
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

BOOSTING OF NEURAL NETWORK TRAINING BY

TOPOLOGY PRUNING

Diploma Thesis

Chouliaras Andreas

Supervisor: Katsaros Dimitrios

Volos 2021

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

BOOSTING OF NEURAL NETWORK TRAINING BY

TOPOLOGY PRUNING

Diploma Thesis

Chouliaras Andreas

Supervisor: Katsaros Dimitrios

Volos 2021

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΠΙΤΑΧΥΝΣΗ ΕΚΠΑΙΔΕΥΣΗΣ ΝΕΥΡΩΝΙΚΩΝ

ΔΙΚΤΥΩΝΜΕ ΧΡΗΣΗ ΤΕΧΝΙΚΩΝ ΚΛΑΔΕΜΑΤΟΣ

ΤΟΠΟΛΟΓΙΑΣ

Διπλωματική Εργασία

Χουλιαράς Ανδρέας

Επιβλέπων/πουσα: Κατσαρός Δημήτριος

Βόλος 2021

v

Approved by the Examination Committee:

Supervisor Katsaros Dimitrios

Associate Professor, Department of Electrical and Computer En

gineering, University of Thessaly
Member Bellas Nikolaos

Professor, Department of Electrical and Computer Engineering,

University of Thessaly
Member Thanos Georgios

Member of Laboratory Teaching Staff, Department of Electrical

and Computer Engineering, University of Thessaly

Date of approval: 1592021

vii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Prof.

Dimitrios Katsaros for his invaluable advice and continuous support throughout my research.

Your insightful feedback and the material you readily provided, helped me exceed my powers

and brought my work to a higher level. Secondly, I would like to acknowledge the help of

the Post Doc Researcher Evangelia Fragkou for her contribution to the literature review and

for her precious feedback.

I would also like to thank the Emeritus Professor Dr. Elias Houstis. With his valuable

teachings and tenacity, he pushed me to surpass my limits multiple times and sparked my

interest in pursuing a career in Data Science. To my eyes, he was a true mentor during the

latest years of my studies.

I can’t omit my parents to whom I will forever be grateful, for their unconditional love

and support, and their unwavering belief in me, who were beside my every stressful moment,

my every success and failure, every joy and sadness. I am very fortunate to be your son.

Last but not least, I would like to thank all my friends, for cheering me up on my difficult

and stressful times, and for providing me a safe space to relax from the difficulties and the

adversities of life.

”You don’t have to see the whole

staircase, just take the first step.”

Martin Luther King Jr.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Chouliaras Andreas

1592021

x

Abstract

Recent research in the field of deep learning aim to reduce the model size of a Neu

ral Network, using methods of Pruning in order to minimize its computational costs and its

data requirements, in order to be capable to run on devices with memory constraints. In this

thesis, we employ a pruning technique in order to sparsify MultiLayer Perceptron (MLP)

Networks, where their number of connections are pruned and restored at each epoch. We in

troduce three new techniques that use changing weight evolution rates, each one of which

following a rule: Linear Decreasing Variation (LDV), Oscillating Variation (OSV) or Ex

ponential Decay (EXD). We conducted experiments on many different datasets using MLP

Networks, implemented in Python using sparse matrix operations, and evaluated based on

their memory footprint, speed and accuracy, when compared to the SET procedure and their

dense MLP counterpart. The results showed that the EXD method is the best performing

method, achieving the lowest time costs, with memory footprints of the same level as all our

tester sparse methods and accuracy results of the same approximate level to the other meth

ods tested, while in many cases even surpassing them. Furthermore, we show that the sparse

models using Keras, are underperforming by a great margin to the dense one. This is a little

counterintuitive to the benefits of model sparsification. As a result, we present an improved

version of the SET implementation in Keras, using the Callbacks API, making the SET im

plementation more efficient and closer to its original concept. This managed to bring the the

sparse models training costs to the same level as the dense one. In addition, we compared

the relative time costs between sparse and dense models on both the Keras Implementation

and our Python implementation that uses sparse matrix operations. We show that the sparse

models are substantially faster to the dense ones when using sparse matrix operations, indi

cating that the differences in computational costs, when using Keras, are due to the fact that

Keras don’t use sparse matrix operations. This confirms many claims stating that the current

frameworks cannot fully benefit for the application of Sparse Network Topologies.

xi

Περίληψη

Πρόσφατες έρευνες στη Βαθιά Μάθηση έχουν ως στόχο την ελάττωση του μεγέθους

των μοντέλων Νευρωνικώ Δικτύων, χρησιμοποιώντας τεχνικές κλαδέματος για να μειώσουν

υπολογιστικά κόστη και απαιτήσεις σε μνήμη, ώστε να μπορούν να τρέξουν σε μικρές συ

σκευές. Σε αυτήν την διπλωματική χρησιμοποιούμε μια τεχνική κλαδέματος για την αραιο

ποίησηMultiLayer Perceptron (MLP) δικτύων, όπου ο αριθμός συνδέσεών τους κλαδεύεται

και αποκαθίσταται σε κάθε εποχή. Εισάγουμε τρεις νέες τεχνικές που εφαρμόζουν μεταβλη

τούς ρυθμούς εξέλιξης βαρών, με καθεμία να ακολουθεί έναν από τους επόμενους κανόνες:

Γραμμική Φθίνουσα Μεταβολή (LDV), Μεταβλητή Ταλάντωση (OSV), Εκθετική Παρακμή

(EXD). Διεξήγαμε πειράματα σε αρκετά σετ δεδομένων με δίκτυα MLP, υλοποιημένα σε

Python χρησιμοποιώντας πράξεις αραιών πινάκων, και αξιολογήθηκαν βάση του αποτύπω

ματος μνήμης, της ταχύτητα και της ακρίβειας τους σε σχέση με την μέθοδο SET και των

αντίστοιχων πυκνών δικτύων. Τα αποτελέσματα ανέδειξαν την μέθοδο EXD ως πιο αποδο

τική, πετυχαίνοντας τα χαμηλότερα χρονικά κόστη, με ακρίβεια αντίστοιχη των άλλων δοκι

μασμένων μεθόδων, και σε πολλές περιπτώσεις λίγο μεγαλύτερη ενώ το αποτύπωμα μνήμης

παραμένει ισάξιο των άλλων αραιών μεθόδων. Επιπλέον δείχνουμε ότι τα αραιά μοντέλα σε

Keras υποαποδίδουν των πυκνών. Όντας λίγο αντίθετο με τα αναμενόμενα οφέλη της αραίω

σης, παρουσιάζουμε μια βελτιωμένη έκδοση της υλοποίησης του SET σεKeras, με χρήση του

Callbacks API, κάνοντας τα αραιά μοντέλα αποδοτικότερα, κατορθώνοντας να φέρει αραιά

και πυκνά μοντέλα πιο κοντά σε κόστος εκπαίδευσης. Επιπλέον συγκρίναμε τα σχετικά χρο

νικά κόστη ανάμεσα σε αραιά και πυκνά μοντέλα, τόσο στην Keras όσο και στην Python

υλοποίηση που εφαρμόζει πράξεις αραιών πινάκων. Δείχνουμε πως τα αραιά μοντέλα είναι

σημαντικά ταχύτερα των πυκνών με την χρήση πράξεων αραιών πινάκων, δείχνοντας πως

οι διαφορές σε χρονικά κόστη με την χρήση του Keras, οφείλονται στην μη χρήση πράξεων

αραιών πινάκων. Αυτό επιβεβαιώνει ισχυρισμούς που δηλώνουν ότι οι σύγχρονες υποδομές

δεν μπορούν να αξιοποιήσουν πλήρως τα οφέλη των δικτύων με αραιή τοπολογία.

xiii

xiv Περίληψη

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xix

Abbreviations xxi

1 Introduction 1

1.1 Subject . 1

1.1.1 Contributions . 2

1.2 Structure . 2

2 Artificial Neural Networks 3

2.1 Introduction to Neural Networks . 4

2.1.1 Neural Networks, in General . 5

2.1.2 Interconnections Among Nodes 7

2.1.3 Design Issues for Neural Networks 7

2.2 Dense Feedforward Networks . 8

2.2.1 Linear Algebra Notation . 8

2.2.2 Activation Functions . 10

2.2.3 Loss Functions . 14

2.3 Training Neural Networks . 17

xv

xvi Table of contents

2.3.1 Gradients, Jacobians, and the Chain Rule 17

2.3.2 Iterating Gradient Descent . 19

2.3.3 The Stochastic Gradient Descent Variation 19

2.3.4 The Backpropagation Algorithm 20

2.3.5 Incremental vs Minibatch Learning 22

2.3.6 Heuristic Modifications of Backpropagation 23

2.3.7 Tensors . 26

2.4 Regularization . 27

2.4.1 Norm Penalties . 28

2.4.2 Dropout . 29

2.4.3 Dataset Augmentation . 30

3 Sparse Neural Networks 31

3.1 Related Work . 32

3.2 The Lottery Ticket Hypothesis . 33

3.3 A Small Reference to Network Science Concepts 35

3.3.1 Regular Graphs . 35

3.3.2 SmallWorld Networks . 35

3.3.3 ScaleFree Networks . 36

3.3.4 Erdös–Rényi Random Graphs . 36

3.4 Weight Masks . 37

3.5 Sparse Evolutionary Training (SET) . 37

3.5.1 The SET Procedure . 38

3.5.2 The Biological Background . 41

4 Proposed Techniques 43

4.1 Motivations from Biology . 44

4.2 Taking the logic behind SET one step further 45

4.3 Linear Decreasing Variation (LDV) . 45

4.4 Oscillating Variation (OSV) . 46

4.5 Exponential Decay (EXD) . 47

4.6 The Importance of Training Speed . 47

4.7 The TensorflowKeras Implementation Incidents 48

Table of contents xvii

5 Evaluation & Results 51

5.1 Experimental Evaluation . 51

5.2 Evaluation Settings . 52

5.2.1 Hardware Utilized and Software Implementations 52

5.2.2 Experimentation Categories . 52

5.2.3 The Memory Footprint . 54

5.2.4 Python Code vs Keras . 55

5.3 Results . 55

5.3.1 Comparing Performance on more Datasets 55

5.3.2 Comparing Keras Implementations 61

5.3.3 Comparing Speed Using Sparse Matrix Operations 63

5.3.4 Comparing Performance using 4 Hidden Layers 64

6 Conclusions 69

6.1 Summary and Conclusions . 69

6.2 Future work . 70

Bibliography 71

APPENDICES 75

A Utilized Software and Tools 77

A.1 The Implementations Used . 77

A.1.1 Custom Python Implementation 77

A.1.2 Custom Python Implementation 77

A.2 Tensorflow . 78

A.3 Keras . 78

A.4 Datasets . 79

A.4.1 The LUNG Dataset . 79

A.4.2 The ORL Dataset . 79

A.4.3 The ProstateGE Dataset . 80

A.4.4 The GLIOMA Dataset . 80

A.4.5 The Fashion MNIST Dataset . 81

xviii Table of contents

B Experimental Results and Figures 83

B.1 Comparing Performance on more Datasets 83

B.2 Comparing Keras Implementations . 84

List of figures

2.1 Perceptron, the fundamental unit of Neural Networks. 5

2.2 The general case of a neural network. 6

2.3 A graphical representation of the Heaviside Step Activation Function. . . . 11

2.4 A graphical representation of the Logistic Sigmoid Activation Function. . . 12

2.5 An example application of the Softmax Activation Function. 13

2.6 A graphical representation of the ReLU Activation Function. 13

2.7 Finding the proper Learning Rate. 19

2.8 An example error performance surface of two variables. 24

2.9 The impact of Momentum in Training. 25

2.10 A Neural Network before and after applying Dropout. 29

2.11 How Data Augmentation helps us generate more data. 30

3.1 Different kinds of Network Structures . 37

3.2 An illustration of the weight evolution procedure. For each sparse connected

layer, SCk (a) of a Neural Network, at the end of a training epoch a fraction

of the weights closest to zero, are removed (b). Then a number of weights is

randomly added that is equal tho number of weights removed (c). The process

is repeated at the end of each epoch for the rest of the training phase (d). . . 39

5.1 Accuracy of the Python code on the LUNG Dataset. 56

5.2 Training and Inference times on the LUNG Dataset. 56

5.3 Accuracy of the Python code on the ORL Dataset. 57

5.4 Training and Inference times on the ORL Dataset. 57

5.5 Accuracy of the Python code on the ProstateGE Dataset. 58

5.6 Training and Inference times on the ProstateGE Dataset. 58

5.7 Accuracy of the Python code on the GLIOMA Dataset. 59

xix

xx List of figures

5.8 Training and Inference times on the GLIOMA Dataset. 59

5.9 Accuracy of the Python code on the Fashion MNIST Dataset. 60

5.10 Training and Inference times on the Fashion MNIST Dataset. 60

5.11 Comparing the number of weights used between the Dense MLP and the

Sparse methods in the Fashion MNIST Dataset. 61

5.12 Comparative graph of Training Times using the old Keras implementation

versus our Keras implementation in the Fashion MNIST Dataset. 62

5.13 Comparative graph of Inference Times using the old Keras implementation

versus our Keras implementation in the Fashion MNIST Dataset. 63

5.14 Accuracy Graph on the Fashion MNIST dataset comparing the proposed

techniques using our improved Keras implementation. 64

5.15 Training and Inference times on the Fashion MNIST Dataset using the cus

tom Python code. 65

5.16 Training and Inference times on the Fashion MNIST Dataset using the cus

tom Python code with 4 Hidden Layers. 65

5.17 Accuracy Graph on the Fashion MNIST dataset comparing the proposed

techniques, using the custom Python code with 4 Hidden Layers. 66

5.18 Accuracy Graph of the first 100 epochs on the Fashion MNIST dataset com

paring the proposed techniques, using the custom Python code with 4 Hidden

Layers. 66

A.1 ORL Dataset Sample . 80

A.2 Fashion MNIST Dataset Sample . 81

Abbreviations

Acc Accuracy

ANN Artificial Neural Network

EXD Exponential Decay

CR Compression Rate

LDV Linear Decreasing Variation

MLP MultiLayer Perceptron

MLP Small MLP Network with 3 hidden layers as 1024512512 neurons

MLP 1000 MLP Network with 3 hidden layers as 100010001000 neurons

MLP 4k MLP Network with 3 hidden layers as 400010004000 neurons

MLP 4k4L MLP Network with 4 hidden layers as 4000400040004000 neurons

OSV Oscillating Variation

SET Sparse Evolutionary Training

xxi

Chapter 1

Introduction

Artificial Neural Networks are very powerful computing systems that are widely popular

today for being able to solve complex problems with great accuracy. This complexity and

power needs heavy computational requirements, making them hard to utilize on small weaker

devices. The greatest reason is because they consume a lot of time to train and leave great

memory footprints. A portion of the current research efforts has turned towards sparsification

methods that try to address those problems.

1.1 Subject

To make Neural Networks run faster and use less memory a lot of research has been con

ducted. Among them, we separate the Sparse Evolutionary Training (SET) procedure, that

shows great potential because it manages to significantly reduce the model’s memory foot

print while at the same time it achieves slightly greater accuracy than its dense counterpart.

But in the original paper that was introduced there little to no exploration about the pro

cedure’s time performances. In our work we test SET procedure in more datasets to study

its time costs and we even present three new variant methods that we aspire to outperform

SET. Among them a method that uses Exponential Decay to its weight evolution procedure,

manages to stand out among the sparse methods and proves to be a clear winner.

Furthermore, we take the Keras implementation given by the creators of the SET pro

cedure and after showing that the sparse methods perform worse in speed than their dense

counterpart, we manage to improve it considerably, resulting to speeds of the same level.

Finding this equality in speed a little counterintuitive to the memory footprint and reduced

1

2 Chapter 1. Introduction

complexity used by our sparse methods we test our methods on a custom implementation

that utilizes smart sparse matrix operations, proving that the Tensorflow framework cannot

fully benefit by the reduced training costs that are resulting from the sparsification of dense

models, indicating it as a big obstacle in the research of sparse neural network models.

1.1.1 Contributions

Our contributions are summarized as:

1. Testing the SET procedure on more datasets.

2. Addressing training and test speeds.

3. Designing three new algorithms to compare their accuracy with SET and dense MLPs.

4. Creating a better Keras Implementation that improves the speed of sparse methods.

5. Showing that some of our proposed methods perform better than SET and denseMLPs.

6. Indicate that current frameworks cannot fully utilize Sparse Network Topologies.

1.2 Structure

The rest of this work is structured as follows: Chapter 2makes an introduction to Artificial

Neural Networks, from their design and their structure to their training and model regular

ization. Chapter 3 refers to Sparse Neural Networks: the related work, the Lottery Ticket

Hypothesis, how sparsification is represented and implemented. In chapter 3 is also detailed

how the SET procedure works along with the why and how we think it can be improved. In

Chapter 4 we introduce our proposed methods and our inspiration background. In Chapter

5 we define our evaluation settings, we present our results and we discuss their meaning.

Finally in chapter 6 we conclude our work and we give some general ideas for future works.

Details about the software and tools we utilized along with the datasets used can be found

in the Appendix A. Technical details about the experiments we discuss in chapter 5 can be

found in Appendix B.

Chapter 2

Artificial Neural Networks

”Just by reading these lines our brains use a complex biological neural network. Humans

have a highly interconnected set of around 10 billion neurons to facilitate reading, breathing,

motions and thinking. Each one of those biological neurons, has a rich assembly of tissue

and chemistry, the complexity of which, if not the speed, exceeds that of a microprocessor.

Some of this neural structure is obtained at birth and other parts grow and evolve with time

and experience.” [1]

Scientists have been trying to understand how biological neural networks function for

many years, but the progress is very slow and scientists need to overcome new obstacles time

after time. It is now known however, that almost all biological neural functions are stored in

neurons and in the connections between them. Learning is considered to be the establishment

of new connections between neurons or the modification of existing ones. All these made

scientist wonder that, even though we have only a rudimentary understanding of biological

neural networks, can a small set of simple artificial ”neurons” be constructed, that can be

trained to serve a useful purpose? I believe we already know the answer...

These artificial neurons are nothing more but a simple abstraction of biological neurons,

brought to life as elements in computer programs or perhaps in silicon circuits by using maths

and goodold programming. These networks of artificial neurons, even though they don’t

have even a fraction of the complexity and power of the human brain, they can be trained to

perform useful tasks. And some times with accuracy and speed, even better than that of the

humans.

Through the years, the research in the field grew enormously and the application of neural

networks spread to every corner imaginable in science. Today, neural networks find applica

3

4 Chapter 2. Artificial Neural Networks

tions in many industries like Aerospace, Automotive, eCommerce, Finance and Healthcare

to name only a few.

This chapter was based on some very interesting books I urge you to check out. Firstly

I liked Chapter 12 and 13 of the 3rd edition of the book Mining Massive Datasets of Jure

Leskovec, Anand Rajaraman and Jeff Ullman [2]. It captures all the basic theory of neural

networks without going too much into the details, keeping it short and understandable for

people that are not very familiar with this field. Another book I found really helpful is Neural

Networks Design of Martin T. Hagan [1]. I find it to be a complete study of the entire field,

with details in the theoretical and mathematical background that doesn’t miss anything. Fi

nally I can’t forget to mention Dive into Deep Learning [3] an online interactive book with

coding examples, community contributions and active discussions.

2.1 Introduction to Neural Networks

The fundamental unit of a neural network is the neuron or the perceptron as we often see

it called. Their concept albeit important is simple and it consists of three basic elements:

1. A set of synapses, connections or links (many names, same functionality), each one

of those guiding the input towards the ”main body” of the neuron. Each one of those

links has an internal value, called weight which is nothing more that a number that is

multiplied with the input value to this link and produces a weighted value of the input.

2. An operator, which is usually an adder that takes as the weighted inputs and adds them,

producing a weighted sum as a result.

3. An activation function is then used to transform the result of the operator in an output

range suitable to the results it needs to produce. This function can be as simple as a

threshold function, producing results in the range of ”yes” or ”no”, 0 or 1 etc, or it can

be a function that produces a real numerical value. This result is the output of the entire

neuron.

These simple neurons can separate inputs into two classes, as long as the classes are

linearly separable. The figure 2.1 displays the design of the perceptron.

We can observe in this figure one of the inputs being 1. This omission was deliberate. Its

corresponding weight, displayed as w0, it is usually called bias and is nothing more than a

2.1 Introduction to Neural Networks 5

displacement of the entire weighted sum by a flat value. We can imagine that the neuron in

producing a hyperplane where the weights determine the slopes and the bias determines the

intercept. We can do without the bias but it offers one more degree of freedom when trying

to separate data in higher dimensions and that makes our life somewhat easier.

Figure 2.1: Perceptron, the fundamental unit of Neural Networks.

However, most problems of interest and importance are not linearly separable. For this

reason we consider the design of neural networks, which are collections of perceptrons or

nodes, where the outputs of one rank (or layer) of nodes becomes the inputs to the nodes of

the next. The last layer of nodes produces the output of the entire neural network. The training

of neural networks with many layers requires enormous numbers of training examples and

resources, but has proven to be an extremely powerful technique, referred to as deep learning,

when it can be used.

2.1.1 Neural Networks, in General

When combining numerous neurons on a single network, we usually imagine a configu

ration as depicted in figure 2.2 which is that of a directed graph. The first or input layer, is

the input, which is presumed to be a vector of some length n. Each component of the vector

[x1, x2, ..., xn] is an input to the network. After that, there are one or more hidden layers and

finally, at the end, an output layer, which gives the result of the network. Each one of the

layers can have a different number of nodes, and in fact, choosing the right number of nodes

at each layer is an important part of the design process for neural networks. Especially, note

that the output layer can have many nodes. This refers to problems that needs each input to

6 Chapter 2. Artificial Neural Networks

be classified to many different classes, with one output node for each class.

Figure 2.2: The general case of a neural network.

Each layer, except for the input layer, consists of one or more nodes, which we arrange in

the column that represents that layer. We can think of each node as a perceptron producing an

output yi. The inputs to a node are the outputs of some or all of the nodes in the previous layer

(xi). Associated with each input to a node is a weight (wi). The output of the node depends

on the following expression:

yi = f
(∑

xiwi

)
where the sum is over all the inputs xi, and wi is the respective weights to that input. The

function f simply refers to the activation function used in this layer.

Sometimes, we want the output to be either 0 or 1; the output is 1 if the sum is positive

and 0 otherwise. This can be achieved by the use of simple stepfunctions. However as we

shall see later, it is often more convenient, when trying to learn weights for a neural network

that solves some problem, to have outputs that are almost always close to 0 or 1 but not the

exact values. The reason, intuitively, is that it is then possible for the output of a node to be

a continuous function of its inputs. We can then use some optimization algorithm to find the

ideal values of all the weights in the network.

2.1 Introduction to Neural Networks 7

2.1.2 Interconnections Among Nodes

Neural Networks can differ in how the nodes at one layer are connected to the nodes at

next layer. From this differentiation many interconnection options arise, but for the scopes of

this project only two are relevant:

1. FullyConnected. This is the most usual and general case where each node takes as

inputs, the outputs of every node of the previous layer. The resulting network is dense

with many parameters to be trained.

2. Random. For some m we pick for each node, m nodes from the previous layer and

make those, and only those to be inputs for this node. The resulting network has a

random sparse structure with an adjustable number of parameters to be trained, usually

considerably less that its corresponding dense network.

We will see in chapter 3 that fully connected networks are computationally expensive,

while a randomly interconnected network can achieve similar accuracy to a fully connected

one, with way less computational cost.

2.1.3 Design Issues for Neural Networks

Building a neural network to solve a given problem is partially art and partially science.

Before we even begin to train a network, by finding the weights on the inputs that serve our

goal best, we need to make a number of important design decisions. We need to decide on

the number of layers we will use, the number of neurons each of them have. We must decide

how the outputs of one layer connects to the inputs of the next layer and for how many

epochs we will train the network. While the above decisions cover the greater spectrum of

the programmer level there are evenmore decisions that can arise, depending on the particular

circumstances.

In later sections we shall see that there are even more decisions to be made when we train

the neural network, that are more specific to the way the training happens. These include,

deciding on the cost function we choose to minimize to express what weights are best for the

network, what activation function to use in each layer and which optimization algorithm we

will use on the training input to calculate the optimal weights.

8 Chapter 2. Artificial Neural Networks

The choices we mention above, while most times arise from our understanding of opti

mization algorithms, cost functions and the data we have, many times are made by trial and

error, or techniques that explore different combinations of the tried choices.

2.2 Dense Feedforward Networks

The true value of neural networks comes from our ability to design them based on the

training data we have. To design a network, there are many choices that must be made, such

as the number of layers and the number of nodes for each layer etc., as was discussed in

the previous Section. These choices can be more art than science. The computational part

of training, which is more science than art, is primarily the choice of weights for the inputs

to each node. The techniques for selecting weights usually involves convergence using an

optimization algorithmwhich is, most of the times, a variant of gradient descent. But gradient

descent requires a cost function, which must be a continuous function of the weights. The

basic perceptron networks operate with outputs of 0 or 1, so the outputs are not normally

continuous functions of the inputs. In this section, we shall discuss various ways that one

can use to modify the behavior of the nodes in a neural network, so that the outputs become

continuous functions of the inputs, therefore a reasonable cost function can be applied to the

outputs that will also be continuous.

2.2.1 Linear Algebra Notation

The way of describing neural networks as an interconnection of nodes (or perceptrons)

with distinct connections between each one of them, while useful for educational purposes,

isn’t usually the way that computers create, train, or save them. Linear Algebra Notation

offers not only brevity in expressing complex neural network structures, but also better per

formance. Modern graphics processing units (GPU’s) are designed to compute linearalgebra

operations in a highly parallel way. Multiplying matrices and vectors using simple expres

sions is much faster than coding each node or using nested loops.

Using linear algebra, we can express the input layer of nodes as a column vector of the

inputs like x = [x1, x2, ..., xm], while a hidden layer with n nodes can be expressed as h =

[h1, h2, ..., hn]. The weights of the inputs connected to the first node of the hidden layer can be

then expressed as w1 = [w11, w12, ..., w1m] and similarly the weights of the inputs connected

2.2 Dense Feedforward Networks 9

to the second node of the hidden layer as w2 = [w21, w22, ..., w2m] and so on for allm weight

vectors.

The intercept or bias inputs to the hidden layer nodes form a vector b = [b1, b2, ..., bn]

often called bias vector. The step function is then applied to produce the result of each node

in a hidden layer with the following expression:

hi = step(wT
i x+ bi), for i = 1, 2, ..., n

We can further simplify the expressions by merging the weight vectors in a single n×m

weight matrix W, where the ith row of W is wT
i . The whole hidden layer can be thus be

expressed as:

h = step(Wx+ b)

In this case the step function operates elementwise on theWx + b vector. With similar

logic we can design all hidden layers as well as the final output layer the result of which

would match the nature of the problem. We can see that for each layer we have a weight

matrix we need to ”train” so that all those parameters are set in a suitable way so that the task

at hand is achieved. We will see how this goal is achieved in later sections.

Linear Algebra Notation works just as great when we have larger inputs, many more

hidden layers and many more nodes in each hidden layer. We just need to expand the weight

matrix and bias vector accordingly. That is, the W matrix needs to have one more row for

each node in the layer and one more column for each output of the previous layer, or input if

this is the first layer. The bias vector has one component for each node in the layer. It is also

very easy to handle cases where there needs to be more than one output in the network. For

example, in a multiclass classification problem, we need to have so many output nodes yn

as the number of the target classes n. So for a given input, the outputs specify the probability

that the input belongs to the corresponding class. This arrangement results in an output vector

y = [y1, y2, ..., yn], where n is the number of classes.

The network in our example uses a non linear step function.More generally, as wewill see

in the following section, we can use any other nonlinear function, usually called activation

function or transfer function.

This design of neural networks that consist of many layers, each one of whose inputs are

taken from the previous layer and they ”feed” their outputs to the next layer in a serial manner

10 Chapter 2. Artificial Neural Networks

is generally called feedforward networks, since there are no branches or cycles.

2.2.2 Activation Functions

A node in a neural network was initially designed to give a 0 or 1 (yes or no) output.

Often, we want to modify that output in many ways, depending on the type of data we use

or the problem we try to solve. They are differentiable operators that transform the results

of a neurons calculations to a result suitable to the neuron’s purpose. In cases like theses

we apply an activation function to the output of a node. In some other cases, the activation

function takes all the outputs of a layer and modifies them as a group. One of the most known

algorithms used for neural network training is gradient descent. Thus, we need activation

functions that collaborate well enough with the gradient descent. In particular, we look for

the following properties in the activation functions we use:

1. The function should be continuous and differentiable everywhere (or almost every

where).

2. The derivative of the function does not saturate (i.e., become very small, tending to

wards zero) over its expected input range. Very small derivatives tend to stall the learn

ing process.

3. The derivative does not explode (i.e., become very large, tending towards infinity),

since this would lead to issues of numerical instability

Because activation functions are a fundamental aspect of neural networks, we will briefly

refer to the most known amongst them.

Threshold Functions

Threshold Functions are function that its output is determined based on the range its

input belongs to. The step function we have previously mentioned belongs into this kind of

activation functions. The definition of the step function is:

Hs(x) =

1 if x ≥ 0

0 if x < 0

(2.1)

2.2 Dense Feedforward Networks 11

Figure 2.3: A graphical representation of the Heaviside Step Activation Function.

Other kind of threshold functions can have more branches, different cutoff points or out

put values etc. The aforementioned step function is the one most usually used and is com

monly referred to as Heaviside Function (figure 2.3). The step function however fails to

satisfy the properties (2) and (3) we look for in an activation function. Its derivative explodes

at zero and is zero everywhere else. Thus, the step function is not suitable for gradient descent

and is not a good choice for deep neural networks.

The Sigmoid

If we cannot use the step function, we look for alternatives in the class of sigmoid func

tions their name derived because of the Sshaped curve that these functions exhibit. They

are strictly increasing functions that achieve an acceptable mimicry of the step function but

having a balance between linear and nonlinear behavior. The most commonly used sigmoid

function is the logistic sigmoid which is defined as:

σ(x) =
1

1 + e−ax
=

eax

1 + eax
(2.2)

Where a is a parameter that tweaks the slope. Variations in the a parameter can produce

smoother or steeper slopes. We notice that the logistic sigmoid has value of 0.5 at x = 0

(Figure 2.4). For large x, the sigmoid function approaches 1, and for large, negative x the

sigmoid approaches 0. The logistic sigmoid, like most activation functions are applied to

vectors elementwise, so if [x1, x2, ..., xn] then

σ(x) = [σ(x1), σ(x2), ..., σ(xn)]

12 Chapter 2. Artificial Neural Networks

The logistic sigmoid has several advantages over the step function as a way to define the

output of a perceptron. The logistic sigmoid is continuous and differentiable, so it enables us

to use gradient descent to discover the best weights. Since its output values is in the range

of [0,1], it is possible to interpret the outputs of the network as a probability. However, the

logistic sigmoid saturates very quickly as we move away from the ”critical region” around

zero. So the derivative goes towards zero and the gradientbased learning can stall out. That

is, weights almost stop changing, once they get away from zero.

Figure 2.4: A graphical representation of the Logistic Sigmoid Activation Function.

If the desired output need to be in the range of [−1, 1] instead of the range [0, 1], that the

logistic sigmoid produces, we can use the hyperbolic tangent function defined by:

tanh(x) =
ex − e−x

ex + e−x

Allowing the activation function produce negative values may yield some practical ben

efits, depending on the data.

Softmax

The softmax function differs drastically from sigmoid functions in that it does not operate

elementwise on a vector. Rather, the softmax function applies to an entire vector. If x =

[x1, x2, ..., xn], then its softmax µ(x) = [µ(x1), µ(x2), ..., µ(xn)] where:

µ(xi) =
exi∑
j e

xj
(2.3)

Softmax pushes the largest component of the vector towards 1 while pushing all the other

components towards zero (Figure 2.5). Also, all the outputs sum to 1, regardless of the sum of

2.2 Dense Feedforward Networks 13

the components of the input vector. Thus, the output of the softmax function can be interpreted

as a probability distribution. A common application is to use softmax in the output layer for

a classification problem. The output vector has a component corresponding to each target

class, and the softmax output is interpreted as the probability of the input belonging to the

corresponding class. Softmax has the same saturation problem as the sigmoid function, since

one component gets larger than all the others. There is a simple workaround to this problem,

however, when softmax is used at the output layer. In this case it is usual to pick cross entropy

as the loss function, which undoes the exponentiation in the definition of softmax and avoids

saturation. Cross entropy is explained in a following section.

Figure 2.5: An example application of the Softmax Activation Function.

Rectified Linear Unit

The rectified linear unit, or ReLU, is defined as:

f(x) = max(0, x) =

x, for x ≥ 0

0, for x < 0

(2.4)

and most usually recognizable through its graphical representation (Figure 2.6).

Figure 2.6: A graphical representation of the ReLU Activation Function.

14 Chapter 2. Artificial Neural Networks

The name of this function derives from the analogy to halfwave rectification in electri

cal engineering. The function is not differentiable at 0 but is differentiable everywhere else,

including at points arbitrarily close to 0. In practice, we ”set” the derivative at 0 to be either 0

(the left derivative) or 1 (the right derivative). In modern neural networks, a version of ReLU

has replaced sigmoid as the default choice of activation function. The popularity of ReLU

derives from two properties:

1. The gradient of ReLU remains constant and never saturates for positive x, speeding up

training. It has been found in practice that networks that use ReLU offer a significant

speedup in training compared to a sigmoid activation.

2. Both the function and its derivative can be computed using elementary and efficient

mathematical operations without any exponentiation.

ReLU does suffer from a problem related to the saturation of its derivative when x < 0.

Once a node’s input values become negative, it is possible that the node’s output get ”stuck”

at zero through the rest of the training. This is called the dying ReLU problem. There has

been various approaches to cope with this problem the contents of which, drifts away from

the scope of this project.

2.2.3 Loss Functions

”A loss function quantifies the difference between a model’s predictions and the correct

values observed in the real world”[2].We can define the correct values that the neural network

model should produce for an input x as ŷ and the model’s actual prediction as y. Then we

describe the loss function asL(y, ŷ) and is defined so that it quantifies the prediction error for

a single input. Usually we use the loss function over a large set of observations, such as the

entire training set. In that case, we usually average the losses over the number of observations

used in the loss function.

We will refer to two study cases on the loss functions. The first is when we have a single

output node, resulting in a real value. These cases are referred to as ”regression loss”. In the

second case we have several output nodes, each of which indicated the probability of the

input being in a particular class. These cases as referred to as ”classification loss”.

2.2 Dense Feedforward Networks 15

Regression Loss

Let’s suppose that the our model has a single output node which produces a single real

value as a prediction. For a training example (x, ŷ)we have x as the input and ŷ as the observed

correct value wewant ourmodel to learn to predict.We also consider as y the actual prediction

the model produces. The squared error loss L(y, ŷ) of this prediction is:

L(y, ŷ) = (y − ŷ)2

The square exponentiation is used for twomain reasons.Mostly becausewe prefer the loss

functions to produce nonnegative values and secondly to intensify the impact of the error,

making the training converge faster. In general we compute the loss over a set of predictions.

If the training set consists of inputoutput pairs as T = {(x1, ŷ1), (x2, ŷ2), ..., (xn, ŷn)} while

the model’s predictions are P = {y1, y2, ..., yn}. The mean squared error (MSE) for the

trained set is:

L(P, T) =
1

n

n∑
i=1

(yi − ŷi)
2

Another popular loss function is the Root Mean Squared Error (RMSE) which is simply

the square root of the Mean Squared Error. We usually prefer the MSE as we don’t have the

square root and that simplifies the derivative of the loss function, that we need during the

training. In any case, when we minimize the MSE we also minimize the RMSE.

One problemwithMSE is that it is very sensitive to outliers due to the squared term. Even

a few outliers can contribute very highly to the loss and weaken the effect of other points,

making the training process susceptible to wide swings. There has been a lot of research and

a lot of approaches to cope with this problem, but the study of such methods drifts away from

the scope of this project.

Classification Loss

When dealing with classification problems we have at least two classes that we need our

data points to classify into. When we just have two classes it is called a binary classification

problem, while having more than two classes is called a multiclass classification problem.

We will study classification loss in the case of multiclass problems as it is more generic and

includes the case of binary classification problems as a more simplified case.

16 Chapter 2. Artificial Neural Networks

Let’s suppose our multiclass classification problem has n target classes as: C1, C2, ...Cn.

We consider each point in the training set, again here like previously, in inputoutput pairs of

the form x,p where x as the input and p = [p1, p2, ...pn] as the output. In this case pi gives

us the probability that the input belongs to the corresponding class Ci. The sum of all those

probabilities should always be 1. When we are sure that the an input belong to a class Ci it

should be true that the probability pi = 1 and pj = 0 for i ̸= j. But in the general case we

can interpret pi as the level of certainty that an input x belongs to the class Ci, and p as the

probability distribution over the target classes.

In a similar manner we define the output predictions of a neural network model as a

vector q = [q1, q2, ..., qn] of probabilities, with
∑

i qi = 1 just as before. We interpret q as

a probability distribution over the target classes, with qi gives the probability that the input

belongs to the corresponding classCi. This could be achieved by using the Softmax activation

function on the final layer of a neural network. So we now have two probability distributions,

as q the model’s prediction and as p the observed values in our data. We need to quantify the

distance between those two probability distributions to order to be able to train such network.

For this need we can use the entropy of a discrete probability distribution p that is defined as:

H(p) = −
n∑

i=1

pilogpi

Which simple indicates the level of uncertainty inherent in the variable’s possible out

comes. As a product of information theory, when we know an approximation distribution q

and target distribution p, then the additional information needed to represent an event from

the p distribution using the q distribution is called crossentropy and is defined as:

H(p,q) = −
n∑

i=1

pilogqi

We can observe thatH(p,p) = H(p), and generally it is true thatH(p,q) >= H(p). This

crossentropy is the most commonly used loss function for classification problems which

usually appears in the following forms. Binary CrossEntropy an implementation used for

binary classification problems and Categorical CrossEntropy for multiclass classification

problems.

2.3 Training Neural Networks 17

2.3 Training Neural Networks

We have presented so far how neural networks are designed, how they calculate predic

tions, and how we can quantify their error through loss functions. It is now time to study how

they are trained. This ”training” we have mentioned so many times already, is nothing more

than an algorithm that tries to find what values each weight in the network should have, in

order to minimize the average loss on the training set. Or, to express it more simply, to find

weights that make the network’s predictions have the least error possible.

To successfully train a neural network, firstly we need a large enough dataset. This dataset,

which should essentially contain pairs of inputs and outputs, must be representative of the

data the network could encounter in the future. It is possible however, to find parameters that

produce low training loss, but they perform poorly in new data. This phenomenon is called

overfitting and when it appears, it means essentially that the network learned a portion of the

noise and intrinsic variation in the training set. So, when presented with data without these

noise characteristics, the model fails to discern the correct patterns in the data.

For the moment, we shall ignore overfitting and we will focus on the way the neural net

works are trained. This is achieved by a very well known optimization algorithm, the gradient

descent and is applied to neural networks via a very elegant algorithm called backpropagation

that allows us to compute these gradients efficiently.

2.3.1 Gradients, Jacobians, and the Chain Rule

Before describing the backpropagation algorithm we need to address the rather deep

mathematical background. We shall present it though, as simple as it can get for complete

ness and not educational reasons, because otherwise we would need entire chapters in order

to fully understand it. There are a lot of great educational books out there.

The gradient descent optimization algorithm can find a local minimum by taking steps

in the direction opposite of the gradient of the function at the current point, in an iterative

way. Accordingly, the backpropagation algorithm needs to compute the gradient of the loss

function with respect to the parameters (or weights) of the network. Then, through many

iterations it can adjust those parameters slightly, in directions that reduce the loss function,

to the point when the loss function, and the weights consequently, remain mostly unchanged.

Let’s recall the definition of the gradient: given a function f : RN → R from a real

18 Chapter 2. Artificial Neural Networks

valued vector to a scalar, with x = [x1, x2, ..., xn] and y = f(x) then, the gradient of y with

respect to x, denoted by∇xy is defined as:

∇xy =

[
∂y

∂x1

,
∂y

∂x2

, ...,
∂y

∂xn

]
Let’s take for example the mean squared error loss function L. This function, just as f ,

produces a scalar value from a realvalued vector, in our case the y vector:

L(y) =
1

n
||y− ŷ||2 = 1

n

n∑
i=1

(yi − ŷi)
2

The gradient of L can be then easily calculated with respect to y as:

∇yL =
1

n
[2(y1 − ŷ1), 2(y2 − ŷ2), ..., 2(yn − ŷn)] =

2

n
(y− ŷ)

The generalization of the gradient to vectorvalued functions is called the Jacobian. Given

a function f : Rm → Rn and f = f(x). Then, the Jacobian Jx(f) of f is given by:

Jx(f) =
[
∂f
∂x1

, ...,
∂f
∂xm

]
=

∇T

x f1
...

∇T
x fn

 =

∂f1
∂x1

· · · ∂f1
∂xm

...
∂fn
∂x1

· · · ∂fn
∂xm

We will also make use of the chain rule for derivatives from calculus. If u = g(x) and

y = f(u) = f(g(x)), then the chain rule states that:

dy

dx
=

dy

du

du

dx

This works with multivariate functions, like, y = f(u1, u2) where u1 = g(x) and u2 =

h(x), then we have:

dy

dx
=

dy

du1

du1

dx
+

dy

du2

du2

dx

We can use the chain rule on vector functions, expressing it in terms of gradients and

Jacobians. If we have, for example, u = g(x) and y = f(u) = f(g(x)) then we can get:

∇xy = Jx(u)∇uy

And if we have multivariate vector functions, like y = f(u1,u2) where u1 = g(x) and

u2 = h(x), then

2.3 Training Neural Networks 19

∇xy = Jx(u1)∇u1y + Jx(u2)∇u2y

2.3.2 Iterating Gradient Descent

The gradient descent algorithm (GD), using a loss function L(y), in the kth iteration is:

wm(k + 1) = wm(k)− a∇wmL(y)

For the weights in the layer, and:

bm(k + 1) = bm(k)− a∇bmL(y)

for the biases in the layer. The variable a is called learning rate and is a hyperparameter, which

means it is not learned during the training, but the user defines it before training. This value

is a small number (typically around 0.01) that makes the algorithm gradually converge to the

minimum. A large learning rate may make the algorithm faster but makes the convergence

unstable, with wide variances in the later parts of the training. The Figure 2.7 shows how

different learning rate values affect the training process.

Figure 2.7: Finding the proper Learning Rate.

2.3.3 The Stochastic Gradient Descent Variation

The default gradient descent algorithm requires to pass through all training examples, and

then calculate the mean loss which will be used to update the weights and biases via the back

propagation algorithm. This is great for problems with smooth and convex error performance

20 Chapter 2. Artificial Neural Networks

surface because it moves directly towards an optimal solution, with a few big steps. But be

cause most real world problems are not smooth or convex, most modern frameworks use a

clever variation of the gradient descent algorithm The Stochastic Gradient Descent (SGD).

The SGD algorithm computes the gradients using a single or a small random sample of the

training data, in which case we see it asMinibatch SGD.

The Stochastic term in its name arises because, instead of going through all the inputs

in the dataset one by one and then, update the weights and biases once, we just present one

random example and then we update the parameters. On the following iterations we present

one by one more examples from the dataset and update the parameters accordingly until all

examples in the network are used. None training example is used twice in a training epoch.

When the whole dataset is presented the epoch ends and the next one starts which starts

presenting examples from the whole dataset again one by one.

The benefit of the SGD is that the trajectory towards the global minimum of the loss

function is follows a path with a slow and careful rate, which in fact gives us more chances for

convergence. The Backpropagation optimization algorithm in the following section assumes

that the Stochastic Gradient Descent algorithm is used, whichmeans a single training example

is presented for every weight and bias update.

2.3.4 The Backpropagation Algorithm

The first step to the Backpropagation algorithm is to propagate the input through the

network. If we denote as am the output of the neuron, for any given layer m and has a layer

m+ 1 as the next layer of the network, the following are true:

am+1 = Wmym + bm Neuron value for the layerm

ym+1 = f(am+1) Activation value for the layerm

The f is the activation function used for them layer. For the input layer we can use:

y0 = x where x is the input data

For the final layerM , we assume:

aM = WM−1yM−1 + bM−1

2.3 Training Neural Networks 21

ŷM = f(aM)

This is the final output to the whole network. The next step is to evaluate the predicted

value ŷ against the observed y value by using the Loss function. After that, we calculate the

Gradients of the loss function for every weight and bias in each layer.

For the weights in them layer, the gradient is:

∇WmL = JWm(am)∇amL applying the chain rule

Just as before: am+1 = Wmym + bm where ym are the outputs of them layer

Taking the Jacobian from the equation before, we get:

JWm(am) = ym calculating the Jacobian

The result is the vector ym due to the element wise application of the activation func

tion, which makes the Jacobian just a diagonal matrix. The final value of the Loss function’s

gradient is:

∇WmL = ∇amL · ym Final Gradient

A similar set of equations can be applied to the biases:

∇bmL = Jbm(am)∇amL applying the chain rule

Jbm(am) = 1 calculating the Jacobian

∇bmL = ∇amL · 1 Final Gradient

The common part in both equations is often called ”local gradient” or ”sensitivity” and

is expressed as follows:

sm = ∇amL Local Gradient

The way they the local gradients are calculated is mathematically more intricate and fol

lows an inverse process in which we can express every local gradient using the local gradient

22 Chapter 2. Artificial Neural Networks

of the next layer, except for the last layer’s local gradient, which we can calculate right after

the forward pass calculations. We will present the resulting equations for completeness but it

you want the proof it can be easily found in most educational book in this field:

Firstly the local gradient is calculated in the final layer, where it takes the special follow

ing form:

sM = ∇amL⊙ daM

dyM

The Hadamard product (s⊙ t) is just an element wise vector product. After that we roll

back to calculate the local gradient to each of the previous layer:

sm = (Wm+1)T sm+1 ⊙ dam

dym

As we can see the local gradient propagation is following a reverse order:

sM → sM−1 → ... → s2 → s1

It is obvious now that the algorithm’s name comes from this order the local gradients take

to calculate through the network.

The gradients we finally calculated are used in the weight and bias update process as we

saw in the iterating gradient descend section. So they now become:

Wm(k + 1) = Wm(k)− a∇amL · ym

For the weights in the layer, and:

bm(k + 1) = bm(k)− a∇amL

2.3.5 Incremental vs Minibatch Learning

The backpropagation algorithm we described above follows the incremental training of

the Stochastic gradient Descent Algorithm, which means the weights and biases are updated

after each input is presented. The cost of these updates is small on its own, but for excessively

large datasets these costs add up to a significant increase in training time. Furthermore using

only a single training example to update the network parameters can introduce some noise

in the network which can ultimately affect the network’s ability to make correct predictions.

For these reasons, most modern libraries provide the minibatch training modification which

is calledMinibatch Stochastic Gradient Descent.

2.3 Training Neural Networks 23

With the Minibatch SGD, we present the inputs to the network in small batches and we

calculate the gradient of the loss function for each one of those inputs. The total gradient

of the batch is calculated as the mean of the gradients of the individual input’s losses. For a

batch size B the above equations would look like these:

Wm(k + 1) = Wm(k)− a

B

B∑
b=1

∇amb L · ymb

bm(k + 1) = bm(k)− a

B

B∑
b=1

∇amb L

Because each input has the same probability to be presented in the network, and as long

as the batches are considerably smaller in size than the whole dataset, the Minibatch SGD

has around the same accuracy as the normal SGD algorithm but it is trained faster due to the

smaller number of parameter updates that happen during each epoch.Moreover, the noise that

is introduced with SGD evens out by averaging the gradients of the whole minibatch. Raising

the batch size too much makes the method regress to the normal Gradient descent method

which takes big steps towards the minimum that maymake it unstable for convergence. Using

suitable batch size relative to the training dataset size can place this method in a sweet spot

between SGD and GD where it can keep the best of both worlds.

2.3.6 Heuristic Modifications of Backpropagation

The mathematics behind the backpropagation algorithm guarantee that the loss function

will be minimized when used on linear problems or problems that their error performance

surface has only global minimum. When applied to multilayer networks, however we ob

serve a quite different behavior. Those networks are used for nonlinear problems, which

create highdimensional error performance surfaces, in which finding a global minimum can

be quite hard. And most problems in the real world tend to be such.

While for linear problems the performance surface of a neural network may have a single

minimum point and constant curvature, in high dimensional surfaces we can have many local

minimum points, and curvatures that can change widely in different regions of the parameter

space. For example in figure 2.8 even with only two weights or variables changing we can

already see how intricate the error performance surface can get.

In such cases the algorithm can fall into a local minimum early on, possibly never finding

24 Chapter 2. Artificial Neural Networks

Figure 2.8: An example error performance surface of two variables.

the global minimum, or if the surface gets too ”flat” it may take a lot more training iterations

that we have available. Initialising the weights with small random values sometimes can

help to avoid falling in a local minimum valley, especially if the area near zero is a saddle

point where, depending on the starting point, the network can follow completely different

trajectories. But this initialization can only get us to far. We need more powerful tools at our

disposal to overcome such adversities.

Momentum

From physics we know that Momentum is a physical property of a moving body that

enables it based on its mass and velocity, to continue in it’s trajectory even when external

opposing forces are applied, which means overshoot. For example, a car that travels in high

speed and then suddenly hits the brakes, the car will skid and stop after a short distance

overshooting the mark on the ground when it firstly hit the brakes.

The same concept can be applied to neural networks during training, where the update

direction tends to resist change when momentum is added to the update scheme. When the

neural network approaches a shallow local minimum it’s like applying brakes but not suf

ficiently to instantly affect the update direction and magnitude. Hence the neural networks

trained this way will overshoot past smaller local minima points and only stop in a deeper

global minimum.

Thus momentum in neural networks helps them get out of local minima points so that a

more important global minimum may be found. Too much of momentum may create issues

as well as systems that are not stable, and they may create oscillations that grow in magnitude

2.3 Training Neural Networks 25

as the training goes on. For such cases there needs to be a decay term so this resistance to

change can wear out in the later steps of the training process.

The simple mathematical concept of momentum most usually used in neural networks is

defined as:

W (k + 1) = γW (k)− (1− γ)C For 0 ≤ γ < 1

Where C is the change in the value w between two time intervals

For a momentum coefficient γ the update equations would now look like these:

Wm(k + 1) = γWm(k)− (1− γ)
a

B

B∑
b=1

∇amb L · ymb

bm(k + 1) = γbm(k)− (1− γ)
a

B

B∑
b=1

∇amb L

The momentum coefficient is widely used in most modern frameworks and even though

it doesn’t mathematically guarantee convergence to the global minimum, experimentally it

usually performs very well both in accuracy and in training time. Figure 2.9 shows how

different the trajectory in the error performance surface is when momentum is applied.

Figure 2.9: The impact of Momentum in Training.

Variable Learning Rate

We understand so far that the learning rate works like the speed with which the network

converges to the minimum. If we raise it the algorithm takes bigger steps towards the loss

function’s gradients, so why do we keep it usually so low? If the algorithm is heading towards

convergence a big learning rate will create big steps that may throw us away from the global

minimum. if on the other hand we are inside a big flat surface a small learning rate will waste

26 Chapter 2. Artificial Neural Networks

many epochs to overcome it, where it would be very important to use those extra epochs

near the global minimum for better chances of convergence. For this reason we tried to find

a suitable enough learning rate which is neither too small nor too large.

Ideally we would want the learning rate to rise in flat surfaces, and decrease when the

slope starts becoming steeper. A lot of techniques have been tried for the Variable Learning

Rate approachwhich usually follow some design rules that modify the learning rate according

to some performance metrics that are calculated during the training process. These contain

but are not limited to:

1. If the squared error increases by more that a set percentage ζ (typically one to five

percent) after a weight update, then the weight update is discarded, the learning rate is

multiplied by some factor 0 < ρ < 1, and the momentum coefficient, if used, is set to

zero.

2. If the squared error decreases after a weight update, then the weight update is accepted

and the learning rate is multiplied by some factor η > 1. If the momentum coefficient

γ is zero it is reset to its original value.

3. If the squared error increases by less than ζ , the weight update is accepted but the

learning rate remains unchained. If the momentum coefficient γ is zero it is reset to its

original value.

If used correctly, with this technique we can gain a little performance than just using

momentum, but their excessive use of userdefined hyperparameters makes this technique

easier to decrease performance than increase it. And in most cases requires a lot of trial and

error to find the perfect combination on those hyperparameter values, which consumes much

more time than we often have in disposal. It is only recommended for datasets with small

training times and even for those cases for optimising prediction performance.

The reason we refer to Variable Learning Rate, even though it is rarely used, is because

it was the source of inspiration to the modifications we introduce to the Sparse Evolutionary

Training (SET) algorithm presented in Chapter 3.

2.3.7 Tensors

So far we imagined the inputs to a neural network as a one dimensional array of vectors.

But we can equally use inputs of higher dimensions. Then if inputs can be of a higher di

2.4 Regularization 27

mension so can the outputs be presented as such higher dimensional structures. Similarly we

imagined each layer of a neural network as columns of neurons but no one forbids us from

organizing them in a higher dimensional manner. For example a digital image is defined by

an array of pixels with some length and width. Pixel is represented by three real numbers, the

intensity of each one of the three primary colors, red, green and blue. So, We can imagine the

image as an 2D array of three dimensional vectors. The natural generalization of vectors and

matrices is the tensor, which is an ndimensional array of scalars.

The backpropagation algorithm we described works for vectors but was not for high

dimensional tensors. In such cases we can use a simple trick, the flattening of the tensor

which unrolls the tensor to a nested and ordered collection of vectors, this way we can now

address problems like image classification and many more, with the same techniques and

tools, just by altering a little how we imagine and we represent data.

2.4 Regularization

Aswe have previously stated, the goal of the gradient descent algorithm and of the training

of any predictive model in general is to minimize the errors in the predictions it makes. This

is quantifiable by minimizing a loss function, over the data we use for training, reaching

higher and higher accuracy in each step. The real goal however, is to create a model that can

perform as well as to new data of which the model is unfamiliar with. We would ideally want

to minimize the loss function on those new data but obviously with this being impossible, we

settle for the loss in the training data as a performance index.

Many times though, the model’s ability to discern patterns in the data becomes a little

too capable for its own good. This means that the model can recognize patterns where there

shouldn’t be any, usually created due to the noise contained to the data or due to the lack of

enough data to make the model representative of real world scenarios. This problem as we

have previously mentioned is called overfitting, and we can recognize it when a predictive

model can achieve higher accuracy in training data than on a test set comprised of new un

precedented data. The usual practice is to split the dataset in a training set and a test set. We

use the training set for training, and we evaluate the model based on its performance over the

test set. If it appears to be a great drop in accuracy on the test set comparatively to the training

set, we know the model has overfit. On datasets that have independent examples, we split the

28 Chapter 2. Artificial Neural Networks

dataset into the two subsets following a defined ratio of usually 80:20 percent or 70:30 for

sufficiently large datasets. It is advised to use a random sampling method for this process to

eliminate any bias in the data. We have to be careful, however when dealing with sequence

learning problems, such as timeseries, because in such cases the order the examples have in

the data contains useful information for successful forecasting.

The problem of overfitting exists for all machinelearning models. It is more prevalent

neural networks though, because they have a lot more parameters than other models, and their

design leaves more space for overfitting to occur. A lot of techniques have been developed

to help us reduce overfitting coming together under the umbrella term model regularization.

We usually trade some of the model’s accuracy on the training dataset for better accuracy on

test data, making the model’s predictive capabilities more generic. The most popular of those

techniques, we are going to discuss in this section.

2.4.1 Norm Penalties

The goal of gradient descent is to minimize the loss function to a global minimum. Many

times however, a singleminimum doesn’t exist, or it is not clear and is very closely obfuscated

by a lot of local minima nearby. So it is usual to for a model to learn a local minimum, but

even between one another not all local minima generalize just as well. Furthermore, many

times models that contain small absolute values are able to generalise better than models with

very large weights.

So, we can enforce our model to keep relatively small weight values by introducing a

penalty term to the loss function. Let’s say that w is the weight matrix in the model and L0

the original loss function we usually use. We define the regularized L2norm loss function as

follows:

L = L0 + d||w||2

Using the L2norm of the weights as penalty we shrink large weight values while keeping

small ones relatively unchanged. The parameter d, is a hyperparameter usually referred to as

weight decay, help balance the trade off between minimizing loss and penalizing weights. It

usually has a small value usually lower that 0.1 depending on the dataset. Even if we prefer

the weights to have small values weights that have strong predictive ability still need to be

able to contribute as much as they can, and to give them this opportunity the weight value

2.4 Regularization 29

needs to be sufficiently low.

Moreover, instead of the L2norm we could penalize the weights based on the L1norm

as follows:

L = L0 + d
∑
i

|w|

In practice the L2norm is generally more preferred and works for most applications. The

L1norm tends to produce models where many of its weights are zero, and this usually helps

in feature selection by eliminating features that are not important

2.4.2 Dropout

Dropout is a technique that randomly deletes a fraction of the neurons that aims to re

duce overfitting. When a node is deleted, all connections from and towards that neuron are

also deleted. Then we perform the forward propagation and backpropagation steps of the al

gorithm for the minibatch, calculating gradients and updating weight and biases using the

modified network. After the minibatch finished process we restore all the deleted neurons

and weights and, after selecting the new minibatch, a new random subset of noted deletes, re

peating the process. The fraction of the nodes that are deleted each time is a hyperparameter,

and is called dropout rate.

Figure 2.10: A Neural Network before and after applying Dropout.

Several hypotheses have been put together on why dropout can reduce overfitting. One

of the most convincing arguments is that it enables a single neural network to operate as a

collection of smaller subnetworks that are trained at the same time, with each one of them de

30 Chapter 2. Artificial Neural Networks

veloping its own pattern recognition rules that are aggregated to a single result s the weighted

average of the solutions of the constituent subnetworks.

2.4.3 Dataset Augmentation

The power of machinelearning comes from finding patterns in data and for the best re

sults we need the most data we can have, or we can handle. It makes sense to have better

performing models if we can provide even more training data. Big datasets tend to lead to

less overfitting, and statistics support this view. More training data means outliers and noise

becomes less frequent and the model’s ability to generalize becomes better and better.

On situations where the training data available is limited, we can create additional syn

thetic examples by applying transformations and covering more cases. It isn’t always applica

ble and the way we create these additional examples need to be well studied and scientifically

supported in order to retain properties of the real data and to not simply add noise and biases.

It is hard to explain how this is done because is highly depends on the form of the data.

The easiest example though, is from unstructured data such as images. Let’s take for

example the images of numbers. In such cases data augmentation can create new images

where the numbers have a slight positional displacement, slight rotations, changes in colors

and brightness, blurriness and so on (Figure 2.11). These new images are valid for training

because in the real world a model should be able to recognise the numbers even through such

conditions.

Figure 2.11: How Data Augmentation helps us generate more data.

Chapter 3

Sparse Neural Networks

As we have previously seen the parameters of a neural network can be expressed using

matrices and vectors. A matrix is called sparse when most of its elements are zero. Conse

quently, when we refer to sparse neural networks, we can consider them as networks with

most of its weights as zeros. Using modern computing, sparse matrices can be represented in

computers with much less space than their normal matrix representation. This way we can ef

ficiently compress neural networks for use on small IoT devices. The problem is that in most

real world scenarios, good performing neural networks often usually have a great number of

parameters, usually around several hundred thousands or a few millions of weights. These

neural network sizes makes their use prohibiting on such small devices.

The most common ways to compress neural networks so far, use techniques that usually

belong into one of the following categories:

1. We can train a rather small network that operates sufficiently well and then, after train

ing, compress the network using techniques that prune its parameters.

2. Apply quantization methods that reduce memory footprint by transforming the weights

into other units that usually introduce some error due to approximation.

3. Or use knowledge distillation methods that involves training a big model with top per

formance and then using its predictions to train a smaller one.

In all those cases the obvious cost is time, because except from the usual model training,

more work and consequently more time is required in order to compress such networks for

smaller devices. It would be really convenient if we could train and compress a neural network

at the same time while also keeping its predicting power the same. Wait a minute...

31

32 Chapter 3. Sparse Neural Networks

3.1 Related Work

The literature on speeding up neural network training has a long history and it dates back

to the late ’80 – early ‘90. We divide this research into different categories of techniques

based on their characteristics. The listing is by no means extensive, but it is an effort to cover

the most representative and/or more recent members of each family.

One of the first categories of accelerationmethods includesmembers that meant to replace

the traditional gradient (steepest) descent optimization method. Steepest descent is based on a

first order Taylor series approximation of the performance function (mean square error) and it

is very slow. Therefore, methods based on second order Taylor series were investigated, such

as Newton’s method and particular adaptions of it, e.g., the LevenbergMarquardt algorithm

[4] which is much faster. Other algorithms that departed from the first order gradient concept,

are those based on conjugate gradient [5], and the similar in spirit quasiNewton method

of BroydenFletcherGoldfarbShanno (BFGS), along with its variations, e.g., LBFGS [6].

Recently, fast optimizers have been proposed such as Adam, Adadelta, Nadam [7].

Another category for accelerating neural training is those based on adopting variable

learning rates. For instance, the deltabardelta method [8] assigns to each network parameter

its own learning rate that varies at each iteration; similar in spirit is the SuperSAB method

[9].

The recently introduced technique of dropout [10] constitutes the founding member of a

new category, which accelerates training by randomly dropping units during training. Several

adaptations of it have been proposed for various applications and various neural architectures,

e.g., [6]. Similar in spirit, are the methods which compute only a subset of gradients during

back propagation, e.g., meProp [11] [12] which prunes neurons based on how many times a

neuron is updated by the back propagation.

The category of hardwarebased accelerators is gaining significance and hardware ar

chitectures such as FPGAs [13], multicore CPUs [14], TPUs [15] are increasingly used for

neural training and inference.

A very recent and intriguing piece of work [16] suggests that only a small part of a neural

network is responsible for carrying out accurately a particular prediction, and thus if we can

find a subnetwork that can achieve it and then train only this, then we can gain significant

speedups in training. We will explain the Lottery Ticket Hypothesis in more detail in the

following section.

3.2 The Lottery Ticket Hypothesis 33

The category of methods that are related mostly to the present work are those based on

neural topology sparsification. Dropout can be considered one of those in the sense that re

moving a neuron is equivalent to removing all its connections. However, there have been pro

posed in the literature methods which specifically prune the connection between the neurons.

For instance, the works [17] [18], and [19]. However, these linkage sparsification techniques

do not aim at mimicking the topological structure of real neural networks, but are mainly

based on eliminating closetozero weighted connections. The most closely related work to

ours is the SET procedure of Mocanu et al. reported in [20], in which they start from a com

pletely unstructured topology basis, i.e., purely random network, having a specific, stable

number of connections removed in every epoch, which is not efficient enough, especially

when we are in the last epoch and the model is almost trained.

Overall, the methods developed in this work can be used in conjunction with any member

of any category described above to accelerate training and reduce the memory footprint.

3.2 The Lottery Ticket Hypothesis

Thanks to the work of Frankle et al. [16], a new wave of research starts in the neural

networks field that challenges the way we have been designing neural networks so far. The

process of training machine learning models is one of the areas in which data scientists often

face the compromise between theory and the constraints of real world solutions. More often

than not, a neural network architecture that seems ideal for a specific problem can’t be fully

implemented because the cost of training would be prohibiting. Typically, the initial training

of a neural networks requires large datasets and days of expensive computation usage. The

results are very large neural network structures with a lot of neurons densely interconnected

through numerous layers the result of which is an astronomical number of trained parameters.

This structure often needs to be subjected to optimization techniques to remove some of the

connections and adjust the size of the model.

The question that bothered AI researchers for decades is weather we actually need all

those large neural network structures to begin with. Those dense architectures are likely to

perform the wanted task but the cost might render them inapplicable in a realworld scenario.

The question that essentially gave birth to the Lottery Ticket Hypothesis is weather we can

perform the initial task with smaller more sparse architectures.

34 Chapter 3. Sparse Neural Networks

Using an analogy from the gambling world the training of machine learning is often com

pared to winning the lottery by buying most of the tickets.

The Lottery Ticket Hypothesis. A randomlyinitialized, dense neural network contains

a sub network that is initialized such that—when trained in isolation—it can match the test

accuracy of the original network after training for at most the same number of iterations.

This small sub network is often referred to as the winning ticket.

If this is true, it means we have a great confidence that at least one sub network exists,

which can have the same test accuracy as the original, and sometimes even greater than the

original, with only a small fraction of the initial parameters used. This may revolutionise the

way we design neural networks, unlocking us a path to more powerful network architectures

that utilize more efficiently the resources they use.

This hunt for the winning ticket can’t be done without a systematic method though. It

is indeed helpful to conduct random search in the subspace of dense networks to finding

equivalent subnetworks, but if not handled carefully the efforts may be fruitless. A sparse

training algorithm, from one hand should be able to search a wide range of combinations, but

from the other should give the testing subnetworks some time to reach maturity or to show

what they can achieve. We can’t possibly expect from any random subnetwork to perform

at peak performance when compared to its fully connected dense counterpart, from only a

couple of training epochs.

From the other hand we often don’t have the luxury to test random subnetworks in

definitely, surpassing the training time of their dense counterpart. So, summarize we need

algorithms that can do the following:

1. Searches a wide range of sub networks derived from their fully connected counterpart.

2. Gives enough time and space for these subnetworks to reach maturity.

3. Find some that can perform at the same or higher level of accuracy than the original.

4. And finally, their size should be considerably smaller than the original, which means

the resources required are considerably less.

At the same time, it would be of great importance if such algorithms could keep the total

training cost equal to or even better less than that of their dense counterpart. Time is always

of great importance and in real world situations any time saved from the training of a neural

3.3 A Small Reference to Network Science Concepts 35

network could be utilised for finetuning the resulting model before lunch, or earlier lunch

that could lead to competitive advantages.

3.3 A Small Reference to Network Science Concepts

Any neural network among other properties like exhibits characteristics of graphs from

classical network theory. Neurons can be related to vertices and weights can be related to

edges, making the study of its resulting topologies an interesting field of research. Even

for fully connected neural networks the resulting topology after the training changes a lot,

meaning that many training algorithms and network designs produce topologies that can be

correlated to those found in graph theory. In the figure 3.1, from the Journal of Computing in

Civil Engineering [21], we can find visualizations of the network structured we will explain

below.

3.3.1 Regular Graphs

In regular graphs all nodes have the same number of links with other nodes. The resulting

network structure can be represented by a lattice with vertices of degree k, which are named k

regular graph. In Neural Networks, fully connected layers can be considered bipartite regular

graphs, with the nodes of each layer as the graph’s disjoint sets.

3.3.2 SmallWorld Networks

In smallworld networks there is a small likelihood for any two given nodes to be neigh

bors but their neighbors have a bigger chance for them to be neighbors. This means that every

node can be reached from any other node in a small number of hops or steps. The number

of hops required is significantly smaller proportionally to the number of nodes that exist in

the network. Specifically, a smallworld network is defined to be a network where the typ

ical distance L between two randomly chosen nodes (the number of steps required) grows

proportionally to the logarithm of the number of nodes N in the network, that is:

L ∝ logN

while the clustering coefficient in not small. Some examples of SmallWorld networks

36 Chapter 3. Sparse Neural Networks

include social networks, electric power grids, food webs, the underling infrastructure of the

internet, brain neurons and websites.

3.3.3 ScaleFree Networks

ScaleFree Networks have degree distributions that follow a power law, at least asymptot

ically. The characteristics of the network are independent of the size of the network, which

means that when the network grows the underlying structure remains the same. Although

many real networks gives us a hard time classifying them between smallworld and scalefree

networks, because there is a gray zone in their border, the truth is that inherently scalefree

networks in nature are rare [22].

3.3.4 Erdös–Rényi Random Graphs

Random graphs is the general term used when applying probability distributions over

graphs. It may indicate a random shape or structure or a random process that generates them.

Among them the Erdös–Rényi random graph model is almost exclusively referenced in any

mathematical context and refers to two closely related models for creating them.

• In the G(n,M) model a graph is chosen uniformly at random from the list of all pos

sible graphs that have n nodes andM edges.

• In the G(n, p) model a graph is generated by connecting nodes randomly. An edge

between two nodes exists in the graph with probability p and is independent from any

other edge. The distribution degree for any particular vertex is binomial where n is the

total number of vertices. But as n → ∞ and np =constant the distribution becomes

Poisson.

The second model is preferable for computational experiments as it is easier and faster to

use. These graphs are often used in probabilistic methods to research properties in graphs. In

practice random graphs have a lot of similarities with smallworld graphs but with a key dif

ference. SmallWorld networks have significantly higher clustering coefficient than random

graphs[23].

3.4 Weight Masks 37

Figure 3.1: Different kinds of Network Structures

3.4 Weight Masks

After analyzing the underlying components of a neural network in Chapter 2, we can

understand that the most applied, if not the best, way to represent the interconnections in a

neural network is with the weight matrices between each layer. Those are the connections

that we ultimately want to prune in order to achieve a sparse network topology. The most

intuitive way to approach this task is with Weight Masks. A weight Mask can be imagined

simply as a matrix of equal dimensions as the matrix that represents the network topology. A

Weight Mask contains only zero and ones which when applied to a weight matrix it conducts

elementwise multiplication to the elements of the weight matrix. A weight or element in the

weight matrix is pruned, if it is multiplied with zero, while on the other case it remains as it

is. This way we can determine which weights will be pruned and which weights will stay the

same.

We can understand better how a weight mask is applied with a visual experiment:

W =

1 4 7

2 5 8

3 6 9

 ,M =

0 1 0

0 0 0

1 0 1

 ,ThenW ⊙M =

0 4 0

0 0 0

3 0 9

The symbol ”⊙” represents the Hadamard product that we have previously mentioned,

which is the element wise product between matrices.

3.5 Sparse Evolutionary Training (SET)

The name for the SET algorithm suggests that the algorithm uses a sparse training method

that takes an evolutionary algorithm design. SET draws inspiration from the natural simplic

38 Chapter 3. Sparse Neural Networks

ity of evolutionary approaches, an area with great interest and a lot of research for many

years. While biological neural networks has been shown to have sparse topologies [24][25],

Mocanu et al. argue that artificial neural networks have not evolved following these topo

logical features [20][26]. With motivation from the huge parameter size of fully connected

networks and the fact that the parameters of trained neural networks follow distributions that

places most of the weights around zero [27]. The stateoftheart approach in machine learn

ing pursues sparse topological connectivity after the training phase as a method to finetune

the networks inference capabilities [27], with severe time cost on the training phase. The need

for reasonable training times motivated Mocanu et al. to follow a more integrated approach

to pruning and training.

The SET procedure involves taking a fully connected neural network before training and

pruning until it reaches a sparse topology with a controlled and predefined sparsity level.

Then, following a random process that prunes existing connections and introduces new con

nections to the network, it reaches a more structured topology like scalefree or smallworld

networks.

3.5.1 The SET Procedure

The Set procedure is depicted through a pseudocode in Algorithm 1. In a hidden layer k

of a neural network, the neurons can be can be collected in a vector hk = [hk
1, h

k
1, ..., h

k
n,], with

n the maximum number of neurons for this layer. A neuron from the hidden layer is connected

to the neurons of the previous layer namely hk−1. These connections between the two layers

can be expressed in a weight matrixWk ∈ Rnk−1×nk . In dense networks this weight matrix is

dense but with the SET procedure, the weight matricesW of a sparse connected (SCk) layer

start as an Erdös–Rényi random graphs, in which the probability that a connection exists

between the neurons hk−1
i and hk

i is given by:

p(W k
ij) =

ε(nk + nk−1)

nknk−1
(3.1)

Where epsilon ε ∈ R+ is a parameter of SET that controls the sparsity level. With the

default value of ε = 20 that the original paper uses we can achieve a sparsity level of around

95% to 97% in most network configurations with at least three hidden layers. This can be

translated to a compression ratio of around ×20 to ×40 times depending on the initial net

work size the value of ε used. The amount of connections the resulting network has, is not

3.5 Sparse Evolutionary Training (SET) 39

always the same as the algorithm that makes the network sparse is a random process. But with

some tweaking one can achieve the desired sparsity level or a suitable number of resulting

parameters in the sparse network.

The SET procedure however does not stop there. The resulting sparse networks as is

were performing significantly worse than their dense counterparts as shown in the original

paper, named FixProb [20]. Referring to the Lottery Ticket Hypothesis, the procedure just

isolates a subnetwork from the original dense graph which then trains for the full number

of epochs. This is just a lottery ticket. To find the winning tickets we would need to conduct

an innumerous number of experiments. This is where the synaptic remodeling phenomenon

kicks in, in an algorithm called weight evolution. This is illustrated in Figure 3.2 which we

used from the original paper [20].

Figure 3.2: An illustration of the weight evolution procedure. For each sparse connected layer,

SCk (a) of a Neural Network, at the end of a training epoch a fraction of the weights closest to

zero, are removed (b). Then a number of weights is randomly added that is equal tho number

of weights removed (c). The process is repeated at the end of each epoch for the rest of the

training phase (d).

The evolutionary part in the name of the SET algorithm come from the fact that at the

end of each epoch a fraction of the weights are pruned and new connections are formed.

A fraction ζ of the weights closest to zero are pruned, with zeros in the weight mask, and

an equal amount of new connections are formed with the weights initialized as if they had

started their training now. Because these weights are closest to zero, we expect that their

contribution is minimal and their removal will not induce notable changes in the model’s

performance [28][18]. Because the algorithm always reconnects the same amount of weights

pruned, the total number of parameters in the network stays the same and known from the

start. But the weight evolution is turned off at the last epoch so that the final model does not

have freshly initialized and untrained parameters that would only be a burden to the network.

40 Chapter 3. Sparse Neural Networks

Algorithm 1 Pseudocode of the SET procedure
1: Procedure SET (Sparsity level ϵ, Rewiring percentage ζ)

2: Initialize Fully Connected Neural Network model;

3: for i in range(1,layers1) do

4: Create Sparse Connected layer (SC) with an Erdös–Rényi topology given by ε and Eq 3.1;

5: Replace FC with SC layer created;

6: end for

7: initialize training algorithm parameters;

8: for i in range(1,epochs) do

9: Feed_Forward();

10: Back_Propagation();

11: for i in range(1,layers1) do

12: Remove a fraction ζ of the smallest positive weights;

13: Remove a fraction ζ of the largest negative weights;

14: Add new random connections equal to the amount removed;

15: if i == epochs then

16: break; // Do not add new weights on the last epoch

17: end if

18: end for

19: end for

One could argue whether two epochs are enough for the previous batch of reconnected

weight to reach ”maturity” andwe also wanted to and tested this possibility. The turnoff point

was modified in our experiments but while it remained a small number whether 1, 5, or 10 in

the scope of 500 epochs the changes where statistically insignificant. But any bigger turnof

point, i.e 50 or 100, would negatively impact the networks performance as the evolutionary

search for better parameter was now noticeably less. So we opted to keep the default turnoff

point to utilize the maximum evolutionary search we could.

It may be easier to interpret this procedure if we make an analogy of the neural network

model to an entity which evolves over time. Strong and more important connections are left

intact while weaker and less important connections are pruned, like the selection phase of

natural evolution and the new connections added correspond to the mutations that happens

during natural evolution over the years. As shown by Mocanu et al. the SET procedure has a

noticeable success in keeping the model’s accuracy equal and some times, even greater than

3.5 Sparse Evolutionary Training (SET) 41

its dense counterpart while compressing the network significantly [20].

3.5.2 The Biological Background

Unbeknownst initially to Mocanu et al. [20] a phenomenon exists in biological brains

that draws some similarities between the algorithm and biological brains, called synaptic

remodeling which happens during sleep.

The information received by an animal is processed by their brain and throughout the

course of its awake phase causes the synapses in the brain to strengthen. To counterbalance

these changes the synapses should weaken during the sleep phase. De Vivo et al. through

experimentation observed a substantial decrease in the interface size of mouse brains after

sleep [29]. The largest relative changes was observed among weak synapses, while stronger

ones remained more stable. This suggests that there is a distinction between weaker but more

numerous synapses and the stronger but considerably less ones. Furthermore, Diering et al.

found that synapses undergo changes during sleep/wake cycle which are observed by the

concentration increase of some particular gene during the wake phase that differentiate be

tween weaker and stronger synapses and trigger neurological changes in them that when the

sleep cycle begins trigger synapse weakening [30]. This means that one of the core functions

of sleeping is, among others, to renormalize the synaptic strength increase during the wake

phase.

Keeping the analogy, we could relate the wake phase of an animal with a training epoch on

a neural network, that results in the weight update which seems like the synapse strengthening

that occurs during the day. Then, the weight evolution phase of the SET Procedure can be

related to the sleep phase in animals that activates the synapse weakening procedure. Even

though synapse remodeling is a very complex procedure, the SET algorithm applies a simple

but understandable abstraction that yields important results nonetheless.

Chapter 4

Proposed Techniques

The SET procedure as we have seen, uses a constant zeta parameter equal to 0.3 or 30%

that keeps the evolution rate unchanged throughout training. The weight evolution does not

differentiate between first and last epochs, even thought it obvious that a neural network’s

behavior and stability changes as proceeds through the training. Drawing inspiration from bi

ology, where the synapse remodeling rate in biological brains changes throughout an animal’s

life, we tried making this weight evolution rate change during training.

The methods we propose will retain the closest to zero weight pruning algorithm but with

a variable zeta parameter that covers twomain categories. Firstly, making the hyperparameter

zeta follow a genuinely declining function of a linear one and a much steeper exponential

one, we simulate the aging factor in biological brains that may help the neural network in

our case ’mature’ in a much smoother rate. Secondly, causing the parameter zeta to oscillate,

we display a seasonal pattern that tries to simulates the seasonal changes in an animal’s brain

that occur during a chronological year.

The truth is, that a lot of functions can fall into these categories, but the methods we im

plemented for our experiments were designed to introduce as few new hyperparameters as

possible but with decent performance. The idea of making the parameter zeta a variable also

draws inspiration from variable learning rate techniques, a concept that has already existed

for many years already. From the scenarios we tested we present three variations to the base

SET algorithm that are representative enough of our cause. Two where zeta follows a gen

uinely monotonous variation and another where zeta exhibits oscillations. The whole design

drew inspiration from the variable learning rate techniques with which it has many similar

ities. The variable learning rate is analogous the the variable zeta we try to implement. Our

43

44 Chapter 4. Proposed Techniques

implementations was based on the original author’s custom implementation and their Keras

implementation but the latter was implemented in a way that caused the sparse methods to

run a lot slower than their dense MLP counterpart. A year or two after the original paper’s

release, Keras introduced the Callbacks API and using it we constructed an implementation

that is more efficient and close to the desired concept.

4.1 Motivations from Biology

In the original paper Mocanu et al. admits that the algorithm used for removing and re

connecting links is very simple and there may be better ways to approach it. The parameter

zeta (ζ) used in the SET procedure stays the same throughout the training phase at 0.3 or 30%.

The weight evolution does not differentiate between first and last epochs, even thought it is

obvious that a neural network’s behavior and stability changes as it converges towards the

minimum over the training. Drawing inspiration from biology, where the synapse remodel

ing rate in biological brains changes throughout an animal’s life, we tried making this weight

evolution rate change during training by making the parameter zeta a variable. This may be

a good direction to move sparse evolutionary training techniques one step further.

Let’s approach this from a different angle. SET was inspired from the synaptic remodel

ing phenomenon that causes neurons to strengthen during the wake phase and causing them

to weaken during the sleep phase, solidifying the knowledge gained throughout the day. In

that manner, the epochs of a training session can be similarized to days in the life of a bio

logical brain. But biological organisms age through time and that can induce changes in their

neurological parts as well. The brains of young animals have considerable differences in their

anatomy than more mature ones. These differences appear not only to the overall number of

neurons in their brain but also in the thickness those synapses have and to the rate they reform

new neurons as well (a process called neurogenesis). Older animals may have less neurons

than younger ones and way smaller neurogenesis rate, but their experience makes them wiser

and more knowledgeable, at least until a certain age . This may be indicated through the in

creased thickness in their synapses that occurs gradually over the years and until they reach

adulthood.

4.2 Taking the logic behind SET one step further 45

4.2 Taking the logic behind SET one step further

To speak with more algorithmic terms, if we change the zeta value throughout training

we can simulate the changes to the new neuron formation rate in the brain. The methods

we proposed cover two main categories. Firstly, making the hyperparameter zeta follow a

genuinely declining function of a linear one and a much steeper exponential one, we simulate

the aging factor in biological brains that may help the neural network in our case ’mature’ in a

much smoother rate. Secondly, causing the parameter zeta to oscillate, we display a seasonal

pattern that tries to simulates the seasonal changes in an animal’s brain that occur during a

chronological year.

We would also like aligning our methods, to the categories Hoefler et al. defined in their

research [31] with most of these categories applying to the Mocanu et al. SET procedure

as well. Among different compression techniques out there, our methods belong into the

model sparsification category because they are the result of applying an Erdős–Rényi random

graph to a much bigger initial dense model. This also explains why our methods also fall

into the sparse training category. They start from a sparse model which they update during

training by modifying its underlying structural topology. During training our methods prune

and reconnect parameters at a variable rate that changes during the training process. When

choosing candidates for removal, we use a datafree selection based on weight magnitude.

And finally, when we need to regrow the network we apply a random regrowth technique

that chooses new weights to reconnect randomly. It is of great importance to organize sparse

methods for understanding them easier and for easier evaluation that may lead to a more

structured and focused research.

4.3 Linear Decreasing Variation (LDV)

In a similar fashion to the variable learning rate methods used by Abbas et al. [32] we

applied a linear decreasing curvature to the parameter zeta that is adjusted to the maximum

number of epochs. We call this method Linear decreasing Variation (LDV), with the relevant

pseudocode in Algorithm 3 as seen in Algorithm 2. The following equation depicts this

procedure:

ζi = ζmin + (ζmax − ζmin)×
max_iter − curr_iter

max_iter

46 Chapter 4. Proposed Techniques

We set a maximum zeta value of 0.3 and a minimum one of 0.01 so that it starts with the

maximum zeta value at the start of the training and linearly decreases to the minimum zeta

value over the entire training process.

Algorithm 2 Linear Decreasing Equation Pseudocode
1: Procedure LDV (Sparsity level ε, ζmax, ζmin)

2: Initialize Fully Connected Neural Network model;

3: Sparsify_network(ε);

4: Initialize training algorithm parameters;

5: for i in range(1,epochs) do

6: Feed_Forward();

7: Back_Propagation();

8: Apply_LDV_rule(ζmax, ζmin, κ, i, epochs); // See LDV equation

9: Weight_evolution(ζ);

10: end for

4.4 Oscillating Variation (OSV)

Here, once again following the steps of Abbas et al. [32] we applied an oscillating vari

ation curve to the zeta parameter, adjusted to the maximum number of epochs. We call this

method Oscillating Variation (OSV). Just like the LDVmethod we need aminimum andmax

imum zeta value that is defined as 0.3 and 0.01 respectively. The following equation shows

how this is done:

ζi =
ζmax + ζmin

2
+

ζmax − ζmin

2
× cos

(
2π · curr_iter

T

)

Where: T =
2 ·max_iter

3 + 2k

In the definition of the period T we use the parameter k to control the frequency of the os

cillations and was set equal to 1 for our experiments after performing a small random search.

The relevant pseudocode can be seen in Algorithm 3

4.5 Exponential Decay (EXD) 47

Algorithm 3 Oscillating Variation Pseudocode
1: Procedure OSV (Sparsity level ε, ζmax, ζmin, Frequency κ)

2: Initialize Fully Connected Neural Network model;

3: Sparsify_network(ε);

4: Initialize training algorithm parameters;

5: for i in range(1,epochs) do

6: Feed_Forward();

7: Back_Propagation();

8: Apply_OSV_rule(ζmax, ζmin, κ, i, epochs); // See OSV equation

9: Weight_evolution(ζ);

10: end for

4.5 Exponential Decay (EXD)

Drawing inspiration from the field of finance we used a simple exponential decreasing

function that makes the parameter zeta decay each epoch by a constant fraction called interest,

as depicted in the following equation:

ζi = ζ0(1− interest)curr_iter

where ζ0 is the starting zeta value equal to 0.3 just as the SET procedure and the interest

was chosen to be equal to 0.01 for our experiments after trying several values, so that the

decay in the zeta parameter was neither too steep nor too gentle that it didn’t approach the

zero for the number of epochs we used. We call this method Exponential Decay (EXD) and

the relevant pseudocode is depicted in Algorithm 4.

4.6 The Importance of Training Speed

An important view of this project is addressing the training speed of sparse methods

and how they compare to fully connected ones. Decreases in memory footprint may not be

the only reason sparse methods should be considered. It is also of great importance to find

whether SET and our variations can help reduce training time costs or at least stay around

the same as their dense counterpart while at the same time keeping the model’s accuracy

the same, if not greater. Depending on the implementation, this isn’t always obvious. Many

frameworks today are not designed to handle sparse matrices and as sparse methods gain

48 Chapter 4. Proposed Techniques

Algorithm 4 Exponential Decay Pseudocode
1: Procedure EXD (Sparsity level ε, Initial rewiring percentage ζ0, interest)

2: Initialize Fully Connected Neural Network model;

3: Sparsify_network(ε);

4: Initialize training algorithm parameters;

5: for i in range(1,epochs) do

6: Feed_Forward();

7: Back_Propagation();

8: Apply_EXD_rule(ζ0, interest, i); // Applying the EXD equation

9: Weight_evolution(ζ);

10: end for

more popularity, we aspire that this will change in the future.

In our experiments, we search to point out the similarities and differences in training

speeds among dense neural networks, the base SET procedure and its variations we introduce.

For this goal we use the implementations provided by the creators of SET, that contain a

custom MLP implementation that doesn’t use any particular machine learning library and an

implementation that uses the Tensorflow and Keras frameworks that are well known to the

machine learning community and many developers use daily.

4.7 The TensorflowKeras Implementation Incidents

In the original TensorflowKeras implementation, the weight evolution process is done,

as the developers state, with an ugly hack. After training the model for one epoch the weight

evolution process is executed which modifies the weights by applying a new weight mask

on them. For this to work, the weights need to be saved in custom variables that we define

before the model is created. Then, to avoid memory increase problems the model gets erased

and created again with the updated weights. This whole process is computationally expensive

and as we display in Chapter 5 it causes the sparse methods to take more time to train than

their dense counterpart, something that does not happen with the custom implementation.

Upon the paper’s release the version of Keras used did not offer a better alternative to

do this. But today, using the Callbacks API in Keras we can modify the way the training

procedure is executed without calling multiple model fits or using custom logic to rewrite the

4.7 The TensorflowKeras Implementation Incidents 49

training process again. Essentially, we can tell Keras to execute the weight evolution process

before any new epoch begins and this time without any memory increases or ”ugly hacks”.

With these changes, we expect to reduce the training costs noticeably.

Chapter 5

Evaluation & Results

To propose new techniques is one thing, but to find if they are of any value is a whole other

effort, but a necessary one. We needed to find how we could evaluate our work to discover if

they add any value to the already existing methods found in literature. This chapter is devoted

to this cause.

5.1 Experimental Evaluation

In the experiments we conducted we evaluate our methods using the following metrics:

1. Memory Footprint.

2. Accuracy.

3. Time required for Training.

4. Time required for Inference.

We expect memory footprint to be around the same for all sparse methods as they use the

same Erdős–Rényi random graph procedure. It is still important though how they all compare

to their dense MLP counterpart. The time required for training is the total amount of real time

that passes to train amodel. The time required for inference calculates how fast we canmake a

single prediction, on a single experiment. We conducted three experiments for the Accuracy,

Training and Inference Speed results and we present their mean values.

51

52 Chapter 5. Evaluation & Results

5.2 Evaluation Settings

In this section we refer the tools used to evaluate our work and analyze the procedures

with which this was achieved. It is the foundations to our experiments and it helps provide a

context in which the results that will arise can be understood and evaluated.

5.2.1 Hardware Utilized and Software Implementations

Our experiments were conducted on a desktop personal computer with an Intel Core i7

processor. The software implementations contain two families: one using customPython code

and the other using Tensorflow andKeras. The customPython code uses Scipy’s sparsematrix

operations, which are useful for speed and memory footprint evaluation, while the second,

due to the use of Keras, is considered as more trusted and better performing in accuracy which

may make a greater appeal to other developers and may give them a greater incentive to use

use our findings. For more information and details about the two implementations, please

refer to Appendix A.

For the sparse models (SET, LDV, EXD, OSV) we assign the sparsity level ε equal to 20

which configures the compression rate depending on the model architecture used. The value

zeta stays at 30% for the SET procedure, as this was the proposed value from its creators,

and we use this same value as well for the initialization of zeta on our methods. The parame

ters’ initialization that are specific for each method are reported along with the methods they

belong to at Chapter 4.

5.2.2 Experimentation Categories

Our contributions fall into a wide range of areas and as a result we cant evaluate them

all together in a single experiment. We therefore conducted several experiments that we split

into the following categories:

Comparing Performance on more Datasets

In the original paper, the usefulness and validity of the SET procedure was demonstrated

with experiments on a small variety of datasets.We deemed notable to test SET alongwith our

techniques on more datasets with wider characteristics to show how sparse implementations

5.2 Evaluation Settings 53

perform in comparison to their dense counterparts. For these experiments we use a Multi

Layer Perceptron (MLP) with three layers, each one of them having 1000 neurons. We use

this setup for each of the following datasets:

• LUNG

• ORL

• Prostate_GE

• GLIOMA

• Fashion MNIST

Most of the aforementioned datasets are widely used in machine learning and they come

from awide areawhereArtificial Neural Networks are employed. Formore information about

each dataset please refer to Appendix A.

Note. Even though the FashionMNIST dataset was one of the datasets used in the original

paper, we also used it here, in order to replicate experiments and to make comparisons on a

common ground.

Each dataset is tested on the SET procedure, our three proposed techniques and their

dense MLP counterpart using the custom Python code family. We train the models for 500

epochs using the default values for most hyper parameters. For analytical details about the

model, hyperparameter values used and compression rates for each dataset, please refer to

Appendix B.

Comparing Keras Implementations

In these category of experiments we compare our proposed techniques along with SET,

using the default Keras implementation of the SET procedure used by Mocanu et al., to the

new improved implementation we created. We include the dense MLP in these comparisons

even though this implementation hasn’t changed. As far as the model is concerned we use

a neural network setup that is closely related to the experiments of Mocanu et al. We use

a Multi Layer Perceptron of 3 hidden layers, with 4000 neurons on the first hidden layer,

1000 in the second and finally 4000 neurons in the third. We train the models for 500 epochs

using the default values for most hyper parameters. For analytical details about the model

and hyperparameter values used, please refer to Appendix B.

54 Chapter 5. Evaluation & Results

Comparing Speed Using Sparse Matrix Operations

For these experiments we use the Fashion MNIST dataset, and we compare the training

and inference speeds between our improved Keras implementation and our custom Python

implementation. We use the same network architecture we used on the previous experiment

category. The reason for this experiments is to reveal the differences of the Keras API which

does not use sparse matrix operations and the custom Python code which does use them. We

expect the sparse methods of the custom Python code to perform much better comparatively

to the dense MLP due to the utilization of sparse matrix operations.

Comparing Performance using 4 Hidden Layers

Leaving the Dense MLP behind in speed with our previous experiment using the cus

tom Python code, with this experiment we decided to scale up the model complexity by

experimenting on a much bigger network architecture. Using once again the Fashion MNIST

dataset, we constructed a model with 4 hidden layers with 4000 neurons in each one, using

the custom Python code. In these experiments, we leave the dense MLP out and we focus

more on the sparse methods. More specifically we compare the SET procedure against our

proposed methods to highlight their differences. For analytical details about the model and

hyperparameter values used, please refer to Appendix B.

5.2.3 The Memory Footprint

From the designing phase of a neural network using one of the sparse techniques (SET

and our proposed methods) we are able to know exactly how sparse the model will be after

training. We know this before training because our methods belong to the sparse training

category of model pruning, whichmeans that even though themodel’s parameter’s are pruned

and reconnected throughout the whole training process, the total amount of parameters at the

end of each epoch stays the same as the start. For all experiments we calculate the potential

compression rate based on the number of weights kept. In actual memory size this greatly

depends on how the program stores the weight matrices. If the weights are stored with dense

matrices the compression rates we calculate are not translated to the actual compression rates

in memory footprint. And if the weights are stored as sparse matrices the compression rates

we calculate will need to be modified depending on the efficiency of the algorithm used.

5.3 Results 55

5.2.4 Python Code vs Keras

From the above experiments we are will be in the position to compare differences in per

formance between the custom Python implementation and our improved Keras implementa

tion on models of the same architecture, on the same dataset and with the hyperparameters

similarly tuned. We will be in the position to see how differently our sparse methods perform

using sparse matrix operations in the custom Python Code and normal matrix operations with

the Keras implementation.

5.3 Results

We will now present the results of our experiments, based on the category they belong.

5.3.1 Comparing Performance on more Datasets

LUNG Dataset

We should not forget that the LUNG dataset has only 203 samples of data and 3,312

features and 5 classes, coming from the field of biology.

Our experiments in this dataset show that all the sparse methods are at least 60% faster in

training speed and at least 70% faster in inference speeds (Figure 5.2). Our proposed methods

show a slight speedup on training speed and not any significant difference in inference speeds

compared to the SET procedure. As far as accuracy is concerned, although the dense MLP

stays consistently at the top, the LDV method shows a more smooth convergence than the

SET procedure and outperforms it by small margin (Figure 5.1). For the memory footprint

all sparse methods achieve a compression rate approximately to×30.9 (See App B). We can

conclude that for this dataset the LDVmethod performed the best among the sparse methods,

and if we can accept a small penalty in accuracy by choosing the LDV method we have a

model that trains significantly quicker and leaves a vastly smaller memory footprint than the

dense MLP.

ORL Dataset

We should not forget that the ORL dataset has 400 samples of grayscale face images of

92x112 pixels in each one and 40 classes, belonging in the field of computer vision.

56 Chapter 5. Evaluation & Results

450 460 470 480 490 500
Epochs (#)

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Ac
cu
ra
cy

Models
MLP
SET-MLP

LDV
EXD

OSV

Figure 5.1: Accuracy of the Python code on the LUNG Dataset.

Figure 5.2: Training and Inference times on the LUNG Dataset.

Our experiments in this dataset show that all the sparse methods are at least 62% faster in

training speed and at least 50% faster in inference speeds (Figure 5.4). Our proposed methods

show a slight speedup on training speed and not any significant difference in inference speeds

compared to the SET procedure. As far as accuracy is concerned, the dense MLP failed to

train successfully even after many experiments, displaying a highly volatile accuracy (Fig

ure 5.3). From the sparse methods, the LDV this times performs the poorest, but the EXD

and OSV methods remain competent to the SET procedure and many times even exceed it.

The EXD methods seems to perform slightly better than the SET procedure at all times in

dicating it as the winner in the accuracy tests. For the memory footprint all sparse methods

achieve a compression rate approximately to ×22.2 (See App B). We can conclude that for

this dataset the EXD method performed the best among the tested methods in accuracy and

even surpassed the the SET procedure and the dense MLP in training and inference speeds.

5.3 Results 57

450 460 470 480 490 500
Epochs (#)

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Ac

cu
ra

cy

Models
MLP
SET-MLP

LDV
EXD

OSV

Figure 5.3: Accuracy of the Python code on the ORL Dataset.

Figure 5.4: Training and Inference times on the ORL Dataset.

ProstateGE Dataset

We should not forget that the ProstateGE dataset has only 102 samples of data, 5,966

features and 2 classes, coming from the field of medicine.

Our experiments in this dataset show that all the sparse methods are at least 20% faster in

training speed and at least 80% faster in inference speeds (Figure 5.2). Our proposed methods

show a slight speedup on training speed and not any significant difference in inference speeds

compared to the SET procedure. As far as accuracy is concerned, although the dense MLP

stays consistently at the top, the EXDmethod shows amore smooth convergence than the SET

procedure and outperforms it by small margin in small cases (Figure 5.5). For the memory

footprint all sparse methods achieve a compression rate approximately to×35.9 (See App B).

We can conclude that for this dataset the EXD method performed the best among the sparse

methods, and if we can accept a small penalty in accuracy by choosing the EXD method we

can have a model that trains quicker and leaves a vastly smaller memory footprint than the

dense MLP.

58 Chapter 5. Evaluation & Results

The huge amount of features in this dataset, may be responsible for the smaller difference

in training speeds, compared to the previous datasets. This huge amount of features however,

may explain why there is a huge difference in inference times, as the sparse methods use

significantly less parameters.

450 460 470 480 490 500
Epochs (#)

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Models
MLP
SET-MLP

LDV
EXD

OSV

Figure 5.5: Accuracy of the Python code on the ProstateGE Dataset.

Figure 5.6: Training and Inference times on the ProstateGE Dataset.

GLIOMA Dataset

We should not forget that the GLIOMAdataset has only 50 samples of data, 4,433 features

and 4 classes, coming from the field of biology.

Our experiments in this dataset show that the SET procedure is 20% faster in training

speed than the dense MLP (Figure 5.8). Our proposed methods display even higher training

speed with the EXD method achieving 25% faster training speed than the dense MLP. In this

dataset the inference speed differences are negligible. As far as accuracy is concerned, the

dense MLP stays consistently at 0.7, the EXD method displays a same behavior to the SET

5.3 Results 59

procedure and outperforms it by a small margin in some cases (Figure 5.7). For the memory

footprint all sparse methods achieve a compression rate approximately to×33.3 (See App B).

We can conclude that for this dataset the EXD method performed the best among the sparse

methods, both in accuracy and in training speed.

The huge amount of features in this dataset reminds us of the ProstateGE dataset, but we

have way less samples for train, which may be responsible for the differences we observe in

the GLIOMA Dataset which has similar general features to the ProstateGE Dataset.

450 460 470 480 490 500
Epochs (#)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Models
MLP
SET-MLP

LDV
EXD

OSV

Figure 5.7: Accuracy of the Python code on the GLIOMA Dataset.

Figure 5.8: Training and Inference times on the GLIOMA Dataset.

Fashion MNIST Dataset

We should not forget that the Fashion MNIST dataset has 60,000 samples of grayscale

images of clothes with 28x28 pixels in each one and 10 distinct classes, belonging in the field

of computer vision. In this category of experiments we do not apply data augmentation.

Our experiments in this dataset show that the sparse methods are approximately 54%

faster in training speed than the dense MLP (Figure 5.8). Our proposed methods display

60 Chapter 5. Evaluation & Results

slight to no difference to the training time of the SET procedure, and the differences in the

inference times are not significant enough to make any impact.

As far as accuracy is concerned, the dense MLP seems to slightly underperform over

the sparse methods, and at times we can see some sudden drops in accuracy (Figure 5.7). We

can’t pick a clear winner from the sparse methods as their performance is around the same.We

could say that the LDV and OSV methods show a slight better performance but our choice

is not supported by any statistical significance.

For the memory footprint all sparse methods achieve a compression rate approximately

to ×21.5 (See App B).

We can conclude that for this dataset no sparsemethod is the clear winner. In the following

experiments we are more thorough on this dataset by using it on more network architectures

using the Python code and with our improved Keras implementation which is much more

optimized for accuracy. There is some potential to clear up the confusion on which method

is the more suitable for this dataset.

450 460 470 480 490 500
Epochs (#)

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Models
MLP
SET-MLP

LDV
EXD

OSV

Figure 5.9: Accuracy of the Python code on the Fashion MNIST Dataset.

Figure 5.10: Training and Inference times on the Fashion MNIST Dataset.

5.3 Results 61

5.3.2 Comparing Keras Implementations

In this experimentation category, we compare the original Keras implementation to our

improved Keras Implementation using the Callbacks API. Firstly, the memory footprint re

mains unchained between the two implementations and close to 350,000 parameters as, by

design, the Erdös–Rényi sparse graph is solely responsible for the resulting memory foot

print of the model. Comparing the sparse models however, to their dense MLP counterpart

as seen in Figure 5.11, we see a great difference in the memory footprint. From 11,1 million

parameters reduced to 350.000, we achieve a compression rate of ×32, which is equivalent

to around 96% reduction in parameters. And this is known to us before even starting to train

the models. This is very beneficial, as we can tune the parameter ε from the start to achieve

the desired compression rate, a feature that helps a lot when the model is designed to run on

small or IoT devices with much less memory capabilities than a desktop computer.

Figure 5.11: Comparing the number of weights used between the Dense MLP and the Sparse

methods in the Fashion MNIST Dataset.

The second part of evaluating our methods in this experiment category is the time used

for training and inference. As illustrated in Figures 5.12 and 5.13 the speed improvement

comes in two ways. Firstly, when compared to the dense MLP we can see that the original

implementation was significantly slower (around 16% for the training and around 40% for

the inference) than the dense counterpart even though their memory footprint is much better.

Using Keras Callbacks these differences are now greatly reduced as the weight evolution is

now performed more smoothly. We would expect that the speedup would be even greater,

62 Chapter 5. Evaluation & Results

considering the compression rate achieved, but as Hoefler et al. [31] pointed out this in not

always the case when using such libraries. The reason is that, most modern libraries are not

designed to use sparse matrices and as a result they don’t always exploit their reduced size

efficiently.

Figure 5.12: Comparative graph of Training Times using the old Keras implementation versus

our Keras implementation in the Fashion MNIST Dataset.

Another speed improvement that is evident from the Figures 5.12 and 5.13 is how our

methods compare to SET and the dense MLP network. Our methods are consistently better

than the SET procedure with the Exponential Decay (EXD) method being the winner among

the sparse methods when also taking the improved implementation into consideration. We

explain this behavior due to the reduction of weight pruning and reconnecting that is a direct

result of the parameter zeta reduction.

The final part of the evaluation in this experiment category involves the accuracy. As we

can observe from the Figure 5.14 our methods remain competent to the SET and dense MLP

models. We can even see that the EXD method remains sightly above the other methods as

the models converge to around 90.5% accuracy. This declares the EXD method as a clear

winner in accuracy as well. Our other two methods although being not as good as the EXD,

we can say that they start to outperform the SET and dense MLP methods just slightly, as

they pass the 400 epochs mark, although this difference is not significant enough.

5.3 Results 63

Figure 5.13: Comparative graph of Inference Times using the old Keras implementation ver

sus our Keras implementation in the Fashion MNIST Dataset.

5.3.3 Comparing Speed Using Sparse Matrix Operations

As we stated in the previous experiment, the Keras and Tensorflow frameworks are not

able to fully utilize the sparse models we tested and we wanted to find out the margin of this

performance issue. For this we conducted the same experiments using our custom Python

code that uses sparse matrix operations throughout the model’s training and testing. This

way the reduction in memory footprint can be translated to fewer matrix operations, leading

to better performance. As seen by Figure 5.15 using sparse matrix operations we use around

50% less time for training and around 30% less time for inference predictions.

As we can clearly see, these discrepancies between the Keras implementation and the

custom Python code, clearly indicate that the current framework cannot fully benefit in time

for the reduced number of parameters the sparse models achieve. Even if the model is saved

in sparse form, during training, the mathematical operations required to calculate the weight

updates cause the weights to take the form of normal matrices, essentially eliminating any

benefit that comes with the sparsification during the training process.

64 Chapter 5. Evaluation & Results

0.900

0.905

0.910

0.900

0.905

0.910

Ac
cu

ra
cy

 (%
)

300 325 350 375 400 425 450 475 500
Epochs (#)

0.900

0.905

0.910

Models
MLP
SET-MLP
EXD
LDV
OSV

Figure 5.14: Accuracy Graph on the Fashion MNIST dataset comparing the proposed tech

niques using our improved Keras implementation.

5.3.4 Comparing Performance using 4 Hidden Layers

By this point it is clear that the sparse models that use sparse matrix operations can out

perform the dense MLP significantly. So for this experiments, we tried our sparse methods

to an even bigger network topology, in order to magnify the differences that comes with our

proposed methods over the SET procedure. Using the 4 hidden layer topology we discussed

in the previous section the results are as follows.

The weight reduction is this experiment is tremendous. From 51.2 million parameters we

reduce them to only 650,000 achieving a compression rate of around x78.7. This translated to

98.7% fewer parameters in the model, making it possible to fit it in devices that its counterpart

dense versions would be impossible to fit in using most of the current popular methods in

model shrinking.

As far as time is concerned, our proposed methods are faster up to around 10% in training

speeds, as seen if Figure 5.16 and have statistically insignificant changes in inference speeds.

Even though this difference isn’t a lot we should keep in mind that onmost of our experiments

one of our proposed methods manage to win SET in accuracy depending on the dataset used.

In our case with Fashion MNIST the EXD method is the clear winner in these experiment

category just as the previous one (Figure 5.17).

5.3 Results 65

Figure 5.15: Training and Inference times on the Fashion MNIST Dataset using the custom

Python code.

Figure 5.16: Training and Inference times on the Fashion MNIST Dataset using the custom

Python code with 4 Hidden Layers.

In the experiment for this category however, a very interesting thing is observed. As seen

by the Figure 5.18 inwhichwe display the accuracy for first 100 epochs of the training, we can

see a very interesting peculiarity. All methods are stuck to 0.1 for the first epochs, but with

some variations depending on the method used. The SET procedure and our LDV method

are stuck to 0.1 for around 30 epochs, while the EXD and OSV methods only need around

10 epochs to escape from the 0.1 accuracy. This causes the two aforementioned methods to

receive a great head start in training, achieving an accuracy of around 0.8 by the time the

other two escape the 0.1 mark. This is a head start of around 2530 epochs in training, and

we reach the 70 epochs before their difference in performance shrink to the point of being

unobservable.

At this point many questions arise. Why EXD and OSV escaped so early, Why LDV

performed similarly to SET in these first 100 epochs etc. The similarity between the EXD

and OSV methods in these first epochs is that they both rapidly reduce the weight evolution

rate, even though theOSVmethod rises it again periodically later. In contrast the LDVmethod

66 Chapter 5. Evaluation & Results

450 460 470 480 490 500
Epochs (#)

0.88

0.89

0.90

0.91

0.92
Ac
cu
ra
cy

Models
SET-MLP LDV EXD OSV

Figure 5.17: Accuracy Graph on the Fashion MNIST dataset comparing the proposed tech

niques, using the custom Python code with 4 Hidden Layers.

0 20 40 60 80 100
Epochs (#)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Models
SET-MLP LDV EXD OSV

Figure 5.18: Accuracy Graph of the first 100 epochs on the Fashion MNIST dataset compar

ing the proposed techniques, using the custom Python code with 4 Hidden Layers.

reduces the weight evolution rate linearly, so in these first epochs its rate is closer to the SET

procedure than the EXD and OSV methods. This is the reason it behaves in a similar manner

as the SET procedure. This is the most logical way to explain these results.

The question is though, why this rapid reduction in the weight evolution rate causes the

twomethods to unstuck faster. In neural networkswithmore layers, the changes in theweights

are bigger in the final layers but smaller and smaller as we go towards the earliest layers. So,

a logical explanation is that if less weights are pruned, the existing weights have more time to

grow and to reach maturity making the changes in the gradients to reach the first layers faster.

In the SET and LDV methods instead, the weights are more likely to be pruned, bringing

5.3 Results 67

new uninitialised weights instead, and as a result delaying the changes in the gradients from

reaching the first layers.

Chapter 6

Conclusions

It is time to take all things presented into consideration by revisiting our efforts and results

and giving some ideas and suggestions about future work.

6.1 Summary and Conclusions

In our project we presented three new methods that where build upon the SET procedure

with the aim to achieve better performance both in time and accuracy, while also having the

same but efficient memory footprint. We tested those methods along with the SET procedure

and their dense MLP counterpart on several datasets and we saw our proposed methods won

on most of those tests. We addressed the training and inference speeds on all our experiments

and we made decisions based on the costs in time as well. Furthermore, we redesigned the

Keras implementation used my Mocanu et al. improving the performance in time of a sparse

methods compared to the dense MLP. And last but not least, we proved that the current Ten

sorflow and Keras frameworks cannot fully utilize sparse network topologies by comparing

the performance in time on a custom Python implementation that supports sparse matrix op

erations. This poses a great obstacle to the research about improving neural networks through

sparsification techniques.

Finally, among the methods we presented it appears that the Exponential Decreasing

Method (EXD) was the overall best in performance, by displaying not only the best accu

racy among the sparse methods in most experiments but by being the faster in training and

inference speeds as well. It is a method that we believe should be preferred over the SET

procedure at most, if not all, cases.

69

70 Chapter 6. Conclusions

6.2 Future work

We believe that the future of Neural Networks will be sparse, but the current software

infrastructure is not there yet. One of the best changes to be done in the future would be to

reconfigure all the major ANN libraries to support sparse matrix operations. Tensorflow with

Keras should offer the option to work with sparse models, by using matrix operations which

would make them more efficient.

As far as our proposed methods is concerned, we designed some simple but efficient

options that could be considered instead of the SET procedure. More formulas could be used,

that are more complex and even combine multiple functions to achieve an even better result.

An even more complex procedure could be designed that decides the weight evolution rate,

based on some predetermined metrics that the training procedure already have at its disposal.

The approaches towards sparse training are vast, so we hope at least we give some inspiration

for new ideas to arise.

Bibliography

[1] Howard B. Demuth, Mark H. Beale, Orlando De Jess, and Martin T. Hagan. Neural

Network Design. Martin Hagan, Stillwater, OK, USA, 2nd edition, 2014.

[2] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive

Datasets. Cambridge University Press, 3 edition, 2020.

[3] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep

Learning. Corwin Press, Inc, 2020. https://d2l.ai.

[4] M.T. Hagan and M.B. Menhaj. Training feedforward networks with the marquardt

algorithm. IEEE Transactions on Neural Networks, 5(6):989–993, 1994.

[5] C. Charalambous. Conjugate gradient algorithm for efficient training of artificial neural

networks. IEE Proceedings G (Circuits, Devices and Systems), 139:301–310(9), June

1992.

[6] Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory

bfgs, 2014.

[7] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and

beyond, 2019.

[8] Robert A. Jacobs. Increased rates of convergence through learning rate adaptation.

Neural Networks, 1(4):295–307, 1988.

[9] TomTollenaere. Supersab: Fast adaptive back propagationwith good scaling properties.

Neural Networks, 3(5):561–573, 1990.

[10] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

J. Mach. Learn. Res., 15(1), 2014.

71

https://d2l.ai

72 Bibliography

[11] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back

propagation for accelerated deep learning with reduced overfitting, 2019.

[12] Xu Sun, Xuancheng Ren, Shuming Ma, Bingzhen Wei, Wei Li, Jingjing Xu, Houfeng

Wang, and Yi Zhang. Training simplification and model simplification for deep learn

ing : A minimal effort back propagation method. IEEE Transactions on Knowledge and

Data Engineering, 32(2):374–387, Feb 2020.

[13] Sourya Dey, Diandian Chen, Zongyang Li, Souvik Kundu, KuanWen Huang, Keith M.

Chugg, and Peter A. Beerel. A highly parallel fpga implementation of sparse neural

network training. In 2018 International Conference on ReConFigurable Computing

and FPGAs (ReConFig), pages 1–4, 2018.

[14] Aleksandar Zlateski, Kisuk Lee, and H. Sebastian Seung. Scalable training of 3d con

volutional networks on multi and manycores. Journal of Parallel and Distributed

Computing, 106:195–204, 2017.

[15] Norman P. Jouppi, Cliff Young, Nishant Patil, and David Patterson. A domainspecific

architecture for deep neural networks. Commun. ACM, 61(9):50–59, August 2018.

[16] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,

trainable neural networks, 2019.

[17] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding, 2016.

[18] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec

tions for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28.

Curran Associates, Inc., 2015.

[19] Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and Erich Elsen. Exploring

sparsity in recurrent neural networks. CoRR, abs/1704.05119, 2017.

[20] Decebal Mocanu, Elena Mocanu, Peter Stone, Phuong Nguyen, Madeleine Gibescu,

and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse

connectivity inspired by network science. Nature Communications, 9, 06 2018.

Bibliography 73

[21] Kyle Anderson, SangHyun Lee, and Carol Menassa. Impact of social network type

and structure on modeling normative energy use behavior interventions. Journal of

Computing in Civil Engineering, 28(1):30–39, 2014.

[22] Anna D. Broido and Aaron Clauset. Scalefree networks are rare, 2018. cite

arxiv:1801.03400Comment: 14 pages, 9 figures, 2 tables, 5 appendices.

[23] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘smallworld’ net

works. Nature, 393(6684):440–442, 1998.

[24] Steven H. Strogatz. Exploring complex networks. Nature, 410(6825):268–276, March

2001.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[26] D.C. Mocanu. On the synergy of network science and artificial intelligence. In Pro

ceedings of the TwentyFifth International Joint Conference on Artificial Intelligence

(IJCAI 2016). AAAI Press, 2016. 25th International Joint Conference on Artificial In

telligence (IJCAI16), July 915, 2016, New York, NY, USA, IJCAI16 ; Conference

date: 09072016 Through 15072016.

[27] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and con

nections for efficient neural networks, 2015.

[28] Andreas S. Weigend, David E. Rumelhart, and Bernardo A. Huberman. Generaliza

tion by weightelimination with application to forecasting. In Proceedings of the 3rd

International Conference on Neural Information Processing Systems, NIPS’90, page

875–882, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[29] Luisa de Vivo, Michele Bellesi, WilliamMarshall, Eric A. Bushong, Mark H. Ellisman,

Giulio Tononi, and Chiara Cirelli. Ultrastructural evidence for synaptic scaling across

the wake/sleep cycle. Science, 355(6324):507–510, 2017.

[30] Graham H. Diering, Raja S. Nirujogi, Richard H. Roth, Paul F. Worley, Akhilesh

Pandey, and Richard L. Huganir. Homer1a drives homeostatic scalingdown of ex

citatory synapses during sleep. Science, 355(6324):511–515, 2017.

74 Bibliography

[31] Torsten Hoefler, Dan Alistarh, Tal BenNun, Nikoli Dryden, and Alexandra Peste. Spar

sity in deep learning: Pruning and growth for efficient inference and training in neural

networks, 2021.

[32] Qamar Abbas, Farooq Ahmad, and Muhammad Imran. Variable learning rate based

modification in backpropagation algorithm (mbpa) of artificial neural network for data

classification. Science International, pages 2369–2380, 01 2016.

[33] Davide Nardone. Biological datasets for smba, May 2019.

[34] F.S. Samaria and A.C. Harter. Parameterisation of a stochastic model for human face

identification. In Proceedings of 1994 IEEE Workshop on Applications of Computer

Vision, pages 138–142, 1994.

[35] Shenglong Yu and Hong Zhao. Rough sets and laplacian score based costsensitive

feature selection. PLOS ONE, 13(6):1–23, 06 2018.

[36] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashionmnist: a novel image dataset for

benchmarking machine learning algorithms, 2017.

APPENDICES

75

Appendix A

Utilized Software and Tools

In this appendix we explain any software we use for this thesis along with any frame

works, platforms, API etc. Moreover, we refer to the datasets we used. But first let’s start

with the two implementation families we used.

A.1 The Implementations Used

A.1.1 Custom Python Implementation

The first implementation family we use consists of a custom Python code without the

use of any API or framework that creates and trains neural networks. We used code openly

provided through GitHub by Mocanu et al. [20] This code contains the collective efforts of

Thomas Hagebols, who performed a thorough analysis on the performance of SciPy sparse

matrix operations, Richie Vink for providing a nice vanilla Python implementation of fully

connected MLPs (GitHub Link), and Amarsagar Reddy Ramapuram Matavalam for pro

viding a fast implementation for the ”weightsEvolution” method. These implementations use

sparse matrices and clever operations using them, leaving a significant smaller memory foot

print as a result. The implementations for our techniques was build on top of their code.

A.1.2 Custom Python Implementation

The second, is using the Tensorflow platform with the Keras API for the dense MLPs

along with the additions of Mocanu et al. for their SET procedure. Our techniques was built

on top of their code. Furthermore, we also provide an improved implementation to the one

77

https://github.com/ritchie46/vanilla-machine-learning/blob/master/neural_networks/vanilla_mlp.py

78 Appendix A. Utilized Software and Tools

Mocanu at al. use that utilizes the Callbacks API in Keras, making the whole training process

run faster and more smoothly. We use both to compare their performance differences. We

would like to clarify that this family of implementations does not use sparse matrix operations

and we expect significant difference in performance since the reduction in parameters does

not translate to faster computations.

A.2 Tensorflow

Tensorflow is a machine learning platform designed by the Google Brain team, to make

the whole process of acquiring data, creating models, training them, making prediction and

so on a little easier. It is an open source library for numerical computations and largescale

machine learning. It provides a convenient frontend API for building applications while

executing them using optimized C++. It is one of the most well known and widely used

platforms for using neural networks, with competitive performance when compared to other

platforms.

It helps built stateoftheart models without sacrificing speed or performance, which

helps developers create models fast and easy, making research more efficient. We use Ten

sorflow for some of the implementations used in our experiments in conjunction with the

Keras API. This way we show how our work could be used in a more intuitive and under

standable way and it is a form of encouragement for other developers to apply our findings

to other projects.

A.3 Keras

As stated in their official website ”Keras is an API designed for humans, not machines.”

It is on another word, a simple and consistent API that makes the whole process of creating

and using a neural network a simple process. The reason is that it minimizes the number of

action required by the user for common use cases and it uses methods that automates the

creation and training of complex models. A three layer neural network no longer requires

200 lines of coding by the user, but just 5. And now with Keras merge with Tensorflow their

collaboration could never been smoother, faster and more direct.

It is used by many institutions, scientific organizations and companies from all around

A.4 Datasets 79

the world, providing a rich tool set and lowerlever flexibility to house and help implement

any research idea, with more than acceptable performance in most cases. Its wide usage and

easiness to use is one of our main motivations that persuaded us to include it in our experi

ments.

A.4 Datasets

In this thesis we used the following datasets, each one of which will be explicitly referred

to later in this Appendix:

• LUNG

• ORL

• ProstateGE

• GLIOMA

• Fashion MNIST

A.4.1 The LUNG Dataset

The LUNGdataset contains in total 203 samples in 5 classes, adenocarcinomas, squamous

cell lung carcinomas, pulmonary carcinoids, smallcell lung carcinomas and normal lung,

with 139, 21, 20, 6 and 17 samples, respectively. The genes with standard deviations smaller

than 50 expression units were removed getting a dataset with 203 samples and 3,312 genes.

With its small number of samples and the relatively huge number of features it is considered

an unstable dataset to classify. [33]

A.4.2 The ORL Dataset

As stated from the official Website: ”The ORL (Our Database of Faces) contains 400 im

ages from 40 distinct subjects. For some subjects, the images were taken at different times,

varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and fa

cial details (glasses / no glasses). All the images were taken against a dark homogeneous

background with the subjects in an upright, frontal position (with tolerance for some side

https://paperswithcode.com/dataset/orl

80 Appendix A. Utilized Software and Tools

movement) Figure A.1. The size of each image is 92x112 pixels, with 256 grey levels per

pixel.” [34].

Figure A.1: ORL Dataset Sample

A.4.3 The ProstateGE Dataset

ProstateGE dataset has 102 samples and 5966 features from medical applications to be

classified into two distinct classes, found in the UCIMachine Learning Repository.Much like

LUNG it has even less samples and more features, making it another highly volatile dataset

to classify. [35]

A.4.4 The GLIOMA Dataset

The GLIOMA dataset contains in total 50 samples in 4 classes: cancer glioblastomas,

noncancer glioblastomas, cancer oligodendrogliomas and noncancer oligodendrogliomas,

which have 14, 14, 7, 15 samples, respectively. Each sample has 12,625 genes. After a pre

processing, the dataset has been shrunk to 50 samples and 4,433 genes. Again like LUNG

and ProstateGE it has even less samples and more features, making it another highly volatile

dataset to classify.[33]

A.4 Datasets 81

A.4.5 The Fashion MNIST Dataset

Fashion MNIST is a dataset that consists of a training set of 60,000 images and a test set

of 10,000 images. Each image is 28x28 grayscale image, associated with a label from 10

classes of clothware (Figure A.2). Is was designed as a harder alternative to the overused

MNIST digit classification dataset, where most models achieve accuracy so high, they can no

longer be compared efficiently. With images closer to the needs of today’s Computer Vision

needs, Fashion MNIST is one of the most popular image classification datasets out there

currently. [36]

This is the dataset we mostly use for our experiments due to its sensible size to training

time spent ratio.

Figure A.2: Fashion MNIST Dataset Sample

Appendix B

Experimental Results and Figures

B.1 Comparing Performance on more Datasets

For this category of experiments we used the following architecture:

Layers Output Shape Activation Rate Parameters #

Input x 0

Dense 1,000 ReLU x * 1,000

Dropout 1,000 0.3 0

Dense 1,000 ReLU 1,001,000

Dropout 1,000 0.3 0

Dense 1,000 ReLU 1,001,000

Dropout 1,000 0.3 0

Dense 10 SoftMax 10,010

We use the Stochastic Gradient Descent with 0.01 learning rate with 0.9 momentum and

we use Categorical Crossentropy as a loss function. We train our models for 500 epochs

with a batch size of 100 for the FashionMNIST dataset and set as 2 for the rest. In these

experiments we do not apply any data augmentation. For the SET procedure we use a param

eter ζ = 0.3 while for our proposed methods we use the default parameters we presented in

Chapter 4.

The following table sums up the memory footprint results for each dataset:

83

84 Appendix B. Experimental Results and Figures

Dataset Params (Dense) Params (Sparse) Compression Rate % Decrease

LUNG 5,320,005 ≈ 172,000 ≈ 30.9 ≈ 96

ORL 3,067,040 ≈ 138.000 ≈ 22.22 ≈ 95

ProstateGE 7,971,002 ≈ 222,000 ≈ 35.9 ≈ 97

GLIOMA 6,441,004 ≈ 193,000 ≈ 33.3 ≈ 97

Fashion MNIST 2,797,010 ≈ 130,000 ≈ 21.5 ≈ 95

B.2 Comparing Keras Implementations

For this category of experiments we used the following MLP:

Layers Output Shape Activation Rate Parameters #

Input 784 0

Dense 4,000 ReLU 3,140,000

Dropout 4,000 0.3 0

Dense 1,000 ReLU 4,001,000

Dropout 1,000 0.3 0

Dense 4,000 ReLU 4,004,000

Dropout 4,000 0.3 0

Dense 10 SoftMax 40,010

And it uses a total of 11,185,010 trainable parameters. We use the Stochastic Gradient

Descent with 0.01 learning rate and 0.9 momentum and we use Categorical Crossentropy as

a loss function. We train our models for 500 epochs with a batch size of 100. In these experi

ments we apply data augmentation to the FashionMNISTDataset. For the sparse methods we

use ε = 20 which leads to models with around 350,000 parameters. For the SET procedure

we use a parameter ζ = 0.3 while for our proposed methods we use the default parameters

we presented in Chapter 4.

Comparing Speed Using Sparse Matrix Operations

This category of experiments uses the same architecture as the previous experiment cat

egory.

B.2 Comparing Keras Implementations 85

Comparing Performance Using 4 Hidden Layers

For this category of experiments we used a MLP network using 4 hidden layers, named

MLP 4k4L in our experiments. It follows the following architecture:

Layers Output Shape Activation Rate Parameters #

Input 784 0

Dense 1 4,000 ReLU 3,140,000

Dropout 4,000 0.3 0

Dense 2 4,000 ReLU 16,004,000

Dropout 4,000 0.3 0

Dense 3 4,000 ReLU 16,004,000

Dropout 4,000 0.3 0

Dense 4 4,000 ReLU 16,004,000

Dropout 4,000 0.3 0

Dense 10 SoftMax 40,010

And it uses a total of 51,192,010 trainable parameters. We use the Stochastic Gradient

Descent with 0.01 learning rate and 0.9 momentum and we use Categorical Crossentropy

as a loss function. We train our models for 500 epochs with a batch size of 100. In these

experiments we do not apply any data augmentation. For the sparse methods we use ε =

20 which leads to models with around 650,000 parameters. For the SET procedure we use

a parameter ζ = 0.3 while for our proposed methods we use the default parameters we

presented in Chapter 4.

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	Abbreviations
	Introduction
	Subject
	Contributions

	Structure

	Artificial Neural Networks
	Introduction to Neural Networks
	Neural Networks, in General
	Interconnections Among Nodes
	Design Issues for Neural Networks

	Dense Feed-forward Networks
	Linear Algebra Notation
	Activation Functions
	Loss Functions

	Training Neural Networks
	Gradients, Jacobians, and the Chain Rule
	Iterating Gradient Descent
	The Stochastic Gradient Descent Variation
	The Backpropagation Algorithm
	Incremental vs Minibatch Learning
	Heuristic Modifications of Backpropagation
	Tensors

	Regularization
	Norm Penalties
	Dropout
	Dataset Augmentation

	Sparse Neural Networks
	Related Work
	The Lottery Ticket Hypothesis
	A Small Reference to Network Science Concepts
	Regular Graphs
	Small-World Networks
	Scale-Free Networks
	Erdös–Rényi Random Graphs

	Weight Masks
	Sparse Evolutionary Training (SET)
	The SET Procedure
	The Biological Background

	Proposed Techniques
	Motivations from Biology
	Taking the logic behind SET one step further
	Linear Decreasing Variation (LDV)
	Oscillating Variation (OSV)
	Exponential Decay (EXD)
	The Importance of Training Speed
	The Tensorflow-Keras Implementation Incidents

	Evaluation & Results
	Experimental Evaluation
	Evaluation Settings
	Hardware Utilized and Software Implementations
	Experimentation Categories
	The Memory Footprint
	Python Code vs Keras

	Results
	Comparing Performance on more Datasets
	Comparing Keras Implementations
	Comparing Speed Using Sparse Matrix Operations
	Comparing Performance using 4 Hidden Layers

	Conclusions
	Summary and Conclusions
	Future work

	Bibliography
	APPENDICES
	Utilized Software and Tools
	The Implementations Used
	Custom Python Implementation
	Custom Python Implementation

	Tensorflow
	Keras
	Datasets
	The LUNG Dataset
	The ORL Dataset
	The Prostate-GE Dataset
	The GLIOMA Dataset
	The Fashion MNIST Dataset

	Experimental Results and Figures
	Comparing Performance on more Datasets
	Comparing Keras Implementations

