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ABSTRACT 

The aim of this study is to assess and identify different types of hydrological 

uncertainty in daily runoff simulation at Yermasoyia watershed, Cyprus. This is 

achieved with the aid of a free online software called ‘HYDROMAD’ which is based 

on the unit hydrograph theory of rainfall-runoff component separation. This implies 

a two-component structure: a soil moisture accounting (SMA) module and a routing 

or unit hydrograph module. The SMA module converts rainfall and temperature into 

effective rainfall: The routing module converts effective rainfall into streamflow,  

There is a number of different strategies that can be used to calibrate a model. The 

typical approach is a joint optimization of all parameters or, alternatively, the unit 

hydrograph could be estimated directly from streamflow data, using inverse filtering 

or average event unit hydrograph estimation. Several well-known lumped 

hydrological models (such as the GR4J, the IHACRES models and the AWBM) are 

applied and tested for accurate runoff modeling using the split-sample test for 

estimating model error uncertainty. Several local non-linear and global optimization 

algorithms (i.e. Shuffled Complex Evolution, DiffeRential Evolution Adaptive 

Metropolis, DiffeRential Evolution, Simulated Annealing, quasi-Newton) have been 

deployed and compared for calibrating the different hydrological model structures 

to observed streamflow data for identification of optimization error uncertainty and 

model parameter uncertainty.  

Finally, several objective functions (i.e. Nash-Sutcliffe Efficiency and variations or 

adaptations) which address different parts of the hydrograph have been used to 

identify parameter and model uncertainty. The model performance of the above 

tests was evaluated with the use of fit statistics or metrics for calibration and 

validation periods. Application of the tests in Yermasoyia watershed showed that the 

primary source of uncertainty in rainfall-runoff modeling was the choice of the 

hydrological model (model structure) followed by the parameter uncertainty caused 

by the optimization algorithm and the choice of objective function.    

KEYWORDS: Hydrological models, rainfall-runoff modeling, model structure 

uncertainty, optimization algorithms, objective functions, parameter uncertainty, 

streamflow modeling. 
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ΠΕΡΙΛΗΨΗ 

Σκοπός αυτής της εργασίας είναι ο προσδιορισμός και η αξιολόγηση των διαφόρων 

πηγών υδρολογικής αβεβαιότητας, στην ημερήσια προσομοίωση της απορροής, στη 

λεκάνη απορροής της Yermasoyia στην Κύπρο. Αυτό επιτυγχάνεται με τη βοήθεια 

ενός δωρεάν διαδικτυακού λογισμικού που ονομάζεται «HYDROMAD» και το οποίο 

βασίζεται στη θεωρία του μοναδιαίου υδρογραφήματος για το διαχωρισμό του 

υδρολογικού ισοζυγίου και της διόδευσης της ροής. Με βάση το διαχωρισμό αυτό, 

υπονοείται ότι και το υπολογιστικό πλαίσιο (model framework) θα αποτελείται από 

δύο επιμέρους τμήματα στη δομή του: τη μονάδα λογιστικής εδαφολογικής 

υγρασίας (SMA) και τη μονάδα διόδευσης ροής (routing) ή τη μονάδα του 

μοναδιαίου υδρογραφήματος. Στο πρώτο τμήμα γίνεται η μετατροπή της 

βροχόπτωσης και της θερμοκρασίας σε ενεργή βροχόπτωση, ενώ στο δεύτερο 

τμήμα γίνεται η μετατροπή της ενεργής βροχόπτωσης σε επιφανειακή απορροή.  

Γενικά, υπάρχει ένας μεγάλος αριθμός διαφορετικών μεθοδολογιών που μπορούν 

να χρησιμοποιηθούν στη βαθμονόμηση ενός μοντέλου. Η τυπική προσέγγιση είναι η 

από κοινού βελτιστοποίηση όλων των παραμέτρων του μοντέλου ή, εναλλακτικώς, 

η εκτίμηση του μοναδιαίου υδρογραφήματος μπορεί να γίνει απευθείας από τα 

δεδομένα της απορροής, χρησιμοποιώντας αντίστροφο φιλτράρισμα (inverse 

filtering) ή του μέσου όρου των γεγονότων. Διάφορα ημερήσια αδρομερή 

υδρολογικά μοντέλα βροχόπτωσης – απορροής (όπως το GR4J, το AWBM και 

παραλλαγές των μοντέλων IHACRES) δοκιμάστηκαν και μελετήθηκαν, ως προς την 

ακρίβεια της προσομοιωμένης απορροής, χρησιμοποιώντας τη μέθοδο χωριστού 

δείγματος στην εκτίμηση της υδρολογικής αβεβαιότητας. Διάφοροι μη-γραμμικοί 

αλγόριθμοι βελτιστοποίησης τοπικής και καθολικής προσέγγισης (όπως για 

παράδειγμα οι: Shuffled Complex Evolution, DiffeRential Evolution Adaptive 

Metropolis, DiffeRential Evolution, Simulated Annealing και quasi-Newton) 

αναπτύχθηκαν και συγκρίθηκαν κατά τη βαθμονόμηση των διαφορετικών δομών 

των υδρολογικών μοντέλων ως προς τα παρατηρημένα δεδομένα της απορροής. 

Μέσα από τη σύγκριση αυτή εμφανίζεται η αβεβαιότητα στο σφάλμα της 

βελτιστοποίησης, στις τιμές των παραμέτρων των μοντέλων αλλά και στην ίδια τη 

δομή τους.  

Τέλος, διάφορες αντικειμενικές συναρτήσεις (όπως η Nash-Sutcliffe Efficiency και 

παραλλαγές ή προσαρμογές αυτής), οι οποίες απευθύνονται σε διαφορετικά 

τμήματα του υδρογραφήματος, χρησιμοποιήθηκαν για τον εντοπισμό της 

αβεβαιότητας των παραμέτρων και της δομής των μοντέλων. Η απόδοση των 

μοντέλων αξιολογήθηκε με τη χρήση στατιστικών καλής προσαρμογής για τις 

περιόδους βαθμονόμησης και επαλήθευσης. Η εφαρμογή δοκιμών στη λεκάνη 

απορροής της Yermasoyia δείχνει πως η βασική πηγή αβεβαιότητας στη 

μοντελοποίηση βροχόπτωσης – απορροής είναι η επιλογή της δομής του 
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υδρολογικού μοντέλου, ακολουθούμενη από την αβεβαιότητα των παραμέτρων 

που προκαλείται από την επιλογή των αλγορίθμων βελτιστοποίησης και των 

αντικειμενικών συναρτήσεων.        

Λέξεις-κλειδιά: Υδρολογικά μοντέλα, μοντέλα βροχόπτωσης – απορροής , 

αβεβαιότητα δομής μοντέλων, αλγόριθμοι βελτιστοποίησης, αντικειμενικές 

συναρτήσεις, αβεβαιότητα παραμέτρων, μοντελοποίηση απορροής. 
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RESUME 

Le but de cette étude est d’identifier et d’estimer les différentes sources 

d’incertitude hydrologique associées aux simulations de ruissellement journalier 

dans le bassin versant de Yermasoyia à Chypre. Pour ce faire, on utilise le 

programme ‘HYDROMAD’, disponible gratuitement en ligne, basé sur la théorie de 

l’hydrographe unitaire de séparation des composantes de ruissèlement et 

d’écoulement. Ceci implique une structure de modèle constituée de deux éléments: 

un module d’évolution de l’humidité du sol (EHS) ainsi qu’un module de routage 

hydrologique ou un hydrographe unitaire. Le module EHS calcule la pluie nette à 

partir des données de pluie totale et  de température. Le module de routage 

convertie ensuite cette pluie nette en débit. Il y a de nombreuses méthodes de 

calibration différentes pour un tel modèle.  

L’approche usuelle consiste soit à optimiser simultanément l’ensemble des 

paramètres soit à estimer directement l’hydrographe unitaire à partir des données 

de débit en utilisant un filtrage inverse ou une estimation de l’hydrographe unitaire 

associé a un évènement moyen. Un grand nombre de modèles hydrologiques 

empiriques (tels les modèles GR4J, IHQCRES et AWBM) sont appliqués et leurs 

simulations du ruissèlement sont évaluées par le biais du test de validation croisée 

qui permet d’estimer l’incertitude associée à l’erreur modèle. De nombreux 

algorithmes d’optimisation non linéaires locaux ou globaux (c.à.d. Shuffled Complex 

Evolution, DiffeRential Evolution Adaptive Metropolis, DiffeRential Evolution, 

Simulated Annealing, quasi-Newton) sont déployés et leurs calibrations des 

différentes structures du modèle hydrologique par rapports aux données de débit 

observées sont comparées afin d’identifier et de réduire les incertitudes liées à 

l’erreur et aux paramètres du modèle.  

Enfin une série de fonctions objectives (par exemple : Nash-Sutcliffe Efficiency et 

variantes ou adaptations) focalisées sur différentes caractéristiques de 

l’hydrographe sont utilisées pour identifier ces sources d’incertitudes. Les 

performances du modèle par rapport aux tests précédents sont évaluées grâce à des 

statistiques ou mesures de la qualité des données simulées pour les périodes de 

calibration et de validation. L’application de cette méthodologie sur le bassin versant 

de Yermasoyia a prouvé que la première source d’incertitude des simulations pluie-

débit est le choix du modèle hydrologique (structure du modèle) suivi par 

l’incertitude sur les paramètres engendrée par le choix de l’algorithme 

d’optimisation et de la fonction objective. 

MOTS CLES: modèles hydrologiques, simulation pluie-débit, incertitude liée a la 

structure du modèle, algorithme d’optimisation, fonction objective, incertitude liée 

aux paramètres, simulation de débit 
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CHAPTER 1 

1.1  Background and project overview: 

Conceptual lumped Rainfall-Runoff models, (R-R models), have been coupled with 

computing science since the early 1970s and have earned a central spot in 

hydrological modeling. Among many other models that are referred in the literature, 

some of the most representative “early” ones are undoubtedly the HBV (Bergstrom 

& Forsman, 1973) and the Sacramento (Burnash, 1973) models. Most of such models 

have surely undergone modifications or refinements over the years, through 

continuous improvement processes by their developers or others.  However, the 

core physical and functional basis of the models has been kept intact and is still in 

use nowadays as such. 

  R-R models usually have a relatively simple structure and use not too complex 

mathematical equations. They all aim to interpret the physical processes that take 

place within a catchment, through which rainfall is transformed into runoff. As far as 

the lumped R-R models are concerned, their parameters cannot be directly 

measured on site, although they represent physical processes and characteristics of 

the catchments. Therefore, their values, or ranges of values have to be determined 

through calibration techniques, (Wheater et al., 1993). 

Initially, calibration was performed manually by trial and error approaches but this 

soon proved to be a rather laborious and time consuming work (Madsen et al., 

2001). Inevitably scientific research on this area focused on the development of 

different calibration approaches which were more automated. Such approaches 

generally involve the selection of either a single “objective function” as a measure of 

goodness of fit or a multi-objective calibration approach, as proposed by Gupta et 

al., (1998). Furthermore, the Pareto optimal solution for parameter sets as proposed 

by Gharari et al., 2012 give an indication of where research in this field focuses 

more. The use of a single objective calibration procedure aims to develop models 

that either focus on a particular characteristic of the hydrograph (peak / low flows) 

or in case of multi-objective calibration, models are developed to represent an 

overall behavior for all the parts of the hydrograph. Other research works have been 

conducted considering multi-criteria in the calibration process, for example tracers’ 

concentrations or remotely sensed evaporation, (Weiler et al., 2003) and (Winsemius 

et al., 2008). 

 Automated calibration procedures also include the selection of a parameter search 

procedure, called “optimization algorithm”. Until recently, calibration has been 

performed by local-search optimization algorithms (Yapo et al., 1996), i.e. using the 

Nelder and Mead (1965) simplex algorithm and others. In 1992, Duan et al. 

addressed the problem of the local search algorithms that likely produce a huge 
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number of parameter values trapped as local optima within the objective function 

optimum space. He and others suggested the use of a global search algorithm, the 

SCE, which proved to be very effective and efficient at the same time, finding 

consistently the region of global optimum solutions and requiring not many function 

evaluations, (Duan et al., 1992, 1993, 1994; Sorooshian et al., 1993).                  

This study examines R-R models that predict a modeled streamflow and is then 

compared to the observed one. The process of prediction requires that the model 

parameters are estimated (calibrated) in a way that the modeled flows are as closely 

related as possible to the observed flows. This implies that during the modeling 

processes, uncertainty that result in poor predictions must be identified, evaluated 

and reduced. 

Uncertainty in R-R modeling can be described as the degree of confidence that 

resides in the predictions after models have been calibrated. In general, uncertainty 

is inherent due to the randomness and the variability in nature and cannot be 

reduced. However, what can be reduced is the “epistemic” uncertainty which is 

attributed to the choice of model, the model structure and the model parameters. 

Parameter uncertainty is caused by the choice of the calibration procedure. 

In this study, model calibration has been implemented by different parameter search 

methods, called Optimization Algorithms, all of which optimize the value of 

different “goodness of fit” measures, called Objective Functions. Therefore, the 

selection of an appropriate optimization algorithm and a suitable objective function 

is very significant and has been made on the grounds of reduced parameter 

uncertainty. This type of uncertainty has been assessed by the use of “fit statistics” 

in both calibration and validation periods.  

 

1.2  Methodology: 

Four different conceptual and spatially lumped R-R models have been assessed, 

namely the GR4J (Perrin, 2000), the AWBM (Boughton, 2004) and two versions of 

the IHACRES model, the IHACRES_CWI (Jakeman and Hornberger, 1993) and the 

IHACRES_CMD (Croke and Jakeman, 2004). The same dataset consisting of 11 years 

of daily Precipitation, Evapotranspiration and Observed streamflow was used for the 

Yermasoyia watershed in Cyprus. Assessment has been performed during two 

periods of the same length; one wet and one dry.  

The modeling framework was exclusively provided by HYDROMAD, an open-source 

software available in the R-statistical computing environment. Its structure is 

consists of two components. First, a Soil Moisture Accounting (SMA) converts inputs 

of rainfall, temperature, evapotranspiration and others into effective rainfall. The 
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second component, Routing, is based on the unit hydrograph theory and converts 

the effective rainfall into streamflow. 

 

Figure 1. Rainfall - Runoff model framework 

The objective of this study was to assess the uncertainty and the performance of 

each model based on different calibration strategies for parameter estimation. 

Sampling of the parameters was based on both local search and non-linear 

optimization algorithms using multi-start or pre-sampling (i.e. Nelder-Mead, PORT: 

Powerful-Outstanding-Reliable-Tested, BFGS: Broyden–Fletcher–Goldfarb–Shanno) 

and global search algorithms (i.e. SANN: Simulated ANNealing, SCE: Shuffled 

Complex Evolution, DE: Differential Evolution and DREAM: DiffeRential Evolution 

Adaptive Metropolis). All algorithms were attempting to optimize four different 

objective functions, namely: the classic NSE: Nash-Sutcliffe Efficiency, NSE3: a 

transformed NSE where the absolute residuals are raised to cubic power and two 

“bias constraint” objective functions, named Viney, as proposed by Viney et al. 

(2009) and the other, named BL, proposed by Bergstrom and Lindstrom, (2002). 

Finally, several fit statistics were used to evaluate model performance in both 

calibration-validation periods. Indicatively, these include: the Relative Bias, the NSE 

as fit statistic too, the NSESQRT, and the AMAFE. Fit statistics indicate the amount of 

uncertainty that persists to exist after calibration.  

 

1.3  Study Area: 

The watershed of Yermasoyia is a small catchment of approximately 157Km2 area 

which is located in the mountain of Troodos, near Limassol, Cyprus. The mean 

annual areal precipitation is about 640mm (450mm at lower elevations up to 850mm 

at higher elevations) and the mean annual runoff at the catchment outlet is about 
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150mm or 0.42 m3/s (for the 11years of observations). It was calculated that: for the 

years ‘87‐’92 runoff is 0.45 m3/s (WET period) and for the years ‘92‐’97 is 0.35 m3/s 

(DRY period).  The catchment’s elevation ranges from 70m to 1400m, (Loukas, et al. 

2003). The Mediterranean climate of the area produces mild winters and hot and dry 

summers. Thus, the stream of the watershed is transient and ephemeral with 

rainfall-induced peak flows being observed during winter months.  

 

 
 

Figure 2. Yermasoyia watershed, Cyprus (Loukas et al, 2003) 

 

1.4  Available data and data check: 
 

The available data consists of 11 years of daily precipitation, evapotranspiration and 

streamflow measurements. Areal precipitation was estimated using the 

measurements from two stations (at 70m and 995m elevation) by the method of 

precipitation gradient. Evapotranspiration was estimated by the Hargreaves 

approach.  

   

Exploratory analysis of the input data is always important since it is a direct input in 

the models and influences their performance. Although the selected models are, 

apart from conceptual, also data-based, only an indicative data analysis has been 

performed. This is because the scope of this study is to explore more the structure of 

the models and their performance under different optimization methods. 

 

Arguably the first check one should perform is a simple visualization of the available 

dataset. This may assist in the identification of erroneous data, discontinuities in the 

time-series, among others, all of which are potential sources of uncertainty in the 

model assessment. By plotting the raw daily time-series one can assume the 
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seasonal pattern of ET and a strong correlation between rainfall and streamflow 

peaks, (Figure 3).  

 

Figure 3. Daily raw data 

For the purposes of the calibration procedure, a wet period (form 01-10-1987 to 30-

09-1992) and a dry one (from 01-10-1992 to 30-09-1997) have been identified. This 

is shown more clearly in Figure 4 where the time-series have been aggregated at a 

monthly scale. 

 

Figure 4. Monthly aggregated data 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 09:25:49 EEST - 18.221.83.60



 CHAPTER 1: Introduction  

6 
 

Given that R-R models are being studied here, a simple data check can provide of an 

estimation of the catchment runoff ratio. This is the percentage of catchment areal 

precipitation that appears as observed streamflow. Therefore, runoff ratio = sum(Q) 

/ sum(P) = 0.135. This number appears to be in accordance with what one would 

expect for such a watershed. 

 

Equally important to the runoff ratio is the estimation of the lag-time (or delay) 

between rainfall and rises in the observed streamflow. In this case, the estimate 

Delay = 1 day.  

 
Figure 5. Lag-time at maximum correlation of P and Q 

 
The cross-correlation of P and Q can also be examined at given lags (0, 1, 2, etc.) and 
over different periods (90 days, 365 days, etc). 
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Figure 6. Cross-correlation of P and Q in different time windows 

 

 
This graph also confirms the lag 1 (1 day delay) between rainfall and streamflow 

where the highest correlations appear. Only in few cases of lag 0, correlation values 

become higher than those of lag 1, meaning that the response time has changed 

from 1 to 0 days. Correlation between the input variables was also examined in 

order to check for non-stationarity issues and if there is linearity in their between 

relationship. 
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Figure 7. Correlation matrices of state variable P, Q and PET 

 
Finally, a seasonal and trend decomposition of rainfall time-series was performed 

using the STL algorithm (Cleveland et al. 1990). 

 

Figure 8. STL decomposition of time-series 
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CHAPTER 2 
 

2.1  General: 
 

Rainfall – Runoff models aim to relate rainfall estimations, (observed or forecast), to 
the streamflow at a catchment outlet. They can either perform event-based or 
continuous temporal simulations. Care should be taken into account when selecting 
the criteria of what defines an event (i.e. thresholds of precipitation / streamflow 
levels, durations etc). This study will focus only on continuous simulations.  
 
Understanding the physical processes that take place during the rainfall 
transformation into streamflow is not always easy, considering the variety of 
hydrological (underground / surface) and climatological profiles that exist. However, 
with the use of good quality and sufficient quantity of historical records of rainfall, 
evapotranspiration, temperature and runoff observations, R-R models can produce 
very satisfactory results requiring a relatively simple structure and only a few 
parameters. This study will investigate the structure and then the performance of 
four different R-R models, all of which ran at a continuous daily time-step and are 
spatially aggregated.     

 
 

2.2  GR4J model description: 
 
The GR4J model, as proposed by Perrin (2000), is a daily lumped Rainfall-Runoff 
model. Daily because the input data required is a daily-step time series of raw areal 
rainfall and daily estimate of potential evapotranspiration (PET) denoted by P (mm) 
and E (mm) respectively. Lumped model, in contrast to a distributed model, because 
the perceptual basis of the model does not take into account the spatial variability in 
terms of the hydrological processes and characteristics and treats the catchment as a 
single unit. (Fig. 9) 

 

 
 

Figure 9. Spatial scales of R-R models 

 
Given that this model is a result of a continuous improvement process over many 
years and acknowledging the findings and suggestions of previous studies such as 
Perrin et al. (2001), the four-parameter version was used with its existing model 
structure (Fig. 10) as a starting point. The GR4J is an updated version of the GR3J 
model initially developed by Edijatno and Michel (1989) and then further evolved by 
Nascimento (1995) and Edijatno et al. (1999). 
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Figure 10. GR4J model structure (Perrin et al. 2003). 

 
The four parameters of the model which are calibrated are: 

 x1: maximum capacity of production store (mm) 

 x2: groundwater exchange coefficient, (mm) 

 x3: 1-day ahead capacity of routing store, (mm) 

 x4: time base of the unit hydrograph UH1, (days) 
  

The structure of the model consists of two modules. The SMA (Soil Moisture 
Accounting) or Production store and the Routing store. 

  
First, the SMA is the part of the model which converts the rainfall and PET into 
effective rainfall, i.e. rainfall that reaches the outlet of the catchment as streamflow. 
By subtracting E from P, net values of precipitation (Pn) or evapotranspiration 
capacity (En) are determined, assuming that there is no interception storage 
capacity. Therefore, 
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- If P ≥ E,  then  Pn = P – E   and  En = 0    (1) 

- If P < E,  then  En = E – P  and  Pn = 0    (2) 
 
In the case Pn ≠ 0 a part Ps of Pn fills the Production store given by the function: 
                 

        (3) 
 
where x1 is the maximum capacity of the production store (mm). 
 
In the case En ≠ 0 the production store loses water due to evaporation at a rate Es 
given by the following formula: 
 

                (4) 
 
 
Therefore, the water content in the Production store is given by: 
 
      S = S – Es + Ps                   (5) 
 
The GR4J model also considers water losses from the Production store due to 
Percolation, Perc , as a power function of the store capacity: 
 

                                 (6) 
 
The above mathematical formula implies that Perc is always < S and its contribution 
to the final streamflow is not great and only important for low flow simulation, 
Perrin et al. (2003). 

The water content in the Production store then becomes:

 

             S = S – Perc                                                                        (7)

 Finally, the total quantity of water that continues in the Routing part of the model is 
determined by: 

           Pr = Perc + (Pn – Ps)                                                            (8) 
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90% of Pr is routed by the unit hydrograph UH1 to a non-linear routing store and 
10% of Pr is routed by the unit hydrograph UH2. Both UH1 and UH2 simulate the lag 
time between rainfall events and peak streamflows and depend on the x4 
parameter, time base of the unit hydrograph UH1, (days), with UH1 having x4 days as 
time base and UH2 having 2x4 days (x4 > 0.5 days). The two unit hydrographs have 
ordinates of n and m respectively, meaning that the water is spread over a period of 
time into n and m unit hydrograph inputs for UH1 and UH2. These ordinates are 
calculated by the related S-curves (cumulative proportion of the input with time) and 
are denoted by SH1(t) and SH2(t) respectively.  

Table 1. Ordinates of UH1 and UH2 for the GR4J routing component 

 

For the SH1(t): For the SH2(t): 

If t ≤ 0: SH1(t) = 0 If t ≤ 0: SH2(t) = 0 

If 0 < t < x4: 

 

If 0 < t < x4: 

 
If t > x4  SH1(t) = 1 If x4 < t < 2x4: 

   
  If t ≥ 2x4 SH2(t) = 1 

 

Therefore, the ordinates for UH1 and UH2 can be calculated by: 

UH1(j) = SH1(j) – SH1(j-1)        (9) 

and 

UH2(j) = SH2(j) – SH2(j-1)                    (10) 

with j and (j-1) being integers. 

The two unit hydrographs provide two outputs, Q9 and Q1 at each time-step i and are 
calculated by the following formulas: 

                 (11) 

And 

                 (12) 

𝑆𝐻1 𝑡 = [
𝑡

𝑥4
]

5
2 SH2 t =

1

2
[
𝑡

𝑥4
]

5
2 

SH2(t) = 1 −
1

2
[2 −

𝑡

𝑥4
]

5
2  

𝐐𝟗 =  𝟎. 𝟗  𝑼𝑯𝟏 𝒌 . 𝐏𝐫(𝒊 − 𝒌 + 𝟏)

𝒍

𝒌=𝒍

 

𝐐𝟏 =  𝟎. 𝟏 𝑼𝑯𝟐 𝒌 . 𝐏𝐫(𝒊 − 𝒌 + 𝟏)

𝒎

𝒌=𝒍

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 09:25:49 EEST - 18.221.83.60



 CHAPTER 2: Rainfall – Runoff Models  

13 
 

Where l = int(x4) +1 and m = int(2x4) + 1. 

Both Q9 and Q1 are subjected to a groundwater exchange term F which is calculated 
by: 

 

                  (13) 

This term introduces the second and third parameter of the model. The 1-day ahead 
capacity of the routing store, x3 and x2 the water exchange coefficient, i.e. how 
much water is entering the deeper aquifer. R is the level in the non-linear routing 
store and is estimated by: 

R = max (0 ; R + Q9 + F)                              (14) 

And the outflow Qr from this routing store is determined by: 

                            (15) 

With the level in the reservoir being: 

R =R - Qr                   (16) 

Similarly, for the Q1 output of the UH2 being subjected to the exchange term F, a 
direct flow component Qd is added to the total streamflow. This is estimated by: 

Qd = max (0 ; Q1 + F)                              (17) 

Finally, the total streamflow Qtotal that the model calculates is: 

Qtotal = Qr + Qd                               (18)  
 
 
 

2.3  AWBM description: 
 
As its name indicates, the AWBM (Australian Water Balance Model) as proposed by 
Boughton, (2004) is a catchment water balance model that simulates runoff from 
rainfall (Rainfall – Runoff model) at a daily or hourly time-step. The main concept of 
the model is the runoff generation based on the “hortonian” saturation overland 
flow. All excess rainfall becomes runoff after the catchment surface capacity has 
been reached. This simple idea though generates two main issues: Firtly, the initial 

𝐅 =   [𝒙𝟐 
𝑹

𝒙𝟑
]
𝟕
𝟐 

𝐐𝐫 =  𝐑 {𝟏 –  [𝟏 + (
𝑹

𝒙𝟑
)𝟒]

−𝟏
𝟒 } 
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soil moisture conditions within a catchment influence the amount of rainfall which is 
abstracted and, therefore, should be considered. Secondly, the spatial variability 
within catchments influence both the rainfall abstraction and the runoff generation. 
Thus, such a variable should also be incorporated to the model structure. 

 
 
 
From simple to more complex model structure: 
 
The development of the AWBM started from the simple structure of the 1-bucket 
model, Fig. 11(a) to the more complex structures of multi-capacity Water Balance 
(WB) models, Fig. 11(b)-(c).  
 
 

 
 

Figure 11.  Single and multi-capacity WB models (Boughton, 2004) 

 
 

In the 1-bucket model, the catchment surface storage capacity is signified by the 
model storage capacity C and no spatial variability is considered. Any rainfall is 
abstracted and runoff is generated only after the bucket is filled. This means that if 
there were no initial soil moisture ammount at the start of a rainfall event, the 
bucket would be completely empty and all rainfall would be consumed to fill it, as 
line C indicates in the Runoff-Rainfall scheme. In the case of presence of initial soil 
wetness at the start of a rainfall event, the amount of rainfall abstraction which 
would be required to fill the bucket could be represented by the line D in the same 
scheme. Finally, in the case of a fully saturated catchment, all excess rainfall would 
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become runoff and, this is shown by the the 450 line from the origin of the axes of 
the Runoff-Rainfall scheme. 

 
The multi-capacity models aim to incorporate the spatial variability to their 
strucuture by taking into account two, three or more different catchment capacities, 
C1, C2, C3,…,Ci, (say C1<C2<C3<…<Ci) and their corresponding partial areas A1, A2, A3,…, 
Ai. The sum of all areas: A1+A2+A3+…+Ai = 100%Acatchment.   

 
At a rainfall event, runoff occurs when the (smallest) storage capacity C1 has been 
reached. When the next larger capacity, C2 has been reached too, all excess rainfall 
becomes runoff. The Runoff-Rainfall relationship is again a 450 line and, if this line is 
projected backwards to start at the origins of the axes, it would represent the 
average storage capacity:  
Cave = C1A1 + C2A2. (Fig.11(b))  

 
The partitioning of the catchment into more partial areas and, therefore, storage 
capacities whould have, as an effect, a smoother curve representing the runoff-
rainfall relationship as shown in Fig.11(c), Shifting this curve closer to the origins of 
the axes would simply mean higher initial soil moisture conditions. 

 
So far, the conventional multi-capacity accounting models were in fact trying to 
estimate runoff by taking into account the precipitation and the soil moisture 
deficiencies as weighted indices, considering neither the partial areas of the 
catchment nor the saturation overland flow, (Boughton, 2003).  Also, these models 
were assuming that all runoff is surface runoff and that there was no contribution 
from the baseflow. This, of course, is not always true in nature. For the 
aforementioned hydrological issues, model structures, such as the ones developed in 
the AWBM and the IHACRES (Evans and Jakeman, 1998) models, take account of the 
baseflow contribution to runoff, the rational partitioning of the catchment and 
evapotranspiration. Figure 12 illustrates the structure of the AWMB that has been 
adopted for the purposes of this project.   
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Figure 12. AWBM structure (Podger, 2004). 

 

Similarly to a multi-capacity accounting model, the AWBM requires as inputs 
precipitation and evapotranspiration at a daily or hourly time-step. Precipitation P 
(mm) fills the three surface stores C1, C2 and C3 whereas evapotranspiration E (mm) 
is reduced out of them. Once any of the three stores reaches its capacity, the excess 
water is added together and separated into two stores.  
 
A fraction of the excess denoted as Baseflow Recharge = BFI* Excess is transferred 
to the Baseflow store with current capacity BS. BFI is the fraction of total flow that 
appears as baseflow. The recession of the baseflow at any day is a fixed fraction Kb of 
flow at the previous day, where Kb is the “recession constant”. Therefore, at each 
time step, the amount of baseflow that is reduced from the baseflow store is: 
Baseflow = (1-Kb)*BS 
 
The residual runoff volume that is the Surface Runoff = (1 – BFI)*Excess is 
transferred to the Surface Store with current capacity SS. Similarly, the amount of 
surface runoff that is reduced from the surface store is: Routed Surface Runoff = (1 – 
Ks)*SS, where Ks is the recession constant of the surface runoff. Both baseflow and 

C3 SS 

=(1-Kb)*BS 

=(1-Ks)*SS 
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surface recession constants Kb and Ks can be determined directly from the 
streamflow record, (Klaassen and Pilgrim, 1975).  

 
 

2.4  IHACRES model description: 
 
The IHACRES model as initially proposed by Jakeman et al. (1993) consists of two 
modules. A non-linear or rainfall loss module through which Rainfall R(t) is 
transformed into “Excess” or Effective Rainfall U(t). The linear module converts / 
routes the excess rainfall U(t) into streamflow Q(t). A generic configuration of this 
model structure is shown in Fig.13 below: 
 

 
 

Figure.13 IHACRES model generic structure (Jakeman and Hornberger, 1993). 

 
Developments and advancements of the original IHACRES model include different 
approaches to deal with the non-linear part of the model, rendering it more flexible 
to explain the hydrological processes or even the climate and land use changes. This 
study explores two different versions of IHACRES, the more physically-based CWI 
[Catchment Wetness Index, by Jakeman and Hornberger (1993)] and the CMD 
[Catchment Moisture Deficit, by Croke and Jakeman, (2004)]. As far as the linear 
part of IHACRES is concerned, different configurations of routing stores in parallel 
and/or in series can be deployed depending on the catchment characteristics. 

 
 

2.5  IHACRES model - CWI version: 
 
In the original IHACRES model by Jakeman and Hornberger (1993), at a time step (t), 
the excess or effective rainfall U(t) is proportional to rainfall P(t) and scaled by a soil 
moisture index s(t): 

 U(t)= c * s(t)* P(t)       (1a) 
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Where P(t) is the observed rainfall,  

 s(t)= P(t) + (1 – 1/ τd(t))* s(t-1)                    (2) 

- s(t) is the catchment wetness index which decays exponentially backwards in 
time 

- c is a coefficient for the maintenance of the mass balance (Volume of excess 
rainfall = total streamflow in calibration period) and 

- τd(t) is the drying rate of the catchment, given by:  

 τd(t) = τw*exp(0.062*E(t)*f        (3),  

Where τw is the drying rate at reference temperature (i.e. number of time steps to 
reduce by 1/e or 37%), E(t) = (TREF– T(t)) with TREF usually 200C, T(t) is the temperature 
at time step (t) and f is a temperature modulation (i.e. how τd(t) changes with 
temperature (Jakeman and Hornberger, (1993). 

This version of IHACRES has been further extended to function for more ephemeral 
catchments by Ye et al. (1997). This involved the introduction of a moisture 
threshold parameter for producing flow, denoted by l and a non-linear relationship 
between the catchment wetness index and the fraction of rainfall that becomes 
effective rainfall, referred as power law with exponent parameter, p. Therefore, the 
previous equation (1) can be revised to: 

 U(t)= [c *(s(t) - l )]
p * P(t)                       (1b)  ⃰ 

 

⃰ NOTE: in case l is set to zero and p to one, equation (1b) describes the original 
Jakeman and Hornberger, (1993) IHACRES model. 

 

 

2.6  IHACRES model - CMD version: 
 
This version of IHACRES is a conceptual model and the main characteristic is the 
portioning of the input rainfall into drainage (or effective rainfall), evapo-
transpiration and changes in catchment moisture (Croke and Jakeman, 2004).  

 
The drainage (effective rainfall) U(t) at a time-step (t) is given by the following 
equation: 

 

 U(t) = M(t) – M(t-1) – ET(t) + P(t)                (1) 

 

Where M(t) and M(t-1) are the CDM at time-steps (t) and (t-1), P(t) is the catchment 
areal rainfall and ET(t) is the evapo-transpiration, all in (mm). 
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The ratio dU/dP represents the rainfall effectiveness (or the drainage proportion). 
According to Croke and Jakeman, (2004), this ratio is a function of CDM, with a 
threshold of CDM for producing flow, d and is described according to the dU/dP 
relationship by the following equation: 

           for linear relationship,              (2a) 

                      for trigonometric,              (2b)  

                                    for a power form               (2c)  

The integration of these relations provides the actual drainage (effective rainfall) at 
each time-step.  

Finally, the evapotranspiration term ET(t) is a proportion of the potential rate PE(t) 
and is also a function of CMD, with a threshold of M ’ =f* d and is calculated by the 
following equation: 

ET(t) = e* PE(t)*/min(exp(2(1-M’’/M’)))                 (3) 

where e is a temperature to PET conversion factor, f is a CMD stress threshold as a 
proportion to the d threshold and M’’ is the CMD after precipitation and drainage 
have been accounted for. 
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CHAPTER 3 
 

3.1  General: 
 
Before testing the model performance, the selected Rainfall-Runoff models had to 
be specified. This is a crucial first step in hydrological modeling where important 
decisions have to be taken regarding the following: 

 

- The conceptual model formulation / structure (choice from a variety of 
model versions)  

- The way the models handle the physical processes  

- The mathematical equations that resolve these natural processes 

- The use of the available data 

- The number, range or fixed parameter values that generate consistently 
optimal model performance  

- The scale of the model parts and parameters that are valid and finally, 

- The application of the model and the use of the results.  

-  
A prudent “rule of thumb” when specifying models is to keep them not too simple 
but not too complex as well. Oversimplified models obviously are not flexible enough 
to explain adequately the physical processes involved. On the other hand, with too 
complex models (over-parameterized, models with too many mathematical 
functions or models trying to answer too complex questions etc.) comes the cost of 
increasing uncertainty in the model predictions (Croke and Jakeman, 2004).  
 
Therefore, ideal rainfall-runoff models are those encompassing a structure that best 
explain the physical processes in catchment hydrology. Such model structure should 
not be fixed but rather be flexible to include catchment behavior that varies.  At the 
same time, maintaining parsimony in the model parameters is also desirable. The 
less parameters that suffice to describe the rainfall-runoff relationship the more 
appealing the model is. 

  
In this study, the same dataset of areal precipitation, evapotranspiration and 
observed streamflow, for the Yermasoyia watershed, was used in all the models. All 
inputs were in mm/day. 
 
A general two-component structure was deployed in all models. Namely, an SMA 
module that converts input data (P and E) into effective rainfall and a Routing 
module that converts effective rainfall into streamflow. . All models were set to 
function with a warmup period of 365days.  
 
Where necessary, (see AWBM, IHACRES – CWI/CMD model specification) and based 
on the unit hydrograph theory, the routing parameters were determined by fitting a 
linear transfer function.  In other words, an ARMAX-like model was specified, 
(Autoregressive, Moving Average), with autoregressive terms =n and moving average 
terms = m, i.e. the order of the transfer function. To ensure a good choice for the 
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order of the ARMAX model, HYDROMAD provides a built-in command called 
“tryModelOrders”, which tests different model structures (n, m ,delay between 
effective rainfall and runoff). This command enables the fitting of the ARMAX models 
with the SRIV (Simple Refined Instrumental Variable) algorithm as described by 
Young et al. (2008).  Trials in different model structures produce various values of R2, 
criterion of determination, and %ARPE, (Average Relative Parameter Error). Best 
values of these statistics indicate which order of the transfer function is best. 

 

 
3.2  GR4J model specifications:  
 
This model has a definite structure regarding its SMA component (as described 
previously) and the default parameter ranges were taken from the 80% confidence 
intervals (Perrin et al., 2003). The proposed “fixed” split of 10% and 90% of effective 
rainfall was also selected. Initially, the choice for the model structure, the number of 
parameters and their value ranges was founded on the empirical developments 
(more than 200 different model versions) and the results of model performance in a 
large sample of catchments (more than 400) with different climatic conditions 
(Perrin et al., 2003).   
However, during the initial attempts to calibrate the parameters, most of the 
algorithms were converging towards the default lower bound of -5mm regarding the 
X2 parameter (groundwater exchange coefficient), which is the amount of water that 
enters the deeper aquifer. This possibly means that the algorithms were 
“entrapped” to converge to a local minimum. Therefore, the bounds of x2 parameter 
were extended from (-5, 3) to (-25, 5) mm, in order to overcome this constraint and 
remove this type of possible uncertainty. (This is shown in the results section: 6.1.1). 
 
The selected model specification is summarized in the next page: 

 
Default model specification by (Perrin et al., 2003): 
 

Hydromad model with "gr4j" SMA and "gr4jrouting" routing: 

Simulation Start = 1986-10-01, End = 1992-09-30, warmup= 365 days 

 

SMA Parameter Ranges: 

       lower upper      

x1       100  1200  (mm) – SMA max. capacity   

etmult     1    1   (multiplier for the E data) 

 

Routing Parameters: 

     lower upper   

x2    -25.0   3.0  (mm) – groundwater exchange coefficient.   

x3     20.0 300.0  (mm) - Routing store capacity    

x4     1.1   2.9   (days) – UH time base    

 

S0 = 0 (initial soil moisture level as fraction of x1) 

R0 = 0 (initial groundwater reservoir level as fraction of x3)  
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3.3  AWBM model specifications:  
 
The 3-bucket structure of the AWBM has been used in the model specification, 
exactly as described previously. The excess water from three different capacities, 
with weighted areas, is added together and then is divided into two stores. The 
Routing component of the model has three parameters: BFI, Kb and Ks. These 
parameters are either directly provided to the model based on streamflow records, 
or in this case, they were calculated using a transfer function (effective rainfall 
transformed into component runoff) with exponentially decaying components. 
 
This transfer function is denoted by “expuh”, i.e. exponential unit hydrograph and, 
its decaying runoff components are described by a recession rate α and a peak 
response β. In Hydromad, these characteristics are better explained by time 
constants τ (time-steps required to reduce to 1/e or 37%) and volume fractions v 
respectively, where: 
 

τ=-1/log(α)         (1) 
 
v=β/(1-α)         (2) 

 
The routing runoff components are usually two (one quick and one slow component) 
having time constants τ _q and τ _s and fractional volumes v_q and v_s. They can be 
arranged in parallel or in series configuration*. In this study the model has two 
stores in parallel and their sum is the total simulated runoff, calculated by following 
transfer functions: 

 
Q_s(t) = α_s Q_s(t-1) + β_s U(t)       (3) 
 
Q_q(t) = α_q Q_q(t-1) + β_q U(t)       (4) 
 

These transfer functions of order (2,1) were fitted by the Simple Refined 
Instrumental Variable Method, SRIV (Young, 2008). Other methods include the Least 
Squares or the Inverse Filtering fittings which were also tried but did not function as 
good as the SRIV.  
 
 
*Note : the AWBM can also be arranged to have three routing stores. In this case 
their configuration can have four possible types: 3 parallel, 3 in series, 2 parallel and 
1 in series, 1 parallel and 2 in series, (Jakeman et al. 1990).  
 
The model specification used in this study is based on the self-calibrating version of 
the original model, the AWBM2002. According to Boughton et al. (2003), findings 
from high quality datasets that demonstrated very high correlation between actual 
and simulated runoff, reinforced the importance of the average surface storage 
capacity, Cave = C1A1 + C2A2 + C3A3. Their study suggests an average pattern that 
relates acceptably the three capacities and the three partial areas as followes:  
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A1 = 0.134: Partial area of smallest store 

A2 = 0.433: Partial area of middle store 

A3 = 0.433: Partial area of largest store 

C1 = 0.01*Ave/A1 = 0.075*Ave: Capacity of smallest store 

C2 = 0.33*Ave/A2 = 0.762*Ave: Capacity of middle store 

C3 = 0.66*Ave/A3 = 1.524*Ave: Capacity of largest store 

 
The rest of the specifications given to the model in this study are summarized as 
follows: 
 
Hydromad model with "awbm" SMA and "expuh" routing: 

Start = 1986-10-01, End = 1992-09-30, warmup = 365 days 

 

 

SMA Parameters: 

        lower upper   

cap.ave  1.00  1000  (mm) 

etmult   0.01     1  (multiplier for the E data) 

 

 

Routing Parameters:  

NULL i.e (t_q, t_s and v_q, v_s) will be calculated by: 

 

Routing fit spec.: list("sriv", order = c(2, 1))  

 
The above order (2, 1) of the transfer function was calculated by fitting the ARMAX 
model with the SRIV algorithm. The results are shown below: 

 
Table 2. AWBM model, specification of routing structure. ARPE and fit statistics calculated by 

fitting unit hydrograph transfer functions of different orders 

 
                 ARPE    r.squared  r.sq.log 

(n=0, m=0, d=0)  0.000      0.277   -1.072 

(n=1, m=0, d=0)  0.000      0.689   -0.131 

(n=1, m=1, d=0)  0.006      0.483   -0.185 

(n=2, m=0, d=0)    NaN      0.501    0.724 

(n=2, m=1, d=0)  0.000      0.756    0.854 

(n=2, m=2, d=0)  0.012     -0.684    0.740 

(n=3, m=0, d=0)    NaN      0.499    0.750 

(n=3, m=1, d=0)    NaN      0.709    0.843 

(n=3, m=2, d=0)    NaN -26783.899   -0.238 

(n=3, m=3, d=0) 55.692      0.325    0.587 

 
 

Therefore, a structure of (2, 1) was selected because it appears to yield better 
statistics. 
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3.4  IHACRES model - CWI version specifications: 
 

Similar to the AWBM, a structure of two runoff components in parallel has been 
used in this study. The model specification is summarized below: 
 

 

Hydromad model with "cwi" SMA and "expuh" routing: 

Start = 1986-10-01, End = 1992-09-30 

 

SMA Parameters: 

      lower upper      

tw        0   100      (drying rate at 20
o
C) 

f         0     8      (temperature modulation) 
scale    NA    NA      

l         0     0 (==) (As in the original IHACRES model) 

p         1     1 (==) (As in the original IHACRES model) 

t_ref    20    20 (==) 

 

Routing Parameters: 

NULL i.e (t_q, t_s and v_q, v_s) will be calculated by: 

 

Routing fit spec.: list("sriv", order = c(2, 1)) 

 

The above order (2, 1) of the transfer function was calculated by fitting the AMAX 
model with the SRIV algorithm. The results are shown below: 
  

Table 3. IHACRES model –CWI version, specification of routing structure. ARPE and fit 
statistics calculated by fitting unit hydrograph transfer functions of different orders 

 
                 ARPE   r.squared  r.sq.log 

(n=0, m=0, d=0)  0.000     0.258   -0.703 

(n=1, m=0, d=0)  0.000     0.664    0.411 

(n=1, m=1, d=0)  0.002     0.227    0.230 

(n=2, m=0, d=0)    NaN     0.613    0.589 

(n=2, m=1, d=0)  0.001     0.690    0.754 

(n=2, m=2, d=0)  0.006    -0.393    0.666 

(n=3, m=0, d=0)    NaN     0.610    0.596 

(n=3, m=1, d=0)    NaN     0.647    0.797 

(n=3, m=2, d=0)    NaN    -0.165    0.672 

(n=3, m=3, d=0) 52.759     0.354    0.530 

 

 
 
Therefore, a structure of (2, 1) was selected because it appears to yield better 
statistics. 
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3.5  IHACRES model - CMD version specifications: 
 
Similarly to the previous models, a two runoff component in parallel was used. The 
rest of the model specification is summarized below: 

 
Hydromad model with "cmd" SMA and "expuh" routing: 

Start = 1986-10-01, End = 1992-09-30 

 

SMA Parameters: 

      lower  upper      

f      0.01    3.0      (CMD stress threshold as a proportion of d)   
e      0.01    1.5      (temperature to PET conversion factor) 
d     50.00  550.0      (CMD threshold for producing flow)  

shape  0.00    0.0 (==) (Linear dU/dP relationship ) 
 

Routing Parameters: 

NULL i.e (t_q, t_s and v_q, v_s) will be calculated by: 

 

Routing fit spec.: list("sriv", order = c(2, 1)) 

 

The above order (2, 1) of the transfer function was calculated by fitting the AMAX 
model with the SRIV algorithm. The results are shown below: 
 

Table 4. IHACRES model –CMD version, specification of routing structure. ARPE and fit 
statistics calculated by fitting unit hydrograph transfer functions of different orders 

 

                ARPE   r.squared  r.sq.log 

(n=0, m=0, d=0) 0.000     0.343   -0.910 

(n=1, m=0, d=0) 0.000     0.706   -0.278 

(n=1, m=1, d=0) 0.001    -0.690   -0.343 

(n=2, m=0, d=0)   NaN     0.627   -0.040 

(n=2, m=1, d=0) 0.000     0.706    0.563 

(n=2, m=2, d=0) 2.160     0.569    0.523 

(n=3, m=0, d=0)   NaN     0.628   -0.046 

(n=3, m=1, d=0)   NaN     0.688    0.566 

(n=3, m=2, d=0)   NaN   -16.299   -0.080 

(n=3, m=3, d=0)   NaN     0.161    0.417 
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CHAPTER 4 

4.1  Calibration of Models: 

Calibration is the next step in the assessment of hydrological models. The selected 
Rainfall-Runoff (R-R) models are spatially-aggregated (lumped) and their 
mathematical structures are more conceptual-based. With these R-R models 
streamflow was predicted from input time-series of P, PET and Qobs. The model 
parameters that define the R-R relationship were estimated or adjusted in such a 
way that the modeled runoff would match as much as possible the observed 
streamflow and also, were assumed to be stationary during the calibration period.  
 
The available input data consists of daily measurements for 11 hydrological years 
between 01-10-1986 and 30-09-1997. Based on the streamflow observations, two 
temporal different periods were identified. A wet period from 01-10-1987 to 30-09-
1992 and a dry period from 01-10-1992 to 30-09-1997. Using a split-sample test 
based on the wet/dry periods, the models were calibrated for half of the years 
during the wet and the dry periods leaving the rest half of the years for validation. A 
warmup period of 365 days was used in all cases. This allowed the models to acquire 
information of the rainfall and therefore, for the initial soil moisture conditions, prior 
to the start. Therefore, two sets of Calibration-Validation periods were defined: 
 

Set A:  

Calibration period:  

TS1 <- window(dataz, start="1986-10-01", end="1992-09-30") 

Validation period:  

TS2 <- window(dataz, start="1991-10-01", end="1997-09-30") 

Set A:  

Calibration period:  

TS3 <- window(dataz, start="1991-10-01", end="1997-09-30") 

Validation period:  

TS4 <- window(dataz, start="1986-10-01", end="1992-09-30") 

The performance of all four models had to be assessed both individually and in 

comparison with each other, using seven different optimization techniques all of 

which would try to optimize the value of four different objective functions. 

Calculation of several fit statistics (which will be presented in the Validation chapter) 

was the typical approach to assess the models during the specified (wet and dry) 
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calibration periods. This rendered the automation of the calibration process 

imperative.   

4.2  Optimization Algorithms: 

In general, the algorithms plot the objective function values against the model 
parameters corresponding to the response surface. There are two main categories of 
optimization algorithms: Local Search Algorithms, (LSA, finding a lowest value of OF 
in the near vicinity) and Global Search Algorithms (GSA, finding the lowest value Of 
the OF in the whole response area).  
 
Seven different optimization algorithms were used at each calibration test for all 
four R-R models. Using the command “fitByOptim” in R, one can select: 

- the method/algorithm for the calibration,  

- the objective function to be minimized, 

-  the sample/number of parameters to be tested (here, samples=100) and, 

- the maximum evaluations/iterations to be performed (here, maxeval=1000) 

This command also allows the choice between a single and a multi-start mode of 
sampling the initial parameters. By trial, multi-start mode required a lot more time 
for the algorithms to converge and at the same time it did not improve significantly 
their performance in general and hence, single-mode sampling was selected. 
Another important setting in the calibration process was to maintain the same 
“seeding” by selecting set.seed(0) in R. This means that algorithms iterate in the 
same way each time they run and give the same result.  
 
The assessment and evaluation of each algorithm’s performance is performed by 
plotting their optimization traces in a diagram of “Objective Function Value versus 
Number of Function Evaluations”, (presented in the Results section).  
 
A brief description of the all the optimization algorithms deployed and how they 
function is summarized below: 

 
 

 The “Nelder-Mead”: (source of images: www.scholarpedia.org) 

NM is a non-linear optimization method that identifies points (simplices) in the 

parameter space that produce an OF with one local minimum. It uses only the OF 

values (direct search method) to the decision process. A simplex S is defined as the 

set of n+1 points, x0,…,xn € Rn (Rn is the parameter space). This simply means that if 

n=2 or n=3, then a simplex in R2 or in R3 would be a set of 3 points (x0, x1, x2, forming 

a triangle) or 4 points (x0, x1, x2, x3 forming a tetrahedron) respectively. 
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      3-point Simplex                      4-point Simplex 

The x points are assigned with values of objective function, fl, fs, fh, so that: 

 x0< x1< x2(< x3) and can be re-written as: xl, xs, xh 

The NM algorithm performs transformations (iteratively) to the initial size and shape 

of the simplex by: 

-Reflection: of the point with the highest OF value, xh, through the centroid c formed 

by the rest best points, at the opposite side of xh. The new point is called the 

reflection point xr as shown below 

 , if fl < fr < fs then xr is accepted and the iteration 
can be terminated, otherwise:  

If fr < fl then the simplex is transformed by either: 

- Expansion: of the reflection point xr on the c-xr line creating a new point xe as 
shown below: 

if fe < fr then xe is accepted and iteration 
terminates, otherwise if fr < fe then xr is accepted and the iteration is terminated or, 
alternatively, the algorithm can change direction in its search for a minimum value of 
the OF by: 
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- Contraction: of the xh or the xr to create a new point xc, depending on which one 
has bigger value of OF. If fh < fr < fs (outside contraction), then the contracted 
simplex shape becomes as the one shown below: 

 , if fc < fr then xc is accepted and the iteration 
terminates. In the opposite case, a shrinkage transformation in the simplex will be 
performed. If fr > fh > fs inside contraction), then the contracted simplex shape 
becomes: 

similarly, if fc < fr then xc is accepted and the 
iteration terminates. Otherwise again, a shrinkage transformation should be done. 
Shrinkage of the simplex is performed by moving each point (xh and xs) except xl by 
half way towards xl as shown in the picture below: 

 and the algorithm follows the same procedures as before. 

 The “PORT” functions describe a gradient search method for finding a local 
minimum. It uses the OF f(x), the gradient G(x) (vector of 1ST partial 
derivatives of f(x), and the Hessian of the OF (matrix of 2nd partial derivatives 
of f(x). 

 

 The “BFGS” is a quasi-Newton non-linear optimization method that uses both 

OF values and gradients to identify local minimum. It builds a quadratic 

model of the OF where G(xmin)=0 at the optimum value and requires the 

calculation of the inverse Hessian matrix.  
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The next four algorithms are Global Search 

 

 The “SANN” algorithm (Simulated Annealing) belongs to the probabilistic 

methods of optimization of a given objective function and returns a global 

minimum solution.  

 

 The SCE (Shuffled Complex Evolution) is a probabilistic population-sampling 
evolutionary algorithm. Initially, the algorithm samples populations at 
random and then divides them into complexes based on their objective 
function value. Then, these complexes evolve and are being optimized using 
techniques similar to the Nelder-Mead simplex method. When this procedure 
stops, the partitioned populations are combined back together again, sharing 
information and then they are divided similarly to the previous step. The 
procedure is repeated until the algorithm converges to a global optimum.   

 
 The DE (Differential Evolution) is a stochastic global optimization algorithm. 

Similar to other evolutionary algorithms, DE optimization is suitable for 
functions that are either continuous or differentiable.   
 

 The DREAM is a multiple Markov Chains Monte Carlo method and searches 
for global solution. 
 

 

4.3  Objective Functions: 

Objective functions are measures of how much model output and observed output 

(in this study streamflows) differ. Optimization algorithms adjust the model 

parameter values iteratively until they converge (i.e until optimum value of Objective 

Function has been discovered). Four different Objective Functions were applied in 

the calibration process. 

 

 The Nash-Sutcliffe Efficiency, NSE:  

This Objective Function (developed by Nash and Sutcliffe, 1970) is a traditional and 

straight-forward method for model assessment. It measures the degree of 

agreement between modeled and observed streamflow by the following formula: 
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The numerator of the fraction is the residual variance or “Noise” and the 

denominator is the variance of the flows from the mean observed. Calibration 

methods, based on the maximization of the NSE criterion, aim to reduce the variance 

error. Usually, a residual analysis should be performed to identify heteroscedastic 

errors. 

 

 The “Viney” Objective Function: 

This OFs, proposed by Viney et al. (2009), include bias constraint terms in the NSE. 

These are simply “penalty” terms subtracted from the NSE in a similar way to many 

other modelers. In their work, Viney et al, tested three different OF in the model 

calibration. The classic NSE, a biased constraint OF that assigns a penalty 

(proportional to the % of the Bias, B = ∑ ( X - Q )) to any prediction that has overall 

bias (total model error / total observed flow) greater than 5% (called “bucket 

constraint”) and a “log-bias”-penalty OF defined by: 

F = NSE – 5* [ln(1+B)]2.5 

They have found out that the log-bias constraint produced, in most model 

assessments, better results that the bucket constraint OF. The difference between 

them is that the later assigns an additively symmetrical penalty to predictions of the 

same % of overestimation and underestimation (i.e. the same penalty will be 

assigned to a 20% over-estimation and to 20% under-estimation of volume). On the 

other hand, the log-bias constraint is a multiplicatively symmetrical penalty (i.e. the 

same penalty will be applied to a prediction that is twice or half of the observation 

volume). The following figure shows that the bucket constraint, as used by Chiew et 

al. 2009 is much more severe than the log-bias. (Viney et al. 2009).  
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Figure 14. Penalties induced by the bucket constraint (a) and the log-bias constraint 

(b), (Viney et al. 2009). 

For example, if the Bias is -0.5 the penalty in case (a) is 850 while in case (b) only 2. 

This makes the log-bias OF a very challenging measure for this study’s model 

assessment too. 

 The “BL” Objective Function:  

This is another multi-variable OF proposed by Bergstrom and Lindstrom, (2002) that 

combines two classic OF, the NSE and the relative Bias with the following formula: 

BL,V = NSE – w*abs(VE) 

NSE is the Nat-Sutcliffe efficiency, VE = ∑ ( X - Q ) / ∑ Q) is the relative volume error 

and w is usually 0.1  

This OF produces an optimal R2 and practically no volume error, (Lindstrom, 1997). 

 The “NSE3” Objective Function: 

This is a transformation to the NSE where the absolute residuals are raised to cubic 

power. 
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CHAPTER 5 

5.1  Validation 

Validation or verification of the model is the next step in the model performance 

assessment. The models were tested for the specified validation periods with the 

same parameter estimates obtained from the calibration periods. This assumes 

stationarity of the state variables over the entire time-series. Calibration and 

validation periods are of approximately the same size and include both wet and dry 

periods. Assessing the model performance outside the calibration period, as it is the 

case in this study and, over periods with different climatic patterns, may indicate 

how robust  or not the models are.  

 

5.2  Evaluation Metrics:  

Several “goodness of fit” measures and fit statistics were calculated for the 

validation periods (same as in calibration period). These criteria determine the 

amount of uncertainty that remains in the models after they have been calibrated. 

These include the following: 

 Relative Bias: (rel.bias) :is the Bias as a fraction of the total observed flow,  

   (+/- values indicate over/under-estimation). 

 

∑ ( Qsim -  Qobs ) / ∑ Qobs 

 

 NSE: (r.squared): Nash-Sutcliffe Efficiency, (more weight on peak flows) 
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 NSESQRT: (r.sq.sqrt): Nash-Sutcliffe Efficiency using square-root transformed data 

(less weight on peak flows),  
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Another important statistic that has been calculated is the: 
 

 AMAFE: Average percent error of the Maximum Annual Flows,  
  
where:  

jMaxQsim  is the simulated maximum annual flow of year j, 

jMaxQobs    is the observed maximum annual flow of year j, and k is 

the number of hydrological years of the simulation period. 
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The evaluation of the models has been done in a comparative way of different model 
structures and different modelling approaches. As mentioned before, the split 
sample test aims to demonstrate the versatility of the models while, the different 
evaluation metrics aim to address the different parts of the hydrograph (peak or low 
flows). 
 
  
The next chapter contains a summary of the most important results and findings 

from the calibration and validation of the models. For the complete set of results 

one should refer to the appropriate Appendices. (APPENDIX A: GR4J model, 

APPENDIX B: AWBM model, APPENDIX C: IHACRES model – CWI version and 

APPENDIX D: IHACRES model – CMD version). For a better understanding and 

interpretation of the results, it would be useful if Appendices and Results chapter are 

viewed together.      
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CHAPTER 6 

6.1 Procedure 

A standard procedure has been followed for the performance assessment of all four 

models. This includes: 

(1) The split of the test period into two, for calibration-validation:  

(a) “Wet period” from 01-10-1987 to 30-09-1992  

(b)  “Dry period” from 01-10-1992 to 30-09-1997 

(2) The check of model performance based on four different objective functions: 

(a) NSE 

(b) Viney  

(c) BL 

(d) NSE3 

For every simulation based on the abovementioned criteria, the following aspects 

have been examined: 

- Performance of Optimization Algorithm 

- Model performance and uncertainty caused by the model structure  

- Parameter Values, Ranges and Stability 

- Objective Function evaluation based on fit statistics 

Performance of the algorithms was assessed based on the amount of iterations that 

they perform (evaluations) until they converge. Plots of algorithm optimization 

traces illustrate the effort required to optimize a given objective function. 

Parameter Stability is shown in tables containing their calibrated values for every 

optimization method. 

Finally, several objective functions addressing the different parts of the hydrograph 

are used to identify parameter and model uncertainty. 

The following results, figures and findings refer to the most representative cases and 

effort has been made to include the different behavior of all models tested under 

different optimization functions and objective functions. The full set of results can be 

viewed in the appendices. 
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6.2 Model performance and model structure uncertainty: 

In general, the modeled streamflows (in log-scale) produced by the different model 

structures, appear to be closely related to the observed runoff in most of the cases. 

The figures below demonstrate this finding by comparing some of the models that 

were calibrated by different objective functions over the two different periods (wet / 

dry).  

 

Figure 15. AWBM calibration results for the wet period (objective function used: Viney). 

 

Figure 16. AWBM calibration results for the dry period (objective function used: Viney). 
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Similar patterns for the other models can be seen in the appendices. In general, the 

relative bias produced during the wet period is always smaller than the one during 

the dry period (see fit statistics in appendices). This indicates that models perform 

better during wet periods.  To assess the quality of the fitted models, the Normal 

Probability Quantile-Quantile plots have been produced. As the pictures below 

indicate, the fitted models appear to follow very similar behavior in terms of 

distribution shape, scale and location.  

 

Figure 17. AWBM Q-Q plot (normal distribution) for the dry period, objective function used: Viney 

 

Figure 18. AWBM Q-Q plot (normal distribution) for the wet period, objective function used: Viney 
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A visual inspection of the Q-Q plots indicates that there is a small advantage in the 

streamflow prediction when the model is calibrated over the Wet period. Another 

important finding is that in all the cases, low flows are more difficult to be 

“captured” by the models, in contrast to the peak flows that are always predicted 

close to the observed ones. 

Looking at the scatter plots again for the AWBM, calibrated by the Viney objective 

function, all simulations underestimate the observed streamflow. Best results were 

obtained for the wet period with the use of global search algorithms, although local 

search algorithms also yielded similar results as in this case.  

 

Figure 19. AWBM scatter plot of simulated streamflows for the dry period, objective 

function used: Viney 

 

Figure 20. AWBM scatter plot of simulated streamflows for the wet period, objective 

function used: Viney 
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To assess the uncertainty caused by the structure of the model, the following graphs 

were produced. These graphs simply represent the uncertainty bounds (upper – 

lower) of the higher – lower value of the predicted (by any optimization algorithm) 

streamflow for each objective function. For example, in the IHACRES – CMD the 

uncertainty bounds are very narrow for both the wet and the dry periods, indicating 

that this model predicts flows that are not affected by the different time periods or 

their characteristics. However, again this model does not predict the low flows so 

well, especially during the dry period.  

 

Figure 21. IHACRES model – CMD version, Wet period uncertainty bounds, objective function 

used: BL 

 

Figure 22. IHACRES model – CMD version, Dry period uncertainty bounds, objective function 

used: BL 
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Looking at the models of IHCRES and AWBM (see appendices) one can observe a 

similar behavior. Uncertainty bounds are narrow and models perform better for a 

wet period rather than a dry period, based on the Objective Functions that have 

been used in this study. Interestingly, for the GR4J model, uncertainty bounds are 

larger in most cases, meaning that this model structure is more susceptible to the 

choice of the optimization method and the period of calibration. 

 

 Figure 23. GR4J model, Wet period uncertainty bounds, objective function used: NSE3 

 

Figure 24. GR4J model, Dry period uncertainty bounds, objective function used: NSE3 

This finding illustrates how important the model structure is in terms of uncertainty 

in the models predictions. But selecting an appropriate objective function can 
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provide improvements in modelling. For example, again fir the GR4J models, 

simulations using the Viney (or the NSE) as objective functions reduce significantly 

the amount of uncertainty in the predictions. Again the wet period yields better 

results. 

 

Figure 25. GR4J model, Wet period uncertainty bounds, objective function used: Viney 

 

Figure 26. GR4J model, Dry period uncertainty bounds, objective function used: Viney 
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6.3 Assessment of Algorithm choice:      

The optimization traces during the WET period suggest that all algorithms (except 

SANN in all cases and DREAM when calibration is done by Viney), perform 

satisfactorily. Global search algorithms SCE and DE appear to be the most insensitive 

to the choice of the objective function used and always outperform, even slightly in 

some cases, the local search algorithms PORT, NM and BFGS. (see also Calibration 

statistics – Appendix A).   

 

 

Figure 27. GR4J model. Optimization traces for the wet period 
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The term “insensitive” to the choice of the Objective Function may also translate that 

the algorithm is robust for operational use for both low and peak flow simulations. A 

very similar pattern appears also when calibration is performed during the DRY 

period (Appendix A). However, in absolute values of Objective function, during 

calibration, this model does not function so efficiently during the DRY period.  For 

example, comparing the NSE of SCE algorithm achieved in the wet period with that 

obtained in the dry period is about 87% and 79% respectively. Moreover, when the 

Validation period is dry, SCE achieves 78% in NSE and when the validation is a wet 

period, the same algorithm achieves 84.3%. The use of the other algorithms also 

result in similar fluctuations in the values of the Objective functions between wet and 

dry periods, always having higher values in the wet. 

Table 5. GR4J model Fit Statistics in Calibration: WET period 

       rel.bias r.sq.sqrt  NSE      viney   BL    NSE3 

PORT    -0.270     0.794    0.871     0.594   0.844  0.981 

BFGS    -0.269     0.797    0.871     0.596   0.844  0.980 

NM      -0.268     0.795    0.871     0.598   0.845  0.981 

SANN    -0.568     0.662    0.734    -2.498   0.677  0.921 

SCE     -0.271     0.793    0.871     0.590   0.844  0.981 

DE      -0.257     0.796    0.870     0.630   0.844  0.980 

DREAM   -0.207     0.817    0.867     0.738   0.846  0.977 

 

Table 6. GR4J model Fit Statistics in Calibration: DRY period 

      rel.bias r.sq.sqrt  NSE      viney   BL     NSE3 
PORT   -0.225    0.813     0.797     0.632   0.775   0.899 

BFGS    0.077    0.787     0.731     0.724   0.723   0.873 

NM      0.107    0.794     0.761     0.744   0.750   0.909 

SANN   -0.408    0.735     0.728    -0.269   0.687   0.819 

SCE    -0.140    0.822     0.791     0.746   0.777   0.897 

DE     -0.176    0.819     0.785     0.701   0.767   0.886 

DREAM  -0.194    0.818     0.795     0.687   0.776   0.899 

 

Table 7. GR4J model Fit Statistics in Validation: DRY period 

      rel.bias r.sq.sqrt     NSE      viney  BL   NSE3 
PORT    -0.303     0.791    0.777     0.386  0.747  0.873 

BFGS    -0.309     0.788    0.768     0.353  0.737  0.853 

NM      -0.301     0.792    0.778     0.393  0.748  0.874 

SANN    -0.622     0.568    0.542    -4.114  0.480  0.683 

SCE     -0.303     0.791    0.778     0.385  0.748  0.875 

DE      -0.281     0.796    0.780    0.468  0.752   0.887 

DREAM   -0.248     0.801    0.754     0.537  0.729  0.833 

 

Table 8. GR4J model Fit Statistics in Validation: WET period 

      rel.bias   r.sq.sqrt   NSE   viney   BL      NSE3 

        PORT  -0.206     0.814       0.862   0.734    0.842  0.977 

BFGS    0.079     0.817     0.791   0.787   0.790  0.946 

SANN   -0.367     0.756     0.849   0.138   0.813  0.973 

SCE    -0.127     0.828     0.843   0.809   0.830  0.966 

DE     -0.159     0.826     0.845   0.782   0.829  0.965 

DREAM  -0.177     0.820     0.859   0.775   0.841  0.975 
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6.4 Model Parameters Stability: 

Looking at the model parameter stability below, for the GR4J model, one can assume 

that x4 (time base of the UH) is almost invariable (approx. 1.1 days) and insensitive 

to the choice of the algorithm and the choice of the Objective function. The other 

parameters i.e. x2, (groundwater exchange coeff.), x1 (max. capacity of production 

store) and x3 (1-day ahead routing capacity) are sensitive both to the optimization 

method that is used and the objective function, especially in the wet period.  

Table 9. GR4J model parameters for the WET period (Calibration) 

Objective Function used = NSE 

            x2      x3      x4     x1     etmult 

PORT   -14.770  116.100  1.130  274.000    1 

BFGS   -11.430   97.100  1.150  307.000    1 

NM     -14.880  117.200  1.130  273.000    1 

SANN    -2.570   20.100  1.320  642.000    1 

SCE    -15.170  118.200  1.130  271.000    1 

DE     -18.070  136.800  1.140  243.000    1 

DREAM   -7.820   86.000  1.150  339.000    1 

 

Objective Function used = Viney 

            x2    x3    x4     x1       etmult 

PORT  -5.000  92.300  1.110  357.000     1 

BFGS  -5.000  93.500  1.110  356.000     1 

NM    -5.000  91.500  1.110  357.000     1 

SANN  -2.470  62.000  1.190  413.000     1 

SCE   -5.000  92.300  1.110  357.000     1 

DE    -3.710  75.800  1.130  383.000     1 

DREAM -4.920  59.000  1.180  406.000     1 

 

Table 10. GR4J model parameters for the DRY period (Calibration) 

Objective Function used = NSE 

           x2     x3    x4      x1      etmult 

PORT  -15.000  158.635  1.056  252.297    1 

BFGS  -14.998  142.246  1.074  262.663    1 

NM    -14.999  165.698  1.049  248.320    1 

SANN  -13.712  137.058  1.030  282.453    1 

SCE   -14.999  158.633  1.056  252.439    1 

DE    -13.529  154.495  1.041  262.426    1 

DREAM  -9.724  118.458  1.026  301.581    1 

 

Objective Function used = Viney 

           x2     x3       x4     x1      etmult 

PORT  -15.000  199.000  1.020  231.000     1 

BFGS  -15.000  195.000  1.030  231.000     1 

NM    -15.000  200.000  1.010  232.000     1 

SANN   -7.270  140.000  1.080  274.000     1 

SCE   -15.000  198.000  1.030  230.000     1 

DE    -13.000  173.000  1.070  236.000     1 

DREAM  -9.720  118.000  1.030  302.000     1 
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An example of relatively more stable model parameters is demonstrated with the 
IHACRES model – CWI version, in the table below. 
 

Table 11. IHACRES model – CWI version parameters for the DRY period (Calibration) 

Objective Function used = NSE 

          tw     f      scale  l  p t_ref  tau_s  tau_q   v_s   v_q   delay 

PORT  0.015  8.000  0.001  0  1   20   13.424  0.689  0.619  0.381  1 

BFGS  0.121  6.133  0.001  0  1   20   13.064  0.684  0.622  0.378  1 

NM    0.870  4.298  0.001  0  1   20   13.059  0.677  0.624  0.376  1 

SANN  0.318  4.988  0.001  0  1   20   14.113  0.681  0.619  0.381  1 

SCE   0.015  8.000  0.001  0  1   20   13.425  0.689  0.619  0.381  1 

DE    1.067  4.156  0.001  0  1   20   12.914  0.677  0.625  0.375  1 

 

Objective Function used = Viney 

    tw     f     scale  l  p t_ref  tau_s   tau_q   v_s   v_q  delay 

   PORT  0.014 8.000  0.001  0  1   20   13.718  0.689   0.618 0.382  1 

   BFGS  1.841 3.357  0.001  0  1   20   14.148  0.677   0.621 0.379  1 

   NM    0.013 8.000  0.001  0  1   20   13.951  0.689   0.617 0.383  1 

   SANN  0.358 5.309  0.001  0  1   20   12.554  0.682   0.626 0.374  1 

   SCE   0.014 8.000  0.001  0  1   20   13.717  0.689   0.618 0.382  1 

   DE    2.084 3.343  0.001  0  1   20   13.630  0.675   0.623 0.377  1 
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6.5 Effect of the objective function: 
 
Some models appear to perform in a similar way regardless the objective function 
that has been used, and also, the optimization algorithms perform almost in the 
same way. An example is given below, with the IHACRES – CWI model calibrated in a 
dry period by NSE and by Viney as objective functions. 
 

 

 
 

Figure 28. IHACRES model calibrated by Viney & NSE (DRY period) 

On the other hand, the GR4J model performs better when calibrated by Viney than 

by NSE, for the same dry period. This is an indication that probably such models are 
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not so reliable and versatile to cover hydrological variability and uncertainty. This is 

demonstrated in Figure 16 in the next page. 

 

 

Figure 29. GR4J model calibrated by Viney & NSE (DRY period) 
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6.6 Peak flow assessment: 

The AMAFE criterion is an indication of how well a model describes the peak flows. 

The following table demonstrates the best AMAFE results that have been obtained 

for every model, based on any objective function and any optimization algorithm. 

Table 12. Lowest AMAFE values obtained for all models 

 

 

For the GR4J and the IHACRES / CMD models, the AMAFE criterion gets its optimum value 

when the models are calibrated during a wet period and then validated for the dry period. In 

both cases, the global search algorithms have produced the best fits of simulated peak flows 

that are closer to the peak observed flows. Also, the objective functions that yielded these 

results are the NSE and the NSE3, as one would probably expect. On the other hand, for the 

AWBM and the IHACRES / CWI models, the best results are obtained when the models are 

calibrated for the dry period and then validated for a wet. For the AWBM the AMAFE 

criterion is unacceptable for the wet period of calibration (46%).     

 

Model 
Objective 
Function Period Optimization algorithm 

      PORT NM BFGS SANN SCE DE 

GR4J NSE 
calibration 87-92 -0.111 -0.111 -0.113 0.258 -0.111 -0.067 

validation 92-97 0.040 0.051 0.057 0.470 0.039 0.074 

  

AWBM NSE
3 calibration 92-97 0.461 0.461 0.462 0.513 0.461 0.470 

validation 87-92 -0.003 -0.003 -0.003 0.032 -0.003 0.002 

  

IHACRES 
/CWI 

Viney 
calibration 92-97 -0.091 -0.091 -0.096 -0.100 -0.091 -0.097 

validation 87-92 -0.051 -0.048 -0.052 -0.074 -0.051 -0.058 

  

IHACRES 
/CMD 

NSE
3 calibration 87-92 -0.118 -0.117 -0.005 -0.002 -0.117 -0.064 

validation 92-97 -0.088 -0.087 0.181 0.266 -0.089 -0.008 
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CHAPTER 7 

7.1 Conclusions: 

For conceptual R-R models, the most widely used approaches to estimate model 
parameters are based on the calibration of the models during a specific period. The 
models are then verified for another period with the use of fit statistics. The 
following figure illustrates graphically the main steps and methods that were 
followed for the calibration of four different conceptual lumped R-R models. 
 

  
  Figure 30. Project Outline and main calibration strategies 

Any calibration strategy aims to create models that best reflect the physical 

processes that take place in catchments. This implies that the model parameters 

must be such so that they ensure a model behavior that is realistic. At the same 

time, the number and the physical meaning behind the parameters must guarantee 

optimal model performance. Reduced complexity in the models is indeed an 

advantage while too many parameters would lead to overparametrization problems 

and ultimately reduced model performance.  

 
Therefore, the choice of the model structure plays a dominant role and, as it has 

been shown, it is the fundamental aspect in the elimination of model uncertainty. As 
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demonstrated in the Results section, different models, although similar in the 

concept and the approach to explain the physical processes, perform differently 

under the same conditions (i.e. optimization techniques and choice of objective 

function). 

 

Different efficiency criteria have been utilized to assess how well a model simulation 

fits the available observations (Beven, 2001). Depending on the purpose or the 

target of the study, different efficiency criteria place emphasis on different 

hydrologic behaviors. For example, the higher portions of a hydrograph (peak flows) 

can be better simulated at the expense of the lower portions (low flows), (Krause et 

al. 2005). In this study, the NSE and the NSE3 place emphasis to the high peaks at the 

expense of the low flows, while the Viney and the BL objective functions 

demonstrate a finer model behavior in all the segments of the hydrograph.  
 

The choice of an optimization technique also affects the uncertainty in the model 

parameters, but in a lower degree than the model structure itself. For example, 

global search algorithms appear to outperform the local search algorithms in most 

cases, with the SCE and the DE algorithms being almost in all cases the most 

effective. Local search algorithms may improve the value of the objective function 

given that they start at different parameter sets and not from a single sample. This 

enables the algorithms to avoid being entrapped to a local minimum solution. 

However, this has a significant cost in the computational resources required to 

perform the model calibration. In general, local search algorithms also performed in 

most of the cases, in a very satisfactory way.      

 
Using the split sample test of different calibration / validation periods, in this case a 

wet / dry period split, it was found that hydrologic variability affects significantly the 

model performance. Different calibration periods produced different parameters 

estimates. The more unstable and disperse the parameter values are, the worse the 

model performs. For a model to be considered reliable and robust, it should perform 

consistently during the different calibration periods. This is termed as parameter 

transposability in time (Gharari et al., 2012) and is viewed as one of the most 

important elements in R-R modeling. It has been demonstrated that hydrologically 

different temporal periods (dry / wet) also increase the instability in some models 

(i.e. the GR4J) and for others, such as the two IHACRES models and the AWBM, this 

variability did not affect their performance significantly.  

    

 A good initial model specification is also crucial if the target is to reduce model 

uncertainty. Trusting previous research and studies should always be the starting 

point in model specification. However, as most models provide some flexibility in 

their structure and parameter ranges, they should be tested more thoroughly in 
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order to increase confidence and to select a model specification that will ultimately 

function efficiently. It is also important to examine the scale of parameter ranges 

that have a valid physical significance. 

 

In many studies including this one, the search for optimum model parameters using 

efficiency criteria may often lead to equifinality issues. This means that in the search 

for optimum parameter values there are multiple optimum model predictions of 

streamflow close to the observed flow. This does not necessarily mean that the 

model is over-parameterized but it is due to the model itself and its properties, or 

due to the characteristics of the catchment and the climate, (Hreiche et al.). Given as 

an example below, the 3 parameters x1, x2, x3 of the GR4J model found by all 

methods, (the fourth parameter x4 remains constant), were plotted against each 

other in a 3D scatter plot. The plot gives an indication of the parameter value ranges 

in the feasible parameter space       

 
 

    
Figure 31. The issue of equifinality, for the GR4J model parameters. 
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7.2 Future work: 

 In this study, all model simulations have been performed using the observed raw 

data of streamflow. Andrews et al. (2011) suggest that in similar R-R models 

assessment and identification of model uncertainty, raw data can be transformed to 

reduce possible data errors. “This is because streamflow data often tends to be 

highly skewed and this may result in a large weighting put on large observations”. 

For demonstration purposes only, the following figure shows different data 

transformations and how these relate to the Normal distribution. In this case, a 

simple log transformation (or a Box-Cox transformation) may result in less inherent 

uncertainty in the dataset. 

 

Figure 32. Different data transformations showing deviations from normality 

The same research study by Andrews et al., 2011, suggest also to perform 

simulations based on rainfall-runoff events only, instead of using the whole raw rata 

series. This of course has been widely used in the past when extreme value analysis 

is the key issue, but it may well be used in general. One of the main issues here, is 

the careful definition of what makes an event. For example, the minimum thresholds 

of streamflow and rainfall values must be defined, as well as the durations that limit 

one event. As an example, the next figure illustrates an event-based approach in 

hydrological modelling. Rainfall events are defined when rainfall exceeds 5mm per 

day until it remains below 1mm for 4 days. (evp_5). Similarly, the streamflow events 

(evq_90 or evq_50) are defined when the observed streamflow exceeds the 90 or 50 

percentile level for at least 2 time-steps.  
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Figure 33. A typical event-based approach 

Such an approach is likely to reduce the auto-correlation that is inherent in the raw 

data, as shown in Fig. 30, (aggregation function used for the data: mean). 

 

Figure 34. Event-based / raw data approach and auto-correlation in the time series 
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This work can be also used in Frequency Analysis and Extremes in order to estimate, 

for example, the return levels of peak flows. This work also provides the basis for 

application to multiple catchments for inter-comparison.  Finally, to address the 

issues of climatic variability, the developed models can be applied to identify the 

impact of climate change on the hydrological cycle components and in particular 

streamflow. 
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GR4J model 

(A) Simulated streamflows (in log scale) – all models 
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(B) Normal distribution Q-Q plot – all models 

By NSE: 
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By Viney: 
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By BL: 
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By NSE3: 
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( C ) Scatterplots 

By NSE: wet period 

 

By NSE: dry period 
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By Viney: wet period 

 

By Viney: dry period 
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By BL: wet period 

 

By BL: dry period 
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By NSE3: wet period 

 

By NSE3: dry period 
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( D ) Model structure uncertainty 
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(E) Objective Function and Optimization Algorithm uncertainty 

CALIBRATION: WET – VALIDATION: DRY 

Optimization traces: 
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Validation FIT STATISTICS: 

Objective Function = NSE 

      rel.bias r.sq.sqrt r.squared  viney  BL     nse^3 
PORT    -0.303     0.791    0.777     0.386  0.747  0.873 

BFGS    -0.309     0.788    0.768     0.353  0.737  0.853 

NM      -0.301     0.792    0.778     0.393  0.748  0.874 

SANN    -0.622     0.568    0.542    -4.114  0.480  0.683 

SCE     -0.303     0.791    0.778     0.385  0.748  0.875 

DE      -0.281     0.796    0.780    0.468  0.752  0.887 

DREAM   -0.248     0.801    0.754     0.537  0.729  0.833 

 

Objective Function = Viney 

     rel.bias r.sq.sqrt r.squared  viney  BL    nse^3 

PORT    -0.090     0.809   0.733   0.719  0.724  0.823 

BFGS    -0.084     0.809   0.730   0.719  0.722  0.822 

NM      -0.093     0.810   0.733   0.718  0.724  0.823 

SANN    -0.071     0.802   0.698   0.690  0.691  0.797 

SCE     -0.090     0.809   0.733   0.719  0.724  0.823 

DE      -0.090     0.807   0.725   0.711  0.716  0.816 

DREAM   -0.301     0.779   0.725   0.340  0.695  0.802 

 

Objective Function = BL 

      rel.bias r.sq.sqrt r.squared  viney  BL     nse^3 
PORT    -0.207     0.815    0.777   0.649  0.757  0.872 

BFGS    -0.206     0.815    0.778   0.651  0.757  0.873 

NM      -0.203     0.814    0.774   0.651  0.754  0.865 

SANN    -0.409     0.737    0.752  -0.249  0.712  0.850 

SCE     -0.205     0.815    0.778   0.651  0.757  0.872 

DE      -0.192     0.816    0.775   0.670  0.756  0.877 

DREAM   -0.308     0.789    0.780   0.369  0.749  0.880 

 

Objective Function = NSE3 

     rel.bias r.sq.sqrt r.squared  viney  BL     nse^3 

PORT     0.608     0.529   0.551  -0.227  0.490  0.815 

BFGS     0.601     0.535   0.554  -0.207  0.494  0.816 

NM      -0.310     0.768   0.677   0.258  0.646  0.773 

SANN    -0.681     0.426   0.655  -6.304  0.587  0.814 

SCE     -0.338     0.778   0.781   0.234  0.747  0.883 

DE      -0.293     0.796   0.781   0.426  0.752  0.874 

DREAM   -0.308     0.789   0.780   0.369  0.749  0.880 
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Parameter Stability: 

Objective Function = NSE 

          x2     x3     x4    x1  etmult 

PORT   -14.77  116.1   1.13  274    1 

BFGS   -11.43   97.1   1.15  307    1 

NM     -14.88  117.2   1.13  273    1 

SANN    -2.57   20.1   1.32  642    1 

SCE    -15.17  118.2   1.13  271    1 

DE     -18.07  136.8   1.14  243    1 

DREAM  -7.82    86.0   1.15  339    1 

 

Objective Function = Viney 

         x2   x3   x4  x1 etmult 

PORT  -5.00 92.3 1.11 357      1 

BFGS  -5.00 93.5 1.11 356      1 

NM    -5.00 91.5 1.11 357      1 

SANN  -2.47 62.0 1.19 413      1 

SCE   -5.00 92.3 1.11 357      1 

DE    -3.71 75.8 1.13 383      1 

DREAM -4.92 59.0 1.18 406      1 

 

Objective Function = BL 

          x2     x3      x4     x1      etmult 

PORT  -12.312  124.090  1.112  277.803    1 

BFGS  -12.440  125.214  1.110  276.384    1 

NM    -11.197  117.924  1.114  288.558    1 

SANN  -11.810   76.829  1.182  320.338    1 

SCE   -12.399  124.971  1.110  276.781    1 

DE    -12.234  123.484  1.109  273.257    1 

DREAM -16.403  122.988  1.129  261.423    1 

 

 

Objective Function = NSE3 

         x2      x3       x4    x1     etmult 

PORT   -1.418  210.008  1.000  308.409   1 

BFGS   -1.425  206.931  1.000  309.410   1 

NM     -1.935   35.986  1.192  514.059   1 

SANN  -11.789   31.774  1.442  396.009   1 

SCE   -18.017  124.644  1.129  256.532   1 

DE    -15.238  123.484  1.123  270.180   1 

DREAM -16.403  122.988  1.129  261.423   1 
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(F) Objective Function and Optimization Algorithm uncertainty 

CALIBRATION: DRY – VALIDATION: WET 

Optimization traces: 
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Validation FIT STATISTICS: 

Objective Function = NSE 

      rel.bias r.sq.sqrt r.squared viney   BL     nse^3 

PORT   -0.206    0.814     0.862   0.734   0.842  0.977 

BFGS    0.079     0.817     0.791   0.787   0.790  0.946 

SANN   -0.367     0.756     0.849   0.138   0.813  0.973 

SCE    -0.127     0.828     0.843   0.809   0.830  0.966 

DE     -0.159     0.826     0.845   0.782   0.829  0.965 

DREAM  -0.177     0.820     0.859   0.775   0.841  0.975 

 

Objective Function = Viney 

     rel.bias r.sq.sqrt r.squared viney    BL nse^3 

PORT    -0.019     0.824    0.837 0.837 0.835 0.969 

BFGS    -0.026     0.825    0.839 0.838 0.836 0.970 

NM      -0.021     0.823    0.835 0.835 0.833 0.968 

SANN     0.120     0.813    0.795 0.773 0.783 0.952 

SCE     -0.020     0.824    0.837 0.837 0.835 0.969 

DE      -0.001     0.82     0.836 0.836 0.836 0.968 

DREAM   -0.133     0.88     0.843 0.804 0.830 0.971 

 

Objective Function = BL 

    rel.bias r.sq.sqrt r.squared viney BL nse^3 

PORT    0.089     0.809   0.804 0.794 0.796 0.954 

BFGS   -0.010     0.822   0.829 0.829 0.828 0.964 

NM      0.025     0.821   0.818 0.818 0.816 0.962 

SANN   -0.130     0.821   0.860 0.825 0.847 0.976 

SCE     0.000     0.821   0.827 0.827 0.827 0.963 

DE     -0.082     0.829   0.837 0.826 0.829 0.965 

 

Objective Function = NSE3 

     rel.bias r.sq.sqrt r.squared viney   BL  nse^3 

PORT    0.017     0.816   0.823   0.823 0.821 0.961 

BFGS    0.216     0.784   0.780   0.695 0.758 0.952 

NM      0.125     0.804   0.802   0.778 0.789 0.957 

SANN   -0.040     0.829   0.840   0.838 0.836 0.970 

SCE     0.047     0.812   0.820   0.817 0.815 0.961 

DE      0.022     0.818   0.820   0.819 0.817 0.959 
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Parameter Stability: 

Objective Function = NSE 

           x2     x3    x4      x1      etmult 

PORT  -15.000  158.635  1.056  252.297    1 

BFGS  -14.998  142.246  1.074  262.663    1 

NM    -14.999  165.698  1.049  248.320    1 

SANN  -13.712  137.058  1.030  282.453    1 

SCE   -14.999  158.633  1.056  252.439    1 

DE    -13.529  154.495  1.041  262.426    1 

DREAM  -9.724  118.458  1.026  301.581    1 

 

Objective Function = Viney 

         x2  x3   x4  x1 etmult 

PORT  -15.00 199 1.02 231      1 

BFGS  -15.00 195 1.03 231      1 

NM    -15.00 200 1.01 232      1 

SANN   -7.27 140 1.08 274      1 

SCE   -15.00 198 1.03 230      1 

DE    -13.00 173 1.07 236      1 

DREAM  -9.72 118 1.03 302      1 

 

Objective Function = BL 

       x2    x3   x4  x1 etmult 

PORT  -20.0 216.3 1.10 203      1 

BFGS  -16.1 279.3 1.10 211      1 

NM    -20.0 236.0 1.10 195      1 

SANN  -11.8  76.8 1.28 320      1 

SCE   -20.0 231.8 1.10 194      1 

DE    -16.0 188.4 1.11 224      1 

DREAM -19.6 179.9 1.10 224      1 

 

Objective Function = NSE3 

           x2     x3       x4   x1       etmult 

PORT   -25.000  300.000  1.000  159.501    1 

BFGS   -15.716  282.162  1.002  182.173    1 

NM     -16.336  254.201  1.000  192.225    1 

SANN   -13.197  178.954  1.058  251.173    1 

SCE    -24.385  299.928  1.002  154.493    1 

DE     -23.314  293.179  1.016  170.050    1 
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AWBM model 

(A) Simulated streamflows (in log scale) – all models 
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(B) Normal distribution Q-Q plot – all models 

By NSE: 

 

 
 

 

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 09:25:49 EEST - 18.221.83.60



 APPENDIX B: AWBM model  

87 
 

By Viney: 
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By BL: 
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By NSE3: 
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( C ) Scatterplots 

By NSE: wet period 

 
By NSE: dry period 
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By Viney: wet period 

 
By Viney: dry period 
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By BL: wet period 

 
By BL: dry period 
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By NSE3: wet period 

 
By NSE3: dry period 
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( D ) Model structure uncertainty 
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(E) Objective Function and Optimization Algorithm uncertainty 

CALIBRATION: WET – VALIDATION: DRY 

Optimization traces: 
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Validation FIT STATISTICS: 

Objective Function = NSE 

     rel.bias r.sq.sqrt r.squared viney  BL nse^3 

PORT   -0.014     0.826   0.782   0.782 0.780 0.930 

BFGS   -0.013     0.826   0.782   0.782 0.781 0.930 

NM     -0.014     0.826   0.782   0.782 0.780 0.930 

SANN   -0.036     0.813   0.715   0.713 0.711 0.875 

SCE    -0.014     0.826   0.782   0.782 0.780 0.930 

DE     -0.025     0.825   0.774   0.773 0.772 0.923 

 

Objective Function = Viney 

     rel.bias r.sq.sqrt r.squared viney    BL nse^3 

PORT   -0.026     0.825     0.777 0.777 0.775 0.925 

BFGS   -0.022     0.825     0.779 0.778 0.777 0.927 

NM     -0.026     0.825     0.777 0.777 0.775 0.925 

SANN   -0.042     0.824     0.767 0.765 0.763 0.915 

SCE    -0.026     0.825     0.777 0.777 0.775 0.925 

DE     -0.018     0.825     0.781 0.780 0.779 0.929 

 

Objective Function = BL 

    rel.bias r.sq.sqrt r.squared viney   BL   nse^3 

PORT   -0.032     0.825     0.774 0.773 0.771 0.922 

BFGS   -0.036     0.825     0.773 0.772 0.769 0.920 

NM     -0.034     0.825     0.773 0.772 0.770 0.921 

SANN   -0.012     0.824     0.773 0.773 0.772 0.924 

SCE    -0.035     0.825     0.773 0.772 0.770 0.921 

DE     -0.024     0.825     0.773 0.772 0.770 0.922 

 

Objective Function = NSE3 

    rel.bias r.sq.sqrt r.squared viney   BL   nse^3 

PORT    0.039     0.734     0.371 0.370 0.367 0.604 

BFGS    0.039     0.734     0.371 0.370 0.367 0.604 

NM      0.040     0.734     0.372 0.370 0.368 0.605 

SANN    0.017     0.732     0.361 0.361 0.359 0.584 

SCE     0.015     0.825     0.785 0.784 0.783 0.936 

DE      0.015     0.825     0.785 0.785 0.783 0.936 
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Parameter Stability: 

Objective Function = NSE 

 

     cap.ave etmult  tau_s tau_q   v_s   v_q delay 

PORT 272.790  1.000 46.845 2.126 0.548 0.452     0 

BFGS 272.621  1.000 46.861 2.128 0.547 0.453     0 

NM   272.829  1.000 46.843 2.126 0.548 0.452     0 

SANN 309.238  0.892 43.831 2.065 0.558 0.442     0 

SCE  272.791  1.000 46.845 2.126 0.548 0.452     0 

DE   278.833  0.990 46.408 2.103 0.550 0.450     0 

 

Objective Function = Viney 

    cap.ave etmult  tau_s tau_q   v_s   v_q delay 

PORT 276.683  1.000 46.494 2.105 0.551 0.449     0 

BFGS 275.414  1.000 46.629 2.112 0.549 0.451     0 

NM   276.572  1.000 46.506 2.105 0.550 0.450     0 

SANN 283.632  0.994 45.812 2.077 0.556 0.444     0 

SCE  276.681  1.000 46.495 2.105 0.551 0.449     0 

DE   273.941  1.000 46.772 2.120 0.548 0.452     0 

 

Objective Function = BL 

     cap.ave etmult  tau_s tau_q   v_s   v_q delay 

PORT 278.810  1.000 46.265 2.093 0.552 0.448     0 

BFGS 279.864  1.000 46.149 2.088 0.553 0.447     0 

NM   279.501  1.000 46.188 2.090 0.553 0.447     0 

SANN 278.986  0.972 46.671 2.121 0.546 0.454     0 

SCE  279.540  1.000 46.184 2.089 0.553 0.447     0 

DE   279.755  0.986 46.378 2.103 0.550 0.450     0 

 

Objective Function = NSE3 

    cap.ave etmult  tau_s tau_q   v_s   v_q delay 

PORT 472.740  0.416 38.942 1.779 0.544 0.456     0 

BFGS 472.788  0.416 38.941 1.779 0.544 0.456     0 

NM   472.560  0.416 38.960 1.780 0.544 0.456     0 

SANN 485.364  0.410 37.908 1.754 0.550 0.450     0 

SCE  267.422  0.983 47.482 2.189 0.541 0.459     0 

DE   267.166  0.985 47.479 2.189 0.541 0.459     0 
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(E) Objective Function and Optimization Algorithm uncertainty 

CALIBRATION: DRY – VALIDATION: WET 

Optimization traces: 
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Validation FIT STATISTICS: 

Objective Function = NSE 

    rel.bias r.sq.sqrt r.squared viney  BL  nse^3 

PORT    0.078     0.802   0.741  0.734 0.733 0.908 

BFGS    0.065     0.805   0.745  0.740 0.738 0.909 

NM      0.077     0.802   0.741  0.734 0.734 0.908 

SANN    0.102     0.798   0.724  0.709 0.713 0.896 

SCE     0.078     0.802   0.741  0.734 0.733 0.908 

DE      0.068     0.805   0.742  0.736 0.735 0.907 

 

Objective Function = Viney 

     rel.bias r.sq.sqrt r.squared viney   BL  nse^3 

PORT    0.076     0.802    0.742  0.734 0.734 0.908 

BFGS    0.050     0.808    0.747  0.744 0.742 0.909 

NM      0.076     0.802    0.742  0.734 0.734 0.908 

SANN    0.100     0.799    0.724  0.709 0.714 0.896 

SCE     0.076     0.802    0.742  0.734 0.734 0.908 

DE      0.077     0.802    0.741  0.734 0.734 0.908 

 

Objective Function = BL 

     rel.bias r.sq.sqrt r.squared viney  BL   nse^3 

PORT    0.076     0.802     0.742 0.734 0.734 0.908 

BFGS    0.070     0.804     0.744 0.738 0.737 0.909 

NM      0.076     0.802     0.742 0.734 0.734 0.908 

SANN    0.078     0.802     0.741 0.733 0.733 0.908 

SCE     0.076     0.802     0.742 0.734 0.734 0.908 

DE      0.079     0.802     0.740 0.732 0.732 0.907 

 

Objective Function = NSE3 

   rel.bias r.sq.sqrt r.squared viney  BL   nse^3 

PORT    0.083     0.801   0.739 0.730 0.730 0.907 

BFGS    0.084     0.801   0.738 0.729 0.730 0.907 

NM      0.083     0.801   0.739 0.730 0.730 0.907 

SANN    0.118     0.795   0.719 0.698 0.707 0.896 

SCE     0.083     0.801   0.739 0.730 0.730 0.907 

DE      0.086     0.801   0.737 0.727 0.728 0.906 
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Parameter Stability: 

Objective Function = NSE 

     cap.ave etmult  tau_s tau_q   v_s   v_q delay 

PORT 263.067  1.000 74.398 1.838 0.514 0.486     0 

BFGS 266.566  0.999 74.276 1.830 0.514 0.486     0 

NM   263.156  1.000 74.420 1.838 0.514 0.486     0 

SANN 273.489  0.920 72.687 1.854 0.494 0.506     0 

SCE  263.064  1.000 74.397 1.838 0.514 0.486     0 

DE   270.252  0.977 73.722 1.833 0.508 0.492     0 

 

Objective Function = Viney 

     cap.ave etmult  tau_s tau_q   v_s   v_q delay 

PORT 263.349  1.000 74.469 1.837 0.514 0.486     0 

BFGS 270.584  0.999 74.067 1.823 0.513 0.487     0 

NM   263.350  1.000 74.469 1.837 0.514 0.486     0 

SANN 274.467  0.918 72.593 1.854 0.493 0.507     0 

SCE  263.349  1.000 74.469 1.837 0.514 0.486     0 

DE   263.853  0.997 74.389 1.837 0.514 0.486     0 

 

Objective Function = BL 

    cap.ave etmult  tau_s tau_q   v_s   v_q delay 

PORT 263.349  1.000 74.469 1.837 0.514 0.486     0 

BFGS 265.216  1.000 74.359 1.833 0.514 0.486     0 

NM   263.344  1.000 74.468 1.837 0.514 0.486     0 

SANN 263.795  0.996 74.381 1.838 0.514 0.486     0 

SCE  263.349  1.000 74.469 1.837 0.514 0.486     0 

DE   262.543  1.000 74.265 1.840 0.513 0.487     0 

 

Objective Function = NSE3 

    cap.ave etmult  tau_s tau_q   v_s   v_q delay 

PORT 261.607  1.000 74.030 1.844 0.512 0.488     0 

BFGS 261.594  0.999 73.989 1.844 0.512 0.488     0 

NM   261.606  1.000 74.029 1.844 0.512 0.488     0 

SANN 260.794  0.970 72.699 1.866 0.500 0.500     0 

SCE  261.610  1.000 74.031 1.844 0.512 0.488     0 

DE   262.331  0.993 73.812 1.846 0.510 0.490     0
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IHACRES model - CWI version: 

(A) Simulated streamflows (in log scale) – all models 
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( B ) Normal distribution Q-Q plot – all models 

By NSE: 
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By Viney: 
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By BL: 
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By NSE3: 
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( C ) Scatterplots 

By NSE: wet period 

 
By NSE: dry period 
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By Viney: wet period 

 
By Viney: dry period 
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By BL: wet period 

 
By BL: dry period 
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By NSE3: wet period 

 
By NSE3: dry period 
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( D ) Model structure uncertainty 
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(E) Objective Function and Optimization Algorithm uncertainty 

CALIBRATION: WET – VALIDATION: DRY 

Optimization traces: 
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Validation FIT STATISTICS: 

Objective Function = NSE 

    rel.bias r.sq.sqrt r.squared viney  BL   nse^3 

PORT    0.169     0.751   0.651  0.602 0.634 0.823 

BFGS    0.184     0.752   0.652  0.593 0.633 0.825 

NM      0.200     0.746   0.656  0.585 0.636 0.832 

SANN    0.187     0.748   0.664  0.603 0.645 0.846 

SCE     0.169     0.751   0.651  0.602 0.634 0.823 

DE      0.204     0.744   0.654  0.580 0.634 0.830 

 

Objective Function = Viney 

     rel.bias r.sq.sqrt r.squared viney  BL   nse^3 

PORT    0.168     0.750   0.654   0.606 0.637 0.827 

BFGS    0.202     0.742   0.666   0.594 0.646 0.852 

NM      0.167     0.749   0.656   0.609 0.639 0.831 

SANN    0.198     0.748   0.646   0.576 0.626 0.816 

SCE     0.168     0.750   0.654   0.606 0.637 0.827 

DE      0.205     0.742   0.663   0.588 0.642 0.846 

 

Objective Function = BL 

    rel.bias r.sq.sqrt r.squared viney  BL   nse^3 

PORT    0.168     0.750   0.653  0.605 0.636 0.827 

BFGS    0.174     0.751   0.654  0.603 0.637 0.829 

NM      0.168     0.750   0.653  0.606 0.636 0.827 

SANN    0.189     0.747   0.664  0.602 0.645 0.847 

SCE     0.168     0.751   0.653  0.605 0.636 0.827 

DE      0.204     0.744   0.653  0.578 0.633 0.828 

 

Objective Function = NSE3 

    rel.bias r.sq.sqrt r.squared viney  BL   nse^3 

PORT    0.422     0.685   0.746  0.378 0.704 0.946 

BFGS    0.408     0.693   0.753  0.410 0.712 0.948 

NM      0.401     0.694   0.754  0.424 0.714 0.947 

SANN    0.400     0.698   0.757  0.428 0.717 0.950 

SCE     0.388     0.703   0.761  0.454 0.722 0.950 

DE      0.400     0.698   0.756  0.427 0.716 0.950 
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Parameter Stability: 

Objective Function = NSE 

tw     f     scale   l  p t_ref  tau_s  tau_q   v_s    v_q  delay 

PORT  0.015  8.000  0.001  0  1   20   13.424  0.689  0.619  0.381  1 

BFGS  0.121  6.133  0.001  0  1   20   13.064  0.684  0.622  0.378  1 

NM    0.870  4.298  0.001  0  1   20   13.059  0.677  0.624  0.376  1 

SANN  0.318  4.988  0.001  0  1   20   14.113  0.681  0.619  0.381  1 

SCE   0.015  8.000  0.001  0  1   20   13.425  0.689  0.619  0.381  1 

DE    1.067  4.156  0.001  0  1   20   12.914  0.677  0.625  0.375  1 

 

Objective Function = Viney 

tw     f     scale  l  p t_ref  tau_s   tau_q   v_s   v_q  delay 

PORT  0.014 8.000  0.001  0  1   20   13.718  0.689   0.618 0.382  1 

BFGS  1.841 3.357  0.001  0  1   20   14.148  0.677   0.621 0.379  1 

NM    0.013 8.000  0.001  0  1   20   13.951  0.689   0.617 0.383  1 

SANN  0.358 5.309  0.001  0  1   20   12.554  0.682   0.626 0.374  1 

SCE   0.014 8.000  0.001  0  1   20   13.717  0.689   0.618 0.382  1 

DE    2.084 3.343  0.001  0  1   20   13.630  0.675   0.623 0.377  1 

 

Objective Function = BL 

      

       tw    f      scale  l  p t_ref tau_s  tau_q  v_s   v_q   delay 

PORT  0.014  8.000  0.001  0  1  20   13.654 0.689  0.618 0.382  1 

BFGS  0.038  7.092  0.001  0  1  20   13.535 0.686  0.619 0.381  1 

NM    0.014  8.000  0.001  0  1  20   13.671 0.689  0.618 0.382  1 

SANN  0.435  4.691  0.001  0  1  20   14.160 0.680  0.619 0.381  1 

SCE   0.014  8.000  0.001  0  1  20   13.650 0.689  0.618 0.382  1 

DE    1.067  4.175  0.001  0  1  20   12.858 0.677  0.625 0.375  1 

 

Objective Function = NSE3 

       tw     f      scale  l  p t_ref tau_s  tau_q  v_s   v_q   Delay 

PORT  3.028  1.817  0.002  0  1  20   57.070 2.505  0.482 0.518   0 

BFGS  0.177  4.340  0.002  0  1  20   58.931 2.482  0.491 0.509   0 

NM    0.003  7.999  0.002  0  1  20   61.528 2.406  0.515 0.485   0 

SANN  0.959  2.983  0.002  0  1  20   56.843 2.557  0.467 0.533   0 

SCE   0.005  7.488  0.002  0  1  20   60.319 2.465  0.496 0.504   0 

DE    0.827  3.104  0.002  0  1  20   57.034 2.551  0.469 0.531   0 
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(F) Objective Function and Optimization Algorithm uncertainty 

CALIBRATION: DRY – VALIDATION: WET 

Optimization traces: 
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Validation FIT STATISTICS: 

Objective Function = NSE 

      rel.bias r.sq.sqrt r.squared  viney BL   nse^3 

PORT    0.053     0.802     0.726  0.723 0.720 0.788 

BFGS    0.062     0.806     0.725  0.721 0.719 0.787 

NM      0.073     0.805     0.724  0.718 0.717 0.788 

SANN    0.061     0.802     0.724  0.719 0.718 0.790 

SCE     0.053     0.802     0.726  0.723 0.720 0.788 

DE      0.077     0.805     0.724  0.717 0.716 0.788 

 

Objective Function = Viney 

     rel.bias r.sq.sqrt r.squared viney BL   nse^3 

PORT    0.052     0.801   0.726  0.723 0.720 0.789 

BFGS    0.069     0.802   0.722  0.716 0.715 0.790 

NM      0.052     0.800   0.725  0.723 0.720 0.790 

SANN    0.074     0.808   0.724  0.718 0.717 0.786 

SCE     0.052     0.801   0.726  0.723 0.720 0.789 

DE      0.073     0.803   0.723  0.716 0.716 0.789 

 

Objective Function = BL 

    rel.bias r.sq.sqrt r.squared viney  BL  nse^3 

PORT    0.053     0.801   0.726 0.723 0.720 0.789 

BFGS    0.056     0.802   0.725 0.722 0.720 0.789 

NM      0.053     0.801   0.726 0.723 0.720 0.789 

SANN    0.062     0.802   0.723 0.719 0.717 0.790 

SCE     0.053     0.801   0.726 0.723 0.720 0.789 

DE      0.078     0.805   0.724 0.716 0.716 0.788 

 

Objective Function = NSE3 

    rel.bias r.sq.sqrt r.squared viney BL   nse^3 

PORT    0.202     0.747   0.707 0.634 0.686 0.885 

BFGS    0.202     0.749   0.708 0.636 0.688 0.888 

NM      0.200     0.749   0.706 0.635 0.686 0.891 

SANN    0.202     0.753   0.711 0.639 0.691 0.886 

SCE     0.201     0.753   0.711 0.639 0.691 0.891 

DE      0.202     0.753   0.711 0.638 0.691 0.886 
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Parameter Stability: 

Objective Function = NSE 

Parameters calibrated over Dry period: 

        tw     f      scale  l  p t_ref  tau_s  tau_q   v_s   v_q   delay 
PORT  0.015  8.000  0.001  0  1   20   13.424  0.689  0.619  0.381  1 

BFGS  0.121  6.133  0.001  0  1   20   13.064  0.684  0.622  0.378  1 

NM    0.870  4.298  0.001  0  1   20   13.059  0.677  0.624  0.376  1 

SANN  0.318  4.988  0.001  0  1   20   14.113  0.681  0.619  0.381  1 

SCE   0.015  8.000  0.001  0  1   20   13.425  0.689  0.619  0.381  1 

DE    1.067  4.156  0.001  0  1   20   12.914  0.677  0.625  0.375  1 

 

Objective Function = Viney 

tw     f     scale  l  p t_ref  tau_s   tau_q   v_s   v_q  delay 

PORT  0.014 8.000  0.001  0  1   20   13.718  0.689   0.618 0.382  1 

BFGS  1.841 3.357  0.001  0  1   20   14.148  0.677   0.621 0.379  1 

NM    0.013 8.000  0.001  0  1   20   13.951  0.689   0.617 0.383  1 

SANN  0.358 5.309  0.001  0  1   20   12.554  0.682   0.626 0.374  1 

SCE   0.014 8.000  0.001  0  1   20   13.717  0.689   0.618 0.382  1 

DE    2.084 3.343  0.001  0  1   20   13.630  0.675   0.623 0.377  1 

 

Objective Function = BL 

 

       tw     f     scale  l  p t_ref tau_s  tau_q  v_s   v_q   delay 

PORT  0.014  8.000  0.001  0  1  20   13.654 0.689  0.618 0.382  1 

BFGS  0.038  7.092  0.001  0  1  20   13.535 0.686  0.619 0.381  1 

NM    0.014  8.000  0.001  0  1  20   13.671 0.689  0.618 0.382  1 

SANN  0.435  4.691  0.001  0  1  20   14.160 0.680  0.619 0.381  1 

SCE   0.014  8.000  0.001  0  1  20   13.650 0.689  0.618 0.382  1 

DE    1.067  4.175  0.001  0  1  20   12.858 0.677  0.625 0.375  1 

 

Objective Function = NSE3 

       tw     f      scale  l  p t_ref tau_s  tau_q  v_s   v_q   Delay 

PORT  3.028  1.817  0.002  0  1  20   57.070 2.505  0.482 0.518   0 

BFGS  0.177  4.340  0.002  0  1  20   58.931 2.482  0.491 0.509   0 

NM    0.003  7.999  0.002  0  1  20   61.528 2.406  0.515 0.485   0 

SANN  0.959  2.983  0.002  0  1  20   56.843 2.557  0.467 0.533   0 

SCE   0.005  7.488  0.002  0  1  20   60.319 2.465  0.496 0.504   0 

DE    0.827  3.104  0.002  0  1  20   57.034 2.551  0.469 0.531   0 
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IHACRES model – CMD version 

( A ) Simulated streamflows (in log scale) – all models 
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( B ) Normal distribution Q-Q plot – all models 

By NSE: 
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By Viney: 
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By BL: 
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By NSE3: 
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( C ) Scatterplots 

By NSE: wet period 

 

By NSE: dry period 
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By Viney: wet period 

 

By Viney: dry period 
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By BL: wet period 

 

By BL: dry period 
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By NSE3: wet period 

 

By NSE3: dry period 
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( D ) Model structure uncertainty 
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(E) Objective Function and Optimization Algorithm uncertainty 

CALIBRATION: WET – VALIDATION: DRY 

Optimization traces: 
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Validation FIT STATISTICS: 

 Objective Function = NSE  

      rel.bias r.sq.sqrt r.squared viney  BL     nse^3   

PORT   -0.155     0.595    0.640   0.582  0.625  0.845   

BFGS   -0.147     0.653    0.593   0.543  0.578  0.792   

NM     -0.130     0.618    0.646   0.610  0.633  0.850   

SANN   -0.108     0.625    0.635   0.613  0.624  0.844   

SCE    -0.155     0.595    0.640   0.582  0.625  0.845   

DE     -0.176     0.591    0.620   0.538  0.602  0.826   

 

Objective Function = Viney 

    rel.bias r.sq.sqrt r.squared  viney  BL   nse^3 

PORT   -0.152     0.597    0.641  0.586 0.626 0.847 

BFGS   -0.095     0.676    0.619  0.604 0.610 0.820 

NM     -0.127     0.619    0.648  0.614 0.635 0.852 

SANN   -0.131     0.632    0.586  0.549 0.572 0.795 

SCE    -0.153     0.596    0.641  0.585 0.626 0.847 

DE     -0.204     0.527    0.592  0.467 0.571 0.803 

 

Objective Function = BL 

     rel.bias r.sq.sqrt r.squared viney  BL    nse^3 

PORT   -0.146     0.604    0.643 0.593  0.628  0.847 

BFGS   -0.118     0.660    0.618 0.590  0.606  0.818 

NM     -0.146     0.604    0.643 0.593  0.628  0.848 

SANN   -0.172     0.559    0.635 0.558  0.618  0.843 

SCE    -0.148     0.600    0.643 0.591  0.628  0.848 

DE     -0.149     0.55     0.614 0.562  0.599  0.829 

 

Objective Function = NSE3 

    rel.bias r.sq.sqrt r.squared  viney  BL     nse^3 

PORT   -0.151     0.577    0.649  0.596  0.634  0.856 

BFGS    0.009     0.713    0.659  0.659  0.659  0.864 

NM     -0.149     0.578    0.650  0.597  0.635  0.857 

SANN    0.014     0.712    0.598  0.598  0.597  0.814 

SCE    -0.151     0.577    0.649  0.595  0.634  0.856 

DE     -0.078     0.637    0.671  0.661  0.663  0.875 
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Parameter Stability: 

Objective Function = NSE 

        f     e     d   shape tau_s  tau_q  v_s   v_q  delay 

PORT 0.895 1.500 178.366  0   60.999 2.121  0.484 0.516  0 

BFGS 0.757 1.500 260.252  0   58.713 2.245  0.448 0.552  0 

NM   0.861 1.500 188.704  0   61.055 2.150  0.479 0.521  0 

SANN 0.850 1.458 196.701  0   60.753 2.178  0.470 0.530  0 

SCE  0.895 1.500 178.349  0   60.999 2.121  0.484 0.516  0 

DE   0.880 1.495 189.025  0   60.882 2.125  0.480 0.520  0 

 

Objective Function = Viney 

       f     e       d   shape tau_s  tau_q  v_s   v_q  delay 

PORT 0.892 1.500 178.886  0    61.012 2.123  0.483 0.517  0 

BFGS 0.745 1.499 258.479  0    58.613 2.271  0.446 0.554  0 

NM   0.861 1.500 188.292  0    61.068 2.151  0.479 0.521  0 

SANN 0.799 1.419 238.781  0    59.217 2.232  0.449 0.551  0 

SCE  0.894 1.500 178.281  0    61.009 2.122  0.484 0.516  0 

DE   0.955 1.451 171.543  0    60.721 2.085  0.484 0.516  0 

 

 

Objective Function = BL 

        f     e    d    shape tau_s  tau_q  v_s   v_q  delay 

PORT 0.882 1.500 181.951  0   61.031 2.131 0.482 0.518   0 

BFGS 0.769 1.499 243.365  0   59.346 2.238 0.453 0.547   0 

NM   0.883 1.500 181.640  0   61.031 2.131 0.482 0.518   0 

SANN 0.943 1.492 165.007  0   60.826 2.092 0.489 0.511   0 

SCE  0.890 1.500 179.075  0   61.030 2.126 0.483 0.517   0 

DE   0.955 1.422 167.231  0   60.852 2.114 0.481 0.519   0 

 

Objective Function = NSE3 

       f     e     d    shape  tau_s tau_q  v_s   v_q delay 

PORT 0.930 1.500 164.990  0   60.979 2.103 0.489 0.511  0 

BFGS 0.722 1.499 253.271  0   58.585 2.310 0.444 0.556  0 

NM   0.930 1.500 164.925  0   60.987 2.104 0.489 0.511  0 

SANN 0.667 1.432 341.338  0   53.590 2.416 0.405 0.595  0 

SCE  0.931 1.500 164.758  0   60.974 2.102 0.489 0.511  0 

DE   0.856 1.498 182.361  0   61.333 2.168 0.479 0.521  0 
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(F) Objective Function and Optimization Algorithm uncertainty 

CALIBRATION: DRY – VALIDATION: WET 

Optimization traces: 
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Validation FIT STATISTICS: 

Objective Function = NSE 

     rel.bias r.sq.sqrt r.squared viney  BL    nse^3 

PORT   -0.006     0.776   0.771   0.771  0.770 0.933 

BFGS   -0.029     0.791   0.762   0.761  0.759 0.921 

NM      0.010     0.782   0.771   0.771  0.770 0.933 

SANN    0.027     0.782   0.766   0.766  0.763 0.931 

SCE    -0.006     0.776   0.771   0.771  0.770 0.933 

DE     -0.032     0.773   0.770   0.769  0.767 0.931 

 

Objective Function = Viney 

    rel.bias r.sq.sqrt r.squared viney  BL     nse^3 

PORT   -0.003     0.776   0.771  0.771  0.771  0.933 

BFGS    0.018     0.799   0.763  0.763  0.761  0.924 

NM      0.012     0.782   0.771  0.770  0.769  0.933 

SANN   -0.005     0.783   0.759  0.759  0.758  0.923 

SCE    -0.004     0.776   0.771  0.771  0.771  0.933 

DE     -0.047     0.757   0.764  0.762  0.760  0.930 

 

Objective Function = BL 

     rel.bias r.sq.sqrt r.squared viney  BL     nse^3 

PORT    0.000     0.778    0.771  0.771  0.771  0.933 

BFGS    0.000     0.795    0.765  0.765  0.765  0.926 

NM      0.000     0.778    0.771  0.771  0.771  0.933 

SANN   -0.012     0.770    0.770  0.769  0.768  0.933 

SCE     0.000     0.777    0.771  0.771  0.771  0.933 

DE      0.010     0.763    0.762  0.762  0.761  0.930 

 

Objective Function = NSE3 

    rel.bias r.sq.sqrt r.squared viney  BL   nse^3 

PORT    0.008     0.774   0.770  0.770 0.769 0.933 

BFGS    0.111     0.805   0.758  0.740 0.747 0.926 

NM      0.009     0.774   0.770  0.770 0.769 0.933 

SANN    0.106     0.797   0.742  0.726 0.731 0.915 

SCE     0.008     0.774   0.770  0.770 0.769 0.933 

DE      0.061     0.789   0.768  0.764 0.762 0.933 
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Parameter Stability: 

Objective Function = NSE 

       f     e     d    shape tau_s  tau_q  v_s   v_q  delay 

PORT 0.895 1.500 178.366  0   60.999 2.121  0.484 0.516  0 

BFGS 0.757 1.500 260.252  0   58.713 2.245  0.448 0.552  0 

NM   0.861 1.500 188.704  0   61.055 2.150  0.479 0.521  0 

SANN 0.850 1.458 196.701  0   60.753 2.178  0.470 0.530  0 

SCE  0.895 1.500 178.349  0   60.999 2.121  0.484 0.516  0 

DE   0.880 1.495 189.025  0   60.882 2.125  0.480 0.520  0 

 

Objective Function = Viney 

        f     e   d     shape tau_s  tau_q  v_s   v_q  delay 

PORT 0.882 1.500 181.951  0   61.031 2.131  0.482 0.518  0 

BFGS 0.769 1.499 243.365  0   59.346 2.238  0.453 0.547  0 

NM   0.883 1.500 181.640  0   61.031 2.131  0.482 0.518  0 

SANN 0.943 1.492 165.007  0   60.826 2.092  0.489 0.511  0 

SCE  0.890 1.500 179.075  0   61.030 2.126  0.483 0.517  0 

DE   0.955 1.422 167.231  0   60.852 2.114  0.481 0.519  0 

 

Objective Function = BL 

         f     e    d   shape tau_s  tau_q  v_s   v_q  delay 

PORT 0.882 1.500 181.951  0   61.031 2.131  0.482 0.518  0 

BFGS 0.769 1.499 243.365  0   59.346 2.238  0.453 0.547  0 

NM   0.883 1.500 181.640  0   61.031 2.131  0.482 0.518  0 

SANN 0.943 1.492 165.007  0   60.826 2.092  0.489 0.511  0 

SCE  0.890 1.500 179.075  0   61.030 2.126  0.483 0.517  0 

DE   0.955 1.422 167.231  0   60.852 2.114  0.481 0.519  0 

 

 

Objective Function = NSE3 

        f     e    d    shape tau_s  tau_q  v_s   v_q  delay 

PORT 0.930 1.500 164.990  0   60.979 2.103  0.489 0.511  0 

BFGS 0.722 1.499 253.271  0   58.585 2.310  0.444 0.556  0 

NM   0.930 1.500 164.925  0   60.987 2.104  0.489 0.511  0 

SANN 0.667 1.432 341.338  0   53.590 2.416  0.405 0.595  0 

SCE  0.931 1.500 164.758  0   60.974 2.102  0.489 0.511  0 

DE   0.856 1.498 182.361  0   61.333 2.168  0.479 0.521  0 
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