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Abstract: In this paper we introduce the notions of fuzzy upper limit, fuzzy

lower limit and the fuzzy continuous convergence on the set of fuzzy continuous

functions. In examining these aforementioned notions in the present paper we find on

the one hand many properties of them whilst on the other, the following applications

take place: (a) the characterization of fuzzy compact spaces through the contribution«
of fuzzy upper limit and (β) the characterization of the fuzzy continuous convergence 

through the assistance of fuzzy upper limit.

Keywords: Fuzzy sets, fuzzy topology, fuzzy upper and lower limit, fuzzy com

pact spaces and fuzzy continuous convergences.

I. Introduction.

1.1. Fuzzy sets. Throughout this paper, the symbol I will denote the unit 

interval [0,1]. Let A be a nonempty set.

A fuzzy set in A is a function with domain A and values in /, that is, an element 

of Ix. Let A £ Ix. The subset of A in which A assumes nonzero values, is known 

as the support of A. (See [Z]).

A member A of Ix is contained in a member B of IY denoted A < B if and 

only if A(x) < B(x), for every x £ A. (See [Z]).

Let A, B £ Ix. We define the following fuzzy sets (see [Z]): (*)

(*) This paper has been written under the financial support of the Research Com

mittee of Democritus University of Thrace (ΠΡΕΝΕΔ 96).
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(1) AAB £ Ix by (A/\B)(x) = min{A(x), L?(x)} for every x £ X (intersection).

(2) A V B £ Ix by (A V B)(x) = max{A(x), B(x)} for every x £ X (union).

(3) Ac £ Ix by Ac(x) = 1 — A(x) for every x £ X.

(4) Let / : X —► Y, A £ and B £ IY. Then /(A) is a fuzzy set in F, defined

/(^)(y) =
sup{A(x) :x £ f 1(y)}
0

if / Hy) Φ 0
if /-1(y) = 0

and / 1(5) is a fuzzy set in X, defined by / 1(B)(x) = B(f(x)), x £ X.

Let A,BeIx, then (A Λ 5)c =ACVBC and (A V B)c = Ac Λ £c.

Let A £ Ix and B £ IY. Then by A x 5 we denote the fuzzy set inlxh for 

which (A x B)(x,y) = min{A(x), B(y)}, for every (x,y) £ X xY.

1.2. Fuzzy topology. The first definition of a. fuzzy topological space is due to 

Chang. (See [C]). According to Chang, a fuzzy topological space is a pair (X, r), 

where X is a set and r is a fuzzy topology on it, that is, a family of fuzzy sets 

(r C Ix) satisfying the following three axioms:

(1) δ, ϊ £ τ. By 0 and Ϊ we denote the characteristic functions X% and Αχ, 

respectively.

(2) If A, B £ r, then A Λ B £ r.

(3) If {Aj : j £ J} C r, then V{Aj : j £ J} £ r.

The elements of r are called fuzzy open sets. A fuzzy set K is called fuzzy 

closed set if Kc £ r. We denote by rc the collection of all fuzzy closed sets in this 

fuzzy topological space. Obviously, we have: (α) 0, Ϊ £ rc, (β) if K,M £ rc, then 

K V M £ tc and (7) if {Kj : j £ J} C rc, then Λ{Kj : j £ J} £ rc.

The closure Cl(A) and the interior Int(A) of a fuzzy set A of X are defined as

C/(A) = inf {K : A < K, Kc £ r}

respectively.

Int(A) = sup{0 : O < A, O £ r},

2
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A fuzzy set in X is called a fuzzy point if and only if it takes the value 0 for all 

j/Gl except one, say, x £ X. If its value at x is Λ (0 < Λ < 1) we denote the fuzzy 

point by p£, where the point x is called its support. The class of all fuzzy points in 

X is denoted by X. (See for example [Wi] and [Μ-Μχ]).

The fuzzy point p\ is said to be contained in a fuzzy set A or to belong to A, 

denoted by p£ £ A, if and only if λ < A(z). Evidently, every fuzzy set A can be 

expressed as the union of all the fuzzy points which belongs to A. (See [Μ-Μχ]).

A fuzzy set A in a fuzzy topological space (X, r) is called a neighbourhood of 

a fuzzy point p£ if and only if there exists a V £ r such that p* £ V < A. (See 

[Μ-Μχ]). A neighbourhood A is said to be open if and only if A is open.

A fuzzy point p£ is said to be quasi-coincident with A denoted by p^qA if and 

only if Λ > Ac(x) or Λ + A(x) > 1. (See [Μ-Μχ]).

A fuzzy set A is said to be quasi-coinident with B, denoted AqB, if and only if 

there exists x £ X such that A(x) > Bc(x) or A(x) + B{x) > 1. (See [Μ-Μχ]). If A 

does not quasi-coincident with B, then we write A <fB.

A fuzzy set A in a fuzzy topological space (Χ,τ) is called a Q—neighbourhood 

of Ρς if and only if there exists B £ r such that p^qB < A. The family of all 

Q—neighbourhoods of is called the system of Q—neighbourhoods of p£. (See 

[Μ-Μχ]). A Q—neighbourhood of a fuzzy point generally does not contain the 

point itself. In what follows by Λί(ρ£) we denote the family of all fuzzy open 

Q—neighbourhoods of the fuzzy point p£ in X. The set Λ/”(p£) with the relation <* 

(that is, Ui <* U2 if and only if U2 < U\) form a directed set.

A fuzzy point p£ £ Cl (A) if and only if each Q—neighbourhood of p* is quasi

coincident with A. (See Theorem 4.1' of [Μ-Μχ]).

A fuzzy point p* £ Int(A) if and only if has a neighbourhood B contained in 

A. (See [Μ-Μχ]).

1.3. Fuzzy functions. A function / from a fuzzy topological space X into a 

fuzzy topological space Y is fuzzy continuous if and only if for every fuzzy point p£ 

in X and every Q—neighbourhood V of f(p£), there exists a Q—neighbourhood U 

of p£ such that f(U) < V. (See [M-M2]).
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Let / be a function from X to Y. Then (see for example [W2], [M-M2], [Y], 

[A-T] and [C]):

(1) /_1(5C) = (/_1(5))c, for any fuzzy set B in Y.

(2) f(f~1(B)) < B, for any fuzzy set B in Y.

(3) A < for any fuzzy set A in X.

(4) Let p be a fuzzy point of X, A be a fuzzy set in X and B be a fuzzy set in 

Y. Then, we have:

(i) If f(p) q B, then p q /_1(5).

(ii) If p q A, then f(p) q f(A).

(5) Let A and B be fuzzy sets in X and Y, respectively. Let p be a fuzzy point 

in X. Then we have:

(i) permit f(p) eB.

(ii) f{p) € f{A) if p G A.

1.4. Fuzzy nets. Let Λ be a directed set. Let X be an ordinary set. Let X 

be the collection of all fuzzy points in X. The function 5 : Λ —> X is called a fuzzy 

net in X. For every A G A, 5(A) is often denoted by s\ and hence a net S is often 

denoted by {sa,A £ Λ}. (See [Μ-Μχ]).

Let 5 = {θχ,Α G A} be a fuzzy net in X. S is said to be quasi-coincident 

with A if and only if for each A G A, s\ is quasi-coincident with A. S is said to be 

eventually quasi-coincident with A if and only if there is an element m of A such that 

if A G A and A > m, then s\ is quasi-coincident with A. S is said to be frequently 

quasi-coincident with A if and only if for each m G A there is an A G A such that 

A > m and s\ is quasi-coincident with A. S is said to be in A if and only if for each 

A G A, € A. (See [Μ-Μχ]).

A fuzzy net S — {^>,A G A} in a fuzzy topological space (X. r) is said to be 

convergent to a fuzzy point e in X relative to r and write lim sa = e if and only if 

S is eventually quasi-cincident with each Q—neighbourhood of e. (See [Μ-Μχ]).

A fuzzy net {ςμ, μ G M} in AT is called a fuzzy subnet of a fuzzy net {•sa, A G A} 

in X if and only if there is a map iV : M —> A such that:

(i) ςμ = sN(/i) and
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(ii) for the element λο £ Λ there is μ0 £ M such that if μ > μο, μ £ Μ, then 

Ν(μ) > λο-

It is known that (see [Μ-Μχ] and [M-M2]):

(1) In a fuzzy topological space (Χ,τ) a fuzzy point p £ A if and only if there 

is a fuzzy net 5 in A such that S converges to p.

(2) A fuzzy subset A in a fuzzy topological space (X, r) is closed if and only if 

every fuzzy net 5 cannot converge to a fuzzy point not belonging to A.

(3) A function / from a fuzzy topological space X into a fuzzy topological

space Y is fuzzy continuous if and only if for every fuzzy net 5 = {.s*, A £ A}, if 5 

converges to p, then f o S = A £ A} is a fuzzy net in Y and converges to

f(p)·

II. Fuzzy upper and lower limit.

2.1. Definition. Let {An,n £ N} be a net of fuzzy sets in a fuzzy topological 

space Y. Then by F — lim(An), we denote the fuzzy upper limit of the net {An,n £ 

N} in Iy, that is, the fuzzy set which is the union of all fuzzy points in Y such 

that for every no £ N and for every fuzzy open Q—neighbourhood U of in Y 

there exists an element η £ N for which n > no and AnqU. In other cases we set 

F — lim(An) = 0
N

2.2. Theorem. Let {An, η £ N} be a net of fuzzy sets in Y. Then the following 

propositions are true:

(1) The fuzzy upper limit is closed.

(2) F — lim(A„) =F — lim(C7(An)).

(3) If An — A for every η £ N, then F — lim(A„) = Cl(A)

(4) The fuzzy upper limit is not affected by changing a finite number of the An.

(5) F - iim(An) < Cl{y{An : η £ N}).

Proof, (l) It is sufficient to prove that

Cl(F - Sm(An)) <F- hrn(An).

5
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Let pry £ Cl(F—Hm(An)) and let U be an arbitrary fuzzy open Q—neighbourhood 

U of Py. Then, we have:

UqF - lim(An).

Hence, there exists an element y' € Y such that

U{y') + F — hm(An)(y') > 1.

Let F — lim(A„)(y') = k. Then, for the fuzzy point pk, in Y we have
n y

pk, q U and pky, £ F - lim(A„).

Thus, for every element no E N there exists n > no, η E N such that AnqU. This 

means that pr £ F — lim(A„).

(2) Clearly, it is sufficient to prove that for every^ fuzzy open set U the condition 

UqAn is equivalent to UqCl(An).

Let UqAn. Then there exists an element y £T such that U[y) + An(y) > 1. , 

Since An < Cl(An) we have U{y) + Cl(An)(y) > 1 and therefore UqCl(An).

Conversely, let UqCl(An). Then there exists an element y 6 Y such that 

U(y) + Cl(An)(y) > 1.

Let Cl(An)(y) — r. Then pry £ Cl(An) and the fuzzy open set U is a fuzzy 

open Q—neighbourhood of pTy. Thus UqAn.

(3) Follows by Theorem 4.1 of [M-Mi] and the definition of the fuzzy upper 

limit.

(4) Follows by the definition of the fuzzy upper limit.

(5) Let p^ EF — lim(An) and let U be a fuzzy open Q—neighbourhood of pry in 

Y. Then for every η ο £ N there exists η £ N, n > no such that AnqU and therefore 

V{A„ : n £ N}qU. Thus, pry £ Cl(\/{An : η £ N}).

2.3. Theorem. Let {An,n £ N} be a net of fuzzy closed sets in Y such that 

Ani < An2 if and only if n2 < n\. Then

F - lim(A„) = A{^n : n £ iV}.
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Proof. Let py £ Λ{Αη : n £ N}. Then pry £ An or r < An(y) for every η £ N. 

Let n0 £ N and U be a fuzzy open Q—neighbourhood of py, that is r + U(y) > 1. 

Then there exists η £ N, n > no such that An(y) + U(y) > r + U(y) > 1. Hence 

AnqU and therefore

pry € F-]im(An).

Conversely, let

pr E F - lim(A„)
* N

and let py 0 Λ{Αη : η £ N}. Then there exists no £ N such that py ^ Ano, that is 

r > Ano(y). Let U = (Ano)c. Then U is a fuzzy open Q—neighbourhood of py and 

for every n > no, Uq/An, which is a contradiction.

2.4. Theorem. Let {An,n £ N} and {Bn,n £ N} be two nets of fuzzy sets in 

Y. Then the following propositions are true:

(1) If An < Bn for every n £ jV, then F — lim(An) <F — Hm(5„).

(2) F — Ηπι(Αη V Bn) —F — lim(An)VF — Hm(5n).

(3) F — lim(An Λ Bn) <F — ]im(An)AF — Hm(Bn).

Proof. We prove only the proposition (2).

Clearly, An < An V Bn and Bn < An V Bn, for every η £ N. Hence by 

proposition (1) F — lim(A„) <F — lim(A„ V5n) and F — ]im(Bn) <F — ]im(AnVBn).

Thus F — lim(A„)VF — Hm(5„) <F — lim(An V Bn).
N N N

Conversely, let pr £ F — lim(A„ V Bn). We prove that pr £ F — lim(yl„)VF — 

lim(Bn). Let us suppose that py £ F—lim(An)Vi?—lim(BTl). Then py £ F—lim(An) 

and py £ F — lim(B„). Hence there exists a fuzzy open Q—neighbourhood U\ of py 

and an element n\ £ N such that An c[U\, for every η £ N, n > n\. Also, there 

exists a fuzzy open Q—neighbourhood U2 of py and an element n2 £ N such that 

Bn <j(U2, for every η £ N, n > n2.

Let U = Ui Λ Z72 and let n0 £ N such that no > and no > n2. Then 

the fuzzy set U is a fuzzy open Q—neighbourhood of py and An V Bn q/ U, for 

every η £ N, n > uq. Since py £ F — lim(An V Bn) this is a contradiction. Thus 

Py £ F - lim(An)VF - lim(Bn).

7
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2.5. Theorem. Let {An,n £ N} be a net of fuzzy sets in Y. Then we have:

F - lim(A„) = A{C/(V{A„ : η > n0}) : n0 £ N}.

Proof. Let pT EF — lim(A„) and let η ο £ N. We prove that pr £ ClN{An : 
y N y

n > n0}). Let U be an arbitrary fuzzy open Q—neighbourhood of Py in Y. Then, 

there exists n > no, η £ N such that UqAn. Thus Uq V {An : n > no} and therefore 

pry £ Cl(y{An : n > n0}).

Conversely, let pry £ Λ{Cl(y{An : n > no}) : no £ N}. Then, we have 

ρ^ £ Cl{y{An : n > n0}), for every n0 £ N. We prove that pr £F — lim(An). 

Let U be an arbitrary fuzzy open Q—neighbourhood of pry in Y and let no £ N. 

Then Uq V {An : n > no}. We prove that there exists η £ N, n > no such that 

AnqU. Let us suppose that U q/ An, for every η £ N, n > no- Then, for every 

η £ N, n > no and for every y E Y we have U(y) + An(y) < 1 and therefore 

U(y) + (V{An : n > no})(y) < 1, which is a contradiction. Thus pr EF — lim(An).

2.6. Definition. Let {An,n £ N} be a net of fuzzy sets in a fuzzy topological 

space Y. Then by F — Ηχη(Α„), we denote the fuzzy lower limit of the net {Anin £
1V

N} in IY, that is, the fuzzy set which is the union of all fuzzy points pax in Y such that 

for every fuzzy open Q—neighbourhood U of p“ in Y there exists an element no £ N 

such that AnqU, for every η E N, n > uq. In other cases we set F — lim(An) = 0
N

2.7. Theorem. Let {An,n £ N} be a net of fuzzy sets in Y. Then the following 

propositions are true:

(1) The fuzzy lower limit is closed.

(2) F - Km(A„) =F - Hm(C7(A„)).
N N

(3) If An — A for every η £ N, then F — lim(An.) = Cl(A)
N

(4) The fuzzy upper limit is not affected by changing a finite number of the An.

(5) Λ{^4„ : η £ N} <F — Hm(y4n).
N

(6) F - Hm(An) < Cl(y{An : η £ IV}).
N

(7) V{A{Al„ : n > no} : n0 £ N} <F — limf A„).
N
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Proof. The propositions (1), (2), (3), (4) and (6) can be proved in the same 

way, as in Theorem 2.2. We prove the propositions (5) and (7).

(5) Let pr £ Λ{Αη : η £ N}. We prove that pT £F — Hm(An). Let us suppose

that pr £F — Hm(An). Then there exists a fuzzy open Q—neighbourhood U of pr
y n y

such that for every η £ N there exists η' > n for which An> <fU. This means that 

An'(x) + U(x) < 1, for every x £ Y.

Now, since pry £ Λ{.4„ : η £ N} and U is a fuzzy open Q—neighbourhood of pTy 

we have that r < An(y), for every η £ N and r + ?7(y) > 1. Thus An(y) + U(y) > 1, 

for every η £ N. By the above this is a contradiction. Hence pT £F — lim(An ).

(7) Let py GV{Λ{An : n > no} : no £ N}. Then, there exists no £ N such that 

py G A{A„ : n > n0}. Hence py £ An, for every η £ N, n > n0. and therefore 

r < An(y), for every η £ N, n > no.

We prove that py £ F — hm(A„). Let U be an arbitrary fuzzy open Q—neigh

bourhood of py in Y. Then we have pryqU or equivalently r + U(y) > 1. Since 

r < An(y), for every η £ N, n > no we have that An(y) + U(y) > 1, for every η £ N, 

n > no- Thus AnqU, for every η £ N, n > n0 and therefore pr £ F — HmiAJ.
y N

2.8. Theorem. Let {An,n £ N} and {Bn,n £ N} be two nets of fuzzy sets in 

Y. Then the following propositions are true:

(1) If An < Bn for every η £ N, then F — Hm(An) <F — Hm(5„).
N N

(2) F - Hm(Ara V Bn) >F - limfAnjVF - lim(i?„).
N N N

(3) F — lim(An A Bn) <F — lim(An )AF — Hm(5„).
N N N

Proof. We prove only the proposition (2). Let pr £F — lim(An,)VF — lim(Hn). 

Then either pr £F — hm(A„) or pr £F — limii?„). Let pi £F — Hm(A„). Then for 

every fuzzy open Q—neighbourhood U of pry in Y there exists an element no G N 

such that AnqU, for every η > n0, η £ N. Also An < An V Bn. Thus (An V Bn)qU, 

for every η £ N, n > n0 and therefore pT £F — lim(A.n V Bn).
y N

2.9. Theorem. For the fuzzy upper and lower limit we have the relation 

F — limfAn) < F — lim(An).

Proof. The proof of this theorem follows by the Definitions 2.1 and 2.6.

9

Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 00:33:57 EEST - 13.58.200.161



2.10. Theorem. Let {An,n £ N} be a net of fuzzy sets in Y. Then the

formula p £ F — Hm(Ara) is equivalent to the existence of a fuzzy net {pn,n £ IV}
N

such that limpn = p and pn £ An.

Proof. The proof of this theorem follows by Definition 2.6.

2.11. Theorem. Let {An,n £ N} be a net of fuzzy sets in Y such that

An, < An, if and only if ηχ < Π2· Then C/(V{An : η £ N}) =F — lim(An).
N

Proof. Let pTy £ C/(V{An : η £ IV}) and let U be a fuzzy open Q—neighbourhood 

of Py in Y. Then UqV {An : η £ N}. Hence, there exists no £ IV such that UqAno. 

By assumption we have UqAn, for every η £ N, n > no- Thus pi £ F — lim(An).
y .V

Conversely, let pry £ F — limfAr,) and let U be an arbitrary fuzzy open Q—neigh

bourhood of pry in Y. Then there exists an element no € N such that U q An, for

every η £ N, n > no- Hence UqV {An ■ η £ IV} and therefore £ Cl{y{An : n £

N}).

2.12. Definition. A net {An,n £ N} of fuzzy sets in a fuzzy topological space 

Y is said to be fuzzy convergent to the fuzzy set A if F — lim(A„) = F — lim(An) = A.

We then write F — lim(An) = A.

2.13. Theorem. Let {An,n £ IV} be a convergent net of fuzzy sets in Y. Then 

the following propositions are true:

(1) Cl(F - lim(An)) = F - lim(An) = F — lim(C7(A„)).

(2) If An = A for every η £ N, then F — lim(An) = Cl(A)

Proof. The proof of this theorem follows by Theorems 2.2 and 2.7.

2.14. Theorem. Let {An,n £ N} and {Bn,n £ IV} be two nets of fuzzy sets 

in Y. Then the following propositions are true (in (1) and (2) the nets {An,n £ N} 

and {Bn,n £ N} are supposed to be convergent):

(1) If An < Bn for every η £ N, then F — lim(A„) <F — lim(Bn).

(2) F - lim(An V Bn) =F - lim(An)VF - lim(5n).
N N N

Proof. The proof of Proposition (1) follows by Theorems 2.2 and 2.7. We prove 

the Proposition (2).

10
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By Theorems 2.4 and 2.8 we have

F — lim(An V Bn) = F - lim(An) VF - lim(J3„)
N N N

< F - UmN(An) V F - ]hnN(Bn)

< F — IimAr(An V Bn)

< F — lim(An V Bn).

Thus F — lim(A„ V Bn) =F — lim(A„)VF — lim(Bn).

2.15. Theorem. Let {An,n € N} be a convergent net of fuzzy sets in Y such 

that Ani > An2 for n\ < n2, then F — lim(A„) =A{Cl(An) : n G N).

Proof. By Theorems 2.2 and 2.7. we have:

Λ{Cl(An) : η £ N} < F — UmN(Cl(An))

= F — Hmjv(A„)

< F — hm(An)
N

= F — lim(C7(A„))

= f\{Cl(An) : n G N}.

Thus F — lim(An) =A{C/(An) : n G N}.

2.16. Theorem. Let {An,n G N} be a convergent net of fuzzy sets in Y such 

that Ani < An2 for n\ < n2, then F — hm(An) =C/(V{An : n G N}).

Proof. By Theorems 2.11 and 2.2 we have:

Cl(y{An : n G iV}) < F — HmN(An)

< F - lim(A„)
N

< Cl{V{An : n G N}).

Thus F — lim(An) =C/(V{A„ : n G N}).

It is not dificult to prove the following theorem.

2.17. Theorem. The following propositions are true:

(1) Let Ui,A G Ix and U2,B G IY. If U\ x U2qA x B, then U\qA and U2qB.
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(2) Let XJ\ and U2 be fuzzy open Q—neighbourhoods of px and pry in X and Y, 

respectively. Then the fuzzy set U\ x U2 is a fuzzy open Q—neighbourhood of ρ^χ ^ 

in X x Y.

2.18. Theorem. Let {An,n £ N) and {Bn,n £ N} be two nets of fuzzy sets 

in Y. Then the following propositions are true (in (3) the nets {An,n £ N} and 

{Bn,n £ N} are supposed to be convergent):

(1) F — lim(A„ x Bn) <F — Hm(An)xF — lim(5n).

(2) F — lim(An. x Bn) <F — Um(An)xF — lim(j?n).
N N N

(3) F — lim(A„ x Bn) <F — Hm(An)xF — lim(jB„).

Proof. (1) Let p^x y^ £F — lim(A„ x Bn). We must prove that

P{x,y) ^ F ~ Hm(An) x F — Hm(Bn)

or equivalently

r <{F - lim(An) x F - lim(5n))(x, y).
N N

Let no £ N, U\ be an arbitrary fuzzy open Q—neighbourhood of prx in X and 

U2 be a constant fuzzy open Q—neighbourhood of pry in Y. Then, the fuzzy set 

U\ x U2 is a fuzzy open Q—neighbourhood of ρ^χ y^ in X X Y (see Theorem 2.17). 

Hence, there exists η ζ. N, n > no such that U\ x U2qAn x Bn.

By Theorem 2.17 we have U\qAn and U2qBn. Thus prx £ F—lim(An). Similarly,
N

we can prove that pr £ F — lim(5n).
» yv

Hence p\x y) £F - ]im(An)xF - lim(5n).

Similarly, we can prove the propositions (2) and (3).

III. Compact fuzzy spaces

3.1. Definitions. (See [C]) A family A of fuzzy sets is a cover of a fuzzy set 

B if and only if B < V{A : A £ A}. It is an open cover if and only if each member 

of A is an open fuzzy set. A subcover of A is a subfamily of A which is also a cover.

A fuzzy topological space X is compact if and only if each open cover has a 

finite sub cover.
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3.2. Theorem. A fuzzy space A is compact if and only if for every net

{Κχ, A £ Λ} of fuzzy closed sets in X such that F — Ηηι(ΑΓλ) = 0, there exists
Λ

λο £ Λ for which K\ = 0, for every Λ £ A, Λ > Λο·

Proof. Let A be a fuzzy compact space and let {A'a, A £ A} be a net of fuzzy

closed sets in X such that F — Ιΐιη(Α'λ) = 0. Then for every fuzzy point Pz in A
Λ

there exists a fuzzy open Q—neighbourhood Upr in A and an element Apr £ A such 

that K\ c/ Upr, for every A £ A, A > Apr.

Clearly, the family {Upr : prx £ A} is an open cover of fuzzy sets of A, that is

1 = y{Upr : prx £ A}.

Since the fuzzy space A is compact, there exist fuzzy points pi, p2, ...pn £ X 

such that 1 = V{UPi : i = 1, 2...,n}.

Let A0 £ A such that Ao > \Pi for every i — 1,2, ...,n. Then for every A £ A, 

A > A0 we have K\ qj V{APl : i = 1,2, ...,n} or K\ qj 1. Thus K\ = 0 for every 

A £ A, A ^ Ao.

Conversely, suppose that the fuzzy space A satisfies the condition of the theo

rem. We prove that the fuzzy space A is compact.

Let A be an open cover of fuzzy set of the space A. Let A be the set of all 

finite subsets of A directed by inclusion and let {K\, A £ A} be a net of fuzzy closed 

sets in A such that A£ = V{A : A £ A}. Obviously Κ\λ < K\2 if A2 C Ai. Hence 

by Theorem 2.3 it follows that F — lim^A) = A{K\ : A £ A}.
Λ

Also, we have:

Λ{Α'λ : A £ A} = (V{A^ : A £ A})c 

= (V{A : A £ A})c

= r = 0.
Thus F — 1ϊιη(Α"λ) = 0. By assumption there exists an element Ao £ A for 

Λ
which K\ — 0 for every A £ A, A > Ao- 

By the above we have

1 — A^ — V{A : A £ Ao}
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and therefore the fuzzy space X is compact.

IV. Fuzzy continuous convergence.

4.1 Notations. Let Y and Z be fuzzy topological spaces. Then by FC{Y,Z) 

we denote the set of all fuzzy continuous maps of Y into Z.

4.2. Theorem. Let f : Y —► Z be a fuzzy continuous map, p be a fuzzy 

point in Y and U, V be fuzzy open Q—neighbourhoods of p and f(p), respectively 

such that f(U) ^ V. Then there exists a fuzzy point p\ in Y such that piqU and

fM 4V-

Proof. Since f(U) V. We have U ^ /_1(F). Thus there exists x G Y 

such that U(x) > f~1(V)(x) or U(x) — /_1(F)(x) > 0 and therefore U(x) + 1 — 

/-1(F)(x) > 1 or U(x) + (/-1(F))c(x) > 1. Let (f~1[V))c(x) = r. Clearly, for 

the fuzzy point prx we have prxqU and px G (f~1(V))c· Hence for the fuzzy point 

pi = px we have piqU and f(pi) <fV.

4.3. Definition. A net {/μ,μ G M} in FC(Y,Z) fuzzy continuously converges 

to f G FC(Y, Z) if and only if for every fuzzy net {p>, A G A} in Y which converges 

to a fuzzy point p in Y we have that the fuzzy net {/μ(ρλ), (A, μ) G Ax Mj converges 

to the fuzzy point f(p) in Z.

4.4. Theorem. A net {/μ,μ G M} in FC(Y:Z) fuzzy continuously converges 

to / G FC(Y,Z) if and only if for every fuzzy point p in Y and for every fuzzy open 

Q—neighbourhood V of f(p) in Z there exist an element μο G M and a fuzzy open 

Q—neighbourhood U of p in Y such that

MU) < v,

for every μ > μ0, μ G Μ.

Proof. Let p be a fuzzy point in Y and let V be a fuzzy open Q—neighbourhood 

of f(p) in Z such that for every μ G M and for every fuzzy open Q—neighbourhood 

U of p in Y there exists μ' > μ such that

fAU)iv.
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Then for every fuzzy open Q—neighbourhood U of p in Y we can choose a fuzzy 

point pu in Y (see Theorem 4.2) such that

pu q U and fμ/ {jpu) q/V.

Clearly, the fuzzy net {pu,U G λί{ρ)} converges to p, but the fuzzy net 

{ίμ{ρυ), (U, μ) G Λί{ρ) x M} does not converge to f(p) in Z.

Conversely, let {pa,A G A} be a fuzzy net in FC(Y,Z) which converges to the 

fuzzy point p in Y and let V be an arbitrary fuzzy open Q—neighbourhood of f(jp) 

in Z. By assumption there exists a fuzzy open Q—neighbourhood U of p in Y and 

an element μ0 G M such that /μ([7) < V, for every μ > μο, μ G M. Since the 

fuzzy net {ρλ,Α G Λ} converges to p in Y. There exists A0 G A such that p\qU, 

for every A G A, A > A0. Let (Χο,μο) G Λ X M. Then for every (λ, μ) G Λ x M,

(λ, μ) > (λ0,μο) we have /μ(ρλ) ? ίμψ) < V, that is fM(p\) q V. Thus the 

net {/μ(ρλ), (λ, μ) G A x M} converges to f(p) and the net {/μ,μ G M} fuzzy 

continuously converges to /.

4.5. Theorem. Let A and B two fuzzy sets in Y and let f : Y —Z be a map.

If AqB, then f(A)qf(B).

Proof. Let AqB. Then there exists y G Y such that A(y) + B(y) > 1. Let 

A(y) = r. Then for the fuzzy point pj G A we have PyqB. Thus f(pry)qf(B). Since 

Py £ A we have f(pry) G /(.4) and therefore f(A)qf(B).

4.6. Theorem. A net {/a, A G A} in FC(Y,Z) fuzzy continuously converges 

to / G FC(Y, Z) if and only if

F-msp(K))<r\K), (i)

for every fuzzy closed subset K of Z.

Proof. Let {/a, A G A} be a net in FC(Y,Z), which fuzzy continuously 

converges to / and let K be an arbitrary fuzzy closed subset of Z. Let p GT — 

lim(/^'1 (K)) and let IT be an arbitrary fuzzy open Q—neighbourhood of f(p) in Z.
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Since the net {f\, A 6 Λ} fuzzy continuously converges to /, there exist an open 

open Q—neighbourhood V of p in Y and an element A0 € A such that f\(V) < W, 

for every A 6 Λ, A > Ao- (See Theorem 4.4). On the other hand, there exists an 

element A > Ao such that Vqf^"1(ftT). Hence, f\(V)qK and therefore WqK. This 

means that f(p) £ Cl(K) = K. Thus, p £

Conversely, let {f\, A € A} be a net in FC(Y, Z) and / £ FC(Y. Z) such that 

the relation (1) holds for every fuzzy closed subset K of Z. We prove that the net 

{/λ, A £ Λ} fuzzy continuously converges to /. Let p be a fuzzy point of Y and W 

be a fuzzy open Q—neighbourhood of f(p) in Z. Since p ^ /-1(iv), where K = Wc 

we have p ^ F — lim(/^‘1 (K)). This means that there exists an element Ao £ Λ and
Λ

a fuzzy open Q—neighbourhood V of p in Y such that /^’1(A') q/V, for every λ £ Λ, 

A > Ao- Then we have V < (/^1(J\))C = f^1(Kc) = /^'1(W) (see Proposition 2.1 

of [M-Mi]) and, therefore, f\(V) < W, for every A £ A, A > A0, that is the net 

{/λ, A £ A} fuzzy continuously converges to /.

4.7. Theorem. The following propositions are true:

(1) E {/λ, A £ A} is a net in FC(Y, Z) such that f\ = /, for every A £ A, then 

the {/λ, A £ A} fuzzy continuously converges to / £ FC(Y,Z).

(2) E {/λ, A £ A} is a net in FC(Y, Z), which fuzzy continuously converges to 

/ £ FC(Y, Z) and {ςμ, μ £ M} be a subnet of {f\, A £ A}, then the net μ £ Μ) 

fuzzy continuously converges to /.

(3) E {/a, A £ A} is a net in FC(Y,Z) which does not fuzzy continuously 

converges to / £ FC(Y,Z), then there exists a of {/>, A £ A}, no subnet of which 

fuzzy continuously converges to /.

Proof. We prove only the proposition (3). Since the net {f\, A £ A} does not 

fuzzy continuously converges to /, there exists a fuzzy closed set K in Z such that

f-ψν?(κ)) ίΛ

Hence, there exists y £ Y such that

f-\K)(y)<F-^(f^(K))(y).
A
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Let f 1(K)(y) = r. Then for the fuzzy point py we have that pry E f 1(K) 

and therefore

PryeF~

Let N = Λ x j\f(Py) and let φ be a map of N into Λ which defined as follows: 

If η — (λ, U) E N, then by φ(η) we denote an element A' of Λ such that A' > A and 

fx\K)qU.

Clearly, the net {gn = /φ(„),η E N} is a subnet of {/a, λ E A}. Let {hT,r G T} 

be an arbitrary subnet of {gu,n E N}. We prove that the net {hTlT E T} does not 

fuzzy continuously converge to /. Obviously, for this it is sufficient to prove that

P;eF-M(h?(K)).

Since the net {hT, τ E T} is a subnet of {gn, η E N}, there is a map ψ of T into 

N such that:

a) hT = 5ψ(Γ), for every r E T and

β) for every element Πχ E N, there exists Τχ E T such that if r E Τ, τ > τχ, 

then ψ(τ) > ηχ.

Now, let το E T and U be an arbitrary fuzzy open Q—neighbourhood of pry in 

Y. We prove that there exists τ > tq, τ E T such that h~1(A') q U.

Indeed, let ψ(το) = ηo = (Ao, i/o), Wo = U Λ Uo and ηχ — (Ao, Wo). Then there 

exists an element τχ E Τ, τχ > tq such that if r E Τ, r > τχ, then ψ(τ) > ηχ > no-

Let τ £ Τ, τ > Τχ and ψ(τ) = η = (λ, V). Then we have:

Y) h~AK) = 9~1Τ)(Κ) = /;,i(r))(A') and

S) a(„,(X) « V.

Since

Ψ(τ) = n = (X,V) > ηχ = (A0, W0)

we have that

V < W0 < U.

By the above relation and by relations γ) and δ) we have that h~l(K) q V and 

therefore /i~1(AT) q U, where r E T, r > Tq.
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Thus Py £ F — lim(hr 1 (A')).

4.8. Remark. For the notion of continuous convergence see [K].
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