
UNIVERSITY OF THESSALY 

SCHOOL OF ENGINEERING 

DEPARTMENT OF MECHANICAL ENGINEERING

Postgraduate Thesis

APPROACHES FOR OPTIMAL LOCATION OF EMERGENCY

RESPONSE VEHICLES

by

ATHANASIOS PANTIDIS

with an Electrical & Computer Engineering Diploma D.U.TH., 2002

Submitted for the completion of a part of requirements which lead to 

Postgraduate Specialization Diploma

2009

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 02:30:23 EEST - 13.58.158.87



Πανεπιστήμιο Θεσσαλίας
ΒΙΒΛΙΟΘΗΚΗ & ΚΕΝΤΡΟ ΠΛΗΡΟΦΟΡΗΣΗΣ

Ειαικη Συλλογή «Γκρίζα Βιβλιογραφία»

Αριθ. Εισ.: 7858/1
Ημερ. Εισ.: 15-12-2009

Δωρεά: Συγγραφέας
Ταξιθετικός Κωδικός: _Δ__________

362.106 8 
ΠΑΝ

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 02:30:23 EEST - 13.58.158.87



© 2009 Athanasios Pantidis

The postgraduate thesis approval from the Department of Mechanical Engineering, 

School of Engineering, University of Thessaly, does not imply the acceptance of 

author’s opinions.(Greek Law 5343/32 No. 202 par. 2)

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 02:30:23 EEST - 13.58.158.87



Approved by the three Member Examination Committee:

Major Advisor Professor Ziliaskopoulos Thanassis
Department of Mechanical Engineering, University of Thessaly

Member
(Co-advisor)

Professor Liberopoulos George
Department of Mechanical Engineering, University of Thessaly

Member
(Co-advasor)

Lecturer Kozanidis George
Department of Mechanical Engineering, University of Thessaly

π

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 02:30:23 EEST - 13.58.158.87



Acknowledgments

I would like to thank Professor Ziliaskopoulos Thanassis for being a great advisor. 

My thanks to Professor Liberopoulos George and Kozanidis George for being 

members of my Examination Committee, for reading this thesis and for offering 

valuable suggestions. I would also like to thank Vaggelis Katsaros, Ph D Student, for 

his collaboration during this thesis process.

Athanasios Pantidis

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 02:30:23 EEST - 13.58.158.87
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Abstract

Police, fire and emergency medical systems are all concerned with improving public 
safety, and share the common objective of responding to citizen calls for assistance as quickly 
as possible to reduce loss of life and injury.

Optimization of emergency response vehicles location is a research area which is 
concerned with the location of one or more vehicles so as to satisfy objective function 
requirements such as providing fast and reliable service to customers. The most important 
decision facing any emergency response service is how many emergency vehicles to have, 
and on which site to locate them.

A vast literature has developed out of the significant research interest in meeting this 
challenge. The literature review is separated into three sections depending on the objective 
function of the location models: Covering models, P-median models, and Center models.

In the next chapter 3, we describe characteristics and performance criteria of 
emergency response services. The assumption is that if calls are answered and serviced 
quickly, then this will lead to customer satisfaction and compliance to regulatory standards for 
response time performance. The decision-maker is confronted with the elements of time and 
distance simultaneously. The time taken to get to an incident is necessarily dependent upon 
the distance to be travelled and the conditions experienced during the journey. Timeliness, 
cost minimization, coverage equity maximization and labor equity maximization are the most 
important objectives of emergency service systems. In this thesis we also, focused on the 
description of some methods to estimate travel distance and travel time. A crucial issue in 
locating emergency response vehicles is data availability. Collection and analysis of the 
available data point out one of the main problems of the system.

Mathematical models may be very useful in dealing with emergency response vehicle 
location. In chapter 4, location models are classified according to their objectives, constraints, 
solutions, and other attributes.

There has been an important evolution in the development of emergency vehicles 
location and relocation models over the past years. In this thesis, we attempted to provide an
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overview of emergency vehicles location models dedicated to capturing the complex time and 
uncertainty characteristics of most real-world problems.

Chapter 5 concerns an elaborate description of the basic emergency response vehicles 
location models, mostly, in discrete space or networks, that are related to the public sector, 
such as ambulances, fire vehicles, police units. Static and deterministic location models 
assume that the nearest unit to a call for service is always available. Dynamic models can be 
used to periodically update emergency vehicles positions throughout the day. Probabilistic 
models deal with the stochastic nature of real-world systems. In these systems, models 
capture the stochastic aspects of facility location through explicit consideration of the 
probability distributions associated with modeled random quantities. Parameters, such as 
travel times, the location of clients, demand and the availability of servers are treated as 
random variables. The objective is to determine robust server/facility locations that optimize a 
given utility function, for a range of values of the parameters under consideration.

Finally, in chapter 6 we present two applications of P- Median and Hypercube models. 
The solution of Hypercube model is the state probabilities and associated system performance 
measures such as workloads. As far as it concerns the P-Median model, the aim is to locate a 
fixed number of vehicles so as to minimize the weighted travel time of the system. In the end, 
we solve P-Median model for fixed number of servers and we implement the hypercube 
model using the assignment resulted from P-Median problem.
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Chapter 1 Introduction

A fire engine or ambulance speeding to the scene of an emergency, or a police car 

patrolling city streets are common images of daily life. In the mid-1960’s operations 

researchers began studying the deployment of these emergency services. Police, fire and 

emergency medical systems are all concerned with improving public safety, and share the 

common objective of responding to citizen calls for assistance as quickly as possible to reduce 

loss of life and injury.

Optimization of emergency response facilities (vehicles) location is a research area in 

operations research concerned with the location of one or more facilities so as to satisfy 

objective function requirements such as providing fast and reliable service to customers. As 

populations shift, the need to relocate, expand, and adapt facilities ensures the evolution of 

new planning challenges.

Before a facility can be constructed or located, good locations must be identified, 

appropriate facility capacity specifications must be determined, and large amounts of capital 

must be allocated. While the objectives driving a facility location decision depend on the firm 

or government agency, the high costs associated with this process make almost any location 

project a long-term investment. Thus, facilities which are located today are expected to 

remain in operation for an extended time. Environmental changes during the facility's lifetime 

can drastically alter the appeal of a particular site, turning today's optimal location into
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tomorrow's investment misstep. Determining the best locations for new facilities is thus an 

important strategic challenge.

Perhaps the most important decision facing any emergency response service is how 

many fire vehicles or ambulances to have, and on which site to locate them. It is appreciated 

that the optimum solution is the one which minimizes the sum of losses providing fast and 

reliable service to customers.

2
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Chapter 2 Literature Review

Determining the optimal location of emergency vehicles such as ambulances, fire 

vehicles etc, is an important strategic and operational consideration. Emergency response 

facilities (vehicles) should be located in such a way as to ensure an adequate coverage and a 

quick response time.

A vast literature has developed out of the significant research interest in meeting this 

challenge. Also, unprecedented growth in computer power and in algorithmic sophistication 

has contributed to a significant evolution in location models. This review is separated into 

three sections depending on the objective function of the location models: Covering models, 

P-median models, and Center models.

2.1 Covering Models for Emergency Services

Covering models are the most widespread location models for formulating the 

emergency facility location problems. The objective of covering models is to provide 

“coverage” to demand points. A demand point is considered as covered only if a facility is 

available to service the demand point within a distance limit. Covering problems are divided 

into two major parts: the location set covering problem (LSCP) and the maximal covering 

location problem (MCLP).

LSCP is an earlier statement of the emergency facility location problem by Toregas et 

al. in 1971 [39] and it aims to locate the least number of facilities that are required to cover all

3
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demand points. Since all the demand points need to be covered in LSCP, regardless of their 

population, remoteness, and demand quantity, the resources required for facilities could be 

excessive. Recognizing this problem, Church and ReVelle in 1974 [6] developed the MCLP 

model that does not require full coverage to all demand points. Instead, the model seeks the 

maximal coverage with a given number of facilities. The MCLP, and different variants of it, 

have been extensively used to solve various emergency service location problems. A notable 

example is the work of Eaton et al. in 1985 [11] that used MCLP to plan the emergency 

medical service in Austin, Texas. The solution gives a reduced average emergency response 

time even with increased calls for service. Neither LSCM nor MCLP recognizes the fact that 

on occasions vehicles of several types may be dispatched to the scene of an incident Also, 

even if only one vehicle type is used, solving MCLP alone may not provide a sufficiently 

robust location plan. One of the first models developed to handle several vehicle types is the 

tandem equipment allocation model, or TEAM [37], Schilling et al. in 1979 generalized the 

MCLP model to locate emergency fire-fighting servers and depots in the city of Baltimore. In 

their model, known as FLEET (Facility Location and Equipment Emplacement Technique), 

two different types of servers need to be located simultaneously. A demand point is regarded 

as “covered” only if both servers are located within a specified distance.

The preceding models do not consider the system congestion and unavailability of the 

facilities. Many covering models have also been developed to address the possible congestion 

condition by providing redundant or back-up coverage. Daskin and Stern in 1981 [9] 

formulated a hierarchical objective LSCP for emergency medical service in order to find the 

minimum number of vehicles that are required to cover all demand areas while 

simultaneously maximizing the multiple coverage. Hogan and ReVelle in 1986 [19] 

developed MCLP models for emergency service that has a secondary “backup-coverage”

4
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objective. The models ensure that a second (backup) facility could be available to service a 

demand area in case that the first facility is unavailable to provide services. The backup 

coverage models have been popularly called as BACOP1 (Backup Coverage Problem 1). 

Since the models of BACOP1 require each demand point to have first coverage which is not 

necessary for many location problems, Hogan and ReVelle in 1986 [19] further formulated 

the BACOP2 model which is able to respectively maximize the population that achieve first 

and second coverage.

Gendreau et al. in 2001 [14], developed a model that considers the objective of 

maximizing double coverage of demand. The constraints include: the number of vehicles at 

each site, the moving of the same vehicle repeatedly, long travel trips, and round trips 

between two sites.

Research on emergency service covering models has also been extended to incorporate 

the stochastic and probabilistic characteristics of emergency situations so as to capture the 

complexity and uncertainty of these problems. There are several approaches to model 

stochastic emergency service covering problems. Daskin in 1983 [12] used an estimated 

parameter (q) to represent the probability that at least one server is free to serve the requests 

from any demand point. He formulated the Maximum Expected Covering Location Problem 

(MEXCLP) to place P facilities on a network with the goal to maximize the expected value of 

population coverage. ReVelle and Hogan in 1986 [34] later enhanced the MEXCLP and 

proposed the Probabilistic Location Set Covering Problem (PLSCP). In the PLSCP, an 

average server busy fraction (qi) and a service reliability factor (a) are defined for the demand 

points. Then the locations of facilities are determined such that the probability of service 

being available within a specified distance is maximized. The MEXCLP and PLSCP later 

were further modified to tackle other emergency service location problems by ReVelle and

5
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Hogan in 1989 [35] and Repede and Bernardo in 1994 [32], Repede and Bernardo in 1994 

[32] extended Daskin's maximal expected covering model to allow different location sets at 

different times of the week.

A cornerstone in location theory is the development and application of the queuing 

approach in solving emergency service location problems. The most well known queuing 

models are the hypercube and approximated hypercube by Larson [23, 24], which consider 

the congestions of the system by calculating the steady-state busy fractions of servers on a 

network. The hypercube model can be used to evaluate a wide variety of output performance 

such as vehicle utilization, average travel time, inter-district service performance, etc. 

Marianov and ReVelle in 1996 [26] created a realistic location model for emergency systems 

based on results from queuing theory. In their model, the travel times or distances along arcs 

of the network are considered as random variables. The goal is to place limited numbers of 

emergency vehicles, such as ambulances, in a way as to maximize the calls for service.

2.2 P-Median Models for Emergency Services

Another important way to measure the effectiveness of facility location is by 

evaluating the average total distance between the demand points and the facilities. When the 

average total distance decreases, the accessibility and effectiveness of the facilities increases. 

The P-median problem, introduced by Hakimi in 1964 [16], takes this measure into account 

and is defined as: determine the location of P facilities so as to minimize the average (total) 

distance between demands and facilities.

Since its formulation the P-median model has been enhanced and applied to a wide 

range of emergency facility location problems. One major application of the P-median models 

is to dispatch emergency response units such as ambulances during emergency incidents.

6
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Carson and Batta in 1990 [5] proposed a P-median model to find the dynamic ambulance 

positioning strategy for campus emergency service. The model uses scenarios to represent the 

demand conditions at different times. The ambulances are relocated in different scenarios in 

order to minimize the average response time to the service calls. Berlin et al. in 1976 [2], 

investigated two P-median problems to locate hospitals and ambulances. The first problem 

has a major attention to patient needs and seeks to minimize the average distance from the 

hospitals to the demand points and the average ambulance response time from ambulance 

bases to demand points. In the second problem, a new objective is added in order to improve 

the performance of the system by minimizing the average distance from ambulance bases to 

hospitals. Mandell in 1998 [4], developed a P-median model and used priority dispatching to 

optimally locate emergency units for a tiered EMS system that consists of advanced life- 

support (ALS) units and basic life-support (BLS) units. The model can also be used to 

examine other system parameters including the balance between ALS and BLS units, and 

different dispatch rules.

Uncertainties have also been considered in many P-median models. Mirchandani in 

1980 [29], examined a P-median problem to locate fire-fighting emergency units with 

consideration of stochastic travel characteristics and demand patterns. He took into account 

the situations that a facility may not be available to serve a demand and used a Markov 

process to create a system in which the states were specified according to demand 

distribution, service and travel time, and server availability. Serra and Marianov in 1996 [38], 

implemented a P-median model and introduced the concept of regret and minmax objectives 

when locating fire station for emergency services in Barcelona. The authors addressed in their 

model the issue of locating facilities when there are uncertainties in demand, travel time or

7
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distance. In addition, the model uses scenarios to incorporate the variation of uncertainties and 

seeks to give a compromise solution by minimizing the maximum regret over the scenarios.

P-median models have also been extended to solve emergency service location 

problems in a queuing theory context. An example is the stochastic queue median model due 

to Berman et al. in 1985 [3], This model seeks to optimally dispatch mobile servers such as 

emergency response units to demand points and locate the facilities so as to minimize average 

cost of response.

2.3 Center Models for Emergency Services

In contrast to the P-median models which concentrate on optimizing the overall (or 

average) performance of the system, the P-center model attempts to minimize the worst 

performance of the system and thus addresses situations in which service inequity is more 

important than average system performance. In location literature, the P-center model is also 

referred to as the minimax model since it minimizes the maximum distance between any 

demand point and its nearest facility. The P-center model considers a demand point is served 

by its nearest facility and therefore full coverage to all demand points is always achieved. 

However, unlike the full coverage in the set covering models, which may lead to excessive 

number of facilities, the full coverage in the P-center model requires only a limited number 

(P) of facilities.

The problem asks for the center of a circle that has the smallest radius to cover all 

desired destinations. In order to locate a given number of emergency facilities along a road 

network, Garfmkel et al. in 1977 [15], examined the fundamental properties of the P-center 

problem. He modeled the P-center problem using integer programming and the problem was 

successfully solved by using a binary search technique and a combination of exact tests and

8
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heuristics. ReVelle and Hogan in 1989 [35], formulated a P-center problem to locate facilities 

so as to minimize the maximum distance within which emergency service is available with a 

reliability. System congestion is considered and a derived server busy probability is used to 

constrain the service reliability level that must be satisfied for all demands.

Stochastic P-center models have also been formulated for emergency response 

location problems. For example, Hochbaum and Pathria in 1998 [18] considered the 

emergency facility location problem that must minimize the maximum distance on the 

network across all time periods. The cost and distance between locations vary in each discrete 

time period.

9
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Chapter 3 Characteristics of Emergency Response Service

Problems and Performance Criteria

The primary objective of emergency response services is to get the appropriate 

equipment to calls in a safe and timely fashion. The assumption is that if calls are answered 

and serviced quickly, then this will lead to customer satisfaction and compliance to regulatory 

standards for response time performance. The steps of the standard emergency call process 

are:

1. The call (demand) comes to the system via phone or some other mechanism.

2. The severity of the call is estimated.

3. The dispatcher evaluates the system status and determines the appropriate 

vehicle or vehicles to send to the scene.

4. Upon arriving the scene, service is provided.

5. The vehicle(s) may or may not provide transport to a hospital.

6. After completion of service (and transport) the vehicle goes into an idle state 

and returns to a predetermined location to await another call

The decisions of dispatching and vehicle location are critical factors in system success. 

If one cannot do both of these well, there will be inefficiencies in the system. The issue of

10
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timeliness is the primary objective that is used in operations research models. We can make 

the following assumptions.

■ There is a standard time, T, such that if the first vehicle arrives on scene within T 

minutes, then the call service is deemed a success. The specific value of T may vary 

with the type of call as more serious calls have lower T values.

* The area is partitioned into zones. These zones may take on any shape, but all calls 

from a zone originate in the population center. All travel to and from the zone is 

measured from the zone center point. Data is collected and aggregated at the zone 

level.

There are many ways that timeliness is measured. For example, one can operate to 

minimize the total or average time/distance to serve all calls. When a call for assistance 

arrives, fire fighters or staff of ambulance, are automatically confronted with several 

questions to be answered in a few seconds. These questions include [31]:

•S The location of the incident i.e. fire, car accident (elements, demand, distance)

•S The fastest route to the location of the incident

•S If the shortest distance could be taken (elements of distance and time, where 

the shortest distance or the minimum time could mean the most congested route)

S If the shortest distance is not ideal, what is the alternative route should be 

taken (elements of time and distance, where maximum distance or time could be the 

least congested route)

•S If average distance means a longer time, what is the minimum maximum 

distance to the incident (elements of distance and time, where minimum maximum 

time may not necessarily reflect average distance)

11
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■S The shortest route should be taken even though it usually reflects maximum

time (elements of distance and time, where the major assumption is that the public will

cooperate fully in allowing smooth passage for vehicles).

So, the decision-maker is confronted with the elements of time and distance 

simultaneously. The time taken to get to an incident is necessarily dependent upon the 

distance to be travelled and the conditions experienced during the journey.

A second way that timeliness is measured is the minimization of the maximum travel 

time/distance to any single call (ensures that no demand point is too far from vehicle 

location). It is used to reflect the worst scenario case associated with bad conditions 

experienced during the journey.

Another way that timeliness is measured is the maximization of area coverage. In this 

case, we cover as many zones in the area as possible within T minutes of travel.

A forth way that timeliness is measured is the maximization of call coverage so, we 

cover as many calls in the area as possible within T minutes of travel.

One criterion forjudging the performance of vehicle location is the speed at which the 

system reacts when a call is logged. As a result, the initial spatial allocation of vehicles, 

influences powerfully the efficiency of the response. To decide on a spatial allocation, 

requires that a number of issues be addressed. For example, how many vehicles are needed. 

Usually, there is a priori budget constraints, as a result, the minimum number of vehicles 

might be sought that would achieve "coverage" of all possible customers. This solution might 

or might not coincide with the solution that minimizes the cost of the system. Otherwise, the 

goal might be to "cover" the maximum population with a "good quality of coverage". Thus, 

response times are determined by an explicit or implicit compromise between the cost of
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service and the cost of failure (damage caused to customers by arriving late). It is important 

that, shorter response times impose greater resource requirements on the system, which in turn 

increases its cost.

Besides timeliness, another objective of emergency service systems is cost 

minimization. Cost is primarily a function of the amount of labor (man-hours) needed to staff 

the unit-hours used per year and the number of vehicles that must be purchased, supported, 

and serviced.

Another objective of emergency service deployment systems is the coverage equity 

maximization. Areas are not equal. Depending on several factors, some areas experience 

higher rates of incidents i.e. fire or car accidents. The system manager must balance area 

performance against the performance in a smaller group of zones. For example, it may not be 

acceptable to have zones that are poorly served while having the area at a reasonable level and 

some zones that are extremely well served. By changing decisions, more equitable systems 

can be designed.

A forth objective of emergency service deployment systems is the labor equity 

maximization. It is important for the system manager to balance the workload for all 

employees in the system. This reduces employee burnout and hard feelings. [1, 28, 33]

3.1 Modeling Issues - Granularity, Data Requirements and Validity

It is often difficult and expensive to experiment with an actual system. Mistakes are 

costly both in money and in potential mortality. Collecting data to verify a good system might 

take months of data collection. Instead of experimenting on the actual system, operations 

research professionals generally build models of systems that can be implemented and 

experimented with on a computer. System errors can be found on the model before they are
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implemented on the actual system. It is generally well worth the cost of building the model, 

collecting data, and running the model as opposed to trying to experiment on the actual 

system.

When using a model to help make decisions, there is significant work that must be 

done before any analysis can begin. First one must structure the granularity of the model and 

define zones. Next, one gathers demand, service, and travel time data based on that structure. 

Third, the model is implemented usually in software. Finally, one validates the model to 

convince the decision maker that model output has some correlation with the output of the 

actual system.

3.1.1 Granularity of the Zone Structure

The zone structure is often formed based on the convenience of the model builder or 

the data collection system. Since most urban and suburban fire service systems or emergency 

medical systems have tens of thousands of calls per year, it is impossible to model down to 

the call level. Instead, all calls in a "small area" are aggregated to a single zone. Let’s consider 

the aggregation in Figure 3-1. Here, we have 9 calls, one in each of the nine address blocks. 

Instead of using these individual locations, we aggregate all calls to the center of the blocks 

and this is our zone.

1 t 1

iiiV V
1 1 1

Figure 3-1: Call aggregation with a vehicle location.
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The problem here is that timeliness measured on the aggregated system may greatly 

overestimate the timeliness of the actual system. Consider the 8-minute call coverage criteria 

typically used in Emergency Medical Service systems and assume that a single vehicle is 

located exactly 7.5 minutes from the center of the blocks directly to the right. In the 

aggregated problem, all calls would be considered covered since the vehicle is 7.5 minutes 

away. In the actual problem, calls in the left column and calls in blocks directly above and 

below the center block may not be covered as these travel values may be larger than 7.5 

minutes. Similar examples using travel time or vehicle utilization as the criteria can easily be 

constructed. As the zones become smaller, the inaccuracies due to aggregation become 

smaller as well. Three specific types of errors may be defined:

■ Errors in distance measurement for the call since the original call location is not the 

location of the aggregated calls.

■ Errors in distance measurement due to not knowing the true location when a vehicle or 

facility is located at an aggregated zone.

■ Errors in dispatching due to not knowing the correct distance from vehicles or bases to 

calls in aggregated zones.

As computing power increases and larger models can be formulated and solved, less 

aggregation is needed and this problem becomes less critical. At this time, aggregation can 

still cause problems in models that use coverage or travel time objectives. [17]

3.1.2 Demand Data Modeling and Prediction

A crucial issue in locating emergency response vehicles is data availability. Collection 

and analysis of the available data point out one of the main problems of the system. Models 

should be formulated in such a way that they use only data that can be collected, and they
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must be robust, in the sense that the system designed by the model should not be too sensitive 

to small data errors. On the other hand, mathematical programming models almost always 

require less complete data to determine the necessary parameters. Furthermore, optimization 

models that are based on single or few objectives utilize a more simplified view of reality.

The ability to predict demand is of paramount importance. The typical approach is to 

tally past demand for each zone over some time period (a year or six months), and then 

assume that future demand will behave similarly to past demand. Similarly includes both 

quantity and spatial similarity. Even when the quantity of demand is changed, this is usually 

done in a proportional manner. [36]

3.1.3 Model Validity

Model validity refers to the model's ability to predict output and to make decisions that 

will work as well as predicted in the actual system. This is a key step in the modeling process. 

Unless the model makes valid predictions then the model will have little to no value.

Almost all models have "face validity" where the model looks reasonable to the casual 

observer. The next level is "replication validity." Here, the analyst inputs data on past 

operation of the actual system and the model replicates the operation of the system including:

• Predicting coverage and travel time close to those realized in the actual system

• Making the same dispatching decisions as the actual system made.

• Predicting vehicle utilization close to that realized in the actual system.

The final level is "prediction validity" where the analyst inputs data for a future 

system and the model predicts how the future system will behave. Often future validity cannot 

be fully determined until the system is implemented. Hence if the model has face and
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replication validity, then the decision maker is generally convinced of the quality of the 

model's output.
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Chapter 4 Classification of Facility (Vehicles) Location Models

Facility location models can be classified according to their objectives, constraints, 

solutions, and other attributes.

Topological characteristics of the facility and demand sites lead to different location 

models including continuous location models, discrete network models, hub connection 

models etc. In each of these models, facilities can only be placed at the sites where it is 

allowed by topographic conditions.

The objective is an important criterion to classify the location models. Covering 

models aim to minimize the facility quantity while providing coverage to all demand nodes or 

maximize the coverage provided the facility quantity is pre-specified. Center models have an 

objective to minimize the maximum distance (or travel time) between the demand nodes and 

the facilities. P-median models attempt to minimize the sum of distance (or average distance) 

between the demand nodes and their nearest facilities.

Discrete location models assume that demands can be aggregated to a finite number of 

discrete points. Thus, we might represent a city by several hundred or even several thousand 

points or nodes (e g., census tracts or even census blocks). Similarly, discrete location models 

assume that there is a finite set of candidate locations or nodes at which facilities can be sited. 

Continuous location models assume that demands are distributed continuously across a region 

much the way peanut butter might be spread on a piece of bread. These models do not
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necessarily assume that demands are uniformly distributed, though this is a common 

assumption Likewise, facilities can generally be located anywhere in the region in continuous 

location models.

Different solution methods result in different location models such as optimization 

models and descriptive models. Optimization models use mathematical approaches such as 

linear programming or integer programming to seek alternative solutions which trade off the 

most important objectives against one another. Descriptive models, in contrast, use simulation 

or other approaches to achieve successively enhanced location pattern until a solution with 

desired degree is achieved. Combined solution methods have also been developed by 

extending the descriptive models with optimization techniques to address dynamic and 

interactive location problems (e g. mobile servers).

Features of facilities also divide location models into different kinds. For instance, 

facility restrictions can lead to models with or without service capacity and facility 

dependencies can result in models that take into account the facility cooperation or neglect it. 

These capacity limits can be for example the number of customers that can be attended by an 

ambulance system within a reasonable waiting time.

Location models can also be classified based on the demand patterns. If a model has 

elastic demand, then the demand in an area will vary (either increase or decrease) with 

different facility location decisions while a model with inelastic demand will not vary the 

demand pattern due to the facility location decisions.

Time horizon categorizes location models into static models and dynamic models. 

Static models optimize the system performance deciding all variables simultaneously. In
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contrast, dynamic models consider different time periods with data variation across these 

periods, and give solutions for each time period adapting to the different conditions.

Another way to classify the location models is based on the features of the input 

parameters to the problems. In deterministic models, the parameters are forecast with specific 

values and thus the problems are simplified for easy and quick solutions. However, for most 

real-world problems, the input parameters are unknown and stochastic/probabilistic in nature. 

Stochastic/probabilistic location models capture the complexity inherent in real-world 

problems through probability distributions of random variables or considering a set of 

possible future scenarios for the uncertain parameters. [20]
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Chapter 5 An Elaborate Description of the Basic Emergency

Response Vehicles Location Models

The main section of this thesis concerns an elaborate description of the basic 

emergency response vehicles location models, mostly, in discrete space or networks, that are 

related to the public sector, such as ambulances, fire vehicles, police units.

5.1 Static and Deterministic Location Problems

These models assume that the nearest unit to a call for service is always available. The 

study of location theory formally began in 1909 when Alfred Weber considered how to 

position a single warehouse so as to minimize the total distance between it and several 

customers. Following this initial investigation, location theory was driven by a few 

applications which inspired researchers from a range of fields. Location theory gained 

renewed interest in 1964 with a publication by Hakimi , who sought to locate switching 

centers in a communications network and police stations in a highway system To do so, 

Hakimi considered the more general problem of locating one or more facilities on a network 

so as to minimize the total distance between customers and their closest facility or to 

minimize the maximum such distance.

Since the mid-1960s, the study of location theory has flourished. The most basic 

facility location problem formulations can be characterized as both static and deterministic. 

These problems take constant, known quantities as inputs and derive a single solution to be
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implemented at one point in time. The solution will be chosen according to one of many 

possible criteria (or objectives), as selected by the decision maker. [16, 30]

5.1.1 Covering Models

Covering models are based on the concept of acceptable proximity. In covering 

models, a maximum value is present for either distance or travel time. If a service is provided 

by a facility located within this maximum, then the service is considered acceptable. The 

service is equally good if provided by facilities at different distances, as long as both distances 

are smaller than this maximum value. Then, a customer is considered covered by the service, 

or just covered, if she/he has a facility sited within the preset distance or time.

Covering models can be classified according to several criteria. One of such criteria is 

the type of objective, which allows us to distinguish two types of formulations. In the first 

place, those seeking to minimize the number of facilities needed for full coverage of the 

population (Set Covering Models) and secondly, those that maximize covered population, 

given a limited number of facilities or servers (Maximum Covering Models).

5.1.1.1 Set Covering Model

The aim of this model is to locate a minimum number of servers needed to obtain 

mandatory coverage of all demands. In other words, each and every demand point has at least 

one server located within some distance or time standard r. The model positions the minimum 

possible number of emergency vehicles in such a way that the entire population has at least 

one of these vehicles initially located within the time or distance standard. Note that coverage 

is not affected by the fact that servers (vehicles) may be busy at times.

The formulation of the model is as follows:
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minimize M X

jeJ

subject to: M X IV Vi el
jeJi

xj e {0,1} VjeJ

where:

J = set of eligible facility sites 

I = set of demand nodes

{
] If a facility is located at node j 

0 otherwise 

Ji = {j e J : ty < r}

tij = shortest travel time from potential facility location j to demand node i 

r = time standard for coverage

Note that Ji is the set of all those sites that are candidates for potential location of 

facilities, that are within time r of the demand node i. If a facility is located in any of them, 

demand node i becomes covered. The objective function minimizes the number of facilities 

required. Constraints state that the demand at each node i must be covered by at least one 

server located within the time or distance standard r. This model ignores several aspects of 

real-life problems, the most important probably being that once a vehicle is dispatched, some 

demand nodes are no longer covered. [4, 7, 8, 27, 39]

5.1.1.2 Maximal Covering Location Problem

The Maximal Covering Location Problem (MCLP) recognizes that mandatory 

coverage of all people in all occasions and no matter how far they live, could require 

excessive resources. Thus, MCLP does not force coverage of all demand but, instead, seeks
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the location of a fixed number of facilities, most probably insufficient to cover all demand 

within the standards, in such a way that population or demand covered by the service is 

maximized. The formulation of the model is as follows:

Maximize ^d,y,
iel

Subject to: Σ*ί-^·
jeJ;

Zxj = p
jeJ

Xj e {0,1} 

Yi e {0,1}

Vi el (1)

(2)

VjeJ (3)

Vi el (4)

where additional:

di = demand at node i 

p = the number of facilities to be deployed

{
j If demand node i is covered

0 otherwise

The objective function maximizes the number of covered demands. It is important to 

note that this model maximizes demands that are covered and not simply nodes. The first 

constraint states that demand node i cannot be counted as covered unless we locate at least 

one facility that is able to cover the demand node. The second constraint states that exactly p 

facilities are to be located and the other two constraints are standard integrality constraints. [4, 

6, 7, 8, 27]
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In most emergency systems, a fundamental issue is the amount of time a customer 

waits for service. This is the case of any public emergency services, either medical, fire 

fighting or police related. In the case of medical emergencies, there is a correlation between 

life loss risk and response time. Thus, it seems to be a good approach to assure medical 

attention of all calls within a time standard or, equivalently, have an available server within a 

standard distance of each and every customer. The same happens in the case of fire fighting 

services. Since it can be expected that loss of property increase with time, each type of 

company has to respond within its standard time. Many issues have to be considered in order 

to determine the performance of an emergency service. Response time is one of them. From 

the point of view of the geographical design of such a system, an important issue is the 

location of the depots, that is, the initial location of the emergency vehicles (servers). Another 

one is the number of servers and a third one is the availability of servers. Availability, is 

defined as the actual percentage of time the server is idle, as opposed to being on repair, or 

attending other calls.

Neither LSCM nor MCLP recognizes the fact that on occasions vehicles of several 

types may be dispatched to the scene of an incident. Also, even if only one vehicle type is 

used, solving MCLP alone may not provide a sufficiently robust location plan.

One of the first models developed to handle several vehicle types is the tandem 

equipment allocation model, or TEAM. It applies naturally to fire companies that operate with 

two types of equipment (pumpers and rescue ladders), but it is also relevant in an ambulance 

location context where Basic Life Support Units and Advanced Life Support Units are used. 

Denote by pA and pB the number of vehicles of types A and B available, let rA and rB be the 

coverage standards for each vehicle type, and define:
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Jf ={je J : tlJ < rA}

if = {je J : tij < rB}

{
] If a vehicle of tvpe A is located at node j 

0 otherwise

{
] If a vehicle of tvpe B is located at node j

0 otherwise

{
l If demand node i is covered by two types of vehicle

0 otherwise

The formulation of the model is as follows:

Maximize Zd.y.iel

Subject to: Vi el

jeJf
Vi e I

2,
'M X '-·
 > II TJ
>

Σχ?=ρ“jeJ
A ^ B Xj <Xj VjeJ

xf ,x?e {0,1} Vje J

Yi e {0,1} Vi el

This model is a direct extension of MCLP except for constraints x^ < x® which 

impose a hierarchy between the two vehicle types. This constraint can of course be removed if
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circumstances warrant it. In the facility-location, equipment-emplacement technique, or 

FLEET model constraints x''1 < x® are relaxed, but only p location sites may be used. [37]

In any of the above models, coverage may become inadequate when vehicles become 

busy. A strategy employed in the case of a single vehicle type is to modify MCLP in order to 

provide better multiple coverage, without increasing the total number of vehicles beyond p. 

Two models with backup coverage, called BACOP1 and BACOP2, incorporate binary 

variables y* equal to 1 if and only if demand point i e I is covered once by an ambulance 

within a coverage standard r, and binary variables Ui equal to 1 if and only if i is covered twice 

within r. The formulation of BACOP1 model is as follows:

Maximize Zd>u>iel

Subject to: Zx,£ui+1
jeJi

Vie I

&

0 < If, < 1 Vi g I

Xj > 0 VjeJ

The formulation of BACOP2 model is as follows:

Max Zi = £d,y,
iel

Max Z2 = ^d,u,
iel

Subject to: ^a^Xj^u.+y, Vi g 1 (1)
JeJi

Uj-yi <0 Vi g I (2)

Zxj = p (3)
jeJ
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Ο < ut < 1

0<Yi<l 

Xj > Ο

J = set of eligible facility sites 

I = set of demand nodes 

di = demand at node i 

p = the number of facilities to be deployed

If demand node i is covered at least once 

otherwise

If demand node i is covered at least twice 

otherwise

If a facility is located at node j 

otherwise

If tij < r 

otherwise

tij = shortest travel time from potential facility location j to demand node i 

r = time standard for coverage

The objective maximize first and second coverage. The first constraint says that 

coverage by a first and second server is not possible unless at least two servers are initially 

located in the neighbourhood. The second constraint reflects the fact that backup coverage can 

not be fulfilled without first coverage. The next constraint limits the number of servers to be 

deployed. [19]

Vi el

Vi e I 

Vje J
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5.1.2 Center Problems

An interesting feature of the LSCP, is that it can be used for solving the p-center 

problem, which consists on finding the locations of p facilities in such a way as to minimize 

the maximum distance between a customer and its allocated facility. There are several 

possible variations of the basic model. The “vertex” p-center problem restricts the set of 

candidate facility sites to the nodes of the network while the “absolute” p-center problem 

permits the facilities to be anywhere along the arcs. Both versions can be either weighted or 

unweighted. In the unweighted problem, all demand nodes are treated equally. In the 

weighted model, the distances between demand nodes and facilities are multiplied by a weight 

associated with the demand node. For example, this weight might represent a node’s 

importance or, more commonly, the level of its demand. The vertex p-center problem can be 

formulated as follows:

Minimize W

Subject to: ΣΧ;=Ρ
jeJ

(1)

II Vi 6 I (2)

oVI1

£ Vi e I, Vj g J (3)

w-Zd.s.jy.j-° Vi el (4)

Xj e {0,1} Vj G J (5)

Υϋ e {0,1} Vi g I, Vj g J (6)

where:

W = the maximum distance between a demand node and the facility to which it is 
assigned
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di = demand at node i

Sij = distance between demand node i and candidate site j

Υϋ =

I if demand node i is assigned to a facility at node j 

0 Otherwise

The objective function minimizes the maximum demand-weighted distance between 

each demand node and its closest open facility. The first constraint stipulates that p facilities 

are to be located. The second constraint set requires that each demand node is assigned to 

exactly one facility. The third constraint set restricts demand node assignments only to open 

facilities. The forth constraint defines the lower bound on the maximum demand-weighted 

distance, which is being minimized. The fifth constraint set established the siting decision 

variable as binary. The sixth constraint set requires the demand at a node to be assigned to one 

facility only. This constraint can be replaced by yy > 0 V i e I, j e J because the third 

constraint set guarantees that yy < 1. If some yy are fractional, we can simply assign node i to 

its closest open facility. This problem is adequate for its use in applications in the public 

sector, because it tends to generate certain equity in the access to facilities by their users. [16]

5,1.3 P-Median Problem

The p-Median Problem belongs to a class of formulations called minisum location 

models. The aim of this problem is to locate a fixed number of p facilities so as to minimize 

the weighted distance of the system. The p-Median problem can be formulated as follows:

Minimize ΣΣ<Μλ
jeJ iel

Subject to: Στ,>=1 Vi e 1 (1)
j£j
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yij-Xj<0 Vi e I, Vj e J (2)

(3)Zxj=PjeJ

xje{0,l} Vj e J

y.j e{0,l} Vi e I, Vj e J

Where:

d, = demand at node i

Sjj = distance between demand node i and candidate site j

y« =

*j =

if demand node i is assigned to a facility at node j 

Otherwise

If a facility is located at node j 

otherwise

The objective function minimizes the demand weighted total distance. This is 

equivalent to minimizing the demand weighted average distance since the total demand is a 

constant. The first constraint states that each demand node must be assigned to exactly one 

facility site. The second constraint stipulates that demand nodes can only be assigned to open 

facility sites. The third constraint states that we are going to locate exactly p facilities. The 

last two constraints are standard integrality constrains.

5.2 Dynamic Location Problem

The models previously described tend to be "single use" models. A user would solve 

the model for a single data set of demands, travel times, and service times, and obtain insight 

on good sets of locations for that data set. This is problematic in that the data is typically not 

stationary and has dramatic changes over the day, the week, and even the year. One approach 

for dealing with the dynamic nature of the problem is to break the week into 168 hourly
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periods and solve the model for each hour. Here, a user will have to integrate solutions so that 

the system runs smoothly and is not jumpy with vehicles changing locations repeatedly. Also, 

one can use the models and do pre-planning for atypical situations. For example, if 25% of the 

vehicles are busy, one could solve a model with 25% less capacity and see how the system 

should be designed. This solution can now be used to help in deciding how to re-deploy. So, 

the typical strategy for dealing with the dynamic nature is to use the static models and do a 

great deal of experimentation to pre-plan for contingent situations. Unfortunately, one cannot 

anticipate every possible situation and one must still figure out how to integrate and 

implement the solutions from the different model runs.

When siting emergency vehicles, relocation decisions must periodically be made in 

order not to leave areas unprotected. This was recognized by Kolesar and Walker in 1974 [21 ] 

who designed a relocation system for fire companies. With the development of faster 

heuristics and advanced computer technologies, it is now possible to quickly solve an 

ambulance location problem in real-time. This means that a new ambulance redeployment 

strategy can be recomputed at any time t, using the available information.

One such model exists in the area of ambulance relocation and it was developed as 

follows. In addition to the standard coverage and site capacity constraints, the model takes 

into account a number of practical considerations inherent to the dynamic nature of the 

problem: a) vehicles moved in successive redeployments cannot always be the same, b) 

repeated round trips between the same two location sites must be avoided, c) long trips 

between the initial and final location sites must be avoided.

The ambulance relocation problem is solved at each instant t at which a call is 

registered. The dynamic aspect of the redeployment model is captured by time dependent
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constants M'( equal to the cost of repositioning, at time t, ambulance £ from its current site 

to site j e J. This includes the case where site j coincides with the current location of the 

ambulance, i.e., M‘f = 0. The constant M‘, captures some of the history of ambulance £ . If it

has been moved frequently prior to time t, then M‘, will be larger. If moving ambulance £ to 

site j violates any of the above constraints, then the move is simply disallowed. Binary 

variables y]t are equal to 1 if and only if ambulance £ is moved to site j. The authors defined 

yy as a binary coefficient indicating whether ty <ri (yy - 1) or not (yy = 0), 5y as a binary 

coefficient indicating whether ty <T2 (6y = 1) or not (6y = 0) and x* as a binary variable equal 

to 1 if and only if demand node i is covered at least k times. The model at time t can be 

formulated as follows:

n m p
Maximize Zd·*.2 - ςςμ;^

i=1 j=l l=\

Subject to:
m P

ΣΣ5.^1
j=i e=i

Vie I (1)

Σ^χ! > a^d,
i=l i=l

(2)

m P
ΣΣύ^ -x!+x.2J=1 1

Vie I (3)

Vi el (4)

II (f=i,..... P) (5)

P

Σλ^λ (=1
VjeJ (6)

x!’x?e {o, 11 Vi e I

yj( e {0,1} (j eJ, £= 1,.... P)
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Apart from the variables yjt, all variables, parameters and constraints of this model

can be interpreted as in the static case. The objective function is to maximize the backup 

coverage demand i.e., the proportion of the demand covered by at least two vehicles within a 

radius n, minus a relocation cost. The first term of the objective function is particularly 

appropriate in a real time context since the zone covered by a vehicle assigned to a call may 

still be covered by another ambulance after the call has been serviced. The second term 

ensures that the location plan remains fairly stable throughout the day. The model is truly 

dynamic since it incorporates new information on the state of the system received at each 

period t. In this model the first and second constraints ensure the single and the double 

coverage requirements. The absolute covering first constraint states that all demand must be 

covered within r2 units. The second and third constraints express the relative covering 

requirements. The second constraint imposes that a proportion a of all demand is covered 

whereas the third constraint states that the number of ambulances located within n units 

should be at least one if x} = 1 or at least two if x,2 = x’ = 1. The forth constraint ensures that

a demand point cannot be covered twice if it is not covered at least once. The fifth constraint 

specifies that each available ambulance must be assign to a potential location site. The sixth 

constraint defines an upper bound on the number of vehicles waiting at a location site. [14]

5.3 Probabilistic Location Problems

The dynamic models described in the previous section attempt to locate facilities over 

a specified time horizon in an optimal or near-optimal manner. While capturing more of the 

complexity inherent in real world problem instances than static and deterministic 

formulations, these models assume that input parameters are known values or that they vary 

deterministically over time.
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Probabilistic location problems deal with the stochastic nature of real-world systems. 

In these systems, models capture the stochastic aspects of facility location through explicit 

consideration of the probability distributions associated with modeled random quantities. 

Parameters, such as for example travel times, the location of clients, demand and the 

availability of servers are treated as random variables. The objective is to determine robust 

server/facility locations that optimize a given utility function, for a range of values of the 

parameters under consideration.

Researchers incorporate these distributions into standard mathematical programs, 

while others use them within a queueing framework.

5.3.1 Functions of random variables

Given an experiment with a sample space and a probability assignment over the 

sample space, a random variable is a function that assigns a numerical value to each finest- 

grained outcome in the sample space.

Each probabilistic modelling experiment can be approached using the following four

steps:

■ Define the random variables of interest

■ Identify the joint sample space

■ Determine the joint probability distribution over the sample space

■ Work within the sample space to determine the answers to any questions about the 

experiment

When examining a system we know by hypothesis or measurement the probability law 

of one or more random variables and we wish to obtain the probability laws of other random 

variables that can be expressed in terms of the original random variables. The random
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variables in the second set are functions of the random variables in the first set. This is a

problem of derived distributions, since we must derive the joint probability distribution for the 

random variables in the second set. Derived distribution problems can arise with discrete, 

continuous, or mixed random variables.

One technique for deriving distributions, is the "never-fail" method. Virtually all of 

the work associated with this method occurs in the joint sample space of the original random 

variables. Suppose that the original set of random variables is given by {Xi, X2, ..., Xn) with 

joint cdf Fxi, x2,...,xn(·) Suppose that there are M random variables Yi, Y2, ..., Ym, each of 

which can be expressed as a function of Xi, X2, ..., Xn, namely Yj = gi(Xi, X2, ..., Xn), i - 1, 

2, ..., M. Then the never-fail method, called the cumulative distribution method, allows 

computation of the joint cumulative distribution function for the Yfs, as follows:

fy„y2,.......yv (y.,y2>.........yM)sp{Y. ^yi>Y2 ^y2..... ym ^ yM)

a. Identify the set of points in the original (Xi, X2, ..., Xn) sample space that corresponds to 

the joint event

{Y, = gl(X„X2,....XN) <y„Y2= g2(X„X2,....XN) < y2,-.,YM gM(X„X2,...XN)<yM}

b. For each set of values for the y’s, [yi, y2, . . . , y\i], determine by summation or integration 

the probability in the (Xi, X2,... Xm,) sample space of this joint event, thereby obtaining

Fyi,y2... Ym(yi,y2, . yM) where - *>< yi,y2,...yM < + -*-·

If the random variables are continuous, we can find the joint pdf for {Yi, Y2,... Ym} by taking 

partial derivatives of Fyi,y2,...ym (') with respect to each of its arguments,

■sM
Ργ..γ,, y„ (y 1 ^ y 2»... yM)

....dy
‘^γ,,γ,,..γΜ (Υ\·>Υ2·>.... ,yM)

M
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5.3.2 Expected travel distance for a public safety vehicle to reach a random emergency 

incident in a straight highway of unit length

As we mentioned above, the time it takes for municipal emergency vehicles, such as 

fire engines, police cars, and ambulances, to respond to calls for service is an important and 

widely used indicator of the performance of emergency service systems. Most municipalities, 

know very little about how quickly their emergency units respond and how travel times and 

travel speeds vary with response distance, time of day, and region of the city.

One approach to determine the number of units to locate in a region is to estimate the 

average travel time as a function of the number of units and find the number of units needed 

to achieve a target average travel time.

One of the most important indicators of the performance of any emergency service 

system is response time, the time interval between the receipt of a call for service and the 

arrival of an emergency unit at the scene of the incident. Since response time can have a 

significant impact on the loss of life and property at an emergency, it is used as a principal 

measure of effectiveness in many models developed for analyzing the deployment of 

emergency vehicles.

Response time can be divided into three components: a) dispatch time, b) turnout time 

and c) travel time. Dispatch time is the time elapsed between the receipt of a call for service 

and the dispatch of the service unit. Turnout time, which is a factor only if the emergency unit 

is not immediately ready to respond when dispatched, is the time elapsed between the 

dispatch of a unit to a call for service and the departure of the emergency unit for the scene.

If they are discrete, the pmf is found simply by using the cdf and subtracting appropriate

successive values.
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This component is relatively constant, since departure preparations generally consume the 

same amount of time regardless of the type of call. The third component of response time is 

travel time, or the time it takes for the emergency unit to arrive at the incident after it begins 

its response. [10]

Suppose that a public safety vehicle travels back and forth along a straight highway, 

the travelling perhaps to find motorists in need of assistance. Also, along this highway 

accidents can occur that create a need for on-scene assistance by the vehicle. The vehicle is 

dispatched by radio to these accidents. We are interested in determining the probability law of 

the travel distance for the public safety vehicle to reach a random emergency incident.

It requires that we do four things to model the experiment:

■ Define the random variables of interest

■ Identify the joint sample space

■ Determine the joint probability distribution over the sample space

■ Work within the sample space to determine the answers to any questions about the 

experiment

1. Random variables. Suppose that the highway is of unit length. Then the two key random 

variables would be:

Xi = location of the emergency incident, 0 <Xi <1

X2 = location of the safety vehicle at the moment of dispatch, 0 <X2< 1

The travel distance D can be expressed as a function of Xi and X2, D = |Xi - X2|

38

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 02:30:23 EEST - 13.58.158.87



2. Joint sample space. The joint sample space is the unit square in the positive quadrant (0 < 

Xi< 1,0<X2<1).

3. Joint probability distribution. We assume that the locations of the public safety vehicle and 

the emergency incident are uniformly, independently distributed over the highway. Naturally, 

the analysis could also proceed with an alternative set of assumptions. Since we are now 

dealing with strictly continuous random variables, we will work with the joint probability 

density function, which is:

fx,,x2(Xl,X2) = fx,(Xl)fx2(X2)
0<X„X2 <1 

otherwise

4. Work in the sample space. This is the point at which the never-fail method for deriving 

distributions comes into play. We want the probability law of:

D = |X, - X 21 = " travel distance"

To apply the never-fail method for finding the cdf of D, Fo(y), we first locate the region in the 

(Xi, X2) sample space corresponding to the event (D < y). Formally, the steps are written as 

follows:

io(y) = P{D < y} = P{|x, - x2| - y}

To remove the absolute value operator, we consider two cases separately: 

case 1: Xi >X2 and case 2: Xi < X2.

For the first case, D = Xi - X2 and experimental values xi and x2 of Xi and X2, 

respectively, must lie between the line x2 = xi and x2 = xi - y. For the second case, D = X2 - 

Xi, and experimental values of Xi and X2 must lie between the line x2 = xi and x2 = xi + y. 

Consideration of these two cases gives rise to the shaded region in the sample space in Figure
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5-1. Once we have determined such a region, we have identified the set of points 

corresponding to the event of interest D < y, thereby completing step a of the never-fail 

method.

Figure 5-1: Joint (Xi, X2) sample space, randomly positioned incident and vehicle.

Step b of the never-fail method requires that we integrate fxi,x2,(·) over the set of points 

in the shaded region to obtain FD(y). Since the joint Xi, X2 pdf is uniform over the unit 

square, we can perform the integration by computing areas in the sample space. 

(Conceptually, each area is multiplied by "1," the height of the pdf at that point, to yield a 

probability measured as a volume.) By computing areas of the triangles not in the shaded 

region,

FD(y) = l-2(l/2)(l-y)2 0<y<l

we have now completed step b of the never-fail method. Should we desire the pdf of D, we 

differentiate, obtaining:
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f (v) = iMy) = {2(|->0 °-y£1
dy [ 0 otherwise

From the pdf (or cdf) we can determine anything that is desired concerning D. So, the 

expected value (or mean value) of D is:

+oo 1

E[D] = J yfD(y)dy = Jy2( 1 - y)dy = -
-oo 0 **

and the variance of D is:

°d = E[(D- E[D])2] = E[D2] - (E[D])= = +
1 o

Suppose that a system administrator is interested in knowing the effects on travel 

distance of prepositioning the public safety vehicle at the center of the interval depicting the 

highway, thus fixing X2. Then the joint sample space is the straight line indicated in Figure 5- 

2. If the new travel distance is D—|Xi-l/2|, the region for which (D' <y) is the line segment of 

length 2y centered at Xi=l/2. Integrating the uniform pdf of Xj, we have:

Fo'(y) =P{D’ <y)= P{ I X, - 1/2 | <y)= 2y (O <y <l/2).

^2

1

\ -y ^ 5 + > 1 *1

Figure 5-2: Joint (Xi, X2) sample space, randomly positioned incident, fixed position vehicle.
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Thus, the pdf of D' is:
0 < y < 1/2 
otherwise

• 1 ΊThe mean and variance are: EfD'l = — and cL = —
4 48

Thus, a change in deployment policy resulting in an vehicle prepositioned at the center 

of its service area rather than randomly patrolling its service area reduces mean travel distance 

by 25 percent, the variance of the travel distance by 62.5 percent, and, perhaps important in 

"worst-case" analyses, the maximum possible travel distance by 50 percent.

5.3.3 A general case of expected travel distance in two dimension area

Travel distance is much easier to estimate than is travel time. As a result, many 

emergency service standards are based on distance. There are many simple methods that can 

be used to estimate distance (D) for a specific response.

For example, the distance can be measured on a map by following the actual route of 

response. An easy method to estimate distances by computer involves superimposing a 

rectangular grid on a map of the city and storing this grid in the computer. Then, any point in 

the city, such as a street intersection, firehouse, or fire alarm box, can be identified by a pair 

of grid coordinates (x, y). The distance between two points specified by (xj, yi) and (X2, y2) 

can then be estimated using a function of these coordinates.

So, the Euclidean distance (the straight line distance between the two points) is given 

by De = yj(x2 -x,)2 + (y2 - y,)2 , while the right angle distance (the distance calculated as if 

all streets in the city intersected at right angles) is given by Dr = |x2 - x, | + |y2 - y, |.

Let (X, Y) and (Xi, Yi) indicate, respectively, the location of calls for service and of 

the response unit in a district R of area A. Denote by/w,,y! (χ,γ,χι,γι) the joint pdf for random
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variables X, Y, Xi and Yi and by D = d[(X,, Yj), (X, Y)] the mathematical relationship for

the distance between (Xi, Yi) and (X, Y) [for example, D = -J(x, - x)2 + (Y, - Υ)2 , for 

Euclidean distances]. Then, the expected travel distance in the district is:

E[°] = JjJ{d[(x>’Υi(x>y)]/x,r,Wl(x,y,Xj,Yi)dx, dy, dxdy (l)
over R

Note that the joint pdf for the coordinates of the incident and of the service unit can be 

made to reflect not only nonuniformities in the distribution over R but also possible 

dependencies between the locations of incidents and of the service unit.

The former expression can be extended to the case where N response units are located 

in district R. If (Xi, Υ;) indicates the location of the ilh response unit (i = 1, 2,.. N) and (X, Y) 

the location of an incident, then the distance between the incident and the closest response 

unit can be written:

Dn - Min {d[(Xi, Y,), (X, Y)],.. ., d[(XN, YN), (X, Y)]}

Since DN, is then a function of the random variables X, Y, Xi, Yi, X2,Y2,· . . ., Xn, Yn:

E[Dn] = {...... J Min {d[(x,, y,), (x, y)], ,d[(xN,yN),(x,y)]}·
over R

fx,Y,xvYlt ,xn,yn x\>y\’........... >xn’yn)dxdy....dyN

where f*, y, xi,yi, .^.yn(x,y,xi, ■ ■ ■■, yn) is obviously the joint pdf for the coordinates of the incident 

and the N response units. Thus, in both (1) and (2) we have expressed expected travel distance 

as the expected value of a function of random variables whose joint pdf is known. The 

problem of computing the expected travel distance in the general case is, therefore, no more 

(or less) difficult than working with any other function of these random variables.
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Obviously, in practice, there are severe limitations on how far one can go in deriving 

such exact expressions for E[D], Problems become mathematically intractable as the number 

of random variables increases or as the shape of R and/or the joint pdf for the random 

variables becomes more complex. In many cases, however, all is not lost as long as one is 

willing to settle for good approximations rather than exact results. This is true any time the 

response units are stationary at known locations, no matter what the number, N, of these units 

is (and for practically any pdf for the spatial distribution of incidents/demands as well as for 

any shape of the district of interest). It is also true, for any value of N, in the case of mobile 

response units as long as this approach can also be generalized to expected distances to other 

than the closest unit (e g., to the closest unit). Sub-districts of responsibility have been 

defined in such a way that each sub-district of R is served exclusively by a very small number 

of mobile units. In such instances, the following three-step approach will work:

STEP 1: Divide the district.R into several (possibly many) nonoverlapping parts, which we 

shall call "zones." Each zone must have the following two properties:

a. Its shape must be approximately rectangular, triangular, circular, or any other easy-to-work- 

with configuration.

b. The pdf for the spatial distribution of incidents/demands within each zone must be 

approximately uniform (or that pdf can be approximated by some other sufficiently simple 

expression as to permit easy mathematical manipulation).

STEP 2: We compute all intrazone and zone-to-response unit expected distances. STEP 3: 

Multiply the expected distances computed in Step 2 by appropriate probabilities to obtain 

overall expected travel distances for district R.
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Note that each zone in Step 1 can have an individual shape with its "own" pdf for the 

distribution of incidents. Note also that the greater the degree of accuracy desired, the larger 

the number of district zones should be (to approximate better the shape of the district R and 

the pdf for the spatial distribution of incidents). In fact, the three- step approach outlined 

above is very similar to the approach that a computer would follow in order to compute 

numerically the integrals in expressions (1) and (2).

So far, we focused on case where incidents are not uniformly distributed and the 

district itself does not have a nice rectangular (or circular, triangular, etc.) shape.

In the following paragraphs we estimate expected travel distances and times to and 

from incidents in districts with relatively regular ("fairly compact and fairly convex") 

geometries and uniform distribution of incidents over the districts.

To find the district dimensions which lead to the minimum expected travel distance, 

we must keep for example, the area of the response district Ao = Xo YG, Figure 5-3, constant

and E[D] = γ(Χ0 + Υ0) is minimized subject to the condition YD — Ao/Xo. Without this

constant, a zero area (point) district would be optimal, an obviously infeasible result 

considering that the collection of districts in a city must usually cover the entire city (which 

has fixed positive area). Not surprisingly, E[D] is minimized when the rectangle becomes a

square. In that case, we have Xo = YQ = and E[D] = γ
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Figure 5-3: Rectangular Response Area.

More generally, if the effective travel speeds in the x-direction and the y-direction, vx and

vy, are independent of travel distance, the expected travel time, E[T] = ^ X„ Y„___ 0_ _|_ ___O

V VV x y y

is minimized

Y X A 2 A
when -2- = —2- = |—— jn which case E[T] = — —— . The optimal shape of the district, is the

v v u v vy x | x y 3 V V^v

one for which it takes as much time to traverse the district from "east to west" as from "north to

south."

The expressions for E[D] and E[T] turn out to be "robust" (i.e., rather insensitive to the 

exact values of X„ and YG). We suppose that Xo = a YG where a is a positive constant. We assume 

α > 1 and, we set A<, = Xo Y0. Then E[D] can be written as:

E[D] =
(a + l)^/A7

3yfa

I 2
The second term ^ α ^ is the amount by which E[D] deviates from its minimum

3y/a

value E[D] = —y[\. For a = 1,5 that term becomes equal to 0.014 λ/α^ , (i.e., E[D] is only

about 2 percent greater than its minimum value). Even for a = 4, E[D] is only 25 percent more 

than its minimum value.
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2 __ γ χ Γα.
Results such as those of E[D] = —Jand —- = —- = I——

3 Vy Vx
can be derived for

various district shapes. The first three columns of Table 5-1 summarize the equivalents of 

2
E[D] = -VX7, for a square district, a square district rotated by 45' with respect to the right- 

angle directions of travel, and a circular district. The following four cases are included:

1. Euclidean (straight-line) travel when the response unit is randomly and uniformly 

positioned in the district.

2. Case with right-angle travel.

3. Euclidean travel with the response unit located at the center of the district.

4. Case with right-angle travel.

In all cases it is assumed that the locations of requests for service are uniformly 

distributed in the district and independent of the location of the service unit. When the 

constants in Table 5-1 are multiplied by , the square root of the area of the district in

question, E[D] is obtained In some instances (e g., a square district with a randomly 

positioned response unit and Euclidean travel) the constant of interest is not known exactly 

and the best known approximation, to two-decimal-place accuracy, is shown.

The three district geometries included in Table 5-1 are "special cases" of rectangular, 

diamond-shaped, and elliptic districts. If one varies the district dimensions of each type while 

constraining district area to equal a constant A„, E[D] is minimized by the symmetric 

geometries represented in Table 5-1
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Metric in 
use

Shape of district

Square Perfect, four sided 
diamond Circle

Approximati 
on for "fairly 
compact and 

fairly 
convex” 

areas
Response 

unit is 
randomly 

positioned in 
the district

Euclidean
travel 0,52 0,52 -^= = 0,511 

45 W π
0,52

Right angle 
travel 2/3 = 0,667 14λ/2 = 0,660 

30
4 128 -0650 0,67

π·45π^π

Response 
unit is

located at the 
center of the 

district

Euclidean
travel

λ/2 + ln(l + V2)v = 0,383
6

V2+ln(l + V2)=()383 
6 —7=0,376 

3v^r
0,38

Right angle 
travel 1/2 = 0,5 V2/3 = 0,471 —- 0,479 

π·3^π
0,50

Table 5-1: Proportionality constants for determining mean travel distances.

It can be seen from Table 5-1 that, for any given district area A, E[D] is very 

insensitive to the exact geometry of the district. This can be confirmed by deriving E[D] for 

other possible district geometries, such as equilateral triangles or piece-of-pie-like sectors of 

circles. Moreover, for any given district geometry, the value of E[D] is insensitive to changes 

of the dimensions of the district that might make it appear to deviate appreciably from its 

optimum shape.

From these observations it can be concluded that we can use the first three columns of 

Table 5-1 to infer similar approximate expressions for E[D] that apply to districts of any 

shape as long as (1) one of the dimensions (e g., "length") is not much greater than the other 

dimension (e g., width), and (2) major barriers or boundary indentations do not exist in the 

district. Districts that satisfy both of the conditions above will be called here, informally, 

"fairly compact and fairly convex districts." We can now state the following: For fairly 

compact and fairly convex districts and for independently and spatially uniformly distributed

requests for service, E[D] = c '^/A^ where A„, is the area of the district and c is a constant
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that depends only on the metric in use and on the assumption regarding the location of the 

response unit in the district.

The last column of Table 5-1 lists values that can be used for c in E[D] = c 'y[\ for

the four combinations of response unit locations and metrics. In all cases, we have selected 

the largest value of c listed in each row of the three leftmost columns of Table 5-1.

When the effective travel speed is independent of the distance covered, one can use 

the constants in the fourth column of Table 5-1 to approximate the expected travel time, E[T],

as well. In that case we have E[T] = in the case of Euclidean travel (assuming that the

effective travel speed v is independent of the direction of travel) and E[T] =c
V Vx y

for right-

angle travel. In this latter case, the district "compactness" statement requires that EfTeast- 

west] *»E[Tnorth-south]. That is, it takes on the average about as much time to traverse the 

district from east to west as from north to south.

In 1974 Kolesar and Blum [22] have shown that E[D] in a region is inversely 

proportional to the square root of the number of units per unit area. More formally, if the

coordinates of each point (x, y) in the district of interest are multiplied by yfm (m > 1) [i.e., 

point (x, y) now becomes point (-Jm x, yfm y)], then the area of the district increases m-fold 

but the length, L, of any given route between the pair of points (xi, yi,) and (x2„ y2,) in the 

original district-becomes equal to V/w L in the expanded district.

Equivalently, we can state that E[D] and E[T] must be proportional to the inverse of 

the square root of the density of response units in a district, for districts with more than one 

response unit. That is, if a district of area A is divided into n approximately equal fairly
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convex and fairly compact subdistricts of responsibility (whose shapes may vary), then E[D]

where y denotes the spatial density of service units and N denotes the number

of available units.

In most practical situations, the effective travel speed of urban response units depends 

on travel distance: longer trips, in general, are taken at a higher average speed than are shorter 

trips. It is therefore desirable to develop expressions for E[T] that take into consideration 

some types of functional relationships between travel time and travel distance [unlike

expressions E[D] = — λ/α^ and E[T] , which assumed that effective travel speed

remains constant with distance]. One plausible model is the following. Let us assume that 

urban service vehicles responding to a call, first go through an acceleration stage (perhaps 

while maneuvering their way through side streets, turns, etc.) until they reach a cruising speed 

that they maintain through the middle stage of the trip (while, perhaps, traveling on highways, 

thoroughfares, etc.) up to the final stage of it, during which they decelerate to a stop. Let us 

further assume that during the initial and final stages, vehicles accelerate (or decelerate) at a 

constant rate of a miles/min and that during the middle stage, travel is at a constant cruising 

speed of v, miles/min.

For trips of length less than 2dc, (where dc, = u J2a is the distance needed to reach 

cruising speed) the cruising speed will neverbe reached; this is not the case when the travel 

distance D is greater than 2dc. Using the well-known physical relationships for accelerated 

and constant speed travel (D = at2c/2 and D = ut), it is then easy to conclude that the 

conditional expected travel time E[T | D = d] for any given travel distance is:
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for d < 2d

e[t|D = d] =
d-2d 2 u
-------------------- +—

d uc 
a u, a

for d> 2dc

One can obviously think of many other physical scenarios that would lead to different 

expressions for E[T | D = d], A considerable amount of field data, however, suggests that 

these two relationships often provide truly excellent approximations for many urban services- 

see, for instance.

An expression for the unconditional expected travel time, E[T], can now be written:

oo 2dc j— 00 r \

E[T] = |e[t|D = x]fD(x) dx = j 2J~ fD(x)dx + J —+— fD(x)dx
0 0 * ® 2dAaUc7

5.3.4 Coverage

In deployment applications one may be less interested in the expected value of some 

quantity, say travel time, than in the fraction of the city which receives "adequate coverage" 

by the service. Coverage is usually defined in terms of an inequality, such as travel time being 

less than or equal to i.e. 4.0 minutes.

Let us define coverage over a convenient interval, say [0, 1] and X= set of points in 

[0,1] which are covered and μ(Χ) = ‘length’ of the set X. If the covered points are as in

Fieriim thr»rvJL. 'W' —' U j IL· A Λ 'W* A A ·

μ(Χ)=- 2_J_
3 2

/
+

Λ
1-----

V 4y

3
4

The points in X are usually determined according to some probabilistic process, and we wish 

to compute the expected value of μ(Χ).
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Covered points
V \
\

'γΥτΥ,ν/ϊΥ&Υ*1*-------------WrVrWA------ K////////·
.1 2 J> 4

Figure 5-4: Set of points in [0,1] which are covered.

For example, suppose that we have N emergency vehicles distributed independently 

and uniformly over the interval [ - 6a, 1 + 6a], the extensions beyond [0, 1 ] being added to 

avoid boundary problems. Emergency incidents are distributed uniformly on [0, 1] and are 

independent of vehicles positions. We want to know the expected amount of the interval [0, 1] 

which is "covered" by emergency vehicles, where a point is said to be covered if at least one 

vehicle is within a distance a/'2 of the point. Suppose that the probability that any point x on 

[0,1] is covered by a particular emergency vehicle is pi(x) =pi. Then, the probability that any 

point x on [0,1 ] is covered by at least one vehicle is:

Pn(x) = 1- P{x not covered by any vehicle}= 1 - (1 - pi)N = pn 

We define a set indicator random variable as:

S(x)Ξ
if x is covered 
otherwise

and divide [0,1] into I intervals, where interval I has length Δχ = 1/1. Then:

I
μ(Χ) = 2>(ίΔχ)Δχ

i=l

and taking expected values:

Ε[μ(Χ)] = E[^S(ϊΔχ)Δχ] = ^E [8(ϊΔχ)]Δχ = Σ[0·(1-ρΝ) + 1·/?„]Δχ = pN.l
i=l i=l i=l
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Hence,

Ε[μ(Χ)]=1-(1-ρ)Ν

The approximate summation above becomes an integral when I —*au, Δχ —>0. Note 

that the solution behaves as we expect, namely diminishing marginal returns (in terms of extra 

expected area covered) with each additional vehicle. Generalizing the foregoing argument, if 

p(x) is the probability that point x is covered,

+co

E[p(X)] = Jp(x)dx
-00

Extending to obtain higher moments of μ(Χ), we suppose p(xi,. . ., xm) is the probability that 

χι,...,χ„ all belong to the covered set X. Then:

+oo +ao

E[p(X)m] = |.... jp(xl5..... ,xm)dx,.....dxm
-oo -oo

A limitation of the deterministic models is that they assume that servers are available 

when requested, which is not always true in practical situations. In non-congested systems, 

with little demand, the assumption is reasonable, but in congested systems, in which frequent 

calls for service may for example keep ambulances busy 20-30% of the time, the assumption 

is totally unjustifiable. Congestion in emergency services, which may cause the unavailability 

of servers within the critical distance when a cal! is placed, lead to the development of 

probabilistic covering models.

The first wave of published location models were deterministic and thus did not 

account for the probability that a particular ambulance might be busy at a given time. As a 

result, they either underestimated the number of ambulances needed, or overestimated the 

actual coverage provided. Probabilistic models, on the other hand, acknowledge the
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possibility that a given ambulance may not be available when called This uncertainty has 

been modeled using queuing or simulation, or embedded into a mathematical programming 

formulation. [25]

5.3.5 Mathematical programming models

Important models that treat the availability of servers as a random variable are the 

Maximum Expected Covering Location Problem (MEXCLP) and the Maximum Availability 

Location Problem (MALP). In both models simplifying assumptions lead to the definition of 

mathematical programming models: the assumption that servers operate independently is a 

common feature to both models. In Maximum Expected Covering Location model it is 

assumed that each server has the same busy probability. As far as it concerns MALP, there are 

two variations: MALPI, where each server has the same busy probability, and MALPII, where 

busy fractions are different in the various sections of a region under consideration.

The MEXCLP and MALPI models are both probabilistic extensions of the Maximum 

Covering Location Problem (MCLP), their deterministic equivalent. The location of 

emergency services has as a common objective, the provision of coverage to demand areas. 

The notion of coverage implies the definition of a service distance (time), which is the critical 

distance (time) beyond which a demand area is considered not covered. A demand area is 

therefore considered covered if it is within a predefined critical distance (S) from at least one 

of the existing servers (facilities).

MEXCLP’s objective is to maximize the expected coverage of all demand areas under 

consideration. As we mentioned above, it is assumed that servers operate independently and 

that all servers have the same busy probability (workload ) p In this model it is aiiowed more 

than one server to be situated in any given location.
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Let J be the set of demand areas. The probability that a demand area j e J is covered 

by at least one server, given that k servers cover this area within the critical distance S, is 

given by:

P [at least one server available within S] = (1- P[no server available within S]) = 1- pk

Let Hj k be a random variable equal to the demand of area j covered by an available 

server, given that k servers cover this area. If (pj is the number of calls per day originating in 

demand area j, HjJt = (pj with probability (1 - pk), HjJt = 0 with probability p\ The expected 

value of HjJc is given by Ε(Η^) = (pj (1 - pk) V j, k. The increase in expected coverage in 

demand area j when the number of servers that cover it is increased from (k - 1) to k is given 

by AE(Hj k) = ECHjjc) E(Hjjc.i) - pk l (1 - p), k = 1,2,........... ,p.

Let I (|I|= n) be the set of locations where servers may be stationed, a,j = 1 if demand 

area j is covered by a server located at i e I within critical distance S (a.j = 0 otherwise), p is 

the number of servers to be located. Define variable Xjk e {0,1} such that Xjk = 1 if demand

area j has at least k servers within S, Xjk = 0 otherwise. Finally let y* = 0,1,2,........ ,p represent

the number of servers located at i e I. Using the definitions above MEXCLP may be 

formulated as an integer-programming problem:

Maximize Z=££(pj(1-p)pk"IXj 0)
jg J k=I

Subject to:

Σ°^Σχ* jgJ (2)
iel k=l

Iy,£p 0)
iel

Y, = 0,1,2,........... p iel (4)
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(5)xjk e {0,1} V j, k

In the formulation above the objective function maximizes the expected coverage, 

considering that up to p servers may cover any given demand area within S. Restrictions (2) 

count the number of servers that cover demand area j within S, for all j e J . Constraint (3) sets 

at p the upper limit on the number of servers to be located and restrictions (4) and (5) define 

the nature of the decision variables. Notice that restrictions (4) allow up to p servers to be 

situated in any given location i e I. Finally, as the objective function is concave in k for each 

j e J, it is not necessary to include in this formulation precedence constraints of the type Xjk < 

Xj(k-D· [12]

As we mentioned above, there are two important probabilistic formulations known as 

the maximum availability location problems I and II (MALP I & II). Both distribute a fixed 

number of response units in order to maximize the population covered within a response-time 

standard and with a predetermined reliability. In MALP I, a system-wide busy probability is 

computed for all units (similar to MEXCLP), while in MALP II, the region is divided into 

neighborhoods. Local busy fractions for units in each neighborhood are computed, assuming 

that the immediate area of interest is isolated from the rest of the region.

Maximum availability location problems I, uses a formula to estimate p, the common 

busy fraction for all servers. Let t be the mean service time, measured in hours, for a call 

originating in any demand area j e J. It is possible to calculate p as p = t /24p, i.e. the

busy fraction of each server is calculated dividing the mean number of daily hours of service 

needed by the system by the number of daily hours available, assuming that p servers will be 

located. [12]
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The restriction that at least one server must be available within S for any given 

demand area j e J with probability greater than or equal to a may be written in the following 

way: P [at least one server available within S] > = (1 - P [no server available within S]) > a

Σα^· „
= 1 - p*1 >a, where ^α,ν is the number of servers available within S of demand area

iel

j e J. Or, taking logarithms, ^a^y, > d, where d = [log(l - a)/log p],
iel

From the equivalent linear expression obtained from the probabilistic constraint, it is 

possible to notice that each demand area jeJ requires at least d servers available within 

critical distance S for it to be covered with reliability a. In order to be able to maximize the 

number of calls serviced with reliability a, it is necessary therefore to maximize the number of 

calls with at least d servers available within S.

If we use variable Xjk utilized in the definition of MEXCLP, the expression

n
Σx ,k represents the number of times demand area jeJ is covered within S. In order to
k=l

maximize the number of calls covered with reliability a, ^q>jX d must be maximized. The
jeJ

mathematical formulation of MALPI can be finally written in the following way:

Maximize Z = y^(p,x,d
jeJ

(6)

Subject to:

i01
• —“

1

df
W

e
VIxT (7)

Xjk — Xj(k-1) j ^ Σ............ d (8)

Σ y. = p
iel

(9)

Xjk e {0,1}, j eJ, k= 1, d (10)
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(Π)yi e {0,1}, i el 

Σ“·^.
1 - p > a which can be linearized as 

ΣαϋΥι - d» where d = Ρ°8θ - ayiog p] (12)
iel

where

: the number of servers available within S of demand area j e J

Restrictions (7) guarantee that a demand area j e J is covered with reliability a if at 

least d servers are available within S from j. Constraints (8) express that, for a given demand 

area to be covered by k servers, it must be covered by at least (k 1) servers, for 2 < k < d 

These constraints, which omitted in MEXCLP, are necessary in MALPI. Restriction (9) 

establishes that p servers must be located, while constraints (10) and (11) define the binary 

nature of the decision variables. Notice that in the formulation of MALPI, only one server 

may be situated in any location iel. The model remains valid, however, if more than one 

server is allowed in any location iel , as in MEXCLP. In this case constraints (11) would 

have to be replaced by constraints (4). Finally constraint (12) expresses the minimum number 

of servers required to serve each demand point j with a reliability level of a. [12]

The formulation above is similar to that of MEXCLP, except of course for the 

objective function. Notice also the difference between constraints (2) and (7): while in 

MALPI d servers within S are needed to provide reliability a for demand area j, up to p 

servers may provide coverage to any demand area jeJ and contribute to the expected 

coverage expressed in the objective function of MEXCLP.

To make these models mathematically tractable, both employed two simplifying 

assumptions. (1) servers operate independently, and (2) all servers have the same busy
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probability. These assumptions do not reflect the “real world” accurately when servers 

cooperate through centralized dispatching, and they have varying busy probabilities.

5.3.6 Queueing models

The models and methodologies described previously incorporate a range of stochastic 

problem parameters. In this section, we will see how the probability distributions associated 

with these parameters have been combined with results from queueing theory to examine 

additional aspects of facility location. The most well known queuing models for emergency 

service location problems are the hypercube and approximated hypercube by Larson in 1974 

and 1975 [23, 24] which consider the congestions of the system by calculating the steady- 

state busy fractions of servers on a network. The hypercube model can be used to evaluate a 

wide variety of output performance such as vehicle utilization, average travel time, inter

district service performance, etc.

Queueing theory, the theory of congestion, is the branch of operations research which 

explores the relationships between demand on a service system and the delays suffered by the 

users of that system. Since almost all urban service systems can be viewed as queueing 

systems, queueing theory plays a central role in the analysis of urban services.

5.3.6.1 Hypercube queueing model

Larson's hypercube model was the first to embedded queueing theory in facility 

location problems. The model analyzes problems of vehicle location and allocation and 

response district design in emergency response services that operate in the server-to-customer 

mode (such as police, fire, emergency medical vehicles). Hypercube model is a descriptive 

model that must be embedded in an optimization framework in order to search for good 

solutions.
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The solution of the model is the state probabilities and associated system performance 

measures (workloads, travel times etc). The model considers spatial and temporal 

complexities of the region and is based on Markovian analysis and queueing theory.

The area’s geography is modeled by partitioning a network into a set of geographical 

nodes, each representing an independent point source of requests for service. A server’s 

primary response area (district) consists of those nodes to which the server would be 

dispatched if all other servers are available (districting). Each server can be busy or free, 

generating 2N possible states for the system (where N is the number of servers). These are the 

vertices of a hypercube, named Bj (j = 0, 1,..., 2N~') of dimension N. Figure 5-5 represents 5- 

dimensional hypercube. Each vertex, or state, is denoted by an ordered set of N one digit 

binary numbers taking the value of 1 if the server is busy and of 0 if not, Bj = (bN, bn-i,.. ,bi).

Figure 5-5: Graphical representation of Hypercube with 5 servers.
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The HQM assumes that only one step transitions occur and all multistep transitions are 

not allowable. In other words, transitions are allowed between states with Hamming distance 

equal to 1, where the Hamming distance dij between two vertices Bi and Bj is the number of 

digits by which the two vertices differ (e g. states 00110 and 00111 have distance equal to 1 

and states 01010 and 10100 have distance equal to 4). Larson introduced “upward” and 

“downward” hamming distance, d^ and d' , as the number of binary digits switching from 0

to 1 and 1 to 0. The geographical depiction of the “location” of a response system is general 

enough to model fixed or mobile locations of units. This is accomplished by specifying a 

stochastic (sum of rows equal to 1) location matrix L = (lnj), where lnj is the fraction of 

available time that response unit n spends in node j.

The model assumes Poisson input (requests for service) and exponential service rates, 

ignoring any past system history. Reasonable deviations from this assumption have been 

found not to alter the predictive accuracy of the model. The model is thus a finite-state 

continuous time Markov process whose steady-state probabilities are determined from the 

equations of detailed balance that express a conservation of flow between consequent states. 

The location of servers and dispatch preferences is predetermined, i.e., for each geographical 

tract, an ordered list of units that specifies the dispatcher’s preference for units to assign to 

this tract is known. The model uses the closest available server policy, implying that 

time an incoming call is received, the first available server of the list is assigned.

5.3.6.2 Some Uses of the Model

The hypercube queueing model represents an important planning tool that can be used 

in a variety of applications by planners and administrators of service agencies operating in the

each
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server-to-customer mode. Thus, the following applications are likely to be important in many 

cities and towns:

Police-sector design. Suppose that a city's police department has not redesigned its sectors for 

many years. Then, owing to changing population patterns and other factors in the evolution of 

the city, the distribution of crimes and other incidents that give rise to calls for police service 

are likely to have changed significantly from the time of last beat design. This could result in 

an intolerable situation in which some patrol officers are working considerably longer hours 

responding to calls than are others. Compounding the problem, crime preventive patrol is 

probably least prevalent in the high-workload areas, since the high call-for-service workload 

in these areas sharply reduces the time available for patrol.

In this case the model can be used to assist the police planner in redesigning sectors to 

correct the current imbalances. The model provides outputs on travel times, workloads of each 

police vehicle, preventive patrol frequencies, and other factors that allow simultaneous 

consideration of response-time reduction, workload balancing, preventive patrol strength, and 

so on. The model reveals the trade-offs one must confront in attempting to reach acceptable 

performance in each of these categories.

In using the model the police planner must specify the sector configuration that he or 

she desires. Then the model computes the numerical values for each of the performance 

measures (e g., travel times, etc ). Undoubtedly, each police planner will have his or her own 

set of issues-some quantitatively oriented and some not-that will be important in the sector- 

design process. In most cases, however, regardless of the planner's particular set of issues and 

their relative priorities, the model described here should be useful in his or her thinking 

primarily because it computes rapidly and effectively many operationally oriented 

performance measures that come into play in the sector-design process.
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Response-area design for ambulances or emergency repair vehicles. Suppose that an agency 

administrator disperses ambulances or emergency repair vehicles throughout the city, 

prepositioning them in a way that best anticipates likely calls for emergency service. Then, 

the system planner needs assistance in determining good locations for the units and reasonable 

areas of primary responsibility for each. The model can be used for this purpose, in much the 

same way as a police planner would use it to design police beats. Here, however, the positions 

of the vehicles (while not responding to emergencies) are most likely fixed at preselected 

sites, whereas the police cars are likely to patrol throughout their sectors. The time for an 

ambulance to service a medical emergency usually includes travel time to and from a hospital 

(to transport the patient), a time not experienced in the police example (except when 

transporting arrestees to a police stationhouse). So in the ambulance case it is much more 

likely that travel times (time to the scene, time from the scene to the hospital, time from the 

hospital back to the prepositioning site) will play a dominant role in the overall time required 

per incident. This effect should be less prevalent in the emergency repair case. (In the police 

case, on-scene service time is usually significantly greater than travel time.)

Thus, the ambulance or emergency repair system planner can use the model to explore 

the consequences of alternative prepositioning sites for his vehicles and alternative districts of 

primary responsibility for each. Since travel times play such an important role in ambulance 

services, it is likely that the emergency medical planner will have to adjust the service time of 

each ambulance separately to reflect the different geographical travel time factors affecting 

each one. The final site selection and district design could include factors of workload 

balance, travel-time reduction, neighborhood integrity, and so on. Again, analogous to the 

police-sector example, the exact trade-off among the various factors must be determined by 

the user of the model, not by the model itself. [13, 25]

63

Institutional Repository - Library & Information Centre - University of Thessaly
12/05/2024 02:30:23 EEST - 13.58.158.87



Chapter 6 Applications of Emergency Response Vehicles Location

Models - Three Cases

6.1 An application of HQM

In this chapter, we will study some applications of emergency response vehicles 

location models for a profound comprehension of them. Firstly, an application of hypercube 

queueing model and secondly an application of P-Median model.

We consider a three-server city shown in Figure 6-1. This city is partitioned into 10 

geographical tracts, each acting as an independent Poisson generator of service requests. For 

convenience, we assume that the mean service time of each unit n is the same known constant

μ1

The rates λ*, of arrival of requests from each tract i are shown in Figure 6-1 (expressed 

in arrivals per mean service time unit). Each unit has a primary response area, consisting of a 

set of tracts to which it would always be given first dispatch preference For instance, the 

primary response area for unit 2 consists of tracts 3, 5, and 6. The unit given second dispatch 

preference for a tract is selected on the basis of geographical proximity. The complete 

dispatch preference policy, by tract, is shown in Table 6-1. Note, for instance, that unit 1 is 

the primary backup unit for all service requests in both primary response areas 2 and 3. Thus, 

not only does unit 1 face a heavy workload from its own primary response area (50 percent of 

the city's workload), but it is also the first backup unit for the rest of the city as well.
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si. boundary denoting primary response area for a Unit 

------- boundary of a geographical tract

Figure 6-1: Map of three-server city.

In our example we have set all the mean service times equal to the same constant. 

With this restriction, the queueing system in the aggregate is simply the Μ / Μ / N system. As 

we mentioned above, if we say that bn = state of server n (bn = 0 for "free," or bn = 1 for 

"busy"), the system state is given by B = {bN,bN-i bi}The collection of all possible B’s is 

denoted by Cn, corresponding to the vertices of an N-dimensional hypercube. The weight of
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N

B, denoted w(B), is equal to the number of busy servers in the state B, thus, w(B) = ]Tbn .
n=l

For instance, the weight of {0, 1, 1} is 2 and the weight of {0, 0, 0} is 0.

Tract
Number

First
Preference

Unit

Second
Preference

Unit

Third
Preference

Unit
1 1 2 3

2 1 2 3

3 2 1 3

4 1 3 2

5 2 1 3

6 2 1 3

7 3 1 2

8 3 1 2

9 3 1 2

10 3 1 2

Table 6-1. Dispatch preferences for three-server city.

For the case of equal mean service times, we can use the concept of weight of a state 

to relate the hypercube state space to the simpler Μ / Μ / N state space. This equivalence is 

obtained by collecting together all states having equal weight, i.e. wo, their summed 

probability of occurrence is equal to the comparable probability of state Swo, occurring in the 

Μ / Μ / N model. For instance, the states 001, 010, and 100 all have weight 1, and their 

summed probability must equal the probability of state Si, in the Μ / Μ / N model. One way 

of demonstrating this equivalence is shown in Figure 6-2, in which all hypercube states 

having equal weight are grouped together vertically. Figure 6-2 also, shows explicitly the 

infinite tail that augments the hypercube state space to allow the possibility of a queue.
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S, * State depiction of M.M/3 model, corresponding 
to exactly t customers or, the system

Figure 6-2: Three-server hypercube state space augmented by infinite tail.

With the hypercube model transitions occur between states just as they do with other 

queuing models. The hypercube model assumes that only one unit is assigned to each service 

request. Thus, assuming that it is virtually impossible for two requests to arrive 

simultaneously, a transition from state (0, 0, 0) to state (0, 1, 0) would be allowable, whereas 

a two-step transition from state (0, 0, 0) to state (0, 1, 1) would not (since it implies that two 

free units become busy at the same instant). Likewise, if we assume that each of the busy 

units is working independently at its particular location to complete service on its current 

service request, it is virtually impossible for two busy units to become free simultaneously. 

Thus, a transition from state (1, 0, 1) to state (0, 0, 1) is allowable, whereas a two-step 

transition from state (1,0, 1) to state (0, 0, 0) is not.

In our example where N = 3 unit problem, we suppose that the following events occur:
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1. A request for service arrives from tract 6.

2. A request for service arrives from tract 1.

3. Unit 2 completes service on its request.

4. A request for service arrives from tract 4.

5. A request for service arrives from tract 3.

Recalling that tract 6 is within unit 2’s primary response area, the request for service from 

tract 6 would result in unit 2 becoming busy, yielding a transition from state (0, 0, 0) to state 

(0, 1, 0). Likewise, the next request for service would cause unit 1 to become busy, resulting 

in a transition from state (0, 1, 0) to state (0, 1,1). Next, when unit 2 becomes free, the system 

makes a transition to state (0, 0, 1). Next, when a request for service arrives from tract 4, in 

unit l’s primary response area, we note that unit 1 is already busy servicing a request. Since 

the primary backup unit, unit 3, is available, it is dispatched to the scene, resulting in an 

interresponse area assignment. The system now undergoes a transition from state (0, 0, 1) to 

state (1, 0, 1). Finally, when a request arrives from tract 3, unit 2 is dispatched, causing the 

system to enter a saturation state (1, 1, 1). (Any additional service requests arriving while all 

servers are busy would be delayed in queue.) Summarizing the example above, the sequence 

of states occupied by the system is as follows:

1. State where no unit is busy ----------- ► (0,0,0)

2. A request for service arrives from tract 6  ► (0,1,0)

3. A request for service arrives from tract 1 ► (0,1,1)

4. Unit 2 completes service on its request ----------- ► (0,0,1)

5. A request for service arrives from tract 4  ► (1,0,1)

6. A request for service arrives from tract 3 ► (1,1,1)

Now the value of the cube as an aid in visualizing the behavior of the system is seen in Figure 

6-3, which depicts the states occupied and the state-to-state transitions as a sequence of 

connected trips along edges of the cube.
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Figure 6-3: Illustrative sequence of transitions.

Now, we link the arrival rates and the service rates to states and transitions on the 

hypercube. Recall that 0,75 request for service arrives per unit time from unit l’s primary 

response area, 0,35 from unit 2’s primary response area, and 0,40 from unit 3’s. Also recall 

that time is measured in mean service time units. Then, from state (0, 0, 0), there is a rate of 

transition to state (0, 0, 1) equal to 0,75 request per unit time. Likewise, there is a rate of 

transition from state (0, 0, 0) to state (0, 1, 0) equal to 0,35 per hour and to state (1, 0, 0) equal 

to 0,40 per unit time. These state-to-state transition rates can be drawn onto the cube as shown 

in Figure 6-4. In a similar manner, the transition rate from any state to any adjacent state 

having one less unit busy is 1 per unit time, these transition rates are depicted in Figure 6-5.

We have now filled in the transition rates from state (0, 0, 0) and all the rates 

corresponding to completions of service. For convenience, the latter type of transitions are 

called "downward" transitions, indicating that the total number of busy units has dropped
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down by one. Transitions that result in a unit being dispatched are called "upward" transitions, 

because the total number of busy units has gone up by one.

Since all service requests that arrive are serviced immediately (i.e., they incur no 

queue delay) if at least one response unit is available, all states that are unit distance from the 

saturation state (states Oil, 101, and 110 in our example) must have an upward transition rate 

equaling the total system-wide request rate λ (= 1.5 in our case). Thus, all upward transition 

rates into state 111 must equal 1.5 in our example.

State of unit 1

Stale of 
unit 2

Figure 6-4: Transition rates of state (0,0,0).
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5Lace of unit 3

• State of unit i

Figure 6-5: Transition rates corresponding to completions of service.

To compute the values of the remaining upward transition rates, consider for instance 

the transition rate from state 001 to state 101. This rate will consist of the sum of two rates: 

the rate of service requests from unit 3’s primary response area plus the overflow rate from 

that part of unit l’s primary response area assigned to unit 3 as the first backup unit. The first 

rate is simply 0,40 request per unit time. The second is the arrival rate from tract 4 (0,25 

request per unit time), since the first backup unit for tract 4 (in unit 1 ’s primary response area) 

is unit 3. (Unit 2 is the first backup unit for the other tracts in unit l’s primary response area.) 

Thus, the net upward transition rate from state 001 to state 101 is (0,40 + 0,25) = 0,65 request 

per unit time. In a like manner, the remaining upward transition rates can be found. The entire 

state-transition diagram (excluding the infinite tail) is shown in Figure 6-6.
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Stale of 
server i

1.15

0.65

State of 
server 1

State of 
server 2

Figure 6-6: Hypercube state-transition diagram for unsaturated system states: three server city

(states involving a queue not included).

We define

Pijk = steady-state probability that the system is in state {i, j, k}, i, j, k = 0, 1 

P{Si) = steady-state probability that the equivalent Μ / M / 3 system is in state Si 

Pq = steady-state probability that a queue of positive length exists

From the Μ / M / 3 model and the relationships:

P = γ(Μ_μΥ , {λΙμΥ 1
n\ m\ \-(λΙπιμ)

(assuming that λ/mp < 1)

and
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Pn~ ~—)—P0 for n = 0,l,....,m-l 
n\

pn = 1_M_P forn = m,m+l,m+2.......
mn m m\ °

setting λ = 1,5, μ = 1, we have:

P{So} = [1 + 1,5 + 1,125 + 1,125]“'= 0,2105 

P{Si} = 1,5*P{S0}= 0,3157 

P{S2} = 1,125 * P{ S0} — 0,2368 

P{S3} = 0,5625 *P{SQ} = 0,1184

PQ=fjP{S,} = l-t,P{Si} = 0,m6
i=4 i=0

Using these results, we can now write the hypercube equilibrium equations for nonsaturated 

system states:

1. Empty state

Pooo = P{So}= 0,2105

2. Full state (no queue)

Pm - P{S3} = 0,1184

3. First hyperplane from the origin

Pool + Poio + Pioo = P{ Si} = 0,3157

4. Second hyperplane from the origin

Pno + Pioi + Poll - P{S2) - 0,2368
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5. Balance of flow about state 001

f 0,75 > r \
Poo, {0,65 + 0,85 + 1} — Pooo t + 1· P + P17101 ^ A011

^ flow rate from 000 to 001 ^ \ total downflow into state 001 /

total flow out of

state 001 total flow into state 001

6. Balance of flow about state 100

P,oo(l,15 + 0,35 + 1) = Pooo (0,40) + l-(P„o + Pioi)

7. Balance of flow about state 011

Pon (1 + 1,5 + 1) = Poio (1,10) + Pm (1) + Poo,(0,85)

8. Balance of flow about state 101

Ρ,οι (1 + 1,5 + 1) = 1-Pin + Pom(0,65) + P100 (1,15)

9. Balance of flow about state 010

Poio (0,40 + 1 + 1,10) = 1 -Piio + Pooo(0,35) + 1· Pon

10. Balance of flow about state 110

Ρ,,ο (1 + 1,5 + 1) = (0,35) P,oo + Poio(0,40) + 1- P1U

We solve this set of equations. After calculations, we arrive at the following values for the 

state probabilities:

Pooo — 0,2105
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Ροοι = 0,1367 

Ροιο = 0,0886 

Pi oo = 0,0905 

Pi io = 0,0530 

Pioi = 0,0889 

Poii = 0,0949 

Pm = 0,1184

Now that we know the steady-state probabilities of the hypercube model, we can 

obtain values of useful system performance measures such as the workloads.

We obtain the workloads of the individual servers. The workload pn of server n, which 

is the fraction of time that server n is busy, is equal to the sum of all steady-state probabilities 

having the state of server n equal to 1 (rather than 0) plus the fraction of time that a queue 

exists (during which time all servers are working). Thus, for our three-server example.

Pi = Pool +P101 +P011 +Pin + Pq = 0,5574 

P2 = Poio +P110 +P011 +Pin + Pq = 0,4734 

P3 = Pioo +P110 +P101 +P111 + Pq = 0,4693

As we can see, these results check with the requirement that the average workload p = 

λ/3 μ = 0,5. Note that the workload sharing among response units caused the workloads of the 

units to be more evenly distributed than the workloads of the primary response areas. If each 

unit served only the customers of its own response area, the workloads would have been pi = 

0,75, p2 = 0,35, p3 = 0,40. In fact, it is possible for a particular primary response area to 

generate more work than one unit could handle, and workload sharing would facilitate the 

overflow.
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6.1.1 Sensitivity Analysis

Until now, we considered the rates λί, of arrival of requests from each tract i as 

constant values: λι = 0,25, λ2 = 0,25, λ3 = 0,10, λι = 0,25, λ$ = 0,15, ^ = 0,10, λη - 0,10, λ» = 

0,10, λ9 = 0,10 and λιο = 0,10. Let’s assume that we want to know any time the state 

probabilities of the system and the workloads of the individual servers changing λι,

λϊ........ λιο values keeping constant the total rate λ of arrival of requests from all tracts, λ =

1,5 and the events occurred previously.

In this case, we transform Figure 6-6 in a more general state-transition diagram shown 

in Figure 6-7.

Figure 6-7: A transformed more general state-transition diagram.

Where we define:

Γι = λγ+λ^+λο+λιο

Γ2 = Γ4+λι+λ2+λ4 

Γ3 = λ3+λί+λ<5

Γ4 = λ3+λ5+λ^
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rs = r6 + h,

Γ6 = λι+λ2+λ4

Ϊ7 = λγ+λ^+λή+λ] ()+λ4

Γ8 — Γ9+λι+λ2+λ4 

Γ9 = λγ+λ^+λ^+λιο

Now, if we change the rates λ*, of arrival of requests from each tract i, rates η, Γ2,.....no

change, too. From the Μ / M / 3 model and the relationships:

P. =
ψ(λ/μ)' | (λ/μΓ 1

n\ m\ \-{λΙπιμ)
(assuming that λ/mp < 1)

and

Pn = WEl_Po forn = 0,l,....,m-l 
n\

p _ (Ap for n - m m+i m+2.......
mn m -m\ °

setting λ = 1,5, μ = 1, we have:

P{S0} = [l +1,5 +1,125 + 1,125]"*= 0,2105 

P{ S,} = 1,5*P{S0}= 0,3157 

P{S2} - 1,125*P{S0} = 0,2368 

P{S3} = 0,5625 *P{S0} = 0,1184

oo 3

PQ=Zpfsil = |-Z/,K> = °.n86
i=4 i=0

As we notice, P{SG}, P{Si}, P{S2}, P{S3}, P{S4} are the same as previously because these 

probabilities depend only on total rate λ = 1,5 but the hypercube equilibrium equations for
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nonsaturated system states give us new values for state probabilities Pool, Poio, Pioo, Pno, Pioi, 

Pon and new workloads of the individual servers. In order to estimate these values we use an 

Excel spreadsheet as it is shown in Figure 6-8.

It is clear that, for a new set of rates λι = 0,010, λ2 = 0,010, λ3 = 0,005, λ* = 0,010, 

= 0,015, λβ = 0,010, λ7 = 0,040, 'kg = 0,050, ky = 0,050 and λιο = 1,3 but constant total rate λ 

= 1,5, we arrive at the following new values for the state probabilities:

Pooo — 0,2105 

Poio = 0,0371 

Pi ίο = 0,0508 

Pon = 0,0353

Pooi = 0,0771 

Pioo = 0,2017 

P101 = 0,1505 

P„i = 0,1184

while the workloads of servers 1,2,3 are pi = 0,4999, p2 = 0,3602, p3 = 0,6399 respectively.

Figure 6-8: Estimation of new state probabilities and servers’ workloads for different sets of

λι, λ2...λιο.
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We notice that, the workloads of the three servers are not evenly distributed for this set of 

rates. Comparing to the previous set of rates, a high increase of the rate λι0 results to a heavy 

workload of server 3.

So, this Excel spreadsheet, can inform us, any time for different values of λι,

λα........ λιο and constant value of the total rate λ of arrival of requests from all tracts, λ = 1,5,

and the events occurred previously, about the state probabilities of the system and the 

workloads of the three servers.

Figure 6-9 depicts the fluctuation of the three servers workloads for fifty different

random sets of λι, λα, λ3..........λι0 and constant value of total rate λ with Σλ = 1,5. It is obvious

that the workload of server 1 is over 0,5 for the most of different random sets of λι, λϊ,

λ3..........λιο and its average value is 0,51. As far as it concerns the workload of server 2, it

remains under 0,5 for quite all sets of λι, λα, λ?......... λιο and its average value is 0,47.

Figure 6-9: Three servers workloads for different random sets of λι, λι, λ?.... λιο and constant

value of the total rate λ of arrival of requests from all tracts, Σλ = 1,5.
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The average value of workload of server 3 is 0,5 with 50% of values being over 0,5 

and 50% of them under 0,5. So, if we increase the number of different random sets of λι, λ2,

λ3..........λιο we notice that the average workload of server 1 is heavier than the workload of

server 2 and 3.

A general case of the previous example is the state probabilities and the workloads 

estimation of the individual servers changing now the total rate λ of arrival of requests from

all tracts and λι, ........ λιο values, too. We transform Figure 6-6 in its general state-transition

diagram shown in Figure 6-10.

Figure 6-10: A transformed general state-transition diagram.

We define again:

Γι = λ7+λ8+λο+λιο

Ϊ2 = Γ4+λ]+λ2+λ4

Γ3 = λ3+λ5+λ<5

Γ4 = λ3+λ5+λ^

r5 = r6 + λ6

Γ6 = λι+λ2+λ4

Γ7 = λ7+λ{(+λ9+λιο+λ4
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Γ8 — Γ9+λ]+λ2+λ4 

Γ9 = λ7+λ8+λ9+λ]0

Now let’s assume that the total rate λ = 2,5, the following relationships arise:

-1
(assuming that λ/ηιμ < 1)

and

P = g(AW , (λ/μ)
n=0

1
/?! m\ 1 -(λ/ηίμ)

Pn
(λ/μ)η

n\
for n = 0,l,....,m-l

= V) p for n = m m+] m+2.......
mn m m\ °

setting λ = 2,5, μ = 1, we have:

P{So} = 0,1111 

P{Si} =0,1124 

P{S2} =0,1404 

P{S3} =0,1170

pQ=Zpis.i=1-ii,K}=°.5852
i=4 /=0

As we notice, P{SG}, P{Si}, P{S2}, P{S3}, P{S4} are not the same as previously 

because of the change of total rate λ = 2,5. Solving the hypercube equilibrium equations for 

nonsaturated system states we conclude to the following new values for the state probabilities:

Pooo = 0,1111 

Pool = 0,0376 

P010 = 0,0404 

P100 = 0,0343 

Pno = 0,0419 

P10i = 0,0454
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Ρο,ι = 0,0491 

Pm = 0,1170 

PQ = 0,5852

Now, we change the value of the total rate λ of arrival of requests and we study the 

influence of Σλ to workloads of server 1, 2 and 3. The results for different values of Σλ are 

illustrated in Table 6-2 and Figure 6-11.

Σλ Pi Pz P3

1,5 0,507117 0,463608 0,516574
U 0,568366 0,545732 0,577573
1,9 0,660782 0,608722 0,636887
2,1 0,72242 0,711669 0,658025
2,4 0,795152 0,786025 0,81308
2,5 0,842845 0,818348 0,837445

Table 6-2 : Workloads pi, p2 and p3 for different values 
of total rate λ of arrival of requests

Figure 6-11: Workloads fluctuation for different total rate Σλ of arrival of requests
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Initally, we see that if Σλ varies from 1,5 to 1,8 server 3 has the heavier workload and 

follows the workload of server 1 and server 2. If Σλ varies from 1,8 to 2, we have a workloads 

increase of all servers. Server 1 now has the heavier workload and follows the workload of 

server 3 and server 2. If Σλ is between 2 and 2,3 then server 1 has still the heavier workload, 

follows the workload of server 2 and last the workload of server 3 and at the same time all 

three workloads increase gradually. Finally, if Σλ varies from 2,3 to 2,5, server 3 has again the 

heavier workload as in the first part of the graph and follows the workload of server 1 and last 

the workload of server 2. Generally, it is obvious that as Σλ increases the three workloads tend 

to be equal.

Furthermore, an increase of the total rate λ of arrival of requests from all tracts from 

1,5 to 2,5 can lead to an increase in the probability that a queue of positive length exists.

Figure 6-12: Probability queue for different values 

of total rate λ of arrival of requests
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Once again, in order to estimate these values for several λ, we use an Excel spreadsheet as it 

is shown in Figures 6-13 and 6-14.

So, this Excel spreadsheet, can inform us, any time for different values of total rate λ of

arrival of requests from all tracts and λι, ........ λιο values, keeping constant the events

occurred previously, about the state probabilities of the system, the workloads of the three 

servers and the probability that a queue of positive length exists.

(§0 fipxdo ξρεξεργοοία Πβοβολή Εισαγωγή Μορφή Εργασία Δεδομένο Παράθυρο βοήθαο

4 x » ift 84 »ί3]«“* * ©. «J · β> · ' '

NIB

10- Β/Η , ϋ
Ιί

ίϊ θ» - -

r A B C D E F G H 1 J
1
2 |Toi<il rate A | 2.5|
3 Set of A1, λ2„..Λ10

! 4
5 0.365 A1 P{S01- 0,1111
6 0,118 A2 P{si>. 0,1124
7 0,348 A3 P{S2>- 0,1404
8 0,094 A4 P{S3h 0,1170
9 0,234 A5 PiOfc______ 0,5852
10 0,452, \6

11 0^266| A7

12 0,430 Λ8
S 13 0,189 A9

14 0,003 A10
i 15 a- 56,4346

16 2.5|Σλ b= 1,4703
17 c= -820,1418
IB
19
20 0,889 rl P010= 0j0404
21 1,611 r2 P100- 0j0343
22 1,035 rJ P001= 00376
23 1,035 r4 Ρ011» 0,0491
24 1,029 r5 P110= 0.0419
25 0,577 l« P101- 00454
26 0,963 r7 P000- 00449
27 1,465 l« Pill- 0,1170
28 0,889 r9 PO= 0,5852
29
30
31
32
33 Pl° 00343
34 0 0337
35 ____ 00238

Figure 6-13: The new state probabilities and workloads in case of different rates λ;.
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J Hi σ «. ■ * Σ - Si Ϊ1 |»Sj

1 - 10 - B / 0 £ £ * . & % , % ft & t*
L6 - £

100% * !tf Sa&sr Λ

A*.

3 % »

C D E F G H 1 J

otol ιοί» A |2.5
Sel el A1, A2,...A10

0.365 At P(S0)- 0.1111
0.11Θ A2 P(SI)- =F16*J26
0,348 A3 P(S2h =(F16*F16/21*J2B
0/394 A4 PfSJh =F16*F16*F16*J26iS
0.234 A5 ___ =1 (J26-hJ6^£+JBJ__
0.452 A6
0266 A7
0.430 Αβ
0.189 A9
0/303 A10

if* =(f[2+F163*n +F26-^f24)>F24+{C2+F16)’(F22+14f273VF22V(F27-F26)
2.5 ΣΑ b- =((C2+F16r(1-^264f24>F24rJ6H((2+f16rJ26)*(F25-F2B]J

c- =(C2+F 16ΓΪ1 +F26+F24)FF24+F21 -F20-(J 15*[{2+F 16)*(F20+1 -*f 21}-F26)]

=F11+F12+F13+f14 rl P010- =(J16-(J15*(C2+F16)*J7-J0)HJ15*F23*«2+F16)*J26))+(J15*F26'(J6))VJ17
=F23+f5+F6+F8 r2 P100- *((({2+F 16TJ7> JB)+(F23*((2+F16)*J26))-(F26*(J6)H((C2+F16)*(F20+1 +F21>F26))*J20)V(F27-F26)
=F7-rf9+f10 r3 P001* =J6-J20-J21
=F7+F9+f10 rl P011* =(JB-KF21 *J20)-KF24*J22))/(2+f 16)
=F25+f 10 i5 PIIO- =((F2D*J20)+<F22'J21)-kB)/(2+F1S)
=F5+f6+fB r6 P101- =J7+(F23\)26M(F20+1 +F21)\J20)
=F11+F12+F13+F14+F8 r7 POOO- =1 /(I -»f 16 ~K(F 16*F 16V2)+((R 6*F16*F 16)45*0 -F 16/33)3)
=F28*F5+F6+F8 i* Pill- =JB
=F11*f12+F13+F14 l0 PO- =J9

pi- =J22+J25+J23+J27 +J26
=J2Q+J24+J23+J274J28__

P* ... =J21 +J24+J25+J27+J26

Figure 6-14: Formulas of spreadsheet of Figure 6-13.

Considering data from the example described previously, shown in Figure 6-1, unit 1

has a primary response area which consists of tracts 1, 2, 4. Now, we keep rates λ/2,.......λιο of

arrival of requests constant and we examine how the workloads of the three units change for 

different values of λι. The results are illustrated in the following Table 6-3 and the graph in 

Figure 6-15.

λι Pi P2 P3
0,25 0,5575 0,4734 0,4694
0,5 0,5981 0,4780 0,4693

1 0,6706 0,4958 0,4693
1.2 0,6973 0,5051 0,4693
1.5 0,7356 0,5209 0,4695

Table 6-3: Workloads pi, p2 and p3 for different values 
of rate λι of arrival of requests of tract 1.
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We notice that, an increase of λι results to a heavier workload of unit 1 while workload of unit

2 increases faintly and workload of unit 3 remains at the same level.

Figure 6-15: Workloads pi, p2, p3 depending on rate λι of arrival of requests.

Now, we keep rates λι,...,λ3 and λ5,...,λι0 of arrival of requests constant and we 

examine how the workloads of the three units change for different values of The results are 

illustrated in the following Table 6-4 and the graph in Figure 6-16.

λ4 Pi P2 P3
0,08 0,5251752 0,477071 0,455187
0,15 0,5386408 0,475457 0,460805
0,25 0,5575 0,4735 0,4694
1,3 0,7414927 0,468942 0,581849
1,7 0,6735411 0,468059 0,536006

Table 6-4: Workloads pi, p2 and p3 for different values 
of rate λ4 of arrival of requests of tract 4.

We notice that, an increase of λ4 results to a heavier workload of unit 1 and unit 3 for λ* < 1,4. 

If λ4 > 1,4, workload of unit 1 and 3 decreases, respectively. Furthermore, workload of unit 2 

remains quite constant for any increment of λφ
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Figure 6-16: Workloads pi, P2, P3 depending on rate λ4 of arrival of requests

As far as it concerns unit 2 has a primary response area which consists of tracts 3, 5, 6. 

Now, we keep rates λι, .. λ5 and λτ. , .λιο of arrival of requests constant and we examine how 

the workloads of the three units change for different values of λβ. The results are illustrated in 

the following Table 6-5 and the graph in Figure 6-17.

λβ Pi P2 P3
0,1 0,5575 0,4735 0,4694
0,75 0,5872 0,5667 0,4637
1,3 0,6205 0,6355 0,4609
1,5 0,6337 0,6591 0,4602
1,6 0,6404 0,6707 0,4599

Table 6-5: Workloads pi, p2 and p3 for different values 
of rate of arrival of requests of tract 6.

We notice that, an increase of λβ results to a heavier workload of unit 2 while workload of unit 

1 increases faintly and workload of unit 3 remains at the same level. If < 1, unit 1 faces the 

heavier workload. If λ* > 1, workload of unit 2 is heavier than workload of unit 1.
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Figure 6-17: Workloads pi, P2, p3 depending on rate of arrival of requests.

Now, we keep rates λι,...λ4 and λβ, ..Mo of arrival of requests constant and we 

examine how the workloads of the three units change for different values of λ5. The results are 

illustrated in the following Table 6-6 and the graph in Figure 6-18.

λβ Pi P2 P3
0,15 0,5575 0,4735 0,4694
0,35 0,56179732 0,497208 0,462038
0,75 0,57454856 0,539183 0,448836
1,1 0,58881744 0,571546 0,43843

1,35 0,60021591 0,592804 0,431434

Table 6-6: Workloads pi, p2 and p3 for different values 
of rate λ$ of arrival of requests of tract 5.

We notice that, an increase of λ5 results to a little heavier workload of unit 1 while workload 

of unit 2 increases significantly and workload of unit 3 decreases.
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Figure 6-18: Workloads pi, p2, p3 depending on rate λ$ of arrival of requests

Unit 3 has a primary response area which consists of tracts 7, 8, 9 and 10. Now, we 

keep rates λι, ...λη and and λι0 of arrival of requests constant and we examine how the 

workloads of the three units change for different values of λ§. The results are illustrated in the 

following Table 6-7 and the graph in Figure 6-19.

λδ Pi P2 P3
0.1 0,5575 0,4735 0,4694
0,5 0,5779 0,4457 0,5489

0,95 0,6106 0,4183 0,6249
1,4 0,6496 0,3934 0,6919
1,6 0,6684 0,3830 0,7196

Table 6-7: Workloads pi, p2 and p3 for different values 
of rate Xg of arrival of requests of tract 8.
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We notice that, an increase of λ8 results to a heavier workload of unit 3 while workload of unit

1 increases faintly and workload of unit 2 decreases significantly. If λ8 < 0,8, unit 1 faces the 

heavier workload. If λ8 > 0,8, workload of unit 3 is heavier than workload of unit 1.

Figure 6-19: Workloads pi, p2, p3 depending on rate λ8 of arrival of requests

Now, we keep rates λι, . . .λς» of arrival of requests constant and we examine how the 

workloads of the three units change for different values of λι0. The results are illustrated in the 

following Table 6-8 and the graph in Figure 6-20.

λιο Pi p2 P3
0.1 0,5575 0,4735 0,4694
0,65 0,5879 0,4362 0,5755
1,25 0,6360 0,4015 0,6703
1,65 0,6732 0,3804 0,7264
1,8 0,6878 0,3729 0,7464

Table 6-8: Workloads pi, p2 and p3 for different values 
of rate λ]0 of arrival of requests of tract 10.
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We notice that, an increase of λιο results to a significant heavier workload of unit 1 and 3

while workload of unit 2 decreases.

Figure 6-20: Workloads pi, p2, p3 depending on rate λιο of arrival of requests
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6.2 An application of P-Median problem

A representative application of this model is the following example. Suppose that 

authorities of a new city have to decide where to allocate two fire mobile stations (vehicles) in 

the city. The city has been divided into five tracts as illustrated in Figure 6-21, with no more 

than one fire station to be located in any given tract. Each station is to respond to all of the 

fires that occur in the tract in which it is located, as well as in the other tracts that are assigned 

to the station.

The following Table 6-9 gives the average response time to a fire in each tract if their 

tract is served by a station in a given tract. The bottom row gives the forecasted average 

number of fires that will occur in each of tracts each day. The objective is to minimize the 

overall average of the response times to fires.
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Station/Fire Tract 1 Tract 2 T ract 3 Tract 4 Tract 5

Station 1 5 min 12 min 30 min 20 min 15 min

Station 2 20 min 4 min 15 min 10 min 25 min

Station 3 15 min 20 min 6 min 15 min 12 min

Station 4 25 min 15 min 25 min 4 min 10 min

Station 5 10 min 25 min 15 min 12 min 15 min

Frequency 2 1 3 1 3

Table 6-9: Average response time to a fire in each tract (columns) if their tract is served by a

station in a given tract (rows).

We define :

s, t: indices for tract T = {1,2,... 5}

d(s, t): response time/ distance between s and t

f(t): frequency of fire in tract t

Fire in tract ' f will be covered by station in tract' s' 

otherwise

Build a fire station in tract ' s' 

otherwise

and the model can be formulated as follows:

Minimize Z = Σ Σ x(s, t) · d(s, t) · f(t)
seT teT

Subject to:

2>s =2
teT

Σ x(S’t)= 1 VteT
seT

x<s,t)=[‘

y(s)={°
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x(s, t) < y Vs,t e T

x(s, t), y(t) e{0,l} Vs,teT

The objective function minimizes the overall average response time to fires. The first 

constraint states that we are going to locate exactly 2 fire stations. The second constraint 

states that each tract has to be covered by a fire station so that some one will respond to the 

fire. The third constraint states that demand tracts can only be assigned to open fire stations 

and the forth constraint states that no more than one station can be allocated in each tract.

This problem can be solved either using Excel Solver or P-Median Algorithm. If we 

use the Excel Solver, the solution is depicted in Figures 6-22 and 6-23.

I £2 Mit rosoft Lxcel - P_Median fil 3.xls 4
Is} ήΡΧ*ίο Εηίζφγααία ΠςοβοΧή βααγίϋνή Μορφή

Qi^HidiiS2<SGi.v> & % dl *
Ariel Greek -10- BZU W M

M20 - £

Εργαήοα ήτδομίνα Οαράθυρο Βοήθοα

^ - ra , & r . «I H 4} 100% - £3 . !_2 fel fa *3 ** 

m ϋ ® m m _ - ❖ - a -.

A B c D E F G Η 1
1
2
3
4

Decision variables 

Assiynement Tract 1 Tract 2 Tract 3 Tract 4 Tract 5 Open or Close
5 station 1 0 0 0 0 0 0
6 station 2 0 0 0 0 0 0
7 station 3 0 0 0 0 0 0
8 station 4 0 0 0 0 0 0
9 station 5 0 0 0 0 0 0
10
11

12
13
14 Response time Tract 1 Tract 2 Tract 3 Tract 4 Tract 5
15 station 1 5 12 30 20 15
16 station 2 20 4 15 10 25
17 station 3 15 20 6 15 12
18 station 4 25 15 25 4 10
19 station 5 10 25 15 12 16
20 j
21 Fire Frequency 2 1 3 1 3
22
23
24
25
26
27
28
29
30
31

Constraints 

Objective function

Figure 6-22: Excel solver solution (1).
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Microsoft Excel - P Median hi 3 prtscnjils

dj] ήρχαο &κξεργααο

D 3 cP #

Ariel Greek «

PI 9

Πβοβολή Βοογίίγή Ηορψή

ay * ifoa -<?

io * B / j| » «

A

Epyo&do

«Ο -

BPS

fetopiva Οροόθυρο βοήθοα

Λ ς - ii ti fir®"»*· - ®. 

x , us ύ Ψ !* <$·» A .

: ta & ta & - ΐί % <.=1 ,<r+ μ.- α-.·'·3ν

A B C 0 E F G H 1 J K l
1 Decision variables
2
3

Constraints

4 Assignemenr Tract 1 Tract 2 Tract 3 Tract 4 Trad 5 Open or Close 2 = 2
5 station 1 1 1 0 0 0 1 1 = 1
6 station 2 0 0 0 0 0 0 1 = 1
7 station 3 0 0 1 1 1 1 1 = 1
Θ station 4 0 0 0 0 0 0 1 s 1
9 station 5 0 0 0 0 0 0 1 - 1
10 1 <= 1
11 1 <- 1
12 0 <= 1
13 0 <= 1
14 Response time Tract 1 Tract 2 Tract 3 Tract 4 Tract 5 0 <= 1
15 station 1 5 12 30 20 15 0 <- 0
IB station 2 20 4 15 10 25 0 <= 0
17 station 3 15 20 6 15 12 0 <= 0
18 station 4 25 15 25 4 10 0 <= 0
19 stalion 5 10 25 15 12 15 0 <= 0
20 0 <= 1
21 File Fiequency 2 1 3 1 3 0 <= 1
22 1 <= 1
23 min time 5 12 6 15 12 1 <= 1
24 1 <= 1
25 0 <= 0
26 0 <= 0
27 0 <= 0
28 0 <= 0
29 0 <= 0
30 0 <= 0
31 0 <= 0
32 0 <= 0
33 0 <= 0
34 0 <= 0
35 Objective function ____________ 2U____________

Figure 6-23: Excel solver solution (2).

If we use the P- Median Algorithm we follow the algorithm [25] :

Multimedian Heuristic Algorithm

STEP 1: Let m = 1. Find the 1-median of the network G(N, A) using Single Median 

Algorithm. Let the 1-median be at node i. Set S = {i}.

STEP 2 . Add a new facility to the current membership of the set S by choosing that location 

among the nodes in N - S, the nodes which are not in S, which produces the maximum 

possible improvement in the objective function as the number of medians increases by 1. Let 

m = m + 1.
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STEP 3: Attempt to improve the objective function by substituting in a systematic way, one at 

a time, one of the nodes in S with a node that is in N-S. Every time an improved solution is 

obtained, use this as the new "incumbent" solution, S, and repeat Step 3. When all possible 

single-node substitutions for a set S have been attempted without improving the objective 

function, go to Step 4.

STEP 4: If m = k, stop; otherwise, return to Step 2.

Single Median Algorithm

STEP 1: Obtain the minimum distance matrix for the nodes of G.

STEP 2: Multiply the jth column of the minimum distance matrix by the demand weight hj (j 

= 1, 2, . . ., n) to obtain the matrix hj · d(i j)].

STEP 3: For each row i of the [hj · d(i j)] matrix, compute the sum of all the terms in the row. 

The node that corresponds to the row with the minimum sum of terms is the location for the 1- 

median and we have the following solution:

2 13 13
A B C D E A B C D E

A ' 5 12 30 20 15" A 10(= 2*5) 12 90 20 45

B 20 4 15 10 25 B 40 4 45 10 75

C 15 20 6 15 12 => C 30 20 18 15 36

D 25 15 25 4 10 D 50 15 75 4 30

E 10 25 15 12 15^ E 20 25 45 12 45

A Ίο 12 90 20 45“
Sum

177(= 10 + 12 + 90 + 20 + 45)

B 40 4 45 10 75 174

C 30 20 18 15 36 119

D 50 15 75 4 30 174

E 20 25 45 12 45 147
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We set S = {C}

In the next step we estimate all possible combinations for n = 5 and k =2 such as:

(5) 5!
=--------------= 10 combinations

UJ (5 — 2) !2!

A-B: 10+4+45+10+45 = 114 

A - C: 10+12+18+15+36 = 91 

A-D: 10+12+75+4+30= 131 

A-E: 10+12+45+12+45 = 124 

B - C: 30+4+18+10+36 = 98 

B -D: 40+4+45+4+30 = 123 

B - E:20+4+45+10+45 = 124 

C-D: 30+15+18+4+30 = 97 

C-E: 20+20+18+12+36= 106 

D - E: 20+15+45+4+30 = 114

The value that produces the maximum possible improvement in the objective function is 91. 

This means that the two fire stations will be built in the tracts 1 and 3. Fire station in tract 1 

will respond to fires in tracts 1, 2 and fire station located in tract 3 will respond to fires in tract 

3, 4 and 5. The results are illustrated in the following Table 6-10.

Fire Station in:
Will respond to fires in Tracts:

1 2 3 4 5

Track 1 Open 1 1 0 0 0

Track 2 Close 0 0 0 0 0

Track 3 Open 0 0 1 1 1

Track 4 Close 0 0 0 0 0

Track 5 Close 0 0 0 0 0

Table 6-10: Computational Results.
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6.3 An application of P-Median and Hypercube problem

Now we will try to solve the problem, described in section 6.2, for three servers using 

the P-median model and then we will use the hypercube model, described in section 6.1, in 

order to compare our results.

Suppose that we are to allocate three fire vehicles in the city. The city has been 

divided into five tracts as previously, with no more than one fire station to be located in any 

given tract. Each station is to respond to all of the fires that occur in the tract in which it is 

located, as well as in the other tracts that are assigned to the station. Table 6-9 gives the same 

average response time to a fire in each tract if their tract is served by a station in a given tract 

while the bottom row gives the same forecasted average number of fires that will occur in 

each of tracts each day. The objective is to minimize the overall average of the response times 

to fires.

We define :

s, t: indices for tract T = (1,2,. . 5}

d(s, t): response time/ distance between s and t

f(t): frequency of fire in tract t.

Fire in tract ' f will be covered by station in tract' s' 

otherwise

Build a fire station in tract ' s' 

otherwise

and the model now can be formulated as follows:
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Minimize Z = ^ ^ x(s, t) · d(s, t) · f(t)
5€T tET

Subject to:

sgT

£x(s,t) = l VteT
»eT

x(s,t)<ys Vs, t g T 

x(s> t), y(t) g {0,1} Vs, t g T

The objective function minimizes the overall average response time to fires. The first 

constraint states that we are going to locate exactly 3 fire stations. The second constraint 

states that each tract has to be covered by a fire station so that some one will respond to the 

fire. The third constraint states that demand tracts can only be assigned to open fire stations 

and the forth constraint states that no more than one station can be allocated in each tract.

This time, we solved the problem using Excel Solver and the solution is depicted in 

Figure 6-24. The value that produces the maximum possible improvement in the objective 

function is 74. This means that the three fire stations will be built in tracts 1, 3 and 4. Fire 

station in tract 1 will respond to fires in tracts 1, 2, fire station located in tract 3 will respond 

to fires in tract 3 and fire station located in tract 4 will respond to fires in tracts 4 and 5. The 

results are illustrated in the following Table 6-11.
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A B C D E F G H . . 1 i~T~ K L
1
2 on variable Constraints —

3 3 3
4 1 = 1
5 Assign ement Tract 1 Tract 2 Tract 3 Tract 4 Tract 5 Open or Close 1 = 1
6 · station 1 1 1 0 0 0 1 1 = 1
7 station 2 0 0 0 0 0 0 1 = 1
8 station 3 0 0 1 0 0 1 1 - 1
9 station 4 0 0 0 1 1 1 1 <= 1
10 station 5 0 0 0 0 0 0 1 <= 1
11 0 <= 1
12 0 <= 1
13 0 <= 1
14 0 <= 0
15 Response time Tract 1 Tract 2 Tract 3 Tract 4 Tract 5 0 <= 0
16 station 1 5 12 30 20 15 0 <= 0
17 station 2 20 4 15 10 25 0 <= 0
18 station 3 15 20 6 15 12 0 <= 0
19 station 4 25 15 25 4 10 0 <= 1
20 station 5 10 25 15 12 15 0 <= 1
21 1 <= 1
22 Fire Frequency 2 1 3 1 3 0 <= 1
23 0 <= 1
24 ! min time 5 12 6 4 10 1 1 0 <= 1
25 0 <= 1
26 0 <= 1
27 1 <= 1
28 1 <= 1
29 0 <= 0
30 0 <= 0
31 0 <= 0
32 0 <= 0
33 0 <= 0
34 (Objective function «1

Figure 6-24: Excel solver solution for three servers.

Our example described above, represents a three-server model of a server-to- customer 

spatially distributed queueing system. This model is generalized to N servers with the 

hypercube model discussed in the previous section.

Fire Station in:
Will respond to fires in Tracts:

1 2 3 4 5

Track 1 Open 1 1 0 0 0

Track 2 Close 0 0 0 0 0

Track 3 Open 0 0 1 0 0

Track 4 Open 0 0 0 1 1

Track 5 Close 0 0 0 0 0

Table 6-11: Computational Results.
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Now we will implement the hypercube model, using the assignment resulted from P- 

Median problem for three servers where server 1 will respond to fires in tracts 1, 2, server 2 

will respond to fires in tract 3 and server 3 will respond to fires in tracts 4 and 5. We will 

examine, by this model, if the workloads of these three servers are evenly distributed.

For convenience, we change frequency of fires values proportionally and now instead 

of f(l) = 2, f(2) = 1, f(3) = 3, f(4) = 1, f^5) = 3, we will have the following values: λι = 0,3, λ2 

= 0,15, λβ = 0,45, λ* = 0,15, λ5 = 0,45, and λ = 1,5, Figure 6-25. The dispatch preferences for 

three-server city are shown in Table 6-12 and results from Table 6-9.

Tract

Number

First

Preference

Unit

Second

Preference

Unit

Third

Preference

Unit

1 1 2 3

2 1 3 2

3 2 3 1

4 3 2 1

5 3 2 1

Table 6-12: Dispatch preferences for three-server city.

In this application where N = 3 unit problem, we suppose that the following events occur:

1. A request for service arrives from tract 4.

2. A request for service arrives from tract 2.

3. Server 3 completes service on its request.

4. A request for service arrives from tract 1.

5. A request for service arrives from tract 5.

and the sequence of states occupied by the system is as follows.
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1. State where no unit is busy ---------- ► (0,0,0)

2. A request for service arrives from tract 4 ---------- ► (1,0,0)

3. A request for service arrives from tract 2 -----------► (1,0,1)

4. Server 3 completes service on its request ---------- ► (0,0,1)

5. A request for service arrives from tract 1 -----------► (0,1,1)

6. A request for service arrives from tract 5 -----------► (1,1,1)

Figure 6-25: Map of three server city.

We compute the values of the transition rates as previously, assuming that μ=1 and the 

state-transition diagram is shown in Figure 6-26 where we define:

Γι = λ4+λ5 = 0,60 

Γ2 = λι+λ2 = 0,45 

Γ3 — λ·3 = 0,45 

r4 = λ3 = 0,45 

Γ5 = λι + λ3 = 0,75 

Γ6 = λ]+λ2 = 0,45 

Γ7 = Γ6 + λ» = 0,60 

rg = Γ9+ λι + λ2 =1,05 

Γ9 = λ4 + λ5 = 0,60
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Figure 6-26: Three server state-transition diagram.

Solving the hypercube equilibrium equations for nonsaturated system states using the 

Excel spreadsheet we arrive at the following values for the state probabilities depicted in 

Figures 6-27 and 6-28.

As we can see, the values of the state probabilities are: Pooo = 0,2105 , P0oi = 0,0933, 

Poio = 0,1228, Pioo = 0,2017, P„0 = 0,0677, P10i = 0,0797, Pou = 0,0696, Pm = 0,1184, PQ - 

0,1383. Furthermore, we notice that the workloads of servers 1, 2, 3 are pi = 0,4994, p2 = 

0,5169, p3 = 0,5037, respectively. We notice that the workload sharing among response units 

caused the workloads of the units to be more evenly distributed than the workloads of the 

primary response areas. If each unit served only the customers of its own response area, the 

workloads would have been pi = 0,45, p2 = 0,45, p3 = 0,60.
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Figure 6-27: Estimation of state probabilities and servers’ workloads.
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Figure 6-28: Formulas of spreadsheet of Figure 6-27.
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Chapter 7 Conclusions

Location of emergency service is an important aspect in the life of every city 

and due to limited resources, requires a careful management.

Optimum locations differ as to whether or not decision-makers want to 

minimize average response time, maximum response time, average distance, or 

maximum distance, or want to locate in areas where more accidents occur, want to 

minimize station overlaps.

Mathematical models may be useful in dealing with such a problem. There has 

been an important evolution in the development of emergency vehicles location and 

relocation models over the past years. In this thesis, we attempted to provide an 

overview of emergency vehicles location models dedicated to capturing the complex 

time and uncertainty characteristics of most real-world problem instances. 

Furthermore, we examined two applications of emergency response vehicles location 

models HQM and P-Median for a profound comprehension. In the end, we made a 

combination of previous models to compare our results.

The first models were very basic and did not take into account the fact that 

some coverage is lost when an emergency vehicle is dispatched to a call. 

Nevertheless, these early models served as a basis for the development of all 

subsequent models. The question of emergency vehicles non-availability was 

addressed in two main ways. Deterministic models yield solutions in which demand
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points are overcovered, but the actual availability of emergency vehicles is not 

considered. Dynamic models have just started to emerge. They can be used to 

periodically update emergency vehicles positions throughout the day. Probabilistic 

models work with the busy fraction of vehicles, which can be estimated in a number 

of ways. Development of tractable models which consider both the stochastic and 

dynamic aspects of emergency vehicle location would be a long term plan.

One of the most important indicators of the performance of any emergency 

service system is response time. Since response time can have a significant impact on 

the loss of life and property at an emergency, it is used as a principal measure of 

effectiveness in many models developed for analyzing the deployment of emergency 

vehicles. In this thesis we also, focused on the description of some approaches to 

estimate travel distance and travel time.

A very important issue in modeling is data collection. If you cannot obtain 

data to run in the model, then there is no need for the model. Little work has been 

done on long term demand forecasting. Most models use deterministic data or the 

average of a sample since there are few good estimating procedures to obtain 

distributions. Accurate travel and service time estimates are critical for building valid 

detailed models, but little work has been done in this area.

As we mentioned above, we examined two applications of emergency 

response vehicles location models. The first one, was an application of hypercube 

queueing model. We considered a three-server city partitioned into 10 geographical 

tracts, each having a rate λί, of arrival of requests from each tract i. We implemented 

the hypercube queueing model and in association with an Excel spreadsheet we 

concluded to obtain any time for random values of λ; and constant λ**, the state 

probabilities of the system and the workloads of the individual servers. We continued
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with a generalized case of the previous example where different values of λ*0ι and λι,

λ2........ λιο result to different state probabilities of the system, workloads of the three

servers and the probability that a queue of positive length exists.

The second application was representative of P-median model. We supposed a 

city partitioned into five tracts where two fire vehicles were to be located. The 

problem was solved using Excel Solver and P-Median Algorithm.

In the end, we solved P-Median model with Excel Solver tool for three servers 

and we implemented the hypercube model using the assignment resulted from P- 

Median problem. We concluded that, the workloads of the three servers are evenly 

distributed which confirms that the assignment of P-Median problem is sufficient.

During implementation time I contacted Fire Brigade chiefs in Volos and 

Larissa, biggest cities of Thessaly region. We arrange meetings in their office and we 

discussed the way they now allocate vehicles in different areas (industrial zones, 

mountains) during the various season and time periods and the way they make zoning 

of their responsibility area.

Findings were quite disappointing. Zoning and Selection of places is not 

decided as the optimum solution of a set of important parameters as we discuss in our 

work but is done empirically. Sometimes factors such as the communication 

restrictions influence vehicles positioning so deep that no optimization in terms of 

minimizing distance and time while covering maximum area susceptible to fire, can 

be considered.

Situation was even worse in terms of data records that were not kept for the 

incidents that fire brigade intervene, beside the book of incidents were they just write 

what kind of event it was and the investigation report if there is need for an
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investigation. Critical data for optimum positioning, such as time of access, time 

needed to be informed, time of vehicles occupancy and so forth are not kept.

That is the main reason that Fire Brigade has major difficulties to decide a 

different positioning allocation of its vehicles and why selection of positions for 

building new fire brigade stations is not being done in an operationally meaningful 

framework as we can see from the open procedure for selecting the place for the new 

Main Station of Volos City Fire Brigade Station.

Interviews with Fire Brigade Chiefs and head officers lead to conclusion that 

present work could be extremely valuable for their work especially in cases where 

zoning of an area (urban or rural) changes, as it happens during events (e g. athletic 

games, festivals) or operation of an industry with dangerous materials, or changes in 

transport infrastructures (e g. tunnels, bridges), new hotels in mountains etc.

It is clear that in time of economic scarcity and restricted resources use of 

tools and methodologies such as these presented in our work are useful and will 

support decision making of Fire Brigade both in Planning and Emergency 

Management fields. At the moment we still lack central guidance from the central 

headquarters

Finally, we present certain tasks that should be done to improve positioning of 

emergency vehicles, especially in the case of Fire Brigade, so that our models and 

tools as well as others of similar nature could be used to optimize social benefit.

1. Cities zoning could be done after continuous risk assessment following certain 

criteria, such as - indicatively - population density, critical infrastructures, ease 

of access, land uses etc.
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2. Data of Fire brigade missions should be kept in detail in electronic forms that 

will make easier use of “smart” tools for allocation and positioning of 

resources or even patrols design and redesign depending on the conditions.

3. Past events/ records investigation by researchers to identify and measure if 

possible parameters that play critical role in vehicles positioning and 

effectiveness in event management.

4. Fire brigade should test such tools in real applications especially in summer 

times where those tools can improve the proximity time to fires and 

effectiveness of the fire prevention and management system.

5. There is need for public presentation of a case study (e g. Pelion mountain) 

using real data with past events (fires), access times, etc and then show how 

presented tools could improve the situation both in terms of maximum area 

coverage, equal personnel workloads, minimum intervention times and other 

critical parameters so that Fire Brigade being “forced” to cooperate in the 

direction of making their work more effective and efficient.

6. Use of tools for vehicle allocation can be used by Fire Brigade to evaluate 

their resources, and make a better planning. Request to State for vehicles, men, 

new positioning of headquarters etc can be supported by scientific evidence 

based on real data. Such approach will maximize effectiveness and minimize 

public funds spending - in different ways - in emergencies management
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