On the Minimisation of Cost
for Replica Migration

by Nikolaos Tziritas

A dissertation submitted to the
University of Thessaly

in partial fulfillment to the requirements of the degree of

MASTER OF SCIENCE

Accepted on the recommendation of:
Spyros Lalis, committee chair
Catherine Houstis, committee member
Panagiotis Mpozanis, committee member

1 October 2006

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

IIANENIZTHMIO OEZZAAIAE
BIBAIOOHKH & KENTPO IAHPO®OPHIHE
EIAIKH EYAAOTH «T'KPIZA BIBAIOTPA®IA»

Api8. Ew.: 5074/1

Hpep. Ew.: 24-09-2007

Awpe: Zuyypaoéa

Ta&BeTikoc Kwdixog: A

004.3

TZI1

Copyright © Nikolaos Tziritas, 2006

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

ACKNOWLEDGEMENTS

I thank Spyros Lalis for supervising this thesis. Special thanks go to Thanasis
Loukopoulos and Petros Lampsas for their invaluable support and great collaboration.
This work was partially supported by the European Social Fund and National Resources
under the ARCHIMIDIS (EPEAEK - II) programme.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

ABSTRACT

Although several replica placement algorithms have been proposed and studied in the
literature, little research has been done so far on capturing and minimizing the cost for
migrating from an existing replica placement to a new one. In this work we investigate the
so called Replica Transfer Scheduling Problem (RTSP) which can be briefly described as
follows: Given replica placements X and X", determine a sequence of object transfers
and deletions to obtain X" based on X”® with minimum transfer (network) cost. We
study RTSP for the case where servers have limited storage capacity. It can be shown that
the problem is NP-complete. Therefore, we propose several heuristics and compare their
performance. The proposed heuristics fall in three categories: (i) algorithms derived from
existing continuous replica placement heuristics, which take as input an existing
placement and produce a new placement along with a schedule to implement it; (ii)
algorithms that take as input two placements and compute a schedule to obtain the one
from the other; (iii) algorithms for enhancing a given schedule. Results indicate that
heuristics of type (ii) perform favorably compared to the algorithms of type (i), and that
heuristics of type (iii) can optimize schedules generated by algorithms of type (i) and (ii).

To our knowledge, this is the first time that RTSP has been studied as a separate problem.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

1

TABLE OF CONTENTS

Introduction and backgrounid ...
1.1 CACHIAE 1 s s T Sesri s s
1.2 R EBCHEION caainorssassivsnosvismmiisinsuaaisaamsmeesusssniassssssmisasssismsessenssiide
1.3 Replica PlACEMENTcooiviiiiiiiiiiiiiiitet ettt
1.4 The cost of replica placement....................ooiiiiiiiiii

1.5 TRESIR OVEIVIEW i s e et e i s

System model and problem formulations ...
2.1 Systemy mote] s R R A
22 The Replica Placement Problem (RPP and CRPP)............coocoooiiiiiinciciiinnne.
23 The Replica Transfer Scheduling Problem (RTSP) ...

24 DISCUSSION ...ttt ettt e e e e et e e e e asasaasasaas

EICUTTREICR sy iaics s i s s o o RS s S A oo RS A TSN aa s s
3.1 CRPP-based heuriStiCsc.c.ooriiiriiriiiiiisiecieeeiis s isieneiens
3.1.1 Greedy Global (GG)oooooooiiiiiiiiiiiiiiii, s
3.1.2 Greedy Object Random (GOR)ooooooiiiiiiiiciiiiiiiiin
32 RSP HeuniStes i mvismiiiim e orsiiaasssss s
321 AWRaBAOHCAR)...conuimmniminiiasiosasssimssiioiapiins
322 Least popular server first (LPSF)......cc.cccviiiniiccivnnsinnsnsianainne
3.2.3 Least valuable server first (LVSF).........ccoooiiiiiiiiiiiiiin
3.2.4 Highest Opportunity Cost First (HOCF)...... ...
3.2.5 Greedy Object Lowest Cost First (GOLCF) ...
33 Schedule enhancement OPEratorsccooiiiiomiii i
3.3.1 Operator 1 (OP1): changing the order of transfer actions
3.3.2 Operator 2 (OP2): creating superfluous intermediate replicas

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

15
15
18
19
21

333 Conbining OP1 Gl DPZ iusasvinsssisimsisisisssisrsismaeisismonss

4 Bvaltation i asmanmmss i
4.1 B s v g 2 AR AR S AR T S A AR P A BT
42 Comparison OF RTSP BURBIICREc.cic.iiivssssiimisiisssorsisisssstommiiismsassinaisioisss
43 Comparison of RTSP vs CRPP heuristics............cccoocimmimiiiincnsvccsinnnnsisinenns
44 SUMMATY e

T R ROTRC o ies s s om0 S5 R4 B3 SR SRR SR S e PSS O
6 Conclusions and outlook. iuunsiisimiisiiimammanaistsimnismisea s sasieveshiie
RETEIENCES ...

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

57

59

61

69

71

75

1 Introduction and background

The explosive growth of the Internet has turned centralized data servers into a
performance bottleneck. Popular sites may receive millions of requests per day, which can
easily lead to server and network overload; and consequently to increased service delay
for the end user. Apart from conventional web content, this situation may also arise for
multimedia (e.g. video) traffic or grid servers providing very large data sets to remote

processing applications.

This problem can be addressed using two different approaches: by distributing client
requests on many servers or other machines acting like servers; and by moving server
contents closer to the clients. In the first case, per server load drops and client requests are
processed faster. In the second case, requests and responses take less time to travel
through the network, reducing the roundtrip delay for the client. Well known techniques,
such as caching, replication and mirroring, are based on these principles. The next

sections give a brief overview of the research done in this area.

1.1 Caching

Caching is an attempt to (temporarily) store the most commonly accessed data objects as

close as possible to the clients that requested them. Ideally, a cache is kept on the same

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

10

machine as the client, thereby completely eliminating network access in case of a hit.
Alternatively, the cache is placed on a machine that can be accessed with less overhead
compared to the server that holds the (original) data. Caches are typically assumed to be

of small size compared to the total amount of data stored on the server.

Caching is traditionally used in distributed client-server architectures, e.g. file systems
like AFS [24], to enhance system performance in both LAN and WAN environments. It
has also been widely studied in conjunction with the web, in which case cached items are
web pages or parts thereof. A lot of research has been done on several aspects of caching,
most notably: cache replacement policies [25], dynamic page caching [26, 27, 39], cache
consistency [63, 50], pre-fetching [45, 60] and cache architectures [54, 69].

1.2 Replication

Replication is about actively deploying several machines for the purpose of processing
client requests. It is commonly used to increase availability and fault tolerance as well as
to boost system performance. Combined with a mechanism for distributing client requests
on less busy servers, replication can be exploited to achieve load balancing and thus faster
request processing. Moreover, by placing servers on different parts of the network, often

referred to as mirroring, the client-server communication latency can be reduced'.

The replication of a service on the Internet raises the problem of how client requests are
forwarded to the available servers in a transparent way, giving the illusion of a single
(powerful) service. The proposed approaches include client-side redirection [28, 35],
router redirection [71], DNS redirection [43, 38, 30] and server-side redirection [49, 61,

59]. There is also the issue of server selection, based on various performance parameters,

' On the other hand, keeping a large number of widely distributed servers increases the cost of
update propagation, which if done asynchronously may also introduce (temporary) inconsistencies.

Institutional Repository - Library & Information Centre - University of Thessaly

20/05/2024 21:13:17 EEST - 13.58.69.9 ‘

11

and efficient dissemination of server status information; for related work see [72, 58, 40]

and [33, 29], respectively.

It is worthwhile to note that caching can be thought as a special form of replication, for
the case where servers hold only a part of the system data objects. This analogy leads to
some interesting comparisons. For instance, cache replacement algorithms could be
regarded as on-line, distributed, greedy algorithms for the creation of local data replicas
under strict storage constraints [73]. Forwarding client requests that resulted in a cache
miss to the server could also be viewed as a simple client-side redirection policy. In
principle, every major aspect of a caching scheme has an equivalent mapping in a

replicated system; without the opposite being true.

1.3 Replica placement

In order to deploy a replicated service one must first decide where to place the respective
servers (or service / data replicas). There exist a wealth of system definitions and
algorithms, each one attempting to capture and improve different performance aspects of
this problem. Following, we classify research efforts in this area depending on their

affiliation to well known theoretical problems.

k-Median problem: A graph is given with weights on the nodes representing the number
of client requests and lengths on the edges representing network costs. Satisfying a request
incurs network cost equal to the length of the shortest path between the client node and a
server. The problem consists of placing k servers on the nodes so as to minimize the total
network cost, provided that each node can hold at most one server. The k-Median problem
has been shown to be NP-hard [74]. This formulation is used to tackle the problem of
distributing a single replica over a fixed number of hosts. Most work assumes a replica to

be a mirror server hosting all site contents, thus performing coarse grain replication. In

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

12

[36] the authors study the problem of placing M proxies at N nodes when the topology of
the network is a tree, and propose an O(N°M?) dynamic programming based algorithm
that finds the best solution. [44] provides a greedy heuristic that outperforms the method
of [36] for the case of a general graph. [67] investigates the optimal placement of Internet
distance measuring instrumentations under the IDMaps framework [32]. A more recent
study [41] compares a 2-approximation algorithm for the k-Median with a greedy
approach, a random algorithm and a heuristic which favors nodes of a higher outdegree
for replica placement. The greedy heuristic achieves a smaller overall client-replica
roundtrip delay, with the performance difference being more significant against the

random placement.

Bin packing problem: Given N objects of various sizes, partition them to the minimum
number of disjoint sets so that the cumulative size of each set does not exceed a given
threshold. The problem is NP-hard. The bin packing formulation is commonly used to
model load balancing problems. For instance, the problem of distributing documents in a
cluster of web servers in order to balance their load is discussed in [53]. The paper
proposes a binning algorithm for the initial distribution and network flow [66]
formulations in the case of access patterns change or server failure. In [34] the authors

propose a distributed protocol to load balance replicated servers along a tree hierarchy.

File Allocation problem (FAP): Given a network of M nodes with different storage
capacities and N files exhibiting various read frequencies from each node, allocate the
objects to the nodes so as to optimize a performance parameter (e.g., minimize total
network traffic) while respecting the storage capacity of each node [65]. The problem is
NP-complete [57]. In [70] the formulation is extended to account for multiple object
copies and updates, and [52] provides an iterative approach that achieves good solution
quality for the case where nodes have infinite capacity. A complete although old survey

can be found in [48]. The file allocation problem originated from the need to allocate

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

13

programs and data to multiprocessor systems [42]. In its general formulation it can be
viewed as a case of the uncapacitated facility location (UFL) problem [56], which was
studied in the business management sector. FAP-like formulations have been used to
describe similar problems arising in distributed databases [S1, 62], multimedia databases
[68] and video server systems [46, 37].

1.4 The cost of replica placement

The vast majority of work on the replica placement problem is concerned with the issue of
calculating an optimal replica placement for a given client request pattern, but ex vivo,
without assuming any current system state. More specifically, almost no work has been
done so far taking into account the cost for implementing a new placement based on an

existing one, which results due to the respective data (replica) transfers over the network.

This “delinquency” is mainly due to the fact that replication placement is viewed as a long
term pre-fetching mechanism. As a consequence, the costs that will be incurred to achieve
the desired replica placement are considered to be of secondary importance, assuming that
they will be amortized over a long time period. However this is not always the case.
Consider for example a distributed video server system where new and potentially popular
movies arrive each day. It could be desirable to change the current replica placement
relatively frequently, perhaps even on daily basis, in which case the implementation costs
may be too important to ignore. We believe that this issue will become more important in
the future given the increasing large-scale web hosting market and recent deployment of

large content distribution networks [64, 55].

Some extended replica placement formulations tackle this problem by factoring the
implementation strategy and respective cost into the replication decisions [61, 47]. This

approach can indeed result in better solutions compared to simple formulations that do not

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

14

take into account this cost (as [47] demonstrates for the case of CDN networks). Still, it is
interesting to study this issue as a separate problem. For example, one might wish to
optimize the implementation of a certain replica placement regardless of how this was
produced; perhaps not using a computer program, but based on manual administrative
decisions. We refer to this as the Replica Transfer Scheduling Problem (RTSP), which is

the research focus of our work.

1.5 Thesis overview

The rest of this thesis is organized as follows. In the Section 2, we describe our system
model, and give respective formulations of the replica placement problem (RPP) and the
replica transfer scheduling problem (RTSP). In Section 3, we give various heuristics for
RTSP, in part refining existing algorithms that have been proposed for solving RPP. In
Section 4, we analyze the performance of these heuristics based on simulations. In Section
5 we discuss related work. Finally, Section 6 concludes the thesis, identifies open issues

and points towards possible future research directions.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

15

2 System model and problem formulations

In the following we present our system model. We adopt a similar system model with the
one used in [8]. For convenience, the notations introduced here and in the next section are
summarized in the Appendix. Based on this model, we formulate the problem statements
that are of relevance to our work, namely the Replica Placement Problem, the Continuous

Replica Placement Problem and the Replica Transfer Scheduling Problem.

2.1 System model

Consider a generic distributed system consisting of M servers. Let S; be the name and
s(S,) the total storage capacity of ith server, where 1<i<M . Also, let there be N
different data objects in the system. We denote the kth object by O, and its size by s(0;),

where 1<k <N,

The communication topology is a general graph, where servers communicate with each
other directly via point-to-point links (if any), or indirectly via other servers. The per-byte

link cost between servers §; and S, denoted by /,, is equal to the aggregated cost of the

corresponding “shortest” path. We assume that it remains fixed throughout system

operation. We also assume that /; >0 for i=j, [; =0 and [, =1.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

16

Every object O, has exactly one primary replica hosted on a distinguished primary server
for that object, denoted by P, . The primary replica of each object is chosen a priori and
remains fixed. Additional copies of O, may be hosted on other servers. Server §; is

called a replicator of O, iff it holds a copy thereof. Obviously, P, is a replicator of O, .

The replication state of the system is encoded in the form of an MxN matrix X, also

referred to as the replication matrix, where element X, is 1 iff §; is a replicator of O,

and 0 otherwise. Notably, a replica placement is valid iff it obeys the following two

constraints:

N
> Xus(0;)<s(S;),Vi (server storage constraint) (1)
k=l

Po=i=> X, =1Vk (primary replica constraint) (2)

The client request processing model, shown in Figure 1, is as follows. Any server §; may
receive a client request for reading any object O, . If S, is a replicator of O, the request is

processed locally and the reply is sent back to the client, without incurring any overhead

for the server network. Else, S, forwards the client request to the “nearest” (in terms of
communication cost) replicator of O, , denoted by N;¥, and returns the reply it receives
from N, back to the client. In this case the cost for the server network is proportional to
the data (size of request plus size of reply) exchanged between S, and N; and the
respective link cost lyx . For reasons of symmetry, if S, is a replicator of O, we let
N =i (this also allows us to simplify expressions that will be introduced in the sequel).

It must be stressed that N is a function of the replication matrix X ; the notation N, is

occasionally used in favor of readability.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

17

(3) reply . {3) reply

F'y

5 N
;’Ser'v'er 1 T 'Server 2\
f= \

CLIENT

_L"- (obj:h) /"l \ (obj:a.b)/

i1] request ‘or a i {2) request forwarded to
nearest serves

Figure 1. Client request processing model

Let r; denote the total number ofi bytes corresponding to the client traffic (read requests
and replies) at server S, for object O, (over some period of time). We may express the
communication cost incurred by server S, to satisfy the read requests for object O, as
=Xy yxry OF Lyxry (since X, =1 =lyr =0). Consequently, the cost for all servers

in order to satisfy all read requests for object O, in the system is:

M . M
RE =2 (=X) xry or K =)0 ,rp (3)
¢ ! L] Ll |

And the total cost due to all reads for all objects at all servers in the system is:

N N M N M
c¥=YR{ or CX=ZZ(1—X&)ZW{A},, or C"':ZZIW__{:}* 4)

k=1 k=1i=1 k=11=]

For convenience, we will occasionally refer to R, and C* as R, and C, respectively.

We note that our model focuses only on read traffic. It can be easily extended to deal with

object updates, but this does not change the essence of the problem we study in this thesis.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

18

2.2 The Replica Placement Problem (RPP and CRPP)

The aim of replica placement is to install copies of data objects on the servers in order to
minimize the total communication cost due to client requests. Given our system model,
the Replica Placement Problem (RPP) can be stated as follows: For a given client request
traffic profile, find a replication matrix X that minimizes the cost function (4) subject to

the server storage capacity constraint (1) and the primary replica constraint (2).

It is important to realize that this (classic) problem formulation, which is equivalent to the
File Allocation Problem (FAP), adopts a blank slate approach, whereby the current state
of the system is not taken into account. To address this limitation, the original problem
statement can be extended to (i) include the migration cost (or implementation cost) that
will be incurred to obtain the new replication placement based on the existing one, and (ii)
capture the fact that this cost must not nullify the relative gain in client access cost that

will be achieved by the new replica placement.
This can be expressed in the form of a benefit function:

onfd‘xmv = CXDM = CXmm' = ! XM‘XHN (S)

ol t ww < ” & =
where C*" —C*" s the client access cost difference between the existing replica

placement and the new one, and /*"*"" is the respective implementation cost.

Obviously, it is desired to find a replica placement X" that maximizes this function.

The problem can then be reformulated as follows: For a given client request traffic profile
and a current replication matrix X", find a new replication matrix X" that maximizes
the benefit function (5) subject to the server storage capacity constraint (1) and the

primary replica constraint (2). In the literature [14] this is referred to as the Continuous

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

Replica Placement Problem (CRPP) to underline the fact that the new replica placement is

computed in context of an already existing one.

To compute a solution to CRPP one must compute the implementation cost 7*"“*"" . An
upper bound can be determined by assuming the worst case, namely that every required
copy of O, on §, is created by fetching the object from the respective primary server P, .
Conversely, the lower (most likely infeasible) bound corresponds to the best possible case

where every required copy of O, on §; is created by using as a source server §; with

which §; communicates at the lowest possible cost, i.e., for which /;; </;,,V)": j'#i holds.

2.3 The Replica Transfer Scheduling Problem (RTSP)

While these upper and lower bounds can be of practical significance to the problem of
CRPP (e.g., they can be used as rough estimates in heuristics), it is also worthwhile to
investigate how to compute this implementation cost more accurately. Ideally, one would
like to determine the minimum cost for migrating from X°? to X", or (equivalently) to
determine the cost of the most efficient implementation schedule. This gives rise fo a
separate and non-trivial problem, which we refer to as the Replica Transfer Scheduling

Problem (RTSP).

To indicate the complexity of RTSP, we give a simple example, illustrated in Figure 2.

Suppose there are four servers S,, §,, Sy and S,, with storage capacity 2, 2, 2 and 4,
respectively, connected to S, via links of equal cost. Let there be four objects 0,, O,,
0, and O, of size 1. Let the current replication state be: S, has copies of O, and O,; S,
has copies of O, and O,; S, has copies of O, and O,; and S, has copies of all objects.

Let the desired replication state be: S, has copies of O, and O,; S, has copies of O,

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

20

and O,; S, has copies of 0, and O, ; and S, remains unchanged. In this case, the best
way to migrate from the old replica placement to the new one is as follows: (1) delete O,
on S, and O, on S;:(2) transfer O, from S, to S, and O, from S, to S,; (3) delete
O, and O, on §,; (4) transfer O, and O, from S, to S,. If instead one starts by
installing copies on S,, i.e., by performing steps (3) and (4) first, then the penalty for
installing the rest of the required copies on S, and S, (from S, via §,) will lead to a

bigger total cost. It turns out that the choice of the action(s) to be taken first is impossible

to make without (exhaustively) trying out the alternatives.

(3) delele b c

Ot > Qi b, ¢
¥New ac Now o, d

g

tu o
ap ¥

g

,

s / Y ,/""\\ e y LNy
171 celele o | Server A '| " (@) banstor o /5."-“,3 A i2). transfor b =fm c } (1) . delete ¢

\\._‘ _,-/ y /JF \-\ ,/
5 .

! Surverp) Ofda.bcoo
\ } New & b o d

Figure 2. Example of migrating between two different replica placements

To express RTSP in a more formal manner, we introduce some additional notations. Let

T, denote the transfer of O, from §; to S,. Let Dy denote the deletion of O, on §,.
Let H ={4,,4,.,...,4,} denote a schedule of actions, where an action is an object transfer

or deletion. Let X“*' denote the replication matrix after the uth action (assuming an

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

21

initial replication matrix X"'). A transfer action 4, = Ty is valid iff (i) X3 =1A X}, =0

and (i1) 5(0‘)4.2 X;-’(Or){ S(S;), i.e., a transfer may take place only if the source server
=

S, is a replicator of object O, , the destination server § is not a replicator of O;,and §;
has enough space to store the new replica (server capacity constraint). A delete action
A, =Dy isvalid iff (i) X} =1 and (ii) i # P, , i.e., a copy can be deleted only if server §,
is a replicator but not the primary server of O, (primary replica constraint). An action
results in a transition of the current replica placement X" — X**', as follows:
A, =Ty =>X%"'=1 and 4, =D, = X3 Schedule H={A,4,,.,4,} is valid with
respect to (X', X"*") iff it corresponds to a sequence of ¢ valid actions, which transform
X" into X'*'. Finally, let C"= denote the cost of the uth action in schedule H as follows:
A, =Ty =C" =1;50,) and A4,=Dj; =C" =0. Then the cost of a schedule

H ={A,, 4,..., 4,} that is valid with respect to (X", X""") is:
1y =Yt (6)

We can now formulate the Replica Transfer Scheduling Problem (RTSP) as follows: For

given replica placements X and X", find a schedule H ={A,,A,,..,A,} that is valid

with respect to (X = X', X" = X"") and incurs the lowest possible cost (6).

2.4 Discussion

RTSP is NP-complete. A proof is given in the Appendix. The “toughness” of RTSP is

primarily due to the storage constraint. A brief explanation is given below.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

22

Let us consider the general case where it is required to perform an object transfer towards
a server that has not enough capacity to store it. To free space, it becomes necessary to
delete one or more object copies from the server. Candidates for deletion are obviously the
copies which are not required in the new replica placement. Nevertheless, by deleting a
(superfluous) replica we eliminate a potential source, thereby possibly increasing the cost
of future transfers for that object. Another related problem is to decide whether to
proactively install superfluous copies for certain objects on certain servers that may act as
better data transfer sources for subsequent (future) transfers. Of course, the degree to

which this can be done is also limited by the storage capacity of the servers.

Given NP-completeness, RTSP cannot be (efficiently) tackled using brute force
algorithms. This has motivated the design of several heuristics, which are presented in the

next section.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

23

3 Heuristics

We present three different types of heuristics for tackling the Replica Transfer Scheduling
Problem. Heuristics of the first category are derived from algorithms that have been
proposed to solve the Continuous Replica Placement Problem. The second category
comprises algorithms that have been designed explicitly to solve the Replica Transfer
Scheduling Problem. Finally, heuristics of the third category have the form of operators

that can be applied to an existing schedule of replica transfers and deletions to enhance it.

3.1 CRPP-based heuristics

Several heuristics have been proposed to solve the Continuous Replica Placement

Problem [14]. These algorithms take as input a client read traffic pattern r;,Vi,k and a
replica placement X°“, and output a new replica placement X"® that is computed
according to the CRPP formulation. In our work, we focus on the two most representative

heuristics, and extend them to produce a valid schedule for migrating from X% to X",

Henceforth we will refer to these algorithms as CRPP-based heuristics.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

24

3.1.1 Greedy Global (GG)
The Greedy Global algorithm starts with an initial replica placement X = X°“ and works

in iterations to produce the final replica placement X" along with the corresponding

implementation schedule H. The pseudocode is given below:

X:= X% H:={};b=0;
while positive_flip_exists() do
repeat
X'=X;H :=H;
(i,k) == find_unmarked_positive_flip();
mark_temp_flip(i,k);
while 'has space for(ik) do
k' :=-1; b':= MIN_INTEGER;
fork"=1toN
if XTi][k"]=1 && Py !=i then
X'[i][k"] == 0; cost := 0;
b" := CRPP_benefit_function(X,X',cost);
if b">b'thenk':= k"; b':=b"; end
X[k =1;
end
end
if k'=-1 then break; // cannot free more space
X[i][k'] :=0;
H':= H'+ Dy
end
if has_space_for(i,k) then
J— Nig
H :=H'+ Tjik;
X'Ti][k] = 1; cost := s(Oy)ly;
b' ;== CRPP_benefit_function(X,X',cost),
if b'>bthenbi:=i;bk:=k;b:=b"; X, := X'; Hb := H'; end
end
until 'unmarked positive_flip_exists();
if b= 0 then break; // all options lead to a worse situation
X =X H ;== Hb; b :=0;
unmark_temp_flips();
end
return (X,H);

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

25

In each iteration, all possible element flips X; — 1, corresponding to transfers of O, to
S;, are considered, and the one that maximizes the benefit function (5) subject to
constraints (1) and (2) is chosen. Since the only difference between the “previous” and the
“next” replica placement is the replication of O, on S,, the implementation cost of this
transition is trivially equal to the cost for transferring the object from the current nearest

replicator: /.. s(O,). If the storage capacity of §; does not suffice to store O, , other

replicas Oy, on S; are deleted in ascending order of their value according to the benefit

function (5). The respective deletion actions are added to the schedule before the transfer
action. The algorithm terminates when the storage capacity in each server is reached or

any further replication creation results in a negative benefit.

3.1.2 Greedy Object Random (GOR)
The Greedy Object Random algorithm is similar to Greedy Global, but focuses on the

replication of the same object at a time. The pseudocode follows:

X= X", H:={};

while not_all _objects_considered() do
k := random_pick_object();
while positive flip_exists_for(k) do

// same as GG, but with k fixed

end

end

return (X,H);

The algorithm starts by picking an object O, at random, and performs the same routine as

GG for this object. More specifically, in each iteration a single replica allocation is
performed for the focus object, until no more beneficial replicas can be created for it.
Then the next object is chosen at random, and the same process is repeated. The algorithm

terminates when all objects have been considered.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

3.2 RTSP heuristics

Algorithms of this category are designed exclusively for the purpose of tackling the

Replica Transfer Scheduling Problem. They take as input two replica placements X -

and X™", and produce a valid schedule H for migrating from X to Xx™. All

heuristics follow a common processing template, given in pseudocode below:

X= X H:= {};
while unmarked_outstanding_replica_exists(X, X™") do
(i,k) = pick_unmarked_outstanding_replica(X, X"™");
mark_temp_{flip(i,k);
if has_space_for(i,k) then
mark_perm_flip(i.k);
i=Ng
H:=H+ Tjg;
X[illk] = 1;
end
end
unmark_temp_fTips();
while unmarked_outstanding_replica_exists(X, X"") do
(i,k) := pick_unmarked_outstanding_replica(X, X"");
mark_perm_flip(i,k);
while 'has_space_for(i,k) do
k' ;= pick_superflous_replica(i,X, X"");
H:=H+ D,
X[il[k'l:=0;
end
j =N
Hi=H+ Tj,‘k;
X[iJlk] = I;
end
while superfluous_replica_exists(X, X") do
(i,k) := pick_superflous_replica(X, X"");

H:=H + Dy
X[i][k] := 0;
end
return (H);

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

27

The algorithms start from an initial replica placement X = X°“ and an empty schedule H,

which is incrementally extended with transfer and deletion actions until the desired replica
placement X" is reached. In a first phase, outstanding replicas (that are required in

X ™" but are not available in X) which can be created on servers without violating the
storage constraint are iteratively picked. For each such replica creation, a corresponding
transfer action (using the currently nearest replicator as a source) is appended to the
schedule. In a second phase, the same process is repeated but this time it is necessary to
delete on the target servers one or more superfluous replicas (that are not required in X"
but available in X). Corresponding replica deletion actions are added to the schedule
before the respective transfer action. The algorithms terminate when there are no more
outstanding replicas. In a third (cosmetic) phase, deletion actions for any remaining

superfluous replicas are scheduled; however this does not affect the implementation cost.

The heuristics presented in the sequel all operate based to this scheme. They differ only in
the criteria used to pick the outstanding replicas to be installed (routine
pick unmarked outstanding replica in the pseudocode) and the superfluous replicas to be
removed (routine pick superfluous replica in the pseudocode). These criteria are chosen
so0 that the storage capacity (1) and primary replica constraints (2) are never violated,
hence the produced schedules are valid. Notably, no attempt is made to proactively create
additional superfluous replicas, which could potentially lead to a more efficient (in terms

of cost) schedule.

3.2.1 All Random (AR)
The outstanding replicas to be created and the superfluous replicas to be deleted, if
needed, are selected in random order, without any attempt to optimize the total

communication cost. This algorithm serves as a low baseline for the next ones.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

28

3.2.2 Least popular server first (LPSF)

Outstanding replicas are chosen with preference to the servers with the least popular
superfluous replicas (in terms of them being nearest sources for other outstanding replica
transfers). The motivation is that deleting these replicas, if needed, does not (directly)

increase the cost of future transfers. Each superfluous replica O, on S, is assigned a
popularity value P, equal to the number of outstanding replicas O, on all other servers
S; for which S, is the current nearest replicator: Py =[{S;:N; =i}|. In each iteration,
the server with the lowest aggregate popularity for all its superfluous replicas is chosen. If
there are several outstanding replicas that need to be created on this server, one is picked

randomly. If it is necessary to delete superfluous replicas on this server, these are chosen

in increasing order of their popularity.

3.2.3 Least valuable server first (LVSF)

QOutstanding replicas are chosen with preference to the servers with the least valuable
superfluous replicas (in terms of the relative cost benefit for using them as nearest sources
for outstanding replica transfers). The motivation is similar to LPSF but another metric is

used in order to pick servers. Each superfluous replica O, on S; is associated with a
benefit value B, equal to the difference cost for transferring outstanding replicas of O,

on all servers §; for which S; is the current nearest replicator N, via §; or the second-

nearest replicator (referred to as N2,):

By =5(0y) 3 Iina, =i, (7

VN =i

Similarly to LPSF, the server with the lowest aggregate benefit value of its superfluous

replicas is chosen in each iteration, and the superfluous replicas are deleted in increasing

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

29

order of their benefit. As in LPSF, if there are several outstanding replicas for the chosen

server, one is picked randomly.

3.2.4 Highest Opportunity Cost First (HOCF)

The next outstanding replica is chosen as to minimize the implementation opportunity
cost. The motivation is to prioritize outstanding replicas that will become expensive to
implement if the corresponding nearest transfer source is deleted. Each outstanding replica

O, on §; is associated with an opportunity cost ¥; which is equal to 0 if the replica held
by the nearest replicator N, is not superfluous (i.e. X3 =1), else is equal to the cost

difference between transferring O, on §, via the nearest and the second-nearest source:
Vie =5(Ox Mz, —liv,). In each iteration, the outstanding replica with the highest
opportunity cost is chosen. If it is necessary to delete one or more superfluous replicas on

the target server, these are chosen in increasing benefit values as in LVSF (7).

Outstanding replicas with zero opportunity cost are chosen last, in random order.

3.2.5 Greedy Object Lowest Cost First (GOLCF)
This heuristic adopts a slightly different approach. In a similar fashion as GOR, in a top-

level loop a new focus object O, is randomly picked at a time, which is then iteratively

replicated on all servers that require a copy.

In each iteration, the server S, with the lowest communication cost to its currently nearest

replicator N, is selected: [,y <l.y ,Vr. If it is necessary to delete one or more

I
superfluous replicas on S; these are chosen in increasing benefit values as in LVSF (7).
When there are no more outstanding replicas for O, , the next focus object is picked and

the same process is repeated. The algorithm terminates when all objects have been

considered.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

30

The pseudocode is given below:

X=X H = {};
while not_all_objects_considered() do
k :=random_pick object();
while unmarked_outstanding_replica_exists_for(k,X, X"*) do
i ;= pick_server_for(k,X, X"");
while 'has_space_for(i,k) do
k' :=pick_superflous_replica(i,X, X"");
H=H+ Dix;
X[i][k'] = 0;
end
J=Nig
H:=H+ Tjik;
X[i[k] = 1;
end
end
// delete remaining superfluous replicas, as in RTSP template
return (H);

The motivation of GOLCEF is that by focusing on the “full” replication of one object at a
time, it is possible to optimize the order of the corresponding transfers. However, the

random order in which objects are considered may lead to non-optimal overall results.

3.3 Schedule enhancement operators

Contrary to the previous CRPP and RTSP algorithms that produce a schedule from
scratch, this category of heuristics have the form of operators that are applied on a given
schedule to optimize it in terms of communication cost as per (7). They take as input
replica placements X and X" as well as a valid implementation schedule H, and

iteratively produce a new valid schedule that is equivalent to H and incurs a lower cost.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

31

3.3.1 Operator 1 (OP1): changing the order of transfer actions
The motivation of this heuristic is to pull existing transfer actions as early as possible
towards the start of the schedule, provided that the newly installed replicas can then serve

as more efficient sources for the subsequent transfers.

The concept is illustrated via a simple example, shown in Figure 3. Suppose there are

three servers S, S, and §;, connected as follows: 5, <> S, with link cost 6,
S, ©> Sy with link cost 1, and S, « 5, with link cost 7. Also, let the original schedule
shown in Figure 3a be {..., T},3, ..., T\,2, .../. In this case one may (try to) reduce the cost

of the schedule by performing the second transfer before the first one, i.e., change the

schedule to {..., T2, ..., Thu3s ...}, shown in Figure 3b. The cost for the initial and
modified schedule is 13s(0,) and 7s(0,), respectively. Notably, this change can be

applied only if it has no side-effects or these can be addressed in a satisfactory way; this is

discussed in more detail in the sequel.

MNew. d New, d

(@) ®)

Figure 3. Reordering transfers via OP1

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

32

The algorithm operates as follows. The input schedule A is scanned from the left to the

right until a transfer action 7, is encountered. Scanning is continued until another
transfer T, is found for the same object. It is then considered to move 7, before Ty, to

reduce the cost for all subsequent transfers for 0, found in the schedule.

Assume that A is of the form {..., Ty, G, Ty, G,}, where G, and G, are arbitrary

sub-schedules. If the reordering is made, the resulting schedule will be H' = {..., TN”":;- "

Tur» Gy, G}, assuming that TN“k is the uth action in the new schedule. The cost for

w N

« - Also, for each transfer action T, in {T,,} VUG, UG,

X J

implementing TN o is s(Oy)twm

the benefit of having a copy of 0, on §; is 0 if /;u >1 . else equal to the cost difference
between transferring O, on §,. via the currently used source S . and S;: s(Oy)/ o =) -

The algorithm considers modifying the schedule only if the total benefit outweighs the

implementation cost, in which case the transfers in G, and G, that are affected from this

change are updated to use ». as their source (noted as G, and G,). However, additional

validation checks and repairs are required to decide whether to consider such a

modification. These are discussed in the following.

Let D, ,, denote the sequence of deletions Dy, , Dy, ..., Dy, - In the general case, H is
of the form {..., Dy kn> » Tiges Gis Ditiams Thas G,} where D,y 4, and D;y ,, are

replica deletions on S, and S, to enable transfers T, and T, , respectively. The
suggested reordering results in schedule H'={..., D, ., TM“*" Dy it ks Tars G1» Gof
ki

which is further evaluated / processed according to the following special cases:

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

33

(i) No crucial deletions: If no deletions D, ,, precede Ty; and G, does not contain any

deletions, schedule H'={..., TN o Dy i1 4n»> Tairs Gi» Gy is valid and is adopted.

(ii) Void deletions: If G, is of the form {G,,, T, G/}, where /1<I<Im, then the
resulting schedule H'={..., D,y js T - - Diti tu> Tu> Gryps Tpurs Gra, Gy is invalid.
This is because D, ;,, contains a delete action for a replica O, that not (yet) exist on S;;

the corresponding transfer action 7, is (now) located further down the schedule.

Consequently, the reordering is not adopted.

(iii) Outdated transfer sources. If G, is of the form {G,,, Ty, G,,}, where l1<I<im,

w Kt

invalid. This is because action T,. assumes that S, is a replicator of O;, but a delete
action for this replica, as part of D, ,,, is (now) located further up the schedule.

Nevertheless, the validity of A’ can be re-established by substituting T;. with 7 . .

yielding schedule H' = {..., Dij i, TN""& » Diisns Tiars Gl',l’ TNv"‘,‘.* Gas G2t
oK i

assuming that 7. is the u'th action of the new schedule. Updating each such outdated

transfer may introduce an additional penalty equal to s(O,)/ i =1 ;) which must be
I"Nj

i

taken into account in order to decide whether this reordering actually leads to a cost cut.

(iv) Capacity constraint violation: If G, is of the form { G, |, D,, G,,}, where [#/1,..,Im,

then the resulting schedule H'={..., Dy T\ =, - Ditian> Tu» Gii» Dars Gyay Gy} i8
ik

invalid, if the deletion of O, on S, was indeed required, in addition to deletions D, 4, »

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

34

to free space for hosting a replica of O, via transfer action 7, in schedule H. In this

case, the validity of /' can be re-established by moving action D, before TN s yielding
ik

schedule H'= {..., D;;y s Dy> T Distns Taes Guos Gy, G,}. This also requires

checking for outdated transfer sources in schedule G, as in (iii).

Each time the current schedule is modified, the algorithm starts scanning the new schedule
from the beginning. The algorithm terminates when the end of the schedule is reached

without having performed any modification.

3.3.2 Operator 2 (OP2): creating superfluous intermediate replicas
The motivation of this heuristic is to introduce additional (superfluous) transfer actions as
early as possible towards the start of the schedule, provided that the newly installed

replicas can then serve as more efficient sources for the subsequent transfers.

The concept is illustrated via a simple example, shown in Figure 4. Suppose there are four

servers S, §,,5, and §,, connected as follows: §. < S, with link cost 3, 5, <> §, with
link cost 4, S5, «» 5. with link cost 4, 5, <> §, with link cost 1 and §, «» §, with link cost 1.
Also, let the original schedule shown in Figure 4abe {..., 7, ;,..,7},4 ,...}. In this case one

may (try to) reduce the cost of the schedule by introducing a new transfer before the one

that already exists and a respective delete action afterwards, i.e., change the schedule to

{or Toos Tyzs s Dypyseees Dy, ...}, shown in Figure 4b. The cost for the initial and

modified schedule is 85(0,) and 5s(0,), respectively.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

35

oy
MNaw: a

oa N ~ (2}
Mew o - |

F)

L -3 L2)' o | IL_—:-'-——-A 200y deeea
\v‘ 2 {3) imnsfor
T
On:
Mew, a New. a
(a) (b)

Figure 4. Introducing intermediate superfluous replicas via OP2

The algorithm operates in the spirit of OP1, as follows. The input schedule H is scanned

from the left to the right until a transfer action Ty, is encountered. It is then considered to
inject a new transfer action of O, on some server §; (immediately) before T, to reduce

the cost for all subsequent transfers for O, found in the schedule (including 7'y;).

Suppose H is of the form {..., Dyy > Tj4» GJ. Performing this modification would

result in schedule "= {..., T .. , Dy jns Tus» G }, assuming that 7 . is the uth

Ny ki N ki

action in the new schedule. The cost for implementing TN v is s(0y)lw"' . Also, for each
w N LA

transfer action T in {T;:} UG the benefit of having a copy of O, on S§; is 0 if

I > 1 else equal to the cost difference between transferring O, on S via the currently

used source S and S;: s(Oy), —1,) . The algorithm considers modifying the schedule

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

36

only if the total benefit outweighs the implementation cost, in which case the transfers in

G that are affected from this change are updated to use S, as their source (noted as G).

If S; has no space to host a replica ofO, the algorithm considers deleting other
superfluous local replicas O,. on §;. The penalty for each such deletion is equal to

s(Oy.)U;-w"...i. ~ly») for each transfer Tj.. inG, assuming it is the uth action in the new
I

schedule; to re-establish validity of A" the transfer 7., must be replaced with T,, ,...

Superfluous replicas on S; are considered in increasing penalty order, until enough free

space is made for a copy of O, or there are no more superfluous replicas left to consider.

A server S, is considered as a candidate for hosting a superfluous replica of O, only if

the respective benefit outweighs the implementation cost and the aggregated deletion
penalties, if any. If there are several candidate servers, the one that maximizes the cost
reduction is chosen (if several candidates lead to the same result, one is picked at random).
A corresponding transfer action is inserted in the schedule at the appropriate position,
preceded by the required replica deletions, if any. If no candidate is found, the schedule
remains unchanged. In any case, the algorithm proceeds with the next transfer action in
the schedule. It terminates when the end of the schedule is reached, at which point any

remaining superfluous replicas are deleted.

3.3.3 Combining OP1 and OP2

Operators OP1 and OP2 can be applied to the schedules produced by any of the previous
CRPP or RTSP heuristics. It is also possible to apply them in a pipelined fashion. Notably,
first applying OP2 and then OP1 is less effective than the reverse, because OP2 fills free
server space with superfluous intermediate replicas which in turn makes it typically hard

for OP1 to rearrange transfers without violating the capacity constraint (of course OP1

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

37

cannot interpret the semantics of the additional transfers introduced by OP2 to create the
superfluous intermediate replicas). For this reason the combination OP2+OP1 is not
shown nor discussed in the following evaluation section; in our experiments it has
consistently led to worse results than the combination OP1+OP2,

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

39

4 Evaluation

This section discusses experimental results that were produced via simulation. The first
series of experiments compares the RTSP heuristics of Section 3.2 combined with the
schedule enhancement operators of Section 3.3. The second series of experiments
investigates the improvement that can be achieved by applying the operators of Section
3.3 to the schedules produced by the CRPP heuristics of Section 3.1.

4.1 Setup

The server network was generated using BRITE [15], for 50 nodes each having a
connectivity of 1. Node connections followed the Barabasi-Albert model, which has been
used to describe power-law router graphs [2]. Links were assigned a fixed cost, uniformly
distributed between | and 10. Point-to-point communication costs were set equal to
aggregated link cost along the shortest (less costly) paths. A set of 1000 objects was used,
with sizes uniformly distributed between 1000 and 5000. The primary replicas were

randomly assigned to the server nodes. The resulting topology is shown in the Appendix.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

40

4.2 Comparison of RTSP heuristics

First, we compare the implementation cost of the schedules produced by RTSP heuristics
for the case where X°“ consists only of the primary replicas. We let X" vary in terms
of the number of replicas that need to be created for each object. The servers where the
additional replicas must be placed in X"®" are chosen randomly. The storage capacity of

each server is set equal to the sum of the replicas it must host in X ",

Figures 5 and 6 plot the cost of the schedules produced by AR, HOCF, GOLCF (solid
lines) and their combinations with OP1, OP2 and OP1+OP2 (dashed lines). It is important
to note that in this case no replica deletions take place. For this reason LPSF and LVSF
operate in a “degraded” manner that is equivalent to AR; they are omitted to avoid
cluttering the plots. For all algorithms, the cost (naturally) grows as the number of replicas
in X" increases, because more transfers are required to achieve this, GOLCF achieves
the best performance, closely followed by HOCF which employs a more “defensive”
replication policy. AR clearly produces the worse results, as expected, given its random

choice design (it is used as a reference for the performance of the other algorithms).

Operators OP1 and OP2 enhance the schedules of all algorithms, the best result being
produced when applying OP1+OP2. The effects of OP1 and OP2 differ depending on
which schedule they are applied to. Most notably, OP1 does not change the schedule of
GOLCEF, and any improvement is due to OP2. This is because GOLCF optimally creates
the needed replicas for each object when there are no deletions, leaving no room for OP1
to optimize object transfers. OP2 can further reduce the cost by injecting superfluous
replicas on servers that have available space, which becomes more notable with increasing
server capacity. Particularly noteworthy is the drastic improvement of AR+OP1+OP2
over AR, which performs close to the rest of the algorithms, even when combined with
OP1+0OP2.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

41

1.8E408 | —8——GOLCF ==X~ -+ GOLCF+OP1
| <« +@- - - GOLCF+0P2 —g——HOCF

1,6E+08

146408

126408

1.0E+08

8,007

Implementation Cost

8,0E+07

4,0E407 | - ; —
0 B 10 15 20 25

Replicas per Object Created

Figure 5. Schedule cost of RTSP heuristics and their combination with OP1 or OP2,
while increasing replication requirements starting from primary copies only

1.8E408 —&—GOLCF - +@- - - GOLCF4OP1+0P2
{8E:C8 | —&—HOCF < <@~ - - HOCF+OP1+0P2
-« <A+ - - AR4OP1+OP2
% 1,4E+08 ‘
o
Q
S 1,26+08
5
=4
a 10608
E
k]
E B.OE07 |
8.0E407 |
|
4 .0E+07
0 5 10 15 20 25

Replicas per Object Created

Figure 6. Schedule cost of RTSP heuristics and their combination with OP1+OP2,
while increasing replication requirements starting from primary copies only

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

42

In a second experiment, we compare the RTSP algorithms for the case where both replica
transfers and deletions must be performed to arrive at the desired replica placement. For
this purpose X is defined so that each server holds 50 randomly picked object copies,
and X" is constructed by quasi-randomly flipping the bits of X°“ so that each server
stores 50 replicas with a relative overlap of 75% with respect to X°“ . In other words,
12.5% of the replicas (on the average about 6 replicas per server) have to be deleted from
their old hosts and created on other servers. The performance of the algorithms is
measured as a function of the surplus in storage capacity with respect to the minimum

space required by each server in X° and X"".

Figures 7 and 8 plot the costs for AR, HOCF, GOLCF, LPSF and LVSF, and their
combination with operator OP1 and OP2, respectively. Figure 9 plots AR, HOCF, GOLF,
LPSF and LVSF, and their combination with OP1+OP2. For all algorithms the cost drops
as storage surplus increases. This is because the required replicas can be created without
having to delete as many superfluous replicas, which in turn can serve as better sources
for subsequent transfers, reducing the overall implementation cost. Costs stabilize once
storage surplus reaches a certain level that is sufficient for optimizing the required
transfers. This time HOCEF slightly outperforms GOLCEF, due to its more refined policy for
deleting superfluous replicas. LVSF and LPSF produce rather poor schedules; the latter is
even worse than AR. This is because they attempt to optimize the deletion order without
making any effort to optimize replica creations (the first transfer that fits is chosen
randomly). LVSF performs better than LPSF, indicating that it employs a better criterion

for selecting victim superfluous replicas (the same as HOCF).

Again, all schedules can be improved by applying OP1+OP2, in particular those of AR,
LPSF and LVSF; and less for HOCF and GOLCF. OP1 and OP2 play a complementary
role, with the impact of OP2 becoming more notable relative to that of OP1 for increasing

surplus capacity, since there is more space that can be used to create intermediate replicas.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

i GOLCF ——&——HOCF
—a— AR e LPSF
7.0E+07 | -~ @---GOLCF+0P1 - --@---HOCF+OP1
- -~ A---AR+OP1 < ~gn = - LPSF+OP1
. X, - -+ X - - LVSF+OP1 ——LVSF
=]
O 6,0E+07
0 -
S HET
£ 556407 Sttt L2 LT L1 T TR
@
§ soe07 |
a
£ .
4 5E+07
4,0E+07 +— -

Surplus Storage Capacity (%)

Figure 7. Schedule cost for RTSP heuristics and their combination with OP1,
while increasing storage surplus for replica placements with 75% overlap

—8——GOLCF ——&——HOCF
4 g — 4 LPSF
s ---@- - - GOLCF+0P2
e | - = -4- - - LPSF+0P2
~ o - -0 -+ HOCF+OP2
O 6,0E+07
=
o
T 556407
=
o
§ 5,0E+07
o
E
456407
4,0E+07

0 25 50 75 100
Surplus Storage Capacity (%)

Figure 8. Schedule cost for RTSP heuristics and their combination with OP2,
while increasing storage surplus for replica placements with 75% overlap

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

—8—GOLCF ~—a——HOCF
A——AR ——t——LPSF
7 0E+07 — > LVSF .- -@- - - GOLCF+OP1+0P2
' ---@--~HOCF+OP1+OP2 - - -4~ - LPSF +OP1+0P2
e - -%- - - LVSF+OP1+OP2 - --A- - - AR+OP1+OP2
6,5E+07
ki
o 6,0e+07
c
o
B 556407
€
£
@ 50E+07
a
E
4 5E+07
4,0E+07 |- e e R S s ,
0 25 50 75 100

Surplus Storage Capacity (%)

Figure 9. Schedule cost for RTSP heuristics and their combination with OP1+0P2,
while increasing storage surplus for replica placements with 75% overlap

In a third experiment, we investigate the performance of our heuristics for the case where
the storage capacity of each server amounts to 25% of the sum of all objects sizes, while
varying the overlap between X°“ and X". Given their poor performance in the

previous experiment, LPSF and LVSF are not included. AR is still used as a reference.

Figure 10 plots the costs of the schedules produced by AR, HOCF and GOLCF also in
combination with OP1 or OP2, and Figure 11 shows the respective costs also in
combination with OP1+OP2. As expected, for all algorithms the cost drops sharply as
overlap increases and the number of new replicas to be created decreases. HOCF performs
marginally better than GOLCF, because it places more emphasis in the order in which
superfluous replicas are deleted. As in the previous experiment, the enhancement achieved

via OP1 and OP2 is limited, expect for AR.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

45

————AR+OP1 = = A = -AR+0P2
- = ¥- - GOLCF+OP1 - - & - ‘GOLCF+OP2
Bmw-, ---!—--HOCF*OF1 --O--HOCF*OP?
' —&—AR —&—GOLCF
—&—HOCF
7,0E+07
O B,0E+07 |
c I
S
§ 5,0E+07
B I
o 4.0E+07
E |
3,0E+07
2,0E+07 - - —
0 10 20 30 40 50 60 70 80
Placement Overlap (%)

Figure 10. Schedule cost for RTSP heuristics and their combination with OP1 or OP2,
while increasing overlap between X°¢ and X" at 25% surplus capacity

—8—GOLCF ——HOCF
8,0E+07 —— AR - - A - -AR+OP1+0P2
- - £ - -GOLCF+OP1+0P2 - - O - -HOCF+OP1+OP2
7,0E+07
3
O §,0E+07
3
2 5,0E+07
Q
E 4,0E+07
= 4 E
E
3,0E+07
2,0E+07 |
0 10 20 30 40 50 60 70 80

Placement Overlap (%)

Figure 11. Schedule cost for RTSP heuristics and their combination with OP1+OP2,
while increasing overlap between X°? and X" at 25% surplus capacity

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

46

In summary, among the RTSP heuristics, HOCF and GOLCF achieve the best
performance. HOCF has a slight edge over GOLCF when there are replica deletions. The

schedules produced by all heuristics can be enhanced when combined with OP1+OP2.

4.3 Comparison of RTSP vs CRPP heuristics

Having two clear (and mostly equivalent) winners between the RTSP heuristics, we
choose HOCF and GOLCF for a comparison with CRPP heuristics GG and GOR. The

operators OP1 and OP2 are also evaluated in conjunction with these algorithms.

Recall that CRPP heuristics take as input a client traffic pattern r,,Vi,k to drive the

computation of X" as well as the schedule A for implementing it based on X°? . In our
experiments we model client traffic as follows: (i) every request is for reading the entire
object; (ii) requests are uniformly distributed on the servers; (iii) object popularity, i.e.,
client requests per object, follows a Zipf distribution with parameter 0.8 (this is indicative
of several large-scale information systems) and a maximum popularity value of 1000

which corresponds to an average of 5 read cost units for each object per server.

RTSP algorithms take as input X°¢ and X", the latter being this time produced via a
CRPP heuristic, and produce a different schedule. In addition, operators OP1 and OP2 are
applied to all schedules produced. The comparison is made in terms of the cost reduction

achieved relative to the cost of the original schedules of GG and GOR, respectively.

The first experiment investigates the case where X°“ consists only of the primary
replicas and the storage capacity of each server ranges from 3.5% to 75% of the sum of all
object sizes. Figures 12 and 13 depict the results with respect to GG, and Figures 14 and
15 depict the results for GOR.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

47

In terms of RTSP vs CRPP heuristics, GOLCF produces more efficient schedules
compared to the ones generated by both GG and GOR. Note that the performance of
GOLCF shows opposite trends relative to that of GG and GOR, i.e., increasing and
decreasing gains, respectively, as server storage capacity grows. The impressive cost
difference for GOR when server capacity is limited (less than 25%) is because GOR fully
replicates one object at a time, so that replicas created in previous iterations will most
likely be deleted in subsequent ones; resulting in wasted transfers. HOCF lags behind
GOLCEF, due to its more “defensive” replication policy which cannot bear fruits as long as

few or no replicas need to be deleted to produce the new replica placement.

Combined with OP1+OP2, GOLCF continues to produce good results but with a smaller
difference compared to GG, while being slightly outperformed by HOLCF+OP1+OP2.
GOR+OP1+0P2 significantly lags behind GOLCF+OP1+0P2 for relatively small server
capacities. This is because OP1 and OP2 cannot possibly “repair” the wasted transfers
problem since they simply optimize existing transfers. Notably, OP1 significantly
enhances the schedules of GG whereas OP2 has a small impact. This can be explained as
follows. Since GG creates new replicas in order to reduce the client access cost, the first
replica of for a given object will most likely be installed at a server that is far away from
the existing sources (e.g., primary replica). Subsequent replicas for the same object, if
deemed necessary, are likely to be placed on servers that lie in between. Clearly, instead
of creating the remote replica first, a better schedule is to first create replicas on servers
that are near the existing sources, and use them as more proximate sources for the next
transfers on servers further away. This is what OP! attempts to do, and is more likely to
succeed as server storage capacity increases (storage constraints are being relaxed). OP2
has little impact because GG will aggressively fill servers with replicas, leaving little
space for introducing superfluous replicas throughout the schedule. The same observations

hold for GOR, which uses the same replica placement criteria as GG.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

50 ——i—GG+OP1 - -A-- - GG+OP2

45 - +X---GOLCF+OP1 ---@- - - GOLCF+OP2

40 -~ «4---HOCF+OP1 ---@---HOCF+OP2
—o——GOLCF —a—HOCF

Cost Reduction (%
(3]
o

S50 10 20 30 40 50 60 70 80
Surplus Storage Capacity (%)

Figure 12. Schedule cost reduction wrt GG for RTSP heuristics and OP1 or OP2,
when increasing storage capacity while starting from primary replicas only

-3+ - - GOLCF+OP1+0P2
40 ——&—HOCF
- --@- - - HOCF+OP1+0P2

Cos! Reducton (%)
[\
o

50 10 20 30 40 50 60 70 80
Surplus Storage Capacity (%)

Figure 13. Schedule cost reduction wrt GG for RTSP heuristics and OP1+OP2,
when increasing storage capacity while starting from primary replicas only

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

—&— GOR+OP1 - - -A- - - GOR+OP2
50 -~ =X+ - - GOLCF+OP1 ---@- - - GOLCF+0P2
| - 4~ - - HOCF+OP1 - --@- - - HOCF+OP2
45 | - GOLCF ——g——HOCF

40
35 |
30
25 |
20 |

Cost Reduction (% |

10 |

o

80
Surplus Storage Capacity (%)

Figure 14. Schedule cost reduction wrt GOR for RTSP heuristics and OP1 or OP2,
when increasing storage capacity while starting from primary replicas only

--+A---GOR+OP1+0P2 — = GOLCF
- = === - - GOLCF+OP1+0P2 —&——HOCF
»«=@- - - HOCF+OP1+0P2

50
45
40
35
30
25
20
15
10

Cost Reduction (%]

0 10 20 30 40 50 60 70 80
Surplus Storage Capacity (%)

Figure 15, Schedule cost reduction wrt GOR for RTSP heuristics and OP1+OP2,
when increasing storage capacity while starting from primary replicas only

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

50

In the next experiment, the storage capacity of each server is kept fixed at 25% of the sum
of all object sizes, and the initial replica placement X°¢ features only the primary
replicas. The algorithms are compared for different maximum popularity values of an
object, taking values 100, 500, 1000 and 10000. Larger maximum popularity values result
in a higher number of total client requests as well as in bigger differences in the number of
replicas that will be created for each object. Notably, the total number of client requests
also affects the relative weight of the read cost function compared to the implementation
cost, which affects the results of RTSP algorithms. The cost reduction of the schedules
produced using the various heuristics are shown in Figures 16 and 17 for GG, and Figures

18 and 19 for GOR, respectively.

It can be seen that GOLCF performs better relative to GG and GOR, increasingly so for
larger object popularity values. This is because as the read volume increases more replicas
will be created, hence the margin for improvement increases for GOLCF. The
performance gap grows slowly for GG and significantly faster for GOR. This is due to the
fact that as object popularity increases, the aggressive “per object” replication strategy of
GOR becomes increasingly non-optimal because the probability of the most popular
objects not being considered first (GOR picks objects randomly) increases. This in turn
considerably increases the number of “wasted” transfers, as discussed previously. HOCF
exhibits a similar behavior, but for small maximum object popularity values produces

schedules that are more costly than the ones produced by GG and GOR.

Again, GOLCF+OP1+0OP2 steadily outperforms GG+OP1+OP2 and GOR+OP1+OP2.
The performance difference remains constant between GOLCF and GG but increases
between GOLCF and GOR. This is because, as already discussed, neither OP1 nor OP2
can “repair” the wasted transfers introduced by GOR. HOCF+OP1+0P2 performs slightly
better than GOLCF+OP1+OP2, with the tendency to outperform it as the maximum

popularity increases.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

e GG+OP1 - - & - -GG+OP2
45 -« X - GOLCF+OP1 - - & - -GOLCF+OP2
40 -+ 4 - HOCF+OP1 -+ O - ‘HOCF+OP2
—5—GOLCF —8——HOCF

35
25

15
10

Cost Reduction (%)

Figure 16. Schedule cost reduction wrt GG for RTSP heuristics and OP1 or OP2,
when increasing popularity at 25% server capacity and starting from primary replicas

50
45 ---A---GG+OP1+0P2 —&5—GOLCF
.- -B- - - GOLCF+OP1+0P2 —&— HOCF
40 +-+@- - - HOCF+OP1+0P2
5 35
l‘g‘ 30
w25
3
E 20 .-"D
s 15 a8
o B::;;:;;:::-::: =g=...--.......:--G"""' .
© 10 B cercanmnnnace. Avrenrenmeannnnns =
= —E——'—/;/a
c =
0 o _/
18— 500 1000 10000

Max Object Popularity

Figure 17. Schedule cost reduction wrt GG for RTSP heuristics and OP1 or OP2,
when increasing popularity at 25% server capacity and starting from primary replicas

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

51

—2&— GOR+0P1 - -A- - - GOR+OP2

50 -« +X- - - GOLCF+OP1 - --@- - - GOLCF+0P2

45 -« «4- - - HOCF+OP1 ++@- - - HOCF+OP2
—8—GOLCF ——HOCF

Cos! Reduction (%)

Max Object Popularity

Figure 18. Schedule cost reduction wrt GOR for RTSP heuristics and OP1 or OP2,
when increasing popularity at 25% server capacity and starting from primary replicas

- - - A- - - GOR+0OP1+0P2

50 —8—GOLCF
- -+@- - - GOLCF+OP1+0P2

45 —o——HOCF]
<+ @«++HOCF+OP1+0OP2 23"

40
35
30
25

15
10

Cost Reduclon (%)
S

o o

Max Object Popularity

Figure 19. Schedule cost reduction wrt GOR for RTSP heuristics and OP1 or OP2,
when increasing popularity at 25% server capacity and starting from primary replicas

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

52

53

The last experiment measures the cost reduction of the schedules produced by the
heuristics as a function of the available copies for each object in the initial replica
placement X°“. Notably, this indirectly controls the number of replicas that will be
created and deleted in the new replica placement. More specifically, the more replicas are
initially available, the greater the number of replicas corresponding to less popular objects
which will be deleted, and (at the same time) the smaller the number of new replicas that
will be created to lower the read cost for the most popular objects. The storage capacity of
each server is 25% of the sum of all object sizes, and the maximum object popularity is
1000. The results are shown in Figures 20 and 21 for GG, and Figures 22 and 23 for
GOR, respectively.

For replica placements derived from GG, GOLCF generates marginally better schedules
than GG while HOCF does slightly worse than GG. This small difference confirms that
GG produces relatively good schedules when server storage capacity is relatively limited.
Notably, the tendency is for HOCF to reach and outperform GG for large numbers of
initial sources, indicating that its replica deletion criterion works well. The reverse is true
for GOLCEF, indicating that its “per object” replication policy becomes less efficient when
there are already several initial replicas in the system. Both GOLCF and HOCF
significantly outperform GOR in all cases, with a tendency in favor of HOCF as the

number of initial replicas increases.

Finally, the benefit of applying OP1 and OP2 is notable for the case of GOR and remains
constant. On the contrary, this has a small impact for the case of GG, which diminishes for
large numbers of initial replicas. This is due to the fact that an increasing number of
available replicas are kept in place and that new replicas can be created more efficiently
using existing ones as sources. Hence, OP1 and OP2 are given little room for further

improvement. Nevertheless, even in the case where each object has initially 10 replicas,

i.e., is replicated on 1/5" of the servers, OP1 and OP2 still result in better schedules.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

54

—&——HOCF — o GOLCF - --X-- - GOLCF+OP1
- ++B@- - - GOLCF+OP2 - - -4- - - HOCF+OP1 - - -@- - - HOCF +OP2

& GG+OP1 A- - - GG+OP2
— 25
€ 20
S
T
3 15
2 a
T 10
L
o
O 5
0
-5

Initial Replicas per Object

Figure 20. Schedule cost reduction wrt GG for RTSP heuristics and OP1 or OP2,
when increasing initially available replicas at 25% server capacity and max. pop. 1000

35
- == - -GG+OP1+0P2 ——HOCF
30
- - O - -HOCF+OP1+0P2 —B8—GOLCF
zl'-'
7 < - - O - -GOLCF+OP1+0P2
.r_é 20
E 15
D €]
m - -
% 10 Ry, 8
Q -
Q x _g 1z

w
m l:b

Initial Replicas per Object

Figure 21. Schedule cost reduction wrt GG for RTSP heuristics and OP1+OP2,
when increasing initially available replicas at 25% server capacity and max. pop. 1000

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

55

= GOLCF ——&—HOCF
- - -X- - - GOLCF+OP1 + - =4~ - - HOCF+OP1
3 —— A—GOR+OP1 < --A---GOR+0P2
‘ ---@- - - GOLCF+0P2 - --@- - - HOCF+OP2
30 I G
o *a

Cos: Reduct’on (%)
o

Initial Replicas per Object

Figure 22. Schedule cost reduction wrt GOR for RTSP heuristics and OP1 or OP2,
when increasing initially available replicas at 25% server capacity and max. pop. 1000

- - -A- - - GOR+0OP1+0P2 —=— GOLCF
35 —o—HOCF - - -0- - - HOCF+0P1+0P2
: --@- - - GOLCF+0P1+0P2
30 8
2 25
5
1—.5 20
=
215
2 2
S8 10 = »
o Ar - resrscinnsacos %
0
1 2 5 10
Initial Replicas per Object

Figure 23. Schedule cost reduction wrt GOR for RTSP heuristics and OP1+0OP2,
when increasing initially available replicas at 25% server capacity and max. pop. 1000

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

56

4.4 Summary

From the RTSP heuristics presented, HOCF and GOLCF produce the most efficient
schedules for migrating between two replica placements. In most cases, GOLCF also
produces a better schedule for implementing replica placements computed via RTSP
heuristics GG and GOR.

The application of operators OP1 and OP2 on any schedule, whether this was produced
via RTSP or CRPP algorithms, leads to notable improvements. In fact, schedules of AR
can be enhanced to a considerable degree, almost to the level of schedules that are
produced by far more sophisticated algorithms. In the majority of our experiments, OP1

turned out to be more effective than OP2.

Overall, GOLCF+0OP1+0P2 produced the best results with satisfactory consistency.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

5 Related work

The Replica Placement Problem has been researched quite extensively, and a variety of
problems definitions have been proposed in this context. In [7] client-replica distance is
considered as the optimization target, whereas the primary goal of [23] is load balancing.
Read access cost is the focus in [8, 12], while [13] considers client traffic that includes
both read and update requests. Other issues taken into account in conjunction with RPP
formulations are server storage capacity [8, 13], processing capacity [18] and bandwidth
[7] to name a few. In this dissertation we have adopted a model similar to [8]. Although
our RTSP definition can be extended to include additional parameters, in this work we

have focused in what we believe to be the essence of the problem.

The literature on scheduling related problem is also very rich. It spans many disciplines
such as parallel computing in the context of scheduling tasks to multi-processors [5, 11] or
operations research in the context of vehicle sequencing/routing [4, 16]. Solutions to these
problems include deterministic algorithms, e.g., branch and bound [11], as well as
randomized algorithms, e.g., genetic algorithms [16]. Unfortunately, the existing
scheduling heuristics cannot be applied to the Replica Transfer Scheduling Problem
without extensive modifications. This is because RTSP, though similar in some aspects,
differs significantly from the problems that have been already investigated. Consider for

example the classic multi-processor scheduling problem. Heuristics take as input a task

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

58

graph and output task mappings to processors as to minimize the total execution time.
This is in contrast to RTSP where there is no predetermined graph since (among other
things) intermediate sources might be created and deleted. Also, our formulation of RTSP
focuses on minimizing the communication cost dues to object transfers without taking into

account the notion of time.

We are unaware of any previous research efforts that try to minimize the cost for
migrating between two different replica placements. The closest work can be found in
[14], which investigates CRPP heuristics (including GG) in comparison to conventional
RPP heuristics. On the contrary, in this thesis we have addressed RTSP as a separate and

self-standing optimization problem.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

6 Conclusions and outlook

In this thesis we have formulated the Replica Transfer Scheduling Problem (RTSP) and
have given several heuristics that can be used to produce solutions. We have evaluated
their performance via simulations, also with reference to indicative greedy Continuous
Replica Placement (CRPP) algorithms. Our results show that the proposed RTSP
algorithms can significantly improve the schedules of CRPP algorithms. To the best of our

knowledge, this is the first time RTSP is investigated as separate problem.

Although our thesis has provided first insight into RTSP, there is still more work that can
be done to advance our knowledge in this area. The presented heuristics can be studied in
more detail, through a wider range of scenarios to get a better feeling of their behavior.
For example, OP2 could be investigated on different topologies where the proactive
creation of superfluous replicas is expected to have more impact. In addition, new RTSP
heuristics can be proposed, by varying the criteria used to pick outstanding and
superfluous replicas. It may also be worthwhile researching variants of the current
problem, for instance to study RTSP for the case where the primary replicas can change
location but still requiring that in the new placement there is at least one replica for each
object (this problem may not even have a solution due to the server storage constraint).
Last but not least, it would be interesting to adjust our RTSP formulation in order to take

into account the actual time it takes for a schedule to complete, with the goal to minimize

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

this value. In a sense, this can be thought of as the “dual” of the problem we have studied
in this thesis. While this is strongly related to known problems in the area of multi-
processor scheduling, we believe that a different approach may be needed to tackle this

problem.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

61

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(%]

P. Apers, “Data allocation in distributed database systems,” ACM Transactions on
Database Systems, vol. 13, no. 3, pp. 263-304, 1988.

A.L. Barabasi and R. Albert, “Emergence of Scaling in Random Networks”, in
Science, Vol 286, pp. 509-512, Oct. 1999.

C. Bisdikian and B. Patel, “Cost-based program allocation for distributed
multimedia-on-demand systems,” IEEE Multimedia, vol. 3, no. 3, pp. 62-72, 1996.

N. Christofides, “Vehicle Routing,” in The Traveling Salesman Problem, Lawler,
Lenstra, Rinooy Kan and Shmoys, eds., John Wiley, pp. 431-448, 1985.

D. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job scheduling - a status
report,” in Proc. /1" Int. Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP 2005), Cambridge, MA, USA, 2005.

I. Foster, “The Grid: Blueprint for a New Computing Infrastructure,” Morgan
Kaufmann, 2" Ed., 2004.

S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror placement
on the Internet,” in Proc. JEEE INFOCOM, April 2001, pp. 31-40.

J. Kangasharju, J. Roberts, and K. Ross, “Object replication strategies in content
distribution networks,” Computer Communications, vol. 25, no. 4, pp. 367-383,
2002.

M. Karlsson and C. Karamanolis, “Choosing replica Placement Heuristics for Wide-
Area Systems,” in Proc. /JCDCS 04, pp. 350-359.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

(10]

(1]

[12]

(13]

[14]

(15]

[16]

(17]

[18]

[19]

[20]

[21]

62

M. Karlsson, C. Karamanolis, and M. Mahalingam, “A framework for evaluating
replica placement algorithms,” HP Labs, Technical Report HPL-2002-219, July
2002.

Yu-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed
task graphs to multiprocessors,” in ACM Computing. Surveys, Vol. 31(4), pp. 406-
471, 1999,

N. Laoutaris, G. Smaragdakis, A. Bestavros and I. Stavrakakis, “Mistreatrment in
Distributed Caching Groups: Causes and Implications,” in Proc. JEEE INFOCOM
2006, Barcelona, Spain.

T. Loukopoulos and 1. Ahmad, “Static and adaptive distributed data replication
using genetic algorithms,” inJ. Parallel and Distr. Comp. (JPDC), Vol. 64(11), pp.
1270-1285, 2004.

T. Loukopoulos, P. Lampsas, and I. Ahmad, “Continuous replica placement
schemes in distributed systems”, in Proc. 19" ACM International Conference on
Supercomputing (ACM ICS), Boston, MA, June 2005.

A. Medina, A. Lakhina, 1. Matta, and J. Byers, BRITE: Boston University
Representative Internet Topology Generator, http://cs-pub.bu.edu/brite/index.htm,
March 2001

J. Potvin and S. Bengio, “The vehicle routing problem with time windows part II:
genetic search,” in Journal on Conputing, Vol. 8(2), pp. 165-172, 1996.

L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web server
replicas,” in Proc. JEEE INFOCOM, April 2001, pp. 1587-1596.

M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal, “A dynamic object
replication and migration protocol for an Internet hosting service,” in Proc.
ICDCS 99, May 1999, pp. 101-113.

M. Rabinovich and O. Spatschek, “Web Caching and Replication,” Addison-
Wesley, 2002.

P. Radoslav, R. Govindan, and D. Estrin, “Topology informed Internet replica
placement,” Computer Communications, vol. 25, no. 4, pp. 384-392, 2002.

Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam, “Taming aggressive

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

[22]

[23]

[24]

(25]

[26]

[27]

(28]

(29]

[30]

[31]

(32]

63

replication in the Pangaea wide-area file system,” in Proc. Fifth Symposium on
Operating System Design and Implementation (OSDI’02), pp. 15-30, 2002.

X. Tang and J. Xu, “On Replica Placement for QoS-Aware Content Distribution,”
in Proc. IEEE INFOCOM, March 2004, Hong Kong.

L. Zhuo, C. Wang, and F. Lau, “Load balancing in distributed web server systems
with partial document replication,” in Proc. /CPP 02, August 2002, pp. 305-312.

J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal and F. Smith,
“Andrew: A Distributed Personal Computing Environment,” Communications of the
ACM, Vol. 29, No.3, Mar. 1986, pp. 184-201.

S. Williams, M. Abrams, C. Standridge, G. Abdulla and E. Fox, “Removal Policies
in Network Caches for World-Wide Web Documents,” in Proc. of the
SIGCOMM'96 Conf., 1996.

G. Banga, F. Douglis and M. Rabinovich, “Optimistic deltas for WWW latency
reduction,” in Proc. of the USENIX Technical Conf., pp. 289-303, Anaheim, 1997.

J. Challenger, A. Iyengar and P. Dantzig, “A Scalable System for Consistently
Caching Dynamic Web Data,” in Proc. of the IEEE INFOCOM'99 Conf., March
1999,

M. Baentsch, L. Baum, G. Molter, S. Rothkugel and P. Sturm, “Enhancing the web
infrastructure - from caching to replication,” /EEE Internet Computing, pp. 18-27,
Mar-Apr. 1997.

Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar, “A novel server selection
technique for improving the response time of a replicated service,” in Proc. of the
IEEE INFOCOM '98 Conf., March 1998.

CISCO, “Distributed Director,” White paper at: http://www.cisco.com/warp/public/
cc/cisco/mkt/scale/distr/tech/dd_wp.htm.

S. Martello and P. Toth, “Knapsack Problems: Algorithms and Computer
Implementations,” John Wiley & Sons-Interscience Series in Discrete Mathematics
and Optimization, 1990.

P. Francis, S. Jamin, V. Paxson, L. Zhang, D. Gryniewicz, and Y. Jin, “An
Architecture for a Global Internet Host Distance Estimation Service,” in Proc. of the
IEEE INFOCOM '99 Conf., March 1999.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

V. Cardellini, M. Colajanni and P. Yu, “Redirection Algorithms for Load Sharing in
Distributed Web-server Systems,” in Proc. of the [19th IEEE Int. Conf on
Distributed Computing Systems ICDCS'99, Austin, Texas, May 1999.

A. Heddaya and S. Mirdad, “WebWave: Globally Load Balanced Fully Distributed
Caching of Hot Published Documents,” in Proc. of the 17th Int. Conf. On
Distributed Computing Systems (ICDCS'97), May 1997.

C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson and D. Culler, “Using
smart clients to build scalable services,” in Proc. of the 1997 USENIX Annual
Technical Conference, Jan. 6-10, 1997, Anaheim, CA, pp. 105-117, USENIX,
January 1997.

B. Li, M. Golin, G. Italiano and X. Deng, “On the optimal placement of web proxies
in the Internet,” in Proc. of the IEEE INFOCOM'00 Conf., March 2000.

T.D.C. Little and D. Venkatesh, “Popularity-Based Assignment of Movies to
Storage Devices in a Video-on-Demand System,” ACM/Springer Multimedia
Systems, 1994.

S. Bhattacharjee, M. Ammar, E. Zegura, V. Shah and Z. Fei, “Application-layer
anycasting,” in Proc. of the INFOCOM'97 Conf., 1997.

A. Tyengar and J. Challenger, “Improving Web Server Performance by Caching
Dynamic Data,” in Proc. of the USENIX Symp. on Internet Technologies and
Systems, pp. 49-60. Monterey, CA, Dec., 1997.

M. Crovella and R. Carter, “Dynamic Server Selection in the Internet,” in Proc. of
the 3 IEEE Workshop on the Architecture and Implementation of High
Performance Communication Subsystems (HPCS’95), June 1995.

S. Jamin, C. Jin, T. Kurc, D. Raz and Y. Shavitt, “Constrained Mirror Placement on
the Internet,” in Proc. of the IEEE INFOCOM 2001 Conf., Alaska, USA.

R. Casey, “Allocation of Copies of a File in an Information Network, " in Proc. of
the Spring Joint Computer Conf., IFIPS, 1972, pp. 617-625.

M. Beck and T. Moore, “The Internet-2 distributed storage infrastructure project:
An architecture for internet content channels,” in Proc. of the 3rd Int. WWW
Caching Workshop, Manchester, UK, June 1998.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

65

L. Qiu, V. Padmanabhan and G. Voelker, “On the Placement of Web Server
Replicas,” in Proc. of the IEEE INFOCOM’0l Conf., Anchorage, AK, USA April
2001.

V. Padmanabhan and J. Mogul, “Using Predictive Prefetching to Improve World
Wide Web Latency,” in Proc. of the ACM SIGCOMM’96 Conf., pp. 22-36, July
1996.

C. Bisdikian and B. Patel, “Cost-Based Program Allocation For Distributed
Multimedia-on-demand Systems,” JEEE ‘Multimedia, 3(3), pp. 62-72, 1996.

P. Barford, A. Bestavros, A. Bradley and M. Crovella, “Changes in Web client
access patterns: characteristics and caching implications,” WWW Journal, 2(1): 3-
16, 1999.

L.W. Dowdy and D.V. Foster, “Comparative Models of the File Assignment
problem,” ACM Computing Surveys, Vol.14(2), June 1982.

D. Andresen, T. Yang, V. Hohmedahl and O. Ibarra, “SWEB: Toward a scalable
World Wide Web server on multicomputers,” in Proc. of the 10th Int. Symp. on
Parallel Processing, Honolulu, pp. 850-856, April 1996.

V. Cate, “Alex - a global file system,” in Proc. of the 1992 USENIX File System
Workshop, pp. 1-12, May 1992.

P.M.G. Apers, “Data Allocation in Distributed Database Systems,” ACM Trans. On
Database Systems, 13(3), Sep. 1988, pp. 263-304.

S. Mahmoud and J. Riordon, “Optimal allocation of resources in distributed
information networks,” ACM Trans. Database Systems, 1(1), March 1976, pp. 66-
78.

B. Narendran, S. Rangarajan and S. Yajnik, “Data Distribution Algorithms for Load
Balanced Fault-Tolerant Web Access,” in Proc. of the 16th Symposium on Reliable
Distributed Systems (SRDS '97), Oct. 22-24, 1997 Durham, NC.

A. Rousskov and D. Wessels, “Cache Digest,” Computer Networks and ISDN
Systems, Vol. 30, No 22-23, Nov. 1998.

Digital Island, available at: http://www.digitalisland.com.

P. Mirchandani and R. Francis, “Discrete Location Theory,” John Wiley and Sons,

Institutional Repository - Library & Information Centre - University of Thessaly
520/05/2024 21:13:17 EEST - 13.58.69.9

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

(67]

66

1990.

K.P. Eswaran, “Placement of Records in a File and File Allocation in a Computer
Network.” Information Processing, 1974, pp. 304-307.

V. Cardellini, M. Colajanni and P. Yu, “High performance Web-server systems,” in
Proc. of the 13th Int. Symp. On Computer and Information Sciences (ISCIS'98),
Ankara, Turkey, pp. 288-293, Oct. 1998.

A. Bestavros, M. Crovella, J. Liu and D. Martin, “Distributed Packet Rewriting and
its application to scalable server architectures,” in Proc. of the 6th Int. Conference
on Network Protocols (ICNP'98), Austin, Texas, Oct. 1998.

L. Fan, P. Cao, W. Lin and Q. Jacobson, “Web prefetching between low-bandwidth
clients and proxies: potential and performance,” in Proc. of the SIGMETRICS 99
Conf., 1999.

L. Aversa and A. Bestavros, “Load Balancing a Cluster of Web Servers Using
Distributed Packet Rewriting,” in Proc. of the IEEE Int. Performance, Computing,
and Communication Conference (IPCCC’2000), Phoenix, AZ, February 2000.

L. Bellatreche, K. Karlapalem and L. Qing, “An Iterative Approach for Rules and
Data Allocation in Distributed Deductive Database Systems,” in Proc. of the 7th
International Conference on Information and Knowledge Management (ACM
CIKM'98), pp. 356-363, November 1998, Washington D.C.

P. Cao and C. Liu, “Maintaining strong cache consistency in the World Wide Web,”
in Proc. of the 17th IEEE Int. Conf. on Distributed Computing Systems (ICDCS’97),
May 1997.

Akamai Technologies, Freeflow content delivery system, at:
http://www.akamai.com.

R. Casey, “Allocation of Copies of a File in an Information Network, " in Proc. of
the Spring Joint Computer Conf., IFIPS, 1972, pp. 617-625.

R. Ahuja, T. Magnanti and J. Orlin, “Network Flows: Theory, Algorithms, and
Applications,” Prentice Hall, 1993.

S. Jamin, C. Jin, Y. Jin, D. Riaz, Y. Shavitt and L. Zhang, “On the Placement of
Internet Instrumentation,” in Proc. of the IEEE INFOCOM’00 Conf-, March 2000.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

[68]

(69]

[70]

[71]

[72]

[73]

[74]

67

Y.K. Kwok, K. Karlapalem, I. Ahmad and N.M. Pun, “Design and Evaluation of
Data Allocation Algorithms for Distributed Database Systems,” IEEE Journal on
Sel. areas in Commun.(Special Issue on Distributed Multimedia Systems), Vol. 14,
No. 7, pp. 1332-1348, Sept. 1996.

S. Gadde, M. Rabinovich and J. Chase, “Reduce, Reuse, Recycle: An Approach to
Building Large Internet Caches,” in Proc. of the 6th Workshop on Hot Topics in
Operating Systems, pp. 93-98, May 1997.

W. Chu, “Optimal File Allocation in a Multiple Computer System,” IEEE Trans.
Computers, vol. C-18, no. 10, 1969.

IBM Interactive NetworkDispatcher, available at: http://www.ics.raleigh.ibm.com/
netdispatch.

Y. Amir, A. Peterson, and D. Shaw, “Seamlessly selecting the best copy from
Internetwide replicated web servers,” in Proc. of the 12th Int. Symposium on
Distributed Computing, Andros, Greece, Sept. 1998.

L.W. Dowdy and D.V. Foster, “Comparative Models of the File Assignment
problem,” ACM. Computing Surveys, Vol.14(2), June 1982.

P. Mirchandani and R. Francis, “Discrete Location Theory,” John Wiley and Sons,
1990.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

69

Appendix-A

The most important notations used in this thesis are summarized in the table below.

Table 1
Symbol Meaning
M total nm;ber of servers
N total number of objects
S, the ith server
0, the kth object
s(S,) storage capacity of §, (in data units)
5(0,) size of O, (in data units)
f,}. communication cost (per data unit) between S, and §,
X X% Xx*™ The (old, new) replication matrix / placement
P, primary server of O,
N replicator of O, nearest to S, in replica placement X
B read volume arriving at S, for O,
Ty transfer of O, from §, to §;
D, deletion of O, on §,
H schedule of transfer/delete actions
c cost of the uth action of schedule H
'l cost of a valid schedule H that leads from Xto X

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

70

71

Appendix-B

One may prove’ that RTSP-decision is NP-complete by reducing the (0,1) Knapsack-
decision to it. The (0,1) Knapsack-decision problem can be defined as follows [30]: Given

n objects, with positive benefit values b,,5,,...,b, and non zero sizes s,,s,,...,s, , is there a

subset I of these objects, suchas > s. <S and Y b. > K (S, K are positive integers)?
ieW ieW

Assuming an instance of the (0,1) Knapsack-decision, we construct an equivalent RTSP

instance as follows. Consider a network of n+3 servers §,..,S,.; and n+l objects
0, y..-,0,,,;- Objects O,,...,0, correspond to the n Knapsack objects (s(0,)=s,), while

0,,, is a dummy object of size s(0,,)=) .s(0,). For each Knapsack object O, we

I=i%=n

define S, to be the primary server of it. Initially, §,,...,S, store only the respective

primary replicas in X°“ . S, has a storage capacity of s(8,,.)=8+ > .5(0,) (where §is

I<i<n
the Knapsack size) and stores only O,., in X°“. §,,, has a storage capacity of

5(S,,2)= X.s(0,) and stores all Knapsack objects in X°“ . Finally, S,,; has a storage

I<i<n
capacity of O,,, and stores only the primary copy of O,,, in X?“ . The following links

exist: (i) a link between S,,, and S,,, with link cost 1, (ii) links between the primary
servers of the Knapsack objects and S,,,, each of link cost /., =b,, 1<i<n, where

b.[HS(O.I)
by =—--"——, (iii) a link between S, and S,,, of cost) (b +1). Figure Al

s(C)

illustrates this setup.

% The NP-completeness proof was provided by Dr. Thanasis Loukopoulos.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

72

n+3 | \ 1

Figure Al: Network structure for reducing knapsack to RTSP

X"" is set to be the same as X with the exception that §,,, and S,., must exchange
their hosted replicas. Consider an optimal order of actions H-OPT, implementing X "".

We observe that the transfer of O,., from its primary server can not belong to H-OPT

since the involved cost)’ (b, +1) > s(0;) is larger than the total cost of the schedule (let
Isian

this be A') that starts with the transfer of O,,, from §,,, and continues with the transfers
of all Knapsack objects from their respective primary servers for a total cost of

Y. 5(0,)+ > b;s(0,). Thus, H-OPT must contain the transfer of 0,,, from S,,,,.

1<i<n I<i<n

We also observe that H' # H-OPT, since §,,, starts with § unused storage space, which
can be used to transfer at least one Knapsack object at a cost lower than performing the
transfers from the respective primary servers (s(0;) compared to b,5(0;)). Therefore, H-
OPT begins with a sequence of Knapsack object transfers from §,., to S,,,, followed by

the transfer of O,,, from §,, to S,,,, followed by the transfers of the remaining

Knapsack objects from their primary servers to S,,,. Let W be the set of objects that

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

73

appear in the H-OPT schedule before the transfer of O,,,. The cost of H-OPT is thus

givenby: /-OPT*™*™ = ¥0,)+ Ys(0)+ Ybs(0,).

il aizn+l I<i<a ieW nizn+l

But H-OPT is the schedule of minimum possible cost, meaning that W' is selected (the
exact order with which W' is selected has no impact at the cost) such that the following is

minimized: Y s(0,)+ Y.s(0,)+ Y bs(0,) (Al).

ieW nizn+l I<i<m ieW aizn+l

After substitutions (Al) gives: min(Y s(0))+| |s(0,) D>.b,), since) s(O;) is

1eW Afza+l l<i<n IeW Aiza+l I<i<m

constant. But notice, that the following holds: 1 15(0. ». > 5(0,)VI<i<n (A2)

I<i<nm

Thus, (Al) reduces to min(| | s(0;) ».b;), which gives min() 4,) since [][s(0))

Isi<n ieW nizn+l W' Aizn+l I<i<n

is constant. Therefore, we conclude that H-OPT minimizes Y b. that is equivalent to
i Aizn+l

maximizing > b, , which corresponds to the (0,1) Knapsack optimization problem.
W Alzn+l

The following concludes the reduction: given a (0,1) Knapsack-decision instance, we

create a network as above and ask whether there exists a valid schedule H:

XX < Y5+ b -K)[Is, +S (by (Al) and (A2)). If H exists so does a solution to

vi Vi i

the (0,1) Knapsack-decision instance.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 21:13:17 EEST - 13.58.69.9

74

Appendix-C

Experimental server network topology

‘_,‘ rr T
& LY
LA \ '
a \
\ | Y
| A .
i \! |
- ‘-.:,:‘}- - A 0
e i . v =
g T— P 5 \, :- s -
N\ I
{
- ¥ |
= Vé ! . -
/ . -
o —
i
4 e
I L
/ - 3
J e et—
) / \
¢ /
) / ’ \ <
{ |:1 3
. \
\ y
\
!
.||
[\ B
;_. \ -
/
¥ \
' s
o
."o.
\ o

nstitutional Repository - Library & Information Centre - University of Thessaly
0/05/2024 21:13:17 EEST - 13.58.69.9

