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STRUCTURAL MODAL IDENTIFICATION METHODS BASED ON 
EARTHQUAKE-INDUCED VIBRATIONS

Abstract

The problem of identification of the modal parameters of a structural model using earthquake- 

induced vibration measurements is addressed. It is based on a weighted least-squares approach 

using multiple-input multiple-output measured time histories at the base supports and at selected 

locations of a structure. The identification is performed in the time domain and in the frequency 

domain. Existing modal identification methods have been extended in this work to treat 

generalized non-classically damped modal models. The case of classically damped modal 

models is treated as a special case.

The identification of the modal parameters (modal frequencies, modal damping ratios, 

modeshape components and participation factors) is accomplished by introducing a three step 

approach: in the first step, a stabilization diagram is constructed containing frequency and 

damping information. Next, the modeshape components and participation factors are found in a 

second least-squares step, based on the user selection of the stabilized poles. Finally, in order to 

improve the estimation of the modal characteristics especially for the challenging case of closely 

spaced and overlapping modes, a third step concerning the fully nonlinear optimization problem is 

addressed. Computational issues involving the solution of the optimization problems and the 

evaluation of analytical expressions of the gradients of the objective functions are also discussed.

The validation of the proposed methodologies and algorithms is presented using simulated 

data from a 3 DOF and a 10 DOF spring mass chain model. The methodologies are next applied 

for the identification of the modal characteristics of two bridges, the R/C bridge of Egnatia Odos 

located at Polymylos, Greece, and the Vincent Thomas cable suspension bridge located at Los 

Angeles, USA. Results provide qualitative and quantitative information on the dynamic behaviour 

of the bridge systems and their components under earthquake-induced vibrations.
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CHAPTER 1

Introduction

1.1. Research Context

Identification is the process of building an accurate, simplified mathematical model for a system 
based on a set of input and output measurements. The particular problem of system identification 
of the modal parameters of a linear structural model by using dynamic data, commonly referred to 
as experimental modal analysis (Ewins, 2000), has received much attention during the years, 
because of the importance of the modal characteristics in understanding the dynamic behaviour 
of the structure and designing the structure to meet certain performance criteria. Also the modal 
characteristics are useful in model updating, structural control and health monitoring applications. 
Applications exist for a wide range of structures, such as in aerospace and automotive industries, 
where modal tests are performed on extensively instrumented spacecrafts, aircrafts, vehicle 
bodies and train bodies by using precisely controlled excitations for determining the modal 
parameters. Civil structures, mainly buildings, bridges, off-shore structures and dams also appear 
the need for identification strategies, so as to understand their behaviour as well as assert 
damage caused either by earthquake, wind, or aging and to prevent further deterioration.

A great number of structures require certain specifications for safe and precise operation 
conditions, which usually form the most significant design parameters. In order to ensure a 
constantly accepted and reliable performance of a system, the knowledge of its dynamic behavior 
becomes essential in either case of operational or unpredictable extreme loads. For newly build 
structures, as well as for the ones that are already in operation for some time, the measurement 
of their dynamic properties, such as natural frequencies, damping factors and modeshapes is well 
desired, so as for the prediction of their behavior using a reliable model to be feasible.

It is worth pointing out that measured modal characteristics are used in model updating and in 
damage detection efforts (Papadimitriou et al., 1997). The basic idea is that commonly measured 
modal parameters (notably modal frequencies, mode shapes, and modal damping) are functions 
of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in 
the physical properties, such as reductions in stiffness resulting from the onset of cracks or 
loosening of a connection, will cause detectable changes in these modal properties. These 
changes in modal characteristics can be used to detect damage and identify its location and 
severity.

This thesis is concerned with the application of the identification process to civil engineering 
structures based on their earthquake-induced vibrations. The evaluation of the actual dynamic 
characteristics of civil engineering structures through measurements of their dynamic response 
has been attracting an increasing research effort worldwide (Wilson 1986, Werner et al. 1987,
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Safak E (1993), Lus e. al. 1999, Chaudhary et al. 2000, Chaudhary et al. 2002, Smyth et al. 2003, 
Arid and Mosalam 2003, Lin et al. 2005, Liu et al. 2005, Siringoringo and Fujino 2007). For the 
case of earthquake-induced vibrations, the modal characteristics are estimated from the 
measured portion of the excitation occurred to the structure and the measured vibration 
responses. These measurements are usually the acceleration of the structure obtained by 
accelerometers optimal placed on the structure (Papadimitriou et al., 2002). It has been observed 
from response measurements of large structures to potentially damaging excitations that the 
dynamic properties of many structures are markedly different during response to strong ground 
motion than in small amplitude ambient and forced vibration tests. Hence, it is of considerable 
interest and importance to extract information about structural behavior from strong motion data.

Measured response data of civil engineering structures from earthquake-induced vibrations 
offer an opportunity to study quantitatively and qualitatively their dynamic behaviour within the 
resulting vibration levels. These vibration measurements can be processed for the estimation of 
the modal characteristics, as well for the calibration of corresponding (finite element) models used 
to simulate their behaviour. The information for the identified modal models and the updated finite 
element models is useful for validating the assumptions used in model development or for 
improving modelling, analysis and design procedures. Also, such information is useful for 
structural health monitoring purposes.

Modal identification algorithms provide estimates of the modal frequencies, modal damping 
ratios and modeshapes at the measured DOFs using classically-damped or non-classically 
damped modal models. For the case of earthquake-induced vibrations, modal identification 
methods have been developed in time domain (Beck 1978; Beck and Jennings 1980) and in 
frequency domain (McVerry 1980), based on a minimization of the measure of fit between the 
time history or its Fourier transform of the acceleration responses estimated from the 
measurements and the corresponding ones predicted from a classically-damped modal model of 
the structure. Beck (1978) and Beck and Jennings (1980), had presented an output-error 
approach for the identification of linear, time-invariant models from strong motion records, through 
the minimization of a measure of fit including displacement, velocity and acceleration records. 
McVerry (1980), has applied an output-error approach in the frequency domain, using the Fast 
Fourier Transform of the acceleration response time histories to estimate the modal properties 
through least-squares matching. Werner et al. (1987) formulated a methodology in the time 
domain for the case of measured input excitation, such as earthquake excitation, for an elastic 
system with classical normal modes and with motion measurements from any number of input 
and system response degrees of freedom. Their procedure was an extension of the least- 
squares-output-error method which was used by Beck (1978). Extensions for identifying non 
classically-damped modal models in the frequency domain have also been developed by 
Chaudhary et al. (2000). Tan and Cheng (1993) proposed an iterative identification algorithm, 
which was based on the modal sweep concept and the band-pass filtering process, to identify the 
modal parameters of a non-classically damped linear structure from its recorded earthquake
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response. Mahmoudabadi et al. (2006) developed a method for parametric system identification 
in frequency domain for classically and non-classically damped linear systems subjected up to six 
components of earthquake ground motions, which is able to work in multi-input/multi-output 
(ΜΙΜΟ) case.

For structural modal identification techniques, there exist certain limitations to the robustness and 
reliability, such as:

• Insufficient measurement data: the response of a structure is usually measured at only 
a small number of locations (limited number of sensors), which gives little information about the 
full modeshapes of the structure. Another issue is the usually limited range of the exciting 
frequency band that hides some of the system’s dynamic properties. From a testing standpoint it 
is more difficult to excite the higher frequency response of a structure, as more energy is required 
to produce measurable response at these higher frequencies than at the lower frequencies. In 
addition, sensors are not always placed at the optimal locations to give the best possible 
information for the excited system.

• Coupling of modes: within the measured frequency range of response it is often difficult 
to identify all the modes contributing to the measured response because of coupling between the 
modes that are closely spaced in frequency. This difficulty is observed more commonly at the 
higher frequency portions of the spectrum where the modal density is typically greater.

• Measurement error: the dynamic data measurements always consist of bias errors 
(noise) at some extent, caused either by faulty instruments, changes in the environmental 
conditions during testing, or poor preprocessing of the initial data (bias from windowing of the 
data). The effect of noise on the modal approach is that it limits the number of modes that can be 
estimated reliably, for there exists a deterioration of the signal-to-noise ratio for the higher modes. 
Thus, the modal parameters could be identified for only the dominant modes in the measurement 
records.

• Non-uniqueness: the lack of sensitivity of the measurement quantities to small changes 
in the modal parameters to be identified.

• Ill-Conditioning: when the number of parameters is larger than needed or when the 
available measurements are relatively limited, then the optimal solution to the identification 
problem appears not to be unique.

The methods developed by McVerry (1980) in the frequency domain and Beck and Jennings 
(1980) in the time domain, are extended in this work to treat non-classically damped modal 
models, since damping may not be proportionally distributed in various structural components. 
For the special case of bridges, non - proportionally damping appears due to the energy 
dissipation mechanism provided locally by the elastomeric bearings and the foundation soil. For 
base isolated buildings, non proportional damping may appear due to the energy dissipation 
mechanism provided locally by the isolation system. Output-error methods are used in which the
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optimal values of the modal parameters are obtained by minimizing the discrepancy between 
measured responses and the predicted responses of the system. Time domain output error 
methods process the response time histories measured from a network of sensors (e g. 
accelerometers), while frequency domain output error methods process the Fourier transforms of 
the measured response time histories.

A novel aspect of this thesis is the use of a three step approach to solve the error 
optimization problem. The first step provides estimates of the modal frequencies and modal 
damping ratios by solving a system of linear algebraic equations. Stabilization diagrams are used 
to distinguish between physical and mathematical modes. The second step provides estimates of 
the modeshapes and the participation factors by solving a system of linear algebraic equations. 
The first two steps usually give accurate estimates of the modal characteristics. A third step is 
added to improve this estimates, if needed by efficiently solving the full nonlinear optimization 
problem with initial estimates of the modal parameters those obtained from the first and second 
steps.

1.2. Outline - Organization of the Thesis

In this thesis modal identification methodologies for estimating the dynamic modal characteristics 
of civil engineering structures have been developed using earthquake induced vibration 
measurements.

Chapter 2 uses a linear system theory with the objective to describe the solution of the 
system in the time and frequency domains in terms of the modal coordinates. Several 
mathematical models are discussed that can be used to describe the dynamical behavior of a 
structure with a limited number of parameters. The formulation is presented for the general case 
of non-classically damped modes. The classically damped case is then formulated as a special 
case. Both continuous and discrete time formulations are presented.

In Chapter 3, a time domain methodology is presented for identifying the modal and other 
parameters of non-classically damped modal models describing a system’s response 
characteristics based on earthquake-induced vibration data. An output error formulation is 
presented, in which the selected modal parameters are derived through least-squares matching 
of the acceleration time history estimated from the modal model to the measured acceleration at 
specific points within the structure. A time domain methodology for identifying the modal and 
other parameters of classically damped modal models is also presented.

In Chapter 4, a frequency domain methodology is presented for the identification of the modal 
and other parameters of non-classically damped modal models describing a system’s response 
characteristics based on earthquake-induced vibration data. The identification of the modal 
parameters is performed using frequency domain data. An output error formulation is presented, 
in which the selected modal parameters are derived through least-squares matching of the

4

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



Fourier transform of the response predicted from the modal model to the Fourier transform of the 
measured response acceleration at specific points within the structure, over a specified frequency 
band.

In Chapter 5, the modal identification methods are applied to identify the modes of civil 
engineering bridges subjected to different input acceleration components arising from the multiple 
supports. For this, the equation of motion governing the response of bridges when subjected to 
different excitations from the multiple supports is revealed and shown to fall into the category of 
linear structures used to develop the modal identification method. Next, the modal identification 
algorithms in time domain and in frequency domain are validated using simulated support (base) 
acceleration response time histories generated from a 3DOF and a 10DOF spring mass chain 
model. Finally, the implementation of the modal identification methodologies is presented for two 
bridges using available earthquake recordings. The first bridge is the R/C bridge of Polymylos 
which is part of the Egnatia Odos motorway system in Greece. Recordings are available for the 
low level, magnitude M, = 4.6 , earthquake event that occurred on 21/2/2007 (2:04:38 GMT) at 
a distance 35km Northeast of the bridge. The second bridge is the Vincent Thomas cable 
suspension Bridge located at Los Angeles. Earthquake recordings are available from the 1987 
Whittier earthquake of magnitude Ml =6.1.

Chapter 6 concentrates on the observations and conclusions that resulted from this work. It 
also focuses on several aspects concerning the area of modal model identification that need 
further attention.
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CHAPTER 2

Linear System Analysis in Time Domain

2.1 Introduction

This section uses linear system theory to solve the equations of motion that govern the response 
(displacement, velocity and acceleration) of structures. Modal analysis is used to describe the 
response at the measured (observable) degrees of freedom of the structure in terms of the 
eigenproperties (eigenvalues and eigenvectors) and the excitation. The analysis is used in 
subsequent Chapters for solving the inverse problem of identifying the eigenproperties given 
input-output measurements.

Using a spatial discretization method, such as finite element analysis, the equations of motion 
for a linear structure are given by the following set of n second order differential equations

Mq(t) + C0q(t) + Kq(t) = Lu{t) (2.1)

where q(t) e ΜΛ/"χΙ is the displacement vector, M, C0 and KeRnxn are respectively the 
mass, damping and stiffness matrices, u(t) e R^'”*1 is the applied force vector at the Nm DOFs, 
and L e R"*^" is a matrix comprised of zeros and ones that maps the Nm excited DOFs to the 
n output DOFs. Throughout the analysis, it is assumed that the system matrices M , C0 and K 
are symmetric.

Linear system theory is used with the objective to describe the solution of the system in the 
time domain in terms of the modal coordinates. The formulation is presented for the general case 
of non-classically damped modes. The classically damped case is then formulated as a special 
case. Both continuous and discrete time formulations are presented. All results given in this 
Chapter are well known. Their presentation is given herein in order to make this Thesis self- 
contained.

The presentation is divided into the following sections. Section 2.3 gives known modal 
analysis results for formulating the response of the structure in terms of real modal coordinates 
for a classically-damped model (2.1). Sections 2.3 to 2.5 extend the formulation to the general 
case of a non-classically damped model (2.1). For this, the state space form of system (2.1) is 
used and the corresponding complex-valued modal analysis results are presented. Section 2.6 
gives a summary of the formulas that describe the response of the structure at the measured 
locations in terms of the complex eigenproperties (eigenvalues and eigenvectors).
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2.2 Formulation for Classically-Damped Models

Assuming that the structure is classically damped and that the system matrices M, C0 and 

K e R"x" are symmetric, the solution for the displacement response q(t) e in the modal

space can be written in the form:

£(0=Σ&£(')=φί(0 (2·2)
r=\

The modal coordinates ξΓ (/) are given by the modal equations

£ (0 + 2ΟΛ (0 + (0 = £rLU(*) (2·2)

where <yr is the modal frequency, <£. is the modal damping ratio and φ is the modeshape 

vector for the r mode. The modeshapes φ ,r = Ι,.,.,η , are real and satisfy the orthogonality 

conditions

II

Ό
-Ι

^1 ,r = \,s

in,="X ,r = \,...,n, s

(2.4)

(2.5)

where δ„ —
|1, T = 5

|0, (2-6)

is the Kronecker delta. Equivalently, in matrix form the orthogonality condition (2.4) and (2.5) are 
written as

ΦΤΜΦ = 1 

ΦΊΚΦ = Ω2

(2.7)

(2.8)

φ ··· φ is the matrix of modeshapes and Ω2 is a diagonal matrix of the
—1 —n

where Φ = 

squares of the modal frequencies given by

Ω2 =
<y,

or

(2.9)

Note that all variables involved in the classically damped analysis presented in this section 
are real and the modal equation are second order differential equations. In contrast, the variables
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in the classically damped modal analysis presented in Section 2.3 are in general complex, while 
the modal equations are first order differential equations. It can be shown that the two 
formulations for describing the response in the modal space are equivalent.

2.3 State Space Formulation of non-Classically Damped Models

In the general case where the system is non-classically damped the set of equations (2.1) must 
be converted to a set of first order state space formulation. This is accomplished by introducing 
the complementary equation

Mq(t) = Mq(t) (2.10)

and the state vector

x = (2.11)

Equations (2.1) and (2.10) can be written in the state space form

Px + Qx = «(0

where the matrices P and Q are given by

(2.12)

rc0 M~ ~K 0 "
P = , Q =

M 0 0 -M
(2.13)

2.3.1 The eigenvalue problem

The eigenvectors ψ and the corresponding eigenvalues Xr satisfy the eigenproblem

{Ρλ + 0)ψ = 0 (2.14)

The eigenvalues Ar and the eigenvectors ψ are complex and it can be shown that if λΓ
r * *

and ψ are the eigenvalues and eigenvectors of the eigenproblem then λΓ and ψr are also 
eigenvalues and eigenvectors of the same eigenproblem.

Introducing the eigenmatrix Ψ = \ψχ ··· ψ„ψ\ ··· ψ’η ] 6 C2”*2" it can easily be shown 
(Natsiavas 1999) that the eigenmatrix of the eigenproblem (2.14) is given by
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(2.15)Ψ =
Φ Φ 

ΦΛ Φ*Λ*
eC 2ηχ2η

where Φ, λ satisfy the second order eigenproblem

λ/φλ2+<:0φλ+£φ = ο

The eigenvalues λν are given by

1=-ζ,ω,±]ω,φ-ζϊ

where

co,v-W and
Rψ|

CO.

The eigenvalue matrix for the first order linear system (2.12) is given by

Λ,=
Λ 0

0 Λ
= diagonal e C2nx2n

where Λ is the diagonal matrix

0

A =
0 A,

2.3.2 Orthogonality conditions

The complex eigenvectors satisfy the orthogonality condition 

Ψ7ΡΨ = diag[ar]

that can by written as 

P = 'V^diag [ar ] Ψ-1

The eigenvectors also satisfy the orthogonality condition 

'¥TQV = diag[fir]

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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that respectively can by written as

Q = ^-Tdiag[pr]^

Pre-multiplying (2.14) by ψ' yields 

ψ' Ρψλ + ψ1 ζ)ψ = Ο

and solving for λ gives

λ =
ψΩψ

ι/Ρψ

For the r-th eigenvalue and eigenvector, the last expression gives

(2.24)

(2.25)

(2.26)

(2.27)

The r-th eigenvalue is finally given by

(2.28)

where

a, =ψ Ρψ
r —r —r

(2.29)

and the eigenvalue matrix is given by

At = diag a.. diag [β,] (2.30)

The normalized state space formulation is obtained by pre-multiplying equation (2.12) by
J-l

P~'
0 ΛΤ'

M'1

The normalized state space equations take the form

(2.31)
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(2.32)x = Acx+ Bcu[t) 

where

0 ΛΤ1 ~K 0 ' 0 /

AT1 _0 -M

1

U
°

T

11

___
1

(2.33)

is the state space matrix and

L 0 AT' ~L 0

0 0

1

1

1__
_

Based on the eigenproblem (2.14) and pre-multiplying (2.14) by P 1 yields 

(-Ρ~'ζ)-λΙ)ψ_ = 0 => {Αα-λΙ)ψ_ = 0 (2.35)

For the r-th eigenvalue and eigenvecor, the last expression can be written in the form 

ΑΨγ~ΚΨγ< r = \,...,2n (2.36)

In matrix form, the set of 2n equations (2.36) can by written in the form 

4,Ψ = ΨΛε (2.37)

that gives

Ac =ΨΛεψ-' (2.38)

Formulation (2.37) shows that the matrices At and Ψ contain the eigenvalues and 
eigenvectors of the state space matrix Ac.

2.4 Observation equations

Let y{t) be the response vector of interest. These responses, in general case, are a linear 
combination of the accelerations, velocities and displacements of the system. The generalized 
observation equation is given in the form

y(t) = CJ(t)+C,q(t) + Cji(t) (2.39)
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By writing q(t) as a function of q(t) and q{t) using (2.1) and substituting in (2.39) yields 

y(t) = Ccx + Dcu(t) (2.40)

where

Cc=[Cd-C'M-'K IC.-C.M-'C,] (2 41)

and

Dc=CaM-'L (2.42)

2.5 Modal model

2.5.1 State space equations

For the realization of modal analysis method the following transformation is introduced

χ(/) = Ψ£(ί) (2.43)

where ξ is the vector of the main modal coordinates. Substituting eq. (2.43) in (2.32) and pre
multiplying by Ψ'1 the following expressions are obtained

Ψ£ = 4.Ψ£ + β,Μ(ί) (2.44)

or equivalently

^ = ψ-'4.ψ£ + ψ-'β^(/) (2.45)

Using the eigenvalue problem (2.37), one finally obtains the equations 

1 = Acl +Lcu(t) (2.46)

where

Lc=^~'Bc (2.47)

The last equation (2.46) is the state space equations for the modal coordinates ξ(ί)· The 
Lc term can be simplified using equation (2.22) which is solved with respect to Ψ"1 to yield

Ψ 1 = diag ΨΤΡ (2.48)
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By substituting the last expression in (2.47) and using (2.15) and (2.13) results in

4 = Ψ 1 Bc - diag

= diag

a.

a.

Ψ P
0

M~'L

1

e e *
__

_1 T
'Co 0

ΦΛ | Φ*Λ* _M 0 _

1__
_

(2.49)

Carrying out the matrix multiplications, the above equation finally simplifies to

4 = diag 1/ ' Φ7 "
Jar. Φ*7

L (2.50)

The 4 matrix is the participation factor matrix. Using modal coordinates equations (2.50) 
result in

4(0 = 44(0+—ΦτΜή,a..
r = \,...,n (2.51)

4„(') = A‘£,„(0+—CM‘) (2.52)
a..

with

&+,=£ 311(1 (2·53)

Note that the complex equation (2.52) is the complex conjugate of the complex model 
equation (2.51).

2.5.2 Observation equations

The response _y(f) defined in (2.40) can be expressed using modal coordinates by substituting 
the transformation (2.43) in (2.40) to yield

y(t) = Cc'i'l(t) + Dcu(t) (2.54)

or equivalently

y(l) = Kl(l) + Dcu(l) (255)

where

13

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



K=c^ (2.56)

The matrix Vc is called the modal response matrix (output - observation) and can be 
simplified using equations (2.41) and (2.15) into the form

-c.M-'K\c,-cjr'c,] Φ j Φ*
φλ’Ιφ'λ7

(2.57)

Let us now consider the following three special cases:

a) The response y(t) consists of the displacements only, that is Ca = Cv = 0 and Cd Φ 0. 
The Vc matrix takes the final form

K = [cd! o]
φ j φ’

ΦΛ j" Φ*Λ* c,[® I ®'] (2.58)

b) The response y(t) consists of the velocities only, that is Ca = Cd = 0 and Cv * 0 . The Vc 
matrix takes the final form

Vc = Cv [ΦΛ | Φ’Λ* ] (2.59)

c) The response y{t) consists of the accelerations only, that is Cv = Cd = 0 and Ca Φ 0. The 
Vc matrix takes the final form

K=-Ca[M-'K\M~'C„]
φ ! φ*

ΦΛ j" ΦΆ*

= -Ca[M-'K<& + AT'C0<&Λ J Μ-'ΚΦ' +M“'C0®*A*'

(2.60)

that can be simplified further using the eigenproblem (2.16). Specifically, from (2.16) one has

Μ“'α:φ+λτ^0φλ = -φλ2 (2.6i)

or equivalently by taking complex conjugates

Μ~'ΚΦ* + AT'Q Φ*Λ* = -ΦΛ*2 (2.62)

Substituting the last two expressions into (2.60), Vc is given by

Vc =^[ΦΛ2 j Φ’λ’2] (2.63)
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2.5.3 Summary of modal model equations

Summarizing, for the case of general non classically damped systems, the modal model consists 
of the modal state space equations (2.46) and the modal observation equations (2.55), that is,

l = Acl + Lcu(t) (2.64)

y(t) = Vcl(t)+Dcu(t) (2.65)

where

&(0

#.(0
e C2”*'

£(0

(2.66)

is the modal coordinates vector

A.. =
Λ 0 
0 A’

(2.67)

is the matrix that consists of the complex eigenvalues λΓ of the system,

4 = Ψ'4 = diag a_
Φ
φ*5

LeC2nxNln (2.68)

is the participation factor matrix,

u(t) e Rn* (2.69)

is the independent vector of excitations,

Dc =CaM~'LeRN"*N" (2.70)

is a matrix that is zero if no accelerations are contained in the response vector y(t), and 
Vc e CN“*2" is a matrix given by

Vc - Cd [φ Φ^ for displacements (2.71)
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for velocities (2.72)

Vc=Ca |^ΦΛ2 Φ*Α*2^ for accelerations (2.73)

Consider next the case for which Cd, Cv and Ca in (2.39) are observation matrices that 
assign a correspondence between the model degrees of freedom and the observation 
(measured) degrees of freedom. In this case note that:

U = CllQ = [ui ··· u,] (2.74)

is the eigenvector matrix at the desirable (measured) degrees of freedom that are included in the 
response vector y(t) for the displacements. Similarly, taking into account that A is diagonal 
yields

Vc=Cv[ ΦΛ Φ’Λ*]

Cv0A = ··· λΛι] (2.75)

is the eigenvector matrix at the desirable degrees of freedom that are included in the response 
vector y{t) for the velocities. Similarly, taking into account that A2 is a diagonal matrix,

Ca0 A2=[A,\ ··· λ^] (2.76)

is the eigenvector matrix at the desirable degrees of freedom that are included in the response 
vector y(t) for the accelerations.

Based on the above formulations the response y{t) e at the N() degrees of freedom of 
the linear model is given by

y{t) = [u U']l(t) + Dcu(t) (2.77)

where

U = [u\,....un)eCN"*n (2.78)

is the eigenvector matrix at the desirable degrees of freedom. Consequently, the system 
response for either displacements or velocities or accelerations is fully defined when the elements 
of the matrices Ac., Lc, U and Dc are known

From the previous analysis, it is evident that the response y(l) of the linear structure at 
selected degrees of freedom can be completely defined by knowing the parameters set Θ that 
includes all entries involved in the matrices Ac, Lc, Vc and Dc.
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2.6 Special case: Classically damped model

The aforementioned equations for the general case of non-classically damped system are 
simplified in this paragraph for the case of classically damped systems and assuming that the 
structure matrices M, C0 and K e M”*" are symmetric. From the analysis of classically 
damped structures with symmetric matrices, it is known that the response is given by

q = <j>eM (2.79)

where j)el" is a real modeshape vector. In this case the matrix of modeshapes Φε K”*", 
defined in (2.15), is also a real matrix.

Consequently, substituting in (2.15) the complex modeshape matrix, Ψ is given by

Ψ =
Φ Φ 

ΦΛ ΦΛ*
(2.80)

Substituting the above equation into the orthogonality condition (2.21) yields

diag[ar] = ΨΤ.ΡΨ
diag

i-----
1

1

3(N
1___

1
0

0

-diag

and substituting (2.81) in (2.68) yields

diag 2^77^7 0
-1

V

0 -diag 2«W'~£
°7_

(2.81)

(2.82)

Using (2.51) and (2.52), the modal coordinates ξΓ (/) and ξ\ (/) are written in the form 

i(t) = K4r +------ T=f^«(0 {2.83)
2 ajyjl-g-'

fr(t) = Kfr +--------- l-T=^<f>TrLu{t) (2.84)
-ϊω^λ-ζ) ~r

The system of equation (2.83) and (2.84) can thus be written in the complex form (2.64) 
where Lc is an purely imaginary matrix given by (2.82). Using (2.55) to (2.57) and (2.80), the 
response vector y{t) is given by the observation equation

y(t) = Kl(t) + Dcu(t) (2.85)
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where

Φ Φ 
ΦΛ ΦΛ*

(2.86)

Cc=[Cd-CaM-'K \ Cv-CaM-'C0\ (2.87)

Dc=CaM~'L (2.88)
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CHAPTER 3

Time Domain Methods for Identification of Non-classically 
Damped Modal Models of Structures

3.1 Introduction

In this chapter, a time domain methodology is presented for identifying the modal parameters of 
non-classically damped modal models used to describe the response of linear structures 
subjected to multiple base excitations. The modal parameters to be identified include the modal 
frequencies, the modal damping ratios, the modeshapes and the participation factors. The 
proposed structural modal identification methodology is applicable to civil engineering structures 
such as buildings, towers, bridges, offshore structures, etc., subjected to earthquake excitations. 
The identification methodology uses measured input acceleration time history data at the base 
degrees of freedom and output acceleration time history data at the model degrees of freedom of 
the structure. An output error formulation is presented, in which the modal parameters are 
identified through least-squares matching between the output measured acceleration time 
histories and the acceleration time histories predicted by a modal model of the structure 
subjected to the measured base input acceleration time histories. In addition, a time domain 
methodology for identifying the modal and other parameters in the special case of classically 
damped modal models is also presented.

This chapter discusses several mathematical models that can be used to describe the 
dynamical behavior of a structure with a limited number of parameters. From an engineering point 
of view the modal model of a structure provides the best physical understanding. However, since 
this model is highly non-linear in its parameters most identification algorithms do not directly 
identify the model parameters. Instead, the modal parameter estimation methods proposed in this 
chapter identify state space models from the experimental measurements. In the next sections, 
the relation between these models and the modal parameters are discussed.

This chapter is divided into the following sections. In Section 3.2 an output error formulation is 
presented as a weighted least squares optimization problem in the time domain. In Section 3.3 
the formulation of the objective function for non-classically damped systems is presented using 
active and fixed modes in order to implement a modal sweep approach similar to one presented 
in Werner et al. (1987) for classically damped systems. Section 3.4 gives simplifications which 
explain the quadratic dependence of the objective function on the modal characteristics and in 
Section 3.5 analytical expressions of the gradient of the objective function are given. In Section 
3.6 the special case of classically damped modal models is presented. In Subsection 3.6.1 the 
formulation of the objective function for classically damped modal models is presented using 
active and fixed modes, and in Subsection 3.6.2 analytical expressions of the gradient of the
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objective function are given. Finally, in Section 3.7 the modal sweep approach which is used for 
the implemented optimization routine is presented.

3.2 Formulation as a Least-Squares Optimization Problem

Let y(kAt,d) be a vector of the response of a linear structure obtained from a modal model

involving a parameter set Θ and m modes. The variable At denotes the time discretization step

and k = {1,2,...,N} is an index set. The parameters in Θ include the modal characteristics
such as modal frequencies, modal damping ratios, and modeshape components at the measured 
locations, modal participation factors, and other parameters that completely define the response
vector y(kAt,6().

A modal model output-error identification approach seeks the optimal values of the parameter 
set Θ that minimize a measure of fit between the modal model predictions y(kAt,6) and the

corresponding response y(kAt) estimated from the measured data. That is, the modal model

identification is formulated as a minimization problem of finding the values of Θ that minimizes 
the measure of fit

[y{kAt’d)-y(kAti] \y{kAt-,e)-y(kAt)^ i3·1)v 4=0 L

where

y : measured response time histories at the Nm measured DOF

y : response time histories at the measured Noul DOF predicted by the modal model

At: sampling time interval of the digital acceleration
N : total number of sample data over the response duration T
k : the time index set at time t = kAt

4=0

: normalization factor for time domain (3.2)

In this work, y{kAt,0) represents the acceleration response predictions at the measured 
output locations of a structure which are described by the parametric modal model developed in 
Section 2.5 and y^kAt^j represents the measured accelerations at the same locations. However,
the formulation presented is directly applicable to other response time histories such as 
displacements and velocities.

Using the analysis in Chapter 2, the vector y{t\Q) of the acceleration responses at the Nout 
measured degrees of freedom, based on the non-classically damped modal models, can be 
written in the form
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y(t)=[u u']m+Dcu(t) (3.3)

where Dc e i is a real matrix

U = eCN°“™ (3.4)

is the matrix of the complex eigenvectors ur, r at Nout DOFs, and

&(0
#,‘(0

#1(0

eC2/nxl (3.5)

is the complex vector of modal coordinates satisfying the complex modal state space equations

£(') = Λ£(0+ί«(<) 

iXt)=Kfrm+Cu(t)
(3.6)

where fr e CUN‘" is the complex vector of the modal participation factors relating the inputs 
to the r mode of the system, and

K = “Or ± MV1 “ C2 = ~ar ± A .'■ = 1. —(3.7)

are the complex eigenvalues of the structures. The parameters ar = and br = cor φ - ζ] 
are expressed in terms of the modal frequency a>r and the modal damping ratio ζν . Given ar 
and br, the modal frequency a>r and the damping ratio ζΓ are obtained from the following 
relationships:

^ = A2 + br (3.8)

(3.9)

The modal response ξΓ(ί) can be obtained by solving (3.6) using the complex-valued initial 
conditions ξΓ(0).

The parameters set Θ in the notation y{t',6) contains the parameters that completely define 
the response vector y{t\6) using the modal analysis. From equations (3.3) to (3.7), it is evident 
that the parameter set θ_ contains the complex eigenvalue Xr of the r mode, the complex
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modeshapes ur <= , the modal participation factor vectors fr e CUNln, the initial conditions
ζ,(0) = , and the entries of the real matrix Dc e , that is

θ\ {Xr,ur,fr^?,r = \,...,m,Dc} (3.10)

where m is the number of contributing modes which is also an unknown in the modal 
identification process.

It should be noted that in the aforementioned formulation the parameter set Θ consist of 
complex-valued variables, while the response vector y(t;6ty is also described in terms of 
complex-valued variables and solutions of modal equations with complex-valued coefficients. 
From the computer implementation point of view, it is necessary to describe the response vector 
in terms of real-valued variables, equations and parameters. In what follows, the response vector 
y(t;0) is reformulated in terms of real-valued variables and parameter set Θ. For this, the 
complex-valued scalar and vector variables u,, [r, ξΓ(ί) and ξΓ(0) involved in the description 
of the modal model are expressed in terms of the real and imaginary parts as follows:

Ur =lr+j¥r (3.11)

£ = pA+jpi,r (3.12)

£ {t) = ”Re,r{t) + j”lm,r (0 (3.13)

£ 0 0 . · 0 
£ =nRc,r+Jnim,r (3.14)

Using (3.3), (3.4) and (3.5), the response vector y(t\(f) = _y(f) can be expressed in the 
form

m

ΑΙ) = Σ[^(.0 + Άξ1(1)]+ (315)
r=l

Substituting (3.11) and (3.13) into (3.15), and after rearranging the terms, yields

m
£(·0 = Σ{{& +fC)nRV{t) + j(Ur +^)nimAt)\ + Dc“(0 <3'16)

r=1

or, equivalently,

m

AO = Σ {2 (') ■- 2(?Λ., (')! + DM» (3·17>
r=I

Introducing the two-dimensional real modal vector of real modal coordinates
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2x1 (3.18)
('W(')J

equation (3.17) can be written in the compact matrix form

m
£(0 = 2Σ{[& -ψΓ~\ϋτ{ή} + Οα“(.ί) (3.19)

r=1

The equations for the real and the imaginary parts nRe r (t) and nlm(/) , respectively, of the 
complex modal coordinate ξΓ(ί) can be obtained by substituting (3.13), (3.12) and (3.7) into the 
first of (3.6) to yield

«Re.r (0 + j<,r (') = ("«, + Λ )(«Re,r (0 + Kn,r (t)) + (pL,r + /PL.r )«(') (3‘20)

Equating the real and the imaginary parts of the above equation, yields the following system 
of two first-order differential equations that describe the time evolution of nRe r (/) and nlm r [t):

<,r (0 = -«r«Re,r (ή-brHus (0 + PL,M0 (321)

Vr (0 = -«r*lm.r (') + K’hc.r (0 + PiM1) (322)

In matrix form, equations (3.21) and (3.22) become

aW =
br

b. -a. M0 +
PjHe,r

Phn,r
“(0

which can be solved using the initial conditions

M0) =
Im.r

(3.23)

(3.24)

Summarizing, the response vector _y(/) is equivalently obtained by the modal expansion

expression (3.19), where the real modal vectors η, (f) are given by the first-order differential 

equations (3.23) that are solved using the initial conditions (3.24). Thus, the response is 
completely described by the real parameter set Θ that contains the modal parameters ar = ζΓωΓ

and br = cor yj\ - ζ] that are related to the modal frequencies cor and the modal damping 

ratios ζν, the real part <j>r e RNm and the imaginary part ψΓ e of the complex

modeshapes ur e CN"“'xl, the real part pT e R'v“ and the imaginary part r e of the
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modal participation factor vectors fr e CUNi", the real part nRer and the imaginary part n°mr of 

the initial conditions £r(0) = £f°, and the entries of the real matrix Dc e , that is,

d = br, φΓ, ψΓ, pRey p[my n°Rer, n°Xmr, r = \,...,m, £>.} (3.25)

where m is the number of contributing modes which is also an unknown in the identification 
process. The total number of model parameter involved in the prediction of the response at Noul 
DOFs given m modes and Nm base input time histories, is 
[4m + 2(mxNin) + 2(Noul xm) + (Noul x Nin)]

The previous formulation is an extension to the non-classically damped modes of the time 
domain formulation developed by Beck (1978) assuming classically damped modes. Basically, 
the problem being solved is the one of minimizing the cost function J (θ) in (3.1) with respect to 
the parameters Θ. For this case, gradient-based optimization method is implemented that 
requires initial estimates for the parameters and will be described in detail later on.

3.3 Formulation Using Active and Fixed Modes

In order to implement a modal sweep approach similar to one presented in Werner et al. (1987) 
for classically damped systems, two index sets are introduced, the active index set Ia containing 
the mode numbers that are active and are optimized during the optimization process and the 
fixed index set If that contains the rest of the m modes that are included in computation of the 
response vector but their parameter values are kept constant during the optimization process. 
Consequently, equation (3.19) can be expressed in the form

T(0 = 2Z{fe -(^]MO} + £)c?i(0 + 2 ~^/]«/(')} (3'26)
rela fel /

Introducing the active and the fixed parts of the responses by

Tr(f;£) = 2Z{fe- -Vr]", {')} + DM(t) (3-27)
rela

^(0 = 2Σ{[^ -IP/] 5/(0} (3'28)
7e//

Respectively, the total response y(t',0) = y(t) due to m contributing modes can be written 
in the form

y{t) = xr{t-Q) + xl \t) (3.29)
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which is more appropriate to use when formulating the optimization problem using modal sweeps 
to identify the modal parameters of the active modes defined in the set Ia, holding the 
parameters of all other fixed modes, defined in the set I , , as constants.

Using active and fixed modes, the objective function (3.1) can be expressed in the form

1 n r

= — Σ \_*r {k&t;0) + rf (kAt)-y(kAt)\ \xr (kAt;0) + xf (kAl)-y(kAt)Ί (3.30) 
V *=o L ~

,or equivalently, the final form of the objective function is given by

1 N τ
J{Q)[^r (kAt-,θ)-e(kAt)~^ [xr [kAf,Q)~e (3.31)

V k=o L

where xr (kAt;0) , given by (3.27), depends on the parameter set Θ, while e (Α:Δί) given by

e(kAt) = y(kAt)-2^ {[^ -^/]«/ (θ}
f*'r

(3.32)

is the constant vector of the measured response minus the response vector that is predicted from 
the modal model considering only the fixed modes.

3.4 Simplifications Explaining Quadratic Dependence on Modal 
Characteristics

The minimization of the objective function (3.31) can be carried out efficiently, significantly 
reducing computational cost, by recognizing that the error function in (3.31) is quadratic with
respect to the real part φΓ and the imaginary part ψΓ of the complex modeshapes and the 

elements in the real matrix Dc. This observation is used to develop explicit expressions that 

relate the parameters φΓ, ψΓ and Dc to the rest of the model parameters appearing in the

parameter set #, such as the real part pR and the imaginary part of the complex

participation factor ljr, as well as the modal parameters ar and br that relate the modal 

frequencies cor and the modal damping ratios ζΓ , and the initial conditions and «,°mr.

For this the parameter set Θ in (3.25) is partitioned into parameters sets as follows 

9 = (0a,ih)J (3.33)

where 0b is defined by

=(tr’ Wr* r = \,...,m, Dc) (3.34)
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and 6)U is defined by

(3.35)br. nl.,

Stationary conditions with respect to the parameters in the set 0h are used to develop a 
linear system of equations for solving for the set ΘΗ given the values of the parameters set θ° .

For convenience in the presentation this linear system can be formulated in the general form 

Α[θα)θ* =b(ea) (3.36)

where and b^0a^j are functions of the parameter set θα . Let

eh=(lh(ea) (3.37)

be the function that gives the relationship between the parameters set Θ and the parameter set 
θ° by solving the system (3.36). Then the objective function J (Θ) takes the form

J(9) = J{(?,(£) = J(θ°,θ" (j9")) = f (0°) (3.38)

Hence the minimization problem can be stated as follows. Find the values of the parameter 
set 0° that minimize the objective function

= (3.39)

Once the values of θ“ have been found, the values of 0h are obtained solving the linear 
system (3.36). Next our objective is to apply the above concept and first obtain the matrices and 
vectors that completely define the linear system (3.36).

The linear system for the parameter set 0h is obtained by setting the derivatives of J (Θ) 
with respect to each element of & equal to zero, that is,

a/(g) 0

a/(g) Q
δψ,Ρ

b_m_-o
sdcM

(3.40)

(3.41)

(3.42)
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for / = 1,...,Nl)Ul, r = \,...,m and /' = l,...,A(n. Introducing the matrices

U = [ Φ -Ψ] = [* t<......(343)

and the modal vector

«Re.l
* * ^ Γφ

«Re.m Μ
>

«lm,l I1·?)

^Im ,m ('··«■).

6 2m (3.44)

it can be readily shown that the set of linear algebraic equations can be written in the compact 
matrix form:

"2·Ξ Λ" V" F"

_2 · Ζ7 Ζ _Α7. Λ

where

Ξ = Ξ(θα) = ^n(kAt;0a)nT (*Af ;0") e K2mx2m (3.46)
k=0

A = A(θα) = Xn(kAt;0a V (*A/) e R2mxA/'" (3.47)
*=0

Γ = Υ(θ°) = j^n(kAf,0a)eT (kAt) e M2mxA,“' (3.48)
k=0 

N

Z = ^ju(kAt)uJ (kAt)eRNl"xNm (3.49)
k=0

N

A = (£A/)|7 (kAt) e R‘v*xA'- (3.50)
*=o

Note that the matrices Ξ , A and Y depend on θα , while the matrices Z , A do not depend 
on . From (3.45) we obtain the matrix UJ that contains the information for the eigenvectors, 
and the matrix D] .
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Substituting (3.27) in (3.31), the error function J*[θ“^ becomes

J'(0a) = — Σ 2Z{fe -^]^(^;^u)} + D.w(A:AO-£(A:A/)
^ '=0 rela

2Σ [[$■ ]Zl· [kAt-,0“ j| + Dcu(kAt)~ e(kAt)

(3.51)

Using the definition of 

form

j’(^°) = -^g [2«r (Λ:Δί;^°) /(*Δ/)

t/1

ΑΣ
and « in (3.45) and (3.44) the latter equation takes the compact

Ψτ

Dr
■|T(kAt)

"·ψ" / \

Ια
2nycAt-,θ j u(kAt) -e^[kAt)

(3.52)

The total number of model parameter involved in the prediction of the response at Nom 
DOFs given m modes and Nm input time histories, is now reduced from 
[Am + 2(mx Nm) + 2(Nnul x m) + (Noul x Nm )] to [4m + 2(mx Nin)].

3.5 Analytical Expression of the Gradient of the Objective function

Next, analytically expressions for the gradients and the objective function (3.52) with respect to 
each parameter in the set θα are defined. Differentiating J* ^θ° j with respect to a parameter Θ 
in the parameter set θ“ yields

a/‘(g°) if
ΒΘ vh

δη1 (kAt;0u)
2------i0

δθ
Ψτ

D'
+ 2n^kAt]0a^ u{kAt)

5ΨΤ
δθ

δΡ]
. δθ J

(3.53)

A" / \

Ja_
2nikAt;0 j u(kAt) -e(kAt)

Note that the derivative dUJ/d0 and δΰ]/δθ are readily obtained by differentiating with 
respect to Θ both sides of the system of linear equations (3.45). This yields the following system 
of linear equation for the derivatives
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(3 54)

’dUT‘ ~dY~ " θΞ δΑ~
δθ δθ δθ δθ U1

dD] ΘΑ δΑτ δζ DI
δθ .δθ. . δθ δθ.

Where, using (3.46), (3.47), (3.48), (3.49) and (3.50), it can be readily shown that

δΞ ·Λ dn(kAt) τ ,, Α Α dnT(kAt)— = > —---- -n'(kAt) + n(kAt)-^------
δθ δθ ~ δθ

(3.55)

δΑ Α0»(*Δ/) Γ( }
δθ U 5Θ - ν '

(3.56)

Sr^fdnikA,).,· 
δθ h d0 -κ ’

(3.57)

(3.58)
δθ

δθ
(3.59)

In order to completely define the gradients of the objective J* [θα j one needs to obtain the 
derivatives dn(kAt}l δθ . The term dn(kAt)/d6 can be evaluated by the modified equation of 
motion (3.23) for each modal component m,. These derivatives depend on the type of the 
parameter Θ in the set θα. Thus, for each type parameter Θ we define the terms

,α
>

■■

II J? (3.60)

δη{ί)
, ~ Ub (3.61)

dbr '

drr(t)

ΦΚβ,„
(3.62)

3^.(0

Φΐ».„ ~~P...
(3.63)

C
D

£ 
ξ- II

,1
s (3.64)
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dn{t)
----------= η,

du "*
(3.65)

where dr = «°er and vr = n°lmr. The above terms are obtained through the derivation of (3.23).

These derivatives are with respect to each parameter in θα thus satisfy the following system of 
differential equations,

K (0 =

~°r -K

b.. -ar &,(0 +
-1 0 
0 -1 MO

with initial conditions n„

K (0 =

-ar -br 

b, -a. &,(0+
0 -1
1 0 MO

with initial conditions = ■

M,(0 =
-a.

L -a. **M0+ 0 MO

(3.66)

(3.67)

(3.68)

with initial conditions n„—PRcsl

(3.69)

with initial conditions n„
—Ph

jo

with initial conditions

(3.70)

(3.71)
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with initial conditions n. = ·

3.6 Special Case: Classically Damped Modal Models

3.6.1 Formulation of the Objective Function

Using the analysis in Chapter 2, for the special case of classically damped modal models, the 
vector y(t;0) of the acceleration responses at the Nom measured degrees of freedom can be 
written in the form

y(t-,0) = Q>l(t) + Du(t) (3.72)

where D e is the pseudostatic matrix,

^out Xffl (3.73)

is the matrix of the real eigenvectors φ , r = \,...,m at Noul DOFs and

<?(0 = ? e )/wxl (3.74)

is the real vector of the modal coordinates satisfying the equation of motion for each modal 
component ξΓ

i(t) + ari(t) + br<!;r{t) = -[Pn - Pri - (3 75)

where pTr e is the real vector of the effective participation factors relating the Nm inputs 

to the r mode of the system given by

Pr =frL (3.76)

where L is a matrix comprised of zeros and ones that maps the Nin excited DOFs to the Nl)Ul 
output DOFs.

The parameters ar = 2ζΓωι. and b,. - ωφ are expressed in terms of the modal frequency 
cor and the damping ratio ζΓ. Given ar and br, the modal frequency ωκ and the damping 
ratio ζκ are obtained from the following relationships:
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ωΓ = 4κ (3.77)

c =
°r (3.78)

The modal response ξΓ (/) can be obtained by solving (3.75) using the initial conditions 
= ^r(O) = dr and ξ°Γ = £r(0) = vr.

The parameters set 6? in the notation y(t\9) contains the parameters that completely define 

the response vector using the modal analysis. From equations (3.72) to (3.76), it is

evident that the parameter set 9 contains the parameters ar = 2ζΓωΓ and br - ωφ which are 

expressed in terms of the modal frequency <2>r and the damping ratio ζΓ , the real modeshapes 

φr € , the modal participation factor vectors p'r e ΜΙχΛ/'", the initial conditions

= (0) = dr and ξαΓ = ξΓ (0) = ur, and the entries of the real pseudostatic matrix

DeR"-*"* .that is

Θ = {ar,br,<fi,pl ,dr,vr, r = d} (3.79)

where m is the number of contributing modes which is also an unknown in the modal 
identification process. The total number of model parameter involved in the prediction of the 
response at Noul DOFs given m modes and Nm base input time histories, is 
[4m + (Noul xm) + (mx Nm) + (Noul x Nm)]

In order to implement a modal sweep approach similar to one presented in Section 4.3 for 
non-classically damped systems, two index sets are introduced, the active index set Ia 
containing the mode numbers that are active and are optimized during the optimization process 
and the fixed index set /f that contains the rest of the m modes that are included in 
computation of the response vector but their parameter values are kept constant during the 
optimization process. Consequently, equation (3.72) can be expressed in the form

ι(>··2)= Σ {££,(')}+#“(')+ Σ k £,(')} (3 SO)
re/„ fel f

Introducing the active and the fixed parts of the responses by

*'(>■.&)= Σ {£,£,(')} + Du(‘)
rela

(3.81)

f*h
(3.82)
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Respectively, the total response y{t',6) = y(t) due to m contributing modes can be written in 
the form

y(t) = xr (t;0) + xf (t) (3.83)

which is more appropriate to use when formulating the optimization problem using modal sweeps 
to identify the modal parameters of the active modes defined in the set Ia, holding the 
parameters of all other fixed modes, defined in the set I, , as constants.

Using active and fixed modes, the objective function (3.1) can be expressed in the form

1 N τ
J(#) = —^ \xr(kAt;0) + xJ (kAt)- ΓχΓ (kAt;0) + xJ (kAt)-y(kAt)j (3.84)

V k=o L _ ~

,or equivalently, the final form of the objective function is given by

J{9) = — Σ [xr (kAt-,θ)-e(kAt)^ [xr (kAt-,θ)-e^(kAt)^ (3.85)
V k=o L

where xr (kAt;0), given by (3.81), depends on the parameter set Θ, while e_{kAt~) given by

e{kAt) = y(kAt)~ ^ \φ}ξ_{(o} (3·86)
f*1/ 1

is the constant vector of the measured response minus the response vector that is predicted from 
the modal model considering only the fixed modes.

The minimization of the objective function (3.85) can be carried out efficiently, significantly 
reducing computational cost, by recognizing that the error function in (3.85) is quadratic with 
respect to the real modeshapes (j)r and the elements in pseudostatic matrix D. This observation

is used to develop explicit expressions that relate the parameters <f>r and D to the rest of the 

model parameters appearing in the parameter set Θ, such as the modal participation factor 

vectors p] e Κ1χΛί'" , as well as the modal parameters ar and br that relate the modal 

frequencies cor and the modal damping ratios ζΓ, and the initial conditions ξ° -ξΓ(0) = άΓ 

and^ =έ(0) = ϋΓ.

For this the parameter set Θ in (3.79) is partitioned into parameters sets as follows 

θ = {θ°,θ') (3 87)

where & is defined by

£*=(£, r = \,...,m, Dt) (3.88)
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and is defined by 

θ“ =(ar,br,p‘r ,dr,ur, r = l,...,m) (3.89)

Stationary conditions with respect to the parameters in the set 0 are used to develop a 
linear system of equations for solving for the set 0b given the values of the parameters set θα .

For convenience in the presentation this linear system can be formulated in the general form

A [ea)eh =b(^a)

where Α^θα j and b^0a j are functions of the parameter set θα. Let

0h =6h (0°)

(3.90)

(3.91)

be the function that gives the relationship between the parameters set & and the parameter set 
(f by solving the system (3.90). Then the objective function J (#) takes the form

J(0) = J[(?,(?) = j[ea,eh (0° )) = /(£") (3.92)

Hence the minimization problem can be stated as follows. Find the values of the parameter 
set θα that minimize the objective function

(3.93)

Once the values of 6,a have been found, the values of & are obtained solving the linear 
system (3.90). Next our objective is to apply the above concept and first obtain the matrices and 
vectors that completely define the linear system (3.90).

The linear system for the parameter set (f is obtained by setting the derivatives of J (0) 
with respect to each element of 0h equal to zero, that is,

a/(g). Q

aj{e)
dD,

= 0

(3.94)

(3.95)

for / = 1,..., Nom , r = 1,..., m and i = 1,..., Nm . It can be readily shown that the set of linear 
algebraic equations can be written in the compact matrix form:
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(3.96)---
-1 [I] "φτ" Ύ"

1

N

D‘ Λ

where

Ξ = Ξ(θα) = £kAt■ θα )ξτ (kAt; θα )1 e BTxm
k=0 L

(3.97)

Α = Α[βα) = ^(kAt;0a)uT (kAt) e
k-0

(3.98)

γ = γ(θα\ = ^{kAt)eT (kAt)e RmxW»"'
k=0

(3.99)

Z = ^(kAty (kAt) € Kw" 
*=0

(3.100)

Λ = ^u(kAt)e^ (&Δ/) e IRw"’xA,"‘" (3.101)
i=0

Note that the matrices Ξ , A and Y depend on θα , while the matrices Z , Λ do not depend 
on (f . From (3.96) we obtain the matrix Φτ that contains the information for the eigenvectors, 
and the matrix D1 .

Substituting (3.81) in (3.85), the error function J" [θα\ becomes

-|T

X \φ,ζ r(f)\ + Du(t) + Du(kAt) - e(kAt) ■

Σ {trir (o} + Du (0 + Du(kAt) - e (kAt)

(3.102)

Using the definition of
Φτ

DT
in (3.96) the latter equation takes the compact form

= [i\kAt-e°) u'\kAt)]
* k=0

Ψτ'

DT
-eJ (kAt)

Ψ

D
~l(kAt;0a) u(kAt) -e_(kAt)

(3.103)
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The total number of model parameter involved in the prediction of the response at Nout 
DOFs given m modes and Nm input time histories, is now reduced from 
[4m + {mx N,n) + (Noul x m) + (Ntml x Nm)] to [4m + (m x Nm)].

3.6.2 Analytical Expression of the Gradient of the Objective function

Next, analytically expressions for the gradients and the objective function (3.103) with respect to 
each parameter in the set #a are defined. Differentiating J’ ^0° j with respect to a parameter Θ 
in the parameter set θα yields

a/*(6>a)
δθ

2
V

'5ΦΤ'
Ν
Σ
*=ο

dlJ(kAf,0a)
δθ

1 
1

b θ Η
 

Η
1__

__
_

1

+ \j{kAf,0a) «(Α:Δ/)] δθ
δΰτ

. δθ .

Ψ
D

]l(kAf,0a) u(kAt) -e_(kAt)

(3.104)

Note that the derivative δΦτ/δθ and dD1 /δθ are readily obtained by differentiating with 
respect to Θ both sides of the system of linear equations (3.96). This yields the following system 
of linear equation for the derivatives

---
-1 θ Η __
1

~δΥ~ " δΞ δ A‘
Ξ A δθ δθ δθ δθ Φτ

Ατ Ζ δΰτ δΑ δΑ1' δζ D1
. δθ . _δθ. . δθ δθ_

(3.105)

Where, using (3.97), (3.98), (3.99), (3.100) and (3.101), it can be readily shown that

pfS N

—=Σδθ h

dt(kAt) ...

δθ
ξ'^Αή + ξ^Αή

dlJ(kAt)
δθ

δθ h δθ ~ V ;

W = £g(kA0sr(kAt) 
δθ fa δθ - V ’

^ = 0 
δθ

(3.106)

(3.107)

(3.108)

(3.109)
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(3.110)

In order to completely define the gradients of the objective f \θ^ j one needs to obtain the 
derivatives d£(kAt)/d6. The term 5ξ(kAt)/9Θ can be evaluated by the equation of motion 
for classically damped modal models (3.75) for each modal component ξΓ. These derivatives 
depend on the type of the parameter Θ in the set θ“. Thus, for each type parameter Θ we 
define the terms

δξλΙ)-η,
3ar

(3.111)

dbr '
(3.112)

. Co II a 3̂ (3.113)

ddr '
(3.114)

dvr
(3.115)

The above terms are obtained through the derivation of (3.75) with respect to each parameter
#. These derivatives are with respect to each parameter in 0" 
of differential equations,

thus satisfy the following system

=>\ + aAr +br\ =~t (3.116)

with initial conditions n =0and hn =0,ur ur

=>\+aAr +Κ\=-ξ, (3.117)

with initial conditions nh = 0 and nh = 0 ,

=> *p„ + + brnpri = ~U, (0 (3·11 8)

with initial conditions n =0andn/J =0,

=>nJr+arnJr+brnd=0 (3.119)
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(3.120)

with initial conditions n. =land ή, =0,ur cir

+ar\ + =0

with initial conditions nu =0and ήυ = 1.

3.7 Modal Sweep Approach

In modal identification procedure appears the need of determining the optimal parameter set Θ 
that fully characterizes the model under consideration, by minimizing the relevant error objective 
function J(0) given by (3.1) with respect to the model parameters. The implemented 
optimization routine follows the lines of a modal-minimization method developed by Werner et al. 
(1987). This algorithm consists of a series of modal sweeps in which, during each sweep, the 
estimates of the parameters of each mode r are successively updated by a series of single
mode minimization of J($) , while holding the values of the parameters for the rest of the modes 
equal to their latest calculated values. This minimization of each mode actually corresponds to 
least-squares matching of the measured response to the predicted response from a modal model 
for which the parameters of a single mode are successively updated while the other modes are 
computed using the latest optimal values of the parameter estimates already obtained from 
previous minimizations. For the first sweep, the contribution from the modes that have not yet 
been treated in the sweep is neglected, since good estimates of the corresponding modal 
parameters are not available. A single sweep is completed when all the significant modes have 
been treated in this manner. Successive modal sweeps are performed until the fractional 
decrease in J (#) is less than a prescribed value, given by the user, or until a prescribed 
maximum number of modal sweeps has been completed.

Specifically, gradient-based method is used to optimize the error function J(0) for each 
mode r . In the first sweep, for the r = mode, the gradient-based optimization algorithm
concludes in a set of optimal values, using the optimal estimates computed for the last
1,_,r — 1 modes and neglecting the rest r + \,...,m modes. After the first sweep, a second
sweep follows where the optimal values of all m desired modes are used as initial estimates in 
order to obtain better estimates of the these modes. In this sweep, for the s = mode, the
gradient-based optimization algorithm concludes in a set of optimal values, using the optimal 
estimates computed for the 1,..., s — 1, s +1,..., m modes in the first sweep.
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Chapter 4

Frequency Domain Methods for Identification of Non-classically 
Damped Modal Models

4.1 Introduction

In this chapter, a frequency domain methodology is presented for identifying the modal 
parameters of non-classically damped modal models used to describe the response of linear 
structures subjected to multiple base excitations. The modal parameters to be identified include 
the modal frequencies, the modal damping ratios, the modeshapes and the participation factors. 
The proposed structural modal identification methodology is applicable to civil engineering 
structures such as buildings, towers, bridges, offshore structures, etc., subjected to earthquake 
excitations. The identification methodology uses the Fourier transforms of the measured input 
accelerations at the base degrees of freedom and the Fourier transforms of the output 
accelerations at the model degrees of freedom of the structure. An output error formulation is 
presented, in which the selected modal parameters are identified through least-squares matching 
between the Fourier transform of the output measured acceleration and the Fourier transform of 
the acceleration predicted by a modal model of the structure, over a specified frequency band, 
subjected to the measured base input accelerations.

In particular, the proposed frequency domain methodology uses a three step approach to 
solve the error optimization problem. The first step provides estimates of the modal frequencies 
and modal damping ratios by solving a system of linear algebraic equations using the common 
denominator model. Stabilization diagrams are used to distinguish between physical and 
mathematical modes. This method (first step) is an extension of the PolyMAX or polyreference 
least-squares complex frequency domain method, developed by Peeters et al. (2004), in order to 
treat non-classically damped modal models describing a system’s response characteristics based 
on earthquake-induced vibration data. The second step provides estimates of the modeshapes 
and the participation factors by solving a system of linear algebraic equations. It should be noted 
that two different approaches have been developed for the computation of the modeshapes and 
participation factors in this second step. In the first approach the modal properties derive directly 
by the Singular Value Decomposition (SVD) of the resulting numerator matrix. In the second 
approach the advantage that the error function is quadratic with respect to the modeshapes is 
used, so the modeshapes are computed by taking stationary conditions in order to develop a 
linear system of equations from which the modeshapes are derived. The first two steps usually 
give accurate estimates of the modal characteristics. Flowever, a third step is often recommended 
to improve these estimates, especially for closely spaced and overlapping modes, by efficiently 
solving the full nonlinear optimization problem with initial estimates of the modal parameters 
those obtained from the first and second steps.

39

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



This chapter is divided into the following sections. Section 4.2 presents the formulation of the 
modal observation equations for the general case of a non-classically damped model in the 
frequency domain. In Section 4.3 the formulation of a system of linear algebraic equations using 
the common denominator model is presented, which is used to set up Stabilization Diagrams in 
order to distinguish the physical from the mathematical modes. In Section 4.4 an output error 
formulation is presented as a weighted least squares optimization problem in the frequency 
domain and in Sections 4.5, 4.6 and 4.7 the formulation of the frequency domain methodology 
which uses a three step approach is presented. In particular, in Section 4.5 the first approach of 
the second step of the proposed frequency domain methodology is presented, in Section 4.6 the 
second approach of the second step is presented and finally in Section 4.7 the third step is 
presented. For Sections 4.5, 4.6 and 4.7 the formulation of the minimization of the error function 
and the parameter set Θ which is optimized for each step are presented and also simplifications 
are given explaining the quadratic dependence of the objective function on the modal 
characteristics. In addition, analytical expressions of the gradient of the objective function for 
each step are presented. Finally, in the appendices (Section 4.8), details are given for the 
computation of some derivatives of the objective function.

4.2 Modal model - Frequency domain

Generally, a function f{t) can be analyzed using Fourier components

m=^]h°>ymdco

A

where /(ω) is the Fourier coefficient given by

hco)=]f{t)e-jMdt

(4.1)

(4.2)

Applying the Fourier transform to equation (2.1) in the frequency domain yields

x(co) = H{jco)Lu(co) (4.3)

where w(ry) is the Fourier transform of the applied force and

H (j co) = (j coj1 + C(ja>) + K~^ (4.4)

The matrix H(jco) is called transfer function matrix. The modal observation equations (2.55)can 
be written in the form
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(4.5)y(Ο = Σ £r(0 + Ur £ (0) + Dcu{t)
r=\

where

i(o=^r(t)+iTru(t)

£{t)=K£{t)+Cu{t)

λΓ=-ζΓωΓ±]ωΓ£-ζ2

(4.6)

(4.7)

(4.8)

Using the Fourier Transform for the modal coordinates ξΓ(ί) and assuming the boundary 
conditions to be zero, yields

U<0) = }έ(ί>·"Λ = =e-’" ξΧΟζ+Οω) \ξΜΥ"'Α = (»#,(<») (4.9)
-OO 0 ^ Ο

'-------------------- V-------------------- '

£(<#)

Substituting (4.9) in (4.6)

(>) £ (ry) = λΓξΓ (ω) + /' u(co) => £ (ω) = ~r (4.10)
JG)-Xr

Thus, substituting (4.10) in (4.5) the relation between the response _y(£y) ancl the excitation 
u(a>) in the frequency domain is given by

y(co) = H(jci))u(co) (4.11)

where

Η(]ω) = £ -+-

r=l ϋω) - Λ (»-Ar
l + A. (4.12)

4.3 Stabilization Diagrams (First Step)

4.3.1 Common Denominator Model

The common denominator model consider all input-output measurements simultaneously by the 
following model

[Η(ω)] = [Β(ω)][Α(ω)}' (4.13)
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with Α(ω) a polynomial and B(a>) a matrix polynomial with square Nnul x Nin matrix 
coefficients. Every line of RMFD can be expressed in the form:

{H„ H) = {£ (ω))[Α(ω)Υ ,VO = 1,2,-,Af, (4.14)

where

(&rM)=£«»(&) (4.15)
r=0

[^(®)]=Σα(®)Κ] (4.16)
r=0

where are the polynomial basis functions and p is the order of the polynomial. Using
method LSCF (least squares-complex frequency domain) the polynomial basis functions are:

Ω,.(ω) j0JAtr (4.17)

where Atr is the time band. Polynomial coefficients βηΓ e M‘v'"xl and ar e IRlxl are assembled in 
following matrices:

f β ^PoO

β„ =
ol

β,

eRK(p+0)x> yo = \,2,---,Na

\t-°P J

(4.18)

a =

f a. ^

a,

\arJ

jg>(p+Oxl (4.19)

θ =

β\

fifim
a

ρ((Λ'«^/η+>Χ/)+1))χ* (4.20)
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4.3.2 Error Function

Coefficients Θ can be evaluated by minimizing the following non linear least squares error 
function e%LS (a>k,6) e C"*1:

£oLS (<»k,e)=y0((ok’£)-y<>M (4 21}

where

cuk, k = 1,2,...,N: The discrete frequencies at which the FRF (Frequency Response Functions) 
are evaluated

ya (cok,0) : Fourier Transform of the acceleration at the measured DOF predicted by the
modal model

ya (o)k) : Fourier Transform of the acceleration at the measured DOF predicted by the
modal model

Using the relation between the response y(co) and the excitation u(co) in the frequency domain
(equation (4.11)) and substituting (4.13) in (4.21) yields

Cs K>0) = £ (®*>βο)y.(®*) A~' K.a)·-1M (4-22)

Thus, the cost function is

I N
,NLS ,

0=1 k=1
(θ)=ΣΣίκ K“K«£))T (4.23)

where *T is the complex conjugate conversion (Hermittian) of a matrix and tr {·} is the trace of a 
matrix. The cost function can be minimized by setting the derivatives of (4.23) under Θ equal to 
zeros. It is obvious that it leads to a non linear system of equations when equation (4.22) is used 
in this form. Premultiplying (4.22) with A(wk,a) yields

K’θ) = i!, K-P„)«K)-y„ (®*)A(©*.«) = ΣΚ (®*)#hK)~Ω-·K)τ„KΚ)
Λ = 0

Error functions for each cok can be written as a vector E‘f (#) e C^*1, of the form

(4.24)

( „LS
»'S (®l^)
if (<2>2,6>)

■[*
(4.25)

where
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x =

Y =

«Γ("ι)®[Ωι(^ι)···Ω„(ωι)]

“Γ(^)®[Ω,(^)···Ω/,(^)]

-[Ω, (ft>,)]<8)i>„ (β>,)

-[ΩΙ ) ■ · ·Ω„ (°>Ν )] ® λ (°>Ν )

CΝχ(Ν,„ (/>+!))

eCΝχ(ρ+1)

(4.26)

(4.27)

4.3.3 Reduced Normal Equations

Similar to (4.23) the following cost function can be written according to the error function (4.24):

!LS(d) = iEfr{(®“ (®*>2)Γ (£oS
o=l k=1

(4.28)

The minimization of the cost function leads to a Weighted Least-Squares Problem. Substituting 
equations (4.25), (4.26) and (4.27) in (4.28) yields

5 (*)=Σ "·{(£“(*)f (Eos(*))} = Σ " |(g HXY-\X Y«) V«J|
Ttr[irf0TJ0i) (4.29)

where J e £Λ'4Λ'.»+ι)(/>+ι) is the Jacobian matrix

Jo={X Y„) (4.30)

In case of real-valued coefficients Θ, it can be shown that the expression J'j J„ can be 
substituted by its real part. Hence, the cost function (4.29) becomes

/'"(0=Σ>{£7 Re(j;7j„)0}
o=l

where

R *J„TJ0) =
R S„ , (Λίί»+>Χ/»+ΐΜ·'.»+ιχρ+ι)

{S' lO J

with

R = Re(X*rX) e r'^+|MU/’+1)

(4.31)

(4.32)

(4.33)
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S0 = Re^*7·^) e R^+'M/’+i) 

Tn = Re(Yo’TYa) e

(4.34)

(4.35)

The cost function is minimized by setting the derivatives of (4.31) with respect to the unknown 
polynomial coefficients Θ equal to zero:

dlLS(0)

%
= 2(R/3o+Soa) = 0 Vo = \,···,Νη (4.36)

dl's( Θ) 
da

= 2^(S,IA+7:,a) = 0
0=1

Vo = \,···,Ν (4.37)

These equations are the so - called normal equations which can be written (using equations 
(4.32) - (4.35)) in the form:

2 Re(J*7 )θ-0 (4.38)

We focus on the polynomial denominator a from which result the poles and the modal 
coefficients in order to set up a stabilization diagram. Consequently, least-squares problem can 
be simplified by substituting the coefficients βο, which result from (4.36)

P0=-R-'Soa (4.39)

in to (4.37). Thus, equation (4.37) becomes:

|2Z(To-SjR-'Se)J« = 0

Ma = 0

(4.40)

where M e js defjnecj in above equation and can be computed from the measured
FRF data. This equation can be solved for the denominator polynomial a in a least-squares 
sense. To avoid finding the trivial solution a = 0, a constraint is imposed on the parameters. 
Such a constraint also removes the parameter redundancy that exists in the common 
denominator model (multiplying numerator and denominator with the same matrix yields different 
numerator and denominator polynomials, but the same transfer function matrix).

This first step can also be used for the time domain analysis where the modal frequency cor 
and the fraction of critical viscous damping ζΓ will be the initial values for parameters ar - ζΓωτ 
and br - cor Φ-ζ’ in the optimization problem.
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4.4 Formulation as a Weighted Least-Squares Optimization Problem

In the frequency domain, the optimal values of Θ result from the minimization of the measure of 

fit between the Fourier Transform of the measured acceleration y(kAa>) and the Fourier 

Transform of the acceleration y(kAa>,Q) predicted from the model. The variable Aco denotes

the frequency discretization step and A: = is an index set. The parameters in #
include the modal characteristics such as modal frequencies, modal damping ratios, and 
modeshape components at the measured locations, modal participation factors, and other
parameters that completely define the response vector y(kAa>,e).

A modal model output-error identification approach seeks the optimal values of the parameter 
set Θ that minimize a measure of fit between the Fourier Transform of the acceleration predicted 
by the modal model of the structure and the Fourier Transform of the corresponding response 
acceleration j)(Mry) estimated from the measured data . Thus, the error measure J(Θ)
between measurement data and model predictions that correspond to a certain value of Θ, is 
described similar to (3.1) by

J(6) = — Σ j)(&Ary)J \^y(kAco,0)-j)(AAry)J (4.41)

y : Fourier transform of the measured response acceleration at the Nm measured DOF

y : Fourier transform of the response acceleration at the measured Nnut DOF predicted
by the modal model

Αω: sampling frequency interval of the Fourier transform of the acceleration
N: total number of sample data over the duration T of the Fourier transform of the

response acceleration
k : the time index set at time co - kAco

F=Z[z(Miy)]' [jK*Aiy)]
k=0

normalization factor for frequency domain (4.42)

Using the Fourier transform for the modal observation equations (2.55), expressed in the form of 
(4.5), the vector y(a>;0) of the Fourier transform of the acceleration responses at the Noul
measured degrees of freedom, based on the non-classically damped modal models, is written in 
the form

Λω) = Σ (®) + ££ (ω)) + DMm) (4·43)
r=1

Considering the boundary conditions not equal to zero and using the Fourier transform over the 
duration T for the first part of the first complex modal state space equation (3.6) yields
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(4.44)ί,Μ - β(ι*-~Λ = = e-"' ί,(θ[ +(»
-οο Ο 0

'------------V------------'
ξΛ<»)

Consequently,

£,(<») = e‘J“i,(T)-e-'“<f,(0) +(»<?,(«)

Equalizing (4.45) with the first of the complex state space equations (3.6) yields 

i(t) = ^r(t) + l_Tru(t) => β-^^(Τ)-^'#Γ(0) + (^)^(«) = λ,ξ,(ω) + £ύ(ω) 

The above equation can be expressed in the form

g(j) Cm , e-^(T) £(0)
j(o - Λ i'iy-Ar ja> -

(4.45)

(4.46)

(4.47)

Thus, substituting (4.47) in to (4.43) the relation between the response y(a>) and the excitation 

u(a>) in the frequency domain is given by

y(®) = Σ
r=l

m

Σ

u j: * ,*ru .1 m

«(®)+Σ

r=l

(]ω)~Κ (jco)-Xr

7~T^^(°)+7"T^^(0)(]ω)~λΓ Οω)-λ,

e~jmr . e
—■—-ί,(τ)+«Γ

-jo)T

til r (;'«)-Λ

+ Dcw(ft») +

(7®)-4
r£(T)

(4.48)

where Dc. € RA/"",><‘V"', is a real matrix, Mr,r = l,...,w are the complex eigenvectors at Afoa< 

DOFs, /* e Clxiv'" is the complex vector of the modal participation factors relating the Nin inputs 

to the r mode of the system, ζΓ(θ) and <£.(Τ) are the boundary conditions of the modal 

response £.(/) and

K = ~4>r ± M VJ-C2 = -a, ± A , r = 1, · · ·, m (4.49)

are the complex eigenvalues of the structures. The parameters £Zr = and = cor yj 1 - ζ2Γ 
are expressed in terms of the modal frequency cor and the modal damping ratio ζτ . Given ar 
and br, the modal frequency cor and the damping ratio ζκ are obtained from the following 
relationships:

<oT = t (4.50)
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a
(4.51)

The parameters set Θ in the notation y(d>',0) contains the parameters that completely 
define the response vector y(a>;0) using the modal analysis. From equations (4.43) to (4.49), it 
is evident that the parameter set Θ contains the complex eigenvalue Ar of the r mode, the 
complex modeshapes ur e CN"U'A, the modal participation factor vectors fr e CUN‘", the initial 
conditions ξτ (0) and ξτ (T) , and the entries of the real matrix Dc e , that is

θ. [λ,,η,£,ξ,(0),^(r),r = l,...,m,Dt} (4.52)

where m is the number of contributing modes which is also an unknown in the modal 
identification process.

4.5 Second Step (First Approach)

In this section, the first approach of the second step is presented which provides an estimate of 
the modeshapes and the participation factors by solving a system of linear algebraic equations. In 
particular, the modeshapes and the participation factors derive through the Singular Value 
Decomposition (SVD) of the complex matrix Rr e CN"“'xN"' presented further down. Hence, 
setting

urfr e CN~xN* (4.53)

u&{T)eCN-" (4.54)

wr£ (0) € CA'-Xl (4.55)

equation (4.48) becomes

in

y(&) = Σ
r=l

m
-Σ

R
■ + ■

r:

U°>)-K Ο'")-Λ

r=l

fir - + -i
(j<o)-K (jco)-Ar

r=I

+ £>,«(&>)

a, QLr ,-jt»T

0")-Λ 0")~Λ
(4.56)

It should be noted that in the aforementioned formulation the parameter set Θ consist of 
complex-valued variables, while the response vector >>(«;#) is also described in terms of 
complex-valued variables and solutions of modal equations with complex-valued coefficients. 
From the computer implementation point of view, it is necessary to describe the response vector 
in terms of real-valued variables, equations and parameters. In what follows, the response vector
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>>(&>;#) is reformulated in terms of real-valued variables and parameter set For this, the 
complex-valued matrix and vector variables Rr, ar and βΓ involved in the description of the 
modal model are expressed in terms of the real and imaginary parts as follows:

K=Lr+jGr (4.57)

°Lr =£r+jdr (4.58)

£r=P,+Jgr (4.59)

and equation (4.56) becomes

m m
Λ<°) = + GrMr ]«(») + Σ[^rMr + ^ ~

r=l
ffj (4.60)

- Σ [PrPr + t K ]+ °Μω)
r=1

where

eC" (4.61)

1 1

Οω)-4 (jco)-^

1 1

ϋω)~κ (J0)-K

(4.62)

In order to implement a modal sweep approach similar to one presented in Werner et al. 
(1987) for classically damped systems, two index sets are introduced, the active index set Ia 
containing the mode numbers that are active and are optimized during the optimization process 
and the fixed index set I, that contains the rest of the m modes that are included in 
computation of the response vector but their parameter values are kept constant during the 
optimization process. Thus, introducing the active and the fixed parts of the responses by
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(4.63)
(ω’β) = Σ [Lrf£ + GrMr ]“(«) + Σ + <LrVr ] «

re/„ re/„

-7<»Γ

- Σ [p.X+qrvr ]+A«0)
rela

*f (®) = Σ [1/Μ+ί+°ίμ}~\ύ(ω) + Σ \cfM*f +dfM-fyjml -
/e/7 fel,

(4.64)

- Σ +? A
feIf

the total response = y(&>) due to m contributing modes can be written in the form

y(co) = xr (ω;θ) +x1 (ω) (4.65)

which is more appropriate to use when formulating the optimization problem using modal sweeps 
to identify the modal parameters of the active modes defined in the set Ia, holding the 
parameters of all other fixed modes, defined in the set If , as constants.

Using active and fixed modes, the objective function (4.41) can be expressed in the form

1 N

V k=0

[xr (ΙίΔω;θ) + xJ (kAco)-j)(A:A<y)J 

^xr(A'Aiυ;θ) + χ/ (kAco)-j>(Mry)J
(4.66)

,or equivalently, the final form of the objective function is given by

N

νΣ
v k=0

'ϊ(θ):=—'Σ [*r (kAor,e)-e(&Δω)] [xr ^Αω;θ)~ <?(£Δω)] (4.67)

where xr (kAcο;θ) , given by (4.63), depends on the parameter set Θ, while c[(kAa)) given by

e(&Acy) = y(kAco)·
r€lr

YJ[_LfM}+GfM}^u{kAw)+Yj\_cfM+f + dfM}]e
relf

-Σ

jk&0)T

sir1-
pfM/ +qfpf

(4.68)

is the constant vector of the measured response minus the response vector that is predicted from 
the modal model considering only the fixed modes.

Summarizing, the response is completely described by the real parameter set # that 

contains the modal parameters ar = ζΓωΓ and br - corSJ\ - ζ) that are related to the modal

50

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



frequencies (or and the modal damping ratios ζν , the real part Lr and the imaginary part Gr of 

the complex matrix Rr, the real part cr and the imaginary part dr of the complex vector ar, the 

real part p and the imaginary part q of the complex vector βΓ and the elements in the real 

matrix Dc, that is,

The total number of model parameter involved in the prediction of the response is

4.5.1 Simplifications Explaining Quadratic Dependence on Modal 
Characteristics

The minimization of the objective function (4.67) can be carried out efficiently, significantly 
reducing computational cost, by recognizing that the error function in (4.67) is quadratic with 
respect to the real part Lr and the imaginary part Gr of the complex matrix Rr, the real part cr
and the imaginary part dr of the complex vector ar, the real part p and the imaginary part q 

of the complex vector βΓ and the elements in the real matrix Dc. This observation is used to 

develop explicit expressions that relate the parameters Lr,Gr, cr, dr, p^, q^ and Dc to the 

rest of the model parameters appearing in the parameter set Θ, such as the modal parameters 
ar and br that relate the modal frequencies cor and the modal damping ratios .

For this the parameter set Θ in (4.69) is partitioned into parameters sets as follows

(4.69)

[4m + 3{NoulxNin) + 4(Noulxm)].

0 = (0a,ih) (4.70)

where & is defined by

(4.71)

and θ“ is defined by

θα =( ar, br, r = \,...,m) (4.72)

Stationary conditions with respect to the parameters in the set 0h are used to develop a 
linear system of equations for solving for the set 0b given the values of the parameters set θ° .

For convenience in the presentation this linear system can be formulated in the general form
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be the function that gives the relationship between the parameters set & and the parameter set 
θ“ by solving the system (4.73). Then the objective function J (Θ) takes the form

J(0) = j{e\(lb) = (£")) = f (4.75)

where Α[θ^ j and b^0a J are functions of the parameter set . Let

(4.74)

Hence the minimization problem can be stated as follows. Find the values of the parameter 
set θα that minimize the objective function

■/*(£) = ·/(£", 2* (£")) (4.76)

Once the values of θα have been found, the values of 0h are obtained solving the linear 
system (4.73). Next our objective is to apply the above concept and first obtain the matrices and 
vectors that completely define the linear system (4.73).

The linear system for the parameter set is obtained by setting the derivatives of J($) 
with respect to each element of & equal to zero, that is,

a/(g) 0 (4.77)

a(M-0
0G„,

EM-o 

am o
8c,,

o
ddrJ

a/(g) Q
SPrJ

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)
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(4.83)a/(g) Q
d(lr,l

for / = 1,...,Nout, r = 1,...,m and i = Nin . The analytical computation of these derivatives
is shown in the appendices. It can be readily shown that the set of linear algebraic equations can 
be written in the compact matrix form:

Σ(ψ°)+Α'τ (r))]*=1 t(s(r)+s·' (r)) (4.84)

where

4?)-

(//®w(ryj) (ju®u(cok))r u'ify) μ'β m‘ -(^®«(<yt)) /I
u\mk)(ju®u(o)kS) u{o)k)u(o)k) u(o)k)jlemT

μ[μ®η(ύ\)^ em' μιΙΧω,γ0* mV -μμ'β1^

μν(ο\) μ/ίβΜΤ -mV

(4.85)

(//0«(<»*)) er{o)k) 

u{cok)e!(cok)

^TK)
M'e'M

and (Dk - kAco, k = 1,..., N,

(4.86)

(4.87)
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cf 
< : >, d = ·

d[

p = -
P\

>, q = ·
9i7

• and μ = · P+\

cTm d'i pi βί [p\

The system of equations (4.84) can be expressed in the form

Re{z(^(r))}^=Re{i;(5(^)) (4.88)
„ fc=i .*=1

From (4.88) we obtain the matrices Lr and Gr that contains the information for the eigenvectors 
ur and the participation factors l_r. Hence, the modeshapes and the participation factors derive 
through the Singular Value Decomposition (SVD) of the complex matrix Rr e CN'"“*N‘".

Substituting (4.63) in (4.67), the error function J* ^θα j becomes

re/„ J re, L V ’ V

+ Dcu(kAcd)-e( kAco)

-jktxoT

~Ylp/r{^) + <iA{-
re/„ L

Σ LX(^)+GrPr(^) UikAoj) + ((/')+drp~r[tf) e
relu relu

~Σ[ΡΓώ(^)+ίΆ (p) +DLM(kAoj)-e(kAoj)

-jkluoT

(4.89)

or in compact form 

1 "
^*{Ρα) = ~~Σ - [kAa>\(f j-e(£Ary) xr ^Αω·,θα )-£(Α:Δω) 

P k=0
(4.90)

where

*r (kAco-,θ") = Σ \_LX (Pa) + Grμ; (θ“) ύψΑω) + Σ [qX (#“)+ drp~r (d°)
re/„ re/u

~ Σ [PrPr (Pa) + <ΙΧ ) + “(kACO)
rela

-jktAioT

(4.91)

The total number of model parameter involved in the prediction of the response at Noul 
DOFs given m modes and Nin input time histories, is now reduced from 
[4m + 3(Nout xNm) + 4(Nm xm)] to [2m].
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It should be noted that in this section the general case of the second step has been 
presented where the parameters ar and br that relate the modal frequencies cor and the modal 
damping ratios ζκ are used for the minimization of the error function (4.90). In the special case 

of the second step the parameters ar and br are obtained from the first step (Stabilization 

Diagrams) and second step becomes a problem of solving linear algebraic equations for the 

parameter set Gh.

4.5.2 Analytical Expression of the Gradient of the Objective function

Next, analytically expressions for the gradients and the objective function (4.90) with respect to 

each parameter in the set θα are defined. Differentiating J* ^θα j with respect to a parameter Θ 
in the parameter set 0“ yields

a/'(g")_i »
r/δθ v k=0

dxrV (kAco\0a\ r . .
—---------- —' xr ^Αω;θα j-δθ + CT (4.92)

where CT is the conjugate transpose of the term 

and

■

dxr‘‘ ^Αω;θ“ j
xr [kAco·,^^- e_(kAco)

δθ

dxr'T(kAco-,e“) , 
— 1 =

δθ

a(4 a(4 ^ .+MT .

r δθ δθ δθ y ^ [ ’δθ

ikAoil Σ +ŝ Lm-
δθ δθ δθ

Σ
re/,.

Td{ti) d(Pr)T , +\* d(lr)' t ^

*T

(4.93)

„.r 3{D
+ u ; {kAco) -------—r

δθ

δ(μ*) <?(//,.)
and the derivatives \ / and —with respect to each parameter Θ are given by

δα,

δθ

1

δθ

{(Μω)-λr]2+(U(0)-rr)2
(4.94)
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(
_________ j , j

v (ϋΙ<Αω)-λ,)2

/ V
j________________j

((j*Αω)-λΓ)2

/ V
1 1

(υ/<Αω)-λΓ)2 ((»-a;)2^

(4.95)

(4.96)

(4.97)

Note that the derivatives 3 (Z,.) 2 /d0,d(Gr) ‘ /δθ, 5^£. j /δθ,δ^ά, ) jd6 and

3(/7r) Jd0,d[qr j jdO are readily obtained by differentiating with respect to (9 both sides of

the system of linear equations (4.88). This yields the following system of linear equation for the 

derivatives

(4.98)

where, using (4.85) and (4.86), it can be readily shown that

a(4?))
δθ
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'δμ Λ 
®u((ok)

δθ

(μ®«Η))

(μ®“Κ))7 +

V''δμ 
— ® «(<y,) 
56» - 1

« Μ
3μ, Λ

3ftV'·'^ y
Τ

|^-(μ®«Κ))

δμ
— ® w(a>,.) 
50 " *

\7
./V

3μ*
50

(μ®«(ωλ.))7

δμ

50 - *

'δμ
— <8 «(a,) 
30 - 1 «Η)

δ//" ,. 7.
C ..7\„/ω,/

50 ii'KK

3μ’ 7. 
-=-u (ω,) 
50“

'δμ
— ® w(a.) 
50 - ‘ / +

(μ®«Κ)) d/S_
50

. 3μ7 ,.
- ‘30

3μ 7. . δμ'
-=-μ +μ -=- 
50 - - 50

μ7 +

(μ®«Κ))

. 3μ7
-« (βλ)-=-
- ‘30

δμ , δμ
^^μ +μ -=- 
50 - -30

J»»?·

δμ . δμ — iml Τ % %-=-μ +μ -=- 
50 - - 50 j

e 1 - ^^μ + μ 
δθ~ - δθ

(4.99)

3(5)
35

yv

-Σ*=ι

δμ
-=-<8>u((Ok) 
δθ k

Ο

Φ „τ 
~ -0 lift. )<?

eTM

δθ Μ^Γ

*τ / \
~ e Μδθ

(4.100)

where cok = kkco , k = \,...,N , and the derivative δμ/δθ is given by 

δμ+
δμ

~δθ
δθ

dJL
I δθ

(4.101)

4.6 Second Step (Second Approach)

In this section, the second approach of the second step is presented which provides an estimate 

of the modeshapes by solving a system of linear algebraic equations. In particular, this part takes 
advantage of that the error function is quadratic with respect to the modeshapes, thus stationary 

conditions are used in order to develop a linear system of equations from which the modeshapes 

are derived.
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It should be noted that in the aforementioned formulation the parameter set Q_ consist of 

complex-valued variables, while the response vector y(a>;0) in (4.48) is also described in terms 

of complex-valued variables. From the computer implementation point of view, it is necessary to 

describe the response vector in terms of real-valued variables, equations and parameters. In 

what follows, the response vector is reformulated in terms of real-valued variables and

parameter set Θ. For this, the complex-valued scalar and vector variables u,, l_r, ξΓ(θ) and 
<^.(Τ) involved in the description of the modal model are expressed in terms of the real and 

imaginary parts as follows:

Hr = Ψ, + ΐψ r

| tj i J»

= Prqj + JP\m,r 

£ (0) = "Re,λ + jnln,r 

Zr{T) = nL,r+ JnL,r

Substituting (4.102), (4.103), (4.104) and (4.105) in (4.48) yields

κ®)=Σ
r=1

{PL,,- +JPlm,r)

ύ(ω)
+ (EL,rtr +

r=l

( ejmT e
+

(Μ)-Λ

u((0)

0'ω)-λ
+

--(pL,r-jpL)—
ύ(ώ)

a
r= 1

Οω)-\ (jo))-Xr j

(M)~A

-jail’ ^

(<,r + X,r)^ '

Wr

( e-J<oT

1 1 
-+-

(./'«)-Λ (/®)-Λ> j

1

(jco)-xr

(^r+Xu)$ +

(<,+Xv·)^

+ D ύ{ω)

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

Two index sets are introduced, the active index set Ia containing the mode numbers that are 

active and are optimized during the optimization process and the fixed index set 7/ that contains 

the rest of the m modes that are included in computation of the response vector but their 

parameter values are kept constant during the optimization process. Flence, the active and the 

fixed parts of the responses are given by
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ί,(®;^) = Σ
rel„

/ τ ■ τ \ u(oj) ί τ ■ τ \ «(®)
(PRe,r + JPlm,r),r. , +(iVr “ JPbv) , ~ ,.

“ 0®)~Λ ν- -',(jd)-Xr

Λ

7'1 (Ar+Ar). ----- (Prs.i -JpL,)jJ .
v~ - 0®)~Λ- x- - ’{]ω)-λκ

ύ(ω)

Φ_Λ

\

)

+

Σ
rel„

( e~J0>T -jo>T Λ

■ + -

Ο'®)-Λ Ο'®)-Λ
+

re/„

η-&Τ ^

0'ω)-λΓ 0'ω)-λΓ

1 1
- + -

Ο'®)-Λ Ο'®)-Λ> y

1 1

Ο'®)-Λ Ο'®)~Λ

(<γ+Χ..γ)£ 

(«Re,r+Xn,r)^

(nl,r+jnl,r)t

(n(L,r+Jnl,r)^r

+

+ Dcu(a>)

*»=Σ
ft'i

(τ ■ τ \ “(®) / r . r \ «(®)
(/>Re,/ + JP\m, f );■■"■■.■■+ UV/ - -/Am,/ J , ■ ............v- - ' !{J0))-Xf v- - n(j<o)-Xf j

/ 7- . r \ «(®) / 7- ■ 7 \ M(®)

(-Re·7 + ) (» - Ay l-Re/ J~mJ ’ (JCO) - X; J

<t>f + 

Ψι

+

Σ
JeIr

-jail' -jail'

Ο'®)-Λ (J(o)-X
+

/;

Σ
f*h

-jcoT -jaT

(j®)-xf O'®)-'*

(rtR e,f + jnim.f)^J

(nlj + ./V/)o

t J

---------+--------V ( «Re,/ + Xm,/ ) <jj(jco)-Xf (jco)-Xf
+

1 1

O®) - λ, (,/ω)-λ («Re,/+Xn,/)^/

(4.107)

(4.108)

the total response y(a>;0) = y{co) due to m contributing modes can be written in the form

y(co) = xr (a>;0) + xJ (ω) (4.109)

which is more appropriate to use when formulating the optimization problem using modal sweeps 

to identify the modal parameters of the active modes defined in the set Ia, holding the 

parameters of all other fixed modes, defined in the set I f, as constants.
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Using active and fixed modes, the objective function (4.41) can be expressed in the form

1 Λ'

·,(2)=7Σ*=ο

^jcj (kAco;0) + x1 (kAco)- 

l-[xr (kAco\(X) + x1 {kAo))-y(kAo))^
(4.110)

,or equivalently, the final form of the objective function is given by

■/(#) = — [xr {kAco\6)-e(A-Ary)] [xr (kAco\Q)-e(&Acy)J 
^ *=o L

(4.111)

where xr (&Δω;0) , given by (4.107), depends on the parameter set Θ, while e_(kAco) given 

by

e{kAco) = y{kAa>)-

Σ
f*r

(pLj+j'pLj )
u(kAco) 

(jkAco)-λ, \pLj -iPbf)
u(kAco) 

(jkAco)-λ)
</>,+

(pLj +JpLj )
u(kAco) 

(jkAco)-Xf -(pLj -JpLj)
u(kAco)

Σ
Wr

i e-fiMT e
+ ·

jkAcoT

Σ

(jkAco) - X, (jkAco) - A7
-jkAcoT

fj
-jkAojT

(jkAco) - Xf (jkAco)-/1*

1
-+-

J

(jkAco) - Xf (jkAco) - Xf

1 1

(jkAco)-λ, (jkAco)-X

(jkAco)-Xf j

1

(^Re,/ +Jnhaj)^f +

(</+K,/)^/

(%:,/ + Jnim, f ) Φ] +

,/ +-/V/ )ψ.ί

Ψ,

+

f )

(4.112)

is the constant vector of the measured response minus the response vector that is predicted from 
the modal model considering only the fixed modes.

Summarizing, the response is completely described by the real parameter set Θ that 

contains the real part cj)r e Rw'"" and the imaginary part ψΓ e RN‘“" of the complex modeshapes 

ur e CN"“'xl, the real part p e and the imaginary part ^ e RN‘" of the modal 

participation factor vectors fr eCUNi", the real part n0Ker and the imaginary part n°lm r of the
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initial conditions £.(0), the real part nTKer and the imaginary part n\mr of the initial conditions 

ξ,.(Τ), and the entries of the real matrix Dc e , that is,

pRej nKe.r’ WRe,r’ ’ r 1, m, Dc | (4.113)

where w is the number of contributing modes which is also an unknown in the identification 

process. The total number of model parameter involved in the prediction of the response at N(ml 
DOFs given m modes and Nm base input time histories, is

[4m + 2(mx Nm ) + 2(Nout x m) + (Nou, x Nm)].

It should be noted that the parameters ar and br that relate the modal frequencies cor and 

the modal damping ratios ζΓ are excluded during the optimization process because their optimal 

values are obtained either from Stepl (Stabilization Diagrams) or Step 2A.

4.6.1 Simplifications Explaining Quadratic Dependence on Modal 
Characteristics

The minimization of the objective function (4.67) can be carried out efficiently, significantly 
reducing computational cost, by recognizing that the error function in (4.67) is quadratic with 
respect to the real part <j)r and the imaginary part ψΓ of the complex modeshapes ur, and the

elements in the real matrix Z) . This observation is used to develop explicit expressions that 

relate the parameters φΓ, y/r and Dc to the rest of the model parameters appearing in the 

parameter set Θ, such as the real part p'R and the imaginary part ^ of the complex

participation factor [], the real part and the imaginary part n°mr of the initial conditions 

ξΓ(0) and the real part nTKtr and the imaginary part n\mr of the initial conditions ξΓ{Τ).

For this the parameter set Θ in (4.113) is partitioned into parameters sets as follows 

θ = [θ°,θ') (4.114)

where 9h is defined by

9h =( φκ, ψΓ, r = \,...,m, Dc) (4.115)

and θα is defined by

/■jtf / T 7 OOrr i
£ ={PRey Phny nRe.r» "in/- nR',r’ ^ = 1»-« m (4.116)
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Stationary conditions with respect to the parameters in the set 0h are used to develop a 
linear system of equations for solving for the set 0h given the values of the parameters set θ“ .

For convenience in the presentation this linear system can be formulated in the general form 

A {θ°)(? =b[<9a) (4.117)

where κ(θ^ j and b(ea) are functions of the parameter set θ“ . Let

eh=eh(9_a) (4.118)

be the function that gives the relationship between the parameters set & and the parameter set 

0U by solving the system (4.117). Then the objective function J(#) takes the form

J(Θ) = J [θα, 9h ) = J (β_°, ΘΗ [θ° )) = f (θα ) (4.119)

Hence the minimization problem can be stated as follows. Find the values of the parameter 

set θ° that minimize the objective function

j\Q) = j[e\eh[ea^ (4.120)

Once the values of (f have been found, the values of 0b are obtained solving the linear 

system (4.117). Next our objective is to apply the above concept and first obtain the matrices and 

vectors that completely define the linear system (4.117).

The linear system for the parameter set & is obtained by setting the derivatives of J{Q) 
with respect to each element of 0h equal to zero, that is,

a/(g) Q

d<t>,r
(4.121)

a/(g) Q
3Ψ„·

v(£) q

SD,„

(4.122)

(4.123)

for / = 1,..., Noul, r = 1,..., m and / = 1,..., Nln . The analytical computation of these derivatives
is shown in the appendices. It can be readily shown that the set of linear algebraic equations can 
be written in the compact matrix form:
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(4.124)
N

Σ
. 4=1

where

Υ^ΑΑ^&Ύ AA'r (0β)) X= Σ[ΒΒ{θ“) +BB'T (θα^
4=1 4=1 '

AA(<?)■■

A(a\ ~)^term +terni, +terni, -term\ j A(a>k )|^ j[term, -term, j + jterm, -term, J A(a\ )u (a>k)

ij 7* Τ’ τ~I 1/7' 7"\ 7" 7' I a7'/er/w, +term2 +term, -term, ΚωΑ\ i\term< -term, I + /7erw, -term,, B(o\)u (o\)

λ* Γ 7* Τ’ τ T ~I λ* | / τ Τ"\ 7" 7"| λ* α7"
μ (&>Α) term, +term, +term, -term, u (cok)\ jlterm, -term,) + jterm, -term,, u (ajj)

(4.125)

55

A(a)k)er(a)k)

m)iTM

!i (o>k)iT (a>k)

x=\ Ψ
j^(2m+A',„)xW„l„

D.

(4.126)

(4.127)

and cok = kAco , k = 1,..., N. The system of equations (4.124) can be expressed in the form

Re|£(/L4(r))|* = Re|£(Bfl(r
.4=1

N

Σ
4=1

(4.128)

where

V Λ
1

(4·’<<»»)';+«"Γίι'(τ)-ίι·(ο))+
[((Μ)-Ί,')\
/ \

1
(»·’(<»,)/,+£»,ίι'(Τ)-ί1'(0))

j((M)-T) ,

di,0)k) = \
7 Λ

1
(έ'''κ£+«Μ''ίΙ(τ)-ίΙ(ο))+

[((Μ)-Λ’,) ,
/ \

1
(ir(^)L+emTCm-C(o))

1̂

£ I sH
·*

(4.129)
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B(a>k) =

' -J λ
(Μ) ~4

( ' 
j

((Μ)-Λ’)

(*ΓΚ)ί+«ΜΓί,·(τ)-ί,·(ο))+ 

(ΓΗ)!, +εΛΓίι'(Τ)-ί,·(0))

v(M)-4y 
Α Λ

j
((.Μ)-Λ!,)

(έ"'κ)ί,+^Γί;(τ)-ί;(ο))

(4.130)

term] =

=

=

=

/ot5 =

/mw6 =

Lu.{a>k) 

(Μ)-Λ (M)“4
/, mK)

(\U{(Ok) £i“K)
(Μ)~Λ (M)~4

+
(Μ)-Λ (Μ)-Λ

/ β-/ω*7' ,-M7' Ί

(M)~4 (Μ)-Λ

ι
·+-

(Μ)-Λ (Μ)

ι ι

(Μ)-Λ (Μ)-Λ

ί (Τ)

ίι(Τ)

£,(»)

ί,(0)

f e~7<a*7' e'7<w‘7’ ^
+

(Μ)-4 (Μ)-Λ 4(τ)

ί β-ΜΓ

>W /

(Μ)-4 (Μ)-Λ ί., (τ)
-m 7

1
· + ·

1

(Μ)-4 (Μ)-Λ'/η /

1 1

ν(Μ)-4 (Μ)-Λ

U°)

?.(«)
'm J

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

From (4.128) we obtain the real part (j)r and the imaginary part ψ,. of the complex modeshapes. 

Substituting (4.107) in (4.111), the error function becomes

= —^ xr j-e (kAco) xr [kAa>;0“ )-e(£A<y) (4.137)

where
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χΓ(*Δω;£) = Σ
rel.

( τ .7’ \ u(kAd)) ( Τ . τ \ uikkco) 
(-Re’r +JE^r\jkAm)-Ar +(-Re'r ~JElmr\jkAoJ)-A,r

.fir ■ τ \ u(kAco) / τ . τ \ u(kAa>) 
7[(-Re" +J-m'\jkAco)-Al. _(-Rer~ J~m'r\ jkAco)-A'r

</>r +

Ψ,

+

rel..

f e-jkAa,T £
+

rel,.

-jkAtoT N

)(jkAco) - Ar (jkAco)-Ar
( g-jkAtoT g-jkAtoT ^

(jkAco) - Ar (jkAco) - Ar

1
· + -

1

(jkAco) - Ar (jkAco) -

1 1

(JkAco) - Ar (jkAco) - A*

(«Re.r+Mm.r)tr +

[<e,r +jnL,r)yjr 

(ni,r+jnl,r)0r +

("L,r +jnl,)yjr

(4.138)

+ Dcu(kAco)

The total number of model parameter involved in the prediction of the response at Nout 
DOFs given m modes and Nm input time histories, is now reduced from

[Am + 2(mx Nin) + 2(Noul x m) + (Nl)Ul x Nm)] to [Am + 2(mx Nm)].

4.6.2 Analytical Expression of the Gradient of the Objective function

Next, analytically expressions for the gradients and the objective function (4.137) with respect to 

each parameter in the set θα are defined. Differentiating J" [θα^ with respect to a parameter Θ 
in the parameter set θα yields

δ/[θα'

δθ V Σ
dxr*7 (kAco\0u\

δθ
V

xr [kAco;0a j - e (kAco) + CT

where

(4.139)
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dxr'‘ (kAco\9a^ 

Φκο,π
= u*(kAco)</>*

((jkAco)-λ,) ((jkAco)-

θφ,*T

dPRe,„
u*(kAcy)C_ u,(kAa)l„

.* ' *
((jkAco)-Xr) ((jkAco)-λ,) 

(

+

ui(kAoo)\f/7

5ψ7

1 1

ΦΚβ,Γ,

((jkAco)-Xr) (ijkAco)- X'r^

u,(kAw)iri ui(kAco)lri

+

((jkAco)-/lr) ((JkAa>)-Xr)
+ uj (kAco)

dD‘

dPR,r,

dxr*‘ [kA(o\&‘^
= -u’(kAw)(/>7 j

Φΐπ,.« ((jkAco)-λΓ) \jjkAto)-X')
+

δΦ7

dP^n

w, (kAco)ln + u,(kAa))ln

((jkAco)-Xr) ((jkAco)- Xr)

P(a)k)wrrj

δψ7

dPK,n

((jkAco)-λκ) ((jkAco)-X'r) 

u’(kAco)in u’(kAco)ln

+

dnRe,r

(OMiy)-Ar) ((jkAoo)-Xr)

Φ7 -

+ w,. (kAco)
dD[_

Φΐπ,,η

((jkAco)-λΓ) ((jkAco) - λ') 

1 1
γγ· +

((jkAco)-λ,.) ((jkAco)- Xr^
m

δφ.
*·/■

δη,

J \

(jkAco)-Xr

j

f
J

J
Re.r

V /
(jkAco)-Xr

Λ
\*λ

*r
ψ, -

(jkAco) - Xr (jkAco)-Xr-r J
ms-f+

u(kAco)
dD‘

δη,Re,r

(4.140)

(4.141)

(4.142)
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dxr'T (k,Αω;θα j

dn. = J
Im,r ((jkAco)-Xr) [(jkAcΌ)-λ*)

1 1

{(jkAco)- Xr) [(jkAco)-1’)

, , δφ,γ
£( 0)-S- +

dnIm,r

ί 1 ]
*

ί 1 1
* Λ

K(JkA<o)-Xr , K(jkAo))-λ'Γ >
7

ψ7 -

j j
(jkA(o)-Xr {jkAco)-X'r

J dnim,r

f)DT
u(kAco)----- £■

dn,Im,r

dxr'' [kAco-,e“^j /ΛτΔύ/Γ jktAoiΓ

"7“ +
((jkAco)- Xr) ((jkAa))- X*r}

+

/ΑτΔύ/Γ /£Δά/Γ

JokAco)-Xr)' (0kA(0)-X'r) ^

( gjkAail \
gjkAtoT

{(jkAo))-Xr)' [{jkAco)-X'r) ^

( jkAcol
\

ρβΑωT
(0^Αω)-λΓ)'

V
1

o'
<1—

>

1

u (kAco)
d< e.r

C(T)#(5/7,Re,r

*T
Ψr ~

,. .δΨ7
ξΓ (τ) -- +

(4.143)

(4.144)
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dxrV [kΑω;θ“ j

d”Lr

jkAaiT jkko) T

(UΆΑω)-λΓ) ((jlcAco)-/1*)
Φ7 +

ί;(τ)Μ1

((jkAco) - λΓ) ((jkAco) -λ\)

jkLdΓ „./*ΔωT

((jkA«))-Xr) ((jkAa>)-%)
g(T)^ +

«' (/ A \ ^w (Μω)----- L-
dnT

(4.145)

Im,r

Note that the derivatives 5^r*7 jd6, dy/'r‘ jd6 and dD[ jd9 are readily obtained by

differentiating with respect to f? both sides of the system of linear equations (4.128). This yields 

the following system of linear equation for the derivatives

Re{f>(4frRe

Σδ(ΒΒ(θ·')) td(AA(?))k=\
5Θ 9Θ

(4.146)

where using (4.125) and (4.126), it can be readily shown that

r))
3Θ
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dA(a>t) 
δθ

«'Κ)

dB(cot)
δθ

u K)

0

(4.147)

5(55)

50

dA(0Jk ) 
50 ~ M

Σ
dB{cok) g7. 

50 _
0

(4.148)

where <y, = Α:Δω, k = 1,..., AC, and

ΦΚ)

dP^r,

1 1
■ + ■

((Μ)-Λ-) ((Μ)-Λ’)
«>*)

ΦΗ) = /
Φΐ,η,η ((Μ)-Λ) ((Μ)-Λ’)

«>*)

5«Re,r
= -7

1 1 
ΓΓ + -

((Μ)-Λ) ((Μ)-Λ’)

ΦΚ)

5«.m,r
= J

1 1
ΓΓ + '

((Μ)-Λ) ((Μ)-λ*)

)kJ _

d< e,·
1 1 

■ + ■

((Μ)-Λ) ((Μ)-Λ*)
,Μ?'

(4.149)

(4.150)

(4.151)

(4.152)

(4.153)
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dd{Q>k)
ML,

= -J

((Μ)-Λ) ((M )-K)

ΦΚε,Π
= 7

1 1 ... . 
+--------------------- w, K )

((M)-A) ((Μ)-Λ’)

Φΐ,η,π ((Μ)-Λ) ((Μ)-λ*)
“, Κ)

ΜΚ)= ■
5«Re,r ((Μ)~Λ) ((Μ)-Λ’)

Φπ,., ((Μ)-Λ) ((Μ)-λ’)

agK)

Φί,
= y

ι ι
ΓΓ + - ,Μ?'

((Μ)-Λ) ((Μ)-Λ*)

ggK) ι ι
-+-

((Μ)-Λ·) ((Μ)-Λ*)
JO>J

dtermLJ

dPRe,n

1

.(Μ)-Λ «/‘Κ)

dterm ^

Φΐπ,,π

dterm

dPRe,r,

r (
J

(Μ) “Λ

r A

«,(©*)

1

1(Μ)-Λ y
«,Κ)

dterm.

Φ, (Μ)-Λ
«’Κ)

Im.ri \\Jwk) nr J

(4.154)

(4.155)

(4.156)

(4.157)

(4.158)

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

(4.164)
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dterm,

5«Re,r

dtermi

( η-)ωΤ n~J°>T ^

= 7

0'ω)-λκ ( joj) -λΓ J

r β->ωΎ e-J°>T ^
---------------H----------

V

dtermT ( e~M

d"L·

ϋω)~λΓ (jco)-Xr

j(oT ^

)

dtermΛ

dnLr

(jo))-Xr ( joj) - λ]

„-MT ^
= 7

7 e-y»r

d ter mi
dn,Re,r

dterm.

(Ja>) - Λ U®)-K
\

1 1
■ + ■

(»-Λ (» - Λ

<9wIm,r

1

(Φ) - Λ (]ω)~Κ

dterm f

dPRe,n

dterm

1

v

7· λ

Φΐπ.,π

dtermτ (

dn.Re,r

dterm,.

(M)-Ar

7

(Μ)~Λ*

1

*>*)

«;κ)

1

V (7ω) “ Λ Ua>)-K)

1 1

5η,
= 7

Im,r \ϋω)-λΓ (jco)-λΓ j

The derivatives:

(4.165)

(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

(4.171)

(4.172)

(4.173)

(4.174)

dterm, dterm.
dnRe.r

etaRe.r

dnIm,r

dterm, dterm,
dnIm,r

dterm, dterm,

ΦΦ

dterm] dterm]

<Ke,r ' ΦΦ

dterm[ dterm\

dterm, dterm, dterm, dterm, dterm, dterm.
dnRe.r

ΦΚβ,„ Φΐ,η,,

are equal to zero.

dnRe.r

<?77Im,r Re,r ΦΦ

077Im,r ΦΚε,„ ’ Φΐη,,π 5»Re.r

ΦΚε,„ Φΐη,,η
dterm. dterm, dtermi dtermi dterm. dterm.

ΦΦ
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4.7 Third Step (Nonlinear Optimization)

In this section, the third step is presented in which the formulation of the Section 4.6 is used. In 
particular, the response is completely described by the real parameter set Θ that contains the 

real part <j)r e R'v"“' and the imaginary part ψΓ e Rw""' of the complex modeshapes ur e CN"U'A , 
the real part p^r and the imaginary part p of the modal participation factor

vectors fr e Clxy'", the real part nRe r and the imaginary part n°m r of the initial conditions ξΓ (0), 

the real part nRer and the imaginary part n\m r of the initial conditions ξΓ(Τ), and the entries of 

the real matrix Dc e . In addition, in the real parameter set Θ are also include the modal

parameters ar =Cra>r and br = a>r yj 1 - ζ2Γ that are related to the modal frequencies cor and 

the modal damping ratios 47 , that is

e = \ar,br,</>r, ΨΓ» PRe,r -Im,r Re,r’ Im,r’ Re,r ’η0 nh^r,r = l...,m. D (4.175)

where m is the number of contributing modes which is also an unknown in the identification 

process. The total number of model parameter involved in the prediction of the response at Noul 
DOFs given m modes and Nin base input time histories, is

[6m + 2 (m x Nm) + 2 (Nou, x m) + (Nom x Nm)]

For this the parameter set Θ in (4.175) is partitioned into parameters sets as follows 

θ = [θ\θΗ) (4.176)

where 9h is defined by

&h =(</>,, ψΓ, r = \,...,m, Dc) (4.177)

and θ“ is defined by

Θ" ={ccr,br, pKer, p\mr, n°Rer, nlr, nTRer, n^, r = ) (4.178)

The same analysis with this in Section 4.6 is used. The nonlinear optimization process is based 

on the minimization of the error function J* y&aj given by (4.137) with respect to the parameter 

set Θ which is defined in (4.175). In particular, the parameter set in (4.175) is partitioned into 

the two sets (f and 9h. Flence, the optimization process is based on the parameter set Θ 
using as initial conditions the optimal values of the set 9h resulted from the first and second 

approach of the second step.
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4.8 Appendix

4.8.1 System Of Linear Algebraic Equations (First Approach of Second 
Step)

Taking the stationary condition

^ωlx (ftAa>;g)-|(^Aa?)] + er | = 0
*=o a#

5xr,/ (&Δα>;0)
Thus--------------------- — must be evaluated

δθ

For Θ = Lrji

dxr(kAco;6>) T + dxr'T(kAcy;0) A.r c7Ί +γ
------ ------------ L = M //Γ«(^Δω)=>--------------------- — = w (kAa>)SjSj Ιμ I

^A·,// ^r,/i

Substituting (4.180) in (4.179)yields

^M=o=>
34,

χί(^;) ΗΤ(ΑΔω)£.<^[χΓ(ΑΔ®;0)-β(ΑΔ<Β)]+(77’| = Ο => «)(ΑΔβ>)[3ϊ((ΑΔ&>; $)-<?,(Miy)J + C7"j = 0;
4-0 ' ' *=0 ' '

X[4.(/4 + fiV; ^(ΑΔω) + LfjU(k&a>)
r=l

+Σ[4Χ + 4r,//;]e''‘w ~Σ[λΧ +,4//4]

ί&1

(/£) ii'(kAro)

(„'Θ0)

+ CT = Σ[(λ+) "’(*Δ®)[«/(*Δω)]
1 —II '

+ C7-

(μ* ®»(ΑΔω))

£ΰ7 (ΑΔω)μ^ · · · ΰ7 (ΑΔω)μ* |

// Τ0ΰ^(ω)
+4>7’, ΰ(ΑΔω) + (sV + cf μ') e'- (μ,Γμ* + £,V)

+ CT = Σ((μ* ®u(k&0))] [έ,(λΔω)]+07’ I ~

(4.179)

(4.180)

(4.181)

(μ* ® ΰ(ΑΔω))

&] [(£
: 1 + (μ-7 ®ΰ7(ΑΔω))| :

cl ~ k,
(μ*7 ®ΰ7 (ΑΔω))

α-γ]|; Je"*" -[μ1 μτ]{&}

+ CT = Σ{(/4 ®ΰ(ΑΔω)) [e,(k^)] + CT
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For Θ = G,rji

dxr(kAar,6) r _ dxr*r (kAar,e) Λ.τ τ(
------------------ -- = SjSj //, u(Mitf) =>--------------------- - = u (kAco)^ I μΓ )

dGrJi dGrli

Substituting (4.182) in (4.179) yields

^M = o=. 
sc,,
Σ{(Α-) h'1 (kAco^dJ^x'(k\co,d)-έ(£Δω)] + (?7'| = 0 => Xj(ft) »,’(1:Διβ)[^(Μ®,9)-e,(M<y)] + C7'| = 0 = 

Σ ’̂,Λ* + Grj/'r" ]κ(*Δω) + £>Γ,Μ(Μω)
r«l

+Z[<'vX+‘/r.x]e"J‘arf-Z[^x+</,x]
(μΓ) u)(M<o)

("·“)

+cr :Σ{(λ) a,’(*Aa»)[e,(M<a)] + Cr } =

i^l
I (ΙίΔω)μ{ ■■■ u (ίΔω)μ* jj : > +

k,

+ C7'

(//" ®w(M©))

+QTCJu(kho)) + (c,V + 4l M')e~Jti"T-(£,V+2,V)

f 4r< ] [S',
(//*r ®ΰΓ(£Δ®))| : 1 + (μ"Γ®«Γ(£Δω)Η :

kJ lei.,

^«(M^+jyr 2r]fc}^‘A"r-[^r

= £[(μ' ® «(^Δω)) [e,(&A<«)] + CY
i-0 '

+ C7' = ^|(μ" ® »(tAai)) [e,(iAffl)] + 7T

(4.182)

(4.183)
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dy(kAco) A dy‘ (kAco) „,r ... -,·
— = ££7 w(Mry) => ------ -- = u (kAco= u, (kAco)SjT

For θ = Dc li

dDcji SDcJ,

Substituting (4.182) in (4.179) yields

a/(g)
dD.

■ — 0 :

N A„,
(kAco)Sjkl [jc'(AA<y;g) -έ(ΑΔω)] + CT | = 0 => ^|«,'(ΑΔ®)[λ·(' (AA<y;g) -e, (ΑΔω)] + ΟΓ J = 0 =

’· Λ It =0

Σ[£Χ + Ql^~-^u(kAco) + DTc,u{kA(o)
r=I

+Σ[ε<·Χ + 4,X]e~y*W - £[/j,X + 9,X]
Σi. 0

uj (kAco) + CT = ^{«;(ΑΔί«)[έ,(ΑΔω)] + Cr}:

N
Σ*=o

Μ (ΑΔβί)

|j}r(£Aiy)//,+ ··· uT(kAco)p+ |
l£.

+DljU(kAco) + μ* + d’’- (ρ,7μ' + //")

+cr : ^{«"(AAfi>)[e, (AAft^J + Cr } =

N

Σ*.o « (kAco)

(//*' ® w7 (kAco))

tL.,
-(μ-Γ ®u (kAco))

Gl,

+£Α«Αω) + [μ'τ μτψ\ \*~“Τ-[μ*Τ X]-n\P>
+ CT

A
= (kAco)(e, (ΑΔω)] + CT j

(4.184)

(4.185)
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(4.186)

For 9 = crl

- g^yJ-r β _ gr [μ. )' e„r
dCr,l

Substituting (4.182) in (4.179) yields

dcr i

dcr,l

Σ k' (A* )’ (V (*&ω;0) - £(ΑΔ®)] + CT} = 0 => £{(/*;) V w [ΰχ'^^ω,θ)- e, (*Δω)1 + CT} = 0:
*=0 ' ’ *«=0 ' '

Σ[Ζ>.Α + Gj/A ]“(*Δο) + DTclu(k^co)
r=I

+Z[c,X + <A ]e"'*wr - Σ[λΧ + 9,.a]
(4

tjkAi»T + CT =zf(^)'e'‘wk(AAiu)]+crl:*«<Λ '

ter)‘ tjkM>T

|u (/(Δω)μί ·■ u (A:Δω)//*jj

^(ΛΔ#)//,"··· ΜΓ(Α:Δα>)//~ jj
lei.

+DTclu{k&co) + (SV + 4,V)e_i”r - (p,V + q, μ)

+ CT iZ{tef)’e#w[*'(*A®)]+C7'

ter)’
(Χ®ΰΓ(*Δ®)) (Χ®ΜΓ(ΑΔω))

Gl, +cr = i|(^)‘^rk(^)] + CT

(4.187)
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(4.188)

For Θ = drl

= ^ Sj^Aa^) = &τ (μ_ e,M.
dd,rj ddrJ

Substituting (4.182) in (4.179) yields

m,o^
ddr,

Zk7(/';)’^"'Tir(^iu;0)-|(M®)] + Cr} = O => ^\{μ;) ει^'τ\δχ](ΚΑω\θ)-βι^Αω)\ + ατ] = ()-.
*=ίΛ · *=o' '

I Mr + QllUr"]«(ΛΔβ)) + Ql,u(CO)
r=\

+Z[*VX +<Α]«'>Δ"Γ-Σ[λΧ + <7r.X]
(*)'■ + CT = Υ\{μ;) e'kM‘T[t,{k^)] + CT\-.

4=0' '

k-)'

K
^ΜΓ(ΑτΔ6ί)/7,+ ··· ύτ (kAco)v* J*
'---------------------------------v----------------------------------- jT

μ,τ ®ΰτ (a>) [·=»;,/

[u (ΙίΑω)μΐ■■■ ur(kAco)p~J

el,
+Dl,u(kAm) + {^c[ μ* + dj μ ~(^p] μ* + q] μ )

+ CT = lfof )>" [*,(**«)]
4=0 '

+cr

ik-)‘

(//*γ®μγ(ΑΔο))

£,
-(X ®u {kAcoij

Qu

el.

+Dl;i(M«)+[x /] ^"-[z X]-n *

+ C71
*=o'

+cr

(4.189)
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(4.190)

For θ = pr,l

dx (kAo);0) + dx (kAco\6) T( s·
-dj/ur => — Oj [μ, J

dPr,l tyrj

Substituting (4.182) in (4.179) yields

dPrJ

Σ(έΓ (.;)' |Y(*Δω;0) - e(Mffl)] + Cf} = 0 => X{(^*)' \x', (kAco;i) - e, (kAco)] + CT ] = 0

Z[5,;/C + GrV." ]“(*AiU) + DTclu((o)
r-1

fZ[crX+4,,μ:]<γ'*λ"γ - Σ[λΧ+?,.,/<;]
r=l r=l

ΓιΓ,Ι

(4 + cr = Z{(^)*[^(^)]+cr
*=n '

uT (ΙίΔω)μ{ ··· ύτ(ΙίΑω)μ+ Jj

+QcA(kAa>) + [cjμ* + rf/V)e'J*4”7' - (pjμ+ + qj A")

+cr :Zfcf) [e,(*4<»)] + Cr *=<) ^

ter)'
(^μ*τ ®u (kAco)^ -(μ-τ®ΰΓμΑω))

Ql

Qi,

+&&Αω) + [μ*τ β-φ.]'-** ~[μ'τ F

+ C7 = t((//)’[^(^®)] + C7
*=(> '

(4.191)
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For θ = qr l

dxr(k/^ω-,θλ _ dxr*' (ΙίΑω-,θ) τ, _λ*
~ ~ ^ T = §J [Mr )
d(lrJ dclrJ

Substituting (4.182) in (4.179) yields

MU,0=
9<lr,l

[jcr (ΙίΔω,θ)-e(£A®)] + CT J = 0 => [*,r(£Aiu;0)-e,(£A<z))] + C7’ | = 0:
jt=0 ' * *=o' '

+ QljMr ]«(*Δ®) + Ocr,M(iW)
r=l

+Z[CrX + ^A]e"y‘W - Yj[_PrX + <?rX]

(ΧΪ + CT ■-Σ ((a)’ [i/(*A®)] + C7-j: *-0V ’

^wr(AAiy)//,+ ··· ύΓ(ΙίΔω)μ* j
μ’τ ®ιί (/») £,

(μ ) [y_r(kAco)pi ■■■ ΰΓ(ΙίΑω)μηι j· I
V-------------------------------- ----------------------------------' /~<Τ

μτ®ύτ(η>) [—w,/

+QljU(kA(0) + (sV + ώΤp)e~Jt*“T - (pyV + qf/f )

+ C7" :Σ((/Γ) [e,(kAco)] + CT\-- 
*=()'■ >

(4.192)

(4.193)

M

- (//·7'®«' (Μίϋ))

+ C7”

+θΐ;,ΰ(Μ®) + [/;- k'*w-[Ar ]-rl £'
Zik") [e,(*A«)] + CrJ*=() V '

where

CI,/
: • ,dj =■ ...

 jk
T3 II

A./

•■<7/ =·

A,/

:

cm,, dml l m-'J ./V

4.8.2 System Of Linear Algebraic Equations (Second Approach of 
Second Step)

Taking the stationary condition

y g | d* [*' (ifcAfi?; 0) -1 (*Ac?)] + cr j = 0 (4.194)
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dxr*7 (kAco;(j)
the derivative----------------------— must be evaluated

δθ

dxr': (kAa>;0)
-Σ

rel..

17

V
f

V 

(

?T \

dxj'1 (kAco-,θ) 

5Ψ,γ rel„

(jkAco) - λΐ,
λ

(o'kAco)-A‘.]ij(

~j$ ] /7*
(jkAco) - λ\ y l-

ysr

l V
((jkAco)-λ'Γ)

(u'T(kAa>)l +e*rg(7)-g(0))

d~ ^Δω’-)_ = u'T(kAo))£SjT = ut{kAa)S[
dDcJi

Substituting (4.195) - (4.197) in (4.194) yields

"Si.o=

((ολ)-ί;) J (h'>,U +i""7;(T)-7(0))|

Γ»Κ) , j‘r»K)
(M)~A K

^ /rr»i| , term k,
* +j{ + QW ,y
■ Λ(Μ)-Λ (Μ)-Λ- _

+ ur (cot)DcJ +

( e-J-J e-J~J \ f e-nr e-j~j Λ
,(Μ)-Λ+(Μ)-ΛΤ'( (Μ)-Λ'Γ( -

i i U . i
- + ------------ ~ £, (0)£ +7

S 5ium)-4

(M) - Ar (ja>t)-Xr

7rK)i'+«'"*7;(T)-i;(o))+

!
(jatJ-X, (jtok) - Λ,r f, (0)£,

+ CT

ΣΑΛωδ

{(je>k)~K

]T^(fermlr +lerm 2,)φ, + j(term lr + term2r)t//r j + ur(iU,)Dc,
+ Σ [('ermv)^ + J(lerm 4.r)^r]“ Σ [('erm5.r)^ + j ) Ψ, ]

(ίΓ(», )i + e'“*7; (T) - 7 (0)) Je, K) + C7- 

+cr ^ = ΣΙ |ς 4(®i A (®i)+CT

(4.195)

(4.196)

(4.197)

(4.198)
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a/(g)

< Κ(Μ)-Λ
■j(«'rK)r+e'"‘r#;(r)-i;(o))+

((Μ)-Λ')
(“■'ku +e'"ri;(T)-i;(o))

I »K) , x jw
(Μ)~Λ, (Μ)-Λ

/ e'y"‘r e'y",,r
1(Μ)“Λ +(Μ)~Λ'

^+V| ^jKL+XiK).
(Μ)~Λ (M)~A J~r

#, (T)^+v
'Μ7- p->mkT

(Μ)-Λ (Μ)-Λ

+ « Η )£>.,,+

ί, (τ)&

ι
(Μ)~Λ (Μ)~Λ

τ £(0)4+7 1
(Μ)-Λ (Μ)-Λ

Τ £ (<%

+cr

Lit Κ(Μ)~Λ
vrKU'+ey^;(T)-#;(o))+

[((Μ)-Λ’)
(η'γ(^ Π + (τ) - £ (0)) k κ)+C7-

+termlf')ipr + j(termw +term2f)t//r j + ii7 (o>4)Dr,
r*la

+Z[(te"”v)£ +y(^"!v)^]- Σ[(<β"”ν)Α + /(/e'7V)<^]
Σβ,Κ) +cr (4.199)
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(4.200)

where
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Qcj =

Dc,l 1

DcJN.„

}eRN'"x\ V/ = 1, Noul and <x>k = k/±co, k = 1, N.
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Chapter 5

Applications

5.1 Introduction

In the present study, the modal identification methodologies developed in previous chapters are 

used to analyze the dynamic modal characteristics of two bridges using real dynamic data. 

Simulated data are used for the validation of the methodologies through comparison of the 

estimated modal properties to the ones resulting from a 3 DOF and a 10 DOF spring mass chain 

model.

Further down, in Section 5.2, is presented the formulation of the response of a linear elastic 

structure, in the case when is supported at more than one point and is subjected to different input 

components. The formulation of the response to each input component depends on the fact that 

the multiple supports move independently of each other and induce quasi-static stresses that 

must be considered in addition to the dynamic response effects resulting from inertial forces. In 

Section 5.3 is presented the validation of the modal identification algorithms in time domain for 

both non-classically and classically damped modal models and in frequency domain for non- 

classically damped modal models using a 3 DOF and a 10 DOF spring mass chain model. In 

Section 5.4 the proposed identification methodologies are applied to the R/C bridge of Polymylos 

bridge for the low level, magnitude ML = 4.6, earthquake event that occurred on 21/2/2007 

(2:04:38 GMT) at a distance 35km Northeast of the bridge. The resulted values of the modal 

frequencies due to earthquake-induced vibrations are compared with the modal frequencies due 

to ambient vibrations estimated in other works. Finally, in Section 5.5 the proposed identification 

methodologies are also applied to the Vincent Thomas cable suspension bridge subjected to the 

1987 Whittier earthquake. The resulted values of the modal frequencies and the damping ratios 

are also compared with the results given from other works in the previous years.

5.2 Response of Structures Subjected to Multiple Base Excitation

In the case when a linear elastic structure is supported at more than one point and is subjected to 

different input components, the formulation of the response to each input component depends on 

the fact that the multiple supports move independently of each other and induce quasi-static 

stresses that must be considered in addition to the dynamic response effects resulting from 

inertial forces.

To formulate the equations of motion (2.1) for the general case of base excitation, the 

following partition of the displacement vector is considered
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(5.1)y = i
y.

L-sJ

where y * is the vector of the unknown nodal displacements and y is the vector of the given 

support displacements. In earthquake applications y consists of the independent input 

components that express, for example, the seismic excitation to which the structure is subjected. 

The equation of motion (2.1) is written

M,
M**

MSg
Mgg.

p\(0j ~c. c* [i.toi X X'
&(0j

’ +
c. Cgg.

*

[iWj
* +
X V

< (5.2)

where the external forces are assumed to be zero, i.e. u(t) = 0. The equilibrium equation 

expressing the motion of the response degrees of freedom can now be written in partitioned 

matrix form as follows

(5.3)

in which the motion vectors have been partitioned to separate the response quantities from the 

input, and the property matrices have been partitioned to correspond. The matrices that express 

forces in the response degrees of freedom due to motions of the supports are denoted with the 

subscript g. It is noted that (5.3) expresses the equilibrium of forces in the response degrees of 

freedom only, and that there are no external loads corresponding to these displacements.

An expression for the effective seismic loading is obtained by separating the support motion 

effects from the response quantities and transferring these input terms to the right hand side; thus 

the equation of motion of a structure excited at the base is considered to be:

M.,J + C«ys+K«L· = (5.4)

where Mss, Css, Kss are the mass, damping and stiffness matrices of the system, y = y is 
the vector of motion at Ns system degrees of freedom, y = z the vector of input motions at 

Nin base degrees of freedom and Msg, Csg, K the mass, damping and stiffness matrices that 

couple the system and base degrees of freedom (DOFs).

The solution for the response to this input can be simplified if the total response motions are 

expressed as the combination of a quasi-static displacement vector s , plus a dynamic response 

vector x

V = s + x
—S —

(5.5)
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The pseudostatic response represents the ‘static’ contributions of the individual support
motions to the system response and is obtained by setting all time-derivative terms to zero in

y = s
(5.4) and noting that the total displacements then are merely the quasi-static motions (- -)
given by

S = Dz (5.6)

where D is the pseudostatic matrix, which expresses that response in all degrees of freedom 

due to unit support motions and is given by:

D = ~K~' Ksf (5.7)

The dynamic component in (5.5) accounts for the contributions of the system’s fixed-base 

modal vibrations about its pseudostatic reference position. Thus, the equations of motion of the 

dynamic response components x are obtained by substituting (5.5) into (5.4) and satisfy the 

equation

M x+ Cx +Kx =-(M D +Msg)z-(CD + Csg)z (5.8)

It is noted that there is no stiffness term in the effective forces on the right side; it drops out 

because of the definition of the pseudostatic displacement matrix given by (5.7). It is also 

recognized that this relationship will eliminate any effective input associated with a stiffness- 

proportional component of the viscous damping. In fact, it can be demonstrated by numerical 

experiment that the entire velocity-dependent part of this effective input is negligible in 

comparison to the contribution due to inertia if the viscous damping ratio has any reasonable 

value (Clough and Penzien, 1993). Consequently, (5.8) may be written in the following 

approximate form:

M x+ Cx + K x = -{M D + Msg)z (5.9)

It is worth pointing out that equation (5.9) is of the same form as equation (2.1) with L in 

(2.1) replaced by MD + Msg and u(t) replaced by z(t). So the modal analysis and 
identification methods developed in this Thesis are directly applicable to structures subjected to 

different acceleration excitations at multiple supports.
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5.3 Validation of Modal Identification Algorithm using Simulated Data

The implemented algorithms, concerning the case of earthquake excitation, was validated by 

using simulated data from a 3-DOF and a 10 DOF spring mass chain model shown in Figure 1. 

The structures are excited at the base by specifying the base acceleration y .

(a) (b)

Figure 1: Spring mass chain-like models, (a) 3 DOF, (b) n DOF

The optimal modal parameters Θ, were estimated by using both the time domain approach, 

for both non-classically and classically damped modal models, and the frequency domain 

approach for non-classically damped modal models. The simulated data are generated by 

enforcing at the base of the model the El Centro earthquake acceleration and by computing the 

responses at all DOFs of the model. The available acceleration time history of the El Centro 

earthquake and its Fourier transform is shown in Figure 2.

The simulated absolute acceleration responses for selected floors computed by solving the 

equations of motion for the 3 DOF and the 10 DOF models are shown in Figure 3 and Figure 4, 

respectively, along with the Fourier transforms of the responses. These simulated data are used 

in the analysis that follows to validate the effectiveness of the modal identification algorithms.

(b)
Figure 2: (a) El Centro Acceleration time history and (b) El Centro Fourier transformation
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(a) (b)

Figure 3: Simulated responses for the 1st, 2nd and 3rd floor of the 3 DOF model: (a) absolute 

accelerations, (b) Fourier transform of absolute accelerations
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(a) (b)

Figure 4: Simulated responses for the 5th, 6th and 7th floor of the 10 DOF model: (a) absolute 

accelerations, (b) Fourier transform of absolute accelerations

Table 1: Comparison of optimal and real parameter values for Stabilization Diagram (First Step)

Spring Mass Chain-like Model Estimated Optimal Parameter 
Values

3 DOF 10 DOF Stabilization Diagram
3 DOF 10 DOF

ω Hz ζ ω Hz ζ ω Hz ζ ω ζ
(%) (%) (%) Hz (%)

1 0.95 1.00 1.17 1.00 0.95 1.02 1.17 1.01
2 2.25 1.00 3.49 1.00 2.25 1.00 3.49 1.00
3 3.78 1.00 5.72 1.00 3.78 1.00 5.72 1.01
4 7.79 1.00 7.79 1.00
5 9.64 1.00 9.66 1.00
6 10.05 1.00 10.05 1.00
7 11.23 1.00 11.23 1.00
8 12.52 1.00 12.52 1.00
9 13.46 1.00 13.46 1.01

10 14.04 1.00 14.06 1.05
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The estimated modal characteristics (modal frequencies and damping ratios), which result 

from the stabilization diagrams obtained in the first step of the modal identification algorithms, are 

summarized in Table 1 and they are compared to the modal characteristics of the model that was 

used to generate the simulated data. The stabilization diagrams are used to distinguish between 

physical and mathematical modes, shown in Figure 5 and in Figure 6 for the 3-DOF and the 10 

DOF spring mass chain model, respectively.

(a)

(b)

Figure 5: Stabilization Diagram forthe3-DOF chain spring mass model: (a) Average of the 

Fourier Transforms of 3 floors, (b) Fourier Transform of 1st floor
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ΟI______ ι______ i______ i______ i______ i______ i______ i______ i
0 2 4 6 8 10 12 14 16

Frequency (Hz)

(a)

(b)

Figure 6: Stabilization Diagram for the 10-DOF chain spring mass model: (a) Average of the 

Fourier Transforms of 10 floors, (b) Fourier Transform of 1st floor

In Figure 5 and Figure 6 the stabilized poles are pointed with a red square for each 

polynomial order. It is observed that the estimated modal frequencies and damping ratios were 

accurately identified (no major discrepancies between the modal frequencies and damping ratios 

resulted from the Stabilization Diagrams and the modal identification algorithm), which validates 

the effectiveness of the Stabilization Diagrams.
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Table 2: Comparison of optimal parameter values

Optimal Parameter Values

Time Domain Time Domain Frequency Domain
(classically damped) (non-classically damped) (non-classically damped)

3 DOF 10 DOF 3 DOF 10 DOF 3 DOF 10 DOF

ω ζ ω ζ ω ζ ω ζ co Hz ζ co Hz ζ
Hz (%) Hz (%) Hz (%) Hz (%) (%) (%)

1 0.95 1.00 1.17 1.00 0.95 1.00 1.17 1.01 0.95 1.01 1.17 1.02
2 2.25 1.00 3.49 1.00 2.25 1.01 3.49 1.00 2.25 1.00 3.51 0.99
3 3.78 1.00 5.72 1.00 3.78 1.07 5.72 1.06 3.78 1.00 5.72 0.97
4 7.79 1.00 7.79 1.00 7.78 0.99
5 9.64 1.00 9.66 1.03 9.66 1.01
6 10.05 1.00 10.05 1.00 10.05 0.97
7 11.23 1.00 11.23 2.00 11.23 0.77
8 12.52 1.00 12.52 2.00 12.52 0.75
9 13.46 1.00 13.46 2.00 13.46 0.75
10 14.04 1.00 14.04 2.00 14.04 0.76

The estimated modal characteristics for time domain approach and frequency domain 

approach are presented in Table 2. In Figure 7 it is observed that an accurate fit resulted from the 

convergence of the acceleration time histories predicted from the optimal modal model to the 
“measured” acceleration time histories for the 3-DOF and the 10 DOF chain spring mass model, 

which validates the effectiveness of the modal identification methodology. A similar fit is observed 

in Figure 8 for the Fourier Transforms of the accelerations.
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(a) (b)

Figure 7: Comparison between measurement data and modal model predictions (time histories 

of accelerations) (a) at the 1st and 2nd floor of the 3-DOF chain spring mass model and (b) at the 

5th and 6th floor of the 10-DOF chain spring mass model

Ffequency(Hz) Frequency(Hz)

(a) (b)

Figure 8: Comparison between measurement data and modal model predictions (Fourier 

Transforms of accelerations) (a) at the 1st and 2nd floor of the 3-DOF chain spring mass model 

and (b) at the 5th and 6th floor of the 10-DOF chain spring mass model
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The modal identification algorithm for time domain (non-classically and classically damped) 

and frequency domain was based on a number of modes for each chain spring mass model. It is 
obvious that the proposed optimization algorithms work effectively, since it correctly and 

accurately identifies the dynamic properties of the two models. In particular, for the 3 DOF model 

both modal frequencies and modal damping ratios were estimated very accurately for all the 

modes by all the proposed optimization algorithms. For the 10 DOF model, it is observed that for 

the first 6 modes the modal frequencies were estimated very accurately and the damping ratios 

were estimated quite accurately. In contrast, for the highest modes only the time domain 

methodology for classically damped modal models was accurately identified the values of the 

damping ratios of the model. This may be due to the fact that the El Centro earthquake used to 

create the simulated data did not excite adequately these highest modes. Also, because of the 

fact that the response for the general case of non-classically damped modal models, for both time 

and frequency domain methodologies, is described by complex-valued parameters such as the 

modeshapes and the participation factors, the number of the parameters involved in the nonlinear 

optimization process of such systems increases. Hence, the identification algorithm for non- 

classically damped modal models, cannot estimate accurately the values of the damping ratios 

for these modes.

5.4 Polymylos Bridge, Greece

This section applies the developed modal identification methodologies for estimating the dynamic 

modal characteristics of a representative bridge on the Egnatia Odos motorway, using 

earthquake induced vibration measurements. Egnatia Motorway is a new, 670 km long highway, 

that transverses Northern Greece in an E-W direction. The R/C bridge of Polymylos that were 

instrumented with special accelerometer arrays are the 9th Ravine Bridge on the Veroia - 

Polymylos section (Figure 9). The bridge has two, almost identical, statically independent 

branches, one for each traffic direction, one of which was instrumented. Modal identification 

results (modal frequencies modal damping ratios and modeshape components) for the Polymylos 

bridge are estimated for the low level, magnitude ML = 4.6 , earthquake event that occurred on 

21/2/2007 (2:04:38 GMT) at a distance 35km Northeast of the bridge.

5.4.1 Bridge Description and Instrumentation

The T-shaped 9th Polymylos bridge is curved in plan and has a total length of 170m. The deck 
cross section is a box girder of height varying parabolically from 9m at the central pier to 4m at 

the two abutments. It is supported monolithically by a central pier (Ml), of 35m height, which is 

founded on a massive rectangular R/C rock socket at its basement and continues with two 

transverse flanges for the rest of its height. Each of the two 85m-long cantilever parts of the deck 

girder rests on each abutment through special elastomeric bearings that allow free sliding in the
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longitudinal direction (to accommodate thermal expansions/contractions), while functioning as 

normal elastomeric pads in the transverse (radial) direction.

Figure 9: View of Polymylos bridge

Two 12-channel Kinemetrics K2 ® recording units were installed on the northern branch of 

the 9th Polymylos bridge (on deck level at the middle of the total bridge deck), each supporting 12 

uniaxial Kinemetrics Episensor ® accelerometers (± 2g full scale) installed on both sides of the 

bridge deck. The recording units have a 19-bit resolution, a sampling rate capacity of up to 

200sps and a dynamic range of 108 dB @ 200 sps. Fifteen sensors were installed on the deck, 

three on the basement of the central pier and three on each of the two abutments (at the support 

level of the elastomeric bearings), as shown in Figure 10. Thus, the nine sensors monitor the 

earthquake-induced excitations at the two abutments and the basement of the pier. The particular 

layout of the instrumentation permits the analysis of earthquake-induced response of the bridge. 
The 3 to 4-letter sensor labels follow the following convention: The last letter denotes the 

orientation of the uniaxial sensor (L: longitudinal, T: transverse, V: vertical). The previous one 

denotes the side of the bridge deck on which the sensor lies (R: right, L : left). Finally, the first one 

or two letters denote the bridge section that the sensor lies on (first letters U1 and U3 refer here 

to the abutment level where the elastomeric bearings are seated, U2 refers to the base of the 

central pier and all other letters refer to positions on the level of the bridge deck). The numbers 
next to each sensor label denotes the length of the cable used to connect the sensor to each 

recording unit. Among the 15 accelerometers located on the bridge deck, 8 record in the vertical, 

1 in the longitudinal and the rest 6 in the transverse direction.
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I
i

Figure 10: Instrumentation layout of Polymylos bridge

The modal identification carried out in the time domain and in the frequency domain using the 

measurements of the 24 accelerometers which were installed on the northern branch of the 9th 

Polymylos bridge. In particular, in the time domain the modal identification carried out using both 

non-classically damped and classically damped modal models. From the 15 accelerometers 

located on the bridge deck, accelerometers A2LV, A2RV and M2RV were excluded because they 

were damaged during the earthquake event. The accelerometer U1LV which monitors the 

earthquake-induced excitations at the right abutment of the bridge was also excluded for the 

same reason.

5.4.2 Modal Identification

Using all the eight (8) available input sensors which monitor the earthquake-induced 

excitations at the two abutments and the basement of the pier and all twelve (12) available output 

sensors, the values of the modal frequencies and modal damping ratios resulted from 

Stabilization Diagrams are presented in Figure 11 for: (a) the Fourier Transform of the 

accelerations of all vertical sensors, and (b) the Fourier Transform of the accelerations of all 

transverse sensors. After distinguishing the physical from the mathematical poles the values of 

the modal frequencies and modal damping ratios are presented in Table 3. Eight values of modal 

frequencies and modal damping ratios were identified. These values for the modal frequencies 

and the damping ratios were used for applying the next two steps described in Chapters 3 and 4 

and estimating the modeshape components and participation factors on the measured locations 

of the bridge.
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Figure 11: Stabilization Diagram for the Polymylos bridge: (a) Vertical Sensors, (b) Transverse
sensors

Table 3: Identified modal frequencies ω and damping ratios ζ of the Polymylos Bridge, 
obtained by the Stabilization Diagram for Earthquake Vibrations

Mode
Polymylos Bridge

Stabilization Diagram
ω Hz ζ (%)

1st Transverse 1,28 2.07
1st Bending (deck) 2.19 0.42

2nd Transverse 2.56 4.39
2na Bending (deck) 3.19 0.66

3rd Transverse 4.46 1.46
3rd Bending (deck) 6.89 0.66

4th Transverse 7.25 1.20
1st Torsional 8.4 0.58
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In Table 4 the values for the modal frequencies and damping ratios resulted from the 

identification algorithms for non-classically and classically damped modal models in time and 
frequency domain are presented and compared with the values identified using ambient vibration 

measured data presented in the work by Ntotsios et al. (2007).

Comparing the modal frequencies and damping ratios resulted from the Stabilization 

Diagrams and the modal identification algorithm for time and frequency domain it is observed that 

there are no major discrepancies. This validates that the values of the modal frequencies and the 

modal damping ratios which result from the Stabilization Diagrams constitute a very good 

approach of the optimal values that result from the modal identification algorithm.

Table 4: Identified and design FE model predicted modal frequencies ω and damping ratios ζ 
of the Polymylos bridge for Earthquake Vibrations

Mode

Polymylos Bridge Ambient 
Vibrations 
(Ntotsios 

et. al, 
2007)

Earthquake Vibrations

Frequency Domain 
(non-classically 

damped)

Time Domain 
(non-classically 

damped)

Time Domain 
(classically 
damped)

ω Hz ζ (%) ω Hz ζ (%) ω Hz ζ (%) ω Hz

1st Transverse 1.26 2.07 1.29 1.8 1.29 1.8 1.13
1st Bending (deck) 2.19 0.47 2.19 0.4 2.20 0.6 2.13
2nd Transverse 2.61 3.86 2.57 4.12 2.56 3.5 2.22

2nd Bending (deck) 3.19 0.61 3.19 0.66 3.20 0.7 3.07

3rd Transverse 4.45 1.55 4.30 2.49 4.23 3.2 4.10

3rd Bending (deck) 6.88 0.58 6.89 0.44 6.89 0.6 6.66
4th Transverse 7.17 1.38 7.24 1.2 7.24 1.2 6.78

1st Torsional 8.41 0.73 8,39 2,1 -

From the earthquake vibration data, it is noted that eight (8) modes were successfully and 

reliably identified for the Polymylos bridge: four transverse modes, three bending modes and one 
torsional. In Table 4, comparing the modal damping ratios, resulted from time domain and 
frequency domain, it is observed that the bending modes have significantly lower values of 

damping, of the order of 0.4% to 0.7%, than the damping values of the lower transverse modes 
which are of the order of 1.2% to 4.12%. The higher damping values observed for the lower 

transverse modes can be attributed to the energy dissipation arising from the higher modal 

deformation levels of the elastomeric bearings at the ends of the bridges which dominate the 
motion of these modes. Also, soil damping could also have contributed to the higher damping 

values observed for these modes.

Comparing the modal frequencies resulted from non-classically damped case and classically 

damped case for the time domain it is observed that there are no major discrepancies. For the
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modal damping ratios of bending modes, it is observed that the resulted values from non- 

classically damped case have lower values of the order of 0.4%-0.6% than the values resulted 

from classically damped case which are of the order of 0.6%-0.7%. For the transverse modes it is 

observed that the resulted damping ratios from non-classically and classically damped case of 1st 
and 4th mode have the same values, while the resulted damping ratios of the rest two modes 

have different values.

Comparing the results from time domain and frequency domain using non-classically damped 

modal models it is observed that the modal frequency of the 3rd transverse mode resulted from

the time domain has lower value of the order of 4.23.Uz than the value resulted foe*the

frequency domain which are of the order of 4.30 Hz. For the rest modes there are no major 

discrepancies between the values of the modal frequencies. Differences are also observed for the 

modal damping ratios for the transverse modes of the order of 0.26% - 0,94% and of the order of 

0.05% - 0.14% for the bending modes.

From the results in Table 4, it is observed that the modal frequencies due to earthquake 

vibrations are 4% to 15% higher than the modal frequencies identified in Ntotsios et. al (2007) 

from the ambient vibrations. No conclusive explanation can be given for these differences without 

making assumptions about the bridge behavior within the measured vibration levels. These 

differences could be attributed to the nonlinear softening hysteretic behavior of the structural 

components, especially the elastomeric bearings. The results in Ntotsios et. al (2007) reveal that 

the peak acceleration responses for the earthquake induced vibrations are 1.4 to 3.8 times lower 

than the peak acceleration responses of the ambient vibrations (Table 5). Accepting that the 

estimation of the equivalent modal frequencies is dominated by the peak vibration levels, this 

could justify a higher secant stiffness of the elastomeric bearings for the lower earthquake peak 

vibration levels which results in stiffer structures and thus justifies the increase in the equivalent 

values of the modal frequencies observed in Table 4 for earthquake induced vibrations. However, 

this explanation cannot be used to justify the higher modal frequency values observed for the 

modes associated with bending of the deck since these modes are not affected by the bearing 

stiffness. It is unlikely that similar softening nonlinear effects will arise by the deformation of the 

pier and deck elements in these low vibration levels.

In Ntotsios et. al (2007) the values of the modal frequencies were also identified using much 
shorter duration segments of the ambient vibrations recordings shown in Figure 12, selected so 

that the peak acceleration levels are the same as or smaller that the peak acceleration of the 

earthquake recordings. The estimated values of the modal frequencies obtained by analyzing 

these short duration segments were found to be almost identical to the values of the modal 

frequencies that were estimated using the whole, approximate 30 minutes, segment of the 

records shown in Figure 12. This verifies that at the low vibration levels considered, the 

aforementioned differences in the peak acceleration levels between the ambient and the 

earthquake induced vibrations cannot justify the large differences in the modal frequencies 

observed in Table 4.
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Figure 12: Accelerations time history measurements from ambient (Ntotsios et. at, 2007) and 
earthquake vibrations at sensors B2RV and SRT„(a,c) ambient,^d) earthquake

Table 5: Comparison of Peak and RMS response acceleration obtained from Ambient (AV) and 

Earthquake (EV) induced Vibrations (Ntotsios et. al, 2007)

Peak response (cm/sec2) RIV S (cm/sec2)
Channel AV EV AV/EV AV EV AV/EV

B2LV 23.2470 7.1062 3.2714 0.9181 1.9397 0.4733
M2LL 2.1767 1.0009 2.1747 0.0922 0.2407 0.3830
M2LV 11.2310 2.9575 3.7975 0.6044 0.7350 0.8223
SLV 15.9950 6.6148 2.4181 0.8847 2.0163 0.4388

T3RT 5.9160 3.3652 1.7580 0.1825 0.7129 0.2561
B2RV 26.9220 7.3206 3.6776 0.9704 1.7120 0.5668
B2RT 7.7054 2.3919 3.2215 0.2928 0.6667 0.4392
M2RT 4.3362 2.5179 1.7221 0.2582 0.6141 0.4204
A2RT 5.5674 2.5210 2.2084 0.2559 0.5911 0.4329
SRV 17.4100 12.3900 1.4052 0.9418 2.5206 0.3737
SRT 4.9252 2.5542 1.9283 0.2783 0.5786 0.4810

T1RT 1.2481 2.3865 0.5230 0.0401 0.6104 0.0657

In contrast to the peak vibration levels, the levels of the RMS response in Table 5 of the 

approximately 30 minutes ambient acceleration measurements are 0.25 to 0.82 times the 

corresponding root mean square earthquake response levels. Accepting that the estimation of the
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equivalent modal frequencies in Table 4 is dominated by the RMS vibration levels, the modal 

frequencies due to higher RMS earthquake vibration levels are expected to decrease if softening 
of the elastomeric bearings take place, which is not consistent with the opposite increasing trend 

observed in Table 4.

A more reasonable explanation that can account for the differences in the identified values of 

the modal frequencies in Table 4 is soil structure interaction effects (Safak 1995). In this work 

(earthquake vibration case), the modal properties of the system were identified using as input 

acceleration the eight recordings at the two abutments and the base of the central pier and as 

output accelerations the twelve available recordings along the bridge deck. Thus, ignoring the 

rigid body rotation of the central pier foundation at the low vibration levels measured, the modal 

frequencies identified by the input-output earthquake vibration measurements are those of the 

fixed base bridge, excluding the effects of soil-structure interaction since the base motion of the 

abutment and the pier foundation were used as input accelerations in the modal identification 

process. In contrast, in Ntotsios et. al (2007) for the ambient vibration case, the modal properties 

of the system, obtained from the ambient measurements due to excitations from the traffic and 

wind loads, were identified using only the twelve output accelerations recorded along the bridge 

deck. Thus, the modal frequencies due to ambient vibrations correspond to the dynamic 

characteristics of the combined system consisting of the bridge and accounting for soil structure 

interaction effects. This interaction effect is due to the additional soil flexibility provided at the 

base supports of the bridge. The presence of this effect is also supported from the non-zero 

vibration levels recorded at the base of the pier and the top of the side abutments during ambient 

measurements. Thus, soil-structure interaction effects cause the combined soil-foundation- 

superstructure system to appear as less stiff than the superstructure (fixed-based bridge) itself, 

resulting in lower values of the modal frequencies which is consistent with the results observed in 

Table 4.

Representative measured modeshapes (1st bending and 1st transverse) are shown in Figure 

13 for the Polymylos Bridge obtained by the time domain identification algorithm using non- 

classically damped modal models. The identified modeshapes are in general complex valued. 

Figure 14 represents in polar plots two representative modeshapes (1st bending and 1st 

transverse) based on earthquake-induced vibrations. These plots have the advantage to show 

directly the extent of non-classically damping characteristics of a modeshape. If all components of 
a modeshape vector are collinear (in phase or 180 degrees out of phase) then this mode is said 

to be classically (or proportionally) damped. On the contrary, the more these modeshape 

components are scattered in the complex plane, the more the mode is non-classically (or non- 

proportionally). For example, in Figure 14 it is observed that the 1st transverse mode (1.29 Hz) is 

nearly classically damped. In Figure 15 the earthquake-induced accelerations and the 

accelerations predicted by the optimal modal model for selected sensors are compared. In Figure 

16 the Fourier transform (FT) of the earthquake-induced accelerations and the FT of the 

accelerations predicted by the optimal modal model for selected sensors are compared. A very
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good fit is observed, validating the effectiveness of the proposed modal identification software 

based on earthquake recordings. All Figures of the modeshapes are shown in the appendices.

1st Bending: 2.1932 Hz. zeta: 0.395% 1st Transverse: 1.2851 Hz, zeta: 1.827%

Figure 13: (a) 1st bending and (b) 1st transverse modeshape of the Polymylos bridge

1st Bending (2.19 Hz)
1st Transverse (1.28Hz)

Figure 14: Polar plots representation of (a) 1st bending and (b) 1st transverse of the Polymylos
Bridge

ime(sec) ome(sec)

Figure 15: Comparison between measured and optimal modal model predicted accelerations 

recordings for selected sensors of the Polymylos Bridge
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Figure 16: Comparison between measured and optimal modal model predicted Fourier 

Transforms of accelerations recordings for selected sensors of the Polymylos Bridge

5.5 Vincent Thomas Bridge, Los Angeles, California

The Vincent Thomas Bridge is a 6060 feet (1847 m) long bridge crossing the Los Angeles Harbor 

in the U S. state of California (Figure 17). It is a cable-suspension bridge, consisting of a main 

span of approximately 457 m, two suspended side spans of 154 m each, and a 10-span approach 

of approximately 545 m length on either end. The roadway accommodates four lanes of traffic. 

The bridge was completed in 1964, and in 1980 was instrumented with 26 accelerometers as part 

of a seismic upgrading project. The measurement data from the sensor’s network were obtained 

by the Center for Engineering Strong Motion Data (CESMD).

Figure 17: View of Vincent Thomas Bridge
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Figure 18 shows the layout of the location of the 26 sensors mounted on the bridge. Thirteen 

sensors were installed on the deck and three sensors on the top of the east tower, three sensors 

on the bottom of the west tower, four on the bottom of the east tower and three sensors on the 

eastern cable anchorage, as shown in Figure 18. Thus, the ten sensors monitor the earthquake- 

induced excitations at the bottom of the two towers and at the eastern cable anchorage. Notice 

that the eastern half of the bridge is more densely instrumented. This is because the analog 

recorder is housed in the eastern cable anchorage. The particular layout of the instrumentation 

permits the analysis of earthquake-induced response of the bridge. Among the 16 accelerometers 

located on the bridge deck and at the top of the towers, 6 record in the vertical, 3 in the 

longitudinal and the rest 7 in the transverse direction.

Los Angeles - Vincent Thomas Bridge
Caltrans Bridge No. 53-1471 (07-LA-47-0 86)
CSMIP Station No. 14406

SENSOR LOCATIONS

Elevation

Top of Tower 
15 17

a*11
1*10

21

Structure Reference 
Orientation: N„f=10"

N

i 1 t |*2 -------------- rr-n—
16 .

6*i *7
-**· Λ

I1 1 ' ■i8Top of Truss 12 22

1 |Q 1 II
II 1 *3 1 IIIIII III

ΓΊ π
: I ;i1__ I u

Π 1 1
14^*23

1

Bottom of Truss 

Foundation Plan

20f*1 1
19 ϋ* 13Γ9

π ' 1
II 1 261 ϋ LTji*2!

24
10/22/81 

Rev. 05/08/98

Figure 18: Instrumentation layout of Vincent Thomas Bridge
(http://www.stronqmotioncenter.org)

The modal identification carried out in the time domain and in the frequency domain using 

non-classically damped modal models for the 1987 Whittier earthquake (M, =6.1). As it is 

mentioned in previous works (Lus et at, 1999, Smyth et al., 2003), the measurements of the 

earthquake-induced excitations and accelerations of the bridge were highly non-stationary for the 

Whittier earthquake. It is also known that the response of the bridge was highly non-linear during 

the peak times. Therefore, in the study of Lus et al. (1999) the final 50 sec of the records was 

used, in which the strong ground accelerations have died out. In this study, for the identification of
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structural parameters of the Vincent Thomas Bridge, the inputs were the accelerations of the ten 

(10) sensors located at the base of the structure and the outputs were the accelerations of five (5) 

vertical sensors. In the study of Smyth et al. (2003) the identification of structural parameters of 

the Vincent Thomas Bridge for the 1987 Whittier earthquake was done using the last 40 sec of 

the records in order to compare their results with the results from the study of Lus et al. (1999). 

The inputs were the same as in the study of Lus et al. (1999) but the outputs were the 

accelerations of all sensors on the deck of the bridge and on the towers.

In this work the identification of structural parameters of the Vincent Thomas Bridge was done 

for the recorded time lengths of 80 sec, using for inputs the accelerations of the ten (10) sensors 

located at the base of the structure and for outputs the accelerations of all sensors. Modal 

identification results (modal frequencies and modal damping ratios) for the Vincent Thomas 

Bridge are shown in Table 6 compared with the values identified by Lus et al (1999) and Smyth et 

al. (2003). In Table 6 are also presented the values of the modal frequencies and modal damping 

ratios resulted from the Stabilization Diagram (Step 1). In contrast with the two aforementioned 

studies (Lus et al., 1999, Smyth et al., 2003), in this work the identification of structural 

parameters of the Vincent Thomas Bridge was done for the recorded time lengths of 80 sec and 

therefore this is a more challenging identification problem. In the study of Smyth et al. (2003), 

several modal frequencies have been highlighted with a '*’ symbol for comparison with similar 

results in Lus et al. (1999). Similar to this, in Table 6 the same modal frequencies have been 

highlighted with the '*' symbol for comparison with the resulted modal frequencies and damping 

ratios from the modal identification algorithm which have been developed in this thesis. As it is 

mentioned in the study of Smyth et al. (2003), these modes exhibited a significant vertical 

component in the modeshapes. This is consistent with the results of this work. This can be shown 

in Figure 20 in which two representative modeshapes in 0.211 Hz and 0.950 Hz are presented 

where a significant vertical component is observed.

Using all ten (10) input sensors which monitor the earthquake-induced excitations at the 

bottom of the two towers and at the eastern cable anchorage and all sixteen (16) output sensors, 

the values of the modal frequencies and modal damping ratios resulted from Stabilization 

Diagrams are presented in Figure 19 for: (a) the average of the Fourier Transforms of 

accelerations of all the output sensors, (b) the Fourier Transform of acceleration of a selected 

vertical sensor, and (c) the Fourier Transform of acceleration of a selected transverse sensor. It is 
observed that there are no clearly results for the modal frequencies and modal damping ratios. 
This is may be due to the existence of to many closely spaced and overlapped modes. Thus, in 

this case is up to the user to choose the optimal values of the modal frequencies and modal 
damping ratios. In Table 6, the “selected” values of the modal frequencies and modal damping 

ratios are presented and further down they are compared with the corresponding optimal values 

resulted from the modal identification algorithm in the time and in the frequency domain.
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Table 6: Identified modal frequencies ω and damping ratios ζ of the Vincent Thomas Bridge

Vincent Thomas Bridge (Whittier earthquake)

Modal Identification Algorithm

Stabilization
Diagram

Time Domain 
(non-classically 

damped)

Frequency
Domain

(non-classically
damped)

Smyth et al.
(2003)

All sensors 
(records of the 

last 40 sec)

Lus et al. 
(1999) 
Vertical 
sensors 

(records of the 
last 50 sec)

ω Hz ζ (%) ω Hz ζ (%) ω Hz ζ (%) ω Hz ζ
(%)

ω Hz ζ (%)

0.211 0.10 *0.212 1.20 0.234 1.5

- - *0.242 1.70 0.388 38.2

0.384 73.22 0.317 0.07 *0.317 -4.30 0.464 9.7

0.514 66.32 0.529 4.12 0.531 10.20 0.576 9.9
0.581 3.73 *0.570 0.06 0.617 14.5

0.626 8.77 0.626 -3.15 *0.636 4.20 0.617 76.8

0.662 0.72 0.671 1.83 0.672 0.10 0.769 29.7

- - 0.734 2.40 0.804 1.4

0.829 4.59 0.822 6.11 *0.818 1.90 0.857 11.6

0.938 1.41 0.950 0.65 *0.958 2.90 0.947 4.3

1.012 5.94 0.983 1.69 1.022 1.49 1.027 -1.90

1.136 9.13 1.111 1.83 1.107 0.93 *1.111 1.30

1.170 1.56 1.157 0.58 *1.159 1.70

1.414 6.06 1.397 3.90 1.391 2.30
1.547 0.83 1.554 -1.30

2.102 6.95 2.292 0.73 2.274 1.33
3.458 6.80 3.428 2.75
4.361 2.83 4.333 0.75
4.573 2.38 4.572 0.47

5.548 2.79 5.674 0.19
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(a)

Figure 19: Stabilization Diagram for the Vincent Thomas Bridge: (a) average of the Fourier 

Transforms of accelerations of: all sensors, (b) Fourier Transform of acceleration of the vertical 

sensor 16, and (c) Fourier Transform of acceleration of the transverse sensor 5
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0.211 Hz, zeta: 0.10% 0.950 Hz, zeta: 0,65%

Figure 20: Two representative modeshapes in 0.211 Hz and 0.950 Hz of the Vincent Thomas

Bridge

Comparing the modal frequencies and damping ratios resulted from the Stabilization 

Diagrams and the modal identification algorithm for time and frequency domain it is observed that 

Stabilization Diagrams does not provide good estimates of the optimal values of the modal 

frequencies. In contrast, it is observed that the resulted values from the Stabilization Diagrams of 

the modal damping ratios have major discrepancies compared with the optimal values of the 

modal damping ratios from the identification algorithm in time and frequency domain. This may be 

due to the presence of many closely spaced and overlapped modes combined with the presence 

of instrumentation noise and the affect of “leakage” in the computation of the FFTs of the 

measured time histories.

In Table 6 it is observed that the number of the modal frequencies (and damping ratios) 

identified in the frequency domain is greater than the number of identified modal frequencies (and 
damping ratios) in the time domain. In particular, it should be noted that time domain identification 

algorithm cannot identify the lower and higher frequencies, in a frequency band of 0-6Hz, and that 

for the low frequencies very high damping estimates are obtained. This may indicate that the 

particular time domain methodology have problems to reliably identify modal frequencies (and 

damping ratios) when they are closely spaced and overlapped. In contrast, 18 modes were 

successfully and reliably identified by the frequency domain identification algorithm.

The identification method employed in Lus et al. (1999) is constrained to give only positive 

damping estimates and does not therefore yield the few negative damping estimates obtained in 

the study of Smyth et al. (2003). In this thesis high damping estimates are observed in the results 

from time domain identification algorithm for two modes. This points the difficulties associated 
with accurate estimation of damping from this type of data set in the time domain algorithm. It has 

to be mentioned that in this work the identification was done for the recorded time lengths of 80 

sec which complicates more the identification process. In Table 6, it is observed that the values of 

the modal frequencies resulted from frequency domain identification algorithm are similar to the 

values which resulted from the analysis in the study of Smyth et al. (2003), while the modal
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damping ratios have major differences. This evidence that the frequency domain methodology 

which has been developed in this work is more efficient than the time domain methodology for 

from this type of data set.

Further down representative measured modeshapes in polar plots (0.211 Hz and 0.950 Hz) 

are shown in Figure 21 for the Vincent Thomas Bridge obtained by the frequency domain 

identification algorithm using non-classically damped modal models. In Figure 22 the earthquake- 

induced accelerations and the accelerations predicted by the optimal modal model for selected 

sensors are compared. In Figure 23 the Fourier transform (FT) of the earthquake-induced 

accelerations and the FT of the accelerations predicted by the optimal modal model for selected 

sensors are compared, for the frequency band 0-1.6 Hz.

0.211 Hz 0950 Hz

Figure 21: Polar plots of two representative modeshapes in 0.211 Hz and 0.950 Hz of the

Vincent Thomas Bridge

Figure 22: Comparison between measured and optimal modal model predicted accelerations 

recordings for selected sensors of the Vincent Thomas Bridge
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Figure 23: Comparison between measured and optimal modal model predicted Fourier 

Transforms of accelerations recordings for the frequency band 0-1.6 Hz for selected sensors of

the Vincent Thomas Bridge

109

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 05:50:00 EEST - 3.147.82.236



5.6 Appendix

Modeshapes of Polymylos bridge

1st Transverse: 1.2851 Hz. zeta: 1.827% 2nd Transverse: 2.5703 Hz. zeta: 4.121%

3rd Transverse: 4.3076 Hz, zeta: 2.496%
4th Transverse: 7.2364 Hz. zeta: 1.233%

1st Bending: 2.1932 Hz. zeta: 0.395%

3rd Bending: 6.8895 Hz, zeta: 0.440%

2nd Bending: 3.1903 Hz. zeta: 0.622%

Torsional: 8.3907 Hz. zeta: 0.618%
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Polar Plots of Modeshapes of Polvmvlos bridge

1st Transverse (1 28Hz) 2nd Transverse (2.57 Hz)
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Time Histories of Polvmvlos bridge
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Chapter 6 

Conclusions

Modal identification methodologies for estimating the dynamic modal characteristics of civil 

engineering structures have been developed in this thesis using earthquake induced vibration 

measurements. The main objective of this work has been to determine the modal and other 

parameters of non-classically damped modal models used to describe the response of linear 

structures subjected to multiple base excitations.

The identification has been performed by analysis in the time domain and in the frequency 

domain. The methods developed by McVerry (1980) in the frequency domain and Beck and 

Jennings (1980) in the time domain, have been extended in this work to treat non-classically 

damped modal models. Additionally, time domain methodology for identifying the modal and other 

parameters of classically damped modal models has been also developed. The optimal values of 

the modal parameters, such as modal frequencies, modal damping ratios and modeshapes, were 

obtained by the implementation of an output error methodology. In time domain analysis, the 

optimal values were obtained by minimizing a measure of fit between the output measured 

acceleration time histories and the predicted acceleration time histories by a modal model. In 

frequency domain analysis, the optimal values were obtained by minimizing a measure of fit 

between the theoretical Fourier transform of the model response to the Fourier transform of the 

measured response acceleration.

In particular, the modal identification methodology have been developed in a three step 

approach. In the first step, the PolyMAX or polyreference least-squares complex frequency 

domain method, developed by Peeters et. al (2004), has been extended in order to treat non- 

classically damped modal models describing a system’s response characteristics based on 

earthquake-induced vibration data. . In the second step, the resulted values of modal frequencies 

and modal damping ratios from the first step were used for the time and the frequency domain 

methodologies, in order to compute the modeshape components and the participation factors. 

Finally, the solution of a nonlinear optimization problem using initial conditions from the previous 
steps improves the modal estimates and it is recommended for the identification of closely 

spaced and overlapped modes.

The number of variables to be optimized depends on the number of contributing modes. In 

order to overcome the problem of the large number of variables involved, improve the robustness, 

and accelerate convergence, a modal sweep approach was proposed for which each mode was 
optimized separately while the contribution from the rest of the modes was held constant. In 

addition, for time domain and frequency domain analysis analytically evaluated gradients of the
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cost function have been implemented in to the modal identification algorithm accelerating more 
the convergence.

The modal model identification methods were implemented in Matlab software. The software 

was validated using simulated data from a 3 DOF and 10 DOF spring mass chain model. It was 

observed that an accurate fit resulted from the convergence of the acceleration time histories 

predicted from the optimal modal model to the “measured” acceleration time histories for the 3- 

DOF and the 10 DOF spring mass chain model and a similar fit was observed for the Fourier 

Transforms of the accelerations. It was also observed that the estimated modal frequencies and 

damping ratios resulted from the Stabilization Diagrams were accurately identified (no major 

discrepancies between the modal frequencies and damping ratios resulted from the Stabilization 

Diagrams and the modal identification algorithm), which validates their effectiveness.

The modal model identification methods were also applied to two bridges in order to identify 

their modal properties. The identification methodology applied to the R/C bridge of Polymylos 

subjected to a low level magnitude earthquake event reliably identified eight of the lower modes. 

The results showed that the damping values of the bending modes are of the order of 0.4% to 

0.7% which is significantly lower than the damping values of the transverse modes. This is 

attributed to the higher damping provided by the elastomeric bearings for the latter modes. 

Comparing the modal frequencies due to earthquake-induced vibrations estimated in this work, 

with the modal frequencies due to ambient vibrations estimated in other works, showed that they 

are 4% to 15% higher. This is attributed mainly to the soil-structure interaction effects contributing 

to the dynamics of the bridge systems during ambient excitation. These effects are not present in 

the identified dynamics of the system based on earthquake-induced vibrations due to the use of 

the input acceleration measurements of the base of the piers and the abutments.

The identification methodologies were also applied to the Vincent Thomas cable suspension 

bridge subjected to the 1987 Whittier earthquake. Despite the fact that the Whittier earthquake 

was highly non-stationary and the bridge response was highly nonlinear during the peak times, 18 

of the bridge modes were identified using the frequency domain methodology. The time domain 

methodology showed lack of reliability especially for the identification of the lower closely spaced 

and overlapped modes. The values of the modal frequencies and the damping ratios estimated in 

the present work were also compared with the results given from other works in the previous 
years. This comparison showed that the values for the modal frequencies are similar, while the 
modal damping ratios have major discrepancies.

Through the application of identification methods to these real structures, a great degree of 

experience was gained, developing intuition of the way the techniques lead to the desired result 

and of the problems that emerge in the process.
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