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STRUCTURAL MODAL IDENTIFICATION METHODS BASED ON
EARTHQUAKE-INDUCED VIBRATIONS

Abstract

The problem of identification of the modal parameters of a structural model using earthquake-
induced vibration measurements is addressed. It is based on a weighted least-squares approach
using multiple-input multiple-output measured time histories at the base supports and at selected
locations of a structure. The identification is performed in the time domain and in the frequency
domain. Existing modal identification methods have been extended in this work to treat
generalized non-classically damped modal models. The case of classically damped modal

models is treated as a special case.

The identification of the modal parameters (modal frequencies, modal damping ratios,
modeshape components and participation factors) is accomplished by introducing a three step
approach: in the first step, a stabilization diagram is constructed containing frequency and
damping information. Next, the modeshape components and participation factors are found in a
second least-squares step, based on the user selection of the stabilized poles. Finally, in order to
improve the estimation of the modal characteristics especially for the challenging case of closely
spaced and overlapping modes, a third step concerning the fully nonlinear optimization problem is
addressed. Computational issues involving the solution of the optimization problems and the

evaluation of analytical expressions of the gradients of the objective functions are also discussed.

The validation of the proposed methodologies and algorithms is presented using simulated
data from a 3 DOF and a 10 DOF spring mass chain model. The methodologies are next applied
for the identification of the modal characteristics of two bridges, the R/C bridge of Egnatia Odos
located at Polymylos, Greece, and the Vincent Thomas cable suspension bridge located at Los
Angeles, USA. Results provide qualitative and quantitative information on the dynamic behaviour

of the bridge systems and their components under earthquake-induced vibrations.
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CHAPTER 1

Introduction

1.1. Research Context

Identification is the process of building an accurate, simplified mathematical model for a system
based on a set of input and output measurements. The particular problem of system identification
of the modal parameters of a linear structural model by using dynamic data, commonly referred to
as experimental modal analysis (Ewins, 2000), has received much attention during the years,
because of the importance of the modal characteristics in understanding the dynamic behaviour
of the structure and designing the structure to meet certain performance criteria. Also the modal
characteristics are useful in model updating, structural control and health monitoring applications.
Applications exist for a wide range of structures, such as in aerospace and automotive industries,
where modal tests are performed on extensively instrumented spacecrafts, aircrafts, vehicle
bodies and train bodies by using precisely controlled excitations for determining the modal
parameters. Civil structures, mainly buildings, bridges, off-shore structures and dams also appear
the need for identification strategies, so as to understand their behaviour as well as assert
damage caused either by earthquake, wind, or aging and to prevent further deterioration.

A great number of structures require certain specifications for safe and precise operation
conditions, which usually form the most significant design parameters. In order to ensure a
constantly accepted and reliable performance of a system, the knowledge of its dynamic behavior
becomes essential in either case of operational or unpredictable extreme loads. For newly build
structures, as well as for the ones that are already in operation for some time, the measurement
of their dynamic properties, such as natural frequencies, damping factors and modeshapes is well
desired, so as for the prediction of their behavior using a reliable model to be feasible.

It is worth pointing out that measured modal characteristics are used in model updating and in
damage detection efforts (Papadimitriou et al., 1997). The basic idea is that commonly measured
modal parameters (notably modal frequencies, mode shapes, and modal damping) are functions
of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in
the physical properties, such as reductions in stiffness resulting from the onset of cracks or
loosening of a connection, will cause detectable changes in these modal properties. These
changes in modal characteristics can be used to detect damage and identify its location and

severity.

This thesis is concerned with the application of the identification process to civil engineering
structures based on their earthquake-induced vibrations. The evaluation of the actual dynamic
characteristics of civil engineering structures through measurements of their dynamic response
has been attracting an increasing research effort worldwide (Wilson 1986, Werner et al. 1987,
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Safak E (1993), Lus e. al. 1999, Chaudhary et al. 2000, Chaudhary et al. 2002, Smyth et al. 2003,
Arid and Mosalam 2003, Lin et al. 2005, Liu et al. 2005, Siringoringo and Fujino 2007). For the
case of earthquake-induced vibrations, the modal characteristics are estimated from the
measured portion of the excitation occurred to the structure and the measured vibration
responses. These measurements are usually the acceleration of the structure obtained by
accelerometers optimal placed on the structure (Papadimitriou et al., 2002). It has been observed
from response measurements of large structures to potentially damaging excitations that the
dynamic properties of many structures are markedly different during response to strong ground
motion than in small amplitude ambient and forced vibration tests. Hence, it is of considerable
interest and importance to extract information about structural behavior from strong motion data.

Measured response data of civil engineering structures from earthquake-induced vibrations
offer an opportunity to study quantitatively and qualitatively their dynamic behaviour within the
resulting vibration levels. These vibration measurements can be processed for the estimation of
the modal characteristics, as well for the calibration of corresponding (finite element) models used
to simulate their behaviour. The information for the identified modal models and the updated finite
element models is useful for validating the assumptions used in model development or for
improving modelling, analysis and design procedures. Also, such information is useful for

structural health monitoring purposes.

Modal identification algorithms provide estimates of the modal frequencies, modal damping
ratios and modeshapes at the measured DOFs using classically-damped or non-classically
damped modal models. For the case of earthquake-induced vibrations, modal identification
methods have been developed in time domain (Beck 1978; Beck and Jennings 1980) and in
frequency domain (McVerry 1980), based on a minimization of the measure of fit between the
time history or its Fourier transform of the acceleration responses estimated from the
measurements and the corresponding ones predicted from a classically-damped modal model of
the structure. Beck (1978) and Beck and Jennings (1980), had presented an output-error
approach for the identification of linear, time-invariant models from strong motion records, through
the minimization of a measure of fit including displacement, velocity and acceleration records.
McVerry (1980), has applied an output-error approach in the frequency domain, using the Fast
Fourier Transform of the acceleration response time histories to estimate the modal properties
through least-squares matching. Werner et al. (1987) formulated a methodology in the time
domain for the case of measured input excitation, such as earthquake excitation, for an elastic
system with classical normal modes and with motion measurements from any number of input
and system response degrees of freedom. Their procedure was an extension of the least-
squares-output-error method which was used by Beck (1978). Extensions for identifying non
classically-damped modal models in the frequency domain have also been developed by
Chaudhary et al. (2000). Tan and Cheng (1993) proposed an iterative identification algorithm,
which was based on the modal sweep concept and the band-pass filtering process, to identify the
modal parameters of a non-classically damped linear structure from its recorded earthquake
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response. Mahmoudabadi et al. (2006) developed a method for parametric system identification
in frequency domain for classically and non-classically damped linear systems subjected up to six
components of earthquake ground motions, which is able to work in multi-input/multi-output
(MIMO) case.

For structural modal identification techniques, there exist certain limitations to the robustness and
reliability, such as:

« Insufficient measurement data: the response of a structure is usually measured at only
a small number of locations (limited number of sensors), which gives little information about the
full modeshapes of the structure. Another issue is the usually limited range of the exciting
frequency band that hides some of the system’s dynamic properties. From a testing standpoint it
is more difficult to excite the higher frequency response of a structure, as more energy is required
to produce measurable response at these higher frequencies than at the lower frequencies. In
addition, sensors are not always placed at the optimal locations to give the best possible
information for the excited system.

« Coupling of modes: within the measured frequency range of response it is often difficult
to identify all the modes contributing to the measured response because of coupling between the
modes that are closely spaced in frequency. This difficulty is observed more commonly at the
higher frequency portions of the spectrum where the modal density is typically greater.

« Measurement error: the dynamic data measurements always consist of bias errors
(noise) at some extent, caused either by faulty instruments, changes in the environmental
conditions during testing, or poor preprocessing of the initial data (bias from windowing of the
data). The effect of noise on the modal approach is that it limits the number of modes that can be
estimated reliably, for there exists a deterioration of the signal-to-noise ratio for the higher modes.
Thus, the modal parameters could be identified for only the dominant modes in the measurement

records.

* Non-uniqueness: the lack of sensitivity of the measurement quantities to small changes

in the modal parameters to be identified.

e lll-Conditioning: when the number of parameters is larger than needed or when the
available measurements are relatively limited, then the optimal solution to the identification
problem appears not to be unique.

The methods developed by McVerry (1980) in the frequency domain and Beck and Jennings
(1980) in the time domain, are extended in this work to treat non-classically damped modal
models, since damping may not be proportionally distributed in various structural components.
For the special case of bridges, non - proportionally damping appears due to the energy
dissipation mechanism provided locally by the elastomeric bearings and the foundation soil. For
base isolated buildings, non proportional damping may appear due to the energy dissipation
mechanism provided locally by the isolation system. Output-error methods are used in which the
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optimal values of the modal parameters are obtained by minimizing the discrepancy between
measured responses and the predicted responses of the system. Time domain output error
methods process the response time histories measured from a network of sensors (e g.
accelerometers), while frequency domain output error methods process the Fourier transforms of
the measured response time histories.

A novel aspect of this thesis is the use of a three step approach to solve the error
optimization problem. The first step provides estimates of the modal frequencies and modal
damping ratios by solving a system of linear algebraic equations. Stabilization diagrams are used
to distinguish between physical and mathematical modes. The second step provides estimates of
the modeshapes and the participation factors by solving a system of linear algebraic equations.
The first two steps usually give accurate estimates of the modal characteristics. A third step is
added to improve this estimates, if needed by efficiently solving the full nonlinear optimization
problem with initial estimates of the modal parameters those obtained from the first and second

steps.

1.2. Outline - Organization of the Thesis

In this thesis modal identification methodologies for estimating the dynamic modal characteristics
of civil engineering structures have been developed using earthquake induced vibration

measurements.

Chapter 2 uses a linear system theory with the objective to describe the solution of the
system in the time and frequency domains in terms of the modal coordinates. Several
mathematical models are discussed that can be used to describe the dynamical behavior of a
structure with a limited number of parameters. The formulation is presented for the general case
of non-classically damped modes. The classically damped case is then formulated as a special

case. Both continuous and discrete time formulations are presented.

In Chapter 3, a time domain methodology is presented for identifying the modal and other
parameters of non-classically damped modal models describing a system’s response
characteristics based on earthquake-induced vibration data. An output error formulation is
presented, in which the selected modal parameters are derived through least-squares matching
of the acceleration time history estimated from the modal model to the measured acceleration at
specific points within the structure. A time domain methodology for identifying the modal and
other parameters of classically damped modal models is also presented.

In Chapter 4, a frequency domain methodology is presented for the identification of the modal
and other parameters of non-classically damped modal models describing a system’s response
characteristics based on earthquake-induced vibration data. The identification of the modal
parameters is performed using frequency domain data. An output error formulation is presented,
in which the selected modal parameters are derived through least-squares matching of the
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Fourier transform of the response predicted from the modal model to the Fourier transform of the
measured response acceleration at specific points within the structure, over a specified frequency
band.

In Chapter 5, the modal identification methods are applied to identify the modes of civil
engineering bridges subjected to different input acceleration components arising from the multiple
supports. For this, the equation of motion governing the response of bridges when subjected to
different excitations from the multiple supports is revealed and shown to fall into the category of
linear structures used to develop the modal identification method. Next, the modal identification
algorithms in time domain and in frequency domain are validated using simulated support (base)
acceleration response time histories generated from a 3DOF and a 10DOF spring mass chain
model. Finally, the implementation of the modal identification methodologies is presented for two
bridges using available earthquake recordings. The first bridge is the R/C bridge of Polymylos
which is part of the Egnatia Odos motorway system in Greece. Recordings are available for the
low level, magnitude M, = 4.6, earthquake event that occurred on 21/2/2007 (2:04:38 GMT) at
a distance 35km Northeast of the bridge. The second bridge is the Vincent Thomas cable
suspension Bridge located at Los Angeles. Earthquake recordings are available from the 1987
Whittier earthquake of magnitude Ml =6.1.

Chapter 6 concentrates on the observations and conclusions that resulted from this work. It
also focuses on several aspects concerning the area of modal model identification that need

further attention.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



CHAPTER 2

Linear System Analysis in Time Domain

2.1 Introduction

This section uses linear system theory to solve the equations of motion that govern the response
(displacement, velocity and acceleration) of structures. Modal analysis is used to describe the
response at the measured (observable) degrees of freedom of the structure in terms of the
eigenproperties (eigenvalues and eigenvectors) and the excitation. The analysis is used in
subsequent Chapters for solving the inverse problem of identifying the eigenproperties given
input-output measurements.

Using a spatial discretization method, such as finite element analysis, the equations of motion
for a linear structure are given by the following set of n second order differential equations

Mq(t) + COq(t) + Kq(t) = Lu{t) (2.1)

where q(t) e MA""yl is the displacement vector, M, C0 and KeRnmn are respectively the
mass, damping and stiffness matrices, u(t) e R is the applied force vector at the Nm DOFs,
and L e R™"" is a matrix comprised of zeros and ones that maps the Nm excited DOFs to the
n output DOFs. Throughout the analysis, it is assumed that the system matrices M, C0 and K

are symmetric.

Linear system theory is used with the objective to describe the solution of the system in the
time domain in terms of the modal coordinates. The formulation is presented for the general case
of non-classically damped modes. The classically damped case is then formulated as a special
case. Both continuous and discrete time formulations are presented. All results given in this
Chapter are well known. Their presentation is given herein in order to make this Thesis self-

contained.

The presentation is divided into the following sections. Section 2.3 gives known modal
analysis results for formulating the response of the structure in terms of real modal coordinates
for a classically-damped model (2.1). Sections 2.3 to 2.5 extend the formulation to the general
case of a non-classically damped model (2.1). For this, the state space form of system (2.1) is
used and the corresponding complex-valued modal analysis results are presented. Section 2.6
gives a summary of the formulas that describe the response of the structure at the measured
locations in terms of the complex eigenproperties (eigenvalues and eigenvectors).
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2.2 Formulation for Classically-Damped Models

Assuming that the structure is classically damped and that the system matrices M, C0 and
K e R"X" are symmetric, the solution for the displacement response q(t) e in the modal

space can be written in the form:
£(0=3&E£()=0i(0 (22)
r='
The modal coordinates & (/) are given by the modal equations

£(0+20O/ (0O + (O = £rLU(¥) 22

where <yr is the modal frequency, <. is the modal damping ratio and ¢ is the modeshape

vector for the r mode. The modeshapes ¢ ,r =1,.,.,nn, are real and satisfy the orthogonality

conditions

= Q= =\, = (2.4)

i . =" ,r=\,...,n, s (2.5)
[1, T=5

where 9,, — (2-6)

is the Kronecker delta. Equivalently, in matrix form the orthogonality condition (2.4) and (2.5) are

written as

PTMP =1 (2.7)
PIKD = Q7 2.8)
where @ = 9 @ is the matrix of modeshapes and Q? is a diagonal matrix of the

squares of the modal frequencies given by

<y,
= (2.9)

or

Note that all variables involved in the classically damped analysis presented in this section
are real and the modal equation are second order differential equations. In contrast, the variables
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in the classically damped modal analysis presented in Section 2.3 are in general complex, while
the modal equations are first order differential equations. It can be shown that the two
formulations for describing the response in the modal space are equivalent.

2.3 State Space Formulation of non-Classically Damped Models

In the general case where the system is non-classically damped the set of equations (2.1) must
be converted to a set of first order state space formulation. This is accomplished by introducing

the complementary equation

Maq(t) = Mq(t) (2.10)

and the state vector

= 2.11)

Equations (2.1) and (2.10) can be written in the state space form
Px+Qx = (((0 2.12)

where the matrices P and Q are given by

L_rel M- K o 019
"Moo 2T 0 M '

2.3.1 The eigenvalue problem

The eigenvectors ) and the corresponding eigenvalues Xr satisfy the eigenproblem
{PA+O)Y =0 (2.14)

The eigenvalues Ar and the eigenvectors qJ are complex and it can be shown that if Al
and ¢ are the eigenvalues and eigenvectors of the eigenproblem then A and qu are also
eigenvalues and eigenvectors of the same eigenproblem.

Introducing the eigenmatrix W =\ - W,Wp\ - Yh] 6 C2"*2" it can easily be shown
(Natsiavas 1999) that the eigenmatrix of the eigenproblem (2.14) is given by
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P @ oo
Y= ec
PN D*A*

where @, A satisfy the second order eigenproblem
M PA2+<0cpA+£@ =0

The eigenvalues Av are given by
1=-,00,F]w,p-q1
where

Rup|

0y ,_ and
v-\W co.

The eigenvalue matrix for the first order linear system (2.12) is given by

VANV
N\,= = diagonal e C
0 A

2nx2n

where A is the diagonal matrix

0

0 A,

2.3.2  Orthogonality conditions
The complex eigenvectors satisfy the orthogonality condition
W7PY = diag[ar]
that can by written as
P ="Vv~diag [ar] W-1
The eigenvectors also satisfy the orthogonality condition

¥TQV = diagffir]
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(2.16)

(2.17)

(2.18)

(2.19)

2.20)

(2.21)

(2.22)

(2.23)



that respectively can by written as

Q= "-Tdiag[pr]™ (2.24)
Pre-multiplying (2.14) by " yields

W PYA+YPLYY =0 (2.25)

and solving for A gives

Q
Nz b (2.26)
/Py

For the r-th eigenvalue and eigenvector, the last expression gives

(2.27)
The r-th eigenvalue is finally given by

(2.28)
where

(2.29)
at" :LI—Jr Pgr
and the eigenvalue matrix is given by
At = diag a diag [B,] (2.30)

The normalized state space formulation is obtained by pre-multiplying equation (2.12) by
J-l

0 AT
p- (2.31)
M|

The normalized state space equations take the form
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X = Acx+ Bcult)

(2.32)

where
0 NTI ~K 0 0 /
- (2.33)
AT! 0 -M b C
1 4
is the state space matrix and
L 0 AT ~L 0
0 0 1 * '|
Based on the eigenproblem (2.14) and pre-multiplying (2.14) by P | yields
-P='0)-ADY_=0 => {Aa-ADY_=0 (2.35)
For the r-th eigenvalue and eigenvecor, the last expression can be written in the form
AWy—~KWy r=\,...,2n (2.36)
In matrix form, the set of 2n equations (2.36) can by written in the form
4,W = WA¢ (2.37)
that gives
Ac =W ANAep- (2.38)

Formulation (2.37) shows that the matrices At

and W contain the eigenvalues and

eigenvectors of the state space matrix Ac.

2.4 Observation equations

Let y{t) be the response vector of interest. These responses, in general case, are a linear
combination of the accelerations, velocities and displacements of the system. The generalized

observation equation is given in the form

y(®)=CJIM)+C,q(t)+Cji(t) (2.39)
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By writing q(t) as a function of q(t) and g{t) using (2.1) and substituting in (2.39) yields

y(t) =Ccx + Dcu(t) (2.40)
where

Cc=[Cd-C'M-'K IC.-C.M-'C,] (2 41)
and

Dc=CaM-'L (2.42)

2.5 Modal model
2.5.1 State space equations
For the realization of modal analysis method the following transformation is introduced

X)) = WE() (2.43)

where & is the vector of the main modal coordinates. Substituting eq. (2.43) in (2.32) and pre-
multiplying by W'l the following expressions are obtained

WE = 4.WE + B,M(i) (2.44)
or equivalently
A= P-4 e+ Y- RAY) (2.45)

Using the eigenvalue problem (2.37), one finally obtains the equations

1=Acl +Lcu(t) (2.46)
where
Lc="~'Bc¢ (2.47)

The last equation (2.46) is the state space equations for the modal coordinates E(i)- The
Lc term can be simplified using equation (2.22) which is solved with respect to W*"! to yield

Y | =diag YTP (2.48)

12
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By substituting the last expression in (2.47) and using (2.15) and (2.13) results in

4 =Y |Bc- diag a Y P

; T (2.49)
v O

=diag
a oA | DN M0

Carrying out the matrix multiplications, the above equation finally simplifies to

1 ¢7 "
Jar. O

The 4 matrix is the participation factor matrix. Using modal coordinates equations (2.50)

result in

4= 44(o+a_q>f\/| n, r=\,...,n (2.51)
4,(0)= A‘£,,,(O+a—C M) (2.52)
with

&+,=£ 31 (2-53)

Note that the complex equation (2.52) is the complex conjugate of the complex model

equation (2.51).

2.5.2  Observation equations

The response _y(f) defined in (2.40) can be expressed using modal coordinates by substituting
the transformation (2.43) in (2.40) to yield

y(t) =Cc'i'l(t) + Dcu(t) (2.54)
or equivalently
y() = KI(D) + Dcu(l) (255)

where
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K=cn (2.56)

The matrix V¢ is called the modal response matrix (output - observation) and can be
simplified using equations (2.41) and (2.15) into the form

. o | o
-c.M-'K\c,-cjr'c,] ,’ , (2.57)
YNl KW N

Let us now consider the following three special cases:

a) The response Yy(t) consists of the displacements only, that is Ca =Cv=0 and Cd ¢ O.
The V¢ matrix takes the final form

@ | @
K=[cd!l o] oA forne CI® 1 @] (2.58)

b) The response y(t) consists of the velocities only, that is Ca =Cd =0 and Cv * 0. The V¢
matrix takes the final form

Ve = Cv [®PA | D’A*] (2.59)

c) The response y{t) consists of the accelerations only, thatis Cv =Cd =0 and Ca ® 0. The
Ve matrix takes the final form

*

K=-Ca[M-'K\M 'C](p!(p
=- a - - 7 " ’
DA | PA* (2.60)
=-Ca[M-'K<& + AT'C0<GA 1 M-'KD' +M“'CI®*A*'
that can be simplified further using the eigenproblem (2.16). Specifically, from (2.16) one has
M“ a:cpF+ATN0PA = —pA2 (2.61)
or equivalently by taking complex conjugates
M~'K®d* + AT'QD*NA* = -dDANA*) (2.62)
Substituting the last two expressions into (2.60), V¢ is given by

Ve =~A[DPAL | D'A2] (2.63)
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2.5.3 Summary of modal model equations

Summarizing, for the case of general non classically damped systems, the modal model consists
of the modal state space equations (2.46) and the modal observation equations (2.55), that is,

I =Acl +Lcu(t) (2.64)
y(t) = Vel (t)+Dcu(t) (2.65)
where
z((g e C* 266)
£(0

is the modal coordinates vector

A0
A. = (2.67)
0 A

is the matrix that consists of the complex eigenvalues Al of the system,

P
4 =WP'4 =diag a . LeCZﬂXNln (2.68)
_ o

is the participation factor matrix,

u(t) e Rn* (2.69)
is the independent vector of excitations,

D¢ =CaM~'LeRN"*N" (2.70)

is a matrix that is zero if no accelerations are contained in the response vector y(t), and
Ve e CN**2" is a matrix given by

Ve -Cd[ep DN for displacements (2.71)
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VC=CV[PA D’N*] for velocities (2.72)

Vc=Ca |"®dA2  P*A*2N for accelerations (2.73)

Consider next the case for which Cd, Cv and Ca in (2.39) are observation matrices that
assign a correspondence between the model degrees of freedom and the observation
(measured) degrees of freedom. In this case note that:

U= C||Q = [u| u,] (2.74)

is the eigenvector matrix at the desirable (measured) degrees of freedom that are included in the
response vector y(t) for the displacements. Similarly, taking into account that A is diagonal
yields

CVOA = A (2.75)

is the eigenvector matrix at the desirable degrees of freedom that are included in the response
vector y{t) for the velocities. Similarly, taking into account that A? is a diagonal matrix,

CaOA2=[A\ - AN] (2.76)

is the eigenvector matrix at the desirable degrees of freedom that are included in the response

vector y(t) for the accelerations.

Based on the above formulations the response y{t) e at the N( degrees of freedom of
the linear model is given by

y{t) =[Uu U I(t) + Deu(t) 2.77)
where
U =[u\,....un)eCN"™n (2.78)

is the eigenvector matrix at the desirable degrees of freedom. Consequently, the system
response for either displacements or velocities or accelerations is fully defined when the elements
of the matrices Ac., Lc, U and Dc are known

From the previous analysis, it is evident that the response y(l) of the linear structure at
selected degrees of freedom can be completely defined by knowing the parameters set O that
includes all entries involved in the matrices Ac, Lc, V¢ and Dc.
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2.6 Special case: Classically damped model

The aforementioned equations for the general case of non-classically damped system are
simplified in this paragraph for the case of classically damped systems and assuming that the
structure matrices M, C0 and Ke M"™" are symmetric. From the analysis of classically
damped structures with symmetric matrices, it is known that the response is given by

g = <peM (2.79)

where j)el™ is a real modeshape vector. In this case the matrix of modeshapes de K"*",
defined in (2.15), is also a real matrix.

Consequently, substituting in (2.15) the complex modeshape matrix, W is given by

® O
W= (2.80)
DA DA

Substituting the above equation into the orthogonality condition (2.21) yields

diag 20 . | 0
diag[ar] = WT.PVY ' ' (2.81)
0 —diag
and substituting (2.81) in (2.68) yields
-1
diag DN TNT 0 A2
(2.82)
0 -diag 2«wW'~£ .
Using (2.51) and (2.52), the modal coordinates & (/) and &\ (/) are written in the form
i(t) = K4r +-——- T=f"«(O {2.83)
2ajyjl-g-*
fr(t) = Kfr +-———-—- FT=A<f>FLuft) (2.84)
“-TCONA-Q) ~r

The system of equation (2.83) and (2.84) can thus be written in the complex form (2.64)
where L¢ is an purely imaginary matrix given by (2.82). Using (2.55) to (2.57) and (2.80), the
response vector y{t) is given by the observation equation

y(t) = KI(t) + Deu(t) (2.85)
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where

O] O}
PN OA*

Cc=[Cd-CaM-'K | Cv-CaM-'C0\

Dc=CaM~'L
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(2.86)

(2.87)

(2.88)
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CHAPTER 3

Time Domain Methods for Identification of Non-classically
Damped Modal Models of Structures

3.1 Introduction

In this chapter, a time domain methodology is presented for identifying the modal parameters of
non-classically damped modal models used to describe the response of linear structures
subjected to multiple base excitations. The modal parameters to be identified include the modal
frequencies, the modal damping ratios, the modeshapes and the participation factors. The
proposed structural modal identification methodology is applicable to civil engineering structures
such as buildings, towers, bridges, offshore structures, etc., subjected to earthquake excitations.
The identification methodology uses measured input acceleration time history data at the base
degrees of freedom and output acceleration time history data at the model degrees of freedom of
the structure. An output error formulation is presented, in which the modal parameters are
identified through least-squares matching between the output measured acceleration time
histories and the acceleration time histories predicted by a modal model of the structure
subjected to the measured base input acceleration time histories. In addition, a time domain
methodology for identifying the modal and other parameters in the special case of classically
damped modal models is also presented.

This chapter discusses several mathematical models that can be used to describe the
dynamical behavior of a structure with a limited number of parameters. From an engineering point
of view the modal model of a structure provides the best physical understanding. However, since
this model is highly non-linear in its parameters most identification algorithms do not directly
identify the model parameters. Instead, the modal parameter estimation methods proposed in this
chapter identify state space models from the experimental measurements. In the next sections,
the relation between these models and the modal parameters are discussed.

This chapter is divided into the following sections. In Section 3.2 an output error formulation is
presented as a weighted least squares optimization problem in the time domain. In Section 3.3
the formulation of the objective function for non-classically damped systems is presented using
active and fixed modes in order to implement a modal sweep approach similar to one presented
in Werner et al. (1987) for classically damped systems. Section 3.4 gives simplifications which
explain the quadratic dependence of the objective function on the modal characteristics and in
Section 3.5 analytical expressions of the gradient of the objective function are given. In Section
3.6 the special case of classically damped modal models is presented. In Subsection 3.6.1 the
formulation of the objective function for classically damped modal models is presented using
active and fixed modes, and in Subsection 3.6.2 analytical expressions of the gradient of the
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objective function are given. Finally, in Section 3.7 the modal sweep approach which is used for
the implemented optimization routine is presented.

3.2 Formulation as a Least-Squares Optimization Problem

Let y(kAt,d) be a vector of the response of a linear structure obtained from a modal model
involving a parameter set © and m modes. The variable At denotes the time discretization step

and k={1,2,...,N} is an index set. The parameters in © include the modal characteristics

such as modal frequencies, modal damping ratios, and modeshape components at the measured
locations, modal participation factors, and other parameters that completely define the response

vector y(kAt,6().
A modal model output-error identification approach seeks the optimal values of the parameter

set © that minimize a measure of fit between the modal model predictions y(kAt,6) and the

corresponding response y(kAt) estimated from the measured data. That is, the modal model

identification is formulated as a minimization problem of finding the values of © that minimizes
the measure of fit

v [Y{kAt'd)-y(KAti] \y{kAt-,e)-y(kAD~ i3-1)
4=0 L
where
Yy measured response time histories at the Nm measured DOF
V. response time histories at the measured Noul DOF predicted by the modal model
At sampling time interval of the digital acceleration
N total number of sample data over the response duration T
k. the time index set at time t = kAt
. normalization factor for time domain (3.2)
4=0

In this work, y{kAt,0) represents the acceleration response predictions at the measured
output locations of a structure which are described by the parametric modal model developed in
Section 2.5 and y"kAt?j represents the measured accelerations at the same locations. However,

the formulation presented is directly applicable to other response time histories such as
displacements and velocities.

Using the analysis in Chapter 2, the vector y{t\Q) of the acceleration responses at the Nout
measured degrees of freedom, based on the non-classically damped modal models, can be

written in the form
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y(®)=[u u'lm-+Dcu(t) (3.3)

where Dc e i is a real matrix
U= eCN“™ (3.4)
is the matrix of the complex eigenvectors ur, r at Nout DOFs, and
&(O eC:Z/nxl (35)
#,°(O
#1(0

is the complex vector of modal coordinates satisfying the complex modal state space equations

E£() = NE(O+ix(<)

(3.6)
iXt)=Kfrm+Cu(t)
where fr e CUN" is the complex vector of the modal participation factors relating the inputs
to the r mode of the system, and
K="“OrtMVI«Cl=-ar+ A m=1 3.7)
are the complex eigenvalues of the structures. The parameters ar = and br =corep - ]

are expressed in terms of the modal frequency a>r and the modal damping ratio v . Given ar
and br, the modal frequency a>r and the damping ratio I are obtained from the following

relationships:

AN = A+ br (3.8)

(3.9)

The modal response &(i) can be obtained by solving (3.6) using the complex-valued initial
conditions &r(0).

The parameters set © in the notation y{t',6) contains the parameters that completely define
the response vector y{t\6) using the modal analysis. From equations (3.3) to (3.7), it is evident
that the parameter set 6_ contains the complex eigenvalue Xr of the r mode, the complex
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modeshapes ur < , the modal participation factor vectors fr e CUNIn, the initial conditions
¢,(0) = |, and the entries of the real matrix Dc e , that is

6\ {Xr,ur,fr™?2,r =\,....m,Dc} (3.10)

where m is the number of contributing modes which is also an unknown in the modal
identification process.

It should be noted that in the aforementioned formulation the parameter set © consist of
complex-valued variables, while the response vector y(t;6ty is also described in terms of
complex-valued variables and solutions of modal equations with complex-valued coefficients.
From the computer implementation point of view, it is necessary to describe the response vector
in terms of real-valued variables, equations and parameters. In what follows, the response vector
y(t;0) is reformulated in terms of real-valued variables and parameter set ©. For this, the
complex-valued scalar and vector variables u,, [r, & (i) and &[(0) involved in the description
of the modal model are expressed in terms of the real and imaginary parts as follows:

Ur =Ir+j¥r (3.11)
£ = pA+jpi,r (3.12)
£ {t) = "Re,r{t) + j”Imr (O (3.13)
E‘.O =n(IJ:2c,f+jn?m,r (3.14)

Using (3.3), (3.4) and (3.5), the response vector y(t\(f) = _y(f) can be expressed in the
form

m

Al == [~(.O+AZ1L(L)]+ (315)

r=|

Substituting (3.11) and (3.13) into (3.15), and after rearranging the terms, yields
m
£(-0 = S {{& +FC)HNR\/{L) + j(Ur +—"DnimAD\ + Dc**(O <3'16)
r=!

or, equivalently,

m

AO=3{2  ()¥2(?A.,()!+DM> (317

Introducing the two-dimensional real modal vector of real modal coordinates
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a (3.18)

(W()J
equation (3.17) can be written in the compact matrix form

m
£00=25{[& -Pr-\ot{n} + Ou*(.i) (3.19)

The equations for the real and the imaginary parts nRer (t) and nlm(/) , respectively, of the
complex modal coordinate &M(i) can be obtained by substituting (3.13), (3.12) and (3.7) into the
first of (3.6) to yield

«Re.r (O tie.r (l) = ("«, A )(«Re,r (O *toa<nr () + pL.r +/PL.r )«(I) (3‘20)

Equating the real and the imaginary parts of the above equation, yields the following system
of two first-order differential equations that describe the time evolution of nRer (/) and nimr [t):

—=.r (O = ~«r«ReJ ¢ra-brHus (O + PL,MO (321)

Vr (0 =-«lm.r (') + kher (0 + Pinag (322)
In matrix form, equations (3.21) and (3.22) become

br PjHe,r

aw= , . MO+ %0 029

Phn,r

which can be solved using the initial conditions

MO0) = (3.24)
Im.r
Summarizing, the response vector _y(/) is equivalently obtained by the modal expansion

expression (3.19), where the real modal vectors n, (f) are given by the first-order differential

equations (3.23) that are solved using the initial conditions (3.24). Thus, the response is
completely described by the real parameter set © that contains the modal parameters ar = fwl

and br =coryj\ - ] that are related to the modal frequencies cor and the modal damping

ratios €V, the real part ¢r e RNm and the imaginary part I e of the complex
modeshapes ur e CN*'xl, the real part pT e R'v* and the imaginary part re of the
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modal participation factor vectors fr e CUNi*", the real part nRer and the imaginary part n°mr of

the initial conditions £r(0) = £{°, and the entries of the real matrix Dc e , that is,
d= br, ¢, wr, pRey p[my nRer, nXmr, r=\,....m, £>} (3.25)

where m is the number of contributing modes which is also an unknown in the identification
process. The total number of model parameter involved in the prediction of the response at Noul
DOFs given m modes and Nm base input time histories, is
[4m + 2(mxNin) + 2(Noul xm) + (Noul x Nin)]

The previous formulation is an extension to the non-classically damped modes of the time
domain formulation developed by Beck (1978) assuming classically damped modes. Basically,
the problem being solved is the one of minimizing the cost function J (0) in (3.1) with respect to
the parameters ©O. For this case, gradient-based optimization method is implemented that
requires initial estimates for the parameters and will be described in detail later on.

3.3 Formulation Using Active and Fixed Modes

In order to implement a modal sweep approach similar to one presented in Werner et al. (1987)
for classically damped systems, two index sets are introduced, the active index set la containing
the mode numbers that are active and are optimized during the optimization process and the
fixed index set If that contains the rest of the m modes that are included in computation of the
response vector but their parameter values are kept constant during the optimization process.

Consequently, equation (3.19) can be expressed in the form

TO=2Z{fe -("IMO} +£)c?i(0+2 N0 (3'26)
rela fel/

Introducing the active and the fixed parts of the responses by

Tr(f;£) =2Z{fe- -Vr]", {H} + DM() (3-27)
rela
NO =2=2{[ -IP/15/(0} (328)
7ell

Respectively, the total response y(t',0) = y(t) due to m contributing modes can be written

in the form

y{) = xr{t-Q) + x\t) (3.29)
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which is more appropriate to use when formulating the optimization problem using modal sweeps
to identify the modal parameters of the active modes defined in the set la, holding the
parameters of all other fixed modes, defined in the set I, , as constants.

Using active and fixed modes, the objective function (3.1) can be expressed in the form
l n r

=—> \ *r{k&t;0) + rf (kAt)-y(KAH\ \xr (kAt;0) + xf (KAD-y(kAt)T (3.30)
*=0 L ~

,or equivalently, the final form of the objective function is given by

3 {(1QN) [ (|<At-,e)-e(kAt)~AT [xr [KAf,Q)~e (3.31)
V k=0 L

where xr (kAt;0) , given by (3.27), depends on the parameter set ©, while e (A:Ai) given by
e(kAt) = y(kAD)-2N™ {[~ -"V]«/ (6} (3.32)
*'r

is the constant vector of the measured response minus the response vector that is predicted from

the modal model considering only the fixed modes.

3.4 Simplifications Explaining Quadratic Dependence on Modal
Characteristics

The minimization of the objective function (3.31) can be carried out efficiently, significantly
reducing computational cost, by recognizing that the error function in (3.31) is quadratic with

respect to the real part ¢f and the imaginary part QI of the complex modeshapes and the

elements in the real matrix Dc. This observation is used to develop explicit expressions that

relate the parameters ¢I, Yr and Dc to the rest of the model parameters appearing in the

parameter set #, such as the real part pR and the imaginary part of the complex

participation factor ljr, as well as the modal parameters ar and br that relate the modal

frequencies cor and the modal damping ratios I , and the initial conditions and «°mr.

For this the parameter set © in (3.25) is partitioned into parameters sets as follows

9 = (Oa, ih)] (3.33)

where Ob is defined by

=(tr Wrr r=\,...,m, Dc) (3.34)

25

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



and 6)U is defined by

br. nl., (3.35)

Stationary conditions with respect to the parameters in the set Oh are used to develop a
linear system of equations for solving for the set ©H given the values of the parameters set 6° .

For convenience in the presentation this linear system can be formulated in the general form

A[60)6* =b(ea) (3.36)
where and b”™Oalj are functions of the parameter set O . Let
eh=(lh(ea) (3.37)

be the function that gives the relationship between the parameters set © and the parameter set
0° by solving the system (3.36). Then the objective function J (@) takes the form

J(O) =IJ{(?,(¥) =I(©6°,8" (j9)) = F (0°) (3.38)

Hence the minimization problem can be stated as follows. Find the values of the parameter

set 0° that minimize the objective function

= (3.39)

Once the values of 6“ have been found, the values of Oh are obtained solving the linear
system (3.36). Next our objective is to apply the above concept and first obtain the matrices and
vectors that completely define the linear system (3.36).

The linear system for the parameter set Oh is obtained by setting the derivatives of J (©)
with respect to each element of & equal to zero, that is,

al(g) 0 (3.40)
al(g) « (3.41)
BW,P
b_m_-o (3.42)
sdctM
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for /=1,...,N)U, r =\,...,m and /' =1,...,A(n Introducing the matrices

U=[® -W]=[* t=.....(343)

and the modal vector

«Rel< &

«Re.m N1 : 62m

«Im,| I1- ?)

Alm,m

(r«<m).

(3.44)

it can be readily shown that the set of linear algebraic equations can be written in the compact

matrix form:

2.2 AN F"
2:Z1 Z A7 N

where

= = =(0a) = ~>n(kAt;0a)nT (*Af;0") e K2mx2m
k=0

A = A(Ba) = Xn(kAt;0a \/ (*A/) e RImA"

*=0

r=Y(©°) = j*n(kAf,0a)eT (kAt) e M2mxA‘“

k=0

N
Z = ~Nju(kAtul (KAt)e RNMIn
k=0

N
A= (EAD (KAL) e RV*A'-
*:0

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

Note that the matrices =, A and Y depend on Ba, while the matrices Z, A do not depend

on . From (3.45) we obtain the matrix UJ that contains the information for the eigenvectors,

and the matrix D] .
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Substituting (3.27) in (3.31), the error function J*[0““* becomes

J'(0a)=—> 2Z{fe -]+ Dw(AAO-E(AA)
~ =0 rela

(3.51)

2> [[$m 12! [KAt-,0 j| + Dcu(kAt)~ e(kAt)

t/1
Using the definition of and « in (3.45) and (3.44) the latter equation takes the compact
A

form

J () =-~g [2«r (ML) 1(RAD) l: m|T(KAY)
' (3.52)

/ \
2nycAt-0 j u(kAt) -e”[kAt)

lex

The total number of model parameter involved in the prediction of the response at Nom
DOFs given m modes and Nm input time histories, is now reduced from
[Am + 2(mx Nm) + 2(Nnul x m) + (Noul x Nm)] to [4m + 2(mx Nin)].

3.5 Analytical Expression of the Gradient of the Objective function

Next, analytically expressions for the gradients and the objective function (3.52) with respect to
each parameter in the set Ba are defined. Differentiating J* 26° j with respect to a parameter 0

in the parameter set 8" yields

5WT
al*(g°) 1F . mmm 0 -+ 2n°KAM0a' ufkAY) %9
BO vh o0 D' oP]
(3.53)
. 00 J
A"

2nikAtO | u(kAt) -e(kAb)
laa

Note that the derivative dUJ/dO and &0]/30 are readily obtained by differentiating with
respect to © both sides of the system of linear equations (3.45). This yields the following system
of linear equation for the derivatives
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dUT"  ~dy~ " 6= 0JA~
00 00 06 066 Ul

(3 54)
dD] OA 0AT o( DI
50 .00. .38 &6.
Where, using (3.46), (3.47), (3.48), (3.49) and (3.50), it can be readily shown that
3= _ N dn(kAD T A + ne A GTRKAD (3.55)
00 00 ~ 00
OA  AO»(*A/) T'( 1} (3.56)
o6 U 506 -v
Sr~afdnikA) ., -
(3.57)
006 h doO —« ’
3.58
006 o8
3.59
56 (3.59)

In order to completely define the gradients of the objective J* [Buj one needs to obtain the
derivatives dn(kAt}I56 . The term dn(kAt)/d6 can be evaluated by the modified equation of
motion (3.23) for each modal component m,. These derivatives depend on the type of the
parameter O in the set ©a. Thus, for each type parameter © we define the terms

4 = (3.60)
I
on{i)
- 3.61
gy "V (3.61)
drr(t) (3.62)
DKB,,,
3™ (3.63)
di>»., ~—~P...
e"“l’ = q (3.64)
]
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(3.65)

where dr = «°er and vr = nfmr. The above terms are obtained through the derivation of (3.23).
These derivatives are with respect to each parameter in Ba thus satisfy the following system of

differential equations,

100
(3.66)

with initial conditions n,,

-ar -b 0 -1
(3.67)

KO-, . &@O+, , MO

with initial conditions =

M, (O = L_a' . **MO+ 0 MO (3.68)
with initial conditions Mo
(3.69)
with initial conditions n,
jo (3.70)
with initial conditions
(3.71)
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with initial conditions n. =

3.6 Special Case: Classically Damped Modal Models

3.6.1 Formulation of the Objective Function

Using the analysis in Chapter 2, for the special case of classically damped modal models, the
vector y(t;0) of the acceleration responses at the Nom measured degrees of freedom can be

written in the form
y(t-,0) = Q>I(t) + Du(t) (3.72)

where D e is the pseudostatic matrix,

Xffl

~out

(3.73)

is the matrix of the real eigenvectors ¢ , r =\,...,m at Nou DOFs and

<20 = 76 M (3.74)

is the real vector of the modal coordinates satisfying the equation of motion for each modal

component &
i +arice) +br<tir{t) = -[Pn — Pri — 3 75)

where pil e is the real vector of the effective participation factors relating the Nm inputs

to the r mode of the system given by

Pr =frL (3.76)

where L is a matrix comprised of zeros and ones that maps the Nin excited DOFs to the NI

output DOFs.

The parameters ar = 2wl and b, - W@ are expressed in terms of the modal frequency
cor and the damping ratio I". Given ar and br, the modal frequency wk and the damping
ratio Ck are obtained from the following relationships:
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Wl = 4K (3.77)

or (3.78)

The modal response & (/) can be obtained by solving (3.75) using the initial conditions
="r(O) =dr and T = £r(0) = vr.

The parameters set 6? in the notation y(t\9) contains the parameters that completely define
the response vector using the modal analysis. From equations (3.72) to (3.76), it is
evident that the parameter set 9 contains the parameters ar = 2wl and br - w@ which are
expressed in terms of the modal frequency «r and the damping ratio [, the real modeshapes

or € , the modal participation factor vectors p'r e MN'™, the initial conditions

= (0)=dr and &b =& (0)=ur, and the entries of the real pseudostatic matrix

DeR"-*"* thatis

0 = {ar,br,<fi,pl ,dr,vr, r = d} (3.79)

where m is the number of contributing modes which is also an unknown in the modal
identification process. The total number of model parameter involved in the prediction of the
response at Nou DOFs given m modes and Nm base input time histories, is
[4m + (Noul xm) + (mx Nm) + (Noul x Nm)]

In order to implement a modal sweep approach similar to one presented in Section 4.3 for
non-classically damped systems, two index sets are introduced, the active index set la
containing the mode numbers that are active and are optimized during the optimization process
and the fixed index set /f that contains the rest of the m modes that are included in
computation of the response vector but their parameter values are kept constant during the

optimization process. Consequently, equation (3.72) can be expressed in the form

(>-2)= = {EE,(\H#()+ = KE()) 350

re/,, felf

Introducing the active and the fixed parts of the responses by

“(>m.&)= = {£.£,()} + Du(%) (3.81)
(3.82)

f*h
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Respectively, the total response y{t',6) = y(t) due to m contributing modes can be written in
the form

y(t) = xr (t;0) + xF (t) (3.83)

which is more appropriate to use when formulating the optimization problem using modal sweeps
to identify the modal parameters of the active modes defined in the set la, holding the
parameters of all other fixed modes, defined in the set I, , as constants.

Using active and fixed modes, the objective function (3.1) can be expressed in the form

J#H) X \xr(KAL;0) + xJ (KAL)- ! X (KAL;0) + xJ (KAL) -y(KAL)j (3.84)
V k=0 L -~

,or equivalently, the final form of the objective function is given by

J{9) = — = [xr (kAt-,0)-e(KAD" [xr (KAt-,0)-eNKAH" (3.85)
V k=o L

where xr (kAt;0), given by (3.81), depends on the parameter set ©, while e_{kAt~) given by
e{kAt) = y(kAD)~ ~~ \p}¢ {(o} (3-86)
U/ 1

is the constant vector of the measured response minus the response vector that is predicted from
the modal model considering only the fixed modes.

The minimization of the objective function (3.85) can be carried out efficiently, significantly
reducing computational cost, by recognizing that the error function in (3.85) is quadratic with

respect to the real modeshapes (jr and the elements in pseudostatic matrix D. This observation
is used to develop explicit expressions that relate the parameters ¢r and D to the rest of the
model parameters appearing in the parameter set ©, such as the modal participation factor

vectors p] e KYA" , as well as the modal parameters ar and br that relate the modal
frequencies cor and the modal damping ratios ZI", and the initial conditions &° -&(0) = arl

and” =g£(0) =0l

For this the parameter set © in (3.79) is partitioned into parameters sets as follows
6={6°,0") (3 87)

where & is defined by

£*=(£, r=\,...m, Db (3.88)
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and is defined by
0“ =(ar,br,pt ,dr,ur, r=1,....m) (3.89)

Stationary conditions with respect to the parameters in the set O are used to develop a
linear system of equations for solving for the set Ob given the values of the parameters set Oa .

For convenience in the presentation this linear system can be formulated in the general form
Alea)eh =b("a) (3.90)
where A”Baj and b”Oaj are functions of the parameter set ©a. Let

Oh =6h (0°) (3.92)

be the function that gives the relationship between the parameters set & and the parameter set
(f by solving the system (3.90). Then the objective function J (#) takes the form

J(0) = J[(?.(?) = j[ea,eh (0°)) = /(£"™) (3.92)

Hence the minimization problem can be stated as follows. Find the values of the parameter
set Ba that minimize the objective function

(3.93)

Once the values of 6a have been found, the values of & are obtained solving the linear
system (3.90). Next our objective is to apply the above concept and first obtain the matrices and

vectors that completely define the linear system (3.90).

The linear system for the parameter set (f is obtained by setting the derivatives of J (O)
with respect to each element of Oh equal to zero, that is,

al(g). ( (3.94)

ajfe)
db,

0 (3.95)

for /=1,..,Nom, r=1,...,m and i=1,..,Nm. It can be readily shown that the set of linear
algebraic equations can be written in the compact matrix form:
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Ul
-S:
F':
<

3.96
= D A (3.96)
where
===(00) = = kAt 80)&T1 (kAt; Ba)1 e BTxm (3.97)
=0L
A = A[Ba) = MKkATL;0a)uT (KAL) e (3.98)
k-0
y = y(0a\ = MKkAt)eT (kAt)e Rmw»" (3.99)
k=0
Z = N(kAty (KAL) € Knvv! (3.100)
*:0
N = u(kAt)en (&A/) e IRWA™ (3.101)

i=0

Note that the matrices =, A and Y depend on Ba, while the matrices Z, A do not depend
on (f. From (3.96) we obtain the matrix ®T1 that contains the information for the eigenvectors,

and the matrix D! .
Substituting (3.81) in (3.85), the error function J" [Oa\ becomes

-IT
X \@,Zr(H\ + Du(t) + Du(kAt) - e(kAt) 1

(3.102)
> gerir (0} + Du (0 + Du(kAY) - e (KAY
) L d1
Using the definition of in (3.96) the latter equation takes the compact form
DT
. Wyt
= [\kAt-e°) u\KkAt)] -eJ] (kAt)
* k=0 DT
(3.103)
~I(kAt;0a) u(kAt) -e_(kAt)
35

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



The total number of model parameter involved in the prediction of the response at Nout
DOFs given m modes and Nm input time histories, is now reduced from
[4m + {mx N,n) + (Noul x m) + (Ntml x Nm)] to [4m + (m x Nm)].

3.6.2 Analytical Expression of the Gradient of the Objective function

Next, analytically expressions for the gradients and the objective function (3.103) with respect to
each parameter in the set #a are defined. Differentiating J’ ~0° j with respect to a parameter 0
in the parameter set Bu yields

‘50T
2 + I, a «(AL

L; JI(kAF,0a) u(kAt) -e_(KAY)

Note that the derivative d®1/060 and dD1/d6 are readily obtained by differentiating with
respect to © both sides of the system of linear equations (3.96). This yields the following system
of linear equation for the derivatives

1 1
| o' | ~oY~ 8= dA

= A 50 56 530 80 @t

.. (3.105)
At z &0t 8A  saAr O( DI
.00 . _08. .56 06_
Where, using (3.97), (3.98), (3.99), (3.100) and (3.101), it can be readily shown that
pfs N dt(kAt) Ena ErA dlJ(kAt) (3.106)
— "\ = + N\ A .
W R 56 TSN e
(3.107)
o6 h 0906 -~V ;
W = £g(kAOsr(kAt) (3.108)
06 fa &6 -V ’
~=0 (3.109)
00
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(3.110)

In order to completely define the gradients of the objective ® \8”j one needs to obtain the
derivatives dE£(kAt)/d6. The term 5&(KkAt)/90 can be evaluated by the equation of motion
for classically damped modal models (3.75) for each modal component &I These derivatives
depend on the type of the parameter O in the set 8 Thus, for each type parameter © we

define the terms

SEAD-N,
ar

dbr '

dvr

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

The above terms are obtained through the derivation of (3.75) with respect to each parameter

#. These derivatives are with respect to each parameter in 0" thus satisfy the following system

of differential equations,

==\ +aAr +br\ =—t

with initial conditions n,=0and hp =0,
==>\+aAr +K\=-¢,

with initial conditions nh =0and nh =0,
=> *p, + + brnpri = —U, (O

with initial conditions n =0andnil =0,

=>nJr+arnJdr+brnd=0
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(3.117)

(3-118)

(3.119)
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with initial conditions n, =land 1}, =0,

(3.120)

+ar\ + =0

with initial conditions nu =Oand v = 1.

3.7 Modal Sweep Approach

In modal identification procedure appears the need of determining the optimal parameter set ©
that fully characterizes the model under consideration, by minimizing the relevant error objective
function J(O) given by (3.1) with respect to the model parameters. The implemented
optimization routine follows the lines of a modal-minimization method developed by Werner et al.
(1987). This algorithm consists of a series of modal sweeps in which, during each sweep, the
estimates of the parameters of each mode r are successively updated by a series of single-
mode minimization of J($) , while holding the values of the parameters for the rest of the modes
equal to their latest calculated values. This minimization of each mode actually corresponds to
least-squares matching of the measured response to the predicted response from a modal model
for which the parameters of a single mode are successively updated while the other modes are
computed using the latest optimal values of the parameter estimates already obtained from
previous minimizations. For the first sweep, the contribution from the modes that have not yet
been treated in the sweep is neglected, since good estimates of the corresponding modal
parameters are not available. A single sweep is completed when all the significant modes have
been treated in this manner. Successive modal sweeps are performed until the fractional
decrease in J(#) is less than a prescribed value, given by the user, or until a prescribed
maximum number of modal sweeps has been completed.

Specifically, gradient-based method is used to optimize the error function J(0O) for each
mode r . In the first sweep, for the r = mode, the gradient-based optimization algorithm
concludes in a set of optimal values, using the optimal estimates computed for the last
1, ,r—1 modes and neglecting the rest r +\,...,m modes. After the first sweep, a second
sweep follows where the optimal values of all m desired modes are used as initial estimates in
order to obtain better estimates of the these modes. In this sweep, for the s = mode, the
gradient-based optimization algorithm concludes in a set of optimal values, using the optimal
estimates computed for the 1,...,5—1,8 +1,..., m modes in the first sweep.
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Chapter 4

Frequency Domain Methods for Identification of Non-classically
Damped Modal Models

4.1 Introduction

In this chapter, a frequency domain methodology is presented for identifying the modal
parameters of non-classically damped modal models used to describe the response of linear
structures subjected to multiple base excitations. The modal parameters to be identified include
the modal frequencies, the modal damping ratios, the modeshapes and the participation factors.
The proposed structural modal identification methodology is applicable to civil engineering
structures such as buildings, towers, bridges, offshore structures, etc., subjected to earthquake
excitations. The identification methodology uses the Fourier transforms of the measured input
accelerations at the base degrees of freedom and the Fourier transforms of the output
accelerations at the model degrees of freedom of the structure. An output error formulation is
presented, in which the selected modal parameters are identified through least-squares matching
between the Fourier transform of the output measured acceleration and the Fourier transform of
the acceleration predicted by a modal model of the structure, over a specified frequency band,

subjected to the measured base input accelerations.

In particular, the proposed frequency domain methodology uses a three step approach to
solve the error optimization problem. The first step provides estimates of the modal frequencies
and modal damping ratios by solving a system of linear algebraic equations using the common
denominator model. Stabilization diagrams are used to distinguish between physical and
mathematical modes. This method (first step) is an extension of the PolyMAX or polyreference
least-squares complex frequency domain method, developed by Peeters et al. (2004), in order to
treat non-classically damped modal models describing a system’s response characteristics based
on earthquake-induced vibration data. The second step provides estimates of the modeshapes
and the participation factors by solving a system of linear algebraic equations. It should be noted
that two different approaches have been developed for the computation of the modeshapes and
participation factors in this second step. In the first approach the modal properties derive directly
by the Singular Value Decomposition (SVD) of the resulting numerator matrix. In the second
approach the advantage that the error function is quadratic with respect to the modeshapes is
used, so the modeshapes are computed by taking stationary conditions in order to develop a
linear system of equations from which the modeshapes are derived. The first two steps usually
give accurate estimates of the modal characteristics. Flowever, a third step is often recommended
to improve these estimates, especially for closely spaced and overlapping modes, by efficiently
solving the full nonlinear optimization problem with initial estimates of the modal parameters

those obtained from the first and second steps.
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This chapter is divided into the following sections. Section 4.2 presents the formulation of the
modal observation equations for the general case of a non-classically damped model in the
frequency domain. In Section 4.3 the formulation of a system of linear algebraic equations using
the common denominator model is presented, which is used to set up Stabilization Diagrams in
order to distinguish the physical from the mathematical modes. In Section 4.4 an output error
formulation is presented as a weighted least squares optimization problem in the frequency
domain and in Sections 4.5, 4.6 and 4.7 the formulation of the frequency domain methodology
which uses a three step approach is presented. In particular, in Section 4.5 the first approach of
the second step of the proposed frequency domain methodology is presented, in Section 4.6 the
second approach of the second step is presented and finally in Section 4.7 the third step is
presented. For Sections 4.5, 4.6 and 4.7 the formulation of the minimization of the error function
and the parameter set © which is optimized for each step are presented and also simplifications
are given explaining the quadratic dependence of the objective function on the modal
characteristics. In addition, analytical expressions of the gradient of the objective function for
each step are presented. Finally, in the appendices (Section 4.8), details are given for the

computation of some derivatives of the objective function.

4.2 Modal model - Frequency domain

Generally, a function f{t) can be analyzed using Fourier components

M ="]1h°=y/mdco (4.1)

where /(w) is the Fourier coefficient given by
hco)=]f{t)e-jMdt (4.2)

Applying the Fourier transform to equation (2.1) in the frequency domain yields

x(co) = H{jco)Lu(co) (4.3)
where w(ry) is the Fourier transform of the applied force and

H{co)= (cojl + C(ja>) + K~ (4.4)

The matrix H(jco) is called transfer function matrix. The modal observation equations (2.55)can

be written in the form
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y(0=2 £r©+ur£(0)+ Deuft) (4.5)

r=\

where
i(oO=""r(t)+iru(t) (4.6)
E£{)=KE£{t)+Cu{t) 4.7)
Ar=-Zfwl +]wlM £ -2 (4.8)

Using the Fourier Transform for the modal coordinates &(i) and assuming the boundary

conditions to be zero, yields

U<0) = }e(i=-"N\= =e-""" EXOZ+0wW) \EMY " A = (»#,(<») (4.9)
-00 0o ~ 0

Substituting (4.9) in (4.6)

(=) £(ry) = NI'& (w) +/" u(co) => £ (w) = ~r (4.10)
JG)-Xr

Thus, substituting (4.10) in (4.5) the relation between the response _y(Ey) ancl the excitation

u@>) in the frequency domain is given by

y(co) = H(jci))u(co) (4.11)
where
H(w)=£ |+ A. (4.12)

o OW) A (>—Ar

4.3 Stabilization Diagrams (First Step)
4.3.1 Common Denominator Model

The common denominator model consider all input-output measurements simultaneously by the

following model

[H(w)] = [B(w)][A(w)} (4.13)
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with  A(w) a polynomial and B(a>) a matrix polynomial with square Nnul X Nin matrix
coefficients. Every line of RMFD can be expressed in the form:

{H, H) ={£ (W) [A(W)Y ,VO =1,2,-,Af, (4.14)

where

(&I’l\/l):_o£<<>> (&) (4.15)

[M(®)]=2a(®)K] (4.16)
r=0

where are the polynomial basis functions and p is the order of the polynomial. Using

method LSCF (least squares-complex frequency domain) the polynomial basis functions are:
Q,.(w) VA (4.17)

where Atr is the time band. Polynomial coefficients Bnf e Mv"xl and ar e IRIxI are assembled in

following matrices:

o "

g = O eRKpx yo=\2--Na (4.18)
\WBoe J
fa. »
a= & ppHox (4.19)
\arJ
B\
o= PN X)) (4.20)
flf;m
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4.3.2 Error Function

Coefficients © can be evaluated by minimizing the following non linear least squares error
function e%LS (a>k,6) e C"*1.

£0LS (<vk,€)=y0((0k’£)-y=M (4 21

where

ck, k=1,2,...,N: The discrete frequencies at which the FRF (Frequency Response Functions)
are evaluated

ya (cok,0) : Fourier Transform of the acceleration at the measured DOF predicted by the
modal model

ya (0)k) : Fourier Transform of the acceleration at the measured DOF predicted by the
modal model

Using the relation between the response y(c0) and the excitation u(co) in the frequency domain
(equation (4.11)) and substituting (4.13) in (4.21) yields

Cs 1IK<>0) = £ (®>p0)y.(®% A~ I<.a)— LM (4-22)

Thus, the cost function is

1 N

G =23k K“K«E)T (4.23)

where *T is the complex conjugate conversion (Hermittian) of a matrix and tr {-} is the trace of a
matrix. The cost function can be minimized by setting the derivatives of (4.23) under © equal to
zeros. It is obvious that it leads to a non linear system of equations when equation (4.22) is used
in this form. Premultiplying (4.22) with A(wk,a) yields

K<0) =i, KK-P,)«<kK)-y,, (@MA©*.) = T (@*)#h ) ~0- KT, K IK) (4.24)

Error functions for each cok can be written as a vector E‘F (#) e C"*1, ofthe form

L
CLS @y
i F (22,65
x (4.25)
-
where
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«FCO®[QUMD)---Q,,(w)]
<= X () (4.26)

TEH®LQ,(M)---€2,("™M)]

-[Q, (f>,)]<8)i>, (B>))
Y = ec e+ 4.27)

—[< )1 -Q,, >N )] ® X (°=>N)

4.3.3 Reduced Normal Equations

Similar to (4.23) the following cost function can be written according to the error function (4.24):

ILS(d) = 1 E=fr{(® (®*>2)T (£0S (4.28)

The minimization of the cost function leads to a Weighted Least-Squares Problem. Substituting
equations (4.25), (4.26) and (4.27) in (4.28) yields

5(*):2",{(15“(*)1: (EOS(*))} =>" [(g HIY=\X Yq V| Ttr[irf0TJ0i) (4.29)

where J e £N'4N»+)(>+) is the Jacobian matrix
Jo={X YV,) (4.30)

In case of real-valued coefficients ©, it can be shown that the expression J'jJ, can be
substituted by its real part. Hence, the cost function (4.29) becomes

/"(0==>{£7 Re(j;7j,)0} (4.31)
o=l
where
R S, , (Ni+>XlHIM- HypH)
R*J,,1J0) = (4.32)
{Sl 10J

with

R = Re(X*rX) e r'+|MU/'+)) (4.33)
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S0 = Re™MT-N) e RN'M/'+H) (4.34)
Tn =Re(Yr'TYa) e (4.35)

The cost function is minimized by setting the derivatives of (4.31) with respect to the unknown
polynomial coefficients © equal to zero:

diLs(0)
=2(R/30+Soa) =0 Vo =\,---,Nj (4.36)
%0
dl's(©)
= 27(S,IA+7:,a) =0 Vo =\,---,N (4.37)
da 0=1

These equations are the so - called normal equations which can be written (using equations
(4.32) - (4.35)) in the form:

2Re(J* )O-o (4.38)

We focus on the polynomial denominator a from which result the poles and the modal
coefficients in order to set up a stabilization diagram. Consequently, least-squares problem can
be simplified by substituting the coefficients [30, which result from (4.36)

PO=-R-'Soa (4.39)

in to (4.37). Thus, equation (4.37) becomes:

|2Z(To-SjR-'Se)J« =0
(4.40)

Ma=0

where M e js defjnecj in above equation and can be computed from the measured
FRF data. This equation can be solved for the denominator polynomial a in a least-squares
sense. To avoid finding the trivial solution a = 0, a constraint is imposed on the parameters.
Such a constraint also removes the parameter redundancy that exists in the common
denominator model (multiplying numerator and denominator with the same matrix yields different
numerator and denominator polynomials, but the same transfer function matrix).

This first step can also be used for the time domain analysis where the modal frequency cor
and the fraction of critical viscous damping [ will be the initial values for parameters ar - [t

and br - cor d>-’ in the optimization problem.
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4.4  Formulation as a Weighted Least-Squares Optimization Problem

In the frequency domain, the optimal values of © result from the minimization of the measure of

fit between the Fourier Transform of the measured acceleration y(kAa>) and the Fourier
Transform of the acceleration y(kAa>,Q) predicted from the model. The variable Aco denotes

the frequency discretization step and A = is an index set. The parameters in #

include the modal characteristics such as modal frequencies, modal damping ratios, and
modeshape components at the measured locations, modal participation factors, and other

parameters that completely define the response vector y(kAa>,e).

A modal model output-error identification approach seeks the optimal values of the parameter
set © that minimize a measure of fit between the Fourier Transform of the acceleration predicted

by the modal model of the structure and the Fourier Transform of the corresponding response
acceleration j)(Mry) estimated from the measured data . Thus, the error measure J(©)

between measurement data and model predictions that correspond to a certain value of O, is
described similar to (3.1) by

J6)=—X= D(&Ary)d  \“y(kAco,0)-j)(AAry)J (4.41)

y: Fourier transform of the measured response acceleration at the Nm measured DOF

y: Fourier transform of the response acceleration at the measured Nnut DOF predicted
by the modal model

Aw: sampling frequency interval of the Fourier transform of the acceleration

N: total number of sample data over the duration T of the Fourier transform of the
response acceleration

k: the time index set at time c0 - kAco

F=Z[z(Mi 'TiIK*AI normalization factor for frequency domain (4.42)

&lz(Miy) ] [[K*Aiy)]

Using the Fourier transform for the modal observation equations (2.55), expressed in the form of
(4.5), the vector y(a>;0) of the Fourier transform of the acceleration responses at the Noul

measured degrees of freedom, based on the non-classically damped modal models, is written in
the form

AW =>  (®)+£E (w)+DMm) (4-43)

=

Considering the boundary conditions not equal to zero and using the Fourier transform over the

duration T for the first part of the first complex modal state space equation (3.6) yields
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LM - BO*-—A= =e-"i,(0] +(> (4.44)
0

-0 0
V
EN<»)
Consequently,
£,(<») =eJi,(T)-e-"<f,(0) +(»<7?,(«) (4.45)

Equalizing (4.45) with the first of the complex state space equations (3.6) yields
() = r(t) + L Fu(t) => B-"M(T)-N#T(0) + (")) = A&, (w) + £0(w) (4.46)
The above equation can be expressed in the form

gl Cm  e-~(T) £(0)
jo-N iiy-Ar  ja>-

(4.47)

Thus, substituting (4.47) in to (4.43) the relation between the response y(a>) and the excitation

u(a>) in the frequency domain is given by

@<= uj: ul’ " e~jmr (O+<ci T £0D)
y = . — i, (D) +<« r
= Qo)~K  (co)-xr O T GTA (7®)-4
. (4.48)
+ Dcw(ft») +
2. A TN (D) + BT (O) )
where Dt € RA"XV'™, is a real matrix, Mr,r =1,...,w are the complex eigenvectors at Afox

DOFs, /* e Cliv" is the complex vector of the modal participation factors relating the Nin inputs
to the r mode of the system, ¢I'(B) and <£.(T) are the boundary conditions of the modal

response £.(/) and

K=~4>r+tMVJ-Cl =-a,t A r=1m (4.49)

are the complex eigenvalues of the structures. The parameters £Zr = and =coryjl- R
are expressed in terms of the modal frequency cor and the modal damping ratio {1 . Given ar
and br, the modal frequency cor and the damping ratio Kk are obtained from the following

relationships:

<ol = T (4.50)
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(4.51)

The parameters set © in the notation y(d>',0) contains the parameters that completely
define the response vector y(a>;0) using the modal analysis. From equations (4.43) to (4.49), it
is evident that the parameter set @ contains the complex eigenvalue Ar of the r mode, the
complex modeshapes ur e CN'I'A, the modal participation factor vectors fr e CUN"", the initial
conditions &1 (0) and &1 (T), and the entries of the real matrix Dc e , that is

0. [A,,N.£,E,(0),~N(r),r =1,....,m,Dt} (4.52)

where m is the number of contributing modes which is also an unknown in the modal
identification process.

45 Second Step (First Approach)

In this section, the first approach of the second step is presented which provides an estimate of
the modeshapes and the participation factors by solving a system of linear algebraic equations. In
particular, the modeshapes and the participation factors derive through the Singular Value
Decomposition (SVD) of the complex matrix Rr e CN*'xN" presented further down. Hence,

setting
urfr e CN~xN* (4.53)
u&{T)eCN-" (4.54)
wr£ (0) € CA"-X (4.55)

equation (4.48) becomes

_ = R r. a, QLr
Y&=Z o .
r= )>-K  O")-N\ =l O")-/A O")—AN

m

=

(4.56)

_z (j<o)—K-+ (Eo.)-Ar + £>«(&>)

It should be noted that in the aforementioned formulation the parameter set © consist of
complex-valued variables, while the response vector >>(«;#) is also described in terms of
complex-valued variables and solutions of modal equations with complex-valued coefficients.
From the computer implementation point of view, it is necessary to describe the response vector

in terms of real-valued variables, equations and parameters. In what follows, the response vector
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>>(&>#) is reformulated in terms of real-valued variables and parameter set For this, the
complex-valued matrix and vector variables Rr, ar and [l involved in the description of the
modal model are expressed in terms of the real and imaginary parts as follows:

K=Lr+jGr (4.57)
°Lr =£r+jdr (4.58)
£r=P,+Jgr (4.59)

and equation (4.56) becomes

m m

N<°) = + GrMr J«(») + =[Mr + - ~
':f'ﬁ (4.60)

- Z [PPr +t K]+ °Mow)
where
eC" (4.61)
1 1
Ow)-4 (co)-~

(4.62)

1 1
Ow)—K (JO)-K

In order to implement a modal sweep approach similar to one presented in Werner et al.
(1987) for classically damped systems, two index sets are introduced, the active index set la
containing the mode numbers that are active and are optimized during the optimization process
and the fixed index set 1, that contains the rest of the m modes that are included in
computation of the response vector but their parameter values are kept constant during the
optimization process. Thus, introducing the active and the fixed parts of the responses by

49

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



1<l

(@B = = [Lrfe + arvr () + =X + <Lrvr ]«
re/, re/,
(4.63)
- = [p.><tarvr | +A«<O)
rela
= (®) = = [1/MA+=iu}—\0(w) + = \cfM*f +dFfMF>~jml —
/el7 fel,
(4.64)
- = +? A\
felf
the total response =y(&>) due to m contributing modes can be written in the form
y(co) = xr (w;0) +x! (w) (4.65)

which is more appropriate to use when formulating the optimization problem using modal sweeps
to identify the modal parameters of the active modes defined in the set la, holding the
parameters of all other fixed modes, defined in the set If, as constants.

Using active and fixed modes, the objective function (4.41) can be expressed in the form

Lon [xr (lidw;B) + xJ (KACO0)-j)(A:A<y)J

(4.66)
V k=0 Nx<r(A'Aiv;0) + X/ (kAco)-j>(Mry)J
,or equivalently, the final form of the objective function is given by
N
(0):=g'XE [*r (kAor,e)-e(&Aw)] [xr "Aw;0)~ <?(EAw)] (4.67)

v k=0

where Xr (kAco;0) , given by (4.63), depends on the parameter set ©, while c[(kAa)) given by

YI[ LFMMH+GEMu{kAW)+Y j\ cFMF + dfM}]e jk&0)T
e(8Acy) = y(KAco). relr .
= pfM/ +qfpf
Sirk-

is the constant vector of the measured response minus the response vector that is predicted from
the modal model considering only the fixed modes.

Summarizing, the response is completely described by the real parameter set # that

contains the modal parameters ar = fwl and br - corSJ\ - {) that are related to the modal
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frequencies (or and the modal damping ratios €V, the real part Lr and the imaginary part Gr of
the complex matrix Rr, the real part cr and the imaginary part dr of the complex vector ar, the

real part p and the imaginary part q of the complex vector I and the elements in the real

matrix Dc, that is,

(4.69)

The total number of model parameter involved in the prediction of the response is
[4m + 3{NoulxNin) + 4(Noulxm)].

45.1 Simplifications Explaining Quadratic Dependence on Modal
Characteristics

The minimization of the objective function (4.67) can be carried out efficiently, significantly
reducing computational cost, by recognizing that the error function in (4.67) is quadratic with

respect to the real part Lr and the imaginary part Gr of the complex matrix R, the real part cr

and the imaginary part dr of the complex vector ar, the real part p and the imaginary part ¢
of the complex vector 3T and the elements in the real matrix Dc. This observation is used to
develop explicit expressions that relate the parameters Lr,Gr, cr, dr, p®, " and Dc to the

rest of the model parameters appearing in the parameter set ©, such as the modal parameters

ar and br that relate the modal frequencies cor and the modal damping ratios

For this the parameter set O in (4.69) is partitioned into parameters sets as follows
0=(0a,ih) (4.70)
where & is defined by

4.71)

and 6" is defined by
8o =(ar, br, r=\,....m) 4.72)

Stationary conditions with respect to the parameters in the set Oh are used to develop a
linear system of equations for solving for the set Ob given the values of the parameters set 0° .

For convenience in the presentation this linear system can be formulated in the general form
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where A[BG7j and b”~0Oal] are functions of the parameter set . Let

(4.74)

be the function that gives the relationship between the parameters set & and the parameter set
6" by solving the system (4.73). Then the objective function J (@) takes the form

J(O) = j{e\(b) = () =T (4.75)

Hence the minimization problem can be stated as follows. Find the values of the parameter
set Ba that minimize the objective function

m/*(£) = -/(E", 2% (£")) (4.76)

Once the values of Bu have been found, the values of Oh are obtained solving the linear
system (4.73). Next our objective is to apply the above concept and first obtain the matrices and
vectors that completely define the linear system (4.73).

The linear system for the parameter set is obtained by setting the derivatives of J($)
with respect to each element of & equal to zero, that is,

al(g) 0 4.77)
a(M-0 (4.78)
0G,,
EM-o (4.79)
8c,,
0 4.81
ddrJ @80
a/(g) Q (4.82)
SPrJ
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al (g) Q (4.83)

d(r,1
for /=1,...,Nout, r=1,...,m and i= Nin . The analytical computation of these derivatives

is shown in the appendices. It can be readily shown that the set of linear algebraic equations can
be written in the compact matrix form:

Z(wy+AT(N)]*=L1(s(r)+s- (1)) 489

where
(//®ew(ryj) (ju®u(cok))r u'ify) M'B m -("®«(<yt)) /l
u\mk)(ju®u(o)ks) u{o)k)u(o)k) u(o)k)jlemT
4'))_ (4.85)
' H[H®N(O)" em’ MUX o, yr* m\/ -Hp BN
Hv(o\) M/ iBMT -m\/

(//0«(<»*)) er{o)k)

u{cok)e!(cok)

(4.86)
NT K
M'e'M
(4.87)
and Dk - kAco, k=1,..., N,
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cf d[ P\ 9it
<> d=- p=- > q=- v and u:.P+\
T d'i pi Bi [P\

The system of equations (4.84) can be expressed in the form

Re{z ("M (M)}=Re{l; (5(")) (4.88)

From (4.88) we obtain the matrices Lr and Gr that contains the information for the eigenvectors
ur and the participation factors | r. Hence, the modeshapes and the participation factors derive
through the Singular Value Decomposition (SVD) of the complex matrix Rr e CN"“*N".

Substituting (4.63) in (4.67), the error function J* ~8aj becomes

-jktxoT

rel, J re, L \ ’ Y

AN L : + Dcu(kAcd)-e(kAco
~YIp/r{™) +RA{- (kAcd)-e(kAco)

(4.89)
2 LX) +GrPr(®) UikAoj) + (") Fdrrrer) e ™
relu relu
~Z[PTcd (MN)+IA (p) +DIM(kAo))-e(kAoj)
or in compact form
A*{Pa)ziizo - [kAa>\(fi-e(EAry)  xi~Aw-,00)-£(A:Aw) (4.90)
where
*1 (kAco-0") = T\ LX (Pa) +Gris; (%) GWAW) + Z [a>< (#)+ arpr () kot
- . (4.91)

~ Z [PrPr (Pa) + <IX ) + “(kACO)

rela
The total number of model parameter involved in the prediction of the response at Noul

DOFs given m modes and Nin input time histories, is now reduced from
[4m + 3(Nout xNm) + 4(Nm xm)] to [2m].
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It should be noted that in this section the general case of the second step has been
presented where the parameters ar and br that relate the modal frequencies cor and the modal
damping ratios Kk are used for the minimization of the error function (4.90). In the special case
of the second step the parameters ar and br are obtained from the first step (Stabilization
Diagrams) and second step becomes a problem of solving linear algebraic equations for the

parameter set Gh.

4.5.2 Analytical Expression of the Gradient of the Objective function

Next, analytically expressions for the gradients and the objective function (4.90) with respect to
each parameter in the set B0 are defined. Differentiating J* 700 j with respect to a parameter 0

in the parameter set O yields

al'(g") i » dxrv (kAco\oal r

---------- — Xr "\A(o ;00§ j— +CT (4.92)
00 /A 00
dxr "Aw;0"j
where CT is the conjugate transpose of the term 50 Xr [KAco-,"- e_(kAco)
and
dxr'T(kAco-e“) a«@ aE@a@ —— AHNMT
— 50 - r 50 50 50 3 [
ikAoil z +£NLLMm-
o6 o6 o6
(4.93)
5 Td{ti) d(PnT, +* ddr)'t ™
re/,.
T

e 3{D
+ U ; {kAco) ------- —r
00

<?(/l,.)
and the derivatives  \ ) and Twith respect to each parameter @ are given by

! (4.94)

da, {(Mw)-Ar]2+(U(0)-rr)
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_J ] (4.95)
v (DI<AW)-A,)

] J (4.96)
(G*AW)-AN)?

1 1
(4.97)

(V/<AwW)-AN)? (== —a;)2"

Note that the derivatives 3(Z,.) ! /dO,d(Gr) /506, 5"£. ] /56,5~&,) jd6 and

3(/7r) JdO,d[grj jdO are readily obtained by differentiating with respect to (9 both sides of

the system of linear equations (4.88). This yields the following system of linear equation for the

derivatives

(4.98)
where, using (4.85) and (4.86), it can be readily shown that
a(47?))
o0
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M suon” (e + Mo
—<B«(a,) «<H)
S \% 30 -1 ds
(L®«H)) %®§(<3{,) (U®«K)) o (M®«K))
3u, A < .3y
« - A)-=-
M & y ~ =30 <« (B3
T
IN-(L®«K)) (4.99)
3 7 3u 1 .oy ) , Ol
WAYS C o) o el AN “E_
5y \Y 50 M RK 508 "M 50" 30
—®w@,)
50 ¥
KT
®«(w).))!
50 (H®«(@l) KT 3y .oy infT < N
- -=- -=- - AN +
3y 50" (@) 50" 50je s6= Y 56
50 - *
op
-=-<8>U((Ok) eTI\
o0 k
3(5) °
_ Z (4.100)
35 =l qz -dr [\ VaNy
o0
36 ¢
where cok = kkco, kK =\..... ~ , and the derivative d/30 is given by
o+
op
36 (4.101)
~00
dL
I 56
4.6  Second Step (Second Approach)

In this section, the second approach of the second step is presented which provides an estimate
of the modeshapes by solving a system of linear algebraic equations. In particular, this part takes
advantage of that the error function is quadratic with respect to the modeshapes, thus stationary

conditions are used in order to develop a linear system of equations from which the modeshapes

are derived.
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It should be noted that in the aforementioned formulation the parameter set ) consist of
complex-valued variables, while the response vector y(a>;0) in (4.48) is also described in terms
of complex-valued variables. From the computer implementation point of view, it is necessary to
describe the response vector in terms of real-valued variables, equations and parameters. In
what follows, the response vector is reformulated in terms of real-valued variables and
parameter set ©. For this, the complex-valued scalar and vector variables u,, | r, &(0) and
<~M.(T) involved in the description of the modal model are expressed in terms of the real and

imaginary parts as follows:

Hr =W, +Tr (4102)
ts )
= Prqj + JP\m,r (4103)
£ (0) ="Re) + jnlinr (4.104)
Zr{T) =nL,r+JnL,r (4.105)
Substituting (4.102), (4.103), (4.104) and (4.105) in (4.48) yields
O(w)
{PL,.,- +JPIm,r) +C E= 1 T +
(M)-N YA .
®)== "y
KEI=E u() o)
-—(pL,r-jpL)— .
(M)A (PL.r-jpL) w
¢ ent | gl "
Ow)-\  (jo)—xrj >N
(4.106)
. ( eXo
1 1
- O r+Xu)s$ +
SN (I®)-/> j
- (./'«) (/®)-/> j +D 0{w)

r=1 ]_

(jco)-xr (=+XvHn

Two index sets are introduced, the active index set la containing the mode numbers that are
active and are optimized during the optimization process and the fixed index set 7/ that contains
the rest of the m modes that are included in computation of the response vector but their

parameter values are kept constant during the optimization process. Flence, the active and the

fixed parts of the responses are given by
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/1 1T\ u(oj) it 1T\ «(®)

(PRe,r + JPIm, r) ®)~/\ +V(_iVl’ < prV)(jd) i A
i,(®"N= = 0(w) \
71 (Ar+l_Ar)o®)~/\:““ (xlirSI —Jpl-. )”{]oo) K )
( eloT Go>T A
. T (=y+X..y)E +
5 O'®)-A O®)-A (4.107)
rel, r]-&T " |

0'W)-N  0')-AT («Re,r+Xn,nN"

1 1

O®)-A O®)-A,

(nl,r+jnl, Dt *

+ Dcu(a>)
rel/, 1 1
((L,r+JInl,N"r
O'®)-A 0®)~A
(T I T \ ““(®) / r .r \ «<(®)
(/I>Re,/ + JP\m f DL N II --+ UN// —-/AM,/J , 1 .. <t>f +
V— Y{3J0))-X V- — M (G=0)XF j
s> — Z +
ft'i s 1 Cr N «(®) /1 LT M@®)
(-Re-T + ) (>> -Ay 1-Re/ J~mJ’(Ico)-x; J P!
-jail’ -jail
(rtRe,f + gnim.H"J +
o® - (I(e)-X,.
Z ’ (4.108)
Jelr -jcoT -jaT
. ([GILE B WA VS =
(®)-xf O®)-*
------------ «Re,/ + Xm,/[) < +
(icOY-XF (i )<l
~h 1 1

O®) _ )\1 (,/Q))—)\ («<Re.,/+Xn, D)

the total response y(a>;0) = y{c0) due to m contributing modes can be written in the form

y(co) = xr (a>;0) + xJ (w) (4.109)

which is more appropriate to use when formulating the optimization problem using modal sweeps

to identify the modal parameters of the active modes defined in the set la, holding the

parameters of all other fixed modes, defined in the set | ¥, as constants.
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Using active and fixed modes, the objective function (4.41) can be expressed in the form

I N "cj (kKAco;0) + x! (KAco)-

’(2):7‘2 (4.110)

=0 |-[xr (kAco\(X) + x! {kA0))-y(kAo)"

,or equivalently, the final form of the objective function is given by

m/(#) =— [xr {kAco\6)-e(A-Ary)] [xr (kAco\Q)-e(&Acy)J (4.111)
N =0 L

where xr (& Aw;0) , given by (4.107), depends on the parameter set ©, while e_(kAco) given
by

e{kAco) = y{kAa>)-

u(kAco) u(kAco)
(PLE*IPLI) Guaco)-a,  \wLi -IPD) raco)-a)
Z +
for u(kAco) u(kAco)
(L3 +JpLi) (kaco)-xi ~PLI ~IPLF) ynco) i j

<[>+

i efiMT e jkAcoT 1

+. .
. _ . _ (*Re,/ +Inhaj)f +
(jkAco) X/1 (ijkAco) - A fj

-jkAcoT -jkAojT

(=/+K, D™/

(ijkAco) - Xf (jkAco)-/l]*c )

1
. .. .
(ijkAco) - Xf  (jkAco) - Xf (%:,/ +Jnim f) O] +

>

1 1
(jKACO)-A,  (jkAco)-X /AN (4.112)

is the constant vector of the measured response minus the response vector that is predicted from

the modal model considering only the fixed modes.
Summarizing, the response is completely described by the real parameter set © that

contains the real part ¢r € Rw" and the imaginary part I e RN of the complex modeshapes

ur e CN"'xl, the real part p e and the imaginary part "e RN" of the modal

participation factor vectors fr e CUNI*", the real part nRer and the imaginary part nimr of the
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initial conditions £.(0), the real part nkKer and the imaginary part n\mr of the initial conditions

&,.(T), and the entries of the real matrix D¢ e , that is,

PRej nKe.r’ WRe,r’ r L m, Dc| (4.113)

where w is the number of contributing modes which is also an unknown in the identification
process. The total number of model parameter involved in the prediction of the response at N(ml
DOFs given m modes and Nm base input time histories, is
[4m + 2(mx Nm) + 2(Nout x m) + (Nou, x Nm)].

It should be noted that the parameters ar and br that relate the modal frequencies cor and
the modal damping ratios I are excluded during the optimization process because their optimal

values are obtained either from Stepl (Stabilization Diagrams) or Step 2A.

4.6.1 Simplifications Explaining Quadratic Dependence on Modal
Characteristics

The minimization of the objective function (4.67) can be carried out efficiently, significantly
reducing computational cost, by recognizing that the error function in (4.67) is quadratic with

respect to the real part ¢r and the imaginary part Yl of the complex modeshapes ur, and the
elements in the real matrix Z) . This observation is used to develop explicit expressions that

relate the parameters 0r, y/r and Dt to the rest of the model parameters appearing in the
parameter set O, such as the real part pR and the imaginary part A of the complex

participation factor [], the real part and the imaginary part n°mr of the initial conditions

&M (0) and the real part nKtr and the imaginary part n\mr of the initial conditions EM{T).

For this the parameter set © in (4.113) is partitioned into parameters sets as follows

0 =[6°,0) (4.114)

where 9h is defined by

oh =( gk, Yr, r=\,...,m, Dc) (4.115)

and Oa is defined by

[mitf / < > oD

T 7 i
£ ={PRey Py NMRem “in/ nrer A _ Iy-¢M (4.116)
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Stationary conditions with respect to the parameters in the set Oh are used to develop a

linear system of equations for solving for the set Oh given the values of the parameters set 6.

For convenience in the presentation this linear system can be formulated in the general form
A{0°)(? =b[<9a) (4.117)
where K(O”j and b(ea) are functions of the parameter set 8“ . Let
eh=eh(9 _a) (4.118)

be the function that gives the relationship between the parameters set & and the parameter set

OU by solving the system (4.117). Then the objective function J(#) takes the form
J(©)=J[60,9)=J (B ", 6H[6°)) =F (6a) (4.119)

Hence the minimization problem can be stated as follows. Find the values of the parameter

set 0° that minimize the objective function
NO) = j[e\eh[ea™ (4.120)

Once the values of (f have been found, the values of Ob are obtained solving the linear
system (4.117). Next our objective is to apply the above concept and first obtain the matrices and

vectors that completely define the linear system (4.117).

The linear system for the parameter set & is obtained by setting the derivatives of J{Q)

with respect to each element of Oh equal to zero, that is,

al(g) « (4.121)
d<pr
al(g) o (4.122)
3y,
V(£) q (4.123)
sD,,

for /=1,...,Noul, r=1,...,m and /=1,..., NIn. The analytical computation of these derivatives

is shown in the appendices. It can be readily shown that the set of linear algebraic equations can
be written in the compact matrix form:
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N

i’\AA’\&'Y AA'T (OB)) X= =[BB{6*)+BB'T (6™ (4.124)
L 4=1 4=1 *
where

A(a\~term -+terni, +terni, —term\ J  A(a>k)|" j[term, —term, ] + jterm, —term,\] A(a\)u (ak)

AA(<?)|| i/w‘j +term? +termT" —termT:‘ KwA\:.i_\/te?n: —term7,"1 + /7erw7,” —term?,l ‘ B(o\)ST (o)) (4.125)
ﬁ*(&>A) rtermji +termT; +termT —terrrv )\L*J (coki\ j/ItermT, —termT,") + jterm7,H —term?lI G* o (aj))

A(@)k)er(a)k)

55 MmM)iTN (4.126)
1 (0>k)|T (a>k)

N2MHA' )XW,
x=\y G ) (4.127)
D.

and cok = kAco, k =1,..., N. The system of equations (4.124) can be expressed in the form

Re|£(IL4(r))|* = RefE(BA(r (129

where
VvV A
(47 <<»»);+«"Tu" () -i-(0))+
[CCMD-TT, DN
/ \
1 (> 7 (<» ), +£>», 0" (T)-il'(0))
JAAMD-T) ,
di,0)k) =\ (4.129)
7 A
! EMMKE+<M"UI(D)-T1(0))+
LC(MD)-/\)
/ \
1
cirMmMmL+remTCmMm-C (o))
9 «a T w»
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-J )\(*rK)i+((|\/|ri,-(T)-i,-(O))+
M) —4

i (MTH)!, +eari(m-i,-o))

((M)-/\7)
B(a>k) = (4.130)
v(M)-4y
A _ A
J CE K, + T (D) -1 (0))
((-M)-N\1)
term = /MK Lu{a>k) (4.131)
(M)-A (M)“4
_ (U{(OK) £i“K) (4.132)
(M)~A (M)~-4
f  e~1@T e'wT ’\4() 4.133)
= + = + '[ .
(MY-A  (MI-A R (M)-4 (M)-Nu/
/BT M i B-MI
- ] (4.134)
(M)~4 (M)-A " (M)-4  (M)-Ao7 ®
Jots Y : + : (4.135)
oth = . o - _
(M)-A (M) 5 (v)-4 (M)A,
1 1 1 1
/mwb = (4.136)

(M)-A (M)-A 1,(0) v(M)-4 (I\/I)—/\”?'(«)

From (4.128) we obtain the real part ()r and the imaginary part . of the complex modeshapes.

Substituting (4.107) in (4.111), the error function becomes

=—" Xxr j-e (kAco) xr [kAa>;0")-e(EA<y) (4.137)

where
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(1t .7\ ukAd) (T .1\ uikkco)

(Ret +IEANJKAM)-Ar +(-Rer —JEImMAjkAOT)-Ar
XTCAw;£) = = +
rel.  _Fir 1 T \ u(kAco) /T T\ u(kAa>)
7[(-Re" +J—m\jkAcO)-Al _ (-Rer~J~mr\jkAco)-AT ¥
f ejkAaT £-jkAtoT N
+
(jkAco) -Ar  (JKAco)-Ar )(«Re.r+Mm.r)tr *
( gkAtT kAT A (4.138)

rel..

(kAco) A (jkAco) —Ar L8N +HINL.OYIr

1 1
+

(KACO) - Ar  (kAco)y—  (M-r+inknOr+

+ Dcu(kAco)
rel,. 1 1

(JKAco) - Ar  (jKAco) - A* ("L.r +jnl,)yijr

The total number of model parameter involved in the prediction of the response at Nout
DOFs given M modes and Nm input time histories, is now reduced from
[Am + 2(mx Nin) + 2(Nou x m) + (N)U x Nm)] to [Am + 2(mx Nm)].

4.6.2 Analytical Expression of the Gradient of the Objective function

Next, analytically expressions for the gradients and the objective function (4.137) with respect to
each parameter in the set B0 are defined. Differentiating J" [@0" with respect to a parameter ©

in the parameter set Ou yields

S/[Oa dxr*? (kAco\Ou\
6 y > 56 xr [kAco;0aj - e (kAco) +CT (4.139)
where
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dxr* (kAco\9a*
= u*(kAco)</>*
®ko,Tt ((jkAcOo)-A,) ((jkAco)-

*

80, W(kACY)C_ | u,(kAa)l,
dPRe,, ((GKACO)-Xr)  ((GKACO)-A,)

( (4.140)
ui(kAoo)\f/7 : : +
((jkAco0)-Xr) (ijkAco)-Xr"
5¢7 u, (KAw)iri ui(kAco)li +Uj (KACO) dD
DK, ((kAco)-/r)  ((IkAa>)-Xr) p——
dxr* [KA(O\& "
= -u’(KAW)(/>7 § +
i« ((jkAco)-AlN  \jjkAto)-X")
oP7 w, (kAco)in  + u,(kAa))ln
dP~n ((jkAco0)-Xr) ((jkACcO0)- Xr)
(4.141)
P(@)k)wrrj +
((jkAcO0)-AK) ((j)kAco)-X'r)
Y7 u’(kAco)in u’(kAco)in dD[_
+w,. (kAco) |
dPK,n  (OMiy)-Ar)  ((ikAoo)-Xr) i, 0
_ _ o7 -
dngey ((KACO)-AT)  ((jKAco) - A")
K]
1 1 0.
yy + o0 o
((jkAcO0)-A,.) ((j)kAco)- Xr" ONRer
\ f .
N o w,r _ (4.142)
(jkAco)-Xr (jkAco)-Xr A
vV / \*A
]
(jKAco) = Xr (kAco)-Xp , "™
dD!
u(kAco)
MNper
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dxr'T (k,Aw;00 j

dn.lm'r

dxr' [KAco-,e*

((jkAco0)-Xr)

1

{(jkACO0)- Xr)

r

l
K(JkA<O0)-Xr

J
(kA(0)-Xr
u(kAco)--—--is
Im,r
INAom

7 +

((jkAcO)- Xr)
[ATAOIT

JokAco)-Xr)'

( gjkAail

{(ikA0))-Xr)'
( jkAcol
(ONAW)-AT)

u (kAco)
d<<er

[(KACO)-A*)
1 .. 0Qy
£(0)-S-+
[(jkACO)'l’) dnIm,r
* “A
l - 4.143
,] KGkAOY)-AT 5 W7 (4.143)
i
{ikAco)-X'r dnimr
jktAoir
+
((jkAa))- Xr}
JEAGIT
C(T)#
(OKA(0)-X'r) * ( (S)Re,r
gikAtoT
wr - (4.144)
[{ikAco)-X'r) *
pRAGT 37
g - +
V| Ao
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dxrV [kAw;B"j jkAaiT jkko)T

o7 +
d”Lr (UAAW)-AIN  ((jlcAco)-/1%)
i;(ooMLL
(4.145)
((jkAco) - AIN) ((jkAco) —A\)
jkLdr WOWT
) ) g(CTrHO ™+

((jkA«))-Xr) ((jkAa>)-%0)
§ Moy
anTm,r

Note that the derivatives 5™ jJd6, dy/'r' jd6 and dD[ jd9 are readily obtained by

differentiating with respect to f? both sides of the system of linear equations (4.128). This yields

the following system of linear equation for the derivatives

=5(BB(0-)) TA(AA(?))

(4.146)
Re{f=(<}F rRe 50 90
where using (4.125) and (4.126), it can be readily shown that
)
30
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dA(at)

se <K

dB(cot
0} k)
Pe)¢]

dA(03K)

50 ~

5(55) dB{cok) g
50 2 50 B
0

where <y, = A:Aw, k=1,..., AC, and

DPK) L N : «=%*)
dP”r, (M- ((MD-N\)
PH) =/ «<=>*
oinn ((M)-N)  ((M)-N\)
sder ((|v|)-/\)rr+'((M)—/\’)
PO Yo 1
S5«m,r ((M)‘/\) ((M)_}\*)

k) _ ! 1+1 : M2
a<t ((M)-A\)  ((M)-A*)
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(4.147)

(4.148)

(4.149)

(4.150)

(4.151)

(4.152)

(4.153)
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dc{Q>k) (4.154)

=-3

ML (M)A (MK
1 1
=7 P - (4.155)
PN ((M)-A)  (M)-N\)
(4.156)
s (M)-A) ((M)-V)
MK)= | (4.157)
swer (M)=A)  (M)-N)
(4.158)
e ((M)-A) - ((M)-N)
agK) _, e ! M? (4.159)
Rl ((M)-A)  ((M)-/\%)
aggK) ! L ! JO>J (4.160)
((M)-A-)  (M)-/\¥)
dterm L3 1 ) (4.161)
woren (M)-A T
dterm” (
’ « * (4.162)
o vy
r A
dterm «. K) (4.163)
dPRe,r, I(M)-N\y
dterm. N (4.164)
q),lm.ri \‘GVI()-A J
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dterm, < noer T A

. (4.165)
5«Re,r O'w)')\K (JOJ) =AM 3
dtermi rop->uY T A
=17 " (4.166)
y Ow)~A"  (jco)-Xr
dterm? ( e~M jor
. . (4.167)
d"L- (4o))-Xr  (joj) - Al
dtermi 7 e-y»r ~MT A
=1 (4.168)
dnLr (Ja>) - /\ U®)-K
dtermi 1 1 h
T (4.169)
ane,r (=>-/\ (> -N
dterm. 1
(4.170)
<9WIm,r (@) -N (w)—-K
dterm f 1 i
dPRe,n Vv (M)_Ar = ) .
dterm’ % 7
. <«<;K) (4.172)
oI, m (M)—A*
dtermT ( 1 1
(4.173)
dn.Re‘r V (7(L)) 113 /\ Ua>)—K)
dterm,. 1 1
= (4.174)

=7
5r],|m'r \DW)-AI  (Jco)-AT j
The derivatives:

dterm, dterm. dterm] dterm] dterm, dterm, dterm, dterm, dterm, dterm.
dn dng,, M,y Rer DD CDKE,,, (Dir],,n
dterm, dterm, dterm[ dterm\ dterm. dterm, dtermi dtermi dterm. dterm.

elage r dr.'Im,r q)KB,,, q)'i',rl,, ane.r " im,r q)KE,,, ' qun,,T[ 5»Re.r DdP

dterm, dterm,

rer  Mime <ker + o

are equal to zero.
DD
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4.7  Third Step (Nonlinear Optimization)

In this section, the third step is presented in which the formulation of the Section 4.6 is used. In
particular, the response is completely described by the real parameter set O that contains the

real part f € RV" and the imaginary part Yl € Rw" of the complex modeshapes ur e CN''A
the real part p”™ and the imaginary part p of the modal participation factor
vectors fr e Clxy"", the real part NRer and the imaginary part N°’Mr of the initial conditions & (0),
the real part NRer and the imaginary part N\nr of the initial conditions &M(T), and the entries of
the real matrix D¢ e . In addition, in the real parameter set O are also include the modal
parameters ar =Cra>r and br = a>ryjl - P that are related to the modal frequencies cor and
the modal damping ratios 47 , that is

e=\arbr<br, Wn P nr Rer  impe Nher MATr=l..m. D (4.175)
where M is the number of contributing modes which is also an unknown in the identification
process. The total number of model parameter involved in the prediction of the response at Noul

DOFs given m modes and Nin base input time histories, is

[6Bm + 2 (m x Nm) + 2 (Nou, x m) + (Nom x Nm)]

For this the parameter set O in (4.175) is partitioned into parameters sets as follows

6 = [6\OH) (4.176)
where 9h is defined by

&h =(</>,, Wr, r=\,....m, Dc) (4.177)
and 0" is defined by

©" ={ccr,br, pKer, p\mr, n°Rer, Nnlr, nker, N, r = ) (4.178)

The same analysis with this in Section 4.6 is used. The nonlinear optimization process is based
on the minimization of the error function J* y&aj given by (4.137) with respect to the parameter
set O which is defined in (4.175). In particular, the parameter set in (4.175) is partitioned into
the two sets (f and 9h. Flence, the optimization process is based on the parameter set O

using as initial conditions the optimal values of the set 9h resulted from the first and second

approach of the second step.
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4.8 Appendix

48.1 System Of Linear Algebraic Equations (First Approach of Second
Step)

Taking the stationary condition

oI (ftAa>:g)-[(*Aa?)] + er | =0 (4.179)
*=0 a#

5xr,/ (&Ao>;0)

Thus-------------—-——-- — must be evaluated
o0
For @ = LIrji
dxr(kAco;6>) T + dxr'T(kAcy;0) A.r ol oty
------------------ L=M //T«(MAw)=>--eee- — =w  (KA2>)S|Sj I | (4.180)
AL /i

Substituting (4.180) in (4.179)yields

"M=0=>
34,
ﬁ]igf\;) HT(AAW)E.<AXT(AA®;0)-B(AA<B)+(77°] =0 => . «(ALB>)[Bi((ALE>; $)-<?,(Miy)J + C7"j,= O;
X[4.(/4 +fiV; NAAw) + LU(k&a>)
(/£) ii'(kAro) = +CT - Z[(?\+) " (FA®) [«/ (*Aw)] +C7-
(;©0) +>X[AX +4r/]e" 'w ~Z[AX +,4//4]
&1
£07 (AAW)P” -+ 0T (AAw)u* |
(U* ®»(AAW)) +CT =Z((u* ®u(k&d))] [¢,(AAW)]+07’ I~
1 T00Aw)
+4>7,0(AAW) + (S\/ +cfu’) & " (uTp* +£,V)
(4.181)
&] [(£
(U ®0T (AAw)) @ 1+ (p7 ®O7(AAW))|
(1* ® 6(ALW)) cl ~ ) +CT = 3{(/4 ®6(ALW)) [e.,(k~)]+CT
ayll; Je™ -[pl ptl{&}
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For @ = Gyji

dxr(kAar,6) dxr*r (kAar,e) At

T(
-------------------- = SjSj // Mitf) =>------see- - = U (KACO)N T (4.182)
dGni 351 1 UMD dGrli ( LR

Substituting (4.182) in (4.179) yields

~M =0=.
SC,,

S{(A-) h'l (KACONdINX'(K\CO,d)-E(EAW)] +(?7]=0 => Xj(ft) » (LAB)[N(M®,9)-e,(M<y)]+C7'|=0:
SN+ G K(*Aw) + £5T, M(Mw)

(ur) u)(M<o) ™ +cr  S{(A) a’(*Aa»)[e,(M<a)]+Cr }:
+Z[¢v X+ r.x]eVarf-Z[M"x+</,X]

=9
i
I (liaw)yp{m u ((Aw)u*jj : >+
K,
+C7' = E£[(U' ® «(PAw)) [e,(&A<«)] +CY
i-0"
+QUIu(kho)) + (C,V +aIM)e~dii'T-(£,V+2,V) (4.183)
far] [S,
(1*r ®OT(EA®))| : 1+ (U T®«T(EAWH
(/" ®w(M©)) k3 lei., +CT' =A|(U" ® »(tAai) [e,(iAff)]+7T
Ne<c(MN+jyr Z2r]fciNA'r-[7r
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For © = Dcli

dy(kAco) A dy* (kAco) sl
— =££Tw(Mry) => = - =u (kA co=u, (KAco)SjT (4.184)
chji SDdJ,
Substituting (4.182) in (4.179) yields
allg)
dD.
N A,
(kAco)Sjkl [ic'(AA<y;g) -£(AAW)]+CT [ =0 => "«,'(AA®)[A (AA<y;g) -e, (AAw)] + orl=o:
1t=0
> [£< + QI*~-~u(kAco) + DE,u{kA(0)
Z) uj (kAco) " +CT N« (AAIK)[E,(AAW)] + Cr}:
- +2[e<X +4, X]e~fW - £]/},X +9,X]
I1£.
[i}r(EAiy)+ - uT(kAco)pt |
N
z M (AABI) +cr M«"(AAfi>)[e, (AAfNI + Cr}=
=0
(4.185)
+DIjU(kAcO)+ p*+d = -(pu'+ /)
(//** ®wi (kAco)) -(p-T'®u (kAco))
N A
tL. Gl, -
« (KA ! +CT =
*_Zo (kAco)

(kAco)(e, (AAw)] +CT j

+HEACAW) +[M'T TP\ ~“T-[p*T >@J\P>
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For 9 = crl

- g~yI-r B _garn. ) e,r (4.186)

dc

dcCr,l rl

Substituting (4.182) in (4.179) yields

SO (VRW0) - EAAE] + CTL=0 = BL0FDN W [OX M w,8)-¢, (*Aw)l + CT} = 0:
(E

>[Z2>.A + Gj/AT“(*A0) + DElu(k*co)
tikai»T 1=

“a TCT szf() e wk(AAw]+cril:
+Z[c, X+ <<Ale"*wr- Z[AX +t9,.a]

lu (((Aw)ui & u (A:Am)//*jj

)‘ WBT A An#y/1- Mr@ana)i- | +CT  iZitef) e#w[* (*A®)J+CT

lei. (4.187)
+D€lu{k&co) + (S\/ + 4, \V)e_i"r - (p,V +q, 1)

ter

(X®UT(*A®)) (X®MI(AL®))

GI' +Cr - i|(’\)"\rk(’\)]+CT

ter)
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For ©@ = drl

= N Sji~Aan) =&t (U e M

(4.188)
dd'rj ddrJ
Substituting (4.182) in (4.179) yields
m,o"™
ddr,
ZK7(/5) N Tir(Riu; 0)-|(M®)]+Cry =0 => M\{u;) eMTOX][(KA\B)-BIrAw)\+ aT] = ()-
*=iA : *=q' -
IMr + QIIUr"T«(AAB)) + Ql,u(CO)
(*)m = +CT = Y\{l;) ekMT[t,{k™)] +CT\-.
4=0' '
+Z[*VX +<AJ«<>0T-=[AX +4r.X]
K
AMIT(ATAGI7,+ - OT(KACOV* J* T
k-)' [u (liAw)pyim ur(kAco)p~J +CT = Ifof)=""[*(**«)] +cCr
el, (4.189)
+DI,u(kAm) + {"c[u* + djp ~(plp* +alu )
Qu
Iy ®py(Aho)) -(X ®u {kAcaij
ik-)' £, el. +C7! =y +cCr
+DLEiM)+[< 7] ~'—-[= X7~
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For © =p,,

dx (kAo0);0) + dx (kAco\6) T( =
-dj/ur => —Oj [k, (4.190)

dPr,l tyrj

Substituting (4.182) in (4.179) yields

dPrJ

S(ET () Y (*AW0) - e(MFf)]+ CF =0 => X{(™*)'\x, (kAco;i) - e, (kAco)] + CT] =0

Z[5,;/C +GrV."]“(*AU) + Dalu((0)
rer  Z{EYA NI +er

«“a
f;[crx+4,,p:]<y'*)\"y - g[AX+?,.,/<;]
Ml
UT(lAW)U{ -+ OT(liAw)u+Jj
+cr :%fcf) [e,(*4<»)]+ Cr
(4.191)
+QCA(KA@>) + [Cju™ + rf/V)e' 4T - (pjut + G A)
Ql
(WT®u (KACO® -(U-T®UMNIAW))
[er)n Qi, +C7 = *E(S'(//)’[A(A®)] +C7
+&&AW) +[U* T B-@.]"-** ~[u'T F
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For 8 =qrl

dxr(k/"w-,0A _ dxr* (liAw-,0) T, _N
— — —~ T =8J [Mr)
d(IrJ dclrd

Substituting (4.182) in (4.179) yields

MU,0=

9<ir,1

licr (liAw,0)-e(EA®)] +CT =0 => [*.r(EAiu;0)-e,(EA<z))] + C7' | =O:

=0’ =

+ QIMr J«<(*A®) + Owr,M3{W)

(Xi = +CT m 3 (=) [/(-A®)] + CT+j

4+ Z[Cr>< + ~.AJey*"W — Yi[_PrX + =?rX]

Mr(AAiy)/t - Or(liAw)p*

prT®ii (/») £,
(1) [y_r(kAco)pim Or(liAw)unj- | +C7" 1= (/) [e,(kAco)] + CT\--
! et =) >
HT®OT(N>) —w./

+QIljUKA(0) + (s + OTp)e—dt*“T - (p\/ + qf/f)

(/1 T®<« (MiD))

M | + C7" %\jk") [e,(*A«)] + CrJ
+01;,0(M®) + [/;- K*wW-[Ar _TI £
where
ol —=. N N
' ldJ =n F_'J = -7/ —.
cm, Idm_l_J A

(4.192)

(4.193)

4.8.2 System Of Linear Algebraic Equations (Second Approach of

Second Step)

Taking the stationary condition

v gld* [** (ifcAfi%; 03 —1 (*Ac?)] ~ or ] = o
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dxr*7 (kAco;(j)
the derivative must be evaluated
o6

17 2T \

dxr": (kAa>;0) \f/(jkACO) AL \ (4.195)

rel..

v (0'kAcC0)-A] T

¢ s 177
dxj'l (kAco-,0) (kAco) - Aly

(4.196)
SWy rel, ysr . *
(u'T(kAa>)l +e*rg(7)-g(0O))
| ((kAco)-NT)
d~ ~Aw’-)_ = u'T(KA0)ES|T = ut{kAa)S[ (4.197)
dDcli
Substituting (4.195) - (4.197) in (4.194) yields
"Si.o=
((O)\)-i) J(h'>,u +i""7;;(T)-70))|
M»K) . I'r»K)  + 4 + QW y + +
(M)~ K a J/{(M)-/\ (%)-/\- { ur (cot)Ded
AT termk,
( edd e~ \ f e-nr e~ A
+CT
J(M)-A+(M)-NT( (MY-N'T( -
i +'~l£ 0)E +7 : | r f, (O)£
(M) -ar - (ja>t)-Xr © (jatd-X, (jtok)-A; '
S Sium)-4 7rK)i'+«"*7;(T)-i;(0))+ {(Je>k) K (r (>, )i +e™*7; (T) - 7 (0))Je, KD +CT-
]T'\(ferm" +Ierm2,)(p, + j(termlr +term2r)t//rj t Ur(IU,)DC,
> AMwd +cr"=2l | 4(®iA(®y+cT  (4.198)
+ = [Cermv)™ + J(Ierm4.ry\r]u = [Cerm5.N" +j ¥, 1
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a/(9)

B K(M)_A-J(«'rK)r+e""r#;(r)—l;(0))+ (VA (“O'u +e"ri;(T)-i;(0))

I »K) , x jww ™MV NKL+XiIK)

(M)~A, (M)-A (M)~A (M)~AJ +« H)E> +

! ey"r e'f'.r 4 (TY~s ‘M- Pt rer
1yn + A O ayn owyn B OE
' T £(0)4+7 T E (<%

(M)=A  (M)~A (M)-A  (M)-A

Lit K(M)~A VIKU'+ey; (T)-#;(0))+ (M)A My +  (1)-£(0) k K<)+CT-

+termIF)ipr +j(termw +term2f)t//rj + II7 (0>4)DI’,
ZB,K) rla +Cr
+Z[(te""V)E +y(N' IV - Z[(FTV)A +H/([BTV) <N

(4.199)

al(g) _,.

"H(w,)+_1 MK) 043 10wt r»K) I(y +«[(,)0r, +
(M)-N\ (M)-N (M)-A (M)-A

iy T LA e £ (O +cr
Zm—)'_4 ™ (M)-A  (M)-A

(4.200)

| !
-~ 0K EORT myn emyn B OR:

>{n KNKJ+CTIN
> +ermu)t +j(erm,, +'e"'n2, Rr] +u7 (cok)Dc)

« (<) & +or = Z{«(<ute,(fijt) + Cr}
N e "V)E +/([e'T'VR'-]- Z[(ter0OTV) A +y(ter/w6, )]

where
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c,ll

Qcj = }eRN" X\ Vv/=1  Nou and wk = k/xco, k =1,

cJIN.,
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Chapter 5

Applications

5.1 Introduction

In the present study, the modal identification methodologies developed in previous chapters are
used to analyze the dynamic modal characteristics of two bridges using real dynamic data.
Simulated data are used for the validation of the methodologies through comparison of the
estimated modal properties to the ones resulting from a 3 DOF and a 10 DOF spring mass chain

model.

Further down, in Section 5.2, is presented the formulation of the response of a linear elastic
structure, in the case when is supported at more than one point and is subjected to different input
components. The formulation of the response to each input component depends on the fact that
the multiple supports move independently of each other and induce quasi-static stresses that
must be considered in addition to the dynamic response effects resulting from inertial forces. In
Section 5.3 is presented the validation of the modal identification algorithms in time domain for
both non-classically and classically damped modal models and in frequency domain for non-
classically damped modal models using a 3 DOF and a 10 DOF spring mass chain model. In
Section 5.4 the proposed identification methodologies are applied to the R/C bridge of Polymylos
bridge for the low level, magnitude ML = 4.6, earthquake event that occurred on 21/2/2007
(2:04:38 GMT) at a distance 35km Northeast of the bridge. The resulted values of the modal
frequencies due to earthquake-induced vibrations are compared with the modal frequencies due
to ambient vibrations estimated in other works. Finally, in Section 5.5 the proposed identification
methodologies are also applied to the Vincent Thomas cable suspension bridge subjected to the
1987 Whittier earthquake. The resulted values of the modal frequencies and the damping ratios

are also compared with the results given from other works in the previous years.

5.2 Response of Structures Subjected to Multiple Base Excitation

In the case when a linear elastic structure is supported at more than one point and is subjected to
different input components, the formulation of the response to each input component depends on
the fact that the multiple supports move independently of each other and induce quasi-static
stresses that must be considered in addition to the dynamic response effects resulting from

inertial forces.

To formulate the equations of motion (2.1) for the general case of base excitation, the

following partition of the displacement vector is considered
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y= | (5.1)

where Y* is the vector of the unknown nodal displacements and Y is the vector of the given

support displacements. In earthquake applications Y consists of the independent input
components that express, for example, the seismic excitation to which the structure is subjected.

The equation of motion (2.1) is written

Mo Mg p\(Oj, ~C. ¢+ [i.toi, X X' 52
M., M . i i '
9 &(0j c- Cyg [IW] X WV
where the external forces are assumed to be zero, ie. U(t)=0. The equilibrium equation
expressing the motion of the response degrees of freedom can now be written in partitioned

matrix form as follows

(5.3)

in which the motion vectors have been partitioned to separate the response quantities from the
input, and the property matrices have been partitioned to correspond. The matrices that express
forces in the response degrees of freedom due to motions of the supports are denoted with the
subscript g. It is noted that (5.3) expresses the equilibrium of forces in the response degrees of

freedom only, and that there are no external loads corresponding to these displacements.

An expression for the effective seismic loading is obtained by separating the support motion
effects from the response quantities and transferring these input terms to the right hand side; thus

the equation of motion of a structure excited at the base is considered to be:

M.,J + Cxys+K«L: = (5.4)

where Mss, Css, Kss are the mass, damping and stiffness matrices of the system, ¥ = VY is
the vector of motion at NS system degrees of freedom, Y = Zthe vector of input motions at
Nin base degrees of freedom and Msg, Csg, K the mass, damping and stiffness matrices that

couple the system and base degrees of freedom (DOFs).

The solution for the response to this input can be simplified if the total response motions are
expressed as the combination of a quasi-static displacement vector S, plus a dynamic response

vector x

V. = s+ x (5.5)
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The pseudostatic response represents the ‘static’ contributions of the individual support
motions to the system response and is obtained by setting all time-derivative terms to zero in
=S

(5.4) and noting that the total displacements then are merely the quasi-static motions ()—/ -)

given by
S=Dz (5.6)

where D is the pseudostatic matrix, which expresses that response in all degrees of freedom

due to unit support motions and is given by:
D = ~K~' Ksf (5.7)

The dynamic component in (5.5) accounts for the contributions of the system’s fixed-base
modal vibrations about its pseudostatic reference position. Thus, the equations of motion of the
dynamic response components X are obtained by substituting (5.5) into (5.4) and satisfy the

equation

M x+ Cx+Kx =-(M D +Msg)z-(CD + Csg)z (5.8)

It is noted that there is no stiffness term in the effective forces on the right side; it drops out
because of the definition of the pseudostatic displacement matrix given by (5.7). It is also
recognized that this relationship will eliminate any effective input associated with a stiffness-
proportional component of the viscous damping. In fact, it can be demonstrated by numerical
experiment that the entire velocity-dependent part of this effective input is negligible in
comparison to the contribution due to inertia if the viscous damping ratio has any reasonable
value (Clough and Penzien, 1993). Consequently, (5.8) may be written in the following

approximate form:

M x+ Cx+Kx = -{M D + Msg)z (5.9)

It is worth pointing out that equation (5.9) is of the same form as equation (2.1) with L in
(2.1) replaced by MD+ Msy and u(t) replaced by z(t). So the modal analysis and
identification methods developed in this Thesis are directly applicable to structures subjected to

different acceleration excitations at multiple supports.
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5.3 Validation of Modal Identification Algorithm using Simulated Data

The implemented algorithms, concerning the case of earthquake excitation, was validated by
using simulated data from a 3-DOF and a 10 DOF spring mass chain model shown in Figure 1.

The structures are excited at the base by specifying the base acceleration y .

(@) (b)

Figure 1: Spring mass chain-like models, (a) 3 DOF, (b) h DOF

The optimal modal parameters O, were estimated by using both the time domain approach,
for both non-classically and classically damped modal models, and the frequency domain
approach for non-classically damped modal models. The simulated data are generated by
enforcing at the base of the model the El Centro earthquake acceleration and by computing the
responses at all DOFs of the model. The available acceleration time history of the El Centro

earthquake and its Fourier transform is shown in Figure 2.

The simulated absolute acceleration responses for selected floors computed by solving the
equations of motion for the 3 DOF and the 10 DOF models are shown in Figure 3 and Figure 4,
respectively, along with the Fourier transforms of the responses. These simulated data are used

in the analysis that follows to validate the effectiveness of the modal identification algorithms.

(b)

Figure 2: (a) El Centro Acceleration time history and (b) El Centro Fourier transformation

86

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



(a) (b)
Figure 3: Simulated responses for the 1st 2nd and 3rd floor of the 3 DOF model: (a) absolute

accelerations, (b) Fourier transform of absolute accelerations
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Figure 4: Simulated responses for the 5th, 6th and 7th floor of the 10 DOF model: (a) absolute

accelerations, (b) Fourier transform of absolute accelerations

(€Y

(b)

Table 1. Comparison of optimal and real parameter values for Stabilization Diagram (First Step)

Spring Mass Chain-like Model

3 DOF
W Hz 4
(%)
1 0.95 1.00
2 2.25 1.00
3 3.78 1.00
4
5
6
7
8
9
10

10 DOF
W Hz &
(%6)
1.17 1.00
3.49 1.00
5.72 1.00
7.79 1.00
9.64 1.00
10.05  1.00
1123  1.00
12.52 1.00
13.46  1.00
14.04  1.00

Estimated Optimal Parameter
Values

Stabilization Diagram

3 DOF

w Hz

0.95
2.25
3.78

Institutional Repository - Library & Information Centre - University of Thessaly
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C
(%)
1.02
1.00
1.00

10 DOF

@ 4

Hz (%)
1.17 1.01
3.49 1.00
5.72 1.01
7.79 1.00
9.66 1.00
10.05 1.00
11.23 1.00
12,52 1.00
13.46 101
14.06 1.05
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The estimated modal characteristics (modal frequencies and damping ratios), which result
from the stabilization diagrams obtained in the first step of the modal identification algorithms, are
summarized in Table 1 and they are compared to the modal characteristics of the model that was
used to generate the simulated data. The stabilization diagrams are used to distinguish between
physical and mathematical modes, shown in Figure 5 and in Figure 6 for the 3-DOF and the 10

DOF spring mass chain model, respectively.

@)

()

Figure 5: Stabilization Diagram forthe3-DOF chain spring mass model: (a) Average of the

Fourier Transforms of 3 floors, (b) Fourier Transform of 1st floor
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a \ \ i i i i [ i
0 2 4 6 8 10 12 14 16
Frequency (Hz)

(@)

(b)
Figure 6: Stabilization Diagram for the 10-DOF chain spring mass model: (a) Average of the

Fourier Transforms of 10 floors, (b) Fourier Transform of 1st floor

In Figure 5 and Figure 6 the stabilized poles are pointed with a red square for each
polynomial order. It is observed that the estimated modal frequencies and damping ratios were
accurately identified (no major discrepancies between the modal frequencies and damping ratios
resulted from the Stabilization Diagrams and the modal identification algorithm), which validates

the effectiveness of the Stabilization Diagrams.
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Table 2: Comparison of optimal parameter values

Time Domain
(classically damped)

3 DOF

® 4

Hz (%)
1 095 1.00
2 2.25 1.00
3 3.78 1.00
4
5
6
7
8
9
10

10 DOF
© g
Hz (%)

1.17 1.00
349 1.00
572 1.00
7.79 1.00
9.64 1.00
10.05 1.00
11.23 1.00
12.52 1.00
13.46 1.00
14.04 1.00

Optimal Parameter Values

Time Domain
(non-classically damped)

3 DOF
@ 4
Hz (%)
0.95 1.00
2.25 1.01
3.78 1.07

10 DOF
@z
Hz (%)

1.17 1.01
3.49 1.00
5.72 1.06
7.79 1.00
9.66 1.03
10.05 1.00
11.23 2.00
12.52 2.00
13.46 2.00
14.04 2.00

Frequency Domain

(non-classically damped)

3 DOF

0 Hz Z
(%)
0.95 1.01
225 1.00
3.78 1.00

10 DOF

c0 Hz Z
(%)
1.17 1.02
3.51 0.99
5.72 0.97
7.78 0.99
9.66 1.01
10.05 0.97
11.23 0.77
12.52 0.75
13.46 0.75
14.04 0.76

The estimated modal characteristics for time domain approach and frequency domain

approach are presented in Table 2. In Figure 7 it is observed that an accurate fit resulted from the

convergence of the acceleration time histories predicted from the optimal modal model to the

“measured” acceleration time histories for the 3-DOF and the 10 DOF chain spring mass model,

which validates the effectiveness of the modal identification methodology. A similar fit is observed

in Figure 8 for the Fourier Transforms of the accelerations.
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€Y (b)

Figure 7: Comparison between measurement data and modal model predictions (time histories
of accelerations) (a) at the 1st and 2nd floor of the 3-DOF chain spring mass model and (b) at the

5th and 6th floor of the 10-DOF chain spring mass model

Fequencyt) Freguency(t)
(@) (b)

Figure 8: Comparison between measurement data and modal model predictions (Fourier
Transforms of accelerations) (a) at the 1st and 2nd floor of the 3-DOF chain spring mass model

and (b) at the 5th and 6th floor of the 10-DOF chain spring mass model
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The modal identification algorithm for time domain (non-classically and classically damped)
and frequency domain was based on a number of modes for each chain spring mass model. It is
obvious that the proposed optimization algorithms work effectively, since it correctly and
accurately identifies the dynamic properties of the two models. In particular, for the 3 DOF model
both modal frequencies and modal damping ratios were estimated very accurately for all the
modes by all the proposed optimization algorithms. For the 10 DOF model, it is observed that for
the first 6 modes the modal frequencies were estimated very accurately and the damping ratios
were estimated quite accurately. In contrast, for the highest modes only the time domain
methodology for classically damped modal models was accurately identified the values of the
damping ratios of the model. This may be due to the fact that the El Centro earthquake used to
create the simulated data did not excite adequately these highest modes. Also, because of the
fact that the response for the general case of non-classically damped modal models, for both time
and frequency domain methodologies, is described by complex-valued parameters such as the
modeshapes and the participation factors, the number of the parameters involved in the nonlinear
optimization process of such systems increases. Hence, the identification algorithm for non-
classically damped modal models, cannot estimate accurately the values of the damping ratios

for these modes.

54 Polymylos Bridge, Greece

This section applies the developed modal identification methodologies for estimating the dynamic
modal characteristics of a representative bridge on the Egnatia Odos motorway, using
earthquake induced vibration measurements. Egnatia Motorway is a new, 670 km long highway,
that transverses Northern Greece in an E-W direction. The R/C bridge of Polymylos that were
instrumented with special accelerometer arrays are the 9th Ravine Bridge on the Veroia -
Polymylos section (Figure 9). The bridge has two, almost identical, statically independent
branches, one for each traffic direction, one of which was instrumented. Modal identification
results (modal frequencies modal damping ratios and modeshape components) for the Polymylos
bridge are estimated for the low level, magnitude ML = 4.6 , earthquake event that occurred on
21/2/2007 (2:04:38 GMT) at a distance 35km Northeast of the bridge.

5.4.1 Bridge Description and Instrumentation

The T-shaped 9th Polymylos bridge is curved in plan and has a total length of 170m. The deck
cross section is a box girder of height varying parabolically from 9m at the central pier to 4m at
the two abutments. It is supported monolithically by a central pier (Ml), of 35m height, which is
founded on a massive rectangular R/C rock socket at its basement and continues with two
transverse flanges for the rest of its height. Each of the two 85m-long cantilever parts of the deck

girder rests on each abutment through special elastomeric bearings that allow free sliding in the
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longitudinal direction (to accommodate thermal expansions/contractions), while functioning as

normal elastomeric pads in the transverse (radial) direction.

Figure 9: View of Polymylos bridge

Two 12-channel Kinemetrics K2 ® recording units were installed on the northern branch of
the 9th Polymylos bridge (on deck level at the middle of the total bridge deck), each supporting 12
uniaxial Kinemetrics Episensor ® accelerometers (x 2g full scale) installed on both sides of the
bridge deck. The recording units have a 19-bit resolution, a sampling rate capacity of up to
200sps and a dynamic range of 108 dB @ 200 sps. Fifteen sensors were installed on the deck,
three on the basement of the central pier and three on each of the two abutments (at the support
level of the elastomeric bearings), as shown in Figure 10. Thus, the nine sensors monitor the
earthquake-induced excitations at the two abutments and the basement of the pier. The particular
layout of the instrumentation permits the analysis of earthquake-induced response of the bridge.
The 3 to 4-letter sensor labels follow the following convention: The last letter denotes the
orientation of the uniaxial sensor (L: longitudinal, T: transverse, V: vertical). The previous one
denotes the side of the bridge deck on which the sensor lies (R: right, L : left). Finally, the first one
or two letters denote the bridge section that the sensor lies on (first letters U1 and U3 refer here
to the abutment level where the elastomeric bearings are seated, U2 refers to the base of the
central pier and all other letters refer to positions on the level of the bridge deck). The numbers
next to each sensor label denotes the length of the cable used to connect the sensor to each
recording unit. Among the 15 accelerometers located on the bridge deck, 8 record in the vertical,

1 in the longitudinal and the rest 6 in the transverse direction.
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Figure 10: Instrumentation layout of Polymylos bridge

The modal identification carried out in the time domain and in the frequency domain using the
measurements of the 24 accelerometers which were installed on the northern branch of the 9th
Polymylos bridge. In particular, in the time domain the modal identification carried out using both
non-classically damped and classically damped modal models. From the 15 accelerometers
located on the bridge deck, accelerometers A2LV, A2RV and M2RV were excluded because they
were damaged during the earthquake event. The accelerometer U1LV which monitors the
earthquake-induced excitations at the right abutment of the bridge was also excluded for the

same reason.
5.4.2 Modal Identification

Using all the eight (8) available input sensors which monitor the earthquake-induced
excitations at the two abutments and the basement of the pier and all twelve (12) available output
sensors, the values of the modal frequencies and modal damping ratios resulted from
Stabilization Diagrams are presented in Figure 11 for: (a) the Fourier Transform of the
accelerations of all vertical sensors, and (b) the Fourier Transform of the accelerations of all
transverse sensors. After distinguishing the physical from the mathematical poles the values of
the modal frequencies and modal damping ratios are presented in Table 3. Eight values of modal
frequencies and modal damping ratios were identified. These values for the modal frequencies
and the damping ratios were used for applying the next two steps described in Chapters 3 and 4
and estimating the modeshape components and participation factors on the measured locations

of the bridge.

95

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



Figure 11: Stabilization Diagram for the Polymylos bridge: (a) Vertical Sensors, (b) Transverse
sensors

Table 3: Identified modal frequencies w and damping ratios ¢ of the Polymylos Bridge,
obtained by the Stabilization Diagram for Earthquake Vibrations

Polymylos Bridge

Mode Stabilization Diagram
® Hz g (%)

1st Transverse 1,28 2.07
1st Bending (deck) 2.19 0.42
2nd Transverse 2.56 4.39
2na Bending (deck) 3.19 0.66
3rd Transverse 4.46 1.46
3rd Bending (deck) 6.89 0.66
4th Transverse 7.25 1.20
1st Torsional 8.4 0.58
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In Table 4 the values for the modal frequencies and damping ratios resulted from the
identification algorithms for non-classically and classically damped modal models in time and
frequency domain are presented and compared with the values identified using ambient vibration

measured data presented in the work by Ntotsios et al. (2007).

Comparing the modal frequencies and damping ratios resulted from the Stabilization
Diagrams and the modal identification algorithm for time and frequency domain it is observed that
there are no major discrepancies. This validates that the values of the modal frequencies and the
modal damping ratios which result from the Stabilization Diagrams constitute a very good

approach of the optimal values that result from the modal identification algorithm.

Table 4: Identified and design FE model predicted modal frequencies w and damping ratios
of the Polymylos bridge for Earthquake Vibrations

Polymylos Bridge

Ambient

Earthquake Vibrations Vibrations

Mode Frequency Domain Time Domain Time Domain (I\::)tz;os
(non-classically (non-classically (classically o
2007)

damped) damped) damped)
w Hz Z (%) w Hz Z (%) w Hz Z (%) w Hz
1st Transverse 1.26 2.07 1.29 1.8 1.29 18 1.13
1st Bending (deck) 2.19 0.47 2.19 0.4 2.20 0.6 2.13
2nd Transverse 2.61 3.86 2.57 4.12 2.56 3.5 2.22
2nd Bending (deck) 3.19 0.61 3.19 0.66 3.20 0.7 3.07
3rd Transverse 4.45 1.55 4.30 2.49 4.23 3.2 4.10
3rd Bending (deck) 6.88 0.58 6.89 0.44 6.89 0.6 6.66
4th Transverse 7.17 1.38 7.24 12 7.24 1.2 6.78
1st Torsional 8.41 0.73 8,39 2,1 -

From the earthquake vibration data, it is noted that eight (8) modes were successfully and
reliably identified for the Polymylos bridge: four transverse modes, three bending modes and one
torsional. In Table 4, comparing the modal damping ratios, resulted from time domain and
frequency domain, it is observed that the bending modes have significantly lower values of
damping, of the order of 0.4% to 0.7%, than the damping values of the lower transverse modes
which are of the order of 1.2% to 4.12%. The higher damping values observed for the lower
transverse modes can be attributed to the energy dissipation arising from the higher modal
deformation levels of the elastomeric bearings at the ends of the bridges which dominate the
motion of these modes. Also, soil damping could also have contributed to the higher damping

values observed for these modes.

Comparing the modal frequencies resulted from non-classically damped case and classically

damped case for the time domain it is observed that there are no major discrepancies. For the
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modal damping ratios of bending modes, it is observed that the resulted values from non-
classically damped case have lower values of the order of 0.4%-0.6% than the values resulted
from classically damped case which are of the order of 0.6%-0.7%. For the transverse modes it is
observed that the resulted damping ratios from non-classically and classically damped case of 1st
and 4th mode have the same values, while the resulted damping ratios of the rest two modes

have different values.

Comparing the results from time domain and frequency domain using non-classically damped
modal models it is observed that the modal frequency of the 3rd transverse mode resulted from
the time domain has lower value of the order of 4.23.Uz than the value resulted foe*the
frequency domain which are of the order of 4.30 Hz. For the rest modes there are no major
discrepancies between the values of the modal frequencies. Differences are also observed for the
modal damping ratios for the transverse modes of the order of 0.26% - 0,94% and of the order of
0.05% - 0.14% for the bending modes.

From the results in Table 4, it is observed that the modal frequencies due to earthquake
vibrations are 4% to 15% higher than the modal frequencies identified in Ntotsios et. al (2007)
from the ambient vibrations. No conclusive explanation can be given for these differences without
making assumptions about the bridge behavior within the measured vibration levels. These
differences could be attributed to the nonlinear softening hysteretic behavior of the structural
components, especially the elastomeric bearings. The results in Ntotsios et. al (2007) reveal that
the peak acceleration responses for the earthquake induced vibrations are 1.4 to 3.8 times lower
than the peak acceleration responses of the ambient vibrations (Table 5). Accepting that the
estimation of the equivalent modal frequencies is dominated by the peak vibration levels, this
could justify a higher secant stiffness of the elastomeric bearings for the lower earthquake peak
vibration levels which results in stiffer structures and thus justifies the increase in the equivalent
values of the modal frequencies observed in Table 4 for earthquake induced vibrations. However,
this explanation cannot be used to justify the higher modal frequency values observed for the
modes associated with bending of the deck since these modes are not affected by the bearing
stiffness. It is unlikely that similar softening nonlinear effects will arise by the deformation of the

pier and deck elements in these low vibration levels.

In Ntotsios et. al (2007) the values of the modal frequencies were also identified using much
shorter duration segments of the ambient vibrations recordings shown in Figure 12, selected so
that the peak acceleration levels are the same as or smaller that the peak acceleration of the
earthquake recordings. The estimated values of the modal frequencies obtained by analyzing
these short duration segments were found to be almost identical to the values of the modal
frequencies that were estimated using the whole, approximate 30 minutes, segment of the
records shown in Figure 12. This verifies that at the low vibration levels considered, the
aforementioned differences in the peak acceleration levels between the ambient and the
earthquake induced vibrations cannot justify the large differences in the modal frequencies

observed in Table 4.
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Figure 12: Accelerations time history measurements from ambient (Ntotsios et. at, 2007) and
earthquake vibrations at sensors B2RV and SRT,(a,c) ambient,~d) earthquake

Table 5: Comparison of Peak and RMS response acceleration obtained from Ambient (AV) and

Earthquake (EV) induced Vibrations (Ntotsios et. al, 2007)

Peak response (cm/sec2) RIVS (cm/sec2)
Channel AV EV AV/EV AV EV AV/EV
B2LV 23.2470  7.1062 3.2714  0.9181 1.9397 0.4733
M2LL 2.1767 1.0009 2.1747 0.0922 0.2407 0.3830
M2LV 11.2310 2.9575 3.7975 0.6044 0.7350  0.8223
SLV 15.9950 6.6148 2.4181 0.8847 2.0163 0.4388
T3RT 5.9160 3.3652 1.7580 0.1825 0.7129 0.2561
B2RV 26.9220  7.3206 3.6776  0.9704 1.7120 0.5668
B2RT 7.7054 2.3919 3.2215 0.2928 0.6667 0.4392
M2RT 4.3362 2.5179 1.7221 0.2582 0.6141 0.4204
A2RT 5.5674 2.5210 2.2084 0.2559 0.5911 0.4329
SRV 17.4100 12.3900 1.4052 0.9418 2.5206 0.3737
SRT 4.9252 2.5542 1.9283 0.2783 0.5786 0.4810
T1RT 1.2481 2.3865 0.5230 0.0401 0.6104  0.0657

In contrast to the peak vibration levels, the levels of the RMS response in Table 5 of the
approximately 30 minutes ambient acceleration measurements are 0.25 to 0.82 times the

corresponding root mean square earthquake response levels. Accepting that the estimation of the

99

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



equivalent modal frequencies in Table 4 is dominated by the RMS vibration levels, the modal
frequencies due to higher RMS earthquake vibration levels are expected to decrease if softening
of the elastomeric bearings take place, which is not consistent with the opposite increasing trend

observed in Table 4.

A more reasonable explanation that can account for the differences in the identified values of
the modal frequencies in Table 4 is soil structure interaction effects (Safak 1995). In this work
(earthquake vibration case), the modal properties of the system were identified using as input
acceleration the eight recordings at the two abutments and the base of the central pier and as
output accelerations the twelve available recordings along the bridge deck. Thus, ignoring the
rigid body rotation of the central pier foundation at the low vibration levels measured, the modal
frequencies identified by the input-output earthquake vibration measurements are those of the
fixed base bridge, excluding the effects of soil-structure interaction since the base motion of the
abutment and the pier foundation were used as input accelerations in the modal identification
process. In contrast, in Ntotsios et. al (2007) for the ambient vibration case, the modal properties
of the system, obtained from the ambient measurements due to excitations from the traffic and
wind loads, were identified using only the twelve output accelerations recorded along the bridge
deck. Thus, the modal frequencies due to ambient vibrations correspond to the dynamic
characteristics of the combined system consisting of the bridge and accounting for soil structure
interaction effects. This interaction effect is due to the additional soil flexibility provided at the
base supports of the bridge. The presence of this effect is also supported from the non-zero
vibration levels recorded at the base of the pier and the top of the side abutments during ambient
measurements. Thus, soil-structure interaction effects cause the combined soil-foundation-
superstructure system to appear as less stiff than the superstructure (fixed-based bridge) itself,
resulting in lower values of the modal frequencies which is consistent with the results observed in
Table 4.

Representative measured modeshapes (1st bending and 1st transverse) are shown in Figure
13 for the Polymylos Bridge obtained by the time domain identification algorithm using non-
classically damped modal models. The identified modeshapes are in general complex valued.
Figure 14 represents in polar plots two representative modeshapes (1st bending and 1st
transverse) based on earthquake-induced vibrations. These plots have the advantage to show
directly the extent of non-classically damping characteristics of a modeshape. If all components of
a modeshape vector are collinear (in phase or 180 degrees out of phase) then this mode is said
to be classically (or proportionally) damped. On the contrary, the more these modeshape
components are scattered in the complex plane, the more the mode is non-classically (or non-
proportionally). For example, in Figure 14 it is observed that the 1st transverse mode (1.29 Hz) is
nearly classically damped. In Figure 15 the earthquake-induced accelerations and the
accelerations predicted by the optimal modal model for selected sensors are compared. In Figure
16 the Fourier transform (FT) of the earthquake-induced accelerations and the FT of the

accelerations predicted by the optimal modal model for selected sensors are compared. A very
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good fit is observed, validating the effectiveness of the proposed modal identification software

based on earthquake recordings. All Figures of the modeshapes are shown in the appendices.

1st Bending: 2.1932 Hz. zeta: 0.395% 1st Transverse: 1.2851 Hz, zeta: 1.827%

Figure 13: (a) 1st bending and (b) 1st transverse modeshape of the Polymylos bridge

1st Transverse (1.28Hz)
1stBending (2.19 Hz)

Figure 14: Polar plots representation of (a) 1st bending and (b) 1st transverse of the Polymylos
Bridge

ime(sec) ome(sec)

Figure 15: Comparison between measured and optimal modal model predicted accelerations

recordings for selected sensors of the Polymylos Bridge
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Figure 16: Comparison between measured and optimal modal model predicted Fourier

Transforms of accelerations recordings for selected sensors of the Polymylos Bridge

5.5 Vincent Thomas Bridge, Los Angeles, California

The Vincent Thomas Bridge is a 6060 feet (1847 m) long bridge crossing the Los Angeles Harbor
in the U S. state of California (Figure 17). It is a cable-suspension bridge, consisting of a main
span of approximately 457 m, two suspended side spans of 154 m each, and a 10-span approach
of approximately 545 m length on either end. The roadway accommodates four lanes of traffic.
The bridge was completed in 1964, and in 1980 was instrumented with 26 accelerometers as part
of a seismic upgrading project. The measurement data from the sensor’s network were obtained

by the Center for Engineering Strong Motion Data (CESMD).

Figure 17: View of Vincent Thomas Bridge
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Figure 18 shows the layout of the location of the 26 sensors mounted on the bridge. Thirteen
sensors were installed on the deck and three sensors on the top of the east tower, three sensors
on the bottom of the west tower, four on the bottom of the east tower and three sensors on the
eastern cable anchorage, as shown in Figure 18. Thus, the ten sensors monitor the earthquake-
induced excitations at the bottom of the two towers and at the eastern cable anchorage. Notice
that the eastern half of the bridge is more densely instrumented. This is because the analog
recorder is housed in the eastern cable anchorage. The particular layout of the instrumentation
permits the analysis of earthquake-induced response of the bridge. Among the 16 accelerometers
located on the bridge deck and at the top of the towers, 6 record in the vertical, 3 in the

longitudinal and the rest 7 in the transverse direction.

Los Angeles - Vincent Thomas Bridge
Caltrans Bridge No. 53-1471 (07-LA-47-0 86)
CSMIP Station No. 14406

SENSOR LOCATIONS

Structure Reference

Elevation Orientation: N, f=10"
a*11 N
1*10
Top of Tower
15 17 21
%1 *
it r2 prr-o— &, 7
Top of Truss 8 12 22
l |% l | I |
n m m' * ! 'm m gV
Bottom of Truss 0
o I % o1
| Foundation Plan 9 2%

10/22/81
Rev. 05/08/98

Figure 18: Instrumentation layout of Vincent Thomas Bridge
(http://www.strongmotioncenter.org)

The modal identification carried out in the time domain and in the frequency domain using
non-classically damped modal models for the 1987 Whittier earthquake (M, =6.1). As it is
mentioned in previous works (Lus et at, 1999, Smyth et al., 2003), the measurements of the
earthquake-induced excitations and accelerations of the bridge were highly non-stationary for the
Whittier earthquake. It is also known that the response of the bridge was highly non-linear during
the peak times. Therefore, in the study of Lus et al. (1999) the final 50 sec of the records was

used, in which the strong ground accelerations have died out. In this study, for the identification of
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structural parameters of the Vincent Thomas Bridge, the inputs were the accelerations of the ten
(10) sensors located at the base of the structure and the outputs were the accelerations of five (5)
vertical sensors. In the study of Smyth et al. (2003) the identification of structural parameters of
the Vincent Thomas Bridge for the 1987 Whittier earthquake was done using the last 40 sec of
the records in order to compare their results with the results from the study of Lus et al. (1999).
The inputs were the same as in the study of Lus et al. (1999) but the outputs were the

accelerations of all sensors on the deck of the bridge and on the towers.

In this work the identification of structural parameters of the Vincent Thomas Bridge was done
for the recorded time lengths of 80 sec, using for inputs the accelerations of the ten (10) sensors
located at the base of the structure and for outputs the accelerations of all sensors. Modal
identification results (modal frequencies and modal damping ratios) for the Vincent Thomas
Bridge are shown in Table 6 compared with the values identified by Lus et al (1999) and Smyth et
al. (2003). In Table 6 are also presented the values of the modal frequencies and modal damping
ratios resulted from the Stabilization Diagram (Step 1). In contrast with the two aforementioned
studies (Lus et al.,, 1999, Smyth et al., 2003), in this work the identification of structural
parameters of the Vincent Thomas Bridge was done for the recorded time lengths of 80 sec and
therefore this is a more challenging identification problem. In the study of Smyth et al. (2003),
several modal frequencies have been highlighted with a "*' symbol for comparison with similar
results in Lus et al. (1999). Similar to this, in Table 6 the same modal frequencies have been
highlighted with the *' symbol for comparison with the resulted modal frequencies and damping
ratios from the modal identification algorithm which have been developed in this thesis. As it is
mentioned in the study of Smyth et al. (2003), these modes exhibited a significant vertical
component in the modeshapes. This is consistent with the results of this work. This can be shown
in Figure 20 in which two representative modeshapes in 0.211 Hz and 0.950 Hz are presented

where a significant vertical component is observed.

Using all ten (10) input sensors which monitor the earthquake-induced excitations at the
bottom of the two towers and at the eastern cable anchorage and all sixteen (16) output sensors,
the values of the modal frequencies and modal damping ratios resulted from Stabilization
Diagrams are presented in Figure 19 for: (a) the average of the Fourier Transforms of
accelerations of all the output sensors, (b) the Fourier Transform of acceleration of a selected
vertical sensor, and (c) the Fourier Transform of acceleration of a selected transverse sensor. It is
observed that there are no clearly results for the modal frequencies and modal damping ratios.
This is may be due to the existence of to many closely spaced and overlapped modes. Thus, in
this case is up to the user to choose the optimal values of the modal frequencies and modal
damping ratios. In Table 6, the “selected” values of the modal frequencies and modal damping
ratios are presented and further down they are compared with the corresponding optimal values

resulted from the modal identification algorithm in the time and in the frequency domain.
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Table 6: Identified modal frequencies w and damping ratios C of the Vincent Thomas Bridge

Stabilization
Diagram

w Hz Z (%)
0.626 8.77
1.012 5.94
1.136 9.13
2.102 6.95
3.458 6.80
4.361 2.83
4.573 2.38
5.548 2.79

Vincent Thomas Bridge (Whittier earthquake)

Modal Identification Algorithm

Time Domain

(non-classically

damped)
W Hz Z (%)
0.384 73.22
0.514 66.32
0.662 0.72
0.829 4.59
0.938 141
0.983 1.69
1.111 1.83
1.170 1.56
1.414 6.06
2.292 0.73

Frequency
Domain
(non-classically
damped)
w Hz Z (%)
0.211 0.10
0.317 0.07
0.529 4.12
0.581 3.73
0.626 -3.15
0.671 1.83
0.822 6.11
0.950 0.65
1.022 1.49
1.107 0.93
1.157 0.58
1.397 3.90
1547  0.83
2.274 1.33
3.428 2.75
4.333 0.75
4572 0.47
5.674 0.19

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236

Smyth et al.
(2003)

All sensors
(records of the
last 40 sec)
W Hz <

(%)
*0.212 1.20
*0.242 1.70
*0.317 -4.30
0.531 10.20
*0.570 0.06
*0.636  4.20
0.672 0.10
0.734 2.40
*0.818 1.90
*0.958  2.90
1.027 -1.90
*1.111 1.30
*1.159 1.70
1.391 2.30
1.554 -1.30

Lus et al.
(1999)
Vertical
sensors
(records ofthe
last 50 sec)
W Hz g (%)
0.234 15
0.388 38.2
0.464 9.7
0.576 9.9
0.617 14.5
0.617 76.8
0.769 29.7
0.804 14
0.857 11.6
0.947 4.3
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Figure 19: Stabilization Diagram for the Vincent Thomas Bridge: (a) average of the Fourier
Transforms of accelerations of: all sensors, (b) Fourier Transform of acceleration of the vertical

sensor 16, and (c) Fourier Transform of acceleration of the transverse sensor 5
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0.211 Hz, zeta: 0.10% 0.950 Hz, zeta: 0,65%

Figure 20: Two representative modeshapes in 0.211 Hz and 0.950 Hz of the Vincent Thomas
Bridge

Comparing the modal frequencies and damping ratios resulted from the Stabilization
Diagrams and the modal identification algorithm for time and frequency domain it is observed that
Stabilization Diagrams does not provide good estimates of the optimal values of the modal
frequencies. In contrast, it is observed that the resulted values from the Stabilization Diagrams of
the modal damping ratios have major discrepancies compared with the optimal values of the
modal damping ratios from the identification algorithm in time and frequency domain. This may be
due to the presence of many closely spaced and overlapped modes combined with the presence
of instrumentation noise and the affect of “leakage” in the computation of the FFTs of the

measured time histories.

In Table 6 it is observed that the number of the modal frequencies (and damping ratios)
identified in the frequency domain is greater than the number of identified modal frequencies (and
damping ratios) in the time domain. In particular, it should be noted that time domain identification
algorithm cannot identify the lower and higher frequencies, in a frequency band of 0-6Hz, and that
for the low frequencies very high damping estimates are obtained. This may indicate that the
particular time domain methodology have problems to reliably identify modal frequencies (and
damping ratios) when they are closely spaced and overlapped. In contrast, 18 modes were

successfully and reliably identified by the frequency domain identification algorithm.

The identification method employed in Lus et al. (1999) is constrained to give only positive
damping estimates and does not therefore yield the few negative damping estimates obtained in
the study of Smyth et al. (2003). In this thesis high damping estimates are observed in the results
from time domain identification algorithm for two modes. This points the difficulties associated
with accurate estimation of damping from this type of data set in the time domain algorithm. It has
to be mentioned that in this work the identification was done for the recorded time lengths of 80
sec which complicates more the identification process. In Table 6, it is observed that the values of
the modal frequencies resulted from frequency domain identification algorithm are similar to the

values which resulted from the analysis in the study of Smyth et al. (2003), while the modal
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damping ratios have major differences. This evidence that the frequency domain methodology
which has been developed in this work is more efficient than the time domain methodology for

from this type of data set.

Further down representative measured modeshapes in polar plots (0.211 Hz and 0.950 Hz)
are shown in Figure 21 for the Vincent Thomas Bridge obtained by the frequency domain
identification algorithm using non-classically damped modal models. In Figure 22 the earthquake-
induced accelerations and the accelerations predicted by the optimal modal model for selected
sensors are compared. In Figure 23 the Fourier transform (FT) of the earthquake-induced
accelerations and the FT of the accelerations predicted by the optimal modal model for selected

sensors are compared, for the frequency band 0-1.6 Hz.

0.211 Hz 0950 Hz

Figure 21: Polar plots of two representative modeshapes in 0.211 Hz and 0.950 Hz of the

Vincent Thomas Bridge

Figure 22: Comparison between measured and optimal modal model predicted accelerations

recordings for selected sensors of the Vincent Thomas Bridge
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Figure 23: Comparison between measured and optimal modal model predicted Fourier
Transforms of accelerations recordings for the frequency band 0-1.6 Hz for selected sensors of

the Vincent Thomas Bridge
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5.6 Appendix

Modeshapes of Polymylos bridge

1st Transverse: 1.2851 Hz. zeta: 1.827% 2nd Transverse: 2.5703 Hz. zeta: 4.121%

. . o
3rd Transverse: 4.3076 Hz, zeta: 2.496% 4th Transverse: 7.2364 Hz. zeta: 1.233%

ing: - 0
1st Bending: 2.1932 Hz. zeta: 0.395% 2nd Bending: 3.1903 Hz. zeta: 0.622%

3rd Bending: 6.8895 Hz, zeta: 0.440% Torsional: 8.3907 Hz. zeta: 0.618%
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Polar Plots of Modeshapes of Polvmvlos bridge

1st Transverse (1 28Hz) 2nd Transverse (2.57 Hz)
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Time Histories of Polvmvlos bridge
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Chapter 6

Conclusions

Modal identification methodologies for estimating the dynamic modal characteristics of civil
engineering structures have been developed in this thesis using earthquake induced vibration
measurements. The main objective of this work has been to determine the modal and other
parameters of non-classically damped modal models used to describe the response of linear

structures subjected to multiple base excitations.

The identification has been performed by analysis in the time domain and in the frequency
domain. The methods developed by McVerry (1980) in the frequency domain and Beck and
Jennings (1980) in the time domain, have been extended in this work to treat non-classically
damped modal models. Additionally, time domain methodology for identifying the modal and other
parameters of classically damped modal models has been also developed. The optimal values of
the modal parameters, such as modal frequencies, modal damping ratios and modeshapes, were
obtained by the implementation of an output error methodology. In time domain analysis, the
optimal values were obtained by minimizing a measure of fit between the output measured
acceleration time histories and the predicted acceleration time histories by a modal model. In
frequency domain analysis, the optimal values were obtained by minimizing a measure of fit
between the theoretical Fourier transform of the model response to the Fourier transform of the

measured response acceleration.

In particular, the modal identification methodology have been developed in a three step
approach. In the first step, the PolyMAX or polyreference least-squares complex frequency
domain method, developed by Peeters et. al (2004), has been extended in order to treat non-
classically damped modal models describing a system’s response characteristics based on
earthquake-induced vibration data. . In the second step, the resulted values of modal frequencies
and modal damping ratios from the first step were used for the time and the frequency domain
methodologies, in order to compute the modeshape components and the participation factors.
Finally, the solution of a nonlinear optimization problem using initial conditions from the previous
steps improves the modal estimates and it is recommended for the identification of closely

spaced and overlapped modes.

The number of variables to be optimized depends on the number of contributing modes. In
order to overcome the problem of the large nhumber of variables involved, improve the robustness,
and accelerate convergence, a modal sweep approach was proposed for which each mode was
optimized separately while the contribution from the rest of the modes was held constant. In

addition, for time domain and frequency domain analysis analytically evaluated gradients of the
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cost function have been implemented in to the modal identification algorithm accelerating more

the convergence.

The modal model identification methods were implemented in Matlab software. The software
was validated using simulated data from a 3 DOF and 10 DOF spring mass chain model. It was
observed that an accurate fit resulted from the convergence of the acceleration time histories
predicted from the optimal modal model to the “measured” acceleration time histories for the 3-
DOF and the 10 DOF spring mass chain model and a similar fit was observed for the Fourier
Transforms of the accelerations. It was also observed that the estimated modal frequencies and
damping ratios resulted from the Stabilization Diagrams were accurately identified (no major
discrepancies between the modal frequencies and damping ratios resulted from the Stabilization

Diagrams and the modal identification algorithm), which validates their effectiveness.

The modal model identification methods were also applied to two bridges in order to identify
their modal properties. The identification methodology applied to the R/C bridge of Polymylos
subjected to a low level magnitude earthquake event reliably identified eight of the lower modes.
The results showed that the damping values of the bending modes are of the order of 0.4% to
0.7% which is significantly lower than the damping values of the transverse modes. This is
attributed to the higher damping provided by the elastomeric bearings for the latter modes.
Comparing the modal frequencies due to earthquake-induced vibrations estimated in this work,
with the modal frequencies due to ambient vibrations estimated in other works, showed that they
are 4% to 15% higher. This is attributed mainly to the soil-structure interaction effects contributing
to the dynamics of the bridge systems during ambient excitation. These effects are not present in
the identified dynamics of the system based on earthquake-induced vibrations due to the use of

the input acceleration measurements of the base of the piers and the abutments.

The identification methodologies were also applied to the Vincent Thomas cable suspension
bridge subjected to the 1987 Whittier earthquake. Despite the fact that the Whittier earthquake
was highly non-stationary and the bridge response was highly nonlinear during the peak times, 18
of the bridge modes were identified using the frequency domain methodology. The time domain
methodology showed lack of reliability especially for the identification of the lower closely spaced
and overlapped modes. The values of the modal frequencies and the damping ratios estimated in
the present work were also compared with the results given from other works in the previous
years. This comparison showed that the values for the modal frequencies are similar, while the

modal damping ratios have major discrepancies.

Through the application of identification methods to these real structures, a great degree of
experience was gained, developing intuition of the way the techniques lead to the desired result

and of the problems that emerge in the process.
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