Department of Civil Engineering
University of Thessal

Establishment of probabilistic radar
guantitative precipitation estimatesin the
Cévennesregion

"Pont du Gard" during the 8-9 September 2002 catastrophic event.

Savina Partheni®
LTHE Grenoble

*Master 2 Research HydroHazards, University Joseph Fourier, 38000 Grenoble, France

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 18:29:21 EEST - 52.14.40.146



and University of Thessaly, 38221 Volos, Greece.
P Directeur de Recherche, Equipe Hydrométéorologie, Climat et Impacts
Laboratoire d'étude des Transferts en Hydrologie et Environnement

Abstract

Radar quantitative precipitation estimates (QPE) have been assessed using reference values
established by a geostatistical approach in the context of flash-flood prediction in the Cévennes
region France. The reference values were estimated from rain gauge data using the Block
Kriging technique and the reference meshes were selected on the basis of the Kriging
estimation variance. An empirical radar error model was built by computing the spatial means
and the covariance matrix of the errors, as well as their autocorrelation function. In addition,
the conditional statistical distributions of the errors were established with respect to severa
variables and factors (rain amount, radar range, mountain versus plain region of the domain of
interest) using the “generalized additive models for location, scale and shape” (GAMLSS)
approach. The conditional bias of the errors presents a complex structure that depends on the
space-time scales and the considered geographical sub-domains, while the standard deviation of
the errors has a more homogeneous behaviour with a linear increase as a function of the rain
amount. The probabilistic QPE generator proposed by Germann et al. (2009) was implemented
for the 1-hour time step and for hydrological meshes of about 100 km?, which are space-time
scales relevant for the flash-flood prediction in the Cévennes region. Several improvements of
the origina approach were proposed with, in particular, the conditioning of the errors for the
observed dependency on the rain amount. The way the errors propagate in the hydrological
modelling system remains to be studied with the n-TOPMODELs model.

Hepitnyn

IMocotikéc extunoelc Ppoydmtmone and pavidp (ITEB) éxovv a&loroynbei ypnoomoidvrog
EYKVUPEG TYWEG avapopis HECH YEWMOTOATIOTIKNG TPOGEYYIONG OTO TAOICIL TNG TPOPAEYNS
TAnuppodv v v weployn Cévennes oty TNaAlia. Ot Twég avoaeopdc voAoyiocOnkov ue
Baon Bpoyopetpucd otoyeio kal v texvikn Block — Kriging, evéd ta vdpoloywkd mAéypata
avapopagc, emAéybnkav Baocetl v ektiunon tng dakvpavong Kriging. ‘Eva gpmeipikd poviélo
OQAALOTOG POVTAP OMOVPYNONKE OO TOV VIOAOYIGUO TOV YOPIKAOV HECHV KOl TOV TIVOKOL
GUVOLOKVLLOVOTG TOV GOAALATOV, KaB®G Kol Tov Babud avtocvoyétiong tovg. Emumiéov, n vrod
OPOVG OTATICTIKEG KOTAVOUES TOV COUALATOV GLOTAONKAV GE GYECT LE TOALEG LETAPANTES Kot
napdyovieg (Vyog Bpoyng, e0pog pavtdp, Pouvd évavil TEdIASAC TNG TEPLOYNG EVOLPEPOVTOG)
YpNooToOI®VTAG TNV Tpocéyylon "Tevikevpéva povtéda yio tomobeoia, péyebog Kot oy
(GAMLSS). H v 6povg apepoinyic. amd To GOAAUOTO, TOPOVOIALEL [0, TOADTAOKT Soun
ov eEAPTATAL OO YOPOYPOVIKEG KMUOKEG KOl OO YEDYPOPIKOVS VITO-TOUEIS, EVM 1) TLTIKN
OmOKMOT T®V CQOAUATOV €YEL U0 MO OUOLOYEVH] GULUTEPLPOPE UE YPOUMIKN OOENCT ©E
oLVApPTNoN He TO VYOS NG Ppoyns. H mbavoroykn ektipunon Ppoyxdntmong mov mpoteivel o
Germann et a. (2009) té0nke og €PapuOyn Yo YPOVIKO Prina LG dPAG KOl Yo VIPOAOYIKE
mAéypoto tov 100 kn?, ta omoion KabloToOvV Y@poxpovIKEG KAIMOKESG Yoo TNV TPOPAEYM
TAnupuopodv oty mepoyf] Cévennes. Apketég PeATIOOEIC NG OPYIKAG  TPOCEYYIONG
TPOTAONKAY, LETAED GAL®V, TNV VIO OPOVE TPOETOUAGIN TV COAANATOV TOV TOPATPNONKAY
oYeTIKA pe v e&aptnon amd to vVyog Bpoyns. O Tpdmog TOL TO CEAAUATO J10OI00VTOL GTO
VOPOAOYIKS cVGTNA povieLoToinong pével va peketn et pe to N-TOPMODELSs povtédo.
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Résumé

Des éstimations de précipitations quantitatives a partir de radar (QPE) ont été élaboré en
utilisant des valeurs de références etablies par une approche géostatistique dans un contexte de
prévision de crue éclaire dans larégion des Cévennes en France.

Les valeurs de références ont été estimé a partir de données de pluviométriques a l'aide de la
technique de krigeage par bloc et les réseaux hydrographiques ont été sélectionné sur le base du
krigeage de I'estimation de la variance. Un modéle empirique d'erreur radar a été construit en
calculant les moyennes spatiaes et la matrice de covariance des erreurs, ainsi que les fonctions
d'autocorrélations. De plus, la distribution statistique conditonnelle des erreurs a été établi en
respect de plusieurs variables et facteurs (quantité de pluie, portée du radar, les zones de
montagnes contre les zones de plaines de la région dintéret) en utilisant I'approche du modéle
additif généralisé pour le lieu, I'échelle et la forme (GAMLSS). Le biais conditionnel des
erreurs présente une structure complexe qui depent de I'échelle spatio-temporelle et du sous-
domaine géographique considéré, alors que I'écart-type de I'erreur a un comportement plus
homogene avec une augmentation linéaire en fonction de la quantité de pluie. La génération
probabilistique de QPE proposée par Germann et al. (2009) a été implémenté au pas de temps
d'une heure pour des réseaux hydrographiques de I'ordre de 100knm?, qui sont a I'échelle spatio-
temporelle représentatif pour la prévision de crue éclaire dans larégion des Cévennes. Plusieurs
amélioration de I'approche originale ont été proposé avec, en particulier, le conditionnements
des erreurs sur la dépendance des quantitées de pluies observées. La maniére dont les erreurs se
propagent dans un modéle hydrologique reste a étudié avec le modele n-TOPMODELSs.

1. I ntroduction

A key component in many hydro meteorological forecasting systems is the rainfall —
runoff hydrological models, which aims to translate observations and forecasts of rainfall into
estimates for river flows. Distributed hydrological models (Ogden et al. 2001), although more
complex compared to lumped models, provide additional insight on hydrological conditions,
such as soil moisture and stream flow, at locations without existing flow observations
(Carpenter and Georgakakos, 2003). For the development and application of hydrological
models a widespread implementation of weather radar has been established, in order to
advantage the high spatial and temporal resolution of the precipitation estimates from the
radars. However, it is crucial to consider the significant uncertainties which exist in radar
rainfall estimates obtained from radar reflectivity, in hydrological parameters derived from
available databases and in the model structure as well. This complexity leads to high spatial
heterogeneity, forcing us to consider the error sources in radar rainfall measurements, in order
to improve the quantitative precipitation estimation (QPE), assess the QPE errors and how they
propagate in the hydrological modeling system.

Considering the context of flash floods, severa European projects have been established
(HYDRATE, FLOODsite), aimed to improve the flash flood forecasting by developing a
coherent set of technologies for effective early warning systems. A crucia point at these efforts
is the quantitative precipitation estimation, since the causative rain events may develop over
very short space and time scales (Kragewski and Smith, 2002; Creutin and Borga, 2003).The
rainfall measurements from operational rain gauges networks are often available at best at the
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hourly time scale with often too low spatial resolutions. So in order to describe the rainfall —
runoff dynamics at hourly or over shorter time steps, ground-based weather radar data, are
becoming widely available and used in hydrological forecasting.

The assessment of the radar data on hydrological modeling is complex since it depends
on the system design (radar location and operating protocol) and on the data processing
(Austin, 1987; Joss and Waldvogel, 1990; Y uter, 2002). Some of the main problems that we
have to deal with are, the beam smoothing and post-detection integration (Zawadzki, 1982), the
beam shielding and the vertical profiles of reflectivity (Joss and Waldvogel, 1990; Kitchen,
1995; Joss and Lee, 1995; Pellarin et al., 2002; German and Joss, 2002; Bellon et al., 2007),
variability in raindrop size distributions and related uncertainty in the relation between
reflectivity and rain rate (Joss and Gori, 1978; Lee and Zawadzki, 2005).

Due to these uncertainties it is important to understand the processes and characterize
the error structure of radar precipitation estimates. A physical approach would be to examine
all sources of errors separately and to evaluate their cumulative effects. Several studies have
been conducted based on this physica approach (Jordan et a., 2003; Pellarin et al.,
2002;Berenguer and Zawadzki 2008), which aimed to go a step closer to the understanding of
the error structure of QPEs. However the combined effects of the errors and the
implementation of radar data processing algorithms (Delrieu et al., 2009; Tabary, 2007; Tabary
et a., 2007) limit the relevance of this physical approach to error analysis and make it hardly
tractable in practice. Therefore, in order to characterize the overall uncertainty, another
common approach is to evaluate radar QPE accuracy with respect to an external reference.
Dense raingauge networks are generaly used for this purpose, athough the raingauge
measurements are known to suffer from lack of spatial representativity, especialy for short
integration time steps. In spite of significant progress, the residua errors between radar and
reference values are still large and it is important to take them into account, in order to assess
accurate flood forecasts. Additionaly, it is expected that uncertainties in rainfall input data will
be modified into predictions from hydrologic models (Morin et al. 2005; Hossain et al.
2004;Borga 2002; Sharif et al. 2002; Winchell et al. 1998; Vieux and Bedient 1998; Pessoa et
al. 1993). Therefore, accurate characterization of radar rainfall errors and their spatial and
temporal structure, as well as the induced uncertainties in hydrological modeling is very
important. The ultimate objective of this work is to provide a statistical framework for
producing probabilistic space-time series of rainfall based on the QPE error model that would
be used to assess the impact of rainfall uncertainties upon hydrological modeling at regional
scale.

In order to express the residual uncertainties in radar estimates, a promising effort
would be the generation of an ensemble of precipitation fields (e.g. Krgewski and
Georgakakos, 1985). Each member on the ensemble is a possible realization and knowledge on
the radar error structure (Germann et al., 2006a; Lee et al., 2007). The deterministic radar
precipitation field is perturbed by a stochastic component, which has the correct space — time
covariance structure as defined by the radar error covariance matrix (German et al, 2009).

A step forward is proposed in the present work in order to derive QPE ensembles for the
Cévennes-Vivairais Mediterranean Hydro-meteorol ogical Observatory window (CVMHO) and
to study the propagation of the error structure of the simulated discharges as a function of the
probabilistic QPE characteristics. Our work starts with the Germann et al (2009) approach and
one of our main challenges was to account for the dependence of the residuals on the rain rate
evidenced in previous works (Kirstetter et a. 2010; Delrieu et al. 2012). For the hydrological
simulations the n-Topmodel codes which were developed and used in the LTHE laboratory
(Pellarin et a. 2002; Le Lay and Saulnier 2009; Bonnifait et al. 2009), were implemented on a
number of upstream tributaries of the main Cévennes rivers (Ardeche, Céze, Gardons and
Vidourle).

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 18:29:21 EEST - 52.14.40.146



A detailed description of CVMHO datasets used in the present study is presented in
section 2. The radar error model with the spatial and temporal structure is analyzed is section
3, while we present the generation of the QPE ensemble under two conditionings in section 4.
The implementation of the hydrological model is described in Section 5, and this study ends up
with the conclusions in section 6.

2. Case study basins and dataset

The south-eastern ridge of the Massif-Central in France, prone to flash-flooding, is
included in the Cévennes Vivarais Mediterranean Hydrometeorologica Observatory
(CVMHO) window, covering a region of 200 x 160 km?. This area is characterized by a dense
rain gauge network with measurements for hourly and daily time steps. Moreover, the
installation of two weather radar systems, the Nimes S-band and Bollene 2002, provides
satisfactory coverage for the most of the catchments in the southern part of the region (Figure
1). The observed rain events that were selected for this study occured on the 8/09/2002,
27/09/2007, 19/10/2008 and 31/10/2008 and concern the four main watersheds prone to flash
flood (Ardeche , Ceze , Gardons and Vidourle rivers) (Figure 2). These rain events produced
major traffic disturbances leading to lives and property casualties. The most severe event was
that on 8/09/2002, which is one of the 23 severe flash — flood cases occurring in Spain, France,
Italy, Austria, Greece and UK that were documented within the HY-DRATE project (Kirstetter
et al,2010).

Source: (http://mww.ohmev.fr/)
Figure 1: CVMHO observation window. Location and 50-km range markers of the Bolléne, Nimes,
Sembadel weather radar with the available rain gauge system at hourly (left) and daily (right) time step
superimposed on the orography of the Cévennes — Vivarais region. The main waterheds are also
displayed in the graph with the red line.
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Source: (http://mww.ohmev.fr/)
Figure 2: The four main watersheds (Ardéche River, 242km?; Céze River, 1054km?* Gard River,
1913km? Vidourle River, 621km?) delimited with the red solid lines. The main rivers are also displayed
in the graph with the blue solid line.

Regarding radar QPE, were used the products obtained from a radar processing system,
caled Traitements Régionalisés et Adaptatifs de Données Radar pour I’ Hydrologie
(Regionalized and Adaptive Radar Data Processing for Hydrological Applications) (Delrieu et
al, 2009). This development radar processing system, initiated in 2002 at LTHE, as part of the
activities of the CVMHO, includes agorithms which relies on 1) a clutter identification
technique based on the pulse-to-pulse variability of reflectivity Z for noncoherent radar, 2) a
coupled procedure for determining a rain partition between convective and widespread rainfall
and the associated normalized vertical profiles of reflectivity, and 3) a method for calculating
reflectivity at ground level from reflectivities measured aloft. Several data - processing
strategies, including non-adaptive, time-adaptive, and space-time-adaptive variants were
assessed (Ddrieu et al, 2009). In the following we focus on the results of the space-time
adaptive strategy. Moreover, effective Z-R relationships were optimized for each event
separately using the procedure proposed by Bouilloud et al. (2010) in order to reduce the bias
and the conditional bias of the radar QPEs.

In this work we consider the spatial discretization of the four of the main Cévennes
watershed into hydrological meshes of 100 km? (Figure 3). The study was based on matrix
computation of kxi entries, for a k number of meshes and i the number of the time steps. The
08/09/2002 event was the more severe, with total rain amounts reaching locally 700mm in 28 h.
Therainfall affected al of the four main watersheds. The characteristics of that flood event was
controlled by the trgjectory of the convective part of a mesoscale convective system (MCS),
which remained stationary over CVMHO window for 28 h being responsible for the
exceptional magnitude of the flood at this scale (Bonnifait et a, 2009). The 29/10/2007 event
was a more localized event, with the excessive rain rate being localized in the downstream
tributaries of the Vidourle and Gardons watersheds, while the 19/10/2008 and 31/10/2008
events, and were intense rain events affecting the upstream parts of the Ardeche, Ceze and
Vidourle watersheds (Figure 4).
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Source: (Kirstetter et al, 2010)

Figure 3: Spatial discretization of the four of the main Cévennes watersheds (Ardéche River, 2500km?;
Céze River, 1054km?% Gard River, 1913km? Vidourle River, 621km?), into hydrological meshes of 100
km?.

08/09/2002; 100km?; 1h

29/10/2007: 100km? 1h

19/10/2008; 100km? 1h
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Figure 4: Examples of the evolution of rain for 3 successive hourly time steps taken during the 4 events
over the main Cévennes watersheds (Ardéche River, 2500km?; Céze River, 1054km? Gard River,
1913km? Vidourle River, 621km? discretized at the 100 km? scale.

In this study, we am to analyse radar QPE uncertainties with their space — time
structure by defining an empirical error model, then generate stochastically random error fields
and impose them on radar measurements in order to obtain an ensemble of radar rainfall
estimates. The generated radar rainfall estimates, will then, be tested with nTOPMODELSs
codes in order to estimate the propagation of the errors based on the simulated probabilistic
discharges.

3. Radar Error model

The superposition of random and systematic errors from different sources characterizes
the uncertainty of radar estimates. This work, aims to capture and study the error structure, by
building up an empirical error model based on the evaluation of radar QPE accuracy with
respect to an external reference. Dense rain gauge networks are generally used for this purpose
although the lack on spatial representative ness.

In order to build our statistical framework, we introduce some concepts useful in the
rest of this study, by noting the true unknown rainfall amount over agiven area A, centered at a
given location x, agiventime T, centered astimei as:
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Ry :K?” R(u,v)dudv (equ.1)

where R denotes the true rainfall amount at a given location and time.
The radar QPE products are grided, with good spatial resolution of 1km? and expressed

R == 2R (@0 (equ)

where & represents a radar pixel, N4 isanumber of pixels covering a domain A and

R: isthe radar estimated rain amount at time't during atimeinterval T.

On this study, the reference rainfall was established from the available rain gauge
network by using the Block Kriging technique. Reference hydrological meshes were selected
based on the Kriging estimation variance (Kirstetter et a, 2010).

Ng
Ry =D 4G (x.1) (equ.3)
i=1

where Gr (%,1) isthe rain gauge amount at point % and timet during T and Ny isthe

number of rain gauges accounted for in the estimation. The coefficients Vi =1 NgJ are the
kriging weights obtained by minimizing the estimation variance:

o5 =E(RT —Ry)? (equ.4)
under the unbiasedness condition :

E(Rﬂ )=E(Ryr) (equ.5)

The definite advantage of this geostatistica method over concurrent interpolation
technique is that the estimation variance (equ.4) provides a measure of the reference accuracy
which depends on the spatial structure of the variable to be estimated and the relative
configuration of the network and the domain A of interest.

The availability of such metrics, lead us to consider the residuals (rather than the ratios
for instance) between the estimated and reference values as the working variable of our
empirical error model.

A (% 8) = A = R (%, 1,) — Ryt (X.t) (equ.6)
where k index a given integration domain of size A and i atime step of duration T
We define our empirical error model as:

Ajy = (Rk - thd) (equ.7)
wherei, k index the time step and the mesh respectively.
The scatter graphs of the radar QPEs as a function of the reference rainfall and the

empirical errors (2ix) asafunction of the radar QPE are presented in Figure 5 .
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Figure 5: Scatter graphs of the evolution of the radar QPE versus reference rainfall (Ieft) for the four
events together with the empirical errors (residuals) as afunction of radar QPE for the (100km?;1h)
space-time scale (right); all the meshes and all the time steps are considered.

From Figure 5 it is clear that the variance of the error increases as radar QPE increases
and that the error structure is different for each event. Note also the upper part above 1/1 line of
the Delta versus radar QPE graphs appears truncated. Thisfact is due to the expression of Delta

A= (R - R for given radar QPE value R*, the reference rainfall can take values

between 0 and infinity and so Delta varies between —infinity (—°) and R’.

In the context of this study, we therefore found important to account on the dependency
of the residuals on the rain rate. For practical reasons (generation technique) we consider the
dependency of Delta as a function of radar estimates. Based on that, we establish the
conditional distributions of the residuals as a function of radar QPE, for a given space-time
scale (100km?1h here) using the GAMLSS framework (Stasinopoulos and Rigby, 2008). This
semi — parametric model, consists of two components. a parametric probability density function
(pdf) given each value of the explanatory variable and a non — parametric relationship between
the pdf parameters over the domain of the explanatory variable. The conditional densities are
assumed to have the same parametric form for all value of the explanatory variable (Delrieu et
al, 2012). With the GAMLSS package, a wide range of two — parameters (Gaussian, t-family,
p-exponential) and three — parameters (exponential-Gaussian, reverse Gumbel, gamma, 1og-
normal etc) continuous probabilities density functions are available. Moreover, a number of
non-parametric fitting techniques (cubic, penalized splines, etc) for the second component of
the model are offered. Figure 6 displays the fittings obtained for three events (the fitting did
not converge for the 2007 event), by grouping all the meshes (left column) and by segregating
the meshes according to the range to the radar (center column: ranges greater than 60 km right
column: ranges less than 60 km).

Conditioning (all ranges) 08/09/2002 event Conditioning (long ranges) 08/09/2002 event Conditioning (close ranges) 08/09/2002 event

Residuals

20 10 0 10 20 30
I

e
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Figure 6: Scatter plot of the GAMLSSfits on the residuals A« conditional on the radar QPEsfor the
main rain events and the (100 m2; 1 h) space-time scale. The quantiles of the Gaussian distributions are
displayed together with the conditional mean (dark dotted line)

In some cases, we note there is a conditional bias, i.e. an overestimation of the residuals
which tends to increase with the radar QPE, and may vary significantly according to the range
from the radar. This dependency is also event dependent. We have considered various
possibilities for the modeling of the residual mean. The linear regression provides us most of
the time poor fits, and was varying significantly between the close and long ranges. Adapting
polynomial models for the residual mean for the long and close ranges, was not very
satisfactory due to the fact that those residual means are established for a series of meshes (not
showed here for the sake of simplicity). According to that, we would have discontinuity,
between the close and long range meshes and some problems to extrapolate the relationships.
Finally, we choose two options for the mean modeling:

= Conditioning 1: use the mean model obtained from the GAMLSS analysis for all the
meshes
= Conditioning 2: use of the regression between the residuals Delta and the radar
estimates for each single mesh. Additionally, we forced the regression to pass by 0 in
order to reduce the spread of the results for rain rates close to 0.
The code of the generator is adjusted according to these conditionings as follow:

A*i,n = ,U(A‘ R) +[O'(A|R)/ o(A)]*[Ly,+ alA‘i—l,n + aZA'i—Z,n] (equ.22)
where, #(A;4|R), o(A«|R) are the conditional mean and standard deviation of the empirical
error model, @(Aix) is the unconditional standard deviation of the empirical error model and

[LYin+ @A, + @A 5, ]isthe unconditional generated perturbation field Ain |

The evolution of the standard deviation of the conditiona distribution of the error as a
function of the radar QPE was found to be more or less stable between the events and the radar
ranges. We have used the following expression for the first conditioning:

o(A R =02R+1 (equ.g)

For the second conditioning, the standard deviation model parameters were dlightly
adapted fot the generated errors to match the observed ones.

Spatial and Temporal structure

In order to define the spatial structure of radar QPE uncertainties, we assume the
residuals to be distributed according to usual probability distribution functions ( Log-normal,
Gaussian etc), so that the spatial component of the error model may be defined by the mean, the
variances and the covariance of the residuals.

12

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 18:29:21 EEST - 52.14.40.146



13
Cu = _Z(Ai,k _;Uk)z (equ.10)
NT i=1
1 &
Cim = WZ (A g =)A= 1) (equ.11)
i il

wherek index the mesh and Ni the number of time steps.
We estimate the mean and the variance/covariance matrix between al meshes of the
discretized watersheds for the four events, so as to have an approximation of the spatial

structure of the residuals and to compute the uncertainties in our empirical error model. # isa

vector that contains the mean value for each mesh k and for all time step i, while the Cimisa
matrix with values of the covariance between k,m meshesin its entries.

po= (Mg, My, s Mym) (equ.12)
where Nm is the number of meshes
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Figure 7: Spatia structure of the empirical error model AV _asafunction of the distance between the
meshes.
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Figure 7 displays the correlation coefficients as a function of the distance between the
center of the meshes for the various events. For a distance of 20 km, the correlation lies
between 0.5 and 0.9 indicating that the errors are significantly correlated in space. For distances
of 40 to 60 km the correlation drops to values around zero and below.

For the temporal structure, the autocorrelation function in order 1 and 2 were calculated
locally for each mesh using (13) and the variability of the temporal error structure for al the
meshes, is presented in Figure 7.

1 &
Coi =2 o (A= A= 4 (equa3)
T i=
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Figure 8: Temporal structure of the empirical Ay , for the four main rain events. The autocorrelation
function for lag time 1 to 6 is presented with the dotted line and the mean value with the black solid line
for each of the events

From Figure 8, it can be obtained, that there are some significant correlation of order 1
for the majority of the meshes and for all of the four events. The temporal correlation at lag 1 (1
hour) is comprised between 0.2 and 0.6. However, for the 2002 event, there are two meshes,
(mesh 37, mesh 38), with high correlation of order one (r;= 0.78, mesh2=0.8 respectively). For
lag 2, the mean temporal correlation is about 0.2, indicating the rather weak temporal
correlation of the errors for the considered space-time scale.

14

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 18:29:21 EEST - 52.14.40.146



4. Ensemble Gener ation

The main idea is to generate random Gaussian additive error fields, accounting for the
empirical space-time structure identified in section 3, and then add them to the original radar
QPE. Thus we would get a set of probabilistic radar QPE (PQPE) to be used as input to
hydrological model to assess model uncertainties. The algorithms that were implemented in this
study were proposed in a paper by Germann et a (2009). We have extended this approach by
accounting for the dependency of the errors on the radar QPE evidenced in Section 3.

I:i,n - R _Ai,n (equ.14)

where Fin is vector of the resulti ng precipitation values for the N meshes for a given
time step i and for an ensemble member n ; Ri isthe vector of the original radar rainfall QPEs

at time i while Ain is the vector of the Gaussian perturbations for a given time step i, and
ensemble member n.

The first term of (equ.14) presents the probabilistic precipitation components while the
R isthe deterministic radar field and thein isthe stochastic component. For a given domain
A, usually a watershed, the probabilistic precipitation field, give us N realizations of rainfall
for k number of meshes and time step i, while the stochastic component Ai nis consistent with
the space — time structure of radar uncertainties. The N realizations can be used as input to
hydrologic model, yielding a distribution of response values, the spread of which presents the
propagation of the radar precipitation error.

The core of the ensemble generator relies on the establishment of the perturbation field.

In order to have the space — time correlated perturbation field Ainitis important to introduce a
techniqgue to produce these Gaussian fields. The most versatile technique is the LU
decomposition on the symmetric positive definitive covariance matrix of the residuals
(Germann et a 2009):

C=LL" (equ.15)

We obtain the perturbed vector Ain by multiply arandom Gaussian vector Yin with the
“sguare root” of the covariance matrix of the residuals. The decomposition obtained by the

LU algorithm expresses the covariance matrix as the product of alower and an upper triangular

matrix. Thus, the resulting perturbation fields Ain are gpatial correlated Gaussian with pre-
defined covariances. The LU decomposition offers full flexibility regarding space — time

dependence of errors (Goovaerts, 1997).
Ai,n = I-yi,n (€qu.16)

wherei,n are the time step and the ensemble member respectively.
As anext step, we use the AR(2) filtering for each one of the discretized meshes of the

generated random errors®in so that to impose the desired temporal structure. Utilize the
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AR(2) model, we calculate the perturbation field for atime step i and mesh k, by combining
LYin with the AR(2) filtered perturbation fields of the previous two time steps i —land i —2.
Two parameters &, & were used, obtained by the Y ule — Walker equations (Priestley, 1981)
together with the square root of the AR(2) variance rescaling factor U. It is important to utilize

the rescaling factor U, since with the AR(2) model, the variance changes by a linear factor,
depending on the model parameters &, & The mean value of its mesh is added in the end of this

procedure in order to correct the generated Ai» interms of bias.

Ain = Ly, + aAi1n + a,Ai2n (equ.17)

Ain=pu+UAin (equ.18)

a, = r,—-1
1_ r12 (equ.19)

a, = r12 —h
1-n (equ.20)

1+a o

U= 2 (equ.21)

(1_ az)(l_ a +a, )(1+ a + az)

In order to account for the dependency show in Section 3 and since the relationship
described the sigma parameter is more or less constant, we use a linear relationship for the

conditional standard deviation ((A«|R) =0.2R+1) and we considered two possibilities for

accounting for the conditional bias. The code of the generator was adjusted according to these
two conditionings.

1% Conditioning

The first conditioning is implemented to (100km? 1h) space- time scale hydrological
meshes and we utilize the conditional mean and the approximate conditional sigma parameter
(equ.8) derived from all the meshes with the GAMLSS model. For the sake of simplicity we
note the conditional, generated perturbation fields as A, n.

It was estimated that the variability using the 1% Conditioning was mostly affected by

the evolution of the © (Ai,k|R) parameter rather than the conditional mean. Therefore, for the

2008 events, we adapt the conditional sigma so that to be closer to the empirica model A,
while for the 29/10/2007 event, this 1% Conditioning was not implemented because the
GAMLSS fit did not converge. Generally, it was estimated that using the global mean, could

not account for producing the variability that we have in the observed A (Figures
9;10;11;12).
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2" Conditioning

In the 2™ conditioning, we use the conditional mean specific to each mesh with
the conditional sigma parameter obtained from the GAMLSS model. The conditional mean is
estimated by fitting a linear regression to the errors versus the radar QPES for each single mesh.
We found useful to force the regression offset to 0 so as to reduce the spread of the values
around zero and to be closer to the empirica model. It was found necessary to adapt the
parameters of conditiona standard deviation for the 19/10/2008 and 31/10/2008 events with the

use of the © (Ai,n|R) model fitted from the GAMLSS approach. For the 29/10/2007 event we

used (A ,|R) =0.2R and the study was focused on the Vidourle and Gardons watersheds.
The results for the 1¥ and the 2™ conditionings as well as for the unconditioned cases
for all the events are presented in presented in Figures 9-12. Considering the 2™ conditioning,
we were able to generate conditioned error fields2i.n, based on more redlistic results compared
to the empirical error model, by adapting the conditioned mean :u(Ai,k|R) and the sigma

parameter © (Ai,k|R). For the 08/09/2002 events the utilize of these parameters helped to
produce the variability that we observe in the empirical error model even though there is an
increase of the spread of the negative values. For the 29/10/2007 the variability from the
empirical error model cannot be generated totally even if we adapt the conditional sigma
parameter while for the 19/10/2008 and 31/10/2008 events there were some unrealistic values
of radar errors above the (1,1) line.
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Figure 9: Scatter plots of observed and simulated errors for the 08/09/2002 event as afunction of the
radar QPESs. The errors derived from the observations (up, left), the unconditioned generator (up, right)
and the conditionings 1 (bottom, left) and 2 (bottom, right) are displayed.
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Figure 10: Scatter plots of observed and simulated errors for the 29/10/2007 event as a function of the
radar QPEs. The errors derived from the observations ( left), the unconditioned generator (right) and the
conditioning 2 (right) are displayed.
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Figure 11: Scatter plots of observed and simulated errors for the 19/10/2008 event as a function of the
radar QPESs. The errors derived from the observations (up, left), the unconditioned generator (up, right)
and the conditionings 1 (bottom, left) and 2 (bottom, right) are displayed.

18

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 18:29:21 EEST - 52.14.40.146
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Figure 12: Scatter plots of observed and simulated errors for the 31/10/2008 event as a function of the
radar QPESs. The errors derived from the observations (up, left), the unconditioned generator (up, right)

4.1. Impact of the conditionings on the temporal and spatial structure of the smulated

errors

Correlation Coefficient

In order to be more accurate for the results, we obtained the influence of the
conditionings on the space — time structure of the simulated errors versus the observed errors.

The results of the temporal and spatial structure obtained for the 08/09/2002 event are showed
in Figure 13; 14.
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Figure 13: Spatia structure of the simulated errors as a function of the distance between the meshes;
the spatial structure of the empirical error model is presented in the upper Ieft graph while the spatial
variability of the unconditioned, 1¥ conditioning, 2™ conditioning are showed in the upper right, down
left and down right graphs respectively

From Figure 13 compared to Figure 7 it can be estimated, that still for 20km there is a
spatial correlation of the errors between 0.5 — 0.9 both for the 1% and the 2™ conditioning,
while for the unconditioned situation the spatial structure is atered on an important degree.

Temporal structure (08/09/2002 event) Temporal structure (Germann approach) (08/09/2002 event)

1.0
1.0

0.8
0.8

0.6
0.6

ACF
0.4
ACKH
0.4

0.2
0.2

0.0
0.0

-0.2
-0.2

Temporal structure Condition 2(08/09/2002 event)

1.0
1.0

0.8
0.8

0.6
ACF
0.6

ACH
0.4
0.4

0.2
0.2

0.0

0.0

0 1 2N 3 5 0 i P 3 4 5
ag Lag
Figure 14: Temporal structure of the simulated errors, for the four main rain events. The autocorrelation
function for lag time 1 to 6 is presented with the dotted line and the mean value with the black solid
line; the temporal structure of the empirical error model is presented in the upper left graph while the
temporal variability of the unconditioned, 1% conditioning, 2™ conditioning are showed in the upper
right, down left and down right graphs respectively

20

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 18:29:21 EEST - 52.14.40.146



From Figure 14 compared to Figure 8 , it can be obtained that there is a significant
temporal correlation at 1h time step, while we can estimate that we do not change the temporal
structure of the errors so much (unconditioned situation.). The temporal correlation ,drops to
0.2 in the 2™ time step for the majority of the meshes .

Examples of hyetographs

The generated Deltas for the four main rain events (08/09/202, 29/10/2007, 19/10/2008,
31/10/2008) and for 100km? meshes of each of the watersheds (Ardéche, Vidourle, Céze and
Gardons) were simulated 50 times and the error was subtracted to the radar QPE (due to the
definition of the errors (equ.7)), in order to obtain the probabilistic QPES. We present some
hyetographs obtained for the 08/09/2002 event: the 50 simulations with the unconditioned
situation, 1st and the 2™ conditionings compared to the radar estimates and reference time
series are presented in Figures 13 and 14 for two meshes which exhibit contrasted behaviour.

Ensemble PQPE (08/09/2002) Mesh 7

Regression Analysis Mesh 7 (08/09/2002)
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Figure 15: Probabilistic QPE (PQPE) with the unconditioned situation (top right), 1% (bottom left) and
the 2" (bottom right) conditioning for given meshes for the 08/09/2002 event; the radar QPE, the
reference rainfall and the 50 simulations are displayed on the graphs with the black, red, light blue lines
respectively; the regression analysis of the errors as a function of the radar QPE for the given mesh
(p=0.3) isaso displayed (top left)
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Regression Analysis Mesh 10 (08/09/2002) Ensemble PQPE (08/09/2002) Mesh 10
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Figure 16: Probabilistic QPE (PQPE) with the unconditioned situation (top right), 1% (bottom left) and
the 2™ (bottom right) conditioning for given meshes for the 08/09/2002 event; the radar QPE, the
reference rainfall and the 50 simulations are displayed on the graphs with the black, red, light blue lines
respectively; the regression analysis of the errors as a function of the radar QPE for the given mesh
(p=0.94) is also displayed (top left)

Table |: Statistical parameters for the validity of the results; the mean; correlation; standard deviation;
Kriging estimation variance are displayed

MeSh7 MeShlo
M 125 747
M” 13.14 15.50
MY/ M™ 1.05 2.07
Cor(R“,R,) 0.93 0.7
O-Ifriging 0.08 0.5
M Peta 0.6 8.03
sd e 5.53 11.3
M gortitonals (A, |R) =0.16R+1.78
M (orionai2 (A, |R) =0.09R u(A, R = 06R
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In Figure 15, the consistency of the radar QPE with respect to the reference rainfall is

rather good with abiasof M"/ M™ =1.05 and a correlation coefficient of 0.93. Note that the
quality of the reference is good with a normalised Kriging estimation variance of 0.08. The
unconditioned generation leads to readlistic hyetographs with quite a uniform spread of the
ensemble whatever the radar QPE. Conditioning 1, based on the correction of the conditional
bias calculated over all the meshes, tends to under-estimate the PQPE compared to both the
reference and the radar QPE; one may note that, as expected, the variability of the PQPE
depends now on the radar QPE. Conditioning 2 utilizes the regression analysis of the errorsas a
function of the radar QPE: in that case the correlation is poor and therefore the conditional
mean dependency on the radar QPE is low. The mean values of the unconditioned Deltas of the
meshes;, meshyg, are estimated to be of order 0.6, 8.03 while the standard deviation for the
given meshes is equal to 5.53, 11.3 respectively. Concerning the conditional statistical
parameters, are estimated to be for the meshes;, mesh;o: conditional mean equal to 3.98 and
5.36 and the standard deviation of order 6.98 and 7.48 respectively. We note that the bias
correction islower than for conditioning 1.

In Figure 16, the consistency of the radar QPE with respect to the reference rainfal is

much lower compared to the previous case (M*/ M™ =2.07: Cor (R ,R) = 0.7). The radar
QPE strongly overestimates the rainfall compared with the reference time series. Note that the
quality of the reference is not good with a normalised Kriging estimation variance of 0.5. Asin
Fig. 15, the unconditioned generation leads to realistic hyetographs with quite a uniform spread
of the ensemble whatever the radar QPE. Conditioning 1, based on the correction of the
conditional bias calculated over all the meshes, dighty reduced the bias of the PQPE with
respect to the reference. Conditioning 2 utilizes the regression anaysis of the errors as a
function of the radar QPE: in that case the correlation is good and therefore the conditional
mean dependency on the radar QPE is high. We note that, due to the accounting of the local
conditional bias, the PQPE tend to present a very good agreement toward the reference
hyetograph. A desirable evolution of the method would be to account for the quality of the
reference rainfall to decide if such a bias correction is desirable or not. In the present case, due
to the high Kriging estimation variance, it could be suggested to use Conditioning 1 for this
specific mesh.

5. Hydrological modeling

The topographic based hydrological model, Topmodel, presented by Beven & Kirby
(1979), conceptualizes the soil water storage as a sequence of storages with different properties.
This hydrologic model, predicts the catchment’ s responses following one, or a series of rainfall
events (Chairat et al, 1993). It congtitutes one of the first models representing the lateral
subsurface flow in the first meters of soil which leads to the generation of runoff on saturated
areas of the catchments. Some points of a watershed do not have hydrodynamic behaviour
(hydraulic transmissivity, hydraulic gradient etc.), allowed them to evacuate from the upstream
the amount of water that reaches. These points become superficial saturated, since the received
water runs mostly to the water system. Such hydrological processes have been proved to
dominate in the genesis of flash floods in the region of Cevennes - Vivairais (Lardet and Obled,
1994, Saulnier and Datin, 2004).
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The version of Topmodel that was used was developed at LTHE (Saulnier et al. 1997,
Saulnier and Datin, 2004). This version, called n-Topmodel is a distributed version where the
watershed of interest is divided into hydrological meshes of about the same size (100 knv
herein). For each mesh, four parameters are to be specified:
oThe surface hydraulic conductivity (K; m.s-1)
oThe exponential decay of conductivity with the depth (m (m)).
oThe water content of the layer of topsoil at the beginning of the event (SRMax (m)).
oThe rate of evapotranspiration losses (Inter (m.s-1)).

The spatial discretization of the basin is achieved through a mesh which, in a given
region, to derive Digital Terrain Model (DTM) surfaces of irregularly shaped and size selected
by the user (see Figure 2). The jagged edges of these surfaces meet and define the topography
and hydrology of the mesh to the contours of zero flows. Modeling n-TOPMODEL comes from
a spatialization of TOPMODEL on this mesh.

Figure 17: Example of the discretization of the Ardéche watershed provided in to hydrological meshes
100km?

Unfortunately, time was missing during the project to implement and finalize the
hydrological modelling with the available PQPEs.

6. Conclusions

This work, presents a probabilistic approach to represent the uncertainty in radar
estimates by providing a statistical framework for producing an ensemble of precipitation fields
The methodology addressed so as to provide a preliminary version of an error model for radar
QPE in the context of the Cévennes-Vivairas Mediterranean Hydro-meteorological
Observatory window (CVMHO) using radar and rain gauge datasets. This error model was
designed with respect to the reference rainfall data from available rain gauge network by using
the Block Kriging technique, while reference hydrological meshes were selected based on the
Kriging estimation variance. The empirical errors, designed for four events, where it was
estimated that the different error structure for each of the events and it was clear the increase of
the variance of the errors.

On the context for dependency of the errors as a function of radar QPE, the conditional
distribution of the errors obtained for all the 100km?; 1h hydrological meshes and according to
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the range from the radar showed that, in some cases there is a conditional bias, meaning, an
overestimation of the errors which tends to increase with the radar estimates. This dependency
varies significantly between close and long ranges, while is also event dependent. For modeling
the conditional mean of the error, several approaches was taken into account by using linear or
polynomia models which led to no satisfactory results. Thus, regression analysis of the errors
versus the radar estimates was conducted. In order to account on the conditiona bias, two
possibilities of conditioning were used.

The results confirmed that radar rainfall estimates have a complex error structure. Radar
errors showed a temporal and a spatial structure which has to be taken into account for rain
field simulation. From the generation of the PQPE, it was obtained that, when there is a good
agreement between the radar estimates and reference rainfall but poor correlation between the
radar estimates and the errors, the 1% conditioning tends to improve in terms of bias but with a
significant underestimation, while in the 2™ conditioning, the dependency of the conditional
mean on the radar estimates is low. However, with good correlation between the errors and the
radar estimates but without accounting of the accuracy of the reference, the 1% conditioning
reduces in terms of bias, and in the 2™ conditioning there is a good agreement of the spread of
the ensemble around the radar estimates.

Considering the radar data processing and parameterization with the dependency of the
error model on climatological context, some factors may have significant influence on the
empirical results. These, include residual beam blockage effects, uncertainty in the Z-R
relationship caused by variability of the drop-size distribution and erroneous rain gauge
measurements remaining after quality control.

To sum up, concerning the results that were obtained through the generation of the QPE
ensemble we are now confident in the calculations of the code. It would be desirable to account
for the accuracy of the reference rainfall in conditioning 2.The study of the propagation of the
precipitation error with the n-Topmodel codes remains to be undertaken, as well as a sensitivity
study on the space-time scales considered..
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APPENDI X
GENERATOR CODE

GENERATION OF THE MULTI - GAUSSIAN PERTURBATION FIELD
ns: Simulations
nt: number of time — steps
Nmesh: Dimension of the mesh
D_i: Simulated Delta (German approach)
D_cond: Simulated Delta under conditionings

ns<-c(50)

nt<-dim(res)[ 1]

Nmesh<-dim(res)[2]
mat_delta<-matrix(nrow=Nmesh, ncol=nt)
mat_DEL TA<-matrix(nrow=Nmesh, hcol=nt)
mat_Yr_m<-matrix(nrow=Nmesh, ncol=nt)
DEL TA<-matrix(nrow=Nmesh, ncol=nt)
D<-array(NA, c(nt, Nmesh, ns))
D_cond<-array(NA, c(nt, nmesh, ns))

for (i in 1:nsf
for (j in L:nt){
Yr_m<-rnorm(Nmesh,m=0,sd=1)
mat_delta[,j]<-as.vector(lower_m%*%Yr_m)
}
mat_ DELTA[,1]<-mat_delta[,1]
mat_DELTA[,2]<-mat_delta[,2]-vec_a 1*mat_delta[,1]
for (tin 3:nt){
mat_DELTA[,t]<-mat_delta[,t] - vec_a 1*mat_delta],t-1] - vec_a 2*mat_delta,t-2]
}

mean_m<-as.numeric(vec_mean_col)
DELTA<-vec U * mat_ DELTA
D_i<- mean_m + DELTA
DI[,,i]<-D_i

D_con<-sd con*t(DELTA)
D_condi<-m_cod + D _con
D_cond[,,i]<-D_condi

GENERATION OF THE ENSEMBLE OF PROBABILISTIC PRECIPITATION

R<-d
F<-array(NA, c(nt, Nmesh, ns))
for (i in 1:dim(D)[3]{
mat_F _i<-(R- D[,,i])
F[,,i]<-mat_F i

}
ELIMINATION OF NEGATIVE VALUES
ind_negative<-which(F <= 0)
F[ind_negative]<-0
F_2<-array(F, c(nt, Nmesh, ns))
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