only interested in providing
ranking schemes which elevate the most relevant documents, but we are primarily inter-
ested in retrieving qualitative opinionated documents, that is, blog entries which contain
opinions about the query subject. Due to the aforementioned increase in the size of Blogo-
sphere, the opinions expressed through it are now of crucial importance since they affect
a large number of users and their impact is large. For instance, a positive opinion about
a product can significantly increase its commercial success whereas in contrast, multiple
negative statements about a politician can decrease his/her publicity and affect the success
of his/her political career. Similar examples include artists, events, travel locations, service
providers, and generally every judgeable aspect of life.

For these reasons, the problem of opinionated retrieval of blog entries is considered
both interesting and challenging and has gained the attention of the research community.
In addition, the introduction of the polarity and opinion search task by the Text Retrieval
Conference (TREC) in 2006 and 2008 [103, 104, 105] has attracted even more researchers
to propose solutions for this problem. In general the suggested opinion retrieval models
primarily consist of three basic components: the first one implements a traditional informa-
tion retrieval (IR) system which identifies topic-relevant documents (i.e. blog posts) from a
document set, with respect to a given query. In the sequel, a classification or lexicon-based
algorithm is employed to determine whether these posts contain opinions. Finally, a third
component assigns opinion scores and combines them with the relevance scores of the IR
system to produce a final ranked list of documents.

Although numerous opinionated retrieval models have been proposed in the relevant
literature, none of them takes into consideration objective quality scores. The research
performed towards the enhancement of the Web retrieval effectiveness indicates that the

74
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

inclusion of quality evaluation metrics (such as PageRank) in the ranking methods of Web
search engines leads to improved results. In this study we convey this notion to the field of
the opinionated blog post retrieval and we introduce QUIQS (Query Independent Quality

Scores), with the aim of improving the identification of relevant results. QUIQS consist of
three families of evaluation metrics which measure the objective, query-independent qual-
ity of the i) blog posts, ii) blog sites, and iii) bloggers. Such metrics have been presented
in chapter III, therefore, here we demonstrate how a vertical blog search engine can apply
them to generate qualitative opinionated blog entries in response to the incoming queries.

The rest of the chapter is organized as follows: in section 4.2 we examine the prob-
lem of Web ranking; we initially present the existing state-of-the-art probabilistic functions
(subsections 4.2.1, 4.2.2, and 4.2.3) and in the sequel, we describe and evaluate our pro-
posed BM25TOPF function (subsections 4.2.4 and 4.2.5 respectively). The problem of the
opinionated blog post retrieval is discussed in section 4.3, and the chapter closes with our
conclusions in section 4.4.

4.2 Probabilistic Web retrieval

In this section we provide a brief overview of the current state-of-the-art ranking func-
tions and in the sequel, we present our own ranking method that exploits the additional
information stored in our proposed index setup. In Table 4.1 we summarize the symbols
used by the presented scoring functions and, also, we explain their meaning.

4.2.1 The BM25 function

The BM25 weighting scheme was developed by [115] as a way of building a proba-
bilistic model sensitive to term frequency and document length. It is not a single function,
but actually a whole family of scoring functions, with slightly different components and
parameters. One of the most prominent instantiations of the function is as follows.

Given a query Q containing the terms t1, t2, ..., tn, each document d is assigned a rele-
vance score that is given by the following formula:

SBM25(d) =
n∑
i=1

wti
fd,ti(k1 + 1)

fd,ti +K
, (4.1)

K = k2

(
1− b1 +

b1ld

l

)
(4.2)

where k1, k2 and b1 are three predefined constants. Although there are some other

75
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Symbol Meaning
C The entire document collection (corpus)
d An arbitrary document in the collection
zj,d The jth zone of d
N Number of documents in C
Q A user query
ti The ith term in Q
Nti Number of documents containing ti

wti = log(N/Nti) Inverse Document Frequency (IDF) of ti
pti,Q The position of ti in query Q
pti,d The position of ti in document d
pti,zj The position of ti in zone zj
fd,ti Number of occurrences of ti within d
fzj,d,ti Number of occurrences of ti within zj,d
ld The length of d (number of terms)

l = (
∑N

i=1 li)/N The average document length in C
lzj,d The length of zj,d (number of terms)

lzj = (
∑N

j=1 lzj,d)/N The average length of zj in C

Table 4.1: Notation.

variants of the BM25 weighting scheme, the one we provide here is the most popular among
them.

4.2.2 Zone weighting

Zone weighting is related to the appropriate result scoring when ranking structured or
semi-structured documents. BM25F is a model proposed by [89] and takes into consid-
eration the physical position of a term within a document (i.e. in which field of an XML
document a term appears). The introduction of zones in chapter II and the usage of the
enriched index structure, allows us to use BM25F in standard Web documents.

For a user query Q = {t1, t2, ..., tn}, the document scoring according to BM25F is
performed in two phases: Initially, we obtain the accumulated weight of a query term ti

over all fields as follows:

Wz(d, ti) =
∑
zj,d∈d

Szjfzj,d,ti

1− b2 + b2
lzj,d
lzj

(4.3)

where b2 is a predefined constant usually set equal to b2 = 0.75, and Szj is a static score
assigned to each document zone. The existence of the Szj score allows us to modify the
importance of a term appearing in special locations within a document. For example, we
could assume that a document having the query terms in the title is more relevant to this

76
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

specific query, than a document which contains these terms in its normal text.
On the second phase, the accumulated weights are being used to compute the BM25F

scores according to the following formula:

SBM25F =
n∑
i=1

wti
Wz(d, ti)

Wz(d, ti) + k3
(4.4)

where, similarly, wti represents the IDF of ti, and k3 is a predefined constant.

4.2.3 Term proximity scoring

Document retrieval functions based on the vector space model (see for instance [117,
111, 81]) and the bag-of-words representation of documents, such as Okapi BM25 have
been proved to be effective in ad-hoc information retrieval tasks. One of their drawbacks
is that they do not take the proximity of query terms within a document into account.
However, there are many queries where the best results contain the query terms in a single
phrase, or at least in close proximity as indicated by [118, 119, 95].

The BM25TP scheme is an expansion to the BM25 weighting, attempting to integrate
term proximity into the original scoring function. It was firstly presented by [31] and it is
very similar to the one proposed by [113]. We examine this model because in experiments
with the TREC collection it was the only one exhibiting significantly better performance
than the others, according to [119].

Suppose a user submits the query Q = {t1, t2, ..., tn}. With every query term ti we
associate an accumulator accd(ti) that stores the term’s proximity score within the current
document d. Whenever the query processor encounters a posting belonging to a query term
tx, it computes the distance (number of postings) between this posting and the previous
posting belonging to the term ty. If tx 6= ty, then we increment the accumulators for both
terms according to the following formulas:

accd(tx) = acc(tx) + wtx
1

(ptx,d − pty ,d)2
, (4.5)

accd(ty) = acc(ty) + wty
1

(pty ,d − ptx,d)2
, (4.6)

If tx = ty we leave the accumulators unchanged. By using these accumulators the
BM25TP score is now defined as follows:

SBM25TP = SBM25 +
n∑
i=1

min{1, wti}
accd(ti)(k1 + 1)

accd(ti) +K
(4.7)

77
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

The BM25TP provides significant improvements in result quality over BM25 scoring.
These gains are becoming even greater as the size of the document collection increases.
This is due to the fact that for larger collections, the probability of finding non-relevant
documents that contain the query terms by chance is greater than for smaller collections.

One drawback of this method is its insensitivity to the query terms ordering, since it
holds that (ptx,d − pty ,d)

2 = (pty ,d − ptx,d)
2. Consequently, BM25TP assigns scores to

the documents regardless of the query formulation and fails to distinguish the difference
between queries such as John is faster than Mary and Mary is faster than John as mentioned
in [92]. To address this issue, we initially introduce a quantity ξ(tx, ty) which receives the
following values:

ξ(tx, ty) =

 1, ptx,Q − pty ,Q > 0

−1, ptx,Q − pty ,Q < 0
(4.8)

That is, in case we examine a document containing two terms which appear in reverse
order than in the query, ξ(tx, ty) receives a constant negative value (-1), whereas a constant
positive value is assigned in the opposite case. The following fraction:

ad(tx, ty) = (ptx,d − pty ,d)
/
ξ(tx, ty) (4.9)

is always positive in case the terms in the document are positioned in the same order
as in the query, and negative in the opposite case. Now, to reward both term proximity
and correct term ordering, we need to replace the square difference (ptx,d − pty ,d)2 in the
denominators of Equations 4.5 and 4.6 by a function which is:

• always positive, regardless of ptx,d − pty ,d > 0 or ptx,d − pty ,d < 0; i.e., we do not
desire to assign negative scores.

• becoming higher as ptx,d − pty ,d increases and vice versa; i.e., it rewards term prox-
imity (since the score is inversely proportional to this quantity).

• becoming higher in case of ptx,d − pty ,d < 0 and vice versa; i.e., it rewards correct
term ordering.

A function which satisfies these conditions is the polynomial

ϕd(tx, ty) =
(
ad(tx, ty)

)2
− ad(tx, ty) + 1 (4.10)

which is always positive for all ad(tx) ≥ 1 and ad(tx) ≤ 0, which in our case is al-
ways true, since ptx,d − pty ,d receives values within (−∞,−1] ∪ [1,∞). Notice that there

78
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

is an infinite number of polynomials satisfying the requirements that we have set, how-
ever, here we have chosen the simplest one which requires the minimum processing. By
replacing the square difference (ptx,d − pty ,d)2 by the polynomial ϕd(tx), the accumulators
of Equations 4.5 and 4.6 are transformed according to the following relationships:

acc′d(tx) = acc′d(tx) + wtx
1

ϕd(tx, ty)
, (4.11)

acc′d(ty) = acc′d(ty) + wty
1

ϕd(tx, ty)
, (4.12)

This new form satisfies all the requirements that he have set: In case the query terms
appear close in a document, the value of ϕd(tx) is small, hence the accumulator value
increases. Furthermore, if these terms appear in the opposite order with respect to the
given query, ϕd(tx) increases thus reducing the overall document’s score.

Based on the accumulators of Equation 4.11 we introduce a modified scoring formula,
BM25TOP, which apart from term proximity, it also takes into account the query formula-
tion and the query terms ordering. The scores of BM25TOP are provided by the following
equation:

SBM25TOP = SBM25 +
n∑
i=1

min{1, wti}
acc′d(ti)(k1 + 1)

acc′d(ti) +K
(4.13)

where K is calculated as previously by using Equation 4.2. Note that the proposed
enhancement for term ordering applies not only to BM25TP, but also, to all term proxim-
ity scoring schemes which utilize position-dependent accumulators, such as the effective
variant proposed by [119].

4.2.4 Combining term proximity with zone weighting

Until now, we have discussed several scoring models that take different parameters
into consideration. BM25TP is specially designed towards evaluating term proximity in a
query, whereas our BM25TOP enhancement also takes into consideration the way a query
is formulated. On the other hand, BM25F emphasizes on the physical location of a term in
a document. Nevertheless, to the best of our knowledge there is no publicly known model
which combines term proximity, query term ordering and zone weighting into a single
scoring formula.

The main idea is that term proximity is a feature which should be further rewarded
when the query terms are positioned within the same zone. For instance, when two or more
terms of a given query are encountered in close proximity within the title of a document,

79
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

then the score of this document should increase.
To incorporate term proximity and zone scoring, we initially replace the document ac-

cumulators of Equation 4.11 by the zone accumulators, determined by the following rela-
tionship:

acc′zj(tx) =

 acc′zj(tx) + wtx
1

ϕd(tx,ty)
, tx, ty ∈ zj

acc′zj(tx), otherwise
(4.14)

Therefore, instead of assigning one accumulator per query term per document, we as-
sign one accumulator per query term per zone and we compute each of them according to
equation 4.14.

Now let us return to Equation 4.3 which represents the accumulated weights of the
query terms over all the document zones. As we have already mentioned, we desire to
reward term proximity when the terms of a query appear into the same zone. For this
reason, we integrate into these weights our modified accumulator value; the new weights
are now evaluated by applying:

Wz(d, ti) =
∑
zj,d∈d

Szj

(
1 +

1

k2

acc′zj(ti)

acc′zj(ti) + k1

)
fzj,d,ti

1− b2 + b2
lzj,d
lzj

(4.15)

In this equation, the left quantity rewards the occurrence of a query term in a particular
document zone, whereas the right one rewards both term proximity and correct ordering.
Notice that the special weight Szj applies to both terms, since term proximity is not equally
important for all zones. Consequently, the occurrence of two adjacent query terms in the
title of a document is more significant than a similar occurrence in its plain text. On the
second phase, the accumulated weights are being used to compute the BM25TOPF scores
according to the following formula:

SBM25TOPF =
n∑
i=1

wti
Wz(d, ti)

Wz(d, ti) + k2
(4.16)

where, similarly,wti represents the IDF k2 is a predefined constant. BM25TOPF awards
documents that contain all, or some of the query terms multiple times in significant loca-
tions (i.e. title, headings etc) and moreover, the documents having the query terms close to
each other. It also takes into consideration the query term ordering, the document length,
the zones length and the inverse document frequencies of the query terms.

As we demonstrate in our experimental section, BM25TOPF improves retrieval effec-
tiveness by a significant margin compared to the existing approaches.

80
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

4.2.5 Experimental Evaluation

To evaluate the performance of our proposed method in a fair and unbiased manner, it is
required that we obtain a predefined set of queries. Furthermore, for each of these queries,
we need to possess a list of humanly judged relevant documents. For this reason, we have
employed the results of the Web Adhoc (WA) Task of TREC-2009 Web Track [34]. This
task consists of 50 topics (test queries) all accompanied by a corresponding list of relevant
documents from the Clueweb09-T09B data set.

For the needs of this experiment we have developed a query serving system consisting
of ten query servers and a broker. Each server was assigned a different index shard, whereas
the broker was responsible for merging the results generated by each server. For the eval-
uation, we used the ‘trec eval’ standard program utilized by the TREC community in or-
der to calculate several measures indicating the retrieval effectiveness of a system. These
measures are Mean Average Precision (MAP), R-Precision and Precision@n (P@n) for
n = 10, 20 and 30.

BM25TOPF is compared against BM25, BM25TP, BM25TOP and BM25F. The values
of the various parameters of section 4.2 that we used in our experiments are recorded on the
left part of Table 4.2. In addition, on the right part of Table 4.2 we provide the weighting
scenario that we have set in order to evaluate BM25F and BM25TOPF. According to this
scheme, a term occurring in a document’s title is considered six times more important
than one appearing within the main text, whereas the ones appearing in the headings of a
document are four times stronger than the normal words.

Parameter Value
k1 1.2
k2 2.0
k3 2.0
b1 0.9
b2 0.75

Zone Szj
Body (Normal Text) 1
Anchor Text 1
Title Text 6
Document’s URL 2
Headings 4
Page Description 3
Image Description 1
Label Text 1

Table 4.2: Parameter setting for the various ranking methods (Left) and zone weighting sce-
nario for the BM25F and BM25TOPF functions (Right).

Table 4.3 shows the performance of the five examined retrieval methods in the 50
queries of the WA task. The first point that is highlighted by the presented results is that
all methods performed better than the plain BM25 model. The improvements are somehow
limited when term proximity scoring is considered (BM25TP and BM25TOP), and become

81
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

significant for our zone weighting scheme (BM25F).

Retrieval Method MAP P@10 P@20 P@30 R-Precision
BM25 0.0599 0.2820 0.2460 0.2047 0.1127
BM25TP 0.0634 0.2820 0.2530 0.2220 0.1216
BM25TOP 0.0658 0.2940 0.2780 0.2387 0.1238
BM25F 0.0730 0.3140 0.2690 0.2407 0.1318
BM25TOPF 0.0784 0.3360 0.2820 0.2627 0.1390

Table 4.3: Performance of different retrieval methods for the 50 queries of the Adhoc Task
of TREC-2009 Web Track.

BM25TOPF outperformed all of its adversary approaches and the results indicate that
term proximity in combination with zone weighting indeed leads to improved retrieval ef-
fectiveness. The Mean Average Precision we achieved by using BM25TOPF was 0.0784 in
comparison to the MAP value of 0.073 performed by the second best method, BM25F. This
is translated into a result quality improvement of about 6.8%. Furthermore, BM25TOPF
performed much better than the proximity-only approaches; the MAP values for BM25TP
and BM25TOP were 0.0634 and 0.0658, respectively.

The combination of term proximity with correct term ordering in BM25TP also leads to
better performance; BM25TOP produced results which were more qualitative by approx-
imately 3.8% (in terms of MAP) than those generated by BM25TP. However, both term
proximity functions were outperformed by BM25F and BM25TOPF. This indicates that
zone weighting is a more important feature than term proximity when ranking documents
in Web search engines.

Regarding the average Precision values at cut off points 10, 20, and 30, BM25TOPF
exhibited better performance that its adversary approaches. The P@10 value was 0.336,
6.5% higher than the corresponding P@10 value achieved by BM25F. Regarding the pre-
cision value at cut-off point 20, BM25TOP was slightly outperformed by BM25TOPF, but
defeated both BM25TP and BM25F.

4.3 Opinionated blog post retrieval

One of the most challenging issues in opinionated retrieval is to develop an effective
method for assigning query-related opinion scores to the documents [58]. The early mod-
els did not consider the issue of the opinion relevancy to the query topic; they arbitrarily
assumed that each expressed opinion refers to the subject of the query. The most recent
approaches addressed this issue by applying either proximity-based strategies or data min-
ing algorithms. However, none of the opinion scores introduced so far embody information

82
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

which indicates the generic value and impact of the retrieved documents. In this disser-
tation we introduce an opinion scoring approach that takes into consideration both query
and opinion independent data which indicates the value of the post. Our main motivation
is that the opinionated retrieval of blog posts must exploit objective and query independent
criteria. Such an improvement would allow an opinion retrieval system to provide rankings
which are both relevant and contain high quality opinions.

More precisely, the query independent model that we consider in this chapter is com-
posed by elements which reflect the influence of the blogger who authored each post. The
key idea is that an opinion expressed by an influential blogger is apparently more important
than the opinion of another blogger who is of lower impact. In this work we also examine
the value of the entire blog site which hosts the retrieved opinion. Following a spirit similar
to PageRank, we consider that the documents appearing in reputable blog sites are more
useful than other posts published in unpopular sites. All these query independent param-
eters which indicate the objective quality of the bloggers, blog sites, and blog posts, are
collectively named QUIQS (QUery Independent Quality Scores).

Moreover, recent works have demonstrated that the inclusion of proximity informa-
tion within the ranking component leads to enhanced opinion retrieval effectiveness [58].
Such methods consider that the distance of an opinion term to the query term is a mea-
sure of their relatedness; consequently, the opinion terms have stronger connections with
the terms which are closer to their position. In this work we extend this idea by taking
into consideration the physical location of the document (namely zone, or field) where the
query and opinion terms occur. Therefore, our model rewards close term proximities oc-
curring in “important” document fields, such as in the title. Our experiments conducted
with the TREC Blogs08 dataset demonstrated that our method outperformed the baseline
approach which employs plain IR functions by 39%, and the term proximity-model of [58]
by roughly 7.2%.

4.3.1 Related work

The problem of opinion retrieval and sentiment analysis has attracted the attention of
the researchers since 2006, when TREC introduced the polarity and opinion search task
[103]. In contrast to the traditional document retrieval, the key problem here is to identify
documents which are both relevant to a given query and contain opinion expressions. In
[156] and [155] the authors adopt a machine learning approach which employs support
vector machines to build opinion classifiers. Their proposed system ranks the retrieved
documents by computing linearly combined opinion and relevance scores. Support vec-
tor machines for sentiment analysis were also used in [98], where the authors attempt to

83
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

combine diverse sources of potentially pertinent information.
In [99] the authors construct an opinion lexicon with respect to the given query. Their

algorithm initially employs a general opinion lexicon which is refined by computing the
opinion weights of its words. Moreover, [139] and [138] study the issue of building lists of
subjective words (i.e. good against bad, or excellent against poor) with the aim of capturing
expressed opinions within a document.

Similarly to some traditional Web ranking models, a number of relevant works takes
into account the proximity of the query terms within the retrieved posts to achieve effective
ranking [31]. For instance, [156] computed the probability of query terms and opinion
terms co-occurrence by employing a word window. Similarly, [143] considered a word
window around each query term and calculated the distance between the query terms and
each word in the window. In [39] the authors computed the proximity by employing n-
grams and experimented with several machine learning classification methods. The authors
in [58] proposed a proximity-based opinion propagation model to calculate the opinion
density at each point in a document. In addition, [107] employed supervised machine
learning techniques to identify positive and negative reviews of movie films, whereas [139]
used special words (such as poor and nice) and a machine-learning algorithm to achieve
sentiment analysis.

Nevertheless, none of the aforementioned approaches take into consideration query-
independent information during ranking. In this work we examine how the influence of a
post’s author and the importance of a blog site can be combined with the aforementioned
strategies to enhance ranking. The first work which attempted to identify the influential
bloggers in a community is [5], where the authors introduced a post scoring function based
on the number of comments and the scores of the incoming and outgoing links. In the
sequel, they identified the influential bloggers by the post which received the highest score.
Moreover, [12] and [14] presented numerous methods which take into consideration the
temporal aspects of the Blogosphere and the productivity of the bloggers.

In addition, [78] introduced BlogRank, a PageRank generalization for ranking weblogs.
In this study the authors highlighted the sparseness of the blog graph and detected the
inappropriateness of the traditional Web ranking models in Blogosphere. They propose a
strategy for enhancing the blog graph with implicit links which are created by considering
the participation of some bloggers in multiple social networks. Finally, [135] introduced
B2Rank, a method for ranking blogs with respect to the behavioral features of the users.

84
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Symbol Meaning
A the set which contains all bloggers
B the set which contains all blog sites
D the set which contains all blog posts
a a blogger a ∈ A
b a blog site b ∈ B
d a blog post d ∈ D
Da the set which contains all the blog posts of the blogger a
Db the set which contains all the blog posts of the site b
Cd the set of comments to the post d
Dc,d the set of posts referring (have a link) to the post d
Dr,d the set of posts referenced by the post d
Ld the length (in words) of the post d
td the time stamp of d
Sd a score value of the post d
Sb a score value of the blog b
ha a metric for the evaluation of the blogger a

Table 4.4: Summary of the used symbols

4.3.2 Preliminaries

The basic theoretical elements behind the problem are similar to the ones presented in
subsection 3.3.2 of chapter III. Nevertheless, for easiness and comfort reasons we briefly
repeat the cornerstones of the concepts of this chapter.

Our analysis is based on three sets: A which contains all bloggers, B which includes
all blog sites, and D which is composed of all the blog entries. From these main sets we
identify two important subsets, Da ⊂ D which accommodates the blog posts authored by
a blogger a, and Db ⊂ D which includes the set of posts published by a blog site b.

For each blog entry d ∈ D we formulate a set of properties which includes: i) the
number of comments Cd submitted by the post readers, ii) the number of other postsDc,d ⊂
D and Dr,d ⊂ D referring to and referenced by d, and iii) td which represents the date and
time when the post was published expressed as a time stamp1. The elapsed time since the
creation of a post d (i.e. the age of a post) is symbolized as ∆td and is expressed in seconds.

Furthermore, we define three score values ha, Sd, and Sb: The former reflects the impact
of a blogger a, whereas the other two represent the value of a post d and a blog site b respec-
tively. These scores are the foundation upon which we shall build our query independent
blog post evaluation mechanisms. All the aforementioned notifications are summarized in
Table 4.4.

1The time stamp is a 32-bit integer which represents the number of the elapsed seconds since January 1st,
1970

85
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

4.3.3 Query Independent Quality Scores (QUIQS)

In this work we introduce a scoring model which apart from the established relevance
and opinion scores, also takes into account query-independent blog quality information.
The key idea is that a blog post not only must be relevant to a given query and contain an
opinion, but it also has to be qualitative and highly influential. In other words, a robust
opinion retrieval system must consider the issue of the authority of a blog post and rank the
important opinions higher.

The authority of a blog entry is reflected by numerous properties: A first important
notification is that a blog post inherits the reputation of the author who published it. There-
fore, an opinion expressed by an influential blogger is considered more valuable than one
published by an individual who is of lower reputation. However, the influence of a blogger
is non-static and changes over time [12], [14]. Since the user submits a query at the present
time instance, we are mainly interested in measuring the current bloggers’ influence.

Furthermore, similarly to the original PageRank concept, we consider that the opinions
which are published in reputable blog sites are of higher importance than others which are
hosted in sites of lower value. Of course, there is a huge amount of research in the tradi-
tional Web IR field which proposed eigenvector-based methods for identifying authoritative
Web pages, such as PageRank and HITS [79]. However, these methods are not useful to
our problem since blog sites in Blogosphere are very sparsely linked [78]. Similarly to the
previous occasion, due to the highly dynamic character of Blogosphere, the value of a blog
site is not constant. The approaches we present in section 3.5 adopt the time-aware spirit
of the aforementioned blogger influence metrics.

Based on these notifications, we introduce the query-independent quality score (QUIQS)
which consists of the following three basic components:

• The post value: The importance of a blog post is partially reflected by the impact
it has on other bloggers and readers. There are two primary parameters indicating
this impact: the number of the Web pages which contain references to the post, and
the number of comments submitted by the readers to express their thoughts on the
original content. Consequently, since an opinion published in an influential post
is accessed by a large number of individuals, we consider it more important than
another which was never referenced or commented.

• The influence of the blogger: The wide impact of the author who expresses an opinion
is a significant factor which affects its importance. Hence, the more readers the
writings of a blogger attract, the higher rankings should his/her opinions receive.

86
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

• The impact of the blog site: The opinions published in a reputable blog site attract
a large number of readers and gain more attention. With only a few exceptions, the
value of the blog site which hosts a post is a partial indication of the post’s value.

In the following subsection we quantify QUIQS and we demonstrate how these ap-
proaches can be combined with the existing opinion retrieval strategies to form a new im-
proved ranking model.

4.3.4 Combining opinion and relevance scores with QUIQS

Now let us examine how the proposed query-independent metrics can be combined
with the relevance and opinion scores into a single ranking model. Given a query q and a
document set D, our objective is to retrieve a subset of documents D′ ⊂ D which are both
relevant to q and contain opinions (Relevant Opinionative Documents, ROD, [156]).

Initially, the query is processed by a Web IR system which identifies the relevant doc-
uments and assigns scores by treating them as typical Web pages. The score S(d, q) of
a blog post d with respect to the query q can be computed by using any of the well-
established Web ranking functions such as the inverse document frequency idf , BM25,
BM25F, BM25TP [31], etc. The retrieval effectiveness can be enhanced by applying query
pre-processing algorithms which a) attempt to identify concepts within the query, and b)
expand the query with the aim of extending the pool of relevant documents [156]. Query
expansion algorithms may include dictionary-based methods which utilize external sites
such as Wikipedia, or local context analysis. In this work we do not study in depth such
query pre-processing approaches; we primarily focus on demonstrating the significance of
QUIQS in opinionated retrieval.

More specifically, we introduce a new type of scores, SQI(d, a, b), which indicate the
query-independent quality of a blog entry authored by a blogger a and published in a blog
site b. Based on our previous discussion, the scores SQI are expressed as a linear combina-
tion of the entire blog site quality Sb, the blogger’s influence score ha, and the overall value
of the blog entry Sd. The following equation captures these features:

SQI(d, a, b) =WbSb +Waha +WdSd (4.17)

whereWb,Wa, andWd are three constants used to adjust the importance of the blog site
score, the influence score of the blogger, and post quality score respectively. Equation 4.17
dictates that the overall quality of a blog entry d depends on the influence of its author and
the importance of the blog site which published it. Furthermore, the query-independent

87
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

features of the post in question (i.e. length, number of incoming links and comments) are
also considered.

In the sequel, the S(d, q) and SQI(d, a, b) are combined to form the final score a candi-
date post d receives with respect to the query q:

SIR(d, a, b, q) =WS(d, q) + (1−W)SQI(d, a, b) (4.18)

whereW is a constant parameter which tunes the contribution of the query-dependent
and query-independent scores in the overall score of the post. A typical setting which works
well in most cases isW = 0.8.

Equation 4.18 determines the relevance score of a post d with respect to q, however, it
is still required that we choose a strategy to compute the opinion score of d. In [58] the
authors have shown that the proximity of the query and opinion terms leads to significant
gains in retrieval effectiveness. Their model is built upon the idea that an opinion term
refers with higher probability to the terms which are located near its position. This method
initially considers each document as a vector d = (t1, ..., ti, ..., tj, ..., t|p|) and introduces an
opinion probability score at each position i of the document, given by the equation:

P (i, d) =

|d|∑
j=1

p(tj, d)p(j, i, d) (4.19)

where p(tj, d) is the opinion score of term tj at the position j of the document. In
addition, p(j, i, d) denotes the probability that the term at the position j refers to the the
term in the position i, and is calculated as follows:

p(j, i, d) =
k(j, i)∑|d|
j′=1 k(j′, i)

(4.20)

where k(i, j) is a non-increasing distance kernel function such as Gaussian or Lapla-
cian which implements the concept that the closer to an opinionated term a query term is,
the greater the probability that the opinion refers to this term is. For instance, consider
the opinion term excellent. In case a term device appears right after excellent, then the ex-
pressed opinion refers to device with great probability. In the opposite case where excellent

and device appear in distant locations, then excellent may refer to another topic within the
post.

Based on the positional opinion scores of equation 4.19, the overall probability that the
document d expresses and opinion about the query q is calculated as follows:

88
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

SO(d, q) =
1

|Q|
∑
i∈Q

P (i, d) (4.21)

where Q symbolizes a set which contains all the positions of the query terms of q
within d. Equation 4.21 indicates that to estimate the probability that d contains an opinion
about q, it is required that we compute the opinion probabilities in the positions where
the query terms occur within d. Nevertheless, this model ignores the physical locations
of the document where the opinion and query terms may occur. For instance, a blog post
which contains an opinion term and the query terms in proximal positions in its title is more
important than another which contains them in distant locations within its main body. For
this reason, we provide an enhancement of the opinion probabilities of equation 4.21 by
introducing the field opinion probabilities (FOP):

S ′O(d, q) =
∑
∀z∈d

Kz
|Qz|

∑
i∈Qt

P (i, d) (4.22)

where Kz is a constant weight parameter which denotes the value of a particular docu-
ment zone z. Moreover, Qz symbolizes a set which contains all the positions of the query
terms of q within the zone z of d.

Finally, the opinion and IR scores of equations 4.18 and 4.22 are factorized in the final
scoring function which is given by the following formula:

S(d, a, b, q) = SIR(d, a, b, q)S ′O(d, q) (4.23)

4.3.5 Experiments

In this section we provide the experimental analysis of our methods. Initially, we pro-
vide a brief description of the employed dataset, and we present important implementation
details which allow us to apply QUIQS efficiently during query processing. In the sequel,
we present measurements which indicate that the inclusion of quality-based query indepen-
dent scores in opinion retrieval leads to significant performance benefits.

4.3.5.1 Dataset characteristics and processing

The dataset we used is the TREC blogs08, a repository comprised of approximately
28.5 million blog posts (documents or permalinks) and 1.3 million blog feeds. The perma-
links and the feeds occupy roughly 1,445 GB and 808 GB in uncompressed forms respec-
tively.

89
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Field
1 DocumentID
2 TREC-ID
3 Author Score
4 Blog Site Score
5 Post Score
6 Pointer

Table 4.5: Required metadata for computing QUIQS: For each post we store its integer iden-
tifier, the internal TREC identifier, the three QUIQS for the author, the blog site,
and the post itself, and a pointer value which stores the location of the full text of
the post.

Now let us describe the methodology of processing the dataset in order to compute the
scores of sections 4.3.4. Ideally, the most efficient approach dictates that we pre-compute
for each blog post the author, blog site, and post QUIQS. In the sequel, it is only required
to maintain these scores into an in-memory data structure which will allow us to quickly
retrieve these scores during query processing and compute the desired opinion scores. In
Table 4.5 we show a sample record of the aforementioned data structure. In particular, for
each blog entry we store:

• An integer document identifier (DocID), which is identical to the one we use to rep-
resent the document during inverted index construction.

• An internal identifier assigned by the dataset authors (TREC-ID), which will be used
for our own evaluation purposes (i.e. to compare our results with the ones provided
by TREC). Of course, TREC-ID can be omitted in real-world implementations.

• The three QUIQS, and

• A pointer which stores the location of the document’s full text in the repository. The
full text of the post will be used in the second phase of the retrieval by the opinion
classifier, to identify whether there are any opinions expressed within the post, or not.

An simple yet very efficient solution is to implement this data structure by employing
a standard table indexed and sorted by ascending Document ID; hence, in case we need to
compute the score for a document d, we merely need to access the data stored in the record
d− 1.

The construction of the data records of Table 4.5 requires the preprocessing of the
dataset and the extraction of numerous statistics such as its length, the numbers of inlinks,
outlinks, comments, etc. From now on, we collectively refer to these statistics as the post’s

90
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

metadata. In Table 4.6 we record the metadata required to compute all QUIQS, whereas in
the second column we show the source from where we retrieve the required data. The term
“directly” indicates that the metadata in question can be directly extracted by accessing
and processing the text of the post; “after processing” denotes that we obtain the desired
information by a special merging procedure which must take place after text processing.
Finally, the indication “feed” states that the respective metadata can only be retrieved by
accessing the corresponding feed file.

The dataset is organized in individual files which contain one thousand of posts each.
Initially, our text processor extracts the posts out of each file, and assigns one unique suc-
cessive integer identifier to each post. In addition, it retrieves the TREC-ID value, the URL,
the time stamp, the length (in words) and the number of outlinks of each document. Then,
for each of these files, it outputs three structures: a small inverted index for these 1000
posts, an array which stores the metadata of each post (similar to the one illustrated in Ta-
ble 4.6), and a Web graph in the form of (URL, DocID, number of inlinks, list of [inlinkID,

timestamp] pairs). Notice that the inlinks list stores not only the identifier of the document
referring to a specific URL, but also, its time stamp. This is necessary for the calculation
of the MEIBIX and BI-scores because these methods involve computations of the ages of
the incoming links.

After the text processing is completed, a merging procedure firstly merges all the small
metadata arrays into a single metadata table which also has the form of Table 4.6. In the
sequel, a second procedure merges all the partial Web graphs into the complete Web graph
of the dataset. In total, the Web graph of the blogs08 dataset consists of about 571 million
vertices (URLs) and 1.05 billion edges (links), leading to an average of 1.84 incoming
links for each encountered URL. During the Web graph merging we also store within the
metadata structure the number of the incoming links of each document and a pointer value
which points to the respective inlinks list.

Finally, a third application merges the partial indexes into the final inverted index struc-
ture. For the needs of our experimental evaluation we adopted the block-based index setup
introduced in chapter II which apart from the positional data, it also stores zone information
within each posting. This scheme allows us i) to apply our proposed field opinion probabil-
ities (FOP) which expand the proximity-based retrieval model of [58], and ii) to use more
sophisticated ranking functions which combine term proximity with zone scoring, such as
BM25FTOP. The final merged inverted index structure that we constructed occupied in to-
tal roughly 71.8 GB. It consisted of a lexicon with 17,329,126 unique terms, accompanied
by an inverted file comprised of 11,693,508,871 postings.

Nevertheless, we are still missing two pieces of information: the author of a blog post,

91
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Field Source
1 DocumentID directly
2 TREC-ID directly
3 Feed-TREC-ID directly
4 Author feed
5 Blog Site directly
6 Time stamp directly
7 Number of comments feed
8 Length (in words) directly
9 Number of outlinks directly

10 Number of inlinks after processing
11 Pointer to the text directly
12 Pointer to the inlinks after processing

Table 4.6: Intermediate metadata required to construct the structure of Table 4.5.

and the number of comments submitted by its readers. Although in most cases this in-
formation is present within the text of the document, it is quite impossible to retrieve it
without any errors due to the differences in pages formatting, encoding, and languages.
For this reason, we choose to access the corresponding XML feed which accompanies the
dataset and locate the desired data for each blog post. This strategy ensures both maximum
effectiveness and comfort, since we do not have to develop complex and costly data mining
algorithms to process the text of each Web page. However, for a percentage of the exam-
ined posts the author information was not available. In these occasions, we considered that
the blog entries were published by individual sites (i.e. not community blogs) and we set
the author name equal to the name of the site.

After the creation of the metadata Table 4.6 we can easily generate the required meta-
data of Table 4.5. Therefore, we successively scan each row by applying the equations of
chapter III and we compute each of desired QUIQS. Notice that some QUIQS may involve
a second processing step; for instance, SBI-Rank for blog sites requires that we compute
in advance the influence metrics of all bloggers, and then sum up the metric values of all
member authors to obtain SSBI,b.

4.3.5.2 QUIQS-based Rankings

In this subsection we describe the experimental measurements of QUIQS for posts,
bloggers, and blog sites and we present some representative rankings. These rankings
demonstrate the differences among our proposed QUIQS and they verify the theoretical
elements of section 4.3.3. In addition, they confirm that the computation of QUIQS is
applicable to large scale data sets.

92
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Title Author Date |Dc,d| |Cd| SM,d SMX,d

Mozilla Labs Archive:
Mar10 27/08/2008 84 504 44,309 53,911

Introducing Ubiquity
* Jenni Bowlin * Jenni Bowlin 11/11/2008 47 608 44,116 32,962
Lordz of vengeance:

JFreak 13/11/2008 45 623 43,895 26,287
The Originator
Aby Garvey from

Ali Edwards 05/11/2008 17 1729 43,769 24,261
Simplify 101
Happiness is: where Sandra

10/11/2008 82 347 43,676 23,892
women create! Evertson
Abyquilt: a challenge May Britt 02/01/2009 162 115 43,550 29,311
Fox weatherblog: the Fox 12

22/12/2008 13 1597 43,469 28,930
snow keeps coming Weather
Improving culture

JanaRiess 10/09/2008 22 1791 43,432 35,849
through kvetching
Lordz of vengeance:

Keith S 03/11/2008 45 650 42,954 27,362
don’t cause trouble
Introducing

ndheady 10/11/2008 52 535 42,682 32,681
men of life

Table 4.7: The ten most influential blog posts of the TREC blogs08 dataset accompanied by
the numbers of incoming links, comments, and their corresponding MEIBI and
MEIBIX values.

In all the experiments that we conduct here, we consider that the current date is February
15th, 2009. This date is two weeks beyond the last crawl date of the dataset and it was
selected instead of the real current date, since in the opposite case our time decaying metrics
would assign near-zero values to all the involved scores.

Table 4.7 contains the ten most influential blog posts according to the MEIBI and
MEIBIX metrics. The first three columns denote the title, the author and the date of publi-
cation of the corresponding blog entry, whereas the next two columns contain the number
of incoming links and the number of comments the post attracted respectively. Finally, the
sixth and seventh column contain the values of MEIBI and MEIBIX respectively, rounded
up to the closest integer. Notice that the posts presented in this Table are not the most
referenced, nor the most commented. The post which attracted the most incoming links,
totally 721, was published on statcounter.com and it was not commented at all. On the
other hand, the most commented post gathered in total 7,919 comments, but only 2 incom-
ing references. It was published on celebfashtrends, a blog site which discusses fashion
topics.

However, recall that MEIBI and MEIBIX take into consideration both references and
comments and are also sensitive to the freshness of the post and the age of its incoming
links. Due to these properties, the two aforementioned posts were not included among the

93
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Blogger hM,a

Mike Smithson@politicalbetting 331
Briian@briian.com 273
fuglyhorseoftheday@fuglyhorse 238
hilzoy@obsidianwings 205
Robert McEvily@sixsentences 201
Ernesto@torrentfreak 197
lilyng@lilyng2000 189
WeezerMonkey@weezermonkey 184
Quatremer@coulissesbruxelles 184
Geoff Manaugh@bldgblog 183

Blogger hMX,a

Mike Smithson@politicalbetting 330
Briian@briian.com 311
fuglyhorseoftheday@fuglyhorse 240
Robert McEvily@sixsentences 236
hilzoy@obsidianwings 204
Ernesto@torrentfreak 193
BlogRolling@blogrolling.com 192
lilyng@lilyng2000 190
Geoff Manaugh@bldgblog 190
Angel@thevoiceofadventure 189

Table 4.8: Bloggers influence rankings according to: MEIBI (left), and MEIBIX (right)

ten most influential articles. From the results shown in this Table we observe that MEIBI
and MEIBIX behave differently and highlight different characteristics. A representative
example are posts 2 and 8: Although the former has been referenced more times, the latter
received a higher MEIBIX score; this reveals that the references of the eighth post are more
recent than the ones of the second post.

Now let us examine the metrics which evaluate the influence of a blogger. In Table 4.8
we present three rankings of the ten most influential bloggers of the dataset according to
MEIBI (left table), and MEIBIX (right table). To avoid the synonymies among different
bloggers which would distort our results, we format the author names by using two parts
separated by an “at” sign (@): the prefix reveals the blogger’s true name, whereas the suffix
holds the name of the blog site on which the author submits his/her writings. This technique
is more preferable for distinguishing bloggers than the one adopted in [78] which simply
discards common blogger names such as admin, John, etc.

Recall that MEIBI identifies the bloggers who authored qualitative blog posts recently,
and MEIBIX rewards those whose posts received recent references. This difference is re-
flected on the rankings of Table 4.8. For instance, notice that MEIBI ranks hilzoy@obsidianwings

higher than Ernesto@torrentfreak, whereas the opposite holds on the MEIBIX ranking.
Furthermore, in Figure 4.1, we present the bloggers ranking according to the BP and BI

indices; the horizontal axis represents the productivity of a blogger (indicated by the BP-
Index) and the vertical axis his/her influence (determined by the BI-Index). Consequently,
an author who is both productive and influential recently must be placed near the top right
corner of the figure. Based on this graph, the most productive and influential blogger is
sportblogs@sportblogs for whom it holds that hBP,a = 41 and hBI,a = 809.

94
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 4.1: Authors Ranking according to the BP and BI indices.

4.3.5.3 Retrieval Effectiveness

In this subsection we present measurements of the retrieval effectiveness of our pro-
posed methods against a set of adversary approaches. For the needs of this experiment we
employed a set of 20 opinionated queries used in the blog retrieval task of TREC 20092.
Each query of our test set is accompanied by the corresponding “qrels” file which contains
the documents which are 1) relevant, 2) both relevant and opinionated and 3) both relevant
and factual.

Initially, we notice that the QUIQS can be combined in multiple ways and the number
of the possible combinations is very large. We have experimented with a wide variety of
such combinations and here we choose the five highest performing scenarios which cover
all introduced QUIQS and also, offer the best retrieval effectiveness.

In the first scenario, namelyQ1, we use the MEIBI-scores SM,d for the query-independent
evaluation of a blog post, MEIBI-index hM,a for the bloggers’ influence, and BIF for the
blog site impact. In the second scheme, we use MEIBIX scores, MEIBIX-index and BIF
respectively. The third and fourth settings dictate that we employ the MEIBI-scores and
MEIBI-index for the estimation of the posts’ value and the blogger’s influence; For the
computation of the impact of the communities we use SBI-Rank (Q3) and BlogRank (Q4)
respectively. Finally, in the last scenario we measure the retrieval effectiveness by using
the ι-score for the posts, the ι-index for the bloggers’ influence and SBI-Rank for the blog
community importance. All these combinations are summarized in Table 4.9.

Regarding the weights of equation 4.17, we also experimented with multiple setups;
A representative example which performs reasonably well in all five scenarios is to set
Wd = 0.3,Wa = 0.2, andWb = 0.5.

2The query set of TREC 2009 is comprised of 50 queries, however, only 21 of them are about opinionated
retrieval. For one query out of these 21 queries, TREC does not supply the relevant opinionated documents.

95
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Symbol Meaning
1 Q1 Posts: SM,d - Author: hM,a - Blog Site: SBIF,b
2 Q2 Posts: SMX,d - Author: hMX,a - Blog Site: SBIF,b
3 Q3 Posts: SM,d - Author: hM,a - Blog Site: SSBI,b
4 Q4 Posts: SM,d - Author: hM,a - Blog Site: SBR,b
5 Q5 Posts: Sι,d - Author: hι,a - Blog Site: SSBI,b

Table 4.9: Three example QUIQS combinations applied for opinionated retrieval evaluation.

Our experimentation was divided in four phases: During the first phase, we applied only
traditional IR functions including BM25, a popular expansion which integrates document
zones (BM25F), and our proposed BM25TOPF which combines term-proximity weighting,
query term ordering, and zone scoring into a single ranking formula (subsection 4.2.4). On
the second and third phases, we combined the relevance scores of the first phase with the
term-proximity model of [58] (marked as TPM) and our proposed field opinion scores of
equation 4.22 (FOS) respectively. Finally, on the last stage we attested the usefulness of
our query-independent metrics by applying the three QUIQS scenarios of Table 4.9.

The results of all these experimental phases are presented in Table 4.10. Each output
ranking was evaluated by calculating three different measures: mean average precision
(MAP), R-precision (R-Prec), and precision at the first 10 documents of the ranked list only
(p@10). The numbers within the parentheses indicate the precision improvement of each
scenario over the baseline method. Furthermore, the experimental phases we conducted are
separated from the others by a horizontal line.

The first three rows of Table 4.10 contain measurements of the retrieval effectiveness
of the standard IR functions. These results are the baseline of our experimentation and
our goal is to improve their performance. As expected, BM25F outperformed the tradi-
tional BM25 method by a margin of about 4.8% in terms of MAP. The best-performing
scheme was BM25TOPF; its MAP was approximately 6.5% and 11% higher than the ones
of BM25F and BM25 respectively.

In the sequel, we implemented the term-proximity opinion retrieval model of [58] which
is the second adversary approach for our methods. Notice that in order to apply any of the
opinion retrieval strategies, it is required that we possess a special opinion lexicon which
contains specific sentiment expressing words. In our experiments we utilized a lexicon
structure which is based on multiple product reviews and data sheets submitted in the Ama-
zon.com Web service. It was constructed by using sentiWordNet [50], a publicly available
resource for opinion mining which assigns to each three sentiment scores: positivity, neg-
ativity, and objectivity. The lexicon in question has been proved particularly effective for
the requirements of the TREC 2008 blog track [82].

96
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Method MAP R-Prec p@10

IR

BM25 0.0531 0.0828 0.0650
BM25F 0.0558 0.0844 0.0677
BM25FTOP 0.0597 0.0903 0.0742

IR
+

T
PM

BM25+TPM 0.0698 0.1066 0.0857
BM25F+TPM 0.0724 0.1099 0.0881
BM25FTOP+TPM 0.0808 0.1187 0.0974

IR
+

FO
S BM25+FOS 0.0711 0.1078 0.0868

BM25F+FOS 0.0733 0.1113 0.0895
BM25FTOP+FOS 0.0823 0.1207 0.0991

IR
+

FO
S

+
Q

U
IQ

S

BM25+FOS+Q1 0.0751 0.1139 0.0918
BM25F+FOS+Q1 0.0774 0.1177 0.0947
BM25FTOP+FOS+Q1 0.0868 0.1275 0.1048
BM25+FOS+Q2 0.0748 0.1139 0.0918
BM25F+FOS+Q2 0.0763 0.1165 0.0935
BM25FTOP+FOS+Q2 0.0855 0.1233 0.1022
BM25+FOS+Q3 0.0755 0.1140 0.0925
BM25F+FOS+Q3 0.0780 0.1197 0.1002
BM25FTOP+FOS+Q3 0.0870 0.1277 0.1048
BM25+FOS+Q4 0.0702 0.1046 0.0844
BM25F+FOS+Q4 0.0717 0.1055 0.0859
BM25FTOP+FOS+Q4 0.0785 0.1094 0.0916
BM25+FOS+Q5 0.0544 0.0603 0.0574
BM25F+FOS+Q5 0.0568 0.0692 0.0602
BM25FTOP+FOS+Q5 0.0660 0.0781 0.0720

Table 4.10: Evaluation of the retrieval effectiveness using different ranking methods.

Moreover, since the creators of the term-proximity model report that their approach
achieved optimal performance by using the Laplacian kernel function, we replace k(i, j) in
equation 4.20 by the following:

k(i, j) =
1

2b
exp

[
−|i− j|

b

]
(4.24)

where b is a parameter which we set equal to 6
√

2, a value which maximizes the re-
trieval effectiveness of the Laplacian kernel. The lines 4–6 of Table 4.10 indicate that
the term-proximity model achieved significant improvements in all measurements over the
simple IR functions. More specifically, when combined with BM25, it achieves a MAP
equal to 0.0698 and performs approximately 14.5% higher than the best IR function alone
(BM25FTOP). However, if we compare the same IR functions with and without the term
proximity model we observe a total performance increase which ranges between 24% (for
BM25F) and 26% (for BM25).

Now let us examine the effectiveness of our proposed Field Opinion Scores (FOS)

97
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Zone Kz

Body (Normal Text) 1
Anchor Text 1
Title 6
URL 2
Headings 4

Table 4.11: The zone weighting scheme for the field opinion scores.

which expand the aforementioned model. The equation 4.22 dictates that each blog post
must be divided into a number of distinct zones; then, the occurrence of opinion and query
terms in each document zone is weighted accordingly. In this work we fragmented the blog
entries of our dataset into five zones: title, URL, body, anchor text, and text encountered
within headings. Each zone was assigned a weight value according to Table 4.11, a scheme
which provides effective IR retrieval as mentioned in [14].

The third part of table 4.10 (rows 7–9) records the performance of FOS. In total, the field
expansion of the term-proximity model leads to an enhancement of about 1.5-2%. More
specifically, the mean average precision in case FOS is combined with BM25, increases
by about 1.8%, whereas the combination with BM25FTOP leads to an enhancement of
1.9%. These gains are also noticeable for the other evaluation metrics, i.e., R-Precision and
Precision@10.

Finally, in our last experiment we included the five QUIQS scenarios of Table 4.9 to
the post retrieval process. The values of the three evaluation metrics for our attested com-
binations are reported in rows 10–24 of Table 4.10. Our first notification is that all QUIQS
enhance retrieval effectiveness by a margin of 5 to 6%. The most effective combination is
Q3, which evaluates the blogs posts by using the MEIBI scores, the authors by employing
MEIBI, and the blog sites by using the SBI-Rank metric. In particular, a ranking strategy
which utilizes BM25FTOP, FOS and Q3 (BM25FTOP + FOS + Q3) outperforms the base-
line approach with the plain BM25 by enhancing MAP by a percentage touching 39%. In
comparison with the strategy which combines term-proximity model to BM25FTOP, the
aforementioned scheme generates rankings with higher MAP by a margin of 7.2%.

Regarding the other four scenarios, we observe a slightly decreased performance in
comparison with Q3. However, all of them provide significant improvements over the ad-
versary approaches. More specifically, the MAP for the strategy (BM25FTOP + FOS +Q2)
was 0.0855, 37.8% and 5.5% greater than the MAP of the baseline and term-proximity ap-
proaches respectively. In addition, the approach (BM25FTOP + FOS + Q1) outperformed
the baseline method by 38.8% and the term-proximity model by 6.9%.

The last two settings also provide improvements over the baseline method; however, the

98
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

performance gains are limited in comparison to the first three approaches. Therefore, the
MAP for strategy (BM25FTOP + FOS + Q4) which uses BlogRank for the evaluation of
the blog sites, was about 10-11% lower than the MAP achieved by the first three scenarios.
On the other hand, the MAP for the last scenario which utilizes the ι-score and ι-index for
blog post and bloggers’ influence evaluation, was 0.0660, 24% lower than the MAP of the
first three settings.

4.4 Conclusions

In this chapter we dealt with the issue of improving the retrieval effectiveness of Web
and blog search engines. Initially we presented the current state-of-the-art probabilistic
ranking functions of the Okapi family, i.e. BM25, BM25F, and BM25TP and we exposed
their main weaknesses. We stated that none of them takes into consideration the ordering of
the words in the query, hence they treat equally queries such as John is faster than Mary and
Mary is faster than John. Moreover, they fail to combine the concepts of zone weighting
(supported by BM25F) and term proximity scoring (embodied in BM25TP).

We introduced a new probabilistic scoring function, namely BM25TOPF, which ad-
dresses both of these problems. BM25TOPF incorporates zone weighting, term proximity
scoring and correct term ordering and provides an effective mechanism for evaluating and
ranking not only Web documents, but also documents which exhibit some kind of fielded
structure. BM25TOPF is evaluated against the adversary schemes by using data from the
Adhoc (WA) Task of TREC-2009 Web Track [34]. The Mean Average Precision of our
method for the 50 queries of the task was at least 6% higher than that of BM25F, the most
effective competitor function. A second line of experiments which indicated the superiority
of BM25TOPF included MAP measurements by using the topics of the blog retrieval task
of TREC 2009. These measurements demonstrate that BM25TOPF is equally effective
when applied to retrieve blog entries.

The effective retrieval of opinionated blog entries was the second research field dis-
cussed in this chapter. We present the primary features of a standard opinion retrieval
system and we focus on an important disadvantage of the current approaches: the lack of
support to query independent quality measures. Such metrics have been extensively studied
and applied to the traditional Web retrieval task (i.e. PageRank) with great success.

In this chapter we adopt a similar spirit in the retrieval of opinionated blog posts. Based
on the metrics of chapter III we define QUIQS, the query-independent quality scores.
QUIQS include metrics which evaluate the objective quality of i) a blog post, ii) a blog
site, and iii) blogger. These metrics incorporate the essence of Blogosphere such as the

99
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

great volatility, the temporal instability, the submission of comments, etc. In the sequel,
we form the score of a blog post entry as a linear combination of i) the QUIQS, ii) the
query dependent scores (computed by using a standard probabilistic ranking function), and
iii) the opinion scores (determined by a dictionary-based method, or a machine-learning
algorithm such as SVM).

We performed an exhaustive experimental evaluation of our approach by using the
TREC blogs08 dataset, a large repository comprised of approximately 28.5 million blog
posts and 1.3 million blog feeds which occupy roughly 1.45 TB and 808 GB in uncom-
pressed forms respectively. Our measurements – which were achieved by employing a
set of 20 queries coming from blog retrieval task of TREC 2009 – demonstrated that our
method enhances MAP by over 7% compared to the precision of the standard lexicon-based
model.

100
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

CHAPTER V

Scientometrics and Knowledge Extraction

5.1 Introduction

The effective retrieval of scientific articles and of researchers is of primary importance
for the work of a scientist. A robust and accurate search process allows users to quickly
locate relevant documents and assists them in improving the quality of their research. For
this reason, the enhancement of the vertical IR systems which enable access to scientific re-
sources (i.e. academic search engines, digital libraries, scientific databases) is a particularly
important area of research.

Apart from the traditional article retrieval mechanism, the modern academic search
engines now provide enriched informational content and capabilities including author pro-
files, evaluation of scientometric indicators, searches for relevant documents, lists of citing
articles, time filtered results and numerous others. Although the scientific libraries main-
tain repositories of considerably smaller sizes compared to the entire Web, the core issues
of effectiveness and efficiency are present here too. As more and more articles are being
published and the number of the researchers increases over time, problems such as auto-
matic and unified article classification and parallel algorithm execution obtain a crucial role
for these systems.

In this chapter we describe the results of a multi-level research regarding the scientific
vertical search engines. In the first level we study the most important methods which
have been proposed for the evaluation of the research work of a scientist. These methods,
called scientometrics, assign to each researcher a single score value which indicates his/her
productivity and influence in the academic community. We introduce new concepts in the
area, such as coterminal citations, an effect which is closely related to co-citation and self-
citation. Based on these concepts, we propose a new metric, the f -index, which quantifies
the impact of coterminal citations in scientific networks.

101
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

The second problem addressed in this dissertation is the classification of the research
articles into one or more fields of science. Although the generic document classification is
a well-studied topic and an enormous amount of work is dedicated to it, it does not take into
consideration the parameters of the specialized version of the problem examined here. An
example of such a parameter is the co-authorship information recorded in the articles, e.g.,
when an author A co-operates with B the produced articles are about X , whereas when
there is a co-operation between A and C the papers discuss topics related to Y . Such type
of information is included in a supervised machine-learning (ML) classification algorithm
that we developed for this purpose. This algorithm initially employs a set of labeled arti-
cles and trains a model by taking into account the papers’ keywords, authors, journals, and
co-authorship information. In the sequel, it utilizes this model to assign labels to the unla-
beled articles. Our approach is experimentally compared against two popular ML methods,
Support Vector Machines and AdaBoost.MH; the experiments produced promising results,
since our method outperformed its adversaries by a significant margin.

This ML classification algorithm was the base for two more contributions. The first one
concerns the creation of topic-specific scientometrics, that is, indicators which evaluate the
work of a scientist not generally, but only in a particular scientific area. In this chapter
we introduce three topic-sensitive extensions which render h-index, contemporary h-index,
and trend h-index sensitive to a specific scientific area. These extensions are considered
particularly useful, since they could assist administrators and managers to evaluate their
personnel according to their area of expertise. For instance, in case someone is interested
in hiring a database engineer, then the correct question to answer is “between A and B

who is the best database engineer” and not “between A and B who is the best scientist”,
because A or B could be excellent scientists, but not related to this particular job.

The second application of the aforementioned algorithm regards the identification of
attractive research fields for new scientists. This problem concerns the majority of the
starting researchers because an erroneous selection could lead to failed research and wasted
time, work, and resources. A first approach is to consider the popularity of each research
area (i.e. enumerate the relevant published articles), however, such a strategy is considered
naive because there are popular topics of science which are unsuitable for new scientists due
to their native difficulty. The solution requires that we first identify the characteristics of the
new scientists and the features which render a field “hot”. In the sequel, we combine these
characteristics and we develop a model which provides useful answers and knowledge.

The final problem discussed and addressed in this chapter is caused by the constantly
increasing repositories of the digital libraries. Although the computation of scientometrics
is rather easy for small datasets, the situation becomes more complex in large-scales, since

102
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

the involved data cannot fit in the memory of a single workstation. Hence we have to
either use a secondary and much slower type of storage (i.e. disks), or to distribute the
computations to a number of interconnected machines. In this chapter we introduce four
methods for computing the scientometrics in parallel by using Hadoop/MapReduce, a fault-
tolerant framework designed to distribute algorithms in an effortless and robust manner.
We attest all four methods by using two types of clusters, one lab local network and a Web
cloud commercial infrastructure. We show that the solutions which exploit Combiners,
offer efficient execution in terms of both running times and used network bandwidth.

The rest of the chapter is organized as follows: in section 5.2 we discuss the essence
of coterminal citations and we introduce f -index. The experimental evaluation of the pro-
posed metric is reported in subsection 5.2.3. In section 5.3 we address the problem of com-
puting the scientometric indicators in parallel by using the MapReduce framework. Initially
we present the basic elements of the framework (subsection 5.3.2) and in the sequel we de-
scribe the four strategies for solving the problem, along with our experimental evaluation
(subsections 5.3.3, 5.3.4, and 5.3.5 respectively). The third subject of this chapter, the iden-
tification of attractive research areas for new scientists is presented in section 5.4, whereas
in section 5.5 we introduce the supervised ML algorithm for classifying research articles.
In section 5.6 we conclude this chapter and we summarize its primary contributions.

5.2 The f -index

The evaluation of the scientific work through scientometric indicators has long attracted
significant scientific interest, but recently has become of ground practical and scientific
importance. An increasing number of academic institutions are using such indicators to
decide faculty promotions, and automated methodologies have been developed to calculate
such indicators. Also, funding agencies use them to allocate funds, and recently some
governments are considering the consistent use of such metrics for funding distribution.
For instance, the Australian government has established the Research Quality Framework
(RQF) as an important feature in the fabric of research in Australia; the UK government
has established the Research Assessment Exercise (RAE) to produce quality profiles for
each submission of research activity made by department/institution.

The use of such indicators to characterize a scientist’s merit is controversial, since this
assessment is a complex social and scientific process that is difficult to narrow it into a
single scientometric indicator. In his article, David Parnas [108] described some possible
negative consequences to the scientific progress that could be caused by the “publish or
perish” marathon run by all scientists and he proposed not taking into account the sciento-

103
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

metric indicators. Also, [3] depicted several shortcoming of the metrics currently in use,
i.e., of the Impact Factor and of the h-index. The following phrase, attributed to A. Einstein,
could be a representative of the opponents of the scientometric indicators: “Not everything
that can be counted counts, and not everything that counts can be counted”.

Indeed, neither arguments nor applied methodology currently exist to decide which
indicators are correct or incorrect, though, the expressive and descriptive power of numbers
(i.e., scientometric indicators) can not unthinkingly be ignored [2]. As Lord Kelvin said
“When you can measure what you are speaking about, and express it in numbers, you
know something about it. But when you cannot measure it, when you cannot express
it in numbers, your knowledge is of a meager and unsatisfactory kind”. In the present
section we argue that instead of devaluing the scientometric indicators, we should strive to
develop a “correct/complete set” of them and, most importantly, to use them in the right
way. Furthermore, we study an aspect of the scientometric indicators that has not been
investigated in the past and we propose a new robust scientometric indicator.

5.2.1 The notion of coterminal citations

Traditionally, the impact of a scholar is measured by the number of authored papers
and/or the number of citations. The early metrics are based on some form of (arithmetics
upon) the total number of authored papers, the total number of citations, the average num-
ber of citations per paper, and so on. Due to the power-law distribution followed by these
metrics, they present one or more of the following drawbacks (see also [70]): a) they do not
measure the impact of papers, b) they are affected by a small number of “big hits” articles,
and c) they have difficulty to set administrative parameters.

J.E. Hirsch in [70] attempted to collectively overcome all these disadvantages and pro-
posed the h-index. The h-index was a really path-breaking idea, and inspired several re-
search efforts to cure various deficiencies of it, e.g., its aging-ignorant behavior [125].

Nevertheless, there is a latent weakness in all scientometric indicators developed so far,
either those for ranking individuals or those for ranking publication fora, and the h-index
is yet another victim of this complication. The inadequacy of the indicators stems from the
existence of what we term here - for the first time in the literature - the coterminal citations.

With a retrospective look, we see that one of the main technical motivations for the
introduction of the h-index, was that the metrics used until then (i.e., total, average, max,
min, median citation count) were very vulnerable to self-citations, which in general are
conceived as a form of “manipulation”. In his original article, Hirsch made specific mention
about the robustness of the h-index with respect to self-citations and indirectly argued that
the h-index can hardly be manipulated. Indeed, the h-index is more robust than traditional

104
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 5.1: Citing extremes: (Left) No overlap at all. (Right) Full overlap.

metrics, but it is not immune to them [120]. Actually, none of the existing indicators is
robust to self-citations. In general, the issue of self-citations is examined in many studies,
e.g., [68], [142], and the usual practice is to ignore them when performing scientometric
evaluations, since in many cases they may account for a significant part of a scientist’s
reputation [53] and sometimes are used to support promotional strategies [71].

At this point, we argue that there is nothing wrong with self-citations; in many cases
they can effectively describe the “authoritativeness” of an article [80], e.g., in the cases
that the self-cited author is a pioneer in his/her field and s/he keeps steadily advancing
his/her field in an step-by-step publishing fashion, until gradually other scientists discover
and follow his/her ideas. In any case, regardless of the reason that they are being made,
self-citations work as a driving force in strengthening the impact of the research [142].

In the sequel we will exhibit that the problem is much more complex and goes beyond
self-citations; it involves the essential meaning of a citation. Consider for instance the
citing patterns appearing in Figure 5.1.

ART-1 is cited by three other papers (the ovals) and these citing articles have been au-
thored by (strictly) discrete sets of authors, i.e., {a1, a2}, {a3, a4} and {a5, a6}, respectively.
On the other hand, ART-2 is cited by three other papers which all have been authored by the
same author a1. Notice that we make no specific mention about the identity of the authors
of ART-1 or ART-2 with respect to the identity of the authors ai; some of the authors of the
citing papers may coincide with those of the cited articles. Our problem treatment is more
generic than self-citations.

While we have no problem to accept that ART-1 has received three citations, we feel
that ART-2 has received no more than one citation. Reasons to have this feeling include for
instance the heavy influence of ART-2 to author a1 combined with the large productivity
of this author. Nevertheless, considering that all authors a1 to a6 have read (have they?)
ART-1 and only one author has read ART-2, it seems that the former article has a larger
impact upon the scientific thinking. On the one hand, we could argue that the contents
of ART-2 are so sophisticated and advanced that only a few scholars, if any, could even
grasp some of the article’s ideas. On the other hand, for how long could such situation
persist? If ART-2 is a significant contribution, then it would get, after some time, its right

105
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 5.2: Citing articles with author overlap.

position in the citation network, even if the scientific subcommunity to which it belongs is
substantially smaller than the subcommunity of ART-1.

The situation is even more complicated if we consider the citation pattern appearing in
Figure 5.2, where there are overlapping sets of authors in the citing papers. For instance,
author a3 is a coauthor in all three citing papers.

This pattern of citation, where some author has (co-)authored multiple papers citing an-
other paper is in the spirit of what is termed in this article the coterminal citations. Cotermi-
nal citations can be considered as a generalization of what is widely known as co-citation,
and their introduction attempts to capture the “inflationary” trends in scholarly communi-
cation which are reflected by co-authorship and “exaggerate” citing [36, 37, 38, 109].

Apparently, there exists no prior work on dealing with coterminal citations; the closest
relevant works include techniques to filter self-citations or weigh multi-author self-citations
[120, 121] and an early scheme to count cardinalities of citing authors. Our target is to
develop a metric of scientific excellence for individuals that will not be affected by the
existence of coterminal citations, i.e., that it will “appropriately” weigh them. We firmly
believe that the exclusion of self-citations is not a fair action; neither is any form of ad hoc
normalization. Each and every citation has its value, the problem is to quantify this value.
The notion of coterminal citations leads naturally to the process of the discovery of their
patterns of existence and of their “controlled discount”.

5.2.2 The f -index

We consider the citing example shown in Figure 2 where an article, say A, is cited
by three other articles and let us define the quantity ncaA to be equal to the number of
articles citing article A. We define the series of sets FA

i = {aj : author aj appears in

exactly i articles citing A}. For the case of article ART-3, we have that FA
1 = {a5, a6, a7},

FA
2 = {a1, a2, a4}, FA

3 = {a3}.
Then, we define fAi to be equal to the ratio of the cardinality of FA

i to the total number of
distinct authors citing articleA, i.e., fAi = FA

i /authors. These quantities constitute the co-
ordinates of a ncaA-dimensional vector fA, which is equal to fA = {fA1 , fA2 , fA3 , ..., fAncaA}.

106
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

The coordinates of this vector define a probability mass, since
∑ncaA

i=1 fAi = 1. For the
above example of the cited article ART-3, we have that fART−3 =

{
3
7
, 3
7
, 1
7

}
. Similarly,

for the cited article ART-1, we have that fART−1 =
{

6
6
, 0
6
, 0
6

}
and for ART-2, we have that

fART−2 =
{

0
1
, 0
1
, 1
1

}
.

Thus, we have converted a scalar quantity, i.e., the number of citations that an article has
received, into a vector quantity, i.e., fA, which represents the penetration ofA’s ideas – and
consequently of its author(s) – to the scientific community; the more people use a scholar’s
work, the greater the impact is. In general, these vectors are sparse with a lot of zeroes after
the first coordinates. The sparsity of the vector reduces for the cited articles which have
only a few citations. Naturally, for successful scholars we would prefer the probability
mass to be concentrated to the first coordinates, which would mean that consistently new
scientists become aware of and use the article’s ideas.

As the probability mass gets concentrated on the coordinates near the end of fA, the
“audience” gets narrower and in some cases it may imply bad practices (see [108]) like
publishing pacts, i.e., citation exchange, clique building, i.e. researchers form small groups
that use jargon to discuss a narrow topic, though broad enough to support the existence
of a conference/journal, and then they publish papers “from the clique for the clique”,
and finally practices which lead to papers with minimum publishable increment, i.e., after
completion of a substantial study, many researchers divide the results to produce as many
publishable papers as possible, that share a large fraction of citations to the same papers.

Though, working with vectors is complicated; we can exploit a “weighting” vector, say
s, to convert vector into a scalar value through a dot-product operation, i.e., f̂ = f · s.
For the moment, we will use the plainest vector defined as s1 = nca, nca− 1, ..., 1; other
choices will be presented in the sequel. Thus, for the example article ART-3 which we are
working with, we compute a new decimal number characterizing its significance, and this
number is equal to NA

f = fA · s1 = 33
7

+ 23
7

+ 11
7

= 16
7
⇒ NA

f ≈ 2.28.

5.2.2.1 The weighting vector

Now, we can define the proposed f-index in a spirit completely analogous to that of
h-index. To compute the f -index of an author, we calculate the quantities NA

f for each one
of his/her authored articles Ai and rank them in non-increasing order. The point where the
rank becomes larger than the respective NA

f in the sorted sequence, defines the value of f -
index for that author. The name for that new index comes from the fact that it is fractional
citation counting scheme.

Earlier, we used the most simple weighting vector; different such vectors can disclose

107
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

r Scientist - h r scientist - h r scientist - h
1 Hector Garcia-Molina - 77 17 Oded Goldreich - 48 23 Carl Kesselman - 42
2 Jiawei Han - 66 17 Philip S. Yu - 48 24 Olivier Faugeras - 41
3 Ian Foster - 65 17 Prabhakar Raghavan - 48 25 Teuvo Kohonen - 40
4 Robert Tarjan - 64 17 Leslie Lamport - 48 25 Amit Sheth - 40
5 Rakesh Agrawal - 62 17 Douglas C. Schmidt - 48 25 Craig Chambers - 40
6 Jennifer Widom - 60 18 Michael I. Jordan - 47 25 Demetri Terzopoulos - 40
6 Scott Shenker - 60 18 Donald E. Knuth - 47 25 David A. Patterson - 40
7 Jeffrey D. Ullman - 59 18 Ronald Fagin - 47 25 Philip Wadler - 40
8 Deborah Estrin - 58 18 Micha Sharir - 47 25 Jose Meseguer - 40
9 David Culler - 56 19 H. V. Jagadish - 46 25 George Karypis - 40
9 Amir Pnueli - 56 19 Mihir Bellare - 46 26 Geoffrey E. Hinton - 39
10 Richard Karp - 55 19 Pat Hanrahan - 46 26 Stefano Ceri - 39
10 Serge Abiteboul - 55 19 Garcia Luna Aceves - 46 26 Leonard Kleinrock - 39
11 David J. DeWitt - 54 20 Michael Franklin - 45 26 Saul Greenberg - 39
11 David E. Goldberg - 54 20 Alex Pentland - 45 26 Judea Pearl - 39
12 Anil K. Jain - 53 20 Martin Abadi - 45 26 David Dill - 39
13 Hari Balakrishnan - 53 20 Andrew Zisserman - 45 27 Vern Paxson - 38
13 Randy H. Katz - 52 20 Thomas A. Henzinger - 45 27 John A. Stankovic - 38
14 Takeo Kanade - 52 20 Vipin Kumar - 45 27 Krithi Ramamritham - 38
14 Rajeev Motwani - 51 20 Nancy Lynch - 45 27 Ramesh Govindan - 38
15 Don Towsley - 50 21 Christos Faloutsos - 44 27 Jon Kleinberg - 38
15 Christos H. Papadimitriou - 50 21 Thomas S. Huang - 44 28 Al. Sangiovanni-Vincentelli - 37
15 Sebastian Thrun - 50 21 Sally Floyd - 44 28 Edmund M. Clarke - 37
15 Jack Dongarra - 50 21 Robin Milner - 44 29 Herbert Edelsbrunner - 36
15 Ken Kennedy - 50 21 Won Kim - 44 29 Richard Lipton - 36
16 Didier Dubois - 49 22 M. Frans Kaashoek - 43 29 Ronald L. Rivest - 36
16 Lixia Zhang - 49 22 Kai Li - 43 29 Willy Zwaenepoel - 36
16 Michael J. Carey - 49 22 Monica S. Lam - 43 29 Jason Cong - 36
16 Michael Stonebraker - 49 22 Sushil Jajodia - 43 30 Victor Basili - 35
16 Moshe Y. Vardi - 49 22 Rajeev Alur - 43 30 Mario Gerla - 35
16 David S. Johnson - 49 23 Raghu Ramakrishnan - 42 30 Andrew S. Tanenbaum - 35
16 Ben Shneiderman - 49 23 Barbara Liskov - 42 31 Maja Mataric - 33
16 W. Bruce Croft - 49 23 Tomaso Poggio - 42 32 John McCarthy - 32
17 Mihalis Yannakakis - 48 23 Victor Lesser - 42 32 David Haussler - 32
17 Miron Livny - 48 23 Joseph Goguen - 42 33 Stanley Osher - 31
17 Luca Cardelli - 48 23 Henry Levy - 42 33 Tim Finin - 31

Table 5.1: Computer scientists’ ranking based on h-index.

different facts about the importance of the cited article. Apart from s1, we propose also a
couple of easy-to-conceive versions of the weighting vector. The vector s2 = {nca, 0, ..., 0}
lies at the other extreme of the spectrum with respect to s1. Finally, if we suppose that the
last non-zero coordinate of fA is fAk , then we have a third version of the weighting version
defined as s3 =

{
nca, nca− nca

k
, nca− 2nca

k
, ..., 1

}
. For each one of these weighting vec-

tors, we define the respective f -index as fs1 , fs2 , and fs3 . None of these three versions of
the weighting vector, and consequently of the respective indexes, can be considered supe-
rior to the other two. They present merits and deficiencies in different cases. For instance,
the fs1-index does not make any difference for large h-index values; for scientists with
h-index smaller than 15, the obtained fs1-index can be as much as 50% of the respective
h-index, which can partially be explained by the fact that lower-performance (in terms of
number of publications) scholars have larger number of self-citations, an explanation which
is consistent with the findings of [142].

108
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

r Scientist - fs2 - fs3 r scientist - fs2 - fs3 r scientist - fs2 - fs3
1 Hector Garcia-Molina - 68 - 74 17 Donald E. Knuth - 41 - 45 21 Geoffrey E. Hinton - 37 - 37
2 Jiawei Han - 57 - 63 17 Philip S. Yu - 41 - 46 22 Teuvo Kohonen - 36 - 39
2 Ian Foster - 57 - 62 18 Miron Livny - 40 - 45 22 Andrew Zisserman - 36 - 41
3 Robert Tarjan - 56 - 61 18 Luca Cardelli - 40 - 46 22 Sushil Jajodia - 36 - 41
4 Scott Shenker - 54 - 59 18 Ronald Fagin - 40 - 45 23 Joseph Goguen - 35 - 40
5 Jennifer Widom - 53 - 58 18 H. V. Jagadish - 40 - 44 23 Rajeev Alur - 35 - 41
5 Jeffrey D. Ullman - 53 - 55 18 Didier Dubois - 40 - 44 23 Philip Wadler - 35 - 38
6 David Culler - 52 - 53 18 Alex Pentland - 40 - 43 23 Amit Sheth - 35 - 39
7 Deborah Estrin - 51 - 56 18 Thomas S. Huang - 40 - 42 23 Nancy Lynch - 35 - 42
7 Rakesh Agrawal - 51 - 60 18 Sally Floyd - 40 - 43 23 Leonard Kleinrock - 35 - 38
8 David E. Goldberg - 50 - 52 18 Robin Milner - 40 - 42 23 Vern Paxson - 35 - 37
9 Richard Karp - 49 - 55 18 M. Frans Kaashoek - 40 - 41 23 John A. Stankovic - 35 - 37

10 David J. DeWitt - 48 - 51 18 Carl Kesselman - 40 - 42 24 Saul Greenberg - 34 - 37
10 Hari Balakrishnan - 48 - 52 19 Moshe Y. Vardi - 39 - 46 24 Stefano Ceri - 34 - 37
11 Anil K. Jain - 47 - 50 19 Martin Abadi - 39 - 43 24 Raghu Ramakrishnan - 34 - 40
11 Amir Pnueli - 47 - 52 19 Christos Faloutsos - 39 - 43 24 Krithi Ramamritham - 34 - 38
11 Takeo Kanade - 47 - 50 19 Mihalis Yannakakis - 39 - 46 24 Jon Kleinberg - 34 - 36
12 Randy H. Katz - 46 - 51 19 Mihir Bellare - 39 - 45 25 Ramesh Govindan - 33 - 36
12 Lixia Zhang - 46 - 48 19 Oded Goldreich - 39 - 45 25 Edmund M. Clarke - 33 - 34
13 Don Towsley - 45 - 49 19 Garcia Luna Aceves - 39 - 43 26 Judea Pearl - 32 - 36
13 Serge Abiteboul - 45 - 52 19 Kai Li - 39 - 41 26 Richard Lipton - 32 - 35
13 David S. Johnson - 45 - 48 19 Barbara Liskov - 39 - 40 26 Ronald L. Rivest - 32 - 34
14 Ken Kennedy - 44 - 49 19 Tomaso Poggio - 39 - 41 26 Victor Basili - 32 - 35
14 Rajeev Motwani - 44 - 48 19 Henry Levy - 39 - 40 26 Andrew S. Tanenbaum - 32 - 34
14 Sebastian Thrun - 44 - 48 19 Michael Franklin - 39 - 42 26 David Haussler - 32 - 34
14 Ben Shneiderman - 44 - 48 20 Won Kim - 38 - 42 27 Jose Meseguer - 31 - 37
14 Prabhakar Raghavan - 44 - 46 20 Monica S. Lam - 38 - 42 27 David Dill - 31 - 35
15 W. Bruce Croft - 43 - 46 20 Vipin Kumar - 38 - 41 27 Willy Zwaenepoel - 31 - 34
15 Christos Papadimitriou - 43 - 47 21 Victor Lesser - 37 - 41 29 Al. Sang.-Vincentelli - 30 - 34
15 Michael I. Jordan - 43 - 46 21 Thomas A. Henzinger - 37 - 43 28 Mario Gerla - 30 - 33
16 Michael Stonebraker - 42 - 45 21 Micha Sharir - 37 - 43 29 Herbert Edelsbrunner - 29 - 34
16 Jack Dongarra - 42 - 48 21 Olivier Faugeras - 37 - 40 29 Tim Finin - 29 - 30
16 Leslie Lamport - 42 - 45 21 Craig Chambers - 37 - 40 30 Jason Cong - 28 - 33
16 Douglas C. Schmidt - 42 - 46 21 Demetri Terzopoulos - 37 - 38 31 Maja Mataric - 27 - 30
16 Michael J. Carey - 42 - 46 21 David A. Patterson - 37 - 39 31 Stanley Osher - 27 - 31
16 Pat Hanrahan - 42 - 44 21 George Karypis - 37 - 38 32 John McCarthy - 26 - 29

Table 5.2: Computer scientists’ ranking based on fs2 . The fs3 value is represented too.

5.2.3 Experiments

The validation of the usefulness of the proposed indexes is not an easy task, given our
intention no to harm the reputation of any mentioned scientist. We selected as input data to
apply our ideas a number of computer scientists with high h-index 1, who are beyond any
question top-quality researchers. Since the data provided by this URL are not up-to-date
and contain inconsistencies, we cleansed them first, and kept the scientists with h-index
larger than 30.

The ranking in non-increasing h-index is illustrated in Table 5.1; the rankings with the
new indicators fs2 and fs3 appear in Table 5.2. Both indicators cause changes in the ranking
provided by the h-index. As expected, the values of the fs2-index are significantly different
than the respective h-index values. It is important to note, that these differences (and their
size) appear in any position, independently of the value of the h-index. If these differences

1http://www.cs.ucla.edu/ palberg/h-number.html

109
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Scientist h-rank earned pos. in fs2
David Haussler 32 +6
Carl Kesselman 23 +5
Geoffrey E. Hinton 26 +5
Lixia Zhang 16 +4
M. Frans Kaashoek 22 +4
Barbara Liskov 23 +4
Tomaso Poggio 23 +4
Henry Levy 23 +4
Craig Chambers 25 +4
Demetri Terzopoulos 25 +4
David A. Patterson 25 +4
George Karypis 25 +4
Vern Paxson 27 +4
John A. Stankovic 27 +4
Victor Basili 30 +4
Andrew S. Tanenbaum 30 +4
Tim Finin 33 +4

Table 5.3: Largest relocations w.r.t. rank position: Most positions up.

concerned only the scientists with the largest h-index, then we could (safely) argue that for
someone who has written a lot of papers and each paper has received a large number of
citations, then some overlap citations and some self-citations are unavoidable. This is not
the case though, and it seems that there is a deeper, latent explanation.

Seeking this explanation, we calculated the differences in ranking positions for each
scientist when ranked with h-index versus when they are ranked with the fs2 . The results
are illustrated in Table 5.3 and Table 5.4. The general comment is that the scientists who
climb up the largest number of positions are those whose work can “penetrate” (and thus
benefit) large “audiences”. For instance, the research results by Lixia Zhang and John A.

Stankovic, who work on sensors now, are cited in communities like databases, network-
ing, communications. Other scientists whose works is used by large audiences are those
working on “computer organization”, e.g., M. Frans Kaashoek, Barbara Liskov, Andrew S.

Tanenbaum, etc. Notice here, that scientists’ age has nothing to do with the ranking relo-
cation, since both younger researchers (e.g., Lixia Zhang) can climb up positions, just like
elder scientists (e.g., Andrew S. Tanenbaum).

Another important question concerns whether the particular area of expertise of a re-
searcher could help him/her acquire a larger reputation. Undoubtedly, the research area
plays its role, but it is not the definitive factor. Consider for instance, the case of data
mining which is a large area and has attracted an even larger number of researchers. We
see that George Karypis has earned four positions in the ranking provided by fs2 . If the

110
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Scientist h-rank lost pos. in fs2
Rakesh Agrawal 5 -2
Amir Pnueli 9 -2
Didier Dubois 16 -2
Mihalis Yannakakis 17 -2
Oded Goldreich 17 -2
Andrew Zisserman 20 -2
Jose Meseguer 25 -2
Serge Abiteboul 10 -3
Moshe Y. Vardi 16 -3
Micha Sharir 18 -3
Nancy Lynch 20 -3

Table 5.4: Largest relocations w.r.t. rank position: Most positions down.

area of expertise was the only rational explanation for that, then why Rakesh Agrawal,
who founded the field, is among the scientists that lost the most number of positions in the
ranking provided by fs2? The answers lies in the particularities of the research subfields;
George Karypis contributed some very important results useful also in the field of bioin-
formatics. To strengthen this, we can mention the case of Jiawei Han. He is a data-mining
expert whose work penetrates to communities like mining, databases, information retrieval,
artificial intelligence, and his is ranked second, based either on h-index, or on fs2 or on fs3 .

Examining the scholars with the largest loses, we see that scientists who have made
ground-breaking contributions and offered some unique results, e.g., Mihalis Yannakakis,
and Moshe Y. Vardi, drop in the ranking provided by the fs2 . This has nothing to do with the
theoretical vs. practical sides of the computer science; contrast the cases of M. Yannakakis

and M. Vardi, versus A. Zisserman and R. Agrawal. It is due to the nature of the scientific
results that do not “resound” to other communities.

5.3 Computing scientometrics in large-scale academic search engines
with MapReduce

Following the evolution of the Web search engines, the scientific databases and aca-
demic search engines have significantly enriched the content of their result pages. There-
fore, the results of a query for a research paper are now accompanied by information re-
garding the articles’ authors. Some of the most popular scientific search engines such as
Google Scholar2, Microsoft Academic3, and Scopus4 extended this information by con-

2http://scholar.google.com
3http://academic.research.microsoft.com
4http://scopus.com

111
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

structing author profiles where they compute and present their associated scientometrics.
As already mentioned in section 5.2, the most widespread among them is h-index, de-

vised by J.E. Hirsch [69]. This metric assigns a value to each scientist by taking into
account not only the number of publications he/she has authored, but also, by considering
the number of citations each article received. After the introduction of h-index, an entirely
new line of research was drawn and multiple variants were proposed.

The computation of scientometrics is relatively easy when it is performed on small,
well-controlled collections of research papers. For instance, in the case of h-index, the
evaluation mechanism just needs to determine the articles each researcher has authored
and then enumerate all their incoming citations. However, when the size of the collection
increases the evaluation becomes more complex since a single workstation cannot accom-
modate all the involved data (i.e. documents, authors and citations). Therefore, we either
have to use a secondary (and slower) type of storage, or solve the problem in parallel by
distributing the data to a number of interconnected machines.

MapReduce is a distribution framework designed for solving problems in large scales. It
is mainly oriented towards fault-tolerance, distributed storage, and simple implementation
without requiring network programming details. This model has been used extensively by
the Web search engines to develop a wide range of parallel algorithms. Examples include
data mining tasks, information extraction from graphs, data structures construction, text
processing, and others.

In this chapter we propose four methods based on MapReduce to compute in parallel
the scientometrics in large scientific databases. To the best of our knowledge, this is the first
work in the current literature attempting to address this problem in large scales. All previ-
ous bibliography does not study in depth the issue in question, since until recently the data
collections were small and the problem was not very important. However, the introduction
of the large scientific databases and their constantly expanding repositories in combination
with the users’ increased interest, has rendered the issue much more challenging.

5.3.1 Related work

In this section we present some fundamental articles about MapReduce and its architec-
ture and we discuss some remarkable works which introduce strategies for solving common
problems in parallel. Finally, we refer to a number of scientometrics that have been pro-
posed in the related bibliography.

MapReduce was initially introduced by two Google engineers in [60]. In [61] the au-
thors described GFS, the distributed file system on which the framework operates. A more
extended presentation of the components of MapReduce is provided in [41]. The most

112
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

popular open source implementations of MapReduce and GFS are Hadoop and the HDFS

respectively. A technical overview of their architectural logic and design is provided in
[28].

Numerous works have proposed expansions and modifications which allowed the frame-
work to be used in a wider variety of applications. For instance, [1] introduced HadoopDB,
an architectural hybrid between Hadoop and database management systems. In [150] the
authors appended a “Merge” phase to the execution plan of the system with the aim of
joining the relational outputs of two separate MapReduce tasks.

Several other research articles have described important problems which were effi-
ciently solved by using MapReduce. For instance, Web search engines have used the
framework extensively in data intensive tasks such as inverted index construction [93],
and PageRank computation [85]. Text intensive applications include duplicate and near-
duplicate document detection [49], language processing algorithms [84] and numerous
others. Finally, [91] introduced Pregel, a computational model for processing large graphs.
Pregel programs are expressed as a sequence of iterations, in each of which a vertex can re-
ceive messages sent in the previous iteration. However, unlike PageRank computation, the
evaluation of scientometrics can be performed in a single MapReduce job without requiring
multiple iterations.

5.3.2 MapReduce basics

MapReduce builds on the key idea of simplicity; that is, its users should not deal with
complex network programming issues [60, 41]. Instead, the system provides an abstraction
that requires from the algorithm developers to express their solutions by using only two
functions: map and reduce.

The co-ordination of the parallel execution is performed by a single machine, the Mas-

ter. The Master splits the input data into multiple fragments and assigns the processing of
each fragment to a number of m Workers. The Workers (called Mappers in this phase) ap-
ply the map function to every key/value pair of their input and generate an arbitrary number
of intermediate key/value pairs. When the input is exhausted, the system employs a number
of r Workers (now called Reducers) that apply the reduce function to all values associated
with the same intermediate key. Their final output is the solution of the assigned task, also
formatted in key/value pairs and partitioned in r shards.

There are two more optional components which can be involved in a MapReduce task:
The Partitioner and the Combiner. The former is used to determine how the intermediate
files produced by the Mappers should be transferred to the local file systems of the Re-
ducers. The latter, is used to improve the efficiency of the execution by limiting the size

113
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

of the data to be transferred from the Mappers to the Reducers by merging the values as-
sociated with the same key into associative arrays. The Combiner is deployed by either
explicitly declaring a combine function, or by properly implementing it within the Mapper
itself (in-Mapper Combiner). According to [85], the second option is usually preferable.

The MapReduce jobs are executed on top of a distributed file system [60] which trans-
parently addresses all the problems that may occur (e.g., fault tolerance). For instance, in
case a worker dies due to a hardware malfunction, Master assigns the job it was processing
to another worker without any data loss.

5.3.3 Computing scientometrics with MapReduce

Let us begin by introducing P which is the set containing all papers, and A which
includes all authors. Each paper pi ∈ P contains a reference section encountered towards
the end of the manuscript. From this section we extract P pi ⊂ P which contains all papers
referenced by pi; for each reference ppij ∈ P pi we retrieve all the contributing authors Ap

pi
j .

In Table 5.5 we summarize all the above notations.
The input of the problem can be considered as a set of (pi, C

pi) pairs, where pi repre-
sents the integer identifier of an article and Cpi symbolizes its content. Our objective is to
construct a list of (a,Ma

x) pairs, where x identifies the metricM employed to evaluate each
scientist (see last row of Table 5.5). According to the definitions of all three metrics, it is
required that we decompose the required (a,Ma

x) pairs and construct for each author, one
pair of the following form:

Symbol Meaning
P The set containing all papers
A The set containing all authors
pi An arbitrary paper pi ∈ P
Cpi The textual content of pi
aj An arbitrary author aj ∈ A
Api The authors who created pi
P aj The papers authored by aj
P pi The papers referenced by pi
Spix The score of a paper pi with respect to the metric x
M

aj
x A metric evaluating the work of aj

M
aj
h : h-index of aj

M
aj
c : contemporary h-index of aj

M
aj
t : trend h-index of aj

Table 5.5: List of the most frequent symbols

114
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

(
a, SortedList

[(
p1, S

p1
x

)
, ...,

(
pN , S

pN
x

)])
(5.1)

where Spix is the score of pi with respect to the metric x. In case we are interested in
computing h-index, this score merely represents the total number of the incoming citations
that pi received.

According to 5.1, to calculate the metric values for an author, we first need to identify all
the publications he/she has authored, and then compute their corresponding scores. Notice
that the elements of this (paper, score) list must be sorted in descending score order to
enable fast metric evaluation with a single iteration. In the following section we present
four methods to solve this interesting problem by using MapReduce.

5.3.3.1 Basic algorithm design

We start by feeding the system with the given set of the publications P . According to
our previous discussion, we express the input of the Map function in a (key, value) manner
by defining (pi, C

pi) pairs. Within the Mapper, we parse the textual content of each paper
pi ∈ P and we retrieve all its outgoing references P pi . For each reference ppik ∈ P pi we
compute a score Spkx , according to the metric x we need to evaluate.

For the plain h-index metric, we set the score equal to 1 for all references, thus denoting
that the paper ppik has one incoming citation (which of course, is pi). For the other two
metrics, we need to consult equations 5.7 and 5.8. Our goal is to properly set the partial
scores in the map phase in order to compute the final scores in the reduce phase. For this
reason, during the map phase, we set the partial scores recorded in Table 5.6.

In the sequel, each reference is again parsed and its authors Ap
pi
k are identified. For

each extracted author, we create one tuple that will be sent to the Reducer and there are
two options to format this tuple. The first one (called method 1) dictates that we set the
author as the key, and create a pair (paper, score) for the value field. Our second option
(called method 2) is to generate a composite key of the form (author, paper), and place
the paper score within the value field. Algorithm 5 illustrates a pseudocode for the map
function implementing these two methods.

Although the map phase is almost identical for methods 1 and 2, the reduce phases must

Metric Partial Score
h-index Sph = 1

contemporary h-index Spc = γ/(∆Yp)
δ

trend h-index Spt = γ/(∆Yp,c)
δ

Table 5.6: Setting the partial paper scores in the map phase for various scientometrics

115
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Algorithm 5 Mapper class(es): In case method 1 is used, the framework executes the step
8a. If we use method 2, we need to execute the step 8b.

1: class Mapper
2: method map (integer pi; string Cpi)
3: P ← ExtractReferences(Cpi)
4: for all references p ∈ P
5: Sp ← ComputeScore(p)
6: Ap ← ExtractAuthors(p)
7: for all authors a ∈ Ap
8a: emit (a, pair[p, Sp])
8b: emit (pair[a, p], Sp)

implement a different strategy. Notice that the MapReduce framework guarantees that the
data sent from the Mappers arrives at the Reducers in a sorted key order. This gives method
2 an advantage; method 2 implements a secondary sort, that is, the data is not only brought
to the Reducers in an ascending author order (as holds for method 1), but also, in ascending
paper order. This allows a more robust approach of the reduce phase, since we save the cost
of searching for the incoming papers. To make our state clearer, we provide Algorithms 6
and 7 for the reduce phase of methods 1 and 2 respectively.

Let us discuss Algorithm 6 first. Since the (paper, score) pairs are brought to the
Reducers in arbitrary order, we need to store these pairs into a data structure H which will
allow us to accumulate the partial paper scores. More specifically, for each value field of
the Reducer input, we search in H for the input paper. In case this search fails, we insert
the paper along with its corresponding score. In the opposite case, we just accumulate
the incoming score to the one which is already stored in H . After all the tuples have
been processed, we sort H in a descending score order and we compute the desired metric
by iterating through its entries (steps 11–16). The sorting of H can be performed within
the main memory of the Reducer since it stores at most a few hundreds entries; the vast
majority of the authors has published fewer than 1000 articles.

On the contrary, in Algorithm 7 there is no need for searching; instead, it is only re-
quired to allocate an array H to store the paper scores. Since the tuples arrive in sorted
order, we just need to compare the paper we are currently processing to the previous one
(step 9). In case their identifiers are equal we accumulate their partial scores and update
the last record of H . In the opposite case, we store the new paper score in a new position
at the end of H . When all the papers of an author have been processed, we repeat the steps
9–17 of Algorithm 6 to compute the desired metric and we proceed with the next author.
The final (a, ha) tuple must be written out in the close method.

Finally, notice that the pair values of Algorithm 6 and the pair keys of Algorithm 7 are

116
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Algorithm 6 Method 1, Reducer class
1: class Reducer
2: method reduce (string a; pairs[integer p, float Sp])
3: H ← new AssociativeArray
4: for all pair v ∈ pairs[integer p, float Sp]
5: if v.p ∈ H
6: Hp.S ← Hp.S + v.Sp

7: else
8: H .add(v)
9: sort H in descending S order
10: integer papers← 0, metric← 0
11: for all pairs ∈ H
12: papers← papers + 1
13: if Hp.S ≥ papers
14: metric← metric + 1
15: else
16: stop iteration
17: emit (a, metric)

not included in the basic data types of MapReduce. Consequently, it is required that we
implement additional classes which explicitly define how these data types must be read and
written by the framework. Nevertheless, the complexity for Algorithm 7 is increased since
the custom data type is used in the key; hence, it is required to determine how the system
will compare the keys to each other to achieve sorted Mapper output (compareTo method).
However, the increased complexity of Algorithm 7 is rewarded with improved execution
performance.

5.3.4 Optimizing the performance

Despite their difference in tuples formatting, the Mappers of both methods 1 and 2 still
emit data to the Reducers each time an author of a paper reference is extracted. Since
we do not check whether the key we are currently processing has been previously sent,
it is inevitable that we transmit the same key multiple times. This leads to a performance
bottleneck due to the increased network traffic caused among the nodes of the system. Here
we attempt to address this problem with the support of the Combiners.

The Algorithm 8 shows how we can extend method 1 with the aim of supporting an
in-Mapper Combiner. We call this new approach as method 1-C, where the letter “C”
signifies the presence of a Combiner. The cornerstone of method 1-C is to avoid multi-
ple emissions of identical author names and thus, save valuable network bandwidth. To
achieve this, we first initialize a container data structure H which shall allow us to emit
(author, list[paper, score]) tuples instead of the simple (author, (paper, score)) tuples of

117
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Algorithm 7 Method 2, Reducer class
1: class Reducer
2: method initialize
3: string aprev ← ””
4: integer pprev ← 0
5: integer n← 0
6: H ← new Array
7: method reduce (pair[string a, integer p]; float Sp)
8: if a = aprev
9: if p = pprev
10: H(n)← H(n) + Sp

11: else
12: H .add(Sp)
13: n← n+ 1
14: else
15: Perform steps 9–17 of Algorithm 6
16: H .reset()
17: aprev ← a
18: pprev ← p
19: n← 0
20: method close
21: emit (a, metric)

method 1. During the references parsing process, each time an author is encountered we
perform a look-up in the container (step 10); in case the author is not present inH we insert
the record along with the corresponding (paper, score) pair (steps 11–13). In the opposite
case, we need to check whether the current reference belongs to the (paper, score) list of
the found author. If the search is unsuccessful we store the paper and its score in the list
(step 16); otherwise, we update the corresponding list record by summing up the new paper
score to the stored one (step 18). After all the input data has been processed, the Mapper
emits the tuples stored within H to the Reducer via the Close method.

It is immediately obvious that the method 1 generates an immense number of key-value
pairs compared to method 1-C. Method 1-C is much more compact since with method 1,
the author is repeated for each reference we send to the Reducer. Nevertheless, we need
to mention here that there are two side effects deriving from the usage of a Combiner.
The first one is the increased memory footprint of the map function due to the allocation
of the container data structure. The second is a possible delay in the execution of the
map phase due to the double search we perform (one for the author and one for paper).
However, in this specific application that we examine, our experiments reveal that this
delay is infinitesimal due to the small length of the (paper, score) lists, and that the usage
of a Combiner definitely leads to significant acceleration of the entire task.

118
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Algorithm 8 Method 1-C: Improved version of method 1 with Combiners
1: class Mapper
2: method initialize
3: H ← new AssociativeArray
4: method map (integer pi; string Cpi)
5: P ← ExtractReferences(Cpi)
6: for all references p ∈ P
7: Sp ← ComputeScore(p)
8: Ap ← ExtractAuthors(p)
9: for all authors a ∈ Ap
10: if a /∈ H
11: La ← new Array
12: La.add(p, Sp)
13: H .add(a, La)
14: else
15: if p /∈ H.La
16: H.La.add(p, Sp)
17: else
18: H.La.update(p,+Sp)
19: method close
20: for all authors a ∈ H
21: emit (a, list(p, Sp))
22: class Reducer
23: method reduce (string a; list[integer p, float Sp])
24: H ← new AssociativeArray
25: for all pair v ∈ list[integer p, float Sp]
26: if v.p ∈ H
27: Hp.S ← Hp.S + v.Sp

28: else
29: H .add(v)
30: Perform steps 9–17 of Algorithm 6

Finally, we introduce method 2-C where we inject the in-Mapper Combiner approach
in method 2. The Algorithm 9 illustrates the basic steps which are similar to those of
Algorithm 8. In this case however, the container data structure does not store a list of
(paper, score) pairs for each author, but a single cumulative score value per each dis-
tinct (author, paper) pair. This minimizes the benefits of using a Combiner because the
(author, paper) keys are more numerous than the simple author keys of method 1-C. In
addition, notice that the reduce phase in this case is identical to that of method 2.

5.3.5 Experiments

For the experimental evaluation of our theoretic analysis we employed Hadoop 0.20.2,
an open-source implementation of the Google’s MapReduce framework. We begin this sec-

119
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Algorithm 9 Method 2-C: Improved version of method 2 with the introduction of in-
Mapper Combiners. The Reducer is identical to the one of Algorithm 7.

1: class Mapper
2: method initialize
3: H ← new AssociativeArray
4: method map (integer pi; string Cpi)
5: P ← ExtractReferences(Cpi)
6: for all references p ∈ P
7: Sp ← ComputeScore(p)
8: Ap ← ExtractAuthors(p)
9: for all authors a ∈ Ap
10: if pair(a, p) /∈ H
11: H .add(pair(a, p), Sp)
12: else
13: H .update(pair(a, p), +Sp)
14: method close
15: for all pairs (a, p) ∈ H
16: emit (pair(a, p), Sp)

tion with a brief description of our test dataset and we proceed with data size measurements
and efficiency assessments.

5.3.5.1 Dataset characteristics

Collecting bibliometric data is a challenging task, due to the strict data protection poli-
cies applied by the digital libraries. Since crawling is forbidden, we are limited in using
only open access document collections. The largest among these collections is the Cite-
SeerX [33] dataset, an open repository comprised of approximately 1.8 million scientific
articles. The dataset is available in three forms: The first one contains the raw text of the
publications scattered in 1.8 million plain text files. The other two contain certain meta-data
of the documents expressed in SQL and XML formats respectively. The raw text format of
the articles requires much and intensive effort towards two directions: a) disambiguation
of the authors names and b) references extraction. Although these problems are both inter-
esting and challenging, they are out of the scope of this paper. For this reason, we choose
to work with the XML formatted dataset.

For each article of the dataset there are one or more small-sized XML files, each of
which represents a different version of the same article. The dataset includes in total 3.9
million XML files, however, in our experiments we use only the latest version; conse-
quently, 1.8 million XML files are used. This large number of small-sized files renders
the dataset inappropriate for MapReduce, because the underlying distributed file system

120
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

is designed for optimal performance when dealing with considerably larger files. For this
reason, we performed a conversion of the dataset by packing thousands of these XML files
into larger binary files. After this process, our “new” dataset was comprised of 432 files of
64 MB each.

5.3.5.2 Data sizes

In this subsection we perform measurements of the data sizes exchanged between the
Mappers and the Reducers of our proposed methods. Initially we provide method indepen-
dent numbers indicating the data sizes involved in the examined problem. The first two
rows of Table 5.7 concern the Mapper input, whereas the last two are connected to the Re-
ducer output. As mentioned, the input consists of approximately 1.8 million articles which
occupy in total roughly 27.6 GB. After the processing of the dataset with MapReduce, the
system outputs a set of about 2.8 million (author,metric) pairs the size of which touches
40MB.

Table 5.8 illustrates various statistics; in the first double column we measure the size of
the Mapper output of all four examined methods, expressed in number of records and data
size in MB. The latter measurement is essential since it reflects the overall size of the data
exchanged among the Mapper and Reducer nodes of the cluster. In the next column we
record the counts of the Reducers input groups which represent the number of the unique
keys which arrive at the Reducers. To acquire these measurements, we executed all four
methods by employing only one Worker node; Table 5.8 derives from the report generated
by the framework at the end of the task.

Statistic Value
Input Records 1,844,272
Input Size 27.6 GB
Output Records 2,865,282
Output Size 39.9 MB

Table 5.7: Problem input-output statistics

Method Mapper Output Reducer
Records Size (MB) Input Groups

method 1 36,687,999 688.4 2,865,282
method 2 36,687,999 688.4 12,260,311
method 1-C 21,736,395 600.8 2,865,282
method 2-C 34,251,437 643.2 12,260,311

Table 5.8: Record counts and data sizes for the four examined methods

121
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 5.3: Running times of the four methods in a small local cluster (Left), and a Web
cluster infrastructure (Right).

Initially we examine the performance of our methods in terms of sizes of the Mapper
outputs. The map phase of methods 1 and 2 transmitted in total 36.7 million records occu-
pying roughly 688 MB. On the contrary, the usage of a Combiner in method 1-C decreased
these values by 42% (21.7 million records) and 13% (601 MB) respectively. As we antici-
pated, method 2-C was not equally efficient despite the usage of a Combiner. Compared to
methods 1 and 2 we only achieve a reduction in the size of the outputted data by a margin
of 6.5%. This is due to the fact that the Combiner of method 1-C lists (paper, score) pairs
per each unique author, whereas method 2-C stores one partial score value for each distinct
(author, paper) key; the latter key type is much rarer than the former.

The counts of the Reducer input groups reveal that the number of the unique keys which
arrive at the Reducers of methods 1 and 1-C is equal to the number of records that depart
from it (see third row of Table 5.7). This is due to the fact that the output of the entire task
(i.e. (a, ha) pairs) has the same key as the Mapper output of these two methods. On the
other hand, the tuples produced by the Mappers of methods 2 and 2-C are keyed by using
(author, paper) pairs, consequently, the unique keys which arrive at the Reducers increase
by a factor of approximately 4.2.

5.3.5.3 Efficiency measurements

In this subsection we evaluate the performance of the four methods. To exhaustively
attest the scalability of our algorithms, we measured their running times by using two
platforms. The first one includes a small-sized lab network, whereas the second one is a
larger Web cluster infrastructure. Each experiment was repeatedly performed by employing
different numbers of processing cores each time. The results are depicted in Figure 5.3.

Our first observation is that in both platforms, all of our methods scale well for fewer
than 20 cores; the doubling of the cluster size almost leads to halved running times. For
more cores the gains are slightly limited, due to the increased network latencies. Notice
that the running times between the two clusters are not comparable, since these clusters are

122
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

equipped with different hardware and they adopt different architectures. In all occasions,
method 1-C outperformed the other approaches by a margin ranging between 32% and
35%. Apparently, the existence of the Combiner results in decreased exchange of data
among the nodes of the clusters. Although method 2-C also employs a Combiner, it did
not perform equally well; compared to method 1-C it was outperformed by about 18%. We
have previously explained that the (author, paper) keys of method 2-C are more numerous
than the simple author keys of method 1-C, consequently, the benefits of using a Combiner
are limited.

Regarding the plain methods 1 and 2, we notice that the latter completed the assigned
task slightly faster. Although the amount of data exchanged among the nodes of the system
is equal in both methods, method 2 achieves better performance due to the more robust
implementation of its Reducer. More specifically, the (author, paper) keys emitted by the
Mapper of method 2 are brought to the Reducer in sorted author and paper order (secondary
sort), thus saving us the cost of searching for the input papers.

5.4 Identifying attractive research areas for new scientists

One of the most important issues that a new5 researcher has to address is the correct
identification of the primary research field that will determine his/her future career. Our cur-
rent experience has proved that a significant percentage of starting scientists often choose
their area of interest by considering invalid parameters, including the reputation of their
future mentors or supervisors, the availability of open PhD theses, or the former success of
others who have managed to conduct a productive research in this specific area. Therefore,
it is a common phenomenon that capable and diligent scientists are misled and engaged
with scientific fields that are considered as obsolete, dead, or prohibitively competent for
their current level of experience.

We firmly believe that the primary criterion for the selection of a research area is the
new scientist’s preferences. A research conducted in a field that is out of the interests or
likes of a researcher is undoubtedly condemned. Nevertheless, this criterion is extremely
hard to be modeled, since even the scientists themselves are frequently not in the position to
determine whether a research area is within their own interests. Along with this notification,
a sequence of questions and critical issues are posed.

Certainly the various scientific fields are not equally promising and each of them ex-
hibits its own level of “hostility” for a new scholar. For instance, several scientific domains
are considered as obsolete, as the majority of their related problems have found efficient and

5In this work we also use the term starting scientists or starters to refer to new scientists

123
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

effective solutions. On the other hand, there are problems that can only be tackled by expe-
rienced scientists and publishing a work in such an area is relatively difficult. Apparently,
new scientists are not recommended to work in such areas, since it is usually impossible
to propose a solution that outperforms the existing schemes and moreover, publishing such
solutions has limited probabilities due to the lack of trust by the rest of the members of the
scientific community.

The identification of trendy research areas is of great interest for every scientist. Such
knowledge is a valuable tool, since it can reveal the correct path for new scholars and
assist them in working on modern or newly posed problems. Even the more experienced
researchers could benefit from the knowledge of the most fashionable fields, as they could
expand their work and develop solutions to novel problems. This is a definite advantage
for the science itself.

In this chapter we attempt to formally set and solve this interesting problem. Although
there are several previous works which investigate the issue of identifying emerging topics
of research, the problem of identifying attractive research areas for new scientists is new; to
the best of our knowledge, there is no other work attempting to address it. In our approach
we initially examine the main attributes of the problem and we study the space where the
solution lies. In the sequel, we consider the most important properties of the new scientists
and with that knowledge, we identify the core elements that render a research field attractive
to them.

A significant parameter of our problem is the identification of the new scientists and
their separation from the more experienced ones. In this work we exploit some of the most
sophisticated metrics that have been proposed in the literature. We also introduce a set of
Topic-Sensitive extensions which render these metrics aware of the research field that we
examine each time. These contributions are tested experimentally by employing a large
dataset of scientific articles deriving from the wide areas of Engineering and Computer
Science.

5.4.1 Related work

Although the identification of attractive research fields for new scholars has not been
previously addressed, the issue of investigating emerging research areas has been studied by
several previous works. The approaches proposed in these works are divided into two wider
categories, the co-word and the co-citation analysis methods. The first branch includes
policies which focus on directly investigating the contents of a research topic. One of
the earliest relevant works is the research of [44], which employed co-word analysis and
detected changes in the field of information retrieval during the period between 1987 and

124
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

1997. Furthermore, [82] introduced a co-word analysis method for measuring the latest
research trends in technical documents.

The most significant problem of the co-word analysis methods is the lack of an objec-
tive mechanism which will determine the set of representative keywords from the examined
documents [82, 102]. For this reason, the extraction of objective keywords from the exam-
ined documents depends highly on each analyst; this certainly introduces some bias. The
requirement to eliminate bias forced the researchers to introduce more objective criterions,
such as the evaluation of the increment rate of published articles with particular keywords.
Several works attempted to identify emerging topics by analyzing the changes in the num-
ber of related articles [101, 137]. These studies proved that the increment rate was an
effective criterion for determining the value of each keyword. Nevertheless, these works
also initially require a set of pre-defined keywords before their proposed algorithms can be
applied.

The second category of methods includes the works which attempt to address the prob-
lem by applying co-citation approaches. Examples of such works are [130] and [141] which
examined the citation properties of several papers in order to identify emerging fields of re-
search. Based on this analysis, they detect sets of highly cited papers; the numbers of these
papers and the research area they belong to is then used to obtain the required knowledge.
The major problem is that recent works cannot usually receive many with respect to the
older works. This difficulty turns co-citation approaches less effective.

In this work [15] we propose a score-based identification of attractive research fields
for new scientists. Each research field receives a score according to numerous parameters,
such as the reputation of the involved scientists, the prestige of the journals6 which publish
the related papers and the number of incoming citations. Furthermore, these parameters
are considered with respect to temporal aspects which reveal the research fields which are
attractive presently.

Regarding the issue of the evaluation of a researcher’s work, there is a significant
amount of work attempting to address it. The pioneering article which achieved robust
results is [70], where J. Hirsch introduced h-index, a metric that rewards both the produc-
tivity and influence of a scientist. Motivated by the success of the h-index, several other
metrics followed, such as the SCEAS system [126], g-index [46] and f-index [76]. In [22]
a normalized version of the metric is presented, whereas in [27], a high-level study of the
mathematics and performance is provided. In [47] it is attempted to minimize the gap be-
tween the lower bound of the total number of citations calculated by h-index and their real

6In this paper we use the word journal to refer to a source where an article can be published. Apart from
journals, the usage of this word also implies magazines, conference proceedings, digital libraries, etc.

125
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

number. Additionally, in [128] two new metrics, the contemporary h-index and the trend

h-index are introduced. The first takes into consideration the time that elapsed since an
article was published, whereas the second takes into account the date an article received
each of its citations.

Apart from the work that has been conducted towards ranking scientists, there is also
a considerable research made for evaluating the prestige of a journal. Although the first
relative article was published in early seventies [56], it was not before 2002 that this issue
gained a remarkable attention. Bharati in [24], studied the preferences of journals for e-
commerce research, whereas [75] employs citation analysis to assess journal quality and
ranking. On the other hand, [88] and [127] apply scientometrics to determine the prestige
of several information systems journals and scientific conferences respectively. In [112]
there is a study which examines the differences across journal rankings, whereas in [29]
and [125] several Hirsch-type indices for evaluating journals are proposed.

5.4.2 Problem formulation

Let us begin by introducing P = {p1, p2, ..., p|P |} which is the set containing all pub-
lications (also mentioned as papers, or articles) and B = {b1, b2, ..., b|B|} that is another
set including the journals where the items of P have been published. Note that since each
paper is published in exactly one journal, each entry pi ∈ P is mapped to a single element
bl ∈ B. Moreover, we define A = {a1, a2, ..., a|A|} as the set including all the authors (also
mentioned as scholars, or scientists) who have contributed to the creation of the items of P
and F = {f1, f2, ..., f|F |} which includes all the research fields involved in our problem.

a
1

j
a

a
2

p
i

p
l

3
p

p
2

p
6
p
5

f
k

f
1

Res. Fields F

b
l

b
1

b
2

f
P k

F
pn

p
4

p
iA

a jP

b
lP

p
nP

p
i

r p
i

Pc

Authors A

Papers P

Journals B

Figure 5.4: Graphical representation of the examined universe

Based on the previous analysis we identify the subset Api ⊂ A which contains the
researchers who have authored an article pi, whereas the topic discussed in pi is categorized
to one or more research fields belonging to the subset F pi ⊂ F . Equivalently, each author

126
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Symbol Meaning
P The set containing all papers
A The set containing all authors
F The set containing all research areas
B The set containing all journals
pi An arbitrary paper pi ∈ P
Yi The year of publication of pi

∆Yi The age of publication of pi
aj An arbitrary author aj ∈ A
fn An arbitrary research area fn ∈ F
bl An arbitrary journal bl ∈ B
Api The authors who created pi
F pi The research areas that pi belongs to
P fn The papers belonging to fn
P aj The papers authored by aj
P aj ,fn The papers authored by aj and belong to fn
P bl The papers published in bl
P bl,fn The papers published in bl and belong to fn
P pi
r The papers referenced by pi

P pi,fn
r The papers referenced by pi and belong to fn
P pi
c The papers referring to pi

P pi,fn
c The papers referring to pi and belong to fn
h
aj
ν A metric evaluating the work of an author aj
hblµ A metric evaluating the prestige of bl

Table 5.9: Summary

aj has published a series of papers P aj ⊂ P and each research field fn contains a subset of
papers P fn ⊂ P .

Apart from these basic sets we also introduce the subset P pi
r ⊂ P which contains all

papers referenced by pi, and P pi,fn
r ⊂ P pi

r which stores the publications referenced by
pi and also, they are classified into the research area fn. In a similar spirit, P pi

c ⊂ P

and P pi,fn
c ⊂ P pi

c include the articles referring to pi and the articles which both cite pi and
belong to the research field fn. All introduced sets and subsets along with their connections
are illustrated in Figure 5.4.

Finally, we use the symbol Yi to indicate the year that the paper pi was published in a
journal bl. Furthermore, ∆Yi = Ynow − Yi + 1 is used to represent the years elapsed since
the journal was published, where Ynow is the current year.

The quantity, the quality, the number of incoming references and some other charac-
teristics of the publications of a researcher have been used widely to determine his/her
productivity and impact. Several existing works (see section 5.4.1) state that the activity

127
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

of a researcher aj can be evaluated by using a single value hajν and they propose effective
approaches towards this direction. Moreover, the characteristics of the papers published
by a journal and the reputation of the involved authors can be exploited for evaluating this
journal by using another metric, hblµ . Note that the symbols ν and µ are identifiers used
to differentiate the approaches that exist for evaluating a researcher’s work and a journal’s
prestige respectively.

In Table 5.9 we summarize all the above notifications and in Figure 5.4 we illustrate the
examined universe and the connections among the distinct sets of our analysis.

5.4.3 Problem statement

The discussion of the previous subsection determined the boundaries of the space where
our problem lies. Our goal now is to identify the research areas F which are attractive for an
author aj , for whom the metric hajν receives low values. For this purpose, for each field of
research we introduce a special score Sfn , which is calculated by taking into consideration
the characteristics of a new scientist and an attractive research field. After that, we only
have to sort the research fields by decreasing Sfn order to obtain the desired knowledge.

As we will see later, the main problem includes three component issues which are
essential to be addressed before we proceed in the extraction of the desired information.
These are the evaluation of a researcher’s work, the evaluation of a journal’s reputation
and the classification of an article within a given taxonomy of research areas. The first two
sub-problems are related to finding effective methods for computing the hajν and hblµ metrics
and the literature contains numerous satisfactory solutions for this purpose.

Regarding the identification of the research field that an article belongs to, an algorithm
for mapping each of the items of the set P to one or more entries of the set F is required.
In this work we utilize a machine-learning algorithm which we have developed for this
purpose. More details about this algorithm are provided in section 5.5 of this chapter.

5.4.4 Identifying attractive research areas

The problem we discuss here concerns new scientists, that is, scientists with low h
aj
ν

values. To determine an effective solution, it is necessary that we take into consideration
an accurate overview of their characteristics. Some of the most important properties of
the individuals belonging to this category are the lack of experience and the lack of trust.
The former, lack of experience, is connected to the fact that a new researcher is not always
able to discover or even understand the open problems in some challenging research areas.
Moreover, even if a problem is formulated, the scholar is not usually in the position to

128
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

propose a solution that is more effective than the ones that have already been proposed by
other researchers. The latter, lack of trust, means that a new researcher is not reputable and
it is expected that his projects will be treated with caution by the rest of the members of the
scientific community.

Concerning the research fields, we determine two significant properties: popularity

and attractiveness for new scientists. The former is mainly connected to the number of
published articles and the number of scientists dealing with this particular research field.
Regarding the latter, our research has shown that not all popular research topics are suitable
for them and that additional properties must be considered. We shall discuss these proper-
ties shortly, since one of the primary goals of this work is to provide evidence supporting
this claim.

To quantify the aforementioned properties and construct a model for evaluating each
scientific field, we performed an enquiry among our colleagues. In particular, we have pre-
pared a Web interface and we have asked from other PhD candidates to determine the rea-
sons which render an area of research attractive, and the motivations that led them choose
the subjects of their dissertations. The enquiry was answered by 141 new scientists from
multiple departments of several universities and its conclusions proved that the most sig-
nificant attributes that render a research field attractive for a new researcher are:

• Number of recent articles: Among all the enquiry answerers, a remarkable percent-
age of 62% agrees that the number of articles dealing with multiple problems from
the same research area is a strong indication about the area’s attractiveness and pop-
ularity. However, this parameter alone is not sufficient; the articles should also be
recent, unless we desire to identify obsolete research fields which were once trendy.
Recency is related to the time that has elapsed since a given date. In this work we
assume that a paper is recent if it was published up to Y years before the current date
and in section 5.4.5 we are conducting experiments by examining different values of
recency (i.e. we set Y = 1, 2 or 3 years).

• Impact of articles: To characterize a research area as attractive for a new scholar the
number of recent publications is not adequate; the matter of the impact of these pa-
pers is equally important. The impact an article has in the scientific community can
be evaluated by applying citation analysis methods which are based on the informa-
tion provided by the inter linkage of the research papers. Such information includes
the number of citations each paper acquired, their age, the publishing journal etc.
Furthermore, the number of recent citations received by an entire research field, par-
tially reveals its current popularity. This parameter was verified by the 68% of our

129
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

enquiry answerers.

• Reputation of the publishing journals: Publication in prestigious journals has signif-
icant influence on promotion decisions, tenure and peer recognition. When an article
is published in a reputable journal, it is expected that it will gain the attention of a
large number of other scientists. Indeed, our enquiry confirmed that a percentage
of 64% of new scientists will probably make an effort to propose a more effective
methodology to confront the problem that the paper in question studies. In other
words, other scientists are being attracted by the content of the papers which are
published in high-level journals, since a more efficient approach to the same problem
may result in a publication by a journal of equal or higher reputation. Furthermore,
it is a common strategy for many new scientists to watch and study the articles pub-
lished in the most important journals in order to determine the object of their future
research. Consequently, the more articles from the same research areas are published
in reputable journals, the more attractive this research area is for new authors.

• Influence of the contributing authors: In our effort to identify the attractive research
areas for new scientists, we also examine the reputation of the authors who have
published the most recent and influential works. When a high-level scientist deals
with a problem and proposes an effective solution, it is expected that his/her work
will be published in a top-quality journal. This is due to his/her high level of exper-
tise and the trust he/she enjoys by the other members of the scientific community.
Nonetheless, this does not make the research area the paper belongs to attractive for
a starting scientist. Instead, we believe that this matter is detrimental to an author of
low reputation who is usually not able to propose a more effective solution. 42% of
our enquiry participants stated that they examine the previous experience and a paper
author and they are influenced by the qualitative publications of other new scientists.

Based on the aforementioned enquiry and the parameters we discussed above, we con-
clude that popularity is not the only parameter affecting the new scholars during the se-
lection of their area of research. Other characteristics such as the impact of the published
articles, the reputation of the publishing journals and the popularity among the other new

scholars must be considered when searching for attractive fields of research for new scien-
tists.

Now we summarize the above notifications by characterizing a field of research as
popular for a specific year Y , if its corresponding publications are:

130
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[Multitudinous] AND [Influential]

AND [Authored by multiple distinct scientists] (5.2)

Consequently, the more publications a research field has, the more popular it is. Addi-
tional indications of popularity are the number of incoming citations and the number of the
distinct authors dealing with the problems of the research field in question. Based on these
properties we introduce the following scoring formula which determines the popularity of
a research field:

Sfn1,Y = |P fn
Y |+

|P fn |∑
i=1

|P pi
c,Y |+

|P fn
Y |∑
i=1

|Api| (5.3)

The criteria which render a research area attractive for new scientists are different.
According to our discussion, a topic is suitable for new scholars if the papers which are
relevant to it are:

[Multitudinous] AND [Recent] AND [Influential]

AND [Published in reputable journals]

AND [Authored by new scientists] (5.4)

Now the parameters of 5.4 provide a qualitative solution to the problem of identifying
attractive research areas for new scientists. In order to quantify our solution we must de-
termine numerically the attractiveness of each scientific area and the following equation
fulfils our goal:

Sfn2,ν,µ =

|P fn |∑
i=1

|P pi
c |hblµ

(∆Yi)δ

(|Api |∑
j=1

λ

h
aj
ν

)
(5.5)

where λ is a constant quantity used to assign the second sum a meaningfully large value,
and δ is a parameter which determines the rate at which a publication becomes “old”. A
typical value for this parameter is δ = 1.

To compute the Sfn2,ν,µ scores we must initially map each article to the corresponding
research field. It is also required to calculate the values of the hajν and hblµ metrics, which
indicate the reputation of the scientist who authored each paper and the prestige of the
journal which published it, respectively. In the sequel, we iterate over all publications

131
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

belonging to the research area fn and evaluate the desired scores by considering the number
of citations each of these publications acquired.

Equation 5.5 can be further enhanced by taking into consideration that an area could
be attractive for a starting scholar, if the papers mapped to it receive recent citations. This
reveals that the problems described in those works although they are old, still affect the
scientific community. The following scoring formula incorporates this intuitive criterion:

Sfn3,ν,µ =

|P fn |∑
i=1

hblµ
(∆Yi)δ

(|P pi
c |∑

x=1

1

(∆Yx)δ

|Api |∑
j=1

λ

h
aj
ν

)
(5.6)

Notice that the usage of the time interval in the denominator of the first sum of 5.5
and 5.6 denotes that we are mainly interested for research areas which attracted multiple
publications recently. In addition, the placement of the hajν metric in the denominator of the
second sum reveals our goal to reward the publications authored by new scientists. Finally,
the selection of placing hblµ in the numerator is justified by our intention to highlight the
articles that have been published in prestigious journals.

5.4.4.1 Topic-Sensitive extensions

Often, many scientists contribute knowledge to more than one scientific fields and pub-
lish projects in multiple adjacent areas of research. Therefore, it is possible for a scientist to
be distinguished in some research fields, whereas in others, the impact of his/her works to
be limited. For instance, a scholar may have authored broadly acceptable articles regarding
“Fiber optics”, but his/her publications that are relevant to “Performance Analysis” not to
be equally influential.

The existing metrics are not sensitive to this concept; they take into account all the pub-
lications of an author and provide a single value indicating the productivity and/or impact.
For this reason, we introduce here a set of Topic-Sensitive (TS) extensions, which can be
applied to all three previous approaches. The idea is to divide the works of a scientist ac-
cording to the research field they belong to and then compute multiple metric values, one
for each research field. The Topic Sensitive h-index (TSh-index) incorporates this idea:

Definition. A researcher aj has TSh-index haj1,fn for the research field fn, if haj1,fn of
his/her |P aj | articles that discuss a topic belonging to fn have received at least haj1,fn cita-
tions each and the rest (|P aj | − haj1,fn) articles have received no more than haj1,fn citations.

This metric calculates how broad the research work of a scientist is for a specific re-
search area and identifies the scientists who are experts and reputable in a particular field
of expertise.

132
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Now let us examine how the time-variants of the h-index can be extended by applying
the topic sensitivity approach. Regarding the contemporary h-index, we convert the scores
presented in [125] to the ones of equation 5.7:

Spi,fnc = γ
|P pi,fn
c |

(∆Yi)δ
(5.7)

That is, instead of evaluating all the articles of an author, we take into consideration
only the papers belonging to the area of research for which we desire to rank a scientist.
These scores Spi,fnc are used to phrase the definition of the contemporary TSh-index:

Definition. A researcher aj has contemporary TSh-index haj2,fn for the research field
fn, if haj2,fn of his/her |P aj | articles that discuss a topic belonging to fn, get a score of
Spi,fnc ≥ h

aj
2,fn

and the rest (|P aj | − haj2,fn) articles get a score of Spi,fnc < h
aj
2,fn

.
Similarly to the original contemporary h-index, this metric rewards the scholars who are

currently active, or the new scientists who have currently published only a small number
of influential works. The difference is that this procedure is performed on a per-topic level
and one scientist can be assigned different rankings according to the research of area that
we examine each time.

The trend h-index can be also extended by adopting an identical approach. Therefore,
the original scores of [125] are modified according to the equation 5.8:

Spi,fnt = γ

|P pi,fn
c |∑
n=1

1

(∆Yn)δ
(5.8)

Based on these modified scores Spi,fnt , the definition of the trend TSh-index follows:
Definition. A researcher aj has trend TSh-index haj3,fn for the research field fn, if haj3,fn

of his/her |P aj | articles that discuss a topic belonging to fn, get a score of Spi,fnt ≥ h
aj
3,fn

and the rest (|P aj | − haj3,fn) articles get a score of Spi,fnt < h
aj
3,fn

.

ν Symbol Meaning
1 h

aj
1 h-index

2 h
aj
2 contemporary h-index

3 h
aj
3 trend h-index

1, fn h
aj
1,fn

Topic-Sensitive h-index
2, fn h

aj
2,fn

contemporary TSh-index
3, fn h

aj
3,fn

trend TSh-index

Table 5.10: Summary of metrics for evaluating the work of a scientist

In contrast to the contemporary TSh-index which is sensitive to the age of each publica-
tion, this metric takes into consideration the year that each article received its citations. We

133
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

anticipate that this approach will rank higher the authors whose work in a specific scientific
field is considered pioneering (since it still attracts references) and could set a new line of
research.

In Table 5.10 we summarize all the metrics that we have previously discussed, including
the Topic-Sensitive extensions. The left column denotes the value that ν receives for each
case; the middle column contains the corresponding symbol for each metric, whereas in the
last column we record its respective name.

5.4.5 Experiments

To conduct a thorough experimental analysis of the proposed methods, it is required
that we construct or select an existing taxonomy of research fields. Furthermore, it is es-
sential that we obtain a dataset of research articles which must be large enough to provide
reliable results. For each paper of our dataset we need to acquire all the accompanying
metadata including the authors, the year of publication, its keywords, the publishing jour-
nal, its references and if supported, its classification into one or more research fields of our
employed taxonomy.

Apparently, a percentage of the articles of the dataset must support the given taxonomy.
This is necessary in order to train the model of our classification algorithm. To the best
of our knowledge, there are not any publicly available datasets satisfying all the aforemen-
tioned requirements. The strict policy applied by the digital libraries in order to protect
their records, prevents us from accessing their databases. Nonetheless, CiteSeerX7, a sci-
entific digital library and search engine, allows its users to access its records8 and provides
a harvest mechanism9 for retrieving the entire database and the full text of the articles.
The majority of these papers are related to the wide fields of Engineering, Mathematics
and Computer Science. From these papers we have removed some duplicate articles and
some which were not accompanied by the desired meta-data (i.e. authors, journal or date of
publication). At the end of this filtration process, our dataset was comprised of 1,429,398
distinct articles.

After the elimination of the problematic articles (i.e. duplicate entries and entries miss-
ing the required meta-data), we applied our machine learning classification algorithm in-
troduced in 5.5. According to this method, the category of each paper depends on the
category of its neighboring (i.e. citing) articles. Moreover, before applying the algorithm,
it is required that we determine the set of categories (the taxonomy) where the items of our

7http://citeseerx.ist.psu.edu/
8http://citeseerx.ist.psu.edu/about/metadata
9http://citeseerx.ist.psu.edu/oai2

134
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 5.5: Number of Authors vs Number of Research Areas

collection will be classified.
Regarding the taxonomy structure, we considered a number of existing propositions.

For instance, Google Scholar10, is a vertical search engine designed to facilitate searching
for articles and authors. It employs a classification model that categorizes the articles into
nine generic research fields. However, the search engine classifies articles belonging to
different research areas to the same category (i.e. papers regarding Mathematics and Com-
puter Science are all classified into the same category). Apart from this notification, we
firmly believe that these nine categories are not adequate to provide satisfactory informa-
tion. We need a more precise mechanism that divides the main research fields into multiple
levels of smaller research fields.

IEEE and ACM utilize a common taxonomy structure to categorize the articles they
publish. That structure if far more informative than that of Google Scholar’s, since it
divides the generic term “Computer Science” into a large number of levels and sub-levels
of research fields and furthermore, the classification is hierarchical. It consists of 11 first-
level research fields divided into 81 second-level and 276 third-level classes.

In our experiments we focus on research areas and articles which are related to the
Computer Science and we employ the aforementioned taxonomy structure. However, the
ideas and the concepts we describe here can also be used with other taxonomies with no
additional effort.

10http://scholar.google.com

135
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Author |Paj | h
aj

1
H. Garcia-Molina 328 46
J. Ullman 195 40
S. Shenker 170 40
P. Hanrahan 113 36
D. Estrin 142 36
C. Faloutsos 246 35
D. E. Culler 116 35
D. J. DeWitt 163 34
J. Widom 130 34
J. Han 290 34
C. Papadimitriou 253 34
W. B. Croft 201 34
R. Agrawal 147 34
T. Anderson 138 34
R. Fagin 114 34

Author h
aj

2
H. Garcia-Molina 51
Philip S. Yu 35
B. Forouzan 33
D. E. Culler 31
P. Hanrahan 31
S. Shenker 30
D. Estrin 30
T. Anderson 29
R. Motwani 29
M. Abadi 29
R. Kumar 28
M. D. Hill 27
W. B. Croft 27
J. Ullman 27
P. A. Bernstein 26

Author h
aj

3
S. Shenker 53
H. Garcia-Molina 51
A. K. Jain 47
J. Han 46
J. Widom 44
D. J. DeWitt 42
M. Stonebraker 42
M. D. Hill 42
J. Ullman 41
B. Shneiderman 41
R. Motwani 41
C. Faloutsos 39
P. Hanrahan 39
D. Estrin 39
T. Anderson 38

Table 5.11: Authors rankings (all research areas) according to h-index (left), contemporary
h-index (center), trend h-index (right).

5.4.5.1 Identifying Reputable Scientists

In this subsection we apply the current state-of-the-art approaches for ranking scientists,
as well as our proposed Topic-Sensitive extensions. Notice that all the metric values we
present in this work have been calculated by using our test dataset; for other collections
of papers these values can vary significantly. The articles of our dataset were authored by
1,209,316 scholars, a value which is translated to about 1.18 articles per author. However,
the vast majority of them (about 70%) has published only once.

Figure 5.5 illustrates the distribution of authors with respect to the number of research
areas their papers belong to. The vertical axis of this graph is in logarithmic scale. From
this representation we conclude that a significant percentage of 54.4% of the authors have
dealt with only one field. Only 18.9% of the authors of our dataset have published articles
in more than three areas of research.

Table 5.11 contains rankings of the top-15 scientists of our dataset, according to three
popular scientometrics. The h-index metric has been used for the left ranking, contem-
porary h-index determines the middle ranking, whereas trend h-index determines the right
ranking. The third column of these rankings represents the total number of publications of
a particular author, whereas the last column indicates the value the metric receives.

The scientist with the widest impact according to h-index is H. Garcia-Molina with
328 publications and haj1 = 46, followed by J. Ullman (195 papers and haj1 = 40) and S.

Shenker (170 papers and haj1 =40). Regarding the ranking according to the contemporary
h-index, H. Garcia-Molina is again the top-scientist since his works not only are numerous
and receive many citations, but also are recent. Recall that this metric is sensitive to the age
of each publication and the score each article receives decays as time elapses. However,

136
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Language Classifications
Author |Paj

fn
| h

aj

1,fn
C. Chambers 31 20
G. L. Steele, Jr 60 19
S. P. Jones 73 16
P. Wadler 35 16
M. Felleisen 43 15
K. Kennedy 39 14
N. Wirth 39 14
D. Ungar 35 14
B. Liskov 35 13
M. Wand 25 12

Network Architecture and Design
Author |Paj

fn
| h

aj

1,fn
D. Estrin 86 27
H.Balakrishnan 60 24
S. Shenker 67 22
D. E. Culler 42 20
N. H. Vaidya 106 20
Lixia Zhang 63 19
F. Floyd 30 19
I. F. Akyildiz 83 17
R. Morris 32 17
J. A. Stankovic 69 16

Information Search and Retrieval
Author |Paj

fn
| h

aj

1,fn
W. B. Croft 153 33
Cheng Xiang Zhai 83 19
G. Salton 123 18
C. Buckley 57 18
J. Callan 70 18
Wei-Ying Ma 112 18
H. Garcia-Molina 61 17
S. T. Dumais 61 17
S. E. Robertson 58 16
S. Lawrence 27 16

Database Applications
Author |Paj

fn
| h

aj

1,fn
Jiawei Han 192 34
Philip Yu 138 19
Jian Pei 96 18
R. Agrawal 32 17
M. J. Zaki 90 17
H.-P. Kriegel 96 16
E. Keogh 53 16
R. Srikant 22 14
R. T. Ng 44 14
Ke Wang 53 13

Table 5.12: Authors ranking according to TSh-index for various research areas.

J. Ullman, the second most reputable scientist according to h-index, is ranked in the 14th

position and S. Shenker is ranked sixth. The second best performing scientist according to
h
aj
2 is Philip S. Yu, who does not appear in the top-15 h-index based ranking.

In contrast to the contemporary h-index, Trend h-index haj3 is sensitive to the age of each
citation. The top-level scientist according to it is S. Shenker who is apparently the author
whose works are still being referenced by the recent publications. H. Garcia-Molina is
ranked second in this occasion, whereas J. Ullman is located in the ninth position of the
Table.

Now let us study the rankings constructed by our proposed Topic-Sensitive extensions.
Recall that these metrics are not applied in the entire set of an author’s publications, but
it is required that we isolate the papers which are mapped to a specific field of research.
In Table 5.12 we present the ten most highly-ranked scholars according to TSh-index, for
four different research areas: Language Classification, Network Architecture and Design,
Information Search and Retrieval and Database Applications. The second column of each
ranking denotes the number of publications which are both authored by a specific scientist
and are mapped to the examined research field. The third column records the value that the
applied metric receives.

We shall discuss the Information Search and Retrieval research field, however, the con-
clusions we extract from this discussion can be generalized and are valid for the other fields
too. The author who is ranked first in that particular field is W. B. Croft who has authored

137
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Language Classifications
Author |Paj

fn
| h

aj

3,fn
C. Chambers 31 17
P. Wadler 35 14
G. L. Steele, Jr 60 13
M. Felleisen 43 13
S. P. Jones 73 12
Krishnamurthi 26 12
D. Ungar 35 11
D. Grove 22 11
B. G. Ryder 32 11
D. F. Bacon 25 11

Network Architecture and Design
Author |Paj

fn
| h

aj

3,fn
D. Estrin 86 30
H. Balakrishnan 60 24
D. E. Culler 42 23
N. H. Vaidya 106 22
S. Shenker 67 21
Lixia Zhang 63 20
R. Morris 32 20
I. F. Akyildiz 83 18
M. Srivastava 64 18
R. Govindan 48 18

Information Search and Retrieval
Author |Paj

fn
| h

aj

3,fn
W. B. Croft 153 28
Wei-Ying Ma 112 23
Cheng Xiang Zhai 83 21
S. T. Dumais 61 20
J. Callan 70 19
S. E. Robertson 58 18
H. Garcia-Molina 61 17
C. Buckley 57 17
A. Spink 76 16
Jiawei Han 44 16

Database Applications
Author |Paj

fn
| h

aj

3,fn
Jiawei Han 192 34
Philip Yu 138 22
Jian Pei 96 21
M. J. Zaki 90 19
R. Agrawal 32 17
C. Faloutsos 76 17
G. Karypis 32 16
E. Keogh 53 16
H.-P. Kriegel 96 15
Ke Wang 53 14

Table 5.13: Authors ranking according to Trend TSh-index for various research areas.

153 relevant articles and has haj1,fn = 33. Notice that this author is ranked 12th according
to the plain h-index metric, and has authored in total 201 works. Nonetheless, when TSh-
index is applied, only 153 of these works are considered. A similar notification can also be
made for H. Garcia-Molina who has authored in total 328 articles, but only 61 of them are
related to the field of Information Search and Retrieval.

Table 5.13 contains author rankings for the aforementioned areas of research according
to the Trend TSh-index. This metric rewards scholars for a particular research field, if their
works continue to be cited until presently. W.B. Croft is still on the top of the list for the
Information Search and Retrieval research field, However, Wei-Ying Ma has climbed in the
second place (he was sixth according to TSh-index), whereas G. Salton is no longer among
the top-10 authors. This observation leads to the conclusion that the works of the latter
author do not receive many recent citations; potentially the problems discussed in those
works have been addressed, or the topics are outdated.

5.4.5.2 Identifying Prestigious Journals

We continue our processing by attempting to detect the prestigious journals, since this
information is valuable for identifying the attractive research fields. Recall that if a large
number of articles associated with a particular scientific area is published in reputable jour-
nals, then this area becomes attractive for other scholars.

Due to limited space we focus primarily on the h-index for journals and the impact

138
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Journal Name h
bl
1 |P bl

c |
Communications of the ACM 10741 122
International Conference on Computer Graphics and Interactive Technology 8812 111
International Conference on Management of Data 2632 92
IEEE Trans. on Pat. Analysis and Machine Intelligence 3619 90
Journal of the ACM 2752 85
Applications, Technologies, Architectures, and Protocols for Computer Communica-
tion

1377 76

Conference on Human Factors in Computing Systems 7557 76
Artificial Intelligence 1987 73
ACM Computing Surveys 1300 72
IEEE Transactions on Software Engineering 3043 71
Very Large Data Bases 2406 70
International Symposium on Computer Architecture 1491 69
ACM Conference on Research and Development in Information Retrieval 2252 68
Symposium on Principles of Programming Languages 1188 67
Conference on Programming Language Design and Implementation 772 66

Table 5.14: Journals Ranking according to h-index

factor. In Table 5.14 we present the ranking of the journals we encountered in our dataset
according to this metric. As previously, the rankings presented here should not be treated
as representations of the value of a journal; it is possible that multiple papers from a journal
are missing and the same could also be valid for their citations.

Table 5.15 illustrates the ranking of the journals for 2009 according to the impact fac-
tor. Notice that the only journal which is common in these two rankings is Applications,

Technologies, Architectures, and Protocols for Computer Communication. This is an in-
dication that a per-year journal evaluation leads to significantly different results than an
all-year evaluation process.

Journal Name h
bl
6,2009 |P bl

c |
ACM Symposium on Operating Systems Principles 7.29 175
Web Search and Web Data Mining 5.27 137
ACM Computing Surveys (CSUR) 4.71 146
International Symposium on Computer Architecture 4.46 370
Proceedings of the 6th USENIX Conference on File and Storage Technologies 3.90 82
Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation

3.80 114

Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation

3.67 588

Computational Linguistics 3.41 218
Internet Measurement Conference 3.38 243
Conference on Programming Language Design and Implementation 3.33 276

Table 5.15: Journals Ranking for 2009 according to impact factor

5.4.5.3 Popular Research Areas

In this subsection we are based on our dataset to present the research areas which are
the most popular. Recall that a research field is considered as popular in case many relevant

139
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 5.6: Popular Research Fields in the last 3 years by number of published papers (left)
number of incoming citations (center), and number of distinct authors (right)

articles are published and these articles have significant impact on the scientific community.
Finally, the number of authors dealing with its problems is another indication of popularity.

Figure 5.6 illustrates the 35 most popular research fields in the last three years. The left
part of the diagram depicts the number of relevant articles for each area, the middle part
determines their popularity according to the number of incoming citations, whereas the
right part reveals the number of distinct authors addressing problems which are relevant to
the respective area.

Let us study the data displayed in these diagrams. The area which attracted the most
publications in all three years is Network Architecture and Design; 12,992 articles of 2009
were mapped to this category. The second most popular area for 2008 and 2009 is Model

Development. However, the second most popular field of research in 2007 was Design

Methodology.
Regarding the number of incoming references, Network Architecture and Design is

140
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

again the most popular field for 2009. Nevertheless, the area of Non-numerical algorithms

and problems occupied the first position in 2007 and 2008. Other top-ranked research fields
according to the number of in-links is Learning and Information Search and Retrieval.
Although these fields had fewer papers than Model Development and Design Methodology,
these papers attracted much more citations. This indicates that these papers affected more
scientists.

The third part which determines the popularity of a research field according to the
equation 5.3 is the number of authors publishing articles that are relevant to this particular
field. The right diagram of Figure 5.6 indicates that Network Architecture and Design was
the most popular area for 2009. However, in the previous two years the field of research
of Language Classifications was attracting more scientists. Non-numerical algorithms and

problems, Model Development, and Design Methodology are the next three highest ranked
scientific topics.

In Figure 5.7 we illustrate the value of the Sfn1,Y score for the 20 most popular research
areas of 2007, 2008, and 2009. Network Architecture and Design has been the most popular
topic of research during 2008 and 2009. On the other hand, Non-numerical algorithms

and Problems and Language Classifications were the most widespread scientific areas of
2007. This notification leads to the conclusion that in the past two years, there has been
a significant increase in the research conducted towards Network Architecture and Design;
this increase has rendered this area as the most popular in 2008 and 2009. The top-5
popularity ranking of Figure 5.7 also includes Design Methodology and Control Methods

and Search.
Finally, the reader should notice that although Learning and Information Search and

Retrieval are the third and fourth most cited research areas (middle diagram of Figure 5.6),
they are not among the most popular. This is a strong indication that popularity is a generic
metric which keeps plenty of useful information hidden.

5.4.5.4 Attractive Research Areas for New Scientists

In this subsection we present the research areas which according to the discussion of
subsection 5.4.4 are the most attractive for new scientists. In the following discussion we
attempt to experimentally verify whether the popular research areas are all suitable for new
scientists. In addition, we shall try to identify other topics which although they are not so
popular as others, they could prove themselves promising for this class of scientists.

Recall that the scores of the equations 5.5 and 5.6 depend on both hajν and hblµ metrics
which evaluate the work of an author aj and the prestige of a journal bl respectively. How-
ever, since the number of possible combinations of these two metrics is quite large, we only

141
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 5.7: The 20 most popular research fields according to Sfn1,Y in the 3 last years

provide results for some representative cases.
Initially we attempt to identify the research fields which are attractive for new scientists

according to Sfn2,ν,µ. In Tables 5.16 and 5.17 we record four different such rankings for vari-
ous combinations of author and journal evaluation metrics. The left ranking of Table 5.16 is
produced by using h-index for both authors and journals (ν = 1, µ = 1), whereas the right
ranking is constructed by employing the trend h-index for authors and the plain h-index for
journals (ν = 3, µ = 1). Regarding the lists of Table 5.17, the left one shows the 15 most
attractive research fields in case the Topic-Sensitive h-index is used to evaluate the work
of a researcher and plain h-index is used to determine the prestige of a journal (ν = 1, fn

and µ = 1) whereas the right ranking is generated by selecting the Topic-Sensitive Trend
h-index for authors and the plain h-index for journals (ν = 3, fn and µ = 1).

According to the left ranking of Table 5.16, the area which is the most attractive for
new scientists is Non-numerical Algorithms and Problems, followed by Network Architec-

ture and Design. Recall from Figure 5.7 that the latter is most popular than the former,
however, new scientists will not find it equally attractive. Surprisingly, the third most at-
tractive research field for new scholars is User Interfaces, a topic which is ranked eighth
in the corresponding popularity list. Another field of research which is attractive for new

142
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Research Field Sfn
2,1,1

Non-Num. Algorithms-Problems 75,369
Network Architecture-Design 53,635
User Interfaces 47,393
Information Search-Retrieval 43,032
Design Methodology 42,164
Learning 40,067
Natural Language Processing 37,401
3-D Graphics and Realism 34,837
Systems 33,416
Graph Theory 32,445
Scene Analysis 31,846
Applications 31,832
Prob. Solving-Cont. Methods 31,175
Deduction-Theorem Proving 30,262
Comp. Geometry-Obj. Modeling 29,279

Research Field Sfn
2,3,1

Non-Num. Algorithms-Problems 78,626
Network Architecture-Design 52,719
User Interfaces 47,950
Information Search-Retrieval 43,187
Natural Language Processing 40,186
Design Methodology 39,907
Learning 38,695
Systems 37,427
3-D Graphics and Realism 35,907
Graph Theory 32,853
Language Classifications 32,480
Applications 31,178
Prob. Solving-Cont. Methods 30,742
Comp. Geometry-Obj. Modeling 30,491
Scene Analysis 30,475

Table 5.16: Attractive research fields for new scientists according to Sfn2,ν,µ scores, for vari-
ous author and journal evaluation metrics. Left: ν = 1, µ = 1. Right: ν = 3,
µ = 1.

Research Field Sfn
2,1,fn,1

Non-Num. Algorithms-Problems 151,373
Network Architecture-Design 89,276
Information Search-Retrieval 89,019
Graph Theory 84,130
Design Methodology 81,356
User Interfaces 79,736
Learning 76,624
Prob. Solving-Cont. Methods 71,169
Systems 64,558
Applications 64,424
Modes of Computation 60,279
Language Classifications 58,116
Systems and Software 58,009
User/Machine Systems 57,943
3-D Graphics and Realism 57,565

Research Field Sfn
2,3,fn,1

Non-Num. Algorithms-Problems 155,311
Network Architecture-Design 87,913
Information Search-Retrieval 86,720
Graph Theory 84,959
User Interfaces 78,688
Design Methodology 77,521
Learning 75,659
Prob. Solving-Cont. Methods 70,929
Systems 70,487
Applications 64,971
Language Classifications 64,833
Modes of Computation 64,618
3-D Graphics and Realism 59,076
User/Machine Systems 58,560
Deduction-Theorem Proving 57,831

Table 5.17: Attractive research fields for new scientists according to Sfn2,ν,µ scores, for var-
ious author and journal evaluation metrics. Left: ν = 1, fn, µ = 1. Right:
ν = 3, fn, µ = 1.

scientists but not so popular is Information Search and Retrieval.
Additionally, there are several popular research fields which are totally unappropriate

for new scientists. The most representative example of such cases is Languages Classifi-

cations. This topic is the third most popular, however, it is not ranked among the 15 most
attractive research fields. Apparently, the problems related to this research area are difficult
to confront or even understand and they are not suitable for starters.

The data recorded in this Table leads to two important conclusions: At first, popular-
ity does not coincide with attractiveness for new scientists. There are popular research
fields which are not attractive and they can be characterized as “hostile” for starting scien-
tists, such as Language Classifications. On the other hand, there are research fields which

143
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Research Field Sfn
3,1,1

Non-Num. Algorithms-Problems 88,847
Network Architecture-Design 68,286
Design Methodology 66,094
User Interfaces 58,970
Learning 55,308
Information Search-Retrieval 55,142
Scene Analysis 45,804
Applications 43,277
Deduction-Theorem Proving 42,339
Prob. Solving-Cont. Methods 41,713
Natural Language Processing 41,603
Graph Theory 39,058
Numerical Algorithms-Problems 34,354
3-D Graphics and Realism 34,133
Optimization 31,966

Research Field Sfn
3,3,1

Non-Num. Algorithms-Problems 87,722
Network Architecture-Design 64,577
Design Methodology 60,868
User Interfaces 57,081
Information Search-Retrieval 52,865
Learning 51,771
Scene Analysis 42,763
Natural Language Processing 41,847
Applications 40,960
Deduction-Theorem Proving 39,191
Prob. Solving-Cont. Methods 39,036
Graph Theory 37,704
3-D Graphics and Realism 33,769
Numerical Algorithms-Problems 31,812
Systems 31,353

Table 5.18: Attractive research fields for new scientists according to Sfn3,ν,µ scores, for vari-
ous author and journal evaluation metrics. Left: ν = 1, µ = 1. Right: ν = 3,
µ = 1.

although unpopular, they provide excellent opportunities at the scientists in question. Ex-
amples of such cases are User Interfaces and Information Search and Retrieval.

The second ranking of Table 5.16 employs the trend h-index for evaluating the work
of a researcher. Recall that this metric is sensitive to age of the incoming citations of an
article. Compared to the previous case the top-4 entries are left unchanged, however, in the
fifth position we encounter another interesting case. Natural Language Processing which
is not among the twenty most popular research fields, is quite attractive for new scientists.

Regarding the rankings of Table 5.17, the Topic-Sensitive extensions of h-index and
trend h-index are employed for authors. In these cases, to compute the value of Sfn2 , we
need to store for each author and each research area the value the corresponding metric.
That is, an author does not perform equally at every scientific topic; this allows us to iden-
tify the individuals who are possibly very experienced, but they are considered as starters
for a particular research area. The two most attractive research areas for new scientists
are the same once again, whereas Information Search and Retrieval is found in the third
position. The usage of TSh-index in the Sfn2 highlights Graph Theory and considers is as
the fourth most suitable scientific toping for new scholars.

Tables 5.18 and 5.19 contain rankings of the most attractive fields of research according
to the Sfn3,ν,µ score. The left list of Table 5.18 is constructed by using the plain h-index
metric for both authors and journals. Compared to the left list of Table 5.16 the ordering
of the topics is slightly different. Therefore, Non-numerical Algorithms and Problems and
Network Architecture and Design are again the most appropriate research fields for new
scientists, however in the third position User Interfaces is replaced by Design Methodology.
The usage of this metric highlights two significant points: the eighth position of Three

144
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Research Field Sfn
3,1,fn,1

Non-Num. Algorithms-Problems 174,918
Design Methodology 124,155
Information Search-Retrieval 111,011
Network Architecture-Design 108,845
Learning 103,935
User Interfaces 96,847
Graph Theory 93,240
Prob. Solving-Cont. Methods 87,801
Applications 86,004
Systems and Software 74,004
Scene Analysis 73,129
Deduction-Theorem Proving 72,581
Numerical Algorithms-Problems 70,121
Optimization 69,350
Models 68,961

Research Field Sfn
3,3,fn,1

Non-Num. Algorithms-Problems 174,565
Design Methodology 116,441
Information Search-Retrieval 105,393
Network Architecture-Design 103,921
Learning 100,244
User Interfaces 93,061
Graph Theory 92,073
Prob. Solving-Cont. Methods 85,573
Applications 85,142
Systems and Software 70,879
Deduction-Theorem Proving 70,229
Scene Analysis 69,260
Numerical Algorithms-Problems 67,792
Models 66,540
Optimization 65,760

Table 5.19: Attractive research fields for new scientists according to Sfn3,ν,µ scores, for var-
ious author and journal evaluation metrics. Left: ν = 1, fn, µ = 1. Right:
ν = 3, fn, µ = 1.

Dimensional Graphics and Realism and the ninth place of the Systems research fields. Both
of them are not among the twenty most popular areas, however they can be considered at
least promising for new scholars.

Now let us summarize the results we presented in this subsection. In almost every
ranking Non-numerical Algorithms and Problems and Network Architecture and Design

are considered as the most attractive research fields for starting researchers. Other topics
also include User Interfaces, Information Search and Retrieval and Graph Theory. The
comparison of these results to the popularity ranking of Figure 5.7, leads to the conclusion
that popularity and attractiveness do not coincide; there are popular research fields which
are not suitable for starters (such as Language Classifications), whereas some others, not
so popular, are ideal for them.

5.5 Research articles classification

The digital libraries and academic search engines have always been a precious tool for
the researchers. Their main functionality is focused on providing search capabilities and
further information regarding scientific articles, citations, journals and authors. Multiple
such services are in operation on the Web; examples include the ACM Digital Library11,
Google Scholar12, Microsoft Academic13, and others.

The problem of the automatic classification of research articles is of remarkable impor-

11http://dl.acm.org/
12http://scholar.google.com/
13http://academic.research.microsoft.com/

145
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

tance for these services, since it enables increased functionality and improved performance.
For instance, a robust classification strategy allows the user to perform searches by focus-
ing on only a specific portion of the indexed documents, thus increasing both effectiveness
and efficiency. Additional potential benefits include similar documents recommendations,
collaborative filtering, query expansion facilities, expert identification, and so on.

Several methods have been proposed to address the issue of identifying the research
field a scientific article belongs to. These methods include keyword extraction algorithms
which attempt to identify repeated textual patterns and extract the most representative key-
words from the article. In the sequel, they employ traditional classification approaches
such as k-nearest neighborhood (k-NN) to identify the research field that best describes the
content of the article. Another family of methods adopt citation analysis algorithms which
study several citation properties, such as the phenomenon of two or more papers being cited
together by multiple articles. These methods have two significant drawbacks: initially, it
is not always possible to construct a complete graph of interlinking papers because some
nodes and edges are simply not available. At second, a reference to an article does not
necessarily reveal thematic affinity.

In this section we attempt to address these issues by proposing a new algorithm for
classifying research papers. More specifically, we introduce a model which has its origins
in the traditional k-NN approach however, it also takes into consideration several aspects
regarding the particular problem which we examine. These aspects include the authors
history, co-authorship information, selection of keywords, and the previous publications of
a journal. Our classifier is experimentally compared against two state-of-the-art generic
text classification methods, namely support vector machines and AdaBoost.MH. We show
that the inclusion of the aforementioned parameters leads to improved classification perfor-
mance by roughly 6%.

5.5.1 Related work

Document classification is a well-established data mining problem and the issue of
scientific papers classification is a specialization of this problem posing its own challenges.

The methodologies encountered in the literature can be divided into two wide cate-
gories: link-based and text-based categorization. The first category includes works which
are mainly based on the document linking and the information extracted out them. For in-
stance, in [59] the authors introduce a statistical framework for modeling link distributions
and based on that knowledge, they classify a document according to the category its links
belong to. Link-based classification is particularly essential for categorizing graph nodes
(i.e. labeling the nodes of a graph, [25], or networked data classification[90]). Furthermore,

146
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

similar approaches can be also applied on the Web, where the document interlinking can be
used for a variety of purposes. An important survey of such methods is provided in [110].

On the other hand, machine learning (ML) text categorization has a gained substan-
tial attention by the data miners; A complete survey on the most effective ML text cate-
gorization approaches is provided in [123]. Moreover, [152] and [151] provide detailed
evaluations of the primary statistical and machine learning approaches to text categoriza-
tion. Furthermore, Joachims employed support vector machines (SVM) for the same task
[73], whereas [158] introduced AdaBoost.MH, a multi-class expansion of the traditional
two-class AdaBoost algorithm.

Nevertheless, none of the aforementioned approaches take into consideration problem-
specific information such as the authors of an article, co-authorship and the publishing
journal. In this paper we introduce a new method which is based not only on the paper’s
keywords, but also in the previous activity of both the contributing authors and the publish-
ing journal.

5.5.2 Classification algorithm

Our analysis begins by introducing a number of fundamental sets that will assist us
in establishing a baseline for our algorithm. Initially we define P as the set containing
all publications, and J as another set including the journals14 where the items of P have
been published. Note that since each paper is published in exactly one journal, each entry
p ∈ P is mapped to a single element j ∈ J . Moreover, we define A as the set including
all the involved authors, and C which consists of the research fields (also mentioned as
categories, or labels) where the papers of P belong to. In other words, C represents the
given taxonomy structure.

A large number of publications contain keywords which are used by the authors to ex-
plicitly represent the content of their work. The algorithm we present here exploits these
keywords and for this reason, we define a set K which contains all the keywords encoun-
tered in all papers of P . In the same set K we also include the keywords extracted from
the titles of the articles, since these words represent the documents contents as well.

In addition, we introduce the subset Kp ⊂ K containing all the keywords of a single
article p, the subset P k ⊂ P which stores all the publications including the keyword k,
and the subset P k,c ⊂ P k which contains the publications which both include k, and are
mapped to the field c. In Table 5.20 we summarize all the above notifications.

14In this work we use the word journal to collectively refer to journals, magazines, books, and conference
proceedings.

147
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Symbol Meaning
P The set containing all papers
A The set containing all authors
C The set containing all research areas (taxonomy)
J The set containing all journals
K The set containing all keywords
Ap The authors who created p
Cp The research areas that p belongs to
Kp The keywords included in p
P c The papers belonging to c
P a The papers authored by a
P a,c The papers authored by a and belong to c
P j The papers published in j
P j,c The papers published in j and belong to c
P k The papers containing k
P k,c The papers containing k and belong to c
T The training set

Table 5.20: Summary

5.5.2.1 Model Training

In this phase we process the training set T and we construct a classification model
with respect to the taxonomy C. This procedure includes three stages where we correlate
keywords, authors and journals to one or more labels from C. We also record several
frequency values which will be used later by the classification algorithm to effectively
determine the labels of the unclassified papers.

The majority of the research articles includes a set of keywords placed between the
abstract and the first section. Moreover, the words occurring in the title are also considered
representatives of the document’s content and can also be used in our model. Now consider
a paper p ∈ P drawn from the training set T which includes the keywords Kp and is
categorized into one or more research fields Cp ⊂ C. Our objective is to create correlations
between each keyword of p and each of the research fields of Cp. Since a keyword k may
appear in multiple papers belonging to different research areas, we adopt a strategy similar
to the k-NN; that is, we examine how frequently this keyword has been mapped to each
field c. This is achieved by the construction of (k, c) pairs which we store in a relevance

description vector K [54]. We also compute two frequency values |P k| and |P k,c|: The
former represents the number of papers including the keyword k, whereas the latter signifies
the number of papers which both include k and are mapped to the field c.

Algorithm 10 shows the steps required to train K. For each paper p of the training set
we initially identify all the research fields Cp and the keywords Kp. For each research field

148
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

c ∈ Cp we create a (k, c) pair and we search for it within K. If the search is not successful,
we insert the pair and we set |P k,c| = 1; otherwise we merely increase |P k,c| by one. This
procedure leads to the vectorK, which contains all the keywords of the papers accompanied
by a global frequency value |P k| and a list of the corresponding research fields.

The previous activity of the authors who contribute to a research paper can also provide
an indication of the research field the paper discusses. Learning the areas of expertise of a
scholar is important since it can be exploited to classify his/her unlabeled articles. However,
a scientist usually conducts research in multiple areas of science. For instance, consider an
author X who has published articles in the areas of databases and data mining and for
the production of these articles has co-operated with Y and Z respectively. Intuitively, an
article authored by both X and Z should be labeled as a data mining paper.

To capture these intuitions we create a vectorA which for each author a accommodates
a list of all the encountered co-authors a′ (AA list). Each co-author entry is accompanied
by an array with the research fields of the articles authored by both a and a′. Hence, in
case a and a′ are encountered again in an unlabeled article, we retrieve the research fields
of their common articles from the aforementioned list. Furthermore, for each author a we
also create one more list (AP list) which stores all the research fields of all the papers of a.
This record will be used to classify articles authored by multiple authors, but no previous
co-authorship information between a and the co-authors is available.

Similarly to the previous stage, each research field is accompanied by two frequency
values |P a| and |P a,c|. The former represents the number of publications of a, whereas
the latter denotes the total number of publications of a which are mapped to the research
area c. The steps 14–30 of Algorithm 10 describe the construction process of A. For each
author a, the correlations (a, c) are all inserted in the AP list (steps 18–23). In the sequel,
we iterate through each co-author an we create (a, a′, c) tuples which correlate the author,
his/her co-authors, and each field (steps 24–30).

Finally, the publishing journal can provide an indication about the research area that
a paper belongs to. This is due to the fact that journals are also categorized and do not
publish articles which deal subjects that are foreign to their interest area. For instance, a
journal which is focused on Data Engineering would not publish a paper which discusses
a problem related to Systems Security.

The aforementioned notifications lead to the enhancement of our trainer with its third
part (Algorithm 10, steps 31–39). Here we identify the research areas that the majority
of the papers published in a journal j belong to. Compared to the other two stages this
one is slightly simplified because a paper is only published in one journal and hence, we
do not have to iterate through multiple journals. The outcome of this process is the J

149
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Algorithm 10 Model training
1. initialize K, A, J
2. for each paper p ∈ T
3. Cp ← ExtractResearchAreas(p)

Phase 1: Processing of the keywords
4. Kp ← ExtractKeywords(p)
5. for each keyword k ∈ Kp

6. |P k| ← |P k|+ 1
7. for each research area c ∈ Cp
8. Create pair (k, c)
9. if K.search(k, c) =false
10. K.insert(k, c)
11. |P k,c| ← 1
12. else
13. |P k,c| ← |P k,c|+ 1

Phase 2: Processing of the authors
14. Ap ← ExtractAuthors(p)
15. for each author a ∈ Ap
16. |P a| ← |P a|+ 1
17. for each research area c ∈ Cp
18. Create pair (a, c)
19. if A.AP .search(a, c) =false
20. A.AP .insert(a, c)
21. |P a,cAP | ← 1
22. else
23. |P a,cAP | ← |P

a,c
AP |+ 1

24. for each author a′ ∈ Ap
25. Create tuple (a, a′, c)
26. if A.AA.search(a, a′, c) =false
27. A.AA.insert(a, a′, c)
28. |P a,cAA| ← 1
29. else
30. |P a,cAA| ← |P a,c|+ 1

Phase 3: Processing of the journals
31. j ← ExtractJournal(p)
32. |P j | ← |P j |+ 1
33. for each research area c ∈ Cp
34. Create pair (j, c)
35. if J .search(j, c) =false
36. J .insert(j, c)
37. |P j,c| ← 1
38. else
39. |P j,c| ← |P j,c|+ 1

vector, which contains for each journal, a list of research fields accompanied by their cor-
responding frequency values |P j,c|. These values indicate how many times a journal j has

150
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

published papers belonging to c.

5.5.2.2 Articles Classification

We can now employ the trained model to classify an unlabeled article p ∈ P . Sim-
ilarly to the training phase, classification is also conducted in three phases. During each
phase, the involved research fields are assigned scores according to their correlation with
the keywords, authors, and journal of p. In Algorithm 11 we describe these procedures.

In the first phase (steps 2–6), we initially extract the paper’s keywords Kp and for each
retrieved keyword k we perform a search in the relevance description vector K. In case
this search is successful, we retrieve the list of the associated research areas along with the
respective |P k,c| values. Then, for each research field cwe compute a score Sck according to
a scoring function Sck = Fk(P

k, P k,c). This function can implement simple schemes such
as the traditional idf (i.e. |P k,c|/|P k|), or more complex ones. The steps 2–6 of Algorithm
11 illustrate the exact process.

Classification is further enhanced by taking into account the information regarding the
authors of p. However, in this case the process is more complex, since we must consider the
co-authorship data and retrieve the correct record from the vector A. Initially, we identify
the set of authors Ap of p. In the sequel, we search among the AA co-authorship records
and in case a correlation between two authors is found, each corresponding research field
is assigned a score Sca = Fa(P

a
AA, P

a,c
AA) (steps 10–14). If such a correlation is not present

in A, we search in the AP list and we use the associated AP scores (steps 15–18).
Moreover, our classifier takes into consideration the research fields of specialization

of a journal. Hence, in case the publishing journal j of an unlabeled paper p has been
encountered during the training phase, we can exploit the correlated research fields (stored
within the vector J) to classify p. The third part of Algorithm 11 describes our approach.
After the identification of the journal j of p, we perform a look-up in J . In case searching
is successful, we retrieve the research fields that the published articles of j belong to, along
with their respective frequency values. For each of these fields we calculate a score given
by a third function Scj = Fj(P

j, P j,c).
The total score assigned to a research field c is a linear combination of the three afore-

mentioned scores:

Sc = wkSck + waSca + wjScj (5.9)

where wk, wa, and wj are constant parameters used to regulate the contribution of the
keywords, the authors, and the publishing journal of an article. These three constants are

151
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Algorithm 11 Paper Classification
Classify(pi, F,K,A,J)

1. for each unlabeled article p
Phase 1: Keyword-based classification

2. Kp ← ExtractKeywords(p)
3. for each keyword k ∈ Kp

4. if k ∈ K
5. for each (k, c) ∈ K
6. Sck ← Fk(P

k, P k,c)

Phase 2: Author-based classification
7. Ap ← ExtractAuthors(p)
8. for each author a ∈ Ap
9. coauthor ← false
10. for each author a′ ∈ Ap
11. if (a, a′) ∈ A.AA
12. coauthor ← true
13. for each (a, a′, c) ∈ A.AA
14. Sca ← Fa(P

a
AA, P

a,c
AA)

15. if coauthor = false
16. if a ∈ A.AP
17. for each (a, c) ∈ A.AP
18. Sca ← Fa(P

a
AP , P

a,c
AP)

Phase 3: Journal-based classification
19. j ← ExtractJournal(p)
20. if j ∈ J
21. for each (j, c) ∈ J
22. Scj ← Fj(P

j , P j,c)

tuned with the aim of satisfying the following limitation:

wk + wa + wj = 1 (5.10)

To identify the research field a paper belongs to, we merely have to sort the Sc scores
in descending order and select the first entry (the one received the highest score, max(S)).
In this way, each article is mapped to only one research field. We can raise this limitation
and classify an article into multiple research areas, by introducing a coefficient ε ∈ (0, 1].
Then, each paper is assigned additional research areas if the scores of these areas satisfy
the following condition:

Sc ≥ ε max(S) (5.11)

The value of ε determines how strict this condition can become. For ε = 1 we tolerate
no fields with scores lower than the maximum and an article is mapped to the research area

152
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

(or areas) which received the highest score.

5.5.3 Experimental evaluation

In this section we measure the effectiveness of our proposed algorithm. Initially we
describe the employed dataset and the taxonomy structure, and in the sequel we present the
results of our performance measurements.

5.5.3.1 Dataset and taxonomy characteristics

To experimentally attest the effectiveness of our classification approach it is required
that we firstly determine the set of labels which will be used by the classifier (i.e. the
taxonomy), and a dataset comprised of an adequate number of articles. In addition, a
subset of these articles must support the selected taxonomy, that is, the items of this subset
must be mapped to at least one of the labels of the taxonomy.

The strict data protection policies applied by the digital libraries renders the collection
of bibliometric data a rather challenging task. Since the crawling of such repositories is
forbidden, we are limited in using only open access document collections. The largest
among these collections is the CiteSeerX [33] dataset, an open repository comprised of
approximately 1.8 million scientific articles. These articles are related to the wider fields of
computer and communications engineering, and a significant portion of them are mapped
to the local taxonomies employed by their publishers. Of course, each publisher applies its
own taxonomy structure; consequently, the first issue we need to address is to determine a
unique taxonomy which will be used to classify the rest of the articles.

Since our primary goal is to build a training set comprised of largest possible number
of articles, we simply scanned our dataset to identify the organization which published
the most documents. Our analysis proved that the 63% of the articles of the CiteSeerX
dataset has been published by either ACM or IEEE. These publishers employ a common
categorization policy; they classify their published articles into a taxonomy15 of research
fields which mainly includes areas and sub-areas from the Computer Science, Engineering,
Communications, and Mathematics. The structure consists of three levels of categorization,
i.e. 11 first-level research fields divided into 81 second-level and 276 third-level classes.
To achieve extensive and unbiased measurements of the effectiveness of our algorithm, we
employed each level as a different taxonomy and we gave the names C11, C81 and C276.

After the selection of the taxonomy, the training set is immediately identified. All
1,159,634 articles which are mapped to one ore more labels of the ACM/IEEE taxonomy,

15http://www.acm.org/about/class/ccs98-html

153
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

|T | C {wk, wa, wj} Acc. SVM Ada
C11 {0.3, 0.1, 0.6} 94.0% 88.2% 88.8%

10,000 C81 {0.2, 0.1, 0.7} 87.5% 82.9% 83.4%
C276 {0.2, 0.1, 0.7} 80.7% 78.4% 80.1%
C11 {0.3, 0.2, 0.5} 95.1% 89.6% -

100,000 C81 {0.3, 0.1, 0.6} 88.2% 84.3% -
C276 {0.2, 0.2, 0.6} 80.9% 79.0% -
C11 {0.3, 0.2, 0.5} 95.9% 94.1% -

1,159,634 C81 {0.3, 0.2, 0.5} 89.0% 87.9% -
C276 {0.3, 0.1, 0.6} 81.3% 80.8% -

Table 5.21: Optimal tuning of the wk, wa, and wj parameters for the three employed taxon-
omy structures and for training sets of different sizes.

are automatically becoming members of the training set. Our goal now is to assign labels
to the rest 684,638 articles.

5.5.3.2 Model training

The model training process includes two separate phases: initially, we construct the
relevance description vectors K, A, and J and in the sequel, we attempt to evaluate the
wk, wa, and wj parameters of equation 5.9 which maximize the performance of our classi-
fier.

For this reason, we applied a cross validation strategy according to which the training
set was split in three equally-sized parts. The first two thirds were used for building K, A,
and J . In the sequel, we used the last third of the training set to measure the classification
performance for all the possible combinations of wk, wa, and wj . In particular, we con-
tinuously modified the values of all three parameters in the range [0.0, 1.0] (with respect
to equation 5.10) and we recorded the number of papers for which our classifier assigned
correct labels. To verify the correctness of our results and to eliminate any random effects,
we experimented with different training set sizes. More specifically, we repeated our mea-
surements by using training sets comprised of 10,000, 100,000, and all the 1.16 million
articles.

In Table 5.21 we report the results of this experiment. The first column denotes the
training set sizes, whereas in the second column we show which taxonomy structure is
employed. In the third column we record the values of the wk, wa, and wj for which our
classifier achieved maximum performance, whereas in the last three columns we report the
accuracy of our algorithm against two methods based on support vector machines (SVM)
and AdaBoost.MH (Ada).

Notice that our proposed classifier exhibited equally high effectiveness for multiple

154
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

combinations of wk, wa, and wj . From Table 5.21 we conclude that among the three ex-
ploited types of data (i.e. keywords, authors, and journal), the publishing journal is the most
important indication of the research field an article belongs to. On the other hand, the pre-
vious works (i.e. the history) of the authors is the weakest one. A second conclusion is that
our algorithm is relatively insensitive to the training set size; its performance degrades by
only a small percentage (i.e. 1-2%) when the training set size is decreased by a factor of 10.
In all cases, a satisfactory setting for the three constants is wk ∈ [0.2, 0.3], wa ∈ [0.1, 0.2]

and wj ∈ [0.5, 0.6].
In addition, we observe that performance decreases as the number of the available labels

increases. This is expected since as the size of the taxonomy increases, the possibility of an
erroneous prediction also increases (the classifier has more available choices). However,
the possibility is not proportional to the taxonomy size; Although C81 includes about 8
times more labels than C11, the effectiveness degrades by only a percentage of 9-10%.
Finally, we point out the remarkable 94% of successful labeling in the case of our small
C11 taxonomy.

Now let us compare our approach against the state-of-the-art method based on SVMs.
Since the available label sets consist of multiple entries, it is required that we use multi-
class SVMs. In particular, we use the one-against-all strategy which given a set of y labels,
it requires the construction of one binary classifier per label. To decide which labels to
assign to each article, we take the classes that present the largest margins. The features
we selected for SVM training were identical to the ones of our proposed algorithm, i.e.
keywords, authors and journals. The one-against-all strategy is far preferable than the other
existing approach, one-against-one, which performs pairwise classifications and requires
the construction of y2 classifiers.

To construct each binary SVM classifier, we created an equal number of training sets.
For instance, for the experiments with the C11 label set we created 11 training sets. Each
training set comprised of all the papers mapped to this specific research field (positive
examples), followed by the rest of the articles which were declared as negative examples.
We then created one binary classifier for each label, by using the SVMLight Program [74].
Finally, we scanned the outputs of these classifiers and each article was assigned the label
which presented the largest margin. The precision results are recorded in the last column
of Table 5.21.

Our approach outperformed the SVM-based approach in all of the examined cases. The
results of Table 5.21 reveal that the performance gap between the two methods increases
as the training set size becomes smaller. More specifically, in case the training set consists
of 10 thousand articles, the precision of our proposed method is higher than the precision

155
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Vector Records Most Frequent Articles
K 475,308 system 144,295
A 497,604 Philip S. Yu 654
J 3,915 Theor. Computer Science 13,295

Table 5.22: Trained Model Statistics

Label Articles
1 Comp. Methodologies 278,179
2 Inform. Systems 99,958
3 Systems Organization 71,635
4 Math. of Computing 69,140
5 Software 66,391

Label Articles
1 Artificial Intelligence 174,272
2 Comp.-Comm. Networks 83,410
3 Numerical Analysis 62,211
4 Software Engineering 47,962
5 Interfaces & Presentation 29,617

Label Articles
1 General 185,718
2 Net. Archit.-Design 49,423
3 Nonnum. Algorithms 43,153
4 Applications 20,161
5 Types-Design Styles 19,218

Table 5.23: Classification results for the three experimental taxonomy structures, for ε = 1:
(i) Left: C11, (ii) Center: C81, and (iii) Right: C276

of the SVMs by a margin ranging between 2% and 6%. On the other hand, the smallest
performance gap was observed in the scenario where the employed label set is C276 and
the training set consisted of all the 1.16 million articles.

We also compared our algorithm against another high-performing classification algo-
rithm, AdaBoost.MH. For our small training set comprised of 10,000 articles, our approach
achieved better performance by a percentage ranging between 1% and 6%. In the other
two larger training sets, AdaBoost.MH consumed all the available memory (12GB) of our
machine and the experiments failed to complete. On the contrary, the in-memory data
structures of our approach occupied roughly 1.1 GB for the largest training set.

In Table 5.22 we present some interesting statistics of our model. The keywords rel-
evance description vector is comprised of about 475 thousand keywords, and the most
frequent keyword is system. Furthermore, the most frequent author and journal were Philip

S. Yu and Theoretical Computer Science, which authored and published 654 and 13,295
articles respectively.

5.5.3.3 Classification Results

Now we employ the trained model of the previous phase to classify the 684,638 un-
labeled articles of our dataset. As previously, we conducted the same experiment three

Label Articles
1 Comp. Methodologies 347,739
2 Inform. Systems 144,668
3 Math. of Computing 97,514
4 Systems Organization 92,136
5 Software 91,331

Label Articles
1 Artificial Intelligence 224,183
2 Comp.-Comm. Networks 101,391
3 Numerical Analysis 85,764
4 Software Engineering 65,010
5 Interfaces & Presentation 41,545

Label Articles
1 General 237,761
2 Nonnum. Algorithms 64,204
3 Net. Archit.-Design 60,994
4 Applications 31,826
5 Design Methodology 29,369

Table 5.24: Classification results for the three experimental taxonomy structures for ε =
0.85: (i) Left: C11, (ii) Center: C81, and (iii) Right: C276

156
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

times and each time we employed one of the taxonomy structures C11, C81, and C276.
In Tables 5.23 and 5.24 we illustrate the five most popular research fields for each of our
employed taxonomy structures for ε = 1 and ε = 0.85 respectively.

In the case of ε = 1 the unlabeled articles are assigned only one research field (the one
which received the highest score according to equation 5.9). Regarding the C11 taxonomy,
the most popular research field was Computing Methodologies; the 40.6% of the articles
were classified to this category. Furthermore, Artificial Intelligence and General were the
most popular research areas of the C81 and C276 taxonomy structures respectively. In
particular, the former label was assigned to the 25.4% of the unlabeled articles, whereas
the latter gathered the 27.1% of the articles.

On the other hand, in the case of ε = 0.85 the scientific documents can be assigned more
than one labels, if the scores of the additional labels obey to the limitation of equation 5.10.
Therefore, it is anticipated that each research field is assigned to more articles than in the
previous case. For this reason, the orderings of Table 5.24 are slightly modified compared
to the ones of Table 5.23.

5.6 Conclusions

In this chapter we studied four interesting problems related to academic search engines
and digital libraries. We described another dimension of publication methodologies, the
existence of coterminal citations and set forth an effort to discover such patterns in cita-
tion networks. The proposed f -index represents a computerized, automated way to assign
weigh/value to citations, although it is not alone sufficient to determine the function and
value of citation and, for instance, their cognitive background should also be taken into
consideration [55].

The astute reader will have realized by now that in our efforts to recognize and weigh
coterminal citations, we have in our arsenal the research works dealing with Web link
spam [66] e.g., TrustRank, BadRank and so on. Unfortunately, the situation is radically
difficult in citation networks, because they consist of entities richer than the Web pages
and the Web links encountered in Web spam. Each node i.e., a citing article, in a citation
network consists of entities i.e., co-authors, which form a complex overlay network above
the article citation network.

In addition, we studied the problem of identifying attractive research areas for new sci-
entists. Since this is a new issue, we initially described the properties of the space where the
problem is set and solved. In the sequel, we identified the characteristics of the new schol-
ars and the attributes of the attractive research areas. We distinguished popular research

157
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

areas from attractive, and we stated that popularity does not render a topic of research at-
tractive for new scientists. Therefore, to measure the attractiveness of a research field for
a new scholar, we presented two scoring schemes which incorporate multiple different pa-
rameters such as the number and the recency of the published articles and their citations,
the number and the reputation of the involved authors and the reputation of the publishing
journals.

Our methods have been attested experimentally by employing a large set of self-crawled
research articles. The experiments provided some significant conclusions: The first is that
there are exist some research fields which despite their popularity, they are not attractive
for scholars who are now starting their career. On the other hand, some research fields are
unpopular however, they provide excellent opportunities at these scientists.

Although the computation of scientometrics for small datasets is relatively easy, for
larger volumes of data the problem becomes more complex. The modern academic search
engines now store tens or hundreds of millions of research articles; this data size in combi-
nation with their increasing popularity, has rendered the issue of computing scientometrics
in parallel both interesting and challenging. Here we studied the issue of computing the sci-
entometrics in large-scale academic search engines with MapReduce. We introduced four
methods to compute three of these metrics, h-index, and two variations, the contemporary
and trend h-indexes. However, these methods can be applied to compute a wider variety
scientometrics with no additional effort. We proposed optimizations with the aim of de-
creasing the size of the data exchanged among the nodes of the system, and we conducted
experiments with the CiteSeerX dataset, a large repository comprised of about 1.8 million
research articles. Our experiments demonstrated the usefulness of method 1-C, a strategy
which achieves both effective and efficient execution.

Finally, we introduced a supervised machine learning algorithm for classifying research
articles. The problem we examine is particularly useful for academic search engines and
digital libraries, since a robust solution can provide improved functionality and perfor-
mance benefits. Our algorithm operates by using a predefined list of labels (i.e. taxonomy
structure) and a training set comprised of labeled articles. The training process we proposed
is based on the creation of three vectors which correlate each article keyword, author, and
journal with a number of labels of our given taxonomy. During the classification process
of the unlabeled articles, we use the data stored within these vectors to compute scores
for each label. Our experimental evaluation on a large set of 1.5 million research articles
demonstrated that our approach achieved successful classification by a percentage above
90%.

158
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

CHAPTER VI

Rank Aggregation Methods

6.1 Introduction

The lack of any specific structure and the vast amount of information published on the
Web, makes it extremely difficult for the user to find the information s/he desires without
any external help. As of September 2012, there are at least 19 general-purpose search en-
gines1, as well as numerous special-purpose search engines (called vertical search systems).
Their population is mainly justified by two reasons: a) no ranking algorithm is broadly
acceptable, although many users tend to consider Google’s ranking method as the most
successful; b) no engine can achieve large coverage and high scalability. It is a common
belief [133, 92] that a single general purpose search engine for all Web data is unrealistic,
since its processing power cannot scale up to the rapidly increasing and unlimited amount
of Web data.

The tool which attracted the acceptance among the users is metasearch engines [94].
These systems operate like a filter of the various crawler-based or directory-based search
engines which they combine. Metasearch engines run simultaneously a user query across
multiple component search engines, retrieve the generated results and then aggregate them.
Finally, they present the best among them to the user.

The advantages of metasearch engines against search engines are significant [94]:

• They increase the search coverage of the Web, providing a higher recall. The overlap
among the major search engines is usually very small [132] and it can be as small as
3% of the total results retrieved. On the other hand, the unique results can be as high
as 85% of the total results retrieved by all component engines.

• They solve the scalability problem of searching the Web and they facilitate the ex-
ploitation of multiple search engines enabling consistency checking [97].

1See http://www.searchenginewatch.com

159
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

• They improve the retrieval effectiveness providing higher precision, due to the “cho-
rus effect” [144].

Consequently, metasearch engines and their Web 2.0 successors, mash-up services are
important tools and they are becoming increasingly popular. The core of any such system
is the ranking function it employs, because this function defines the final ranked result
list from the results provided by the component search engines. Hence, devising effective
ranking algorithms is a problem of particular importance for metasearch engines and mash-
up services.

The problem of rank aggregation is quite old and has been studied for a century, start-
ing from a need to design fair elections. It can be thought of as the unsupervised ana-
log to regression, with the goal of discovering a combined ranking which minimizes the
distance to each individual ranking. Despite its seeming simplicity it is surprisingly com-
plicated; finding the optimal combined ranking is NP-hard [45] under certain conditions.
Thus, several recent efforts describe approximation algorithms for the rank aggregation
problem [7, 6, 35], after showing its relation to the feedback arc set problem on tourna-

ments [7]. Some of these are extensively applied to many different research domains such
as bioinformatics [42], Web spam detection [45], pattern ordering [134], Web metasearch-
ing [87, 114, 122, 124, 106] and many more.

Web metasearching in combination to rank aggregation, is a problem posing its own
unique challenges. The results that a metasearch system collects from its component en-
gines, are not similar to votes or any other single dimensional entities: Apart from the
individual ranking it is assigned by a component engine, a Web result also includes a title,
a small fragment of text which indicates its relevance to the submitted query (textual snip-
pet) and a uniform resource locator (URL). Apparently, the traditional rank aggregation
methods are insufficient for providing a robust ranking mechanism suitable for metasearch
engines, because they ignore the semantics accompanying each Web result.

Based on these remarks, we conclude that ranking in Web metasearching is a more
complex problem than rank aggregation. Individual rankings might be noisy, incomplete
or even disjoint, hence they should not be the only parameter affecting ranking. Further
processing is required in order to filter the results and allow the final result list of the
metasearch engine to be free of unwanted, devious and unfairly highly ranked Web pages.
Since commercial interests might frequently and unpredictably affect the results of search-
ing, the user is not clearly protected against the interests of individual search engines.
Therefore, the ranking algorithm employed by a real metasearch engine, should be able to
provide results that are as free as they can be from paid listings and links.

In this chapter we introduce a family of rank aggregation methods suitable for Web

160
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

metasearch engines. The basic family members are the KE Algorithm and QuadRank,
accompanied by a group of special-purpose variations. All the approaches we present in
this chapter are positional ranking methods designed to deal with top-k lists returned by
Web search engines. Their main features are:

• They assign scores to the candidate results by considering multiple parameters such
as the number of the search engines where a particular item appeared, the total num-
ber of exploited search engines, the size of the top-k list returned by each search
engine, and others.

• They refrain from using any training data in order to perform the rank aggregation,
because there is usually no evidence about the underlying data properties and their
distributions.

• They do not count upon the scores of the individual search engine rankings in order
to perform the rank aggregation, because most of the search engines do not provide
such scores.

The algorithms are evaluated on real-world data retrieved from four major search en-
gines against individual search engines listings as well as results returned by the most
popular metasearch engine Dogpile2, using QuadSearch 3, a metasearch engine developed,
among others, as a testbed for rank fusion and rank aggregation. There is also an indepen-
dent performance study of metasearch engines [18], comparing QuadSearch, Dogpile and
Mamma, which showed that QuadSearch outperformed its adversaries in that limited query
load.

We also compare our proposed methods to two other existing rank aggregation methods.
The first is the well-established Borda Count method which assigns scores to the collected
documents, by accumulating the individual rankings they received by the component en-
gines. The second method is the Outranking Approach, an order-based method presented
in [52], which orders the items by specifying a set of thresholds and by comparing each
document with all the other collected documents. You can see section 6.2 for a brief de-
scription of these two methods and a discussion on their differences from our proposed
algorithm.

Initially, we test these methods by utilizing the results from the Web Adhoc task of the
Web Track of the TREC-2009 Conference [34]. In the sequel, we report the performance
of the examined methods in the real-world environment of QuadSearch.

2http://www.dogpile.com
3A publicly accessible prototype of QuadSearch is available under http://quadsearch.csd.auth.gr.

161
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

The rest of this chapter is organized as follows: in section 6.2 we provide some neces-
sary background material and survey the relevant rank aggregation methods. In section 6.3
we present the KE Algorithm and its accompanying variants, whereas in section 6.4, we
describe QuadRank and its implementation details behind the developed metasearch en-
gine. In section 6.5 we present an evaluation of the proposed methods, and finally, section
6.6 contains the basic architectural elements of QuadSearch along with some performance
benchmarks.

6.2 Preliminaries and related work

We start with a universe U of items (documents in the context of metasearching); ea-
chitem has a unique identifier c. A ranked list r of items c1, c2, . . . , cn drawn from the
universe U , is an ordered subset S ⊆ U , such that r = [c1 ≥ c2 ≥ · · · ≥ cn], where ≥
is an ordering relation on S. Each item c ∈ S, has the attribute r(c) which represents the
ranking of c in list r. Rankings are always positive, the best ranking an item could get is 1,
and higher ranks show lower preference (reduced relevance to a query, in the context of
metasearching).

If r contains all the items of U , then it is said to be a full or complete list; if |r| < |U |,
then it is said to be a partial list, and if |r| = k, where k is a fixed constant, it is said to
be a top-k list. Apparently, a top-k list is a special case of a partial list. The ideal scenario
for rank aggregation is when each search engine gives a complete list of all the items of the
universe related to the keyword terms of a given query. Unfortunately this is not possible
since either each component engine has a partial coverage of the Web, or for reasons of
speed or protection of the proprietary ranking algorithms, the engine returns only a top-k
list. The worst but unusual scenario is when the result lists of component search engines
have no overlapping elements. In this case there is nothing that a standard rank aggregation
algorithm can do. However, as we will see later, QuadRank takes into account the metadata
accompanying each item, in addition to the individual rankings of the search engines and
this is an advantage of our method over the other methods.

Two families of rank aggregation techniques exist [114]: a) the score-based policies
[145], which assign a score to each entity of the individual ranking lists and then use these
scores to perform the ranking, and b) the order-based (or rank-based) policies [45, 122, 23],
which work upon the order (rank) information that each entity received in the individual
ranking lists. Although there have been proposed a lot of algorithms for rank aggregation,
when it comes to applying these techniques to real-world metasearch engines the problem
becomes even more complicated.

162
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

The methods belonging to the first category, were utilized by the first metasearch en-
gines and they assign a weight to each item of a ranked list, which usually originates from
the respective component search engine. The aggregation is performed using these scores;
examples of this practice include the works in [145, 21]. Although almost no search engine
provides the ranking scores, it is possible to convert local ranks into ranking scores. Al-
though score-based methods appear to be more effective for rank fusion [114], the absence
of scores (or denial to reveal) from many search engines’ rankings turns these methods
problematic.

This shortcoming of the score-based algorithms lead to the generation of the second
family of rank aggregation methods, i.e., the rank-based methods, the mainstream for mod-
ern metasearch engines. The methods of this family exploit only the relative position of the
items in each ranked list to perform the fusion, thus they are also called positional meth-
ods. A primary advantage of positional methods is their efficiency in calculation, since
they can be implemented in time linear w.r.t. the number and size of ranked lists. Unfortu-
nately though, this efficiency in calculation is not accompanied by guarantees to satisfy the
Condorcet criterion [153].

A popular positional aggregation method is the Borda Count method [45, 114], which
assigns scores based on the positions of the item in the ranked lists. Using terminology
from the voting literature, we can see each item of a ranked list as a candidate and each
search engine as a voter. Each candidate receives points from each voter according to
its rank in the voter’s list. For example, the top ranked candidate will receive n points,
where n is the number of candidates in the respective ranked list. The total Borda score
of the candidate will be the sum of its scores due to each ranked list where it appears. In
case that the candidate is not in the top-k list of some voter, then it will receive a portion
of the remaining points of the voter (each voter has a fixed number of points available for
distribution) or a constant number (0 or 1), depending on the variation of the method [116].
The Borda Count method can be found in different versions, like the weighted Borda Count
method [131], where each voter also takes a score and therefore his opinion for a candidate
is not treated equally against other voters.

A relatively recent method is the Outranking Approach introduced by [52], which is
based on decision rules identifying positive and negative reasons for judging whether a
document should get a better rank than another. The method operates by performing pair-
wise comparisons of each item to all other items in the set S. If c1 and c2 are two documents
of the set and r(c1), r(c2) are their rankings in the list r, then the item c1 should be ranked
higher than c2 (symbolized as c1σc2) if the two following conditions are satisfied:

• The concordance condition which ensures that the majority of the input rankings

163
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

are concordant with the ordering c1σc2. Formally, the concordance coalition is
Csp(c1σc2) = {r(c1) ≤ r(c2) − sp}, where sp is a preference threshold which de-
termines the boundaries between an indifference and a preference situation between
documents.

• The discordance condition which ensures that none of the discordant input rankings
strongly refutes the ordering the ordering c1σc2. Formally, the discordance coali-
tion is Dsu(c1σc2) = {r(c1) ≥ r(c2) + su}, where su is a veto threshold which
determines the boundaries between a weak and a strong opposition to c1σc2.

Based on these conditions, a generic outranking relation is defined by the following
formula:

O(c1σc2) ⇔ |Csp(c1σc2)| ≥ cmin AND |Dsu(c1σc2)| ≤ dmax (6.1)

where cmin and dmax are the concordance and discordance thresholds respectively.
Other positional aggregation methods include the Markov chain based on [45], soft

computing techniques [23], and median rank aggregation [51]. The first methods “blend”
the ranked lists into a Markov chain (MC), where each distinct item of the lists corresponds
to a state of the MC and the transition probabilities correspond in some way to the (partial)
ranked lists. The goal of this modeling is to find the stationary distribution vector of this
MC, which provides a total ordering upon the states of the MC, and thus an ordering upon
the items of the ranked lists. Unfortunately creating such a MC takes time Θ(n2k + n3),
where n is the number of distinct items and k the size of the (top-k) lists; this computational
cost can be reduced to O(n2k) to obtain a very rough approximation. Soft computing
methods make use of genetic or fuzzy logic algorithms to perform the rank fusion, whereas
median rank aggregation uses the media rank for each item to perform the final ranking.

Improved positional methods for rank aggregation of partial lists by exploiting the sim-
ilarity among the items are described in [122], whereas positional methods which are firstly
trained and then used for rank aggregation (i.e., supervised rank aggregation) are described
in [87]. Nevertheless, when the rank fusion method is going to be implemented as the
heart of a metasearch engine, then fast computation of the aggregated rank and effective
fusion are the major challenges to be met. Therefore, Markov chain based methods al-
though claimed to be superior among the positional ones, are not the preferred choice over
methods with linear time complexity computation cost.

164
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

6.3 KE algorithm and variations

The first member of our rank aggregation family is a positional method able to deal
with partially ranked lists; actually it deals with top-k lists. The basic algorithm treats all
four component search engines equally. The reason we do this is due to the following plain
but significant observations: (i) all of them are considered by experts as the “major” search
engines, (ii) they have been proved reliable during their lifetimes, and (iii) most users and
metasearch engines prefer them to perform their searches. Later in this article, we present
a variation of the main algorithm which gives the users the ability to define the importance
of each component engine.

Let τ1, τ2, τ3, τ4 be four ranked lists corresponding to each component search engine.
For each item c ∈ S and list τi, we compute the quantity Ki(c) = position in τi and
S(c) =

∑4
i=1Ki(c). The algorithm assigns to each returned ranked item a score based on

the following formula:

ke(c) =
S(c)

nm ∗ (k
10

+ 1)n
, (6.2)

where S(c) is the sum of all rankings that the item has received, n is the number of
search engine top-k lists the item is listed in, m is the total number of search engines
exploited, k is the total number of ranked items collected from each component engine.
We named this weight as KE. The less the KE value for an item, the larger the final rank
this item will take is.

6.3.1 KE Algorithm vs Borda Count

In this point, we must stress some differences between Borda Count and the KE method.

• The Borda Count method takes into consideration the total number of candidates,
whereas KE takes into consideration the number of voters.

• Some Borda Count variations assign scores to each and every candidate; a candidate
which is not included in the top-k list of a particular search engine takes a part of
the remaining points. This does not hold for the KE method: a candidate will be
assigned a score only when it is contained in the top-k list of a particular search
engine, otherwise its score is zero.

• The KE method takes into consideration the total number of exploited search engines,
the number of search engines where a candidate has been appeared and the size of
the top-k list.

165
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

• The KE method has better “resolution”, in the sense that the possibility of two scores
being the same is less than that of the Borda Count.

• The lower the KE weight an item has the higher will be ranked in the final result list.
In Borda Count holds the opposite.

6.3.2 Antispam version of KE algorithm

Informally, we say that a search engine has been spammed by a page in its result list
when it ranks the page too highly with respect to the other pages, according to the view of
a “typical” (average) user. This is unavoidable for search engines, because their ranking
algorithms have “defects” that can be exploited by Web page developers in order to achieve
an unfairly high page rank [65]. Thus, if a page spams all or even most of the search en-
gines, then the metasearch engine could not handle this problem efficiently as well, because
the aggregation function would work with bad data.

This method takes into consideration the Condorcet Criteria [153]. In the context of
metasearching, these criteria tell us, in a few words, that an item which is enlisted in the
top-k lists of some search engines should be ranked above an item that is ranked in the top-
k lists of fewer search engines. The antispam method attempts to satisfy the intuition that
if a page spams fewer than half of the search engines, then the majority of search engines
will prefer a relatively good page to a spam page. The following pseudocode describes the
antispam version:

1. Find which items appear in more than half pages (let the number of these items be c).

2. Apply the KE method on these items.

3. Position them in the result list, starting at rank 1.

4. Apply the KE method on the rest of the items.

5. Position them in the result list, starting at rank 1 + c.

6.3.3 The GeoKE method

The analysis of a result’s URL can lead to valuable information about the page hosted
under it. The two or three final characters of the domain name (also known as the domain
extension), usually reveal the originating country of that page.

166
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

A significant number of queries submited to a search engine is directly connected to a
specific geographic region. Travelling, vacation and news are cases that fall into this cate-
gory, as they are usually linked to two types of questions: where and when. Indeed, travel
related queries usually return results that are relative to the travel’s destination. Without any
doubt, there is a significant possibility that pages hosted under affiliate domain extensions
are the most informational.

The possibility that a page is written in a language that a user does not understand is also
significant. Hence, an English user querying for “flights to Moscow” and is not familiar
to Russian, will find the pages written in this language totally useless; these pages usually
have the .ru domain extension. Apparently, pages having the .uk domain extension would
probably be the best results. Pages with .us, .au or .ca domain extensions would also be
good choices, as there is a great possibility that they are all written in English.

To cover such cases, we present an expansion to the KE algorithm; the GeoKE method
that turns it into a geography-aware ranking algorithm. Based on the user’s location that
is automatically received by the system, the GeoKE method assigns scores to the collected
results according to the following formula:

geoke(c) = G

∑4
1Ki(c)

nm ∗ (k
10

+ 1)n
, (6.3)

where G is the the GeoKE(c) which receives values depending on three parameters;
the user’s locality, the result’s geographic origin (revealed by the domain extension) and a
comparison between the user’s speaking language and the language that the page is written
in. Taking the above parameters into consideration, the value of the GeoKE(c) is deter-
mined when:

• The result’s domain extension and the user’s region are the same.

• The user can understand the language the page is written in. In these cases, the
system makes use of a local database table is used to store the relationships between
the geographical regions and their respective languages.

• The domain’s extension of the page does not reveal any information about its locality.

• When the page is written in a language that the user can’t understand and does not
fall to the former case.

In all four cases described above the GeoKE(c) can have fixed values, but our im-
plementation gives the user the ability to define these values himself. This indicates the

167
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

flexibility of GeoKE(c) and enables its use in personalized search systems. By altering
these values, the algorithm can lead to different rankings according to the user’s selections.

The user’s locality is automatically obtained by using a database that is specially de-
signed for matching IP addresses against geographical areas. With this strategy the user
is not obliged to submit any information about his/her locality, but there is always a small
possibility that the module makes an erroneous prediction.

6.3.4 The weighted KE method

The basic KE algorithm treats all four component engines equally; in the same section
we justified this choice. Nevertheless, there is an intuition, that a single search engine can’t
perform equally well for all types of queries. There are occasions where it can present qual-
itative results and others, in which the results are of medium or lower informational value.
This derives from the fact that each engine maintains its own document index and every
time a query is submitted, it searches among different documents and presents different
results than another engine does.

In addition, users’ confidence to a search engine cannot be ignored. For instance, some
of them prefer using a search engine for certain types of queries and another engine for
other types. On the other hand, some users prefer using only one search engine to conduct
all their searches.

For these reasons, an effective rank aggregation method must provide the user with the
ability to modify the importance of each component engine. The proposed Weighted KE
algorithm takes this remark into consideration and assigns scores to the collected results
according to the following equation:

wke(c) =

∑4
1[11− e(c)]Ki(c)

nm ∗ (k
10

+ 1)n
, (6.4)

where e(c) is the Weight factor of the c-th Engine (EWF), which can receive integer
values between 1 and 10. The equation above leads to the same outcome as the basic ver-
sion of the KE algorithm (6.2), unless a different EWF is assigned to at least one engine.
The results with lower scores will receive higher rankings, meaning that an engine con-
sidered to be more important than another, must receive a lower EWF. To make it more
comprehensible for the user we subtract EWF from eleven, so that the the most important
component receives the greatest EWF.

168
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

6.3.5 The URL-aware KE method

The use of subdomains when publishing pages on the Web, is a quite common option
that the developers have. In fact, subdomains are simple folders in a Web server’s public
directory and are usually identified by the first part of their URL (after the communication
protocol). All subdomains are tied to a domain name and may, or may not have similar
contents. For example, the URL http://inf.uth.gr is a subdomain of the uth.gr domain
name; it provides information regarding a University’s Faculty.

Until now, all search engines treat subdomains as different domains. The top-10 list that
Google returns for the query Aristotle University of Thessaloniki contains 10 Web pages, all
hosted under the auth.gr domain name. It is obvious that the limitation of no more than two
pages with the same domain name in the same result list does not cover subdomains. This
policy introduces the problem of domain spamming, which occurs on situations similar to
the one mentioned above.

Hence, there is a significant possibility that many pages with similar contents, or many
pages from one source would appear in the engine’s result list. This possibility becomes
even greater in metasearch engines, where more than one component engines are being
exploited. To confront this problem, two solutions are available. The first settlement that
can be done is to completely block a number of results having the same domain name,
including subdomains.

The second solution focuses on giving these pages a lower score; that is, reducing their
ranking. The URL Aware algorithm has been implemented for this purpose. According to
this method, the weight for each Web page is computed by using the following formula:

uke(c) = (11−D)

∑4
1Ki(c)

nm ∗ (k
10

+ 1)n
, (6.5)

where D is the Domain Awareness Constant (DAC). Its value is subtracted from eleven
to indicate that a higher value will decrease the result’s weight, therefore improve its rank-
ing. The value of DAC depends on how many times the domain name of a specific result
is repeated in the list of candidates. If a candidate has a domain name that is not repeated
more than two times, we set DAC = 10. In the opposite case, DAC is set equal to 5.

Similarly to GeoKE, the implementation of the URL Aware KE algorithm allows the
definition of the value of DAC by the user for both cases.

169
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

6.4 The QuadRank scoring

In this section we present another positional method able to deal with partial ranked
lists. The proposed method, namely QuadRank, deals with top-k lists originating from
single crawler-based search engines. The algorithm treats all component search engines
equally. The reason we do this is due to the following plain, but significant observations:
(i) all of them are considered by experts as the “major” search engines, (ii) they have been
proved reliable during their lifetimes, and (iii) most users and metasearch engines prefer
them to perform their searches on.

Let r1, r2, . . . rm bem ranked lists corresponding to each component search engine. We
assume that the each of these lists consists of a fixed number of k items, consequently, the
entire process involves in total km elements that have to be merged and ranked. Merging is
a procedure which we employ in order to combine the m different result lists into a single
list, by removing all the overlapping elements. Notice that this list remains unranked until
the scoring function is applied to each of the list’s elements.

The overlapping between two component engines varies across different queries and
cannot be predicted, hence we assume that our final result list consists of N items. In Table
6.1 we describe the symbols we use in our presentation and the parameters employed by
QuadRank.

In the sequel we present the main ideas implemented by our proposed method. In
particular, we describe the methodology employed by QuadRank in order to deal with
individual rankings and zone weighting and we examine the significance of the results’
URL analysis. Finally, we discuss how all these different components can be combined
together into a single scoring formula.

6.4.1 Dealing with individual rankings

The ranking that each element receives by the component engines is of primary impor-
tance for a rank aggregation method and the majority of the proposed ranking algorithms
are mainly based on these rankings. Consequently, we must design our function in order to
reward a result which achieves high rankings, since such entries are considered to be more
relevant to a given query than others placed in lower positions.

Therefore, for each item c ∈ S we introduce and evaluate the quantity

K(c) =
m∑
i=1

(
k + 1− ri(c)

)
(6.6)

where ri(c) is the ranking that the item is assigned by the ith component engine. In

170
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Symbol Meaning
m The number of exploited component engines
c A single result (document) in a component list

ri(c) The ranking of c in the ith component list
nc The number of component lists containing c
k The number of items included in each component list
q An arbitrary user query
tq A term of q
Q The number of terms of q
N The number of items included in the final merged list
Ntq The number of items containing tq
zc(i) The ith zone of c (see Table 6.3)
Wzc(i) The weight of zc(i)

f(c, tq, zc(i)) The number of occurrences (frequency) of tq in zc(i)

Table 6.1: Summary

the special case where the item c is not ranked by list ri, we assume that ri(c) = k + 1.
Obviously, the best score an item can receive is km (if it is ranked first on every component
list), whereas the lower score is 1 and it is assigned on a result which was ranked last only
in one component list.

The introduced score rewards the items which received high rankings by multiple com-
ponent engines, however it is relatively frequent that two or more results are assigned equal
K(c) values. For instance, consider the occasion where two different items c1, c2 receive
the following rankings by four top-10 lists r1, r2, r3 and r4.

Item r1 r2 r3 r4
c1 1 - - -
c2 7 7 10 10

Table 6.2: Example

In the example of Table 6.2 it holds K(c1) = K(c2) = 10. Nevertheless, we firmly
believe that c2 should be ranked higher than c1 since:

• it appears in more input rankings, consequently it outperforms c1 according to the
democratic symmetry [116].

• it appears in more than half of the input rankings and hence, there is a smaller prob-
ability of being a spam entry according to the Condorcet criterion.

To handle such cases, we must reward the results which are considered as relevant to a
given query by as many component engines as possible. If nc ≤ m is the number of the

171
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

component engines in which a result c occurs, then we introduce the rank − based score
which is determined by the following equation:

R(c) = mlog
(
ncK(c)

)
(6.7)

Where m is the total number of the exploited engines. Note that the logarithm in 6.7 is
employed in order to reduce the deviation among the different values thatRi(c) can receive.
Additionally, although multiplying the logarithm with m makes no difference (since m is
constant for all items), it is justified by our intention to assign the R(c) score a larger value.

6.4.2 Zone weighting

Zone weighting is a well established methodology for ranking documents in traditional
search systems. The main idea it is based on suggests partitioning each Web document into
locations of special interest, namely zones or fields. Such partitioning is usually performed
in structured or semi-structured documents (i.e. XML files), where the available informa-
tion is distributed across multiple zones and represents different semantics (i.e. authorship,
publication date, title, etc).

The introduction of zones allows us to compute scores by taking into consideration the
physical location of a term within a document (i.e. in which field of an XML document
a term appears). An example of such ranking scheme is the BM25F function presented in
[89].

The main difficulty hidden behind the idea of using zone scoring in a rank aggregation
method is that a Web result retrieved by a component search engine is not a complete docu-
ment and only some limited representative information is provided to a metasearch engine.
This information comprises of three individual semantics: the title, a small fragment of the
document’s text, called snippet, which indicates the relevance of the document to the user
query and a uniform resource locator (URL).

Zone ID Weight
Title 1 10

Snippet 2 3
URL 3 5

Table 6.3: Zones

In this paper we attempt to integrate zone scoring characteristics to our ranking func-
tion. The idea we introduce here is to treat the three aforementioned semantics as separate
document zones. Although zone weighting is not a new scheme in information retrieval,

172
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

to the best of our knowledge we are the first to apply its principles in the field of rank ag-
gregation. Our motives are multiple: A Web result which contains the query terms on its
title is possibly more relevant than another which does not. This is also valid for results
containing the query terms in their snippets more times than others. Hence, the number
of the occurrences of the query terms in the individual zones is another parameter which
should be taken into consideration by an efficient ranking method.

As we have mentioned, there already exists a zone scoring scheme, BM25F. Neverthe-
less, we found that this method is not suitable for our case since:

• The BM25F function requires the length of each zone (in number of terms) to be
computed, which undoubtedly is a time consuming operation.

• The second reason that turns the usage of zone lengths problematic is that the Web
results returned by the component engines are not complete documents. The small
fragments of text used to represent the similarity of each document to the submitted
query, have similar or identical lengths for each entry. Consequently, zone lengths
have a small contribution to the score of an item.

• It depends on several (typically three) user-defined parameters.

In this subsection we propose our own policy for zone scoring and we believe that
our suggestions are more suitable for metasearch applications. At first, in Table 6.3 we
determine the weights assigned to each zone. Based on these weights, we use the following
formula to compute a weight factor:

Z(c) =

Q∑
t=1

log
N

Nt

3∑
z=1

Wzf(c, t, z) (6.8)

where N represents the total number of items included in the final merged list and Nt

is the number of items containing the query term t. Furthermore, Wz denotes the constant
weight of a zone, which we show in Table 6.3, whereas f(c, t, z) represents the frequency
of the query term t within zone z.

The logarithm logN/Nt is drawn from the traditional tf/idf scoring functions used by
search engines to rank Web documents (i.e. BM25, BM25F). It is used to reward the
documents containing the query terms appearing a few times only, because such terms are
expected to reveal the information need hidden behind each query.

Note that the Z(c) score rewards the documents which include the query terms on their
title, snippet or URL as many times as possible since it is sensitive to the corresponding
frequency values. Consequently, the documents which include all or some of the query

173
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

terms in their title multiple times are considered more relevant to the given query and they
are assigned higher scores.

To compute the desired frequency values, the text accompanying each result must be
appropriately processed. Therefore, each document is tokenized (that is, we obtain all of
its distinct terms) and each of the extracted distinct terms passes multiple filters which
sequentially perform punctuation removal, case folding and stemming. These are CPU-
intensive procedures and one would expect query processing to decelerate significantly.
However, the small document population as well as their limited size (titles and snippets
consist of a few terms only) render this delay rather inconsequential (see experimental
subsection 6.6.1).

6.4.3 URL analysis

To the best of our knowledge, the current publicly known rank aggregation methods
do not take into consideration the URLs of the results that the component engines return.
In this subsection we attempt to mine the information revealed by the URLs, in order to
improve the quality of the produced results.

Since a metasearch engine is a system which exploits multiple resources, it is possible
that several results under the same domain name would appear in the final merged list.
Although these entries have different URLs and probably include different content, their
origin is identical. This observation forces us to conclude that this domain possibly contains
adequate information relevant to the given query. Consequently, we should enhance our
ranking function in order to reward such results.

On the other hand, a result list comprised of different items from the same resource is
hardly informative. An effective search system must provide qualitative results from many
sources, because this wide variety partially ensures that the user can locate the desired
information. For this reason, the major crawler-based search engines include at most two
documents with the same domain name in their result lists, even if there are additional
relevant documents.

The problem is now becoming straightforward: from a pool of X documents having
the same domain name we must identify and reward the best two among them, whereas we
should discard the rest X − 2 of them. The challenge becomes even greater if maximum
efficiency is required and fast system response is a key issue. QuadRank solves the problem
by employing an auxiliary table of domain accumulators which it populates during the
component engines’ result list merging. When an item enters the list, we also search for
its domain name into this accumulator table. If the record is not present we insert it and
set the corresponding accumulator value equal to 1. In the opposite case we increase the

174
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

accumulator by one.
During the scoring process we consult the accumulator table and we assign additional

scores according to the following formula:

u(c) = log

(
10

2m− 1 + accc
2m

)
(6.9)

where accc is the domain accumulator of c. Later, when the results are going to be
presented to the user, only the two highest scored results with the same domain name are
used; the rest of them are simply discarded. Note that for the results having domain names
appearing only once, it holds that accc = 1 and the quantity U(c) is assigned a value equal
to 1.

The analysis of a result’s URL can lead to additional information regarding the page it
represents. More specifically, the two or three trailing characters of the domain name (also
known as the domain extension), usually reveal the originating country of that page.

Additionally, a significant number of queries submitted to a search engine is directly
connected to a specific geographic region. For instance the travel, vacation and news ori-
ented searches are cases falling into this category. When such information is required, there
is a significant possibility that the pages hosted under affiliate domain extensions are the
most satisfactory.

To address such issues, we introduce an expansion to our ranking function, theGeoFactor,
a parameter which is determined by the relationship between the geographic locality of the
user and the proximity of each result c. The Geo Factor receives values according to the
following formula:

G(c) =

1 if domain extension and user locality are not identical,

λ, λ > 1 otherwise.

where λ is a predefined constant receiving values λ > 1; a typical option which we
have used in our experiments is to set λ = 1.2.

By integrating the Geo Factor into the scores of equation 6.9 we introduce theURLAware
scores determined by the following formula:

U(c) = G(c)log

(
10

2m− 1 + accc
2m

)
(6.10)

The lowest value that U(c) can receive is 1, for results appearing under a domain name

175
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

encountered only once in the m component lists and when this domain does not match
the geographic locality of the user. On the other hand, if we assume that each component
engine returns at most 2 results having the same domain name, then the largest value that
U(c) can be assigned is λlog

(
(20m− 5)/m

)
.

6.4.4 QuadRank scores

In this subsection we merge all the aforementioned components into a single scoring
function, namely QuadRank. According to our proposed method, each collected result is
assigned a score which is determined by the following formula:

Q(c) = U(c)

(
R(c) +

1

Q
Z(c)

)
(6.11)

where Q is the total number of the query terms. As one may notice from equation
6.8, the Z(c) score representing our zone weighting policy, is strongly depended on the
number of query terms and increases proportionally to Q. Consequently, to regulate the
contribution of zone weighting to the final scores, with respect to the other terms R(c) and
U(c), we introduce the quantity 1/Q.

6.4.5 QuadRank vs. Borda count

In this point, we must stress some differences between Borda Count and the scores of
QuadRank.

• QuadRank is a rank aggregation method designed to operate on metasearch engines.
Therefore, its scoring formula takes much more parameters into consideration such
as the zone weighting, the domain characteristics and the number of the occurrences
of each query term within each result.

• Some Borda Count variations assign scores to each and every candidate; a candidate
which is not included in the top-k list of a particular search engine takes a part of
the remaining points. This does not hold for the QuadRank method: a candidate will
be assigned a score only when it is contained in the top-k list of a particular search
engine, otherwise its score is zero.

• QuadRank also takes into consideration the total number of exploited search engines,
the number of search engines where a candidate has been appeared and the number
of items of each top-k list.

176
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

• The QuadRank method has better “resolution”, in the sense that the possibility of
two scores being the same is less than that of the Borda Count.

• Since our proposed method does not assign scores based completely on the individual
rankings, it is more difficult to be “deceived” by a spam entry, that is a result which
received an unfairly high ranking.

6.4.6 QuadRank vs. Outranking approach

In this subsection we describe the main differences between our proposed method and
the Outranking approach.

• The Outranking approach takes into account only the individual rankings that each
document received by the component engines. On the other hand, QuadRank takes
much more parameters into consideration.

• The Outranking approach is an order-based method, therefore it is only based on
comparison among the ranks only. It neither considers scores, nor hits whereas Quad-
Rank assigns scores according to the ranking each item received by the component
engines.

• The Outranking approach introduces four user-defined parameters (preference, veto,
concordance and discordance thresholds). Selecting different values for these param-
eters can lead to significant modifications in the produced output ranking. In [52] it
is shown that small changes in the values of these parameters lead to rankings with
significant quality fluctuations. On the other hand, QuadRank involves settings of
weights for each document zone (See subsection 6.4.2 for more details).

• Since the Outranking approach requires a pairwise comparison of each item to every
other collected item, it can turn significantly slow particularly when multiple long
input lists are involved (because there are more items to be compared).

6.5 Experimental Evaluation

The most important measure of a search system’s performance is the quality of its
search results. Quality is a decision made after the results evaluation by one or more human
users. Moreover, it should not be assumed that quality is absolute; one user may well judge
that a result is qualitative, while another says it is not.

177
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

In addition, quality is usually identified with the relevancy of the returned results to a
given query. Every query represents an information need; the user who submits it, seeks for
information that is somehow related to the terms of the query. Consequently, a document is
judged to be relevant only if it addresses the stated information need, not because it happens
to contain all the words of the query.

To evaluate the performance of a metasearch engine, a basic difference from search
engines must be considered. A metasearch engine does not maintain its own document
collection. It neither employs crawlers, nor indexers to construct a repository and an un-
derlying index structure. Its output is based on the results that its component engines return.
It does not even retrieve the entire set of these results; it works only with the first parts of
this set, as these parts are the most promising to contain the best answers to a specified
query. Therefore, in the extreme situation where all component engines send irrelative re-
sults, there is nothing a metasearch engine can do. But as we show later, a metasearch
engine having an effective ranking fusion method, can mine the individual result sets and
fuse them to a list that ranks the best items at the top.

A number of methods have been suggested for evaluating the effectiveness of a search
system and its ranking algorithm. None of these methods are entirely satisfactory, but this
is a natural consequence of attempting to represent multidimensional behavior with a single
representative value.

To ensure a fair evaluation of QuadRank against its competitors in the context of re-
trieval effectiveness, we divide our experimentation into two phases: At first, we use data
from the TREC-2009 conference which apart from the result sets, it also provides a list
containing a set of queries and the corresponding relevant documents.

In the sequel, we measure the performance of the involved algorithms in the real-world
environment of QuadSearch. For this series of experiments there is no ground truth regard-
ing the relevancy of each document to our test queries. For this reason, we asked from six
of our colleagues to judge the relevancy of each document and in our analysis we consider
a document to be relevant if and only if more than half (four or more) of our colleagues
judged its relevance positively.

6.5.1 Retrieval effectiveness evaluation with TREC data

The first phase of our experiments includes the application of our proposed method to
the Web Adhoc (WA) Task of TREC-2009 Web Track [34]. This task contains 50 topics
(test queries) and 72 participating teams. For each query, each team provides a ranking of
about 1000 documents which is later evaluated by using a separate file containing all the
documents that are relevant to the given topic. The performances of the 10 best runs of the

178
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

WA task are reported in Table 6.4.

Run MAP P@5 P@10 P@20 R-Precision
uvamrftop 10.2% 41.6% 37.4% 28.8% 13.6%
UMHOOsd 10.2% 34.8% 37.2% 35.4% 17.5%
UMHOOsdp 10.2% 34.8% 37.2% 35.4% 17.5%
NeuLMWeb300 10.0% 44.8% 44.2% 38.0% 16.7%
NeuLMWeb600 9.8% 39.6% 39.8% 36.1% 16.9%
uogTrdphCEwP 9.8% 42.4% 37.4% 32.1% 15.4%
UMHOObm25B 9.8% 34.8% 36.4% 34.3% 16.8%
WatSdmrm3we 9.5% 16.0% 16.4% 16.6% 14.4%
udelIndDMRM 9.4% 26.0% 31.8% 33.1% 17.0%
udelIndDRSP 9.4% 28.0% 32.8% 31.9% 15.8%

Table 6.4: Performances of the 10 best runs of the WA task of TREC-2009.

For evaluation, we used the ‘trec eval’ standard program utilized by the TREC com-
munity in order to calculate several measures indicating the retrieval effectiveness of a sys-
tem. These measures are Mean Average Precision (MAP), R-Precision and Precision@n

(P@n) for n = 5, 10 and 20.
QuadRank is compared against the other two rank aggregation algorithms as well as

against some high performing official results from TREC-2009. For each topic, we retrieve
one list from each participating team, that is 72 rankings. From these rankings we retain
only the first k documents and in the sequel, the 72 top-k lists are merged into one large
list which is finally ranked by employing QuadRank, Borda Count and the Outranking
approach. In the following tables we present results for different values of k.

To measure the performance QuadRank, it was necessary retrieve the full text of each
candidate document in order to compute the Z(c) scores. Since all the candidate docu-
ments are from the Clueweb09 dataset, we have developed the appropriate software which
operates on the collection and extracts the desired information. Z(c) scores are computed
by considering the document’s title and URL only, because of the absence of textual snip-
pets. Furthermore, the locality of the user is unknown and the geographical relationship
between the user and a document can not be determined. For this reason, we have disabled
the Geographic extensions of the U(c) scores in this experimental phase.

Regarding the setting of the parameters introduced by the Outranking approach, we
used the same values as those mentioned by [52]. Therefore, we considered that each input
ranking is a complete order (sp = 0) and that an input ranking strongly refutes an ordering
between two documents when the difference of both document positions is large enough
(su = 75%). We also supposed that the majority of the rankings must be concordant

179
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

(cmin = 50%) and that every input ranking can impose its veto (dmax = 0).

Run MAP P@5 P@10 P@20 R-Precision
Best TREC Run 10.2% 41.6% 37.4% 28.8% 13.6%
Borda Count (30) 18.5% 39.2% 37.8% 33.8% 26.0%
Outranking Approach (30) 15.5% 42.0% 38.4% 36.8% 22.2%
QuadRank (30) 19.5% 43.2% 39.2% 36.4% 25.4%
Borda Count (100) 19.0% 44.0% 42.8% 41.1% 23.4%
Outranking Approach (100) 18.4% 50.0% 48.0% 40.5% 25.1%
QuadRank (100) 20.9% 46.4% 43.8% 42.3% 25.0%
Borda Count (200) 18.8% 47.6% 44.2% 42.4% 23.1%
Outranking Approach (200) 18.8% 51.6% 47.6% 44.9% 24.3%
QuadRank (200) 20.6% 49.8% 45.9% 44.7% 24.0%
Borda Count (500) 18.2% 50.4% 47.8% 42.1% 22.9%
Outranking Approach (500) 18.7% 50.4% 47.4% 41.3% 23.7%
QuadRank (500) 19.8% 50.4% 48.2% 42.6% 23.4%
Borda Count (1000) 17.3% 49.6% 48.0% 42.7% 22.0%
Outranking Approach (1000) 18.2% 50.8% 45.8% 39.4% 22.0%
QuadRank (1000) 19.9% 51.2% 49.0% 43.1% 21.4%

Table 6.5: Performance of different rank aggregation methods for m = 72 and variable
numbers of retained documents.

Table 6.5 shows the performance of the three examined rank aggregation methods in
the WA task for variable number of retained documents. If we consider Mean Average
Precision (MAP) as the comparison measure between the three methods, it is apparent that
QuadRank outperforms both Borda Count and the Outranking Approach for all values of
k. It is also remarkable that Borda Count performs better than the Outranking Approach
for small values of k, whereas the situation is reversed as k increases.

Regarding the average Precision values at cut off points 5, 10 and 20, the performance
of the three methods varies significantly. For instance, QuadRank achieved the highest
P@10 values for k = 500 and k = 1000, but for smaller values of k the Outranking
Approach becomes the winning method. Furthermore, for k = 100 QuadRank achieves
the highest P@20 value whereas for k = 200 the Outranking Approach fetched the most
qualitative top-20 list.

6.5.2 Retrieval effectiveness evaluation with test queries

To examine the retrieval effectiveness of the new ranking algorithm, we have inte-
grated its implementation within QuadSearch, our experimental metasearch engine. Var-
ious queries were submitted to the system and the results’ lists that the proposed ranking

180
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

fusion methods returned are recorded and analyzed in this subsection. For all tests demon-
strated here we exploited four major component engines (Google4, Yahoo!5, Live6 and
Ask7). The system dispatched our submitted queries to each of these component engines
and requested top-30 lists to be returned. Consequently, for the setup that we examine here
it holds that m = 4 and k = 30.

Let us suppose that a user searches for tickets for the forthcoming UEFA Champions
League final game and thus, he/she phrases and submits the query “tickets for uefa cham-

pions league final 2010”. The informational need is overt in this query. As mentioned
above, a document not only has to contain the query terms, but also to address the stated
information need to be considered as relevant. For the specified example query, a document
is relevant only when:

• it is relevant to the “uefa champions league” and

• it provides information about “tickets” and

• is about the final game that will be conducted in “2010”.

All documents containing information about the “uefa cup” or past “uefa champions

league finals” (e.g. 2008, 2009) are considered as irrelevant, since they do not satisfy the
user’s information need.

QuadSearch requested and received 120 results (thirty results from each component
engine). After the merging of the results’ lists, a set of candidates comprised of 88 unique
items is constructed.

The top-20 list that QuadRank produced for this query, is displayed in ranked order in
Table 6.6. The first column denotes the QuadRank ranking, whereas in the second column
we choose to display only the domain name of the returned result, to form a compact and
legible table. The next column shows which of the documents are relevant to the given
query (with respect to the judgement made by our colleagues) and the symbol Ri is used
to indicate the ith relevant document of the QuadRank’s top-20 list. The next four columns
signify the ranking that the component engines gave to this document8. The dash symbol
represents the absence of this result from an engine’s top-20 list. In the last two columns we
compute and display the ranking generated by the Borda Count method and the Outranking
approach (column headers BC and OA respectively), when they are applied on the same
result set.

4http://www.google.com
5http://search.yahoo.com
6http://www.live.com
7http://www.ask.com
8Column headers: G for Google, Y for Yahoo!, L for Live Search and A for Ask

181
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

URL R G Y L A BC OA
1 www.championsleagueticketservice.com R1 1 1 - 6 3 5
2 www.championsleagueticketshop.com R2 15 3 5 11 2 2
3 www.worldticketshop.com - 6 - 14 - 16 15
4 en.wikipedia.org R3 8 - 1 - 7 10
5 www.soldoutentertainments.com R4 10 2 7 7 1 1
6 www.1st4footballtickets.com R5 - - 13 - 45 62
7 www.uefa.com - 3 - 9 - 9 14
8 www.1st4footballtickets.com R6 - - 3 - 28 61
9 www.livefootballtickets.com R7 16 - 10 - 18 13
10 www.championsleagueticketservice.com - 2 - - - 10 78
11 www.nwtix.com R8 29 - 22 - 23 21
12 www.roadtrips.com R9 4 4 12 - 4 3
13 www.globalticketshop.com R10 - - 16 - 31 51
14 www.uefa.com - - - 6 4 8 9
15 www.1st4footballtickets.com R11 - - - 3 29 27
16 www.ticketcity.com - 12 11 8 - 5 4
17 soccerlens.com - 14 - 11 - 17 11
18 www.webuytickets.net R12 23 - - - 27 81
19 www.livefootballtickets.com - - 24 26 - 19 20
20 www.freetickets.org.uk R13 5 9 - - 15 17

Table 6.6: Top-20 list and relevant documents for the query “tickets for uefa champions
league final 2010” when the QuadRank algorithm is applied.

A significant number of results that the search engines returned, were about past “cham-

pions league finals”. Particularly we found that all component lists contained results re-
garding the final game of 2009 in their top-10 lists. Some other entries were about tickets
for the uefa cup final, whereas others included no information about tickets at all. All these
results were considered as irrelevant.

Now let us examine the first ten results returned by each algorithm. Ask performed
poorly in this query, since it produced only four relevant documents in its top-10 list,
whereas Google and Yahoo were more accurate as they returned six relevant documents.
On the other hand, the top-10 ranking that QuadRank produced was the most qualitative,
since it included seven relevant results. Note that QuadRank achieved to construct a re-
sult list which is improved compared to the rankings of the combined component engines.
These notations are all summarized in Table 6.7. The symbol R is used to signify a rele-
vant document, the dash symbol is used to mark the irrelevant ones, whereas S is used for
sponsored entries. The last column shows the total number of relevant documents returned
by each component engine or ranking algorithm in their top-10 list.

In the same Table we present the top-10 list provided by the most widespread metasearch

182
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Engine 1 2 3 4 5 6 7 8 9 10 R
QuadRank R R - R R R - R R - 7
Google R R - R - R - - R R 6
Yahoo! R R R R - R - R - - 6
Live Search - R R - R - R - - R 5
Ask - R R - - R R - - - 4
Dogpile S S S R - - - R R - 3
Borda Count R R R R - R - - - - 5
Outranking Approach R R R - R R - - - R 6

Table 6.7: Relevant Documents in the Top-10 Lists for the Query “tickets for uefa champi-
ons league final 2010”.

engine, Dogpile. The top three results are sponsored links found on Google Ads9, an online
advertisement service maintained by Google. The fourth result which is organic, is relevant
to the query, but it leads to the same location as the second result. It is clear that Dogpile’s
policy to include paid listings within organic results leads to a confusing top-10 list, which
contains different results leading to the same location. In total, Dogpile’s top-10 list for this
query contains three paid and only seven organic results. From these seven results, only
three are relevant to the query, as the other four concern past “Champions League finals”.

O
u

tr
an

k
in

g
 A

p
p

ro
ac

h

O
u

tr
an

k
in

g
 A

p
p

ro
ac

h

Figure 6.1: Measurements of Precision@10 and Precision@20 for various search engines
for the query “tickets for uefa champions league final 2010”

In Figure 6.1 we illustrate the effectiveness of the search engines which we examine in
our experiments. The two diagrams depict the precision values measured for the first 10
and 20 results respectively. QuadRank outperformed all of its opponents, since it produced

9https://www.google.com/adsense

183
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Engine QuadRank G Y L A BC OA
QuadRank - -0.26 0.16 -0.20 -0.07 0.41 0.31
Google -0.26 - 0.09 0.05 -0.09 0.09 0.25
Yahoo! 0.16 0.09 - -0.46 -0.42 0.03 0.16
Live -0.20 0.05 -0.46 - -0.32 -0.05 -0.03
Ask -0.07 -0.09 -0.42 -0.32 - -0.30 -0.63
Borda Count 0.41 0.09 0.03 -0.05 -0.30 - 0.84
Outranking Approach 0.31 0.25 0.16 -0.03 -0.63 0.84 -

Table 6.8: Rankings Correlation for the Query “tickets for uefa champions league final
2010”.

the most qualitative result list compared to the component engines, Dogpile, Borda Count
and the Outranking approach

The QuadRank algorithm outperformed all of its components including the compo-
nent engines, Dogpile and the Borda Count and Outranking methods, since it achieved the
highest precision values for both the top-10 and top-20 lists. Google, Yahoo and Dogpile
constructed top-10 lists of equal quality, whereas the latter’s ranking algorithm performed
better than the component engines. Regarding Borda Count, the top-10 and top-20 lists in-
cluded five and eleven relevant results respectively, consequently, our algorithm presented
more qualitative results. The Outranking approach was slightly more effective than Borda
Count but it was also outperformed by QuadRank.

In addition, the reader should note an interesting case. If we compare the 8th and 10th

entries of Table 6.6, we conclude that the latter received better ranking from the compo-
nent engines than the former. However, since QuadRank is not relied completely on the
individual rankings of the component engines, it positions them in the opposite manner.
That decision was vindicated, since the 8th entry is relevant to the given query, whereas
the 10th is not. There are many such cases in the rankings generated by QuadRank: For
example, compare the 6th entry to the 7th and 15th to 16th where the individual rankings
were correctly overlooked. On the other hand, the competitor rank aggregation methods
could not distinguish the difference and provided incorrect rankings.

Now let us examine how the involved result lists correlate. To evaluate the correlation
of the produced rankings, we employed the Spearman’s rho measure. The results illustrated
in Table 6.8, reveal that all algorithms produce lists that diverge significantly.

In the sequel, we measure the performance of the proposed algorithm for another situ-
ation, where a hypothetical engineer seeks information about how to construct an inverted
index in a distributed environment. The submitted query is phrased as “distributed index

construction” and dictates out metasearch engine to request 30 results from each of its

184
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

URL R G Y L A BC OA
1 nlp.stanford.edu R1 2 1 2 1 1 1
2 www.reedconstructiondata.com - 4 4 - 3 2 5
3 www.ims.uni-stuttgart.de R2 - 8 5 - 8 6
4 www.reedconstructiondata.com - 5 - - 4 6 12
5 ilpubs.stanford.edu:8090 R3 7 - 3 9 4 2
6 nlp.stanford.edu - - - 4 - 10 21
7 www.ics.uci.edu R4 - - 10 - 41 28
8 lecs.cs.ucla.edu R5 - 16 14 22 5 3
9 www.ics.uci.edu R6 - - 12 - 49 27

10 nlp.stanford.edu R7 3 2 - 2 3 4
11 ilpubs.stanford.edu:8090 R8 - - 15 - 74 19
12 en.wikipedia.org - - 7 28 - 25 7
13 ilpubs.stanford.edu R9 - 9 - - 28 42
14 www10.org R10 - 10 - - 30 53
15 docs.huihoo.com R11 9 - - 11 10 9
16 portal.acm.org - - 24 - - 77 43
17 www.reedconstructiondata.com R12 - 3 - - 18 52
18 www10.org R13 - - 11 - 46 32
19 www.dcs.bbk.ac.uk R14 - 30 - - 97 85
20 citeseerx.ist.psu.edu - 6 - - 5 6 8

Table 6.9: The top-20 list for the query “distributed index construction” when the Quad-
Rank Algorithm is Applied.

component engines. QuadSearch received 120 results and after the merging process, a set
of 100 candidates is generated and ranked.

A document is considered relevant to the given query, only if its content is relevant
to “indexes” and it contains some instructions regarding “distributed construction” in its
body. All the results that provided information regarding index compression, organization
or single-node construction were marked as irrelevant.

Compared to the previous case (where the set of candidates contained 88 items), we
conclude that for this query, the engines’ coverage is significantly smaller. At first, the
ranking that our algorithm generates, is studied. Table 6.9 illustrates the top-20 list returned
by QuadRank and also displays the individual rankings that each result received by the
component engines. The last two columns record the rankings that the Borda Count method
and the Outranking approach produced.

The Google and Ask component engines provided answers of medium quality for this
query; only five results out of ten were considered relevant, as only five contained the re-
quired information. Google concentrated on presenting scientific papers about “indexing”

but some of these works were originating from other sciences such as biology. In addition,

185
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Figure 6.2: Measurements of Precision@10 and Precision@20 for various search engines
for the query “distributed index construction”

Engine 1 2 3 4 5 6 7 8 9 10 R
QuadRank R - R - R - R R R R 7
Google - R R - - - R R R - 5
Yahoo! R R - - - R - R R R 6
Live Search R R R - R R - - - R 6
Ask R R - - R R - - R - 5
Dogpile - R - - - - R R R R 5
Borda Count R - R R - - - R - R 5
Outranking Approach R R R R - R - - R - 6

Table 6.10: Relevant documents in the engines’ top-10 lists for “distributed index construc-
tion”.

PageRank played its role, as most of the results are well known and institutional sources of
scientific information. In addition, Ask returned a top-20 list of low quality, since it was
deceived by the term “index”, a word that is commonly used to describe the home page of
a Web site.

On the other hand, Yahoo! and Live Search performed better in this case, since their
top-10 rankings contained six pages containing useful information. These engines also
presented satisfactory top-20 lists containing twelve relevant entries each.

QuadRank outperformed all of its opponents, since its top-10 and top-20 lists included 7
and 14 relevant results. Dogpile’s top-10 list was of equal quality to Google and Ask, but its
top-20 list was more informative only than Ask’s. Unlike the previous case where several
sponsored links were included in the top-10 list of Dogpile, for this query the metasearch
engine provided only organic results. Five of them were relevant to the query, whereas the

186
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

others provided information regarding distributed audio and video communication systems
and distributed process control systems.

The Borda Count method generated results of equal quality to Dogpile; five relevant
items in the top-10 list and only eight in the top-20. It becomes obvious that a simple rank
aggregation method that is heavily depended on the individual rankings of the component
engines, cannot always provide robust ranking. On the other hand, the component of the
QuadRank algorithm (equation 6.8) which examines the titles, the snippets and the URLs
of the collected elements, leads to result lists of improved quality.

Once again the Outranking approach was more effective than the Borda Count method
since it fetched six relevant documents in its top-10 list and twelve in its top-20. However,
the method did not produce as qualitative rankings as QuadRank.

In Table 6.10 we depict the relevancy of each item of the examined top-10 lists to the
query in question. Moreover, in Figure 6.2 we illustrate the precision of each ranking
algorithm, measured at cutoff points 10 and 20.

Finally, in Table 6.11 we evaluate the correlation of the various rankings of the experi-
ment, by recording the values of the Spearman’s rho measure.

Engine QuadRank G Y L A BC OA
QuadRank - -0.42 0.16 -0.09 -0.44 0.56 0.64
Google -0.42 - -0.53 -0.33 -0.50 -0.31 -0.32
Yahoo! 0.16 -0.53 - -0.18 -0.35 -0.20 -0.41
Live -0.09 -0.33 -0.18 - -0.27 -0.12 0.35
Ask -0.44 -0.50 -0.35 -0.27 - -0.38 -0.48
Borda Count 0.56 -0.31 -0.20 -0.12 -0.38 - 0.89
Outranking Approach 0.64 -0.32 -0.41 0.35 -0.48 0.89 -

Table 6.11: Rankings Correlation for the Query “distributed index construction”.

The third query we present here originates from the broader fields of health and medi-
cation. Here we are interested in locating the symptoms of the cancer of lungs, hence the
query we phrase is lungs cancer symptoms. The information need is quite targeted in this
query, since we desired to attest the accuracy of our algorithm in similar cases. Hence, the
documents containing information regarding only the causes or the treatments of the dis-
ease are considered as irrelevant. The same holds for results whose content is about other
types of cancers or other types of lungs maladies.

A page is considered relevant to the specified query, only if it contains the desired
information itself; not because it includes sets of links to other pages which “claim” to
provide such information. This rule was strictly followed by our colleagues during the
identification of relevant results.

187
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

URL R G Y L A BC OA
1 lungcancer.about.com R1 13 7 - - 10 15
2 www.merck.com R2 5 - 6 9 5 6
3 www.cancerssociety.org R3 - - - 14 42 74
4 www.webmd.com R4 10 2 7 - 4 4
5 www.emedicinehealth.com R5 2 - 3 5 2 3
6 www.cancerhelp.org.uk R6 4 - - 2 7 9
7 www.medicinenet.com R7 1 4 1 3 1 1
8 lungcancer.about.com - 12 6 - 18 6 5
9 www.webmd.com R8 - 1 5 - 8 7
10 www.emedicinehealth.com - 3 5 - 6 3 2
11 www.macmillan.org.uk R9 - - - 4 26 75
12 www.mayoclinic.com R10 11 11 - - 13 19
13 health.yahoo.com R11 14 13 - - 14 14
14 www.cancerhelp.org.uk R12 - - - 11 38 73
15 www.lungscancer.com - - - 2 - 24 34
16 www.cancer.gov R13 - 24 21 - 21 8
17 www.wrongdiagnosis.com R14 - 8 - - 31 63
18 www.cancerbackup.org.uk - - - - 22 63 71
19 www.webmd.com - 9 - - - 33 88
20 www.cancercenter.com R15 - 17 - - 50 50

Table 6.12: The top-20 list for the query “lungs cancer symptoms” when the QuadRank
algorithm is applied.

Engine 1 2 3 4 5 6 7 8 9 10 R
QuadRank R R R R R R R - R - 8
Google - R - R R R R - - R 6
Yahoo! R R R - - - R R R R 7
Live Search - - R R R R R R - R 7
Ask R R - R R - - - R R 6
Dogpile - - - - - R R R R R 5
Borda Count R R - R R - R R - R 7
Outranking Approach R - R R - R R R R R 8

Table 6.13: Relevant documents in the engines’ top-10 lists for “lungs cancer symptoms”.

Similarly to the previous experiments, our metasearch engine requested 30 results from
each component engine and after the merging process, a set of 91 elements is generated and
ranked. In Table 6.12 we record the elements of the top-20 list that QuadRank produced
and also, the individual rankings that each one received by the component engines. As
before, that dash symbol represents the absence of the element from an engine’s result list.

QuadRank presented the most qualitative top-10 list, since 8 results were relevant to

188
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

the given query. Furthermore, the first seven results were all of high informational quality,
as they included adequate reference regarding the subject of the query. Live search and
Yahoo! were also effective, although their top-10 rankings included one result less than
QuadRank’s list. Regarding the other two component engines, Google and Ask, they were
slightly less efficient, by including six relevant results in their top-10 rankings.

The first opponent rank aggregation method, Borda Count, constructed a top-10 list
comprised of seven relevant documents and it was outperformed by our proposed method.
On the other hand, the Outranking approach returned results that were of equal quality to
those of QuadRank. The other metasearch engine that we examine in our experiments,
Dogpile, exhibited poor performance and it was the worst among our examined search
engines, by building a top-10 list which contained only five relevant results. Table 6.13
provides a detailed image of the top-10 rankings of the examined search engines.

The top-20 ranking of Borda Count is significantly improved compared to the top-10 list
and was equally qualitative compared to the ones constructed by our QuadRank algorithm
and the Yahoo! component engine. In total, the top-20 lists of these three ranking methods
included 15 relevant documents. The left and right diagrams of Figure 6.3 illustrate the
precision values of the various systems and algorithms for the top-10 and top-20 listings
respectively.

Figure 6.3: Measurements of Precision@10 and Precision@20 for various search engines
for the query “lungs cancer symptoms”

Finally, in Table 6.14 we record the correlation of the rankings by using the Spearman’s
rho measure.

The example queries we have studied here reveal that a single search engine cannot
perform equally well for all types of queries. Although Google was effective for “tickets

189
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Engine QuadRank G Y L A BC OA
QuadRank - -0.41 0.22 -0.26 -0.26 0.65 0.50
Google -0.41 - -0.14 -0.48 -0.01 0.82 0.63
Yahoo! 0.22 -0.14 - -0.58 -0.39 -0.07 0.06
Live -0.26 -0.48 -0.58 - -0.50 -0.62 -0.59
Ask -0.26 -0.01 -0.39 -0.50 - 0.16 -0.07
Borda Count 0.65 0.82 -0.07 -0.62 0.16 - 0.73
Outranking Approach 0.50 0.63 0.06 -0.59 -0.07 0.73 -

Table 6.14: Rankings Correlation for the query “lungs cancer symptoms”.

for uefa champions league final 2010”, it did not provide equally informative results for
the query “distributed index construction”. The opposite behavior was exhibited by Live
Search and Yahoo, which presented informative top-10 lists in the second and third cases.

On top of that, our QuadRank scoring method performed steadily well on all submitted
queries. This sense is present on most cases, as our metasearch engine manages to eliminate
the component engines weak spots and combine their advantages efficiently.

Regarding the competitor rank aggregation methods, QuadRank outperformed Borda
Count by a significant margin for all of the three queries we have tested. QuadRank was
also more effective than the Outranking approach on two cases and equally accurate on the
third.

6.6 QuadSearch

In this paper we briefly describe QuadSearch, an experimental metasearch engine that
provides simultaneous access in four major conventional, crawler-based search engines.
The heart of the system is based on the rank aggregation algorithms we presented previ-
ously in this chapter. The engine aims to combine speed, reliable rank aggregation method,
“spam” free results, and detailed and enriched information. A publicly accessible interface
for the new metasearch engine can be found at http://quadsearch.csd.auth.gr/.

Initially, we describe the core components of the system and in the sequel, we present
some performance benchmarks which demonstrate the efficiency of QuadSearch.

6.6.1 Architecture

The most significant modules of QuadSearch are the Quad Bot, the Object Builder, the
Classification Module and the Presentation Module. These modules are described in the
next subsections. A schematic diagram of the architecture is depicted in the left part of
Figure 6.4.

190
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

O
u
tr

a
n
k
in

g
 A

p
p
ro

a
c
h

O
u
tr

a
n
k
in

g
 A

p
p
ro

a
c
h

Figure 6.4: (Left) Architecture of QuadSearch. (Right) Quad Search’s homepage.

6.6.1.1 User interface and database selector

The static content of Quad Search’s user interface is built with plain HTML, while
the dynamic procedures are being processed by PHP. Additionally, we invoked Cascading
Style Sheets (CSS) for page formatting. We decided that the Web pages’ layout should be
as simple as possible, in order to ensure: a) short download times, b) compatibility with all
major browsers, and c) convenient usage.

For these reasons we avoided using large graphics files, or embedded objects like Ac-
tiveX Controls, or Flash presentations. We also rejected Javascript, because many experi-
enced users tend to deactivate it, due to security reasons. Until now, Quad Search supports
the classic Web search and also searching procedures for news, images, video and audio
sources. The ability to search for scientific articles in the most popular scientific databases
is also supported, but not very efficient. The user can switch among these features from
either the home page or the results page. Regarding the database selector, the default search
will be run using all four search engines. The user however, has the option to choose which
search engines will be exploited, as shown in the right part of Figure 6.4.

Apart from the classic text box, we included the most significant search preferences
in the home page. The user can select the query resources (the search engines that will
participate in the search process), the number of results to be retrieved per resource, the
number of results that will be displayed per page etc. The interface provides the ability
to store the values of these parameters, by setting cookies in the client’s computer. Thus,
the user is not obliged to define again these parameters for future queries. The interface
includes an extra option to filter the results, to prevent spam records from entering the KE
list. Finally, in the options page the user can select the ranking algorithm (KE or Borda
Count).

191
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

6.6.1.2 QuadBot

QuadBot receives its inputs from both the database selector and the user interface. It is
responsible for validating the input data and parameters, passing the query to the selected
databases and collecting the results. Its internal structure is depicted in the left part of
Figure 6.5.

List 1 List 2 List 3 List 4

RESULT FETCHING MODULE

PRESENTATION MODULE

Sorter

List Merger

Array with

Container 2
ObjectObject

Container 1

QUAD BOT

Constructor
Properties

validated data

Obj NObj 2Obj 1 ...

CLASSIFICATION MODULE

Figure 6.5: (Left) Quad Bot’s structure. (Right) Object Builder’s architecture.

Parameter Receiver/Validator. It accepts all the data coming from the database selector
and the user. The validation process includes transformation of the inputs in a way that can
be sent to the search engines. For example, the procedure removes all leading and trailing
spaces from the query string and replaces all spaces by the character “+”. The Result
Validator also performs security checks to ensure that a “should-be” numeric parameter is
really numeric, or that an attacking user does not send a malicious script instead of a query
string. We developed this compartment by keeping in mind that all data coming from the
Internet should be treated as suspicious. There are over a dozens of security checks that are
performed for each parameter.

Query Dispatcher. The Query Dispatcher is the QuadBot’s heart. It gets the validated
data and creates http requests to the selected search engines. This is the slowest procedure
of the whole system; its speed depends on the number of the invoked search engines, the
requested results, the server’s Internet connection, etc. We have accelerated this procedure
by submitting all the requests to the search engines simultaneously. To achieve that, we
had to employ the libcurl library with cURL (client URL) extensions 7.16.0 for PHP 5.1,

192
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

that support multiple connections at a time. By building the Query Dispatcher this way, we
managed to shrink the idle time to no more than 1 or 2 seconds.

Result Collector. The Result Collector embraces the http responses transmitted by
the search engines. Each involved search engine must respond to the Query Dispatcher’s
request, by sending the source code of its result page. The source code is being filtered
by using pattern matching techniques. The module retrieves the ranking, the URL, the
title and the snippet for each candidate. When it receives all the information, it stores it in
temporary arrays and sends them to the next module for validation.

Result Validator. The Result Validator is the most complex compartment of this mod-
ule, as it performs multiple conversions to the collected data. The URL validation part is
responsible for the appropriate formatting of the collected URLs, so that the overlapping
candidates could be correctly detected later. At first, a UTF-8 decoding function converts
all UTF-8 encoded characters to their ISO equivalent. For example, the %27 set of charac-
ters is being converted to an opening single apostrophe character (’). At next, a formatting
function trims the trailing slash from a URL (if exists), a third procedure checks if an
engine has returned two identical URLs etc. As already mentioned above, most of these
conversions will be presented later on.

6.6.1.3 Object builder

The Object Builder is a connecting bridge between the Quad Bot and the Classification
module. We concluded that it is a good idea to treat our data as objects, so that we can use
all the object-oriented programming features (such as inheritance, or support for multiple
instances). This coding approach makes things very easy for the classification and presen-
tation modules. In this section we describe how the collected results are being converted to
objects. The Object Builder’s architecture is depicted in the right part of Figure 6.5.

Array with validated data. The Object Builder’s input is the array that the Quad Bot
produces. It contains all the collected results that passed the Result Validator’s checks.

Property Constructor. This module implements a class that describes the properties of
our objects. The properties that are being assigned to the objects are the URL, the Title,
the Abstract and one to four Rankings (depending on the number of the selected search
engines).

Object Containers 1 and 2. The first advantage of using objects in the system’s imple-
mentation comes almost immediately, as we are provided with the ability to create multiple
copies (not just references) of the objects. In this compartment, all the objects (the results)
are being transferred to two new, identical object containers. The results enter the contain-
ers in groups. The first group consists of the results that the first search engine returns, the

193
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

second group consists of the results that the second engine returns, etc. These containers
will be the main tool in our effort to compare the search engine rankings and generate the
final ranked list.

6.6.1.4 Classification module

The Classification Module accepts the two result containers from the Object Builder and
performs the result ranking according to the selected ranking algorithm. Its architecture is
illustrated in the left part of Figure 6.6.

List 1 List 2 List 3 List 4

RESULT FETCHING MODULE

PRESENTATION MODULE

Sorter

List Merger

Parameter Receiver

Result Page Builder

CLASSIFICATION MODULE
USER

Figure 6.6: (Left) Classification Module. (Right) Presentation Module.

Overlapping Detector. This section is responsible for detecting the overlapping can-
didates and for creating the final candidate list. It receives input from the two object con-
tainers and compares each object from the first container, to all objects from the second
container. When the URL properties of two objects are identical, this object is marked
as overlapping. Finally, the procedure constructs one container that holds all candidates,
overlapping or not. The overlapping candidates appear only once in this container.

Ranking Module. The Ranking Module accepts the candidate container that the Over-
lapping Detector constructs, but it also receives the ranking algorithm that the user selected.
The Ranking Module will apply the QuadRank algorithm by default, unless the user selects
another supported algorithm. Next, it computes the weight factors and/or the Borda Scores.
Finally, it sorts the candidate list on ascending (for weight factors) or descending (for Borda
Scores) order and passes the classified list to the Presentation Module.

6.6.1.5 Presentation module

The task of this module is to construct the result page that will be presented to the user.
In comparison to the other system compartments, this one has the simplest architecture. In
the right part of Figure 6.6, we illustrate a schematic diagram of its internal structure.

194
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

Parameter Receiver. In this section, a set of parameters and user preferences are being
transferred to the module. These preferences may either derive from user’s direct selec-
tions, or from a previously stored cookie. The innovative element here is the view selector.
QuadSearch is capable of displaying the results with the classic way that a search engine
displays its results, but also can present the results by using the array view. The array view
will present a matrix that shows only the titles of the candidates and the rankings they re-
ceived from each search engine. This feature has been developed because it offers an easier
way to compare the candidates.

Result Page Builder. The Result Page Builder is a HTML code production factory. It
accepts the ranked result list and the user preferences and constructs the source code of
the result page from the scratch. Finally, the page is displayed to the user through the user
interface.

6.6.2 Features

In this section, a brief list of QuadSearch’s primary features is presented.
1. Classic/Array view switch. This feature has already been mentioned earlier. The user

is able to view the results in the classic way, but can also select the array view that provides
an easier way of comparing the collected results.

3

2

1

4

5

Figure 6.7: The results’ page

2. Related searches. Apart from the desired results, the QuadBot is capable of grabbing
almost everything from the results’ pages that the exploited search engines transmit. In
order to provide more specific results, the search engines prompt their users to submit the
queries that they propose. The QuadBot can fetch these query strings and present it to the
result page through the Presentation Module.

195
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

3. File type filter. Many users tend to search the Web for specific file types (e.g., Adobe
Acrobat or Microsoft Word files) and QuadSearch includes a similar feature. The user can
select one of the most popular file extensions and perform a Web search. At this time, the
QuadSearch engine supports searches for the following file formats: PDF, DOC, XLS, PS,
RTF and PPT.

4. Search for scientific articles. QuadSearch supports searches for scientific articles in
the richest scientific databases. Google Scholar is also included in these databases. This
type of search can be accessed from the “Science” link and will return papers, technical
reports and books approved by the scientific community related to the query terms.

5. Query string explosion feature. This feature (see Figure 6.7) splits the query string
to its search terms and gives the user the ability to perform ‘single term’ searches. For
example, the query string ‘electronic engineering’ is being split to the terms ‘electronic’
and ‘engineering’. By clicking on any of these words QuadSearch will perform a Web
search.

Figure 6.8: Part of the options’ page is where the Ranking Algorithm Selector and the
Engine Bombing Protection lay.

6. Ranking Algorithm Selector. This feature (see Figure 6.8) is only accessible from
the options page and provides the user with the facility to determine how the collected re-
sults will be ranked, by employing one (or more) of the supported algorithms. At this time,
QuadSearch supports our KE Algorithm and the Borda Count method. It also provides a
third option that utilizes both algorithms and presents the results in array view (compari-
son mode). It is in our intentions to include more ranking algorithms in the system (e.g.,
Markov Chains).

196
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

7. Engine Bombing Protection. When various search resources are being exploited,
a possibility that many similar results will enter the result’s list always exists. This phe-
nomenon is called engine bombing. For example, it is not very informative and useful for a
user to submit a query and receive five or more results from the same domain in the top, say,
twenty listing. Thus, we developed a feature (which can be enabled or disabled) to prevent
multiple results coming from the same domain to enter into the result list; alternatively the
user can select the maximum number of such results.

6.6.3 Efficiency Evaluation

In the previous subsection, we have demonstrated how the use of the proposed rank
aggregation method can lead to better rankings, when compared to the rankings that the
component engines produce. We have indicated that the term “better”, concerns both Pre-
cision and quality of the returned results.

The second most important measure of a system’s performance, is how quickly it re-
sponds to a given query. It may well produce qualitative results, but this could be close to
useless, unless these results are produced in reasonable times.

Before we proceed to the evaluation of QuadSearch’s response, we discuss all the time
penalties that any metasearch engine has to suffer, before it presents a list of results to
the user. We also define idle time, as the total intermediate time between the moment the
user submits a query and the moment that the engine presents the results. All idle times
presented here, are expressed in seconds. In addition, henceforth, we will use the term
server, to refer to the machine that hosts the search system.

The idle time is affected by numerous factors. Generally, we cannot exactly calculate
it beforehand; we can only estimate a value, which is computed by using the following
relationship:

ttot = treq + tres + tret + tpr, (6.12)

where

• treq represents the request time, that is, the time that the system needs to send the
request to its component engines. It depends on the server’s upload capabilities. This
time is usually infinitesimal.

• tres is the total time the metasearch engine has to wait for the component engines
to respond. In other words, this is the time a single engine consumes to search its

197
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

index structure and apply its own ranking algorithm to form the results’ list. As it is
obvious, there is no technique that can be applied to improve this timing.

• tret signifies the results’ pages downloading duration. This is the most unstable factor
that affects a metasearch engine’s response. It depends on the server’s download
capability, the number of concurrent users, the daytime and other parameters that are
rigorous to manage. In general, improving the network capacity of the server, leads
to smaller download delays.

• tpr indicates the overhead added by the execution of the fusion and ranking algo-
rithms of the metasearch engine. The application of additional filters (such as the
anti-spam filter and engine bombing protection), further increases this time.

To evaluate the QuadSearch’s speed, we have formed a set of fifteen queries. During
the tests we tried to identify some terms whose inverted lists were stored in the component
engines’ caches and some that were not. These queries have been submitted to QuadSearch

with various parameters enabled and disabled, for all the proposed rank aggregation meth-
ods. We also exploit all of the four component engines available.

Query tret N
tpr

Borda Count Outranking QuadRank
tokyo hotel 1.53 90 0.04 0.09 0.05
artificial fertilizers 1.41 87 0.04 0.08 0.05
free flv player 1.34 80 0.03 0.07 0.04
lewis hamilton 1.56 90 0.04 0.09 0.05
markov chains 1.38 79 0.03 0.07 0.04
greenhouse effect 1.30 77 0.02 0.07 0.04
h-index 1.42 87 0.04 0.08 0.04
marine biology 1.38 85 0.04 0.08 0.05
public key encryption 1.64 90 0.04 0.11 0.06
voice over ip 1.55 89 0.04 0.10 0.06
waterfall 1.29 94 0.04 0.10 0.04
scorched earth 1.34 85 0.04 0.08 0.05
apple 1.21 92 0.04 0.09 0.04
cold war 1.22 84 0.03 0.08 0.04
iran nuclear weapons 1.54 99 0.05 0.11 0.07
AVERAGE 1.41 87.2 0.037 0.086 0.048

Table 6.15: QuadSearch response times for various rank aggregation methods and 30 re-
quested results per engine.

In Table 6.15 we record the time performance of various rank aggregation methods in
the environment of QuadSearch for each query of our set, when the system requests k = 30

198
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

results from its component engines. The second column shows the retrieval times tret, that
is, the time the metasearch engine needs to download the result lists from the component
engines. In the third column we record the length of the list which derives from the fusion
of the input rankings, whereas the three last columns contain the times each algorithm
needs to rank the merged list.

Borda Count is the fastest algorithm and this is expected since the score of each docu-
ment is computed by simply adding the individual rankings it received by the component
engines. QuadRank is somehow slower (by a margin of about 23%) since the evaluation
of the Z(c) and U(c) scores is slightly more expensive. The Outranking approach is by far
the slowest method since each document must be compared with the rest N − 1 documents
in all 4 input rankings. Therefore, it is approximately 2.3 times slower than Borda Count
and 1.8 times slower than QuadRank.

Notice that processing times for Borda Count and the Outranking Approach depend
only on the number of documents of the merged list. Therefore, the more documents the
merged list contains, the slower Borda Count and the Outranking Approach become. On
the other hand, apart from the number of documents of the merged list, the timings of
QuadRank also depend on the length of the submitted query due to the existence of zone
weighting. Consequently, we expect from longer queries to be processed at lower rates.

Query tret N
tpr

Borda Count Outranking QuadRank
tokyo hotel 2.01 276 0.23 0.82 0.31
artificial fertilizers 1.95 295 0.25 0.94 0.37
free flv player 1.94 259 0.21 0.74 0.35
lewis hamilton 2.13 277 0.22 0.85 0.30
markov chains 1.98 267 0.21 0.78 0.36
greenhouse effect 1.99 255 0.21 0.71 0.28
h-index 2.03 297 0.26 0.97 0.31
marine biology 2.13 269 0.22 0.80 0.29
public key encryption 2.07 292 0.25 0.93 0.38
voice over ip 2.22 296 0.26 0.96 0.57
waterfall 2.25 306 0.26 1.02 0.33
scorched earth 1.99 278 0.22 0.85 0.32
apple 1.91 274 0.22 0.82 0.26
cold war 2.07 286 0.24 0.88 0.33
iran nuclear weapons 2.40 314 0.27 1.08 0.40
AVERAGE 2.07 281.6 0.24 0.87 0.34

Table 6.16: QuadSearch response times for various rank aggregation methods and 100 re-
quested results per engine.

199
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

In Table 6.16 we repeat the experiment by requesting top-100 lists. Apparently, in this
case the average retrieval time increases significantly as more time is required to download
larger lists. Furthermore, the fusion and ranking duration increases, since now we have to
process more documents. Notice that while QuadRank remains slower than Borda Count
by a relatively stable percentage of 24%, the performance of the Outranking Approach
degrades considerably faster (2.5 times slower than QuadRank and 3.6 times slower than
Borda Count).

6.7 Conclusions

In this chapter we discussed the problem of rank aggregation and we studied the current
state-of-the-art approaches for solving the problem. We introduced QuadRank, a method
which is especially designed for aggregating results collected from Web search engines
(component engines), that is, it primarily concerns Web metasearch engines. QuadRank
takes into consideration multiple attributes such as the individual rankings assigned by
the component engines, the number of appearances of an item in the result lists of the
component engines, and the physical location (zone or field) of a document where a query
term occurs. QuadRank also performs a URL analysis and compares the locality of the
page to the locality of the user and assigns scores accordingly.

QuadRank was exhaustively attested by using data from the 2009 Text Retrieval Con-
ference. Moreover, we used results from our own test queries; in both experimental phases
we concluded that QuadRank outperformed Borda Count, the Outranking Approach and
the Condorcet method by a significant margin. Furthermore, we examined another family
of rank aggregation methods, the KE family. The member functions of KE can be seen as
the ancestors of QuadRank.

All the proposed methods have been implemented within QuadSearch, a prototype
metasearch engine which have been developed as a testbed for designing new rank ag-
gregation methods and general solutions for the wider problem of metasearching.

200
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

CHAPTER VII

Conclusions

In this chapter we conclude this dissertation and we report the most important results
of the research conducted here.

In chapter II we studied issues regarding the improvement of the query throughput of
Web search engines. Query throughput is a metric which reflects the rates at which a
search engine responds to the incoming requests in a time unit. It is an extremely important
measure of the efficiency, since the modern Web search engines now accept user queries
at rates touching 10 thousands per second. Such tremendous workloads dictate that all the
underlying subsystems of a search engine must be fully optimized.

Our effort was towards the proposal of efficient methods for the organization and the
compression of the data stored within the inverted index. The inverted index is the most
important data structure maintained by search engines in order to generate ranked results in
response to user queries. They are mainly composed i) by the lexicon, a list which contains
all the terms appearing in the document collection, and ii) the inverted file which stores for
each term of the lexicon, one list (the inverted list) with the representations (or postings) of
all the term occurrences in the document collection.

According to the recent literature, the most robust algorithms for compressing that data
stored in the inverted index are those which are capable of encoding entire bundles of inte-
gers, such as PForDelta [69], and VSEncoding [129]. These methods combine satisfactory
compression effectiveness with high decompression speed and are considered ideal for en-
coding the document identifiers (docIDs) and the frequency values of the postings of an
inverted list. Nevertheless, regarding the positional data accompanying each posting they
are not equally useful because during query processing it is required that we decode only
limited data; consequently, the decompression of entire blocks of integers is apparently re-
dundant. Furthermore, these methods do not support direct access to the desired data and
they introduce a costly look-up operation.

201
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

To address these drawbacks we introduce PFBC (Positions Fixed Bit Compression) [9],
a method which encodes the positions of an inverted list block by using a fixed number of
bits. PFBC also dictates that we store within the skip table one additional pointer value
for each block of an inverted list; this pointer shows the exact location of the starting point
of the compressed positions. We show that such an organization allows direct access to
the positional data, since we are able to compute the location of the required data instead
of looking up for it. Moreover, we decode only the information actually needed. The
experiments on various experimental index setups demonstrated that PFBC:

• Decodes 7–11 times fewer data than PForDelta and VSEncoding.

• Decodes the positional data required to process a query 5 times faster than the adver-
sary approaches.

• Accesses the desired data instantly and no costly look-ups are required.

• Does not require the existence of an additional positions look-up data structure.

• Requires much fewer pointers than the other approaches such as indexed lists.

• Introduces a compression loss of about 3%, resulting in slightly increased index sizes.
However, this cost is amortized by the smaller size of the accompanying data struc-
tures.

We also investigated strategies of including additional information within the inverted
index by considering the structure of the Web documents. This structure is expressed by
the usage of zones (or fields) and in chapter II we discussed how this additional information
can be integrated in the index. We replaced the plain positional information by the notion
of the term occurrence, an enriched representation which apart from the positional value,
also stores the identifier of the zone where the term is located within the document.

Almost immediately, a new problem was created: how can we encode the additional
information without suffering prohibitively large index sizes and without decreasing query
throughput? To address this problem we were based on the main ideas behind PBFC.
We introduced TZP [16], a method for compressing the aforementioned word occurrences.
TZP dictates that each document zone is assigned a unique zoneID value and that each
zoneID is accompanied by the corresponding positional value. This position-zoneID pair
is initially encoded in a 32-bit space by reserving the zb most significant bits for the zoneID.
In the sequel, these encoded representations are again encoded by employing a fixed num-
ber of bits, in a fashion similar to that of PFBC. Due to this strategy TZP exhibits the same

202
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

advantages over the competitor compression algorithms, as PFBC. The experimental eval-
uation of TZP showed that the enriched inverted index which includes zone information is
only 11–13% larger than a plain positional index, and it introduces no additional time costs
during the evaluation of a query.

Chapter III was dedicated to the identification of influential bloggers in community
blog sites. Since this is a relatively new problem, there was only one competitor approach:
the influence-flow model of [5]. In this chapter we exposed the main drawbacks of this
model and we introduced MEIBI and MEIBIX, two new metrics which eliminate these
drawbacks. In short, the benefits of these two methods are:

• They are time-sensitive: Blogosphere, is extremely volatile; millions of blog posts
are produced in short periods of time, new bloggers enter the community whereas
others leave it at rapid rates. Therefore, a robust influence evaluation metric should
not overlook this crucial parameter. MEIBI assigns influence scores to the bloggers
by taking into consideration the elapsed time since the publication of his/her articles.
On the other hand, MEIBIX considers an article influential if the article receives
references in the present, regardless of its publication date. In contrast to the pre-
liminary influence-flow model, both metrics identify the bloggers who are presently

influential.

• They take into consideration the productivity of a blogger: The existing approach
assigns scores to the bloggers by accounting only the best post, however, this is
apparently inadequate; a blogger who publishes only a few very influential posts
in log periods of time cannot be considered more influential than a frequent writer
whose posts are equally influential.

• They are simple: The ι-scores of the influence-flow model are defined in a recursive
manner similar to PageRank. This requires multiple iterations before the system con-
verges and it could lead to stability problems due to the negative influence assigned to
the outgoing links. On the other hand, the proposed approaches are based on simple
algebraic scores which can be computed directly.

• They do not require fine-tuning: In contrast to the influence-flow model, MEIBI and
MEIBIX do not include user-defined parameters.

Nevertheless, the plain identification of influential bloggers may not be adequate since
the matter of productivity is equally important. For this reason we posed the issue of the
bloggers classification not by assigning a single evaluation metric, but by determining a

203
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

point on a two dimensional productivity-influence plane. We introduced a new metric,
BP/BI-index, an indicator which is used to classify the bloggers of a community into one
of the following predefined classes: A (contains bloggers who are both productive and
influential), B (contains those who are influential but not productive), C (the opposite of
B, consists of productive but not influential bloggers), and D (nor productive, nor influen-
tial) [14].

The proposed MEIBI, MEIBIX and BP/BI-index where attested by using data crawled
from real-world community blog sites. The experiments demonstrated the usefulness of
our methods by providing more sensible and effective blogger rankings and classifications.

In chapter IV we dealt with the problem of improving the retrieval effectiveness in Web
search engines and the blog vertical search engines. Regarding the former, we examined the
usefulness of combining robust scoring schemes such as term proximity and zone weight-
ing into a single ranking function. We introduced BM25TOPF [16], a scheme which is
based on the field structure of the Web documents discussed in chapter II, and requires that
both zone and positional information is stored within the index. The main characteristics
of BM25TOPF are summarized into the following list:

• It takes advantage of the enriched index representation of chapter II, which stores
both positional and zone data within the inverted lists’ postings.

• It combines the essence of BM25F which rewards the words appearing in specific
locations (such as the title, or the URL) with the spirit of BM25TP which rewards
the documents having the query terms in a close proximity.

• It takes into account the correct term ordering, that is, it boosts the documents which
have the query terms in the same order as they appear in the submitted query.

The retrieval effectiveness of BM25TOPF was experimentally measured by using a set
of 50 queries from the Adhoc task of the TREC 2009 conference. The document collection
we employed was the ClueWeb09-B dataset, a large repository comprised of about 50
million Web pages, whereas the underlying index structure was of the form of chapter II.
Our method outperformed BM25F, the most effective competitor function, by a margin of
approximately 6%.

The second contribution of chapter IV concerns the opinionated document retrieval
in blog search engines. The problem is of remarkable importance, since a high-quality
opinion expressed by an influential blogger affects a large number of users and its impact
is large. As mentioned in chapter IV, a positive opinion about a product can significantly
increase its commercial success whereas in contrast, multiple negative statements about a

204
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

politician can decrease his/her publicity and affect the success of his/her political career.
Similar examples include artists, events, travel locations, service providers, and generally
every judgeable aspect of life.

Until now, the opinionated retrieval models did not consider the issue of the objective
quality of a blog post. In other words, the retrieved documents were scored by account-
ing only their relevance to the given query, and the grade of their “opinionatedness”. In
this work we highlighted that similarly to the traditional Web retrieval, it is essential that
we develop special query-independent metrics which indicate the overall importance of a
blog entry in combination with the other two criteria. We introduced the QUIQS (Query-

Independent Quality Metrics), a set of indicators which determine the importance of a blog
post according to the reputation of their author, the importance of the hosting blog site, and
several query-independent statistics (i.e. number of incoming references, number of com-
ments, word length etc). After the introduction of QUIQS, we developed a model which
assigns scores to the blog posts by linearly combining its IR-score, its opinion score, and
the value of QUIQS.

The experimental evaluation of this model was performed by using 20 queries from the
Blog Track of the TREC 2009 conference, against Blogs08, a large repository of 28 million
blog entries. Compared to the other state-of-the-art approaches which did not consider
objective quality metrics, our model exhibited better MAP by about 7.5%.

In chapter V me presented numerous solutions to problems which are related to the
academic search engines, digital libraries and scientific databases. Initially we studied the
most important scientometrics, that is, indicators which evaluate the research work of a
scientist. We introduced the notion of coterminal citations and we presented them as a
form of self-citations and co-citation. Based on this spirit, we introduced the f -index, a
new metric for quantifying the impact of coterminal citations in scientific networks.

The current academic search engines and digital libraries have recently included the
scientometrics in the automated (or semi-automated) profile pages of the authors. Since
until recently the sizes of these systems was small the problem of computing these values
was of no special interest. However, the quick growth of their repositories1 in combina-
tion with the increased users’ interest have rendered such large-scale problems particularly
challenging. In chapter V we presented four strategies for computing the most popular sci-
entometric indicators in parallel by using Hadoop/MapReduce, a fault-tolerant framework
for solving problems in large scales [8]. The experimental efficiency measurements of these
strategies was performed on two different clusters by using the CiteSeerX dataset, a 30 GB

1Google Scholar’s repository consists of hundreds of millions of scientific documents, whereas as of April
2013, Microsoft Academic contained approximately 40 million articles and 19 million author profiles.

205
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

collection of research articles. These experiments revealed that the usage of in-Mapper
Combiners improves running times by about 35%, whereas it reduces network bandwidth
by 43%.

In the sequel, we introduced the problem of identifying the most attractive research
areas for new scientists [15]. Although this problem may seem similar to the generic de-
termination of the emerging research areas, the one we study here is different, since there
are emerging fields of science which are not suitable for starters. We defined the primary
characteristics of the starters and we referred to their lack of experience and trust, two fac-
tors which may render some research topics “hostile” to them. The model we proposed is
based on a number of features which combine these characteristics to the attributes of the
emerging research areas. In the sequel, we experimentally demonstrated the effectiveness
of this model and we concluded that not all popular or emerging research fields are suitable
for new scientists.

The fourth contribution of chapter V concerns a popular data mining task, that of doc-
ument classification. In our study we were mainly interested in proposing a robust method
for classifying research articles, a problem which is slightly different than the one of stan-
dard document classification. Although these problems are different, their usefulness is
equally high; an effective research article classification method can be exploited to develop
robust search tools such as searches for relevant items, suggestions of similar papers and
scientists, query expansion methods and several others.

In this chapter we also introduced a supervised machine learning (ML) algorithm [10].
Our method is based on a predefined set of labels and a set of papers (training set) which
have already been assigned one or more labels from the label set. It extracts the keywords,
authors, journals, and co-authorship information from the elements of the training set and
constructs a data model comprised of three relevance description vectors. Each of these
vectors stores some information which indicates and quantifies the relationship of each
keyword, author/co-author, and journal to each candidate label. In the sequel, we apply
this model in combination with a scoring function (i.e. inverse document frequency, log-
arithmic, etc) to assign labels to the elements of the testing set. The evaluation of our
algorithm was performed by using the cross validation rule and the CiteSeerX dataset. We
compared it against the two state-of-the-art ML algorithms, the Support Vector Machines
and AdaBoost.MH; our algorithm was steadily more accurate than both of its adversaries,
whereas AdaBoost.MH failed to complete some tests due to its enormous memory con-
sumption.

Finally, in chapter VI we dealt with the generic problem of rank aggregation and with
a specialization of it, the ranking fusion in Web metasearch engines. The issue in question

206
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

concerns the determination of effective algorithms in order to merge and rearrange ranked
lists of results deriving from a number of information sources. Here we introduced a fam-
ily of such methods, comprised of the KE algorithm, and a number of variants which takes
into consideration additional parameters [17, 11]. The basic KE methodology introduces a
scoring formula which is based on several statistics such as the items’ individual rankings,
the number and the length of the component lists’, and the total number of each item ap-
pearances. We also introduced a set of variants with the aim of improving the effectiveness
of KE in the context of metasearching.

Based on the strong points of the KE family, we defined another rank aggregation
method, namely QuadRank [13] which also takes into consideration multiple attributes
such as the individual rankings assigned by the component engines, the number of appear-
ances of an item in the result lists of the component engines, and the physical location
(zone or field) of a document where a query term occurs. QuadRank also performs a URL
analysis and compares the locality of the page to the locality of the user and assigns scores
accordingly.

QuadRank was exhaustively attested by using data from the 2009 Text Retrieval Con-
ference. Moreover, we used results from our own test queries; in both experimental phases
we concluded that QuadRank outperformed Borda Count, the Outranking Approach and
the Condorcet method by a significant margin. Furthermore, we examined another family
of rank aggregation methods, the KE family. The member functions of KE can be seen as
the ancestors of QuadRank.

All the proposed methods have been implemented within QuadSearch [17], a prototype
metasearch engine which have been developed as a testbed for designing new rank aggrega-
tion methods and general solutions for the wider problem of metasearching. An operational
implementation of QuadSearch can be accessed under http://quadsearch.csd.auth.gr.

207
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

APPENDICES

208
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

APPENDIX A

Refereed Publications

A.1 Publications in journals and transactions

1. Leonidas Akritidis, Panayiotis Bozanis. Improving Opinionated Blog Retrieval Ef-
fectiveness with Quality Measures and Temporal Features, WWW Journal, Springer,
to appear, June 2013.

2. Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis. Identifying Attractive
Research Fields for New Scientists, Scientometrics, Springer, vol. 91, no. 3, pp.
869-894, March 2012.

3. Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis. Improved Retrieval
Effectiveness by Efficient Combination of Term Proximity and Zone Scoring: A
Simulation-based Evaluation, Simulation Modelling: Practice And Theory, Elsevier,
vol. 22, no. 3, pp. 74-91, March, 2012.

4. Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis. Identifying the Produc-
tive and Influential Bloggers in a Community, IEEE Transactions on Systems, Man,
and Cybernetics-Part C: Applications and Reviews, vol. 41, no 5, pp. 759-764,
September 2011.

5. Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis. Effective Rank Aggre-
gation for Metasearching, Journal of Systems and Software, Elsevier, vol. 84, no 1,
pp 130-143, January 2011.

209
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

6. Dimitrios Katsaros, Leonidas Akritidis, Panayiotis Bozanis. The f-index: Quantify-
ing the Impact of Coterminal Citations in Scientists Ranking, Journal of the Amer-
ican Society for Information Science and Technology (Wiley), vol. 60, no. 5, pp.
1051-1056, May 2009.

A.2 Publications in international conferences

1. Leonidas Akritidis, Panayiotis Bozanis. A Supervised Machine Learning Classifi-
cation Algorithm for Research Articles, In Proceedings of the 28th ACM Sympo-
sium on Applied Computing (SAC 2013), Coimbra, Portugal, accepted, March 18-
22, 2013.

2. Leonidas Akritidis, Panayiotis Bozanis. Computing Scientometrics in Large-Scale
Academic Search Engines with MapReduce, In Proceedings of the 13th International
Conference on Web Information System Engineering (WISE 2012), Paphos, Cyprus,
Lecture Notes in Computer Science (LLNCS), vol. 7651, pp. 609-623, November
28-30, 2012.

3. Leonidas Akritidis, Panayiotis Bozanis. Positional Data Organization and Compres-
sion in Web Inverted Indexes, In Proceedings of the 23rd International Conference on
Database and Expert Systems Applications (DEXA 2012), Vienna, Austria, Lecture
Notes in Computer Science (LLNCS), vol. 7446, pp. 422-429, September 3-7, 2012.

4. Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis. Identifying Influential
Bloggers: Time Does Matter, In Proceedings of the 2009 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence (WI 2009), IEEE Press, Milan, Italy, pp.
76-83, September 15-18, 2009.

5. Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis. Effective Ranking Fu-
sion Methods for Personalized Metasearch Engines, In Proceedings of the 12th Pan-
hellenic Conference on Informatics (PCI 2008), IEEE Press, Samos, Greece, pp.
39-43, August 28-30, 2008.

A.3 Chapters in books

1. Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis. Modern Web Tech-
nologies, Chapter in New Directions in Web Data Management, (Athena Vakali &
Lakhmi C. Jain, eds.), Springer, 2011.

210
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

A.4 Publications in national conferences

1. Leonidas Akritidis, George Voutsakelis, Dimitrios Katsaros, Panayiotis Bozanis. Quad-
Search: A novel metasearch engine, In Proceedings of the 11th Panhellenic Confer-
ence on Informatics (PCI 2007), Patras, Greece, pp. 453-466, May 18-20, 2007.

A.5 Technical reports

1. Leonidas Akritidis, Dimitrios Katsaros, Panayiotis Bozanis. Identifying Influential
Bloggers: Time Does Matter, Technical Report, May, 2009.

2. Dimitrios Katsaros, Leonidas Akritidis, Panayiotis Bozanis. Spam: It’s Not Just
for Inboxes and Search Engines! Making Hirsch h-index Robust to Scientospam,
Technical Report, January, 2008.

211
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

BIBLIOGRAPHY

212
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

BIBLIOGRAPHY

[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and
Alexander Rasin. Hadoopdb: an architectural hybrid of mapreduce and dbms tech-
nologies for analytical workloads. Proceedings of the VLDB Endowment, 2(1):922–
933, 2009.

[2] Jonathan Adams. The use of bibliometrics to measure research quality in uk
higher education institutions. Archivum immunologiae et therapiae experimentalis,
57(1):19–32, 2009.

[3] Robert Adler, John Ewing, and Peter Taylor. Joint committee on quantitative as-
sessment of research: citation statistics. Australian Mathematical Society Gazette,
35(3):166–88, 2008.

[4] Nitin Agarwal and Huan Liu. Blogosphere: Research issues, tools and applications.
ACM SIGKDD Explorations, 10(1):18–31, 2008.

[5] Nitin Agarwal, Huan Liu, Lei Tang, and Philip S. Yu. Identifying the influential
bloggers in a community. In Proceedings of the 2008 international conference on
web search and data mining, pages 207–218, 2008.

[6] Nir Ailon. Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica,
57(2):284–300, 2010.

[7] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent infor-
mation: ranking and clustering. Journal of the ACM, 55(5):23, 2008.

[8] Leonidas Akritidis and Panayiotis Bozanis. Computing scientometrics in large-scale
academic search engines with mapreduce. Web Information Systems Engineering-
WISE 2012, pages 609–623, 2012.

[9] Leonidas Akritidis and Panayiotis Bozanis. Positional data organization and com-
pression in web inverted indexes. In Proceedings of the 23rd International Confer-
ence on Database and Expert Systems Applications, pages 422–429, 2012.

[10] Leonidas Akritidis and Panayiotis Bozanis. A supervised machine learning classifi-
cation algorithm for research articles. In Proceedings of the 28th ACM Symposium
on Applied Computing, pages 115–120, 2013.

213
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[11] Leonidas Akritidis, Dimitrios Katsaros, and Panayiotis Bozanis. Effective ranking
fusion methods for personalized metasearch engines. In Proceedings of the 2008
Panhellenic Conference on Informatics, pages 39–43, 2008.

[12] Leonidas Akritidis, Dimitrios Katsaros, and Panayiotis Bozanis. Identifying influen-
tial bloggers: Time does matter. In Proceedings of the 2009 IEEE/WIC/ACM Inter-
national Joint Conferences on Web Intelligence and Intelligent Agent Technologies,
pages 76–83, 2009.

[13] Leonidas Akritidis, Dimitrios Katsaros, and Panayiotis Bozanis. Effective rank ag-
gregation for metasearching. Journal of Systems and Software, 84(1):130–143, 2011.

[14] Leonidas Akritidis, Dimitrios Katsaros, and Panayiotis Bozanis. Identifying the
productive and influential bloggers in a community. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 41(5):759–764, 2011.

[15] Leonidas Akritidis, Dimitrios Katsaros, and Panayiotis Bozanis. Identifying attrac-
tive research fields for new scientists. Scientometrics, 91(3):869–894, 2012.

[16] Leonidas Akritidis, Dimitrios Katsaros, and Panayiotis Bozanis. Improved re-
trieval effectiveness by efficient combination of term proximity and zone scoring: A
simulation-based evaluation. Simulation Modelling Practice and Theory, 22(3):74–
91, 2012.

[17] Leonidas Akritidis, Georgios Voutsakelis, Dimitrios Katsaros, and Panayiotis Boza-
nis. Quadsearch: A novel metasearch engine. Current Trends in Informatics, pages
453–466, 2007.

[18] Jeff Allen. Comparison of metasearch engines. Technical report, 2009.
Southern Methodist University, CSE8337, available at http://jdadesign.net/wp-
content/uploads/2010/01/HW2b.pdf.

[19] Vo Ngoc Anh and Alistair Moffat. Structured index organizations for high-
throughput text querying. String Processing and Information Retrieval, pages 304–
315, 2006.

[20] Vo Ngoc Anh and Alistair Moffat. Index compression using 64-bit words. Software:
Practice and Experience, 40(2):131–147, 2010.

[21] Javed A. Aslam and Mark Montague. Models of metasearch. In Proceedings of the
24th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 276–284, 2001.

[22] Michael G. Banks. An extension of the hirsch index: Indexing scientific topics and
compounds. Scientometrics, 69(1):161–168, 2006.

[23] MM Sufyan Beg and Nesar Ahmad. Soft computing techniques for rank aggregation
on the world wide web. World Wide Web Journal, 6(1):5–22, 2003.

214
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[24] Pratyush Bharati and Peter Tarasewich. Global perceptions of journals publishing
e-commerce research. Communications of the ACM, 45(5):21–26, 2002.

[25] Mustafa Bilgic, Galileo Mark Namata, and Lise Getoor. Combining collective clas-
sification and link prediction. In Proceedings of Workshop on Mining Graphs and
Complex Structures at the IEEE International Conference on Data Mining, pages
381–386, 2007.

[26] Paolo Boldi and Sebastiano Vigna. Compressed perfect embedded skip lists for
quick inverted index lookups. String Processing and Information Retrieval, pages
25–28, 2005.

[27] Lutz Bornmann and Hans-Dieter Daniel. Does the h-index for ranking of scientists
really work? Scientometrics, 65(3):391–392, 2005.

[28] Dhruba Borthakur. The hadoop distributed file system: Architecture and design.
Hadoop Project Website, 11:21, 2007.

[29] Tibor Braun, Wolfgang Glänzel, and András Schubert. A hirsch-type index for jour-
nals. Scientometrics, 69(1):169–173, 2006.

[30] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks and ISDN Systems, 30(1):107–117, 1998.

[31] Stefan Büttcher, Charles LA Clarke, and Brad Lushman. Term proximity scoring
for ad-hoc retrieval on very large text collections. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 621–622, 2006.

[32] Flavio Chierichetti, Ravi Kumar, and Prabhakar Raghavan. Compressed web in-
dexes. In Proceedings of the 18th International Conference on World Wide Web,
pages 451–460, 2009.

[33] CiteSeerX. Citeseerx data. http://csxstatic.ist.psu.edu/about/data, 2013.

[34] Charles L. Clarke, Nick Craswell, and Ian Soboroff. Overview of the trec 2009 web
track. In Proceedings of TREC 2009, 2009.

[35] Don Coppersmith, Lisa Fleischer, and Atri Rudra. Ordering by weighted number of
wins gives a good ranking for weighted tournaments. In Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorithm, pages 776–782, 2006.

[36] Blaise Cronin. Hyperauthorship: A postmodern perversion or evidence of a struc-
tural shift in scholarly communication practices? Journal of the American Society
for Information Science and Technology, 52(7):558–569, 2001.

[37] Blaise Cronin. Scholarly communication and epistemic cultures. New review of
academic librarianship, 9(1):1–24, 2003.

215
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[38] Blaise Cronin, Debora Shaw, and Kathryn La Barre. A cast of thousands: Coau-
thorship and subauthorship collaboration in the 20th century as manifested in the
scholarly journal literature of psychology and philosophy. Journal of the American
Society for Information Science and Technology, 54(9):855–871, 2003.

[39] Kushal Dave, Steve Lawrence, and David M. Pennock. Mining the peanut gallery:
Opinion extraction and semantic classification of product reviews. In Proceedings
of the 12th International Conference on World Wide Web, pages 519–528, 2003.

[40] Jeffrey Dean. Challenges in building large-scale information retrieval systems: in-
vited talk. In Proceedings of the Second ACM International Conference on Web
Search and Data Mining, pages 1–1, 2009.

[41] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[42] Robert P DeConde, Sarah Hawley, Seth Falcon, Nigel Clegg, Beatrice Knudsen, and
Ruth Etzioni. Combining results of microarray experiments: A rank aggregation
approach. Statistical Applications in Genetics and Molecular Biology, 5(1):1–23,
2006.

[43] Shuai Ding, Jinru He, Hao Yan, and Torsten Suel. Using graphics processors for
high performance IR query processing. In Proceedings of the 18th international
conference on World wide web, pages 421–430, 2009.

[44] Ying Ding, Gobinda G. Chowdhury, and Schubert Foo. Bibliometric cartography of
information retrieval research by using co-word analysis. Information Processing &
Management, 37(6):817–842, 2001.

[45] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggre-
gation methods for the web. In Proceedings of the 10th international conference on
World Wide Web), pages 613–622, 2001.

[46] Leo Egghe. Theory and practise of the g-index. Scientometrics, 69(1):131–152,
2006.

[47] Leo Egghe. Dynamic h-index: the hirsch index in function of time. Journal of the
American Society for Information Science and Technology, 58(3):452–454, 2007.

[48] Jonathan L. Elsas, Jaime Arguello, Jamie Callan, and Jaime G. Carbonell. Retrieval
and feedback models for blog feed search. In Proceedings of the 31st annual in-
ternational ACM SIGIR conference on Research and development in information
retrieval, pages 347–354, 2008.

[49] Tamer Elsayed, Jimmy Lin, and Douglas W. Oard. Pairwise document similarity
in large collections with mapreduce. In Proceedings of the 46th Annual Meeting of
the Association for Computational Linguistics on Human Language Technologies,
pages 265–268, 2008.

216
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[50] Andrea Esuli and Fabrizio Sebastiani. Sentiwordnet: A publicly available lexical
resource for opinion mining. In Proceedings of the Fifth International Conference
on Language Resources and Evaluation, volume 6, pages 417–422, 2006.

[51] Ronald Fagin, Ravi Kumar, and Dandapani Sivakumar. Efficient similarity search
and classification via rank aggregation. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 301–312, 2003.

[52] Mohamed Farah and Daniel Vanderpooten. An outranking approach for rank ag-
gregation in information retrieval. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval, pages
591–598, 2007.

[53] James H. Fowler and Dag W. Aksnes. Does self-citation pay? Scientometrics,
72(3):427–437, 2007.

[54] Norbert Fuhr. A probabilistic model of dictionary based automatic indexing. Techn.
Hochsch. Darmstadt, Fachbereich Informatik, 1985.

[55] Eugene Garfield. Can citation indexing be automated. In Statistical association
methods for mechanized documentation, symposium proceedings, pages 189–192,
1965.

[56] Eugene Garfield. Citation analysis as a tool in journal evaluation. American Associ-
ation for the Advancement of Science, 178(4060):471–479, 1972.

[57] Eugene Garfield. The application of citation indexing to journals management. Cur-
rent contents, 33:3–5, 1994.

[58] Shima Gerani, Mark James Carman, and Fabio Crestani. Proximity-based opinion
retrieval. In Proceedings of the 33rd international ACM SIGIR conference on Re-
search and development in information retrieval, pages 403–410, 2010.

[59] Lise Getoor. Link-based classification. Advanced Methods for Knowledge Discovery
from Complex Data, pages 189–207, 2005.

[60] Sanjay Ghemawat and Jeffrey Dean. Mapreduce: simplified data processing on large
clusters. In Symposium on Operating System Design and Implementation, pages
137–150, 2004.

[61] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
ACM SIGOPS Operating Systems Review, 37(5):29–43, 2003.

[62] Kathy E. Gill. How can we measure the influence of the Blogosphere? In Proceed-
ings of the Workshop on the Weblogging Ecosystems: Aggregation, Analysis and
Dynamics, 2004.

217
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[63] Daniel Gruhl, Ramanathan Guha, Ravi Kumar, Jasmine Novak, and Andrew
Tomkins. The predictive power of online chatter. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining,
pages 78–87, 2005.

[64] Daniel Gruhl, Ramanathan Guha, David Liben-Nowell, and Andrew Tomkins. In-
formation diffusion through blogspace. Proceedings of the 13th international con-
ference on World Wide Web, pages 491–501, 2004.

[65] Zoltán Gyöngyi and Hector Garcia-Molina. Link spam alliances. In Proceedings of
the 31st international conference on Very large data bases, pages 517–528, 2005.

[66] Zoltan Gyongyi and Hector Garcia-Molina. Spam: It’s not just for inboxes anymore.
Computer, 38(10):28–34, 2005.

[67] Ben He, Craig Macdonald, and Iadh Ounis. Ranking opinionated blog posts using
OpinionFinder. In Proceedings of the 31st annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pages 727–728, 2008.

[68] Iina Hellsten, Renaud Lambiotte, Andrea Scharnhorst, and Marcel Ausloos. Self-
citations, co-authorships and keywords: A new approach to scientists” field mobil-
ity? Scientometrics, 72(3):469–486, 2007.

[69] Sandor Heman. Super-scalar database compression between RAM and CPU cache.
Master’s Thesis. University of Amsterdam. Amsterdam, The Netherlands, 2005.

[70] Jorge E. Hirsch. An index to quantify an individual’s scientific research output.
Proceedings of the National Academy of Sciences, 102(46):16569–16572, 2005.

[71] Ken Hyland. Self-citation and self-reference: Credibility and promotion in academic
publication. Journal of the American Society for Information Science and Technol-
ogy, 54(3):251–259, 2003.

[72] Akshay Java, Pranam Kolari, Tim Finin, and Tim Oates. Modeling the spread of
influence on the Blogosphere. In Proceedings of the 15th international world wide
web conference, pages 22–26, 2006.

[73] Thorsten Joachims. Text categorization with support vector machines: Learning
with many relevant features. Springer, 1998.

[74] Thorsten Joachims. Transductive inference for text classification using support vec-
tor machines. In Proceedings of the International Conference on Machine Learning,
pages 200–209, 1999.

[75] Pairin Katerattanakul, Bernard Han, and Soongoo Hong. Objective quality ranking
of computing journals. Communications of the ACM, 46(10):111–114, 2003.

[76] Dimitrios Katsaros, Leonidas Akritidis, and Panayiotis Bozanis. The f index: Quan-
tifying the impact of coterminal citations on scientists’ ranking. Journal of the Amer-
ican Society for Information Science and Technology, 60(5):1051–1056, 2009.

218
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[77] Edward Keller and Jonathan Berry. One American in ten tells the other nine how to
vote, where to eat and, what to buy. They are The Influentials. The Free Press, 2003.

[78] Apostolos Kritikopoulos, Martha Sideri, and Iraklis Varlamis. BlogRank: Rank-
ing Weblogs based on connectivity and similarity features. In Proceedings of the
2nd international workshop on Advanced architectures and algorithms for internet
delivery and applications, pages 8–16, 2006.

[79] Amy N. Langville and Carl D. Meyer. Google’s PageRank and beyond: The science
of search engine rankings. Princeton University Press, 2006.

[80] Stephen M. Lawani. On the heterogeneity and classification of author self-citations.
Journal of the American Society for Information Science, 33(5):281–284, 1982.

[81] Dik L. Lee, Huei Chuang, and Kent Seamons. Document ranking and the vector-
space model. IEEE software, 14(2):67–75, 1997.

[82] Yeha Lee, Seung-Hoon Na, Jungi Kim, Sand-Hyob Nam, Hun-young Jng, and Jong-
Hyeok Lee. Kle at trec 2008 blog track: Blog post and feed retrieval. In Proccedings
of TREC 2008, 2008.

[83] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-
Briesen, and Natalie Glance. Cost-effective outbreak detection in networks. In
Proceedings of the 13th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 420–429, 2007.

[84] Jimmy Lin. Scalable language processing algorithms for the masses: A case study
in computing word co-occurrence matrices with mapreduce. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 419–428,
2008.

[85] Jimmy Lin and Chris Dyer. Data-intensive text processing with mapreduce. Synthe-
sis Lectures on Human Language Technologies, 3(1):1–177, 2010.

[86] Yu-Ru Lin, Hari Sundaram, Yun Chi, Jun Tatemura, and Belle Tseng. Discovery
of blog communities based on mutual awareness. In Proceedings of the 3rd Annual
Workshop on the Weblogging Ecosystem, 2006.

[87] Yu-Ting Liu, Tie-Yan Liu, Tao Qin, Zhi-Ming Ma, and Hang Li. Supervised rank
aggregation. In Proceedings of the 16th international conference on World Wide
Web, pages 481–490, 2007.

[88] Paul Lowry, Denton Romans, and Aaron Curtis. Global journal prestige and sup-
porting disciplines: A scientometric study of information systems journals. Journal
of the Association for Information Systems, 5(2):29–80, 2004.

[89] Wei Lu, Stephen Robertson, and Andrew MacFarlane. Field-weighted xml retrieval
based on bm25. Advances in XML Information Retrieval and Evaluation, pages
161–171, 2006.

219
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[90] Sofus A. Macskassy and Foster Provost. Classification in networked data: A toolkit
and a univariate case study. The Journal of Machine Learning Research, 8:935–983,
2007.

[91] Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 135–146, 2010.

[92] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to information retrieval, volume 1. Cambridge University Press, 2008.

[93] Richard McCreadie, Craig Macdonald, and Iadh Ounis. On single-pass indexing
with mapreduce. In Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval, pages 742–743, 2009.

[94] Weiyi Meng, Clement Yu, and King-Lup Liu. Building efficient and effective
metasearch engines. ACM Computing Surveys, 34(1):48–89, 2002.

[95] Donald Metzler and W. Bruce Croft. A markov random field model for term depen-
dencies. In Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 472–479, 2005.

[96] Alistair Moffat and Justin Zobel. Self-indexing inverted files for fast text retrieval.
ACM Transactions on Information Systems, 14(4):349–379, 1996.

[97] Mark Montague and Javed A. Aslam. Metasearch consistency. In Proceedings of
the 24th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 386–387, 2001.

[98] Tony Mullen and Nigel Collier. Sentiment analysis using support vector machines
with diverse information sources. In Proceedings of the 2004 Conference on Empir-
ical Methods in Natural Language Processing, volume 4, pages 412–418, 2004.

[99] Seung-Hoon Na, Yeha Lee, Sang-Hyob Nam, and Jong-Hyeok Lee. Improving opin-
ion retrieval based on query-specific sentiment lexicon. Advances in Information
Retrieval, pages 734–738, 2009.

[100] Gonzalo Navarro, Edleno Silva De Moura, Marden Neubert, Nivio Ziviani, and Ri-
cardo Baeza-Yates. Adding compression to block addressing inverted indexes. In-
formation Retrieval, 3(1):49–77, 2000.

[101] E. CM. Noyons, HF. Moed, and A. FJ. Van Raan. Integrating research performance
analysis and science mapping. Scientometrics, 46(3):591–604, 1999.

[102] Ryosuke L. Ohniwa, Aiko Hibino, and Kunio Takeyasu. Trends in research foci in
life science fields over the last 30 years monitored by emerging topics. Scientomet-
rics, 85(1):111–127, 2010.

220
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[103] I. Ounis, M. De Rijke, C. Macdonald, and G. Mishne. Overview of the trec 2006
blog track. In Proceedings of TREC 2006, 2006.

[104] Iadh Ounis, Craig Macdonald, and Ian Soboroff. Overview of the trec 2007 blog
track. In Proceedings of TREC 2007, 2007.

[105] Iadh Ounis, Craig Macdonald, and Ian Soboroff. Overview of the trec 2008 blog
track. In Proccedings of TREC 2008, 2008.

[106] B. Uygar Oztekin, George Karypis, and Vipin Kumar. Expert agreement and content
based reranking in a meta search environment using mearf. In Proceedings of the
11th international conference on World Wide Web, pages 333–344, 2002.

[107] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment clas-
sification using machine learning techniques. In Proceedings of the 2002 Conference
on Empirical Methods in Natural Language Processing, pages 79–86, 2002.

[108] David Lorge Parnas. Stop the numbers game. Communications of the ACM,
50(11):19–21, 2007.

[109] Olle Persson, Wolfgang Glänzel, and Rickard Danell. Inflationary bibliometric val-
ues: The role of scientific collaboration and the need for relative indicators in evalu-
ative studies. Scientometrics, 60(3):421–432, 2004.

[110] Xiaoguang Qi and Brian D. Davison. Web page classification: Features and algo-
rithms. ACM Computing Surveys, 41(2):12, 2009.

[111] Vijay V. Raghavan and SKM Wong. A critical analysis of the vector space model
for information retrieval. Journal of the American Society for Information Science
and Technology, 37(5):279–287, 1986.

[112] R. Kelly Rainer Jr. and Mark D. Miller. Examining differences across journal rank-
ings. Communications of the ACM, 48(2):94, 2005.

[113] Yves Rasolofo and Jacques Savoy. Term proximity scoring for keyword-based re-
trieval systems. In Advances in information retrieval, pages 207–218, 2003.

[114] M Elena Renda and Umberto Straccia. Web metasearch: Rank vs score based rank
aggregation methods. In Proceedings of the 2003 ACM Symposium on Applied Com-
puting, pages 841–846, 2003.

[115] Stephen E. Robertson and K. Sparck Jones. Relevance weighting of search
terms. Journal of the American Society for Information Science and Technology,
27(3):129–146, 1976.

[116] Donald G. Saari. The mathematics of voting: Democratic symmetry. Economist,
page 83, 2000.

[117] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for auto-
matic indexing. Communications of the ACM, 18(11):620, 1975.

221
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[118] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann, 2000.

[119] Ralf Schenkel, Andreas Broschart, Seungwon Hwang, Martin Theobald, and Ger-
hard Weikum. Efficient text proximity search. String Processing and Information
Retrieval, pages 287–299, 2007.

[120] Michael Schreiber. Self-citation corrections for the hirsch index. EPL (Europhysics
Letters), 78(3):30002, 2007.

[121] András Schubert, Wolfgang Glänzel, and Bart Thijs. The weight of author self-
citations. a fractional approach to self-citation counting. Scientometrics, 67(3):503–
514, 2006.

[122] D. Sculley. Rank aggregation for similar items. In Proceedings of the Seventh SIAM
International Conference on Data Mining, 2007.

[123] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Com-
puting Surveys, 34(1):1–47, 2002.

[124] Milad Shokouhi. Segmentation of search engine results for effective data-fusion.
Advances in Information Retrieval, pages 185–197, 2007.

[125] Antonis Sidiropoulos, Dimitrios Katsaros, and Yannis Manolopoulos. General-
ized Hirsch h-index for disclosing latent facts in citation networks. Scientometrics,
72(2):253–280, 2007.

[126] Antonis Sidiropoulos and Yannis Manolopoulos. A citation-based system to assist
prize awarding. ACM SIGMOD Record, 34(4):60, 2005.

[127] Antonis Sidiropoulos and Yannis Manolopoulos. A new perspective to automati-
cally rank scientific conferences using digital libraries. Information Processing &
Management, 41(2):289–312, 2005.

[128] Antonis Sidiropoulos and Yannis Manolopoulos. Generalized comparison of graph-
based ranking algorithms for publications and authors. Journal of Systems and Soft-
ware, 79(12):1679–1700, 2006.

[129] Fabrizio Silvestri and Rossano Venturini. VSEncoding: Efficient coding and fast
decoding of integer lists via dynamic programming. In Proceedings of the 19th
ACM international conference on Information and knowledge management, pages
1219–1228, 2010.

[130] Henry Small. Tracking and predicting growth areas in science. Scientometrics,
68(3):595–610, 2006.

[131] Stefanos Souldatos, Theodore Dalamagas, and Timos Sellis. Sailing the web with
captain nemo: A personalized metasearch engine. In Proceedings of the ICML work-
shop: Learning in Web Search, Bonn, Germany, 2005.

222
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[132] Amanda Spink, Bernard J Jansen, Vinish Kathuria, and Sherry Koshman. Overlap
among major web search engines. Internet Research, 16(4):419–426, 2006.

[133] Atsushi Sugiura and Oren Etzioni. Query routing for web search engines: Architec-
ture and experiments. Computer Networks, 33(1–6):417–429, 2000.

[134] Pang-Ning Tan and Rong Jin. Ordering patterns by combining opinions from mul-
tiple sources. In Proceedings of the tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 695–700, 2004.

[135] Mohammad A. Tayebi, S. Mehdi Hashemi, and Ali Mohades. B2rank: An al-
gorithm for ranking blogs based on behavioral features. In Proceedings of the
2007 IEEE/WIC/ACM International Conference on Web Intelligence, pages 104–
107, 2007.

[136] Frederik Transier and Peter Sanders. Engineering basic algorithms of an in-memory
text search engine. ACM Transactions on Information Systems, 29(1):1–36, 2010.

[137] Yuen-Hsien Tseng, Yu-I Lin, Yi-Yang Lee, Wen-Chi Hung, and Chun-Hsiang Lee.
A comparison of methods for detecting hot topics. Scientometrics, 81(1):73–90,
2009.

[138] Peter Turney and Michael L. Littman. Measuring praise and criticism: Inference of
semantic orientation from association. ACM Transactions on Information Systems,
21(4):315–346, 2003.

[139] Peter D. Turney. Thumbs up or thumbs down?: semantic orientation applied to
unsupervised classification of reviews. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages 417–424, 2002.

[140] Howard Turtle and James Flood. Query evaluation: strategies and optimizations.
Information Processing & Management, 31(6):831–850, 1995.

[141] S. Phineas Upham and Henry Small. Emerging research fronts in science and tech-
nology: patterns of new knowledge development. Scientometrics, 83(1):15–38,
2010.

[142] Anthony van Raan. Self-citation as an impact-reinforcing mechanism in the science
system. Journal of the American Society for Information Science and Technology,
59(10):1631–1643, 2008.

[143] Olga Vechtomova. Facet-based opinion retrieval from blogs. Information Processing
& Management, 46(1):71–88, 2010.

[144] Christopher C. Vogt. Adaptive combination of evidence for information retrieval.
PhD thesis, University of California at San Diego, 1999.

[145] Christopher C. Vogt and Garrison W. Cottrell. Fusion via a linear combination of
scores. Information Retrieval, 1(3):151–173, 1999.

223
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[146] Wikipedia. The Hirsch h-index, Jan. 2009. Available from
http://en.wikipedia.org/wiki/H-index.

[147] Ian Witten, Alistair Moffat, and Timothy Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kaufmann, 1999.

[148] Hao Yan, Shuai Ding, and Torsten Suel. Compressing term positions in web indexes.
In Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval, pages 147–154, 2009.

[149] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query pro-
cessing with optimized document ordering. In Proceedings of the 18th international
conference on World wide web, pages 401–410, 2009.

[150] Hung-Chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-
merge: simplified relational data processing on large clusters. In Proceedings of
the 2007 ACM SIGMOD international conference on Management of data, pages
1029–1040, 2007.

[151] Yiming Yang. An evaluation of statistical approaches to text categorization. Infor-
mation Retrieval, 1(1):69–90, 1999.

[152] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in
text categorization. In Proceedings of the International Conference on Machine
Learning, pages 412–420, 1997.

[153] H Peyton Young and Arthur Levenglick. A consistent extension of condorcet’s elec-
tion principle. SIAM Journal on Applied Mathematics, 35(2):285–300, 1978.

[154] Jiangong Zhang, Xiaohui Long, and Torsten Suel. Performance of compressed in-
verted list caching in search engines. In Proceedings of the 17th international con-
ference on World Wide Web, pages 387–396, 2008.

[155] Min Zhang and Xingyao Ye. A generation model to unify topic relevance and
lexicon-based sentiment for opinion retrieval. In Proceedings of the 31st Interna-
tional ACM SIGIR Conference on Research and development in Information Re-
trieval, pages 411–418, 2008.

[156] Wei Zhang, Clement Yu, and Weiyi Meng. Opinion retrieval from blogs. In Pro-
ceedings of the 16th ACM Conference on Information and Knowledge Management,
pages 831–840, 2007.

[157] Ying Zhou and Joseph Davis. Community discovery and analysis in Blogspace. In
Proceedings of the 15th international conference on World Wide Web, pages 1017–
1018, 2006.

[158] Ji Zhu, Saharon Rosset, Hui Zou, and Trevor Hastie. Multi-class adaboost. Ann
Arbor, 1001(48109):1612, 2006.

224
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

[159] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM Com-
puting Surveys, 38(2), 2006.

[160] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar RAM-
CPU cache compression. In Proceedings of the 22nd International Conference on
Data Engineering, page 59, 2006.

225
Institutional Repository - Library & Information Centre - University of Thessaly
09/04/2024 22:43:15 EEST - 3.94.180.229

