
Master Thesis

Thermal Analysis of 3D Integrated
Circuits

Educational Institution: Department of Computer And
Communication Engineering, University of Thessaly

Supervisor: George Stamoulis, Nestoras Eumorfopoulos

Student: Alexia Marnari

1

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Acknowledgement

First of all, I would like to express my greatest thanks to my professors
and supervisors of this thesis, Prof. George Stamoulis and Prof. Nestoras
Eumorfopoulos, who were always available to offer their help and advice, who
encouraged me and induced me to try more.

I would also like to express my sincere gratitude to Konstantis Daloukas,
P.H.D. student at the Department of Computer and Communications En-
gineering at the University of Thessaly, for his valuable guidance, help and
suggestions.

Finally, I should thank my family and friends for their support, under-
standing and patience. Certainly, I should refer my friend and postgraduate
student at the same Department Athanasio Bareka, for his insightful sugges-
tions on critical moments.

2

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Περίληψη

 Η θερμική ανάλυση είναι μία από τις πιο κρίσιμες προκλήσεις που

συνεπάγεται η τεχνολογική εξέλιξη. Η συνεχής προσπάθεια για μικρότερα

μεγέθη και μεγαλύτερη απόδοση, καθώς και η νέα τρισδιάστατη δομή των

ολοκληρωμένων κυκλωμάτων, μαζί με τη χρήση των low-k διηλεκτρικών,

προκαλούν μη αμελητέα αύξηση της θερμοκρασίας απειλώντας την σωστή

λειτουργία των ολοκληρωμένων κυκλωμάτων. Η απόδοση, αξιοπιστία και η

κατανάλωση ισχύος των συσκευών τίθενται σε κίνδυνο, ενώ το φαινόμενο Joule

heating, επιδεινώνεται. Αναμφίβολα επομένως, τα θερμικά ζητήματα απαιτούν

την προσοχή μας και θα πρέπει να λαμβάνονται σοβαρά υπόψιν.

 Σκοπός αυτής της εργασίας είναι να προσδιοριστεί ο ρόλος των

διασυνδέσεων στην αύξηση της θερμοκρασίας. Εκμεταλλευόμενοι την

πληροφορία από τα αρχεία .def/.lef, μπορούμε να βρούμε την ακριβή θέση των

μετάλων στην περιοχή πάνω από το υπόστρωμα. Μοντελοποιώντας την

περιοχή αυτή ως ένα πλέγμα από μπλοκ διαστάσεων 1x1 micron, σχηματίζεται

ένα δίκτυο αντιστάσεων. Με τη χρήση της μεθόδου Finite Differences,

παράγεται ένα σύστημα γραμμικών εξισώσεων το οποίο μπορεί να λύθει

εύκολα μέσω ενός παράλληλου “precondition” μηχανισμού και να προκύψουν

τα επιθυμητά αποτελέσματα.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Abstract

Temperature consideration is one of the most critical challenges that come
with technological evolution. The continuous effort for smaller sizes and
greater performance as well as the new 3D structure of integrated circuits
together with the use of low-k dielectrics, cause non-negligible temperature
rises menacing the proper functionality of ICs. The performance, reliability
and power consumption of the devices are set under risk, while Joule heating
effect worsens. Undoubtedly then, thermal issues demand our concern and
have to seriously been taken into account.

The purpose of this thesis is to define the role of interconnections on
temperature increase. Exploiting the information from .def/.lef files, we can
find the exact position of metals on the upper substrate area. Modeling it
as a grid of 1x1 micron blocks, a network of resistances is formed. The use
of Finite Differences Method produces a linear system of equations that can
be fastly solved with a parallel precondition mechanism, presenting us the
desired results.

3

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Contents

1 Chapter - Thermal Effects 6
1.1 Heat Generation due to technological evolution 6
1.2 Thermal Issues . 7

1.2.1 Performance . 7
1.2.2 Power Consumption 8
1.2.3 Joule heating . 8
1.2.4 Reliability . 9
1.2.5 The IR-drop problem 10

2 Chapter - Full Chip Thermal Analysis 12
2.1 The thermal PDE . 12
2.2 Finite Element Method . 12
2.3 Finite Difference Method . 14
2.4 Green Functions . 16
2.5 Preferred Algorithm . 16
2.6 Solution Methods for Linear Systems 17
2.7 Graphics Processing Units - GPUs 17

3 Chapter - Interconnect Thermal Modeling 19
3.1 Overview . 19
3.2 LEF/DEF Files . 19

3.2.1 DEF File . 19
3.2.2 LEF File . 19

3.3 Description of the files implemented 20
3.3.1 File: global.h . 20
3.3.2 File: layerMetalList.h 20
3.3.3 File: layerMetalList.c 20
3.3.4 File: lefParser.h . 22
3.3.5 File: lefParser.c . 22
3.3.6 File: metalList.h . 23
3.3.7 File: metalList.c . 23
3.3.8 File: parser.h . 23
3.3.9 File: parser.c . 24
3.3.10 File: viaList.h . 25
3.3.11 File: viaList.c . 26
3.3.12 File: percentages.h . 26

4

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

3.3.13 File: percentages.c . 26
3.3.14 File: percentagesList.h 27
3.3.15 File: percentagesList.c 27
3.3.16 File: resistancesList.h 28
3.3.17 File: resistancesList.c 28
3.3.18 File: calculateResistances.h 29
3.3.19 File: calculateResistances.c 29
3.3.20 File: csparse.h, csparse.c 30
3.3.21 File: matrix.h . 30
3.3.22 File: matrix.c . 30
3.3.23 File: main.c . 30

3.4 Assumptions during parsing of LEF/DEF files 31
3.4.1 Assumptions concerning specialNet Interconnections . . 31
3.4.2 Assumptions concerning specialNet Vias 32
3.4.3 Assumptions concerning net Interconnections 33
3.4.4 Assumptions concerning net Vias 34

3.5 Calculation of resistances forming the R model of the chip . . 35

5

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

1 Chapter - Thermal Effects

1.1 Heat Generation due to technological evolution

Since the appearance of the first technological achievements, speed and
performance have been the main targets inspiring inventors to evolve their
previous attainments. More specifically, in semiconductor industry, there is
a relentless effort for higher CMOS performance and functionality, greatly
pushed by the customer needs and the competition between manufacturers.
Undoubtedly, the electronics industry plays a leading role in economic, social
and political development throughout the world. Therefore, the attempt for
rises in integrated circuits integration density and speed will continue to keep
a dominant position in experts minds [12].

Direct consequence of the above presented attempt is the scaling of CMOS,
thus a great miniaturization of device sizes has been observed throughout
the years. However, even if the catchword Smaller and Faster constitutes a
formidable driving force for such an aggressive technology scaling, we have to
be careful with the challenges and risks that it brings into the surface [21].

A significant issue accompanying the deeper entrance in nanometer sizes
is the increased power density. The latter leads in elevated on chip temper-
ature which puts the desired performance under risk, menacing the proper
functionality of the devices. In addition to this, as chips warm up in a non-
uniform way, local hot spots and spatial gradients are generated, with higher
power densities and consequently higher local temperatures [24].

The thermal menace also worsens due to the nowadays used multilayer
3D stacking, as well as the use of low-k dielectrics (Fig. 1).Stacking multiple
layers in a 3D volume promises density and performance. However, it requires
extensive thermal consideration as the power density and temperature of
these architectures can be quite high [26] [21]. In this case we need cooling a
volume consisting of units placed on top of each other, instead of just cooling
a planar surface. In addition to this, deep submicron technologies such as
low-k dielectric materials have been introduced in order to achieve better
performance, reducing interconnect capacitance and thus delay as well as
cross talk noise. However, due to their lower thermal conductivity they are
more susceptible to thermal effects [5].

Temperature increase is an inevitable aspect of the continuous scaling

6

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Figure 1: 3D Integrated Circuit structure.

trend. Nevertheless, high temperature has significant impacts on chip perfor-
mance and reliability. Leading to slower transistor speed, more leakage power
consumption, higher interconnect resistance and reduced reliability, thermal
issues constitute a major challenge that has to be seriously taken into consid-
eration. Management of them remains key factor for future microprocessors
and ICs. Great proof of their significance is the extensive existing research
on thermal analysis models [26] [8] [17] [25] [16] [22] [9] [28] [18], while
many research laboratories keep working on this subject trying to present
more accurate thermal simulators for VLSI designs.

1.2 Thermal Issues

As mentioned above, thermal issues affect integrated circuits’performance,
power and reliability in a critical way. It is therefore essential to take a closer
look at the way they are influenced.

1.2.1 Performance

The required time to accomplish one task using a specified amount of an
available resource is defined as the performance of a computer. Concerning
a chip, it’s performance is directly associated with it’s clock frequency and
consequently the circuit delay [7].

7

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Temperature rises may bring into the surface two conflicted challenges.
On one hand, higher temperature leads to a reduction in charge-carrier mo-
bility which means lower drive current of a transistor and finally increased
circuit delays. On the other hand, higher temperature leads to a reduction
in the transistor threshold voltage which means increased drive current and
finally reduced circuit delays.

According to the prevalent effect there will be negative temperature de-
pendence (increased delays), positive temperature dependence (decreased de-
lays), or mixed temperature dependence [31].

1.2.2 Power Consumption

The sources of power consumption in VLSI circuits come from devices
and interconnects. The power consumption from devices can be decomposed
into dynamic power, short circuit power and static power. The power con-
sumption in interconnects comes from Joule effect.

Dynamic power is caused by charging and discharging events during volt-
age transitions and has a negligible dependence on temperature. Short-circuit
power is caused by current from supply to ground during switching and also
has insignificant dependence on temperature.

Static power however, appears due to leakage and has exponential depen-
dence on temperature. Thus, temperature variations are significally depicted
on leakage which in many cases owns a leading position on the total on chip
power [7] [31] [30] [20].

1.2.3 Joule heating

Power dissipation results not only from dynamic, short circuit and static
power but from Joule heating as well. Joule heating is the process by which
the passage of an electric current through a conductor releases heat [4].
Therefore, the flow of current through metal wires dissipates power and gen-
erates heat increasing the wire temperature [27]. Temperature rise in the
interconnects due to Joule heating effect can be important because of the
new scaling trends. According to the stacked 3D model, interconnects are
located away from the silicon substrate and the heat sink, separated by lay-
ers of insulating materials with lower thermal conductivities than that of
silicon [6]. Low-k dielectrics have reduced the material conductivities ag-
gravating Joule effect. As the wire resistivity is temperature dependent:

8

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

ρ(T) = ρ0[1 + b(T − T0)], higher densities lead to higher temperatures and
larger interconnect delays [27] [25].

Consequently, the perpetual scaling increases current density and Joule
heating effect becomes significant factor to the total device temperature rise,
menacing device’s reliability and performance.

1.2.4 Reliability

The ability of a system to maintain its proper functionality under even
unexpected circumstances during its lifetime is called reliability. Concerning
semiconductors, the term reliability regards the premature aging of semi-
conductor materials and the consequences it entails to the operation of the
devices. Some of the most important temperature related effects affecting
reliability are: Bias temperature Instability and Electromigration [14].

Bias Temperature Instability

It is a complex electro thermal phenomenon which occurs at high tem-
peratures and causes threshold voltage shifts over long periods of time. It
is distincted in NBTI concerning pMOS and PBTI concerning nMOS. NBTI
(Negative Bias Temperature Instability) is caused by the generation of in-
terface traps which are unsaturated silicon dangling bonds. Temperature
rises accelerate the generation of these traps while the resulted trapped holes
increase threshold voltage and decrease drain current.

A dual effetct is PBTI (Positive Bias Temperature Instability) with lower
impact than NBTI but quite important [14] [31].

ElectroMigration

Electromigration refers to the migration of metal atoms over time to
regions where the current density is high , forming voids in the metal wire.
Black’s equation describes electromigration in the following way:

MTTF = AJ−neQ/kT

where the role of the temperature is that increased temperature reduces
MTTF and thus degrades chip lifetime. Heat by devices but also heat by
Joule effect affect the temperature of a wire [14] [31].

9

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

(a) IR Drop phenomenon.

(b) Electrical-Thermal coSimulation process.

Figure 2: Explanation scheme for IR-Drop and the Electrical-Thermal coSim-
ulation process.

1.2.5 The IR-drop problem

The IR-Drop problem appears due to the electrical resistance of a con-
ductor. As shown in Fig. 2(a), a voltage Vdrop = R ∗ I is created between the
two ends of the conductor. As a consequence, there is a drop in the voltage
available at the load devices, where Vload = Vsupply − Vdrop. Due to Joule
heating effect, the flow of current through metal wires increases wire temper-
ature while as electrical resistivity is temperature - dependent, it increases
with temperarure rises. This leads to greater Vdrop and finally lower Vload [11].
All these facts, greatly also explain why an electrical-thermal co-simulation

10

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

is required when considering the on chip power delivery network analysis as
shown in Fig. 2(b) and presented in [15].

11

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

2 Chapter - Full Chip Thermal Analysis

2.1 The thermal PDE

There are three modes of heat transfer: conduction, convection and radia-
tion. As we are interested in heat transfer in solids, we focus on the equation
of heat conduction according to Fourier’s law [19]:

q = −kt∇T (1)

which means that the flow of heat at a point per unit area and per unit time,
is proportional to the temperature gradient at that point and the heat flows
in the direction of decreasing temperatures. In equation (1), q is the heat
flux, kt is the thermal conductivity of the material and T the temperature.

Analyzing (1) we conclude to the following parabolic PDE:

∇q = −kt∇2T = g(r, t)− ρCp
∂T (r, t)

∂t
⇒

ρCp
∂T (r, t)

∂t
= kt∇2T (r, t) + g(r, t)

(2)

where t the time, g the power density, Cp the heat capacity, ρ the density of
the material and r the spatial coordinate of the point at which the tempera-
ture is being determined. Assuming steady state analysis, all derivatives with
respect to time equal to zero so equation (2) amounts to Poisson’s equation:

∇2T (r) = −g(r)

kt
(3)

In many cases steady state analysis is sufficient, however, in many other cases
transient analysis is required [29] [13]. Without loss of generality we focus
on steady state thermal analysis.

The next step is the discretization of equation (3). There is a variety
of methods used for such purpose. Finite Difference Method (FDM), Finite
Element Method (FEM), Green Functions are more usual.

2.2 Finite Element Method

According to the Finite Element Method (FEM) [10], the design space
is first discretized/meshed into elements such as tetrahedra or hexahedra.

12

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Temperatures are then calculated at the nodes of the element, while tem-
peratures elsewhere within the element are interpolated using the following
function (for an hexahedral element):

T (x, y, z) =
8∑

i=1

Ni(x, y, z)Ti (4)

where Ti the temperature at node i and Ni the shape function for node i. If
(xc, yc, zc) the center of the element and w, d, h the width, height and depth
of the element respectively, Ni(x, y, z) can be written as:

Ni(x, y, z) =

(
1

2
+

2(xi − xc)
w2

(x− xc))× (
1

2
+

2(yi − yc)
d2

(y − yc))×

(
1

2
+

2(zi − zc)
h2

(z − zc))

(5)

Using equation (4), the thermal gradient g can be calculated as:

g =

∂T
∂x
∂T
∂y
∂T
∂z

 = BT (6)

where B =

∂N1

∂x
∂N2

∂x
· · · ∂N8

∂x
∂N1

∂y
∂N2

∂y
· · · ∂N8

∂y
∂N1

∂z
∂N2

∂z
· · · ∂N8

∂z

Subsequently, stamps (in FEM they are called stiffness matrices K) are

created for each element, using the variational method for an arbitrary ele-
ment type:

K =

∫∫∫
V

BTDBdV (7)

where V the volume of the element and D =

kt,x 0 0
0 kt,y 0
0 0 kt,z

 with kt,i, i ∈

x, y, z the thermal conductivities along x, y, z axis.
According the boundary condition case (convective, conductive etc), these

stamps are accordingly calculated and together with the stamps from various

13

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

elements they are superposed to obtain the global stiffness matrix Kg in order
to be incorporated to the global set of equations:

KgT = P (8)

where T the vector of all the unkonown temperatures and P the vector of
power at the corresponding node [23].

2.3 Finite Difference Method

Figure 3: Modeling of a chip as a grid of resistances

This method discretizes the entire chip forming a system of linear equa-
tions relating temperature distribution with power density distribution. The
basic philosophy behind FDM is the conversion of governing equations from
continuous functions into their discretely sampled counterparts. The result

14

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

is a system of algebraic equations solvable for dependent variables at dis-
crete grid points. Therefore the chip can be discretized into cuboidal regions
with sides along the x, y, z axis. Consequently, the spatial derivative of tem-
perature T can be written as a finite difference in rectangular coordinates.
Assuming a region in which a vertex is at the origin of the first octant and
Ti,j,k the temperature at node (i∆x, j∆y, k∆z), in x-direction we have:

∂2T (r)

∂2x
'

Ti−1,j,k−Ti,j,k

∆x
− Ti,j,k−T i+1,j,k

∆x

∆x[
Ti−1,j,k−Ti,j,k

Ri−1.j.k
− Ti,j,k−Ti+1,j,k

Ri,j,k

]
· ∆y∆z

kt∆x

(9)

where Ri−1,j,k = ∆x

kt∆y∆z
and ∆{x,y,z} the length of the rectangle in each di-

rection.
Similarly, the respective equations arise for y and z direction, while the

following equation is finally produced:[
Ti−1,j,k−Ti,j,k

Ri−1,j,k
+

Ti+1,j,k−Ti,j,k

Ri,j,k

]
+

+
[
Ti,j−1,k−Ti,j,k

Ri,j−1,k
+

Ti,j+1,k−Ti,j,k

Ri,j,k

]
+

+
[
Ti,j,k−1−Ti,j,k

Ri,j,k−1
+

Ti,j,k+1−Ti,j,k

Ri,j,k

]
= −gi,j,k∆V

(10)

with gi,j,k∆V the total power and ∆V = Ax∆x = Ay∆y = Az∆z

This discretization reflects the well known thermal-electrical duality where
each node in the discretization corresponds to a node in the circuit. Con-
sidering a network where the electrical resistances are mapped to thermal
resistances connecting adjacent nodes and power sources are mapped to cur-
rent sources, the thermal problem is equal to the solution of a circuit of linear
resistors and current sources.

Finally, using MNA formulation we produce the following system of linear
equations:

Gt = p (11)

where t the temperature vector at each point, p the vector containing the
total power generated within each element and G a sparse and symmetric
matrix which contains the thermal resistors Gx = kt∆y∆z

∆x
, Gy = kt∆x∆z

∆y
and

Gz = kt∆x∆y

∆z
forming a grid of resistances as shown in fig (3)

15

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Unfortunately, the use of FDM method fosters the risk of wasteful compu-
tations, as discretizing the entire chip a huge linear system has to be solved.
However, GPUs promise to greatly alleviate this issue.

2.4 Green Functions

The basic concept is that the Green function G(r, r’) finds the temper-
ature at the point r when a power source is placed at location r’. Green
function algorithms consider field and source planes. Field planes are the
points where temperatures have to be calculated and source planes are the
power sources. For more than one pair source-field plane, the temperature
distribution can be obtained through superposition. More specifically, for a
point (x,y) on the field plane and a point (x’, y’) on the source plane, the
Green function can be written as :

G(x, y, x′, y′) =
∞∑

m=0

∞∑
n=0

Cmncos(
mπx

a
)cos(

nπy

b
)cos(

mπx′

a
)cos(

nπy′

b
) (12)

Due to the fact that equation (12) contanis infinite sumations that may
lead to long runtimes, equation (12) has to be further considered and analyzed
[23].

2.5 Preferred Algorithm

In an attempt to compare the thermal simulation methods we can observe
that FDM and FEM discretize the entire chip promising very high accuracy
in thermal analysis. Handling complicated geometries such as nonuniform
structures they become very flexible. However, accurate 3D thermal anal-
ysis using these methods in a full chip scale implies the solution of a huge
linear system of equations with many unknowns, becoming very expensive.
The basic difference between FDM and FEM is that FDM discretizes the
differential operator while FEM discretizes the temperature field.

On the other hand, the Green function method analyzes only the layers
whose temperature interests us. Consequently, the size of the resulting prob-
lem is relatively small and can be solved very fast. The basic problem is that
this method usually assumes uniform distributions.

Finally, FDM appears the more preferable method for our purposes. In
conjuction with the massively parallel architectures (such as GPUs) we bring

16

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

off an accurate thermal analysis model with near optimal computational
complexity and low memory requirements [9] [23].

2.6 Solution Methods for Linear Systems

As the produced linear system in (11) is very large and sparse, a suit-
able method for its solution has to be chosen. Direct methods have been
preferred till now for solving linear systems, mainly due to their robustness
and predictable behavior. However, due to their execution time and mem-
ory requirements in case of large scale grids, there is a notable shift toward
iterative methods. Exploiting matrices’ attributes such as SPD (Symmetric
and Positive Definite), efficient methods such as Conjugate Gradient can be
used being more computationally and memory efficient for large sparse linear
systems.

The biggest challenge with iterative methods is their convergence rate
which scales according the properties of the matrix. For fast convergence
an appropriate preconditioner, according to each specific problem and type
of system matrix, has the responsibility to ”smoothen” system’s properties.
In fact, the preconditioner involves a solver step Mz = r in every iteration
and solves the system M−1Ax = M−1b instead of Ax = b. The role of the
preconditioner can be enhanced exploiting parallel computations. Therefore,
matrices produced by the thermal grid can be approximated by Fast Trans-
form Solvers who minimize the number of iterations for the solution of the
systems Mz = r in a parallel environment [15].

2.7 Graphics Processing Units - GPUs

As mentioned above, 3D thermal analysis requires the solution of a huge
linear system of equations with many unknowns. However, GPU-based par-
allel computing tranquilizes this issue.

To begin with, a GPU is a specialized electronic circuit designed to rapidly
manipulate and alter memory to accelerate the building of images in a frame
buffer intended for output to a display. Graphic chips started as fixed func-
tion graphics processors but became increasingly programmable and com-
putationally powerful which led NVIDIA to introduce the first GPU. They
are used in embedded systems, mobile phones, personal computers and game
consoles. Due to their highly parallel structure they distinct for their ef-
fectiveness [3] [18]. They process large blocks of data in parallel. GPUs

17

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

have been widely used for scientific computation in the past few years thank
to NVIDIA CUDA. GPUs can provide more than 10X higher computing
capability than multicore CPUs [9]. Therefore, GPU computing is grow-
ing rapidly, becoming competitive in speed, programmability and price and
promises great achievements due to its high computational throughput via
it’s massively parallel architecture.

18

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

3 Chapter - Interconnect Thermal Modeling

3.1 Overview

The purpose of this thesis is to investigate the influence of interconnec-
tions on temperature rise. Therefore, we begin examining LEF/DEF files and
we parse the parts of the files that interest us. Considering the die area as a
3D grid of 1x1 micro we calculate the percentage of the block that each in-
terconnect/via covers. As a next step, we model each block as 6 resistsances
forming a general network of resistances. Finally, using Finite Differences
Method, we calculate a matrix containing the necessary coefficients that we
then insert to a parallel fast preconditioner.

3.2 LEF/DEF Files

3.2.1 DEF File

A DEF (Design Exchange Format) file is an open specification for rep-
resenting physical layout of an integrated circuit in an ASCII format. It
contains the design-specific information of a circuit and is a representation
of the design at any point during the layout process. DEF was developed
by Cadence Design Systems. DEF conveys logical design data to, and phys-
ical design data from, place-and-route tools. Logical design data can include
internal connectivity (represented by a netlist), grouping information, and
physical constraints. Physical data includes placement locations and ori-
entations, routing geometry data, and logical design changes for backanno-
tation.They are usually generated by place and route tools. It is used in
conjuction with the LEF File [1] [2].

3.2.2 LEF File

A LEF (Library Exchange Format) file is an open specification for rep-
resenting physical layout information on components of an integrated circuit
in an ASCII format. The LEF contains library information for a class of
designs. Library data includes layer, via, placement site type, macro cell
definitions. The LEF file is strongly connected with the DEF file [1] [2].

19

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

3.3 Description of the files implemented

3.3.1 File: global.h

Global variables visible to all files are defined here:
x, y: variables of type integer which define the x and y coordinates of the
die area
units: is of type integer and it represents the size of the die area
maxLayerNumber is a variable of type integer used to count the number
of metal layers in each circuit
kSi and kCu: variables of type int representing the thermal conductivities
of Si and Cu
A struct gArrayInfo is also defined here for a two dimensional and a three
dimensional array of structs gArrayInfo. Each struct contains information
about the coordinates of a block at the grid, its six conductivities along x, y,
z axis and the percentages of metal influence.

3.3.2 File: layerMetalList.h

It is used for the parsing of the .lef file of a circuit.
The structs and the prototypes of the functions implemented in layerMet-

alList.c are defined here. The information needed and stored from the .lef file
is about the type of layer: metal, via or default via (an array of vias). If we
examine a metal we are interested in its name(for example metal1) in order
to know the metal’s number, its width and pitch, its direction (horizontal or
vertical), its offset, thickness and height. If we examine a via, we are inter-
ested in its name (for example via1) in order to know the via’s number, its
spacing and width. If we examine a default via which is a rectangle area of
vias, we are interested in its name, the according via layer name, the metals
it connects, the coordinates of the rectangle area etc.

Finally, a struct Layers is defined which constitutes the node of a list
storing information about metals, vias and defaultVias. Each node of this list
is a pointer to a struct metalLayer, a struct viaLayer or a struct defaultVia.

3.3.3 File: layerMetalList.c

It is used for the parsing of the .lef file of a circuit.
The functions defined in layerMetalList.h and implemented here are the

following:

20

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

struct Layers *addLayer(struct Layers *head, struct metalLayer
*mLayer, struct viaLayer *vLayer, struct defaultVia *defVia)
This function adds a node to the list of structs of type Layers

int findThicknessUsingMetalLayerNumber(struct Layers *head, int
layerNumber):
This function takes as input the layer number of the metal and returns its
thickness

int findViaThicknessUsingMetalLayerNumber(struct Layers *head,
int layerNumber):
This function takes as input the layer number of the via and returns its thick-
ness

void findWidthSpacing(struct Layers *head, char *viaName, dou-
ble *width, double *spacing):
This function takes as input a viaName (via1 for example) and returns its
width and spacing

void printLayers(struct Layers *head):
This function prints the contents of the list

void findWidth(struct Layers *head, char *metalLayerNumber, dou-
ble *width):
This function takes as input the layerName (metal1 for example) runs the
list and returns the width of this metal

char *findViaName(struct Layers *head, char *defaultviaName):
This function takes as input the viaName (via1-4 for example) and returns
the according via layer (via1 for example)

void clearLayerMetalList(struct Layers *lHead),
void removeViaLayerItem (struct viaLayer *vLayer),
void removeDefaultViaItem (struct defaultVia *dVia),
void removeMetalLayerItem(struct metalLayer *mLayer),
struct Layers *removeLayerMetalListItem(struct Layers *lItem)
These functions are all used to free the nodes of the list.

21

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

3.3.4 File: lefParser.h

It is used for the parsing of the .lef file of a circuit.

3.3.5 File: lefParser.c

It is used for the parsing of the .lef file of a circuit.
The functions defined in lefParser.h and implemented here are the following:

void parseLefFile(char *filename):
This function uses the following auxiliary functions in order to parse the .lef
file. According to the type of layer, the appropriate information is stored
into the list.

char *parseSecondToken(char *line):
This function takes as input a line of the form LAYER metal2 and returns
the second token

void parseSecondIntToken(char *line, double *term):
This function reads a line and returns the second token in double

void parseEnclosure(char *line, double *x, double *y):
This function reads a line of the form ENCLOSURE 0.035 0 and returns the
x, y coordinates

void parseSpacing2(char *line, double *start, double *step):
This function reads a line of the form SPACING 0.15 BY 0.15 and returns
the two double values

void parseOffset(char *line, double *offsetX, double *offsetY):
This function reads a line of the form OFFSET 0.095 0.07 and returns the
two double values

void parseRect(char *line, double *x1, double *y1, double *x2,
double *y2):
This function reads a line of the form RECT -0.4 -0.4 0.4 0.4 and returns the
4 double values

22

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

3.3.6 File: metalList.h

It is used for the parsing of the .def file of a circuit.
It contains the definitions of the structs and the prototypes of the functions
implemented in metalList.c. The information needed and stored from the .def
file is about the type of metal: specialNetInterconnection, netInterconnec-
tion, specialNetVia, netVia. According to each of these types the appropriate
infomation is stored into a list of structs of type Metal.

3.3.7 File: metalList.c

It is used for the parsing of the .def file of a circuit.
The functions defined in metalList.h and implemented here are the following:

void printMetals(struct Metals *head):
This function prints the contents of the list

struct Metals *add(struct Metals *head, struct Interconnections
*inter, struct Vias *v, struct NetInterconnections *nInter, struct
NetVias *nV):
This function adds a struct of type Metal to the list

void removeViaItem(struct Vias *viaItem),
void clearMetalList(struct Metals *mHead),
void removeNetViasItem(struct NetVias *nViaItem),
struct Metals *removeMetalListItem(struct Metals *mItem),
void removeInterconnectionsItem(struct Interconnections *interItem),
void removeNetInterconnectionItem(struct NetInterconnections *nIn-
terItem)
These functions are all used to free the nodes of the list.

3.3.8 File: parser.h

It is used for the parsing of the .def file of a circuit.
All the functions implemented in parser.c are defined here.

23

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

3.3.9 File: parser.c

It is used for the parsing of the .def file of a circuit.
Here are the implementations of all the functions for the parsing of .def file.

void parseFile(char *filename):
This function uses the following auxiliary functions in order to parse the .def
file and accordingly store information into the list.

void parseNets(char *line):
This function reads a line and whether it refers to a netVia or a netIntercon-
nection it calls the according functions parseNetVias and parseNetIntercon-
nections.

void parseUnits(char *line):
This function reads a line of the form UNITS DISTANCE MICRONS 2000
and sets the global variable units to the distance number read.

void parseNetVias(char *line):
This function stores all the necessary information concerning a netVia into
the list.

void parseDieArea(char *line):
This function reads a line of the form DIEAREA (0 0) (29290 22880) and
sets the global x and y coordinates accordingly.

char *parseViaRule(char *line):
This function takes as input a line of the form VIARULE Via1Array-0 and
returns the viaArrayName (for example Via1Array-0)

void parseNetInterconnections(char *line):
This function stores all the necessary information concerning a netIntercon-
nection into the list.

void parseVia(char *position, char *line):
This function stores all the necessary information concerning a specialnet via
into the list.

24

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

void parseInter(char *position, char *line):
This function stores all the necessary information concerning a specialnet
interconnection into the list.

void parseMetalWire(char *position, char *line):
This function reads the input line and whether it concerns wire or via, it calls
the function parseInter(char *position, char *line) or parseVia(char *position,
char *line)

void parseViaCutSize(char *line, int *cutSizeX, int *cutSizeY):
This function reads the input line and isolates the x, y values of the cut size.

void parseViaRowCol(char *line, int *numCutRows, int *numCut-
Cols):
This function reads the input line and isolates the number of rows and
columns of the via array.

void parseViaMetalLayer(char *line, int *layerFrom, int *layerTo):
This function stores the layers that a via connects.

void parseViaCutSpacing(char *line, int *cutSpacingX, int *cutSpac-
ingY):
This function stores the x and y spacing coordinates between cuts.

void parseViaEnclosure(char *line, int *botEnclX, int *botEnclY,
int *topEnclX, int *topEnclY):
This function stores the x and y enclosure values for the bottom and top
metal layers of vias.

3.3.10 File: viaList.h

This file includes definitions of structs and the prototypes of functions
implemented in the file viaList.c

25

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

3.3.11 File: viaList.c

Here is the implementation of the functions used for controlling vias.

struct viaInfo *addViaInfo(struct viaInfo *head, char *viaRule, int
layerFrom, int layerTo, int cutSizeX, int cutSizeY, int cutSpac-
ingX, int cutSpacingY, int botEnclX, int botEnclY, int topEnclX,
int topEnclY, int numCutRows, int numCutCols):
This function adds a node containing infoprmation about a via into the list.

void findUsingArrayName(struct viaInfo *head, char *viaRule, int
*from, int *to, int *spacingX, int *spacingY, int *sizeX, int *sizeY,
int *botX, int *botY, int *topX, int *topY, int *numRows, int
*numCols):
This function runs the list of vias and stores basic information about a vi-
aArray given as input.

void printViaInfo(struct viaInfo *head):
This function prints the contents of the list.

void clearViaList(struct viaInfo *vHead):
struct viaInfo *removeViaListItem(struct viaInfo *item):
These functions are all used to free the nodes of the list.

3.3.12 File: percentages.h

This file includes the prototypes of the functions implemented in the file per-
centages.c

3.3.13 File: percentages.c

This file implements the functions defined in the file percentages.h

void definePercentage():
This function runs the list of sructs of type Metals and whether it finds
pointer to struct of type Interconnections, NetInterconnections, NetVias or

26

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Vias, makes the essential transformations and calls the function calculateArea().

void calculateArea(char *type, char *typeOfMetal, char *direction,
int layerNumber, int thickness, int x1, int y1, int x2, int y2):
This function first according to the coordinates of each metal and the coor-
dinates of the block of the die area that it covers calculates the percentage
of the metal on the block. The result is stored into a list of structs of type
layerNum.

3.3.14 File: percentagesList.h

It contains the definitions of the structs and the prototypes of the functions
implemented in percentagesList.c.

3.3.15 File: percentagesList.c

struct layerNum *addLayerNum(struct layerNum *head, struct
layerList *layerPointer,int layer):
This function adds a node to the list of structs of type layerNum.

void printlayerNum(struct layerNum *head):
This function prints the contents of a list of structs of type layerNum.

struct layerList *addLayerList(struct layerList *head, char *type,
char *typeOfMetal, char *direction, int dieBlockX1, int dieBlockY1,
int dieBlockX2, int dieBlockY2, int thickness, double percentage):
This function adds a node to a list of structs of type layerList.

void printlayerList(struct layerList *head):
This function prints the contents of a list of structs of type layerList.

void addElement(int layer, char *type, char *typeOfMetal, char
*direction, int dieBlockX1, int dieBlockY1, int dieBlockX2, int
dieBlockY2, int thickness, double percentage, struct layerNum *lay-
erNumHead):
This function links a node of the list of structs of type layerNum with a list

27

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

of structs of type layerList.

void printAll(struct layerNum *layerNumHead):
This function prints the contents of a list of structs of type layerNum with
each node linked with a list of structs of type layerList.

void clearLayerNumList(struct layerNum *layerNumHead),
struct layerNum *removeLayerNumItem(struct layerNum *lNItem),
void clearLayerList(struct layerList *lListHead),
struct layerList *removeLayerListItem(struct layerList *item):
These functions are all used to free the nodes of the lists.

3.3.16 File: resistancesList.h

This file includes the definitions of the functions implemented in resistances-
List.c.

3.3.17 File: resistancesList.c

struct gArrayInfo *** create3DByteMatrix(int layers, int cols, int
rows):
This function creates a 3D array of dimensions: layers x cols x rows and
initializes it with zeros. It is an array of structs of type gArrayInfo, thus this
function also sets the fields dieBlockX1, dieBlockY1, dieBlockX2, dieBlockY2
accordingly in order to have blocks of 1x1 microns concerning the value units
of the die area. The other fields are set to zero.

void printArray3D(struct gArrayInfo *** array, int layers, int cols,
int rows):
This function prints the contents of the 3D array.

struct gArrayInfo *** add3DCoord1(struct gArrayInfo ***array,
int i, int j, int k, int dieBlockX1, int dieBlockY1, int dieBlockX2,
int dieBlockY2, double gxR, double gxL, double gyU, double gyD,
int metalInfluence):
This function sets values into the fields gxR, gxL, gyU, gyD and metalInflu-

28

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

ence. It is called when an interconnection is found.

struct gArrayInfo *** add3DCoord2(struct gArrayInfo ***array,
int i, int j, int k, int dieBlockX1, int dieBlockY1, int dieBlockX2,
int dieBlockY2, double gzR, double gzL, int viaInfluence):
This function sets values into the fields gzR, gzL and viaInfluence. It is called
when a via is found.

3.3.18 File: calculateResistances.h

This file includes the definition of the function implemented in calculateRe-
sistances.c.

3.3.19 File: calculateResistances.c

void fillBlocks():
This function creates the global 3D array of structs of type gArrayInfo. It
then calculates the values of the conductancies along x, y, z axis and sets
the according fileds of the array. The calculation of the conductancies is as
follows: If we have interconnection in horizontal position, the x conductance
is influenced by the metal and y conductance by the oxide. Therefore, if the
metal fully covers the block: gx = gy = 2 * kCu * thickness / percentage,
otherwise gx = 2 * kSi * thickness / (1-percentage) + 2 * kCu * thickness /
percentage and gy = 2 * kSi * thickness / 1. If two or more metals exist in
the same block we consider their in parallel connection, so we add the partial
conductivities.
If we have interconnection in vertical position, the y conductance is influenced
by the metal and x conductance by the oxide. If the metal fully covers the
block: gx = gy =2 * kCu * thickness / percentage, otherwise gy = 2 * kSi *
thickness / (1-percentage) + 2 * kCu * thickness / percentage and gx = 2 *
kSi * thickness / 1.
When a via is found in a block, we have to calculate the gz conductance. If it
fully covers the block, gz=2 * kCu * thickness / percentage, otherwise gz=2
* kSi * thickness / (1-percentage) + 2 * kCu * thickness/percentage.
In each case, when no interconnection is met, gx = gy =2*kSi*thickness and
when no via is met, gz=2*kSi*thickness.

29

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Finally this function prints the 3D array.

3.3.20 File: csparse.h, csparse.c

These files are used for sparse arrays which are used in Finite Differences
Method. They define and implement the essential functions.

3.3.21 File: matrix.h

This file includes the definitions of the functions implemented in matrix.c.

3.3.22 File: matrix.c

void thermal-sim():
The basic function that calls the partial following functions in order to create
the fdm matrix. First, it calls initializeThermal3D() and then it creates the
fdm matrix.

void initializeThermal3D(int *dimensions):
This function initializes some constants used for fdm matrix creation.

void create-fdm-matrix-simple3D (int *dimensions, cs *M):
This function creates the fdm matrix.

int expand3D(int x, int y, int z, int *dimensions):
This function converts a 3D node to 1D.

3.3.23 File: main.c

This function parses the .lef and .def files, calculates the percentage of the
metal at each 1x1 micron block and finally calls thermal-sim to create the
fdm matrix.

30

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

3.4 Assumptions during parsing of LEF/DEF files

3.4.1 Assumptions concerning specialNet Interconnections

Figure 4: Case for an horizontal specialnet interconnection

Figure 5: Case for a vertical specialnet interconnection

Horizontal SpecialNet Interconnection

Consider the example of the following row in the .def file:
NEW metal1 340 + SHAPE COREWIRE (5630 12880) (10260 *)
as shown in fig (4).

31

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

To begin with, deciphering the coordinates given in this line, X1 = 5630,
Y1 = 12880, X2 = 10260 and Y2 = Y1. When the metal is HORIZONTAL
(Y1 = Y2), the center line coordinate is Y1 = Y2. Therefore, in order to
find the two limits Ya, Yb:
Ya = Y1 - width/2, Yb = Y1 + width/2 where width = 340.

Vertical SpecialNet Interconnection

Consider the example of the following row in the .def file:
NEW metal2 1600 + SHAPE RING (22850 5540) (* 17380)
as shown in fig (5).

When the metal is VERTICAL (X1 = X2), the center line coordinate is
X1 = X2. Therefore, in order to find the two limits Xa, Xb:
Xa = X1 - width/2, Xb = X2 + width/2 where width = 1600.

3.4.2 Assumptions concerning specialNet Vias

Figure 6: Case for a specialnet via

First, to distinguish a specialnet via from a specialnet interconnection,
we consider the width. If its value is 0, then we have a via. Consider the
example of the following row in the .def file:
NEW metal2 0 + SHAPE COREWIRE (6430 12880) Via1Array-0-2
as shown in fig (6).

According to Via1Array-0-2 and its information on the relevant part in
the .def file we find the cutSize, cutSpacing and RowCol values. The RowCol

32

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

value defines the number of rows and columns that form the arrray of vias.
According to the coordinates given, the vias are created from bottom to up
and from left to right. The cutSizeX, cutSizeY, cutSpacingX, cutSpacingY
values are considered as shown in fig (6).

3.4.3 Assumptions concerning net Interconnections

Figure 7: Case for a net interconnection

Figure 8: Case for a net interconnection considering extValue

Consider the example of the following row in the .def file:
NEW metal2 (15010 15820) (15390 *)
as shown in fig (7).

In this case, in order to find the width, we run the .lef file and we store
the width of the corresponding metal (for example metal2). Therefore:

33

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Ya = 15820 - width/2, Yb = 15820 + width/2.
In the case of NETS we have to also consider the extValue. If extValue is not
given, its default value is length/2. In horizontal mode, extValue concerns
only x values. For the first endpoint (X1, Y1), the default extValue is ignored
as length/2 value will be surely involved inside length value. For the second
endpoint (X2, Y2) X2 will be extended by length/2 where length = X2 - X1,
as shown in fig (8).

Similarly, in vertical mode, we extend on y - axis.

3.4.4 Assumptions concerning net Vias

Figure 9: Case for a net via

Figure 10: Case for a net via considering extValue

Via with one pair of coordinates

34

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

Consider the example of the following row in the .def file:
NEW metal4 (17170 1582012180) via3-2
as shown in fig (9).
Considering via3-2 we run the .lef file in order to find the layer that it corrre-
sponds to(via2 for example). We then find the width of this via layer. The
width is given in microns so we have to multiply it with units. According to
width we calculate Ya and Yb. We also suppose that vias are in horizontal
mode, thus the center line coordinate concerns the y axis. In this case we
ignore extValue.

Via with two pairs of coordinates

Consider the example of the following row in the .def file:
NEW metal3 (17170 12180) (17290 *) via2-5
as shown in fig (10).

According to the via2-5 we find the via that it corresponds to, its width
and spacing. Finding the width we can then calculate Ya and Yb. We take
into account extValue, so X2 or Y2 will be extended according to the logic
discussed in previous case. In the rectangular formed by the coordinates
given, we conside vias of width*width by a distance of spacing.

3.5 Calculation of resistances forming the R model of
the chip

Figure 11: Modeling of a 1x1 micron block as 6 resistances along x, y, z axis

35

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

As mentioned above, each block 1x1 micron is modeled as 6 resistances
(fig 11). The type for the thermal resistance is given by:
Rthermal = l

k∗t∗w
In general, the thermal resistance along each axis will be calculated as the
parallel combination of the thermal resistance influenced by metal and the
thermal resistance influenced by oxide. If metal in horizontal position exists
in a block, it contributes to x resistance while to y resistance contributes only
the oxide. Respectively, if metal in vertical position exists in a block, it con-
tributes to y resistance, while to x resistance contributes the oxide. Finally,
if many metal contributions exist into a block we calculate the resistances
and take their parallel combination.

36

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

References

[1] LEF/DEF Language Reference.

[2] Wikipedia, Design Exchange Format, Library Exchange Format.

[3] Wikipedia, Graphics Processing Unit.

[4] Wikipedia, Joule heating effect.

[5] K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, and C. Hu, “On
thermal effects in deep sub-micron vlsi interconnects,” in Design Au-
tomation Conference, 1999. Proceedings. 36th.

[6] K. Banerjee, M. Pedram, and A. H. Ajami, “Analysis and optimization
of thermal issues in high-performance vlsi,” in in ACM/SIGDA Int.
Symp. Physical Design (ISPD, 2001, pp. 230–237.

[7] X. Chen, “Performance, power, and thermal modeling and optimization
for high-performance computer systems,” Ph.D. dissertation, University
of Michigan, 2011.

[8] Y.-K. Cheng, P. Raha, C.-C. Teng, E. Rosenbaum, and S.-M. Kang,
“Illiads-t: an electrothermal timing simulator for temperature-sensitive
reliability diagnosis of cmos vlsi chips,” Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, vol. 17, no. 8, pp.
668 –681, 1998.

[9] Z. Feng and P. Li, “Fast thermal analysis on gpu for 3d-ics with in-
tegrated microchannel cooling,” in Computer-Aided Design (ICCAD),
2010 IEEE/ACM International Conference on, 2010, pp. 551 –555.

[10] B. Goplen and S. Sapatnekar, “Efficient thermal placement of standard
cells in 3D ICs using a force directed approach,” in Computer Aided
Design, 2003. ICCAD-2003. International Conference on, 2003.

[11] C. Halford, “Ir-drop analysis,” Advanced Layout Solutions Ltd, Tech.
Rep.

[12] C. Hu, “Future cmos scaling and reliability,” Proceedings of the IEEE,
vol. 81, no. 5, pp. 682 –689, 1993.

37

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

[13] W. Huang, “Hotspota chip and package compact thermal modeling
methodology for vlsi design,” Ph.D. dissertation, University of Virginia,
2007.

[14] A. A. Khan, “Design tools for reliability analysis.”

[15] N. E. G. S. P. T. Konstantis Daloukas, Alexia Marnari, “Fast Electrical-
Thermal Co-Simulation of Large-Scale Power Delivery Networks on Mas-
sively Parallel Architectures .”

[16] P. Li, L. Pileggi, M. Asheghi, and R. Chandra, “Ic thermal simula-
tion and modeling via efficient multigrid-based approaches,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 25, no. 9, pp. 1763 –1776, 2006.

[17] P. Liu, H. Li, L. Jin, W. Wu, S. X.-D. Tan, and J. Yang, “Fast
thermal simulation for runtime temperature tracking and manage-
ment,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 25, no. 12, pp. 2882 –2893, 2006.

[18] X.-X. Liu, Z. Liu, S.-D. Tan, and J. Gordon, “Full-chip thermal analysis
of 3d ics with liquid cooling by gpu-accelerated gmres method,” in Qual-
ity Electronic Design (ISQED), 2012 13th International Symposium on,
2012, pp. 123 –128.

[19] M. N. Ozisik, “Heat transfer: A basic approach.” NY:McGraw-Hill.

[20] S. Pan, N. Chang, and J. Zheng, “A new methodology for ic-package
thermal co-analysis in 3d ic environment,” in Electrical Design of Ad-
vanced Packaging Systems Symposium (EDAPS), 2010 IEEE, 2010, pp.
1 –4.

[21] M. Pedram and S. Nazarian, “Thermal modeling, analysis, and manage-
ment in vlsi circuits: Principles and methods,” Proceedings of the IEEE,
vol. 94, no. 8, pp. 1487 –1501, 2006.

[22] H. Qian and S. Sapatnekar, “Fast poisson solvers for thermal analysis,”
in Computer-Aided Design (ICCAD), 2010 IEEE/ACM International
Conference on, 2010, pp. 698 –702.

[23] S. S. Sapatnekar, “Thermally aware design (chapter 2).”

38

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

[24] A. Sridhar, A. Vincenzi, M. Ruggiero, and D. Atienza, “Neural network-
based thermal simulation of integrated circuits on gpus,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 31, no. 1, pp. 23 –36, 2012.

[25] B. Wang and P. Mazumder, “Accelerated chip-level thermal analysis
using multilayer green’s function,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 26, no. 2, pp. 325 –
344, 2007.

[26] T.-Y. Wang and C. C.-P. Chen, “3-d thermal-adi: a linear-time chip
level transient thermal simulator,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 21, no. 12, pp. 1434
– 1445, 2002.

[27] T.-Y. Wang, J.-L. Tsai, and C. Chung-Ping Chen, “Thermal and power
integrity based power/ground networks optimization,” in Design, Au-
tomation and Test in Europe Conference and Exhibition, 2004. Proceed-
ings, vol. 2, 2004, pp. 830 – 835 Vol.2.

[28] H. Xu, V. Pavlidis, and G. De Micheli, “Analytical heat transfer model
for thermal through-silicon vias,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, 2011, pp. 1 –6.

[29] S. S. S. Yong Zhan, Sanjay V.Kumar, “Thermally aware design (chapter
1).”

[30] T. yuan Wang, Y. min Lee, C. Chen, and C. C. ping Chen, “3d thermal-
adi - an efficient chip-level transient thermal simulator,” in ACM In-
ternational Symposium on Physical Design (ISPD), ACM 1581136501/
03/0004, 2003, pp. 10–17.

[31] S. Zhan, Kumar, “Thermally aware design (chapter 3).”

39

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2024 21:48:22 EEST - 3.16.50.75

