Packetostatics: Deployment of massively dense sensor networks as an electrostatics problem
Ημερομηνία
2005Λέξη-κλειδί
Επιτομή
We investigate the spatial distribution of wireless nodes that can transport a given volume of traffic in a sensor network, while requiring the minimum number of wireless nodes. The traffic is created at a spatially distributed set of sources, and must arrive at a spatially distributed set of sinks. Under a general assumption on the physical and medium access control (MAC) layers, the optimal distribution of nodes induces a traffic flow identical to the electrostatic field that would exist if the sources and sinks of traffic were substituted with an appropriate distribution of electric charge. This analogy between Electrostatics and wireless sensor networks can be extended in a number of different ways. For example, Thomson's theorem on the distribution of electric charge on conductors gives the optimal distribution of traffic sources and sinks (that minimizes the number of nodes needed) when we have a limited degree of freedom on their initial placement. Electrostatics problems with Neumann boundary conditions and topologies with different types of dielectric materials can also be interpreted in the context of wireless sensor networks. The analogy also has important limitations. For example, if we move to a three dimensional topology, adapting our general assumption on the physical and MAC layers accordingly, or we stay in the two dimensional plane but use an alternative assumption, that is more suited to Ultra WideBand communication, the optimal traffic distribution is not in general irrotational, and so can not be interpreted as an electrostatic field. Finally, the analogy can not be extended to include networks that support more than one type of traffic. © 2005 IEEE.
Collections
Related items
Showing items related by title, author, creator and subject.
-
CONTENT project: Considerations towards a cloud-based internetworking paradigm
Katsalis, K.; Korakis, T.; Landi, G.; Bernini, G.; Rofoee, B. R.; Peng, S.; Anastasopoulos, M.; Tzanakaki, A.; Christofi, D.; Georgiades, M.; Larsen, R.; Riera, J. F.; Escalona, E.; Garcia-Espin, J. A. (2013)Although cloud computing and the Software Defined Network (SDN) framework are fundamentally changing the way we think about network services, multi-domain and multitechnology problems are not sufficiently investigated. ... -
Backbone formation in military multi-layer ad hoc networks using complex network concepts
Papakostas D., Basaras P., Katsaros D., Tassiulas L. (2016)Modern battlefields are characterized by increasing deployment of ad hoc communications among allied entities. These networks can be seen as a complex multi-layer ad hoc network, where each layer may be an independently ... -
Query sensitive storage for wireless sensor networks
Papadimitriou, A.; Katsaros, D.; Manolopoulos, Y. (2009)Storage management in wireless sensor networks is an area that has started to attract significant attention, and several methods have been proposed, such as Local Storage (LS), Data-Centric Storage (DCS) and more recently ...