

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Οπτική Αναγνώριση Χαρακτήρων, με την χρήση

Μηχανικής Μάθησης, σε ZedBoard πλατφόρμα

Διπλωματική Εργασία

Ανθιμόπουλος Θεολόγος

Επιβλέπων: Σωτηρίου Χρήστος

Βόλος έτος 2020-21

ii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Οπτική Αναγνώριση Χαρακτήρων, με την χρήση

Μηχανικής Μάθησης, σε ZedBoard πλατφόρμα

Διπλωματική Εργασία

ΑνΘιμόπουλος Θεολόγος

Επιβλέπων: Σωτηρίου Χρήστος

Βόλος έτος 2020-21

iii

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Optical Character Recognition (OCR), using Machine

Learning, on the ZedBoard Platform

Diploma Thesis

Anthimopoulos Theologos

Supervisor: Sotiriou Christos

Volos year 2020-21

iv

Εγκρίνεται από την Επιτροπή Εξέτασης:

Επιβλέπων Σωτηρίου Χρήστος

Αναπληρωτής Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και
Μηχανικών Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Μέλος Πλέσσας Φώτιος

Αναπληρωτής Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και
Μηχανικών Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Μέλος Κατσαρός Δημήτριος
Αναπληρωτής Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και
Μηχανικών Υπολογιστών, Πανεπιστήμιο Θεσσαλίας

Ημερομηνία έγκρισης: dd-mm-yyyy

v

ΕΥΧΑΡΙΣΤΙΕΣ ή ΣΧΟΛΙΑ

Ευχαριστώ τους γονείς μου και την θεία μου και τον αδελφό μου Κωνσταντίνο. Ακόμα θα

ήθελα να ευχαριστήσω θερμά τον CAS lab του πανεπιστήμιου μου και ιδιαίτερα τον κ.

Σωτηρίου για την συνεχή στήριξη και καθοδήγηση τους.

vi

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΠΕΡΙ ΑΚΑΔΗΜΑΪΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΚΑΙ ΠΝΕΥΜΑΤΙΚΩΝ
ΔΙΚΑΙΩΜΑΤΩΝ

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω
ρητά ότι η παρούσα διπλωματική εργασία, καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι
κώδικες που αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια αυτής της εργασίας, αποτελεί
αποκλειστικά προϊόν προσωπικής μου εργασίας, δεν προσβάλλει κάθε μορφής
δικαιώματα διανοητικής ιδιοκτησίας, προσωπικότητας και προσωπικών δεδομένων
τρίτων, δεν περιέχει έργα/εισφορές τρίτων για τα οποία απαιτείται άδεια των
δημιουργών/δικαιούχων και δεν είναι προϊόν μερικής ή ολικής αντιγραφής, οι πηγές δε
που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές αναφορές και μόνον και
πληρούν τους κανόνες της επιστημονικής παράθεσης. Τα σημεία όπου έχω
χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή/και πηγές άλλων συγγραφέων, αναφέρονται
ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και η σχετική αναφορά
περιλαμβάνεται στο τμήμα των βιβλιογραφικών αναφορών με πλήρη περιγραφή.
Αναλαμβάνω πλήρως, ατομικά και προσωπικά, όλες τις νομικές και διοικητικές συνέπειες
που δύναται να προκύψουν στην περίπτωση κατά την οποία αποδειχθεί, διαχρονικά, ότι
η εργασία αυτή ή τμήμα της δεν μου ανήκει διότι είναι προϊόν λογοκλοπής.

Ο/Η Δηλών/ούσα

(Υπογραφή)
Θεολόγος Ανθιμόπουλος
Ημερομηνία

vii

ΠΕΡΙΛΗΨΗ

Σε αυτήν την πτυχιακή έχουμε υλοποιήσει ένα λογισμικό Οπτικής Αναγνώριση

Χαρακτήρων σε ZedBoard πλατφόρμα. Η πρόκληση μας είναι να δημιουργήσουμε μια

εφαρμογή που να είναι όσο το δυνατόν ποιο γρήγορη και να μπορεί να αναγνωρίσει μια

ευρύ γκάμα εικόνων με αριθμούς και λατινικούς χαρακτήρες. Ακόμα ο χρόνος εκτέλεσης

του θέλουμε να εξαρτάτε από την εικόνα, έτσι ώστε όσο το δυνατόν λιγότερες λέξεις

έχουμε σε μια εικόνα τόσο ποιο γρήγορα να γίνετε η αναγνώριση. Για να το πετύχουμε

αυτό, χρησιμοποιήσαμε μια προσέγγιση όπου οι χαρακτήρες εντοπίζονται και

κατηγοριοποιούνται μεμονωμένα με τεχνικές Μηχανικής Μάθησης. Για να εντοπίσουμε

τους χαρακτήρες χρησιμοποιήσαμε έναν αλγόριθμο που εξάγει τις εξαιρετικά σταθερές

ακραίες περιοχές (MSERs) σε μια εικόνα. Ακόμα για να κατηγοριοποιήσουμε τους

χαρακτήρες χρησιμοποιήσαμε ένα Τεχνικό Νευρωνικό Δίκτυο με semi-supervised

προσέγγιση. Τέλος, το λογισμικό αυτό θέλουμε να το υλοποιήσουμε σε ZedBoard

πλατφόρμα για να αξιοποίηση την DPU της, για ακόμα ποιο γρήγορα αποτελέσματα.

viii

ABSTRACT

In this thesis we implement an Optical Character Recognition (OCR) application on

ZedBoard platform. Our goal is to implement an OCR application that is fast enough, and

can recognize a wide variety of images with Latin letters and numbers. Moreover, we want

the time taken to perform an OCR task to depend on the input image, so that the fewer

words we have in an image, the faster it may be recognized. To achieve this, we use an

approach that detect and classify the characters in isolation with Machine Learning

techniques. To detect the isolated characters, we use an algorithm that extracts the

maximally stable extremal regions (MSERs) in an image. For the classification part we use

an Artificial Neural Network trained with semi-supervised approach. Finally, we want to

implement this application on ZedBoard platform to utilize its DPU, for even faster results.

ix

REVISION HISTORY

ΠΕΡΙΛΗΨΗ .. vii

ABSTRACT .. viii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Optical Character Recognition .. 19

1.2 Aim of this Thesis ... 2

1.3 Contribution of this Thesis .. 2

1.4 Thesis Overview ... 4

CHAPTER 2 ... 5

Machine Learning Background ... 5

2.1 Image Processing ... 5

2.2 Artificial Neural Networks .. 6
2.3.1. Multilayer Perceptron .. 6
2.3.2. Convolutional Neural Networks ... 6
2.3.3. Activation Functions .. 11
2.3.4. Batch Normalization and Pooling Layers ... 13
2.3.5. Dataset ... 14
2.3.6. Loss Functions and Optimization Algorithms ... 15
2.3.7. GANs .. 16

2.3 Object Localization ... 19

CHAPTER 3 ... 22

Xilinx ZedBoard Platform .. 22

3.1 Xilinx ZedBoard FPGA ... 22
2.3.1. ZedBoard PS and PL ... 24

3.2 Xilinx DPU .. 25

3.3 Xilinx DNNDK ... 27

CHAPTER 4 ... 28

ZOCR APPLICATION OVERVIEW ... 28

4.1 Introduction ... 28

4.2 NN Model Creation .. 28
4.2.1. Generator ... 29
4.2.2. Discriminator .. 31
4.2.3. Model Training ... 33

4.3 Character Isolation ... 35

x

4.3.1.Introduction .. 35
4.3.2. MSER .. 36
4.3.3. Non-Maximum Suppression .. 39
4.3.4. ER Tracking ... 40

CHAPTER 5 ... 42

ZOCR on ZEDBOARD PLATFORM ... 42

5.1 Introduction ... 42

5.2 NN Model Deployment .. 42
5.2.1 NN Model Compression .. 42
5.3.2 NN Model Compilation ... 46

5.3 Run OCRI on ZedBoard DPU .. 28

CHAPTER 6 ... 50

EXPERIMENTAL RESULTS .. 50

6.1 NN Performance .. 50
6.1.1 NN Performance Comparison ... 52
6.1.2 DPU Performance Comparison ... 52

6.2 Character Isolation Performance .. 54

CHAPTER 7 ... 56

CONCLUSION AND FUTURE WORK .. 56

REFRENCES ... 57

Chapter 1

Introduction

1.1 Optical Character Recognition

Optical character recognition (OCR) is the process of scanning handwritten or

printed images and convert them into computer-identifiable texts. The first OCR invention

was created in America in 1870 by Charles R. Carey [18]. This invention is an image scanner

that uses a mosaic of photocells. After this invasion OCR technology starts to grow. The first

product named “optophone” is developed in 1912 by Edmund Fournier d'Albe [19].

Optophone is a handheld scanner that when moved across a printed page, produces tones

that corresponded to specific characters, so as to be interpreted by a blind person.

 Nowadays, there are two most common methods that use Machine Learning

techniques to solve this problem. The first method detects the characters in isolation,

classify them, and then form them into words. So, this method contains tree steps,

character isolation, character classification and word formation. The second method can

perform the above steps with one model that is a Deep Neural Network. It is most used

Deep Convolutional Recurrent Neural Networks (DCRNN) [20] because the convolutional

layer works as character isolation and the recurrent layer works as character classification

and word formation. In chapter 2 we will explain DCRNN in more detail.

Optical character recognition is a demanding process with a variety of applications.

It can be challenging because the input image has complex background, varied lights

intensity and large verity of colors. Thus, an OCR system with no errors is still challenging

task even for modern OCRs. For this reason, in recent years OCR systems are becoming

more efficient with specific types of input and can recognize images in a specific

distribution, to maximize the accuracy of the system. They also use methods that are time

consuming, and they need lot of computer resources. For example, one of the most known

OCR application, Attention OCR [13] uses 1.3 billion multiply and add operations to

recognize an image. It will also work efficiently for images similar to French street names

and cannot recognize other images e.g., “car plates”. This happens because it has been

trained with the FSNS dataset [39], which contains street name signs cropped from Google

Street View images of France, and has difficulties recognizing other image samples.

2

OCR accuracy can be increased if the output is constrained by a lexicon or with

Natural Language Processing (NLP). Lexicon is a list of words that can correct the

misspelling of the output. For example, attention OCR could use a list of French street

names. Like a lexicon, NLP can transform the output of an OCR application to a form of

human language using artificial intelligence. For this reason, attention OCR uses Recurrent

Neural Networks [27] that can achieve this artificial transformation. But these techniques

can be problematic, if we want to recognize a word that is not on this constrained number

of words.

1.2 Aim of this Thesis

In this project we want to implement an OCR application for specific types of input.

This software tool uses machine learning techniques such as neural networks. For the most

efficient and fast use of the neural network, our goal is to implement this application in

Xilinx ZedBoard platform [21] using its DPU. We want to detect and classify natural scene

images like the ICDAR2003 dataset [1] shown in Figure 1. In order to simplify our

application, we focus on images where the characters defer from the background and have

fewer complex backgrounds.

OCRs are used in both business and industrial domain to reduce the time taken to

scan and digitalize large documents or to solve automatization problems for IoT systems.

Our aim is to create a system that is adaptable and can be used in many circumstances. For

this reason, we will not use a lexicon or NLP techniques so that we can detect documents

without a specific spelling layout. Finally, we want an efficient OCR system that can solve

real problems in real time and can use limited resources.

1.3 Contribution of this Thesis

Contributions of the work that is described in this thesis can be summarized as follows:

• A state-of-the-art OCR application to recognize natural scene images is proposed.

This presented method is developed on Xilinx ZedBoard platform to utilize its DPU.

• A Neural Network (NN) to classify natural scene images of characters is descripted.

3

This NN uses Convolutional Neural Networks to extract features and detect patterns

to classify the character image.

• A training process for our NN with semi-supervised approach using a GAN is

proposed. This method is trying to create samples that imitate characters using

Artificial Intelligence. In consequence of this process our NN can understand

characters from non-characters. The inspiration of this training technique was from

the paper published by Tim Salimans at OpenAI [3].

• A machine learning algorithm that extracts possible character classes over an image

is described. This algorithm is a part of OpenCV documentation [16] and computes

the Maximally Stable Extremal Regions of an image. The name of the algorithm is

“Linear Time MSER”, and it was proposed by Nistér D. and Stewénius H. [15].

Source code is also provided on OpenCV’s GitHub repository [5].

• A proposed methodology to convert the NN model to a quantized model that can

be executed on Xilinx ZedBoard DPU [43]. To achieve this, we use Xilinx DNNDK tool

[4] that converts the pure data and the structure of NN to a file that is the

abbreviation for executable and linkable format and defines the structure for

binaries, libraries, and core files.

Figure 1. Sample of the ICDR2003 Dataset [1].

4

1.4 Thesis Overview

 This thesis is divided into six chapters. The current chapter have already provided

the aims and the contributions of this thesis. The remaining chapters can be summarized

as follows:

• Chapter 2 contains all the Machine Learning background needed to understand this

thesis. It contains some basic image processing and object localization techniques,

and an introduction to Artificial Neural Networks.

• Chapter 3 contains an introduction to ZedBoard platform. The contribution of

ZedBoard platform to this thesis is also mentioned.

• Chapter 4 explains our based OCR approach method.

• Chapter 5 contains accuracy and performance measurements of our proposed OCR

application. A performance comparison of the proposed method with existing state-

of-the-art methods is also provided.

• Chapter 6 draws the collusions of our work and our future plans.

5

Chapter 2

Machine Learning Background

2.1 Image Processing

In this sub-chapter we are going to see some basic image conversion techniques

used in this application. Image processing is a mathematical equation that can be applied

to an image to convert it from one domain to another. Converting an image from one

domain to another can enable the identification of features that may not be as easily

detected in the previous domain.

An RGB image is a two-dimension 3-D array. We call each 3-D element of this array

a pixel and represents the tree hues of light (R = red, G = green, B = blue). The pixel values

of an image ranging from 0 to 255. The pixel (0,0,0) represents the white color and the

(255,255,255) the black color. Changing the values of the three hues of light can create

different colors.

A Grayscale image is a two-dimensional 1-D array. Each pixel is a simple sample

that represents only an amount of light carrying the intercity. Grayscale scale is a black-

and-white image with size (Cols, Rows, 1). A gray image is the average of the tree hues of

light (𝐺𝑟𝑎𝑦 = (𝑅 + 𝐺 + 𝐵)/3).

YCrCb [28] is a family of color spaces used as a part of the color image pipeline in

video and digital photography systems. As shown in figure 2, it contains three channels the

Luma and the Chroma (Cr, Cb). Luma represent the brightness in an image and Cb, Cr are

the blue-difference and red-difference chroma components. The mathematical equation

for each Y, Cr, Cb is (R, G, B is the tree hues of light):

𝑌 = 16 + 65.738 ∗
𝑅

255
+ 129.057 ∗

𝐺

256
+ 25.064 ∗

𝐵

256

𝐶𝑏 = 128 − 37.945 ∗
𝑅

255
− 74.494 ∗

𝐺

256
+ 112.439 ∗

𝐵

256

𝐶𝑟 = 128 + 112.439 ∗ 𝑅 − 94.154 ∗
𝐺

256
− 18.285 ∗

𝐵

256

6

Figure 2: Luma (Y), and Chroma (Cr, Cb) Channels in YCrCb color space [28]

The Sobel [30] filter that also called Sobel operator, is an image transformation

used in Machine Learning for edge detection algorithms. It was proposed by Irwin Sobel

and Gary Feldma in 1968. Sobel creates an image emphasized in edges like the sample in

Figure 3. In OpenCV documentation [29] we can see the mathematical formulation of

Sobel operator with the theory. OpenCV is an open-source Computer Vision library that

contains a lot of useful tools and libraries used in this thesis for image processing.

 Figure 3: Sobel filter example. [29]

2.2 Artificial Neural Networks

2.3.1 Multilayer Perceptron

Artificial neural networks (ANNs) [24], usually simply called neural networks (NNs),

are system models which map a given input to an output. Their name stems from their

7

supposed semblance to biological neural networks of the brain. The first NN architecture

was proposed by F. Rosenblatt in 1958 [23]. We can see an example in figure 4.

Figure 4. Dense layer NN [14].

This NN is called Multilayer Perceptron (MLP), or Dense layer and it consist of

multiple layers the input layer, the output layer and, the hidden layer. The output of a MLP

corresponds to a probability for all the known classes. The output (yj) of the j element of a

layer, also called gradient or node, is illustrated by this Figure:

8

Input I, which is a vector, is multiplied to a vector called weights and summed and then is

added a number called bias. In a layer, the result of Y n-dimensional vector can be

described as a matrix multiplication as follow:

 𝑌⃗ = (
𝑊1,1 ⋯ 𝑊1, 𝑛

⋮ ⋱ ⋮
𝑊𝑛, 1 ⋯ 𝑊𝑛, 𝑛

) ∗ 𝐼 + 𝐵⃗ ias

In each layer, weights and biases must have the appropriate values (float 32-bits) to process

the given input signal correctly. The process of adjusting the weights and biases is called

training. Training identifies appropriate parameters which benefits the model using

functions that calculate its loss and tries to minimize it.

The input of a dense NN is a normalized vector with a certain size which its values

must be decimal. When we create such an NN there is pre-process step that we transform

each input to this desired vector. If we have a classification problem, for example RGB

images of birds to determine their type, to transform this image to the appropriate input

we must do the following pre-process steps:

• Transform images from RGB to grayscale to reduce dimensionality.

• Resize each image to a certain size e.g., 128x128x1 (size of input layer).

• Divide each image-matrix with 255 (Max gray pixel).

• Convert matrix to vector

2.3.2 Convolutional Neural Networks (CNNs)

Consider this image of a dog sown bellow. There are many different patterns that

we want to detect, for instance the region under its nose has teeth some whiskers and a

tongue. To understand this image, we need filters for detecting all three of these

characteristics one for each of teeth whiskers and tongue. To achieve that we use a

convolutional filter under this specific area. Adding some other convolutional filters will

extract other regions of the area and will give as more information. This set of convolutional

filters is called Convolutional layer. A Convolutional layer has its own shared set of weights

that different from the others. In fact, it is common to have 10s of hundreds of these

collections in a convolutional layer each corresponding to their own filter.

9

Below in Figure 5 we can see the results if we apply an image of a car through four

convolutional filters. We called these results “feature maps”. When we visualize this

feature maps, we see that they look like filtered images. We have taken all the complicated

depth information in the original image and each of these four cases the output is a much

simpler image with less information. By picking up the structure of the filters we can see

that the first two filters discovered vertical edges were the last two detect horizontal edges

in the image. The output of this Convolutional Layer is a stuck of four 2-dimensional arrays.

In practices it is most used a pipeline of Convolutional layers or CNNs. The idea is

that each of the feature map in the first layer is used as input to another Convolutional

layer to discover patters within the patters we discover in the first layer. The number of

CNNs, which defines the architecture of our NN depend on the problem. Finally, we use a

dense layer to classify these discovered features extracted by the Convolutional layers.

Such a model is called Deep Convolutional Neural Network (DCNN) [40] and it used for

classification problems.

 Figure 5. Convolutional Layer.

10

Convolutional layers are not too deferent from the dense layers. Dense layers are

fully connected meaning that the nodes are connected to every node in the previous layer.

Convolutional layers are globally connected where their nodes are connected to only a

small subset of the previous latest notes. In both cases they have weights and biases which

in train process we try to find the most appropriate values. In the case of CNNs where the

weights take the form of convolutional filters, those filters are randomly generated and so

are the patterns that initially designed to detect. In train process we determine what kind

of patterns it needs to detect based on a loss function. For instance, if the dataset contains

images of dogs, the CNN can learn on its own filters that is able to detect the characteristics

of a dog. In the above figure we can see a computational example of the first element of a

feature map. As we can see that Kernel size is 3x3, which refers to the size of the filter.

Filter is applied to an area of a matrix, and the output result is the sum of this pooled area

as in the example. In a convolutional layer we must specify the Strides. This parameter

represents the number of input shifts over the input matrix. In the above example the

number of strides is 1.

Figure 6. Convolutional filter calculation.

11

2.3.3 Activation functions

In NNs an activation function performs a specific mathematical operation on a

node. In this thesis we use five action functions, Sigmoid, Tanh, RELU, Leaky RELU and

SoftMax.

Sigmoid and Tanh
The sigmoid activation function σ(x) squashes a real-valued number into the range

between zero and one as in:

 𝜎(𝑥) =
1

(1+𝑒−𝑥)

On the other hand, tanh(x) squashes a real-valued number into the range between

negative one and one as in:

 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

In figure 6 we can see the graphic representation of sigmoid and tanh. If the input vector

was in the scale of [-1,1] sigmoid would be problematic because it will hide the negative

information of the input and so tanh would be more appropriate. Sigmoid is used when the

input is in the scale of [0,1]. It will hide the negative information that is not needed in the

output. In practice a Sigmoid and Tanh are used in two-class classification problems. In our

application we use σ(x) in the final output node of our NN to determine if a given input is a

character or not.

 Figure 6. Sigmoid and Tanh graphic representations.

SoftMax activation function is used in Machine Learning for Multi-class

classification problems that also called Multi-class Logistic Regression. In our application

we use this function in the final output node of our NN to determine the character over all

12

known character classes. We can see an example of SoftMax in Figure 8. In the example

the output of a dense layer has this form of a vector. In statistics terminology this output is

called logits. SoftMax will determine with a probability of 90% that the output is zero

character. Given a n-dimensional vector X the SoftMax activation function S(xi) squashes a

real-valued number Xi into the range between zero and one as in:

𝑆(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒−𝑥𝑗𝑛
𝑗=0

Rectified Linear Unit (ReLU) activation function is a linear and simply threshold at

zero and can therefore be expressed as:

 ReLU(x) = max(0, x)

Leaky ReLU activation function is also a simple threshold, allowing allow a small

positive gradient when the unit is not active as:

Leaky ReLU(x) = max(x ∗ 𝛼, x)

Parameter a is a small percentage value typically less than 10%. In practice, both of

this units have one major drawback that arises from their simplicity. They can be very

fragile during training because of their small gradient (output of the layer) when x < 0. A

large gradient flowing through a neuron could cause the weights to update in such a way

that the neuron will never activate on any datapoint again. If this happens, the gradient

flowing through the unit will forever be zero. This phenomenon is referred to as dead

neurons in the neural network context [32]. To avoid dead neurons, such functions are

usually used in the output of a Convolutional Layer.

 Figure 8. SoftMax example.

13

2.3.4 Batch Normalization and Pooling layers

 Batch Normalization (BN) [37] was proposed by Sergey Loffe and Christian Szegedy

to make NN models more stable during training. This could benefit the model by decreasing

the time of training, and in some cases the efficiency of the model is also increased. At a

hidden layer with an output vector Z, BN first calculates the mean (μ) and the standard

deviation (σ) of a batch. Batch is a sample of the dataset to work with, before updating the

internal model parameters. The normalized output Znorm of BN is:

𝑍𝑛𝑜𝑟𝑚 = 𝛾 ∗
𝛧 − 𝜇

𝜎
+ 𝛽

The γ and β are trainable parameters which allow to adjust the standard deviation and the

bias, respectively.

 In this thesis we use two deferent pooling layers, Max pooling [38] and Average

pooling [38]. Pooling layers have the ability to reduce the dimensionality of a feature map

usually after a CNN. This technique is referred to as downsampling of the feature map.

Given a feature map, Max pooling fist involves computing the max value, like this:

In the max pooling we must specify a window size which determines the area that we want

to pool from the feature map. In the above example the window is 2x2. To downsample

the feature map we must also specify the strides i.e., steps during the sliding operation. In

the above example we perform Max pooling with window 2x2, and strides are 2.

14

 As Max pooling is calculating the Max of a picked area, Average pooling is calculating the

average.

2.3.5 Dataset

Neural networks learn (or are trained) by processing examples, each of which

contains a known "input" and "result or labels," forming probability-weighted associations

between the two, which are stored within the data structure of the net itself. This process

is called supervised learning. The ability to learn is a peculiar feature pertaining to

intelligent systems, biological or otherwise. In artificial systems, learning is viewed as the

process of updating the internal representation of the system in response to external

stimuli so that it can perform a specific task. This includes modifying the network

architecture, which involves adjusting the weights of the links, pruning or creating some

connection links, and/or changing the firing rules of the individual neurons (Schalkoff,

1997) [10]. NN learning is performed iteratively, as the network is presented with training

examples, similar to the way humans learn from experience. For example, in image

recognition, they might learn to identify images that contain cats, by analyzing example

images manually labeled as "cat" or "no cat”, and use the model to identify cats in other

images. In this example the known classes are the “cat” and the “no cat”. Thus, network

output would represent the probability distribution of those two classes. In our application,

we need to identify or classify characters, and we trained our model with the Chars74k

dataset [9]. In figure 9, a small sample of the dataset is illustrated. Chars74k dataset

contains 7704 characters obtained from natural images with 62 classes (0-9, A-Z, a-z). In

order to not only classify but also to determine if the given input is a character, we use a

GAN with semi-supervised approach. In the next sections we will explain in more detail the

idea behind this approach.

15

 The other dataset that we use is ICDAR2003 dataset [1]. This dataset contains three

sub-datasets the Robust Reading and Text Locating (RRTL), Robust Character Recognition

(RCR), and the Robust Word Recognition. We want to validate our application’s accuracy in

this dataset using the first two sub-datasets. The first sub-dataset contains images which

we show later in Figure 1. The RCR contains images like the Chars74k dataset. This character

images have been extracted from RRTL and labeled. RCR will help ass calculate the

validation and test accuracy of our NN on another distributed data.

Figure 9. Project graph [9].

2.3.6 Loss functions and Optimization algorithms

The most popular loss function for image classification in NNs is the cross-entropy

loss, generalized to multiple classes via an activation function φ(ν) and the negative log

likelihood. Mathematically, the cross-entropy loss of ν has the form:

𝐶𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑙𝑜𝑠𝑠
(𝜈) = −log (𝜑(𝜈))

A sigmoid cross-entropy loss function is the negative log likelihood of σ(x) and SoftMax

cross-entropy loss function is the negative log likelihood of S(x).

In training when we process a labeled data from the dataset, NN will output a

prediction in the form of a vector. We want after the activation function a probability value

near 1 in the right predicted class and near zero in the others. To make our NN learn from

the dataset, for each labeled data we calculate the loss of the right predicted class, and we

try to minimize it.

To minimize the loss of the model we use optimization algorithms. One of the most

know optimization algorithms is the Adam Optimizer [33]. Adam was proposed by Diederik

Kingma from OpenAI and Jimmy Ba from the University of Toronto in 2015. It has the ability

16

to update NN’s weights and bias during training to increase the learning efficiency of the

model. This process of adjusting weights and biases to benefit the models is called “Back

propagation”.

2.3.7 GANs

A general adversarial network (GAN) [2] is a machine learning generative model

able to generate new thinks. For example, new images that are realistic even though they

have never been seen before. GANs, along with several other kinds of generative models,

are using a function called differentiable function that can generate new sample that

imitate a given dataset. In GANs this function is a NN called generator. Generator network

takes random noises as input, to transform and reshape it to have a recognizable structure.

The output of the generator network is a realistic image. The choice of random input noise

determines which image will come out of the generator network. Running the generator

network with many different input noise values produces many different realistic output

images. The goal is for these images to be fair samples from distribution over real data.

One application of GANs is to generate faces of anime characters. Yanghua Jin and others

published a grate paper with title “Towards the Automatic Anime Characters Creation with

Generative Adversarial Networks” [41] which explain with detail a GAN. Suppose that we

have a dataset with anime characters like the sample in figure 10, and we want to create

new anime characters.

 Figure 10. Anime characters sample.

Yanghua Jin’s paper proposed a method to create a generator network that can

create this anime characters like the example in figure 11. We can see that generator

network takes as input a random vector with certain size and generates a new anime

17

character that does not belong to the dataset. Also, we can see that if a small change will

be made in the random vector, generator will automatically be triggered to create another

sample. For example, changing only the value of the fist vector of figure 11, from 0.1 to 3

will create an anime character with longer hair than the previous one.

Figure 11. Generator for anime characters [41].

Training process for a GAN is different from the training process for a supervised

learning model. In supervised learning we show the model an image of a traffic light and

we tell the NN this is a traffic light. For a generative model, there is no output associated

with each image, we show the model a lot of images, and ask it to make more images which

come from the same probability distribution. To maximize the probability that the

generator net will generate good images labeled to the training dataset, we use a second

network called the discriminator which is a regular classifier. In training, discriminator is

shown images from the dataset (real images) in half of the time and images created from

the generator (fake images) the other half of the time. The discriminator is trained to

output the probability that the input is real, so it tries to assign a probability near to one

for real images and a probability 0 for fake images. This training process is called

Unsupervised Learning. In figure 12 we can see an example of the discriminator network

used in Yanghua Jin’s paper. In the first two images which come from the dataset the

probability value is 1. These images are of a very good quality, and discrimination

determines that are real. The third image which is of a very bad quality, is generated from

the generator, and has a low probability value (0.1) to be real image.

18

Figure 12. Generator for anime characters [41].

In training, generator tries to do the opposite from the discriminator, it is trained to

try to output images to which the discriminator will assign a probability near 1 i.e. the input

is real. Overtime the generator is forced to produce more realistic outputs to ‘’fool’’ the

discriminator, and the discriminator can learn to recognize if an image is a class of the

dataset. In figure 13, we can see a GAN representation during training for three iterations

(V1,2,3). Generator takes as input the random image and generates the new fake image

and discriminator takes as input both images one at a time and determine if the image is

real or fake. We can see that generator is improved during training creating more realistic

samples. That also means discriminator is improved to identify which images is produced

from the generator and which image comes from the dataset.

Figure 13. GAN training representation [41].

19

2.3 Object Localization

There are a lot of models and algorithms that localize objects or even characters

from a given image. An object localization algorithm produces a list of object categories

present in the image, along with an axis-aligned bounding box indicating the position and

scale of one instance of each object category [25]. Such an algorithm is used in a wide

variety of tasks such as scene detection, stereo matching, and object tracking for detecting

the desired object. An example is an algorithm that computes the Maximally Stable

Extremal Regions (MSER) of the source image. The idea is that MSER tries to detect

common pixels in an image that might be an element. Like the human eye, when we read,

we detect the letters from the background by understanding that a character has common

pixel values and color intensity, creating an object with a certain structure (common height

etc.).

The basic idea behind MSER is that, If we wanted to locate the “F” letter in figure

14 and we knew that “F” is white, we could easily curve join the continuous points having

the white color. If we do not know the color of “F” we have to search for continuous points

in different pixel intensity values.

 Figure 14. Detect “F”

Another model that can locate objects from an image is a CNN. CNNs can be trained

to identify that an area with common pixel values and color intensity with a certain

structure, can be an object. In figure 15 we can see how CNNs locate the letters from an

20

image. The output image of CNN is the feature map of the last Convolutional layer. We can

see that in the feature map, CNN discovered handwritten letters and emphasize all the

useful information with white pixels.

 Figure 15. CNN for object localization [26].

Most OCR applications use CNNs as an encoder to detect letters. MSER detects the

desired objects along with a few outliers, as distinct from CNNs that detect only the desired

objects. To perform OCR, we apply to CNNs a decoder model that will classify the detected

objects. In most cases this decoder is a Recurrent Neural Network (RNN) [27]. The detected

characters are fed into the RNN one at the time, and the network is trigged to predict a

character or a sequence of characters. RNNs and dense layers have a similar general

structure but also have a difference. In the dense layer the output at any time is a function

of the current weights and the bias. As we can see in figure 16, in RNNs the output at time

t depends on the current input the weights and the bias but also on previous inputs such

as the t-1, t-2 etc. For example, the correct classification of “r” in the sixths bounding box

of feature map, in figure 13, depends on the first five bounding boxes.

21

 Figure 16. RNN basic architecture [27].

22

Chapter 3

Xilinx ZedBoard Platform

3.1 Xilinx ZedBoard FPGA

ZedBoard [21] platform is a Xilinx FPGA (Field Programmable Gate Array) board,

designed to be programable and configurable by the circuit designer. FPGA is an

application-specific integrated circuit (ASIC) that contains a series of hardware components

like Flip-Flops (FFs), Multiplexers, Look-Up Tables (LUTs), Digital Signal Processors (DSPs),

Block RAMs (BRAMs) and CPU. FFs are small elements of gates able to store one data bit

between cycles. Multiplexer is a circuit devise that forwards a chosen signal between

several signals, based on a selector input signal. LUT is an N-bit table of pre-defined

responses for each unique set of inputs. DSPs are block units that contain adders,

subtractors and multipliers. A BRAM is a block of single/dual port RAM memory to store an

amount of data. FFs, Multiplexers, LUTs and other logic components are combined to

create configurable logic blocks (CLBs). CLB is the leading resource containing the design

logic in FPGA and the main functionality in logic design. The way to configure and utilize

this CLBs is to use a hardware description language (HDL) like Verilog, VHDL etc. [42]. CLBs

can combine for more complex operations such as multipliers, registers, counters and even

DSP functions.

CLBs gives ASIC designers the flexibility to develop, simulate, and run modeling

routines to ASIC prototypes onto the FPGA. Such a flexibility is difficult or impossible to

achieve with an ASIC. FPGAs because of their amount of computer resources has

application in machine learning algorithms, AI models, hardware accelerators, wireless

communications, and others. In the next sub-chapter, we are going to describe the

contribution of ZedBoard in machine learning specifically for our application. Because we

implement our OCR in ZedBoard, we call our application ZOCR.

ZedBoard supports the implementation of operating systems such as Linux,

Windows and Android or other operating system-based design system and Real Time

operating system. One basic element of ZedBoard FPGA is chip Xilinx Zynq®-7000 All

Programmable SoC. Zynq700 contains a dual-core CPU the ARM Cortex-A9. It also contains:

23

ARM dual-core CPU is included in the Process Unit (PS). PS unit along with

Multiplexed Input/Output (MIO) and Programmable Logic (PL), constitute the main

structure of ZedBoard. MIO contains peripherals such as SD port, UART port, Ethernet port

etc. PL contains the general-purpose FPGA logic fabric. It consists of:

• Slices – Slice is a subunit inside a CLB that used in combinatorial and sequential logic

circuits. It consists of 4 LUTs, 8 FFs and other logic components.

• CLBs

• Input/Output Blocks (IOBs) – IOBs are a group of basic elements that implement the

input and the output functions of FPGA. IOBs are the connection interface between

the PL logic and the pads.

In figure 17 we can see the block diagram of ZedBoard. MIO connects PS to the outside

world while PS and PL are combined to develop applications.

 a) Xilinx JTAG Connector

b) Power input and switch

c) USB-JTAG (programmable)

d) Audio ports

e) 10/100/1000 Ethernet port

f) HDMI port

g) VGA port

h) XADC header port

i) Pog & reset buttons

j) FMC connector

k) SD card

l) User push button

m) LEDs

n) Switches

o) OLED display

p) Configuration jumpers

q) Pmod connector ports

r) USB-PTG peripheral ports

s) USB-UART port

t) DDR3 memory 512 MB

u) ARM CPU

24

 Figure 17. ZedBoard block diagram [21].

3.1.1 ZedBoard PS and PS

 The basic feature of ZedBoard in the PS of Zynq is a set of components that create

the Application Prosses Unit (APU). We can see in figure 18 a simplified graph of APU. APU

is manly composed of two ARM CPU cores, where its core contains a functional block. Each

block of the core contains a media processing engine (MPE), a floating-point unit (FPU), a

two-partitioned level 1 cache memory (L1 cache), and a memory management unit (MMU).

On-chip memory interconnector (OCM) along with, a SRAM, and a level 3 cache memory

(L2 cache) are also included in APU. Communication between, the L1-chases of the cores,

the L2 cache, the SRAM, and the OCM is accomplished though the snoop controller unit

(SCU). PS is also composed of the following functional blocks:

• Memory interfaces

• I/O peripherals (IOP)

• Interconnect

The PS I/O peripherals, including the static/flash memory interfaces share a MIO of up to

54 MIO pins. Interconnect blocks are used from PS to communicate with PL via an Advanced

25

eXtensible Interface (AXI). AXI is a Hight-Performance (HP) interface that is used from Zynq

to create a gateway between PL and PS. The PS and PL can be tightly or loosely coupled

using multiple interfaces and other signals that have a combined total of over 3,000

connections. This enables to effectively integrate user-created hardware accelerators and

other functions in the PL logic that are accessible to the processors and can also access

memory resources in the processing system.

 Figure 18. APU graph [21].

3.2 Xilinx DPU

Xilinx provides a library of Intellectual Property (IP) that contains a series of

specialized subsystems, peripheral interfaces, and accelerators between PL and PS. In most

cases, IP is developed in PL unit, to utilize the FPGA fabric, and is used from PS. PS provides

the portability of the IP, while PL provides computational resources. For example, if we

want to use SoftMax function to our application we could easily create and run a software

implementation in the ARM CPU. Xilinx provides hardware implementation of SoftMax

throughout an IP. The hardware implementation of SoftMax can be 160 times faster than

a software implementation. The hardware SoftMax module takes approximately 10000

LUTs, 4 BRAMs, and 14 DSPs [21]. PS unit is used for data transfers and for interrupts.

Interrupts are signals to the processor that trigger a response to an event that needs

attention by the software. For example, an interrupt would be that SoftMax calculation is

finished.

26

As we said in a previous chapter, NNs consists of layers (Convolutional, Dense,

Recurrent) where the input is modified by some weights and summed with a bias, so it

consists of multiply and add operations (linear operations). Xilinx DPU [43] is an IP unit that

can perform linear operations across the layers, faster than CPUs and can process streams

of data, which is essential for this project. In figure 19 we can see the block diagram of DPU.

The DPU IP is implemented in PL of Zynq device with direct connections to PS via an AXI

bus. A program running on the APU is also required to service interrupts and coordinate

data transfers. DPU unit contains a high-performance scheduler module (HPSM), a hybrid

computing array module (HCA), a global memory pool module (GMPM), and an instruction

fetch unit. The HCA unit contains all computing resurfaces need to accelerate a NN layer. It

is mainly composed of multipliers and adders. HCA requires storage for the input images

as well as for the temporary and output data. GMPM which is linked with RAM unit via a

high-speed data tube, will provide this memory locations. DPU also requires instructions to

implement a neural network which are like the assembly of DPU. The instruction fetch unit

will provide these instructions from APU, via a HPSM, to the computing resources of DPU.

Figure 19. Xilinx DPU block diagram [43].

27

3.3 Xilinx DNNDK

The Deep Neural Network Development Kit (DNNDK) [4] is a deep learning toolchain

for inference with the DPU. One of the basic DNNDK tools are the Deep Compression Tool

(DECENT), and the Deep Neural Network Compiler (DNNC). These tools are installed in the

host machine where we create our NN following the recommendation of Xilinx’s

documentation [4].

Xilinx gives us the capability to utilize DPU and optimize the trained model using the

DNNDK tool. This tool takes as input the neural network file (.pd) that was created after

training and maps it into a file (.elf) identifiable by Xilinx DPU. The “.pd” file is pure data

and contains the weights and bias of the NN model along with its structure. The “.elf” file

contains the instructions of DPU which are strongly related to the DPU architecture, the

given NN, and the AXI Interconnect.

The computation unit inside the HCA which calculate the linear operations of the

NN, contains multipliers and adders with 8-bit integers as input. But the NN in the “.pd” file

contains linear operation with 32-bit floats. DECENT will optimize the weights and bias of

the network from 32-bit floating point numbers to 8-bit integers. This optimization is called

quantization. By converting the 32-bit floating-point weights and bias to 8-bit integer

(INT8), the DECENT quantize tool can reduce the computing complexity without losing

prediction accuracy. The fixed-point network model requires less memory bandwidth, thus

providing faster speed and higher power efficiency than the floating-point model. This tool

supports common layers in NNs, such as convolution, activation functions, dense, and BN.

DECENT also provided TensorFlow [11]. TensorFlow is an end-to-end open-source platform

for machine learning. Using this platform, we can create our NN by using TensorFlow

extended libraries that can characterize, train, and extract NN architecture using python.

 DNNC will take as input the quantized model and will create the “.elf” file. This file

can be accessible into the board, by the developer, using DNNDK drivers with C++. Xilinx

also include a Linux image that can boot ZedBoard and run C++ code on the processor. Linux

image is a Linux operating system without graphical user interface (GUI). Accessibility to

this Linux images can be accomplished through ZedBoard ethernet connection. DNNDK

drivers also contain the appropriate version of OpenCV (3.4) that is essential for this

project, for images processing tasks.

28

Chapter 4

ZOCR Application Overview

4.1 Introduction

 In this chapter we present the design and implementation of ZOCR application. Our

OCR implementation consists of two parts, character isolation and character classification.

When we localize and recognize the characters from a given image and form them into

words, OCR is complete. Both parts are written in C++, and they use a ΝΝ.

The algorithm first computes MSER of the source image using OpenCV source code.

This algorithm joins the continuous points that have same color or intensity and returns

the bounding boxes by identifying the start and the end point of each isolated box. These

bounding boxes contain characters but also some outliers. The outliers can be small or big

background noise, inside noise of a character or some pixel difference. In figure 20 we can

see the results of this algorithm. In order to reduce the number of outliers we run an

algorithm based on the fact that characters have a specific topology and structure, called

ER extraction. This algorithm is part of character isolation which is converted in more detail

in the next chapters.

The next step is to run our NN model for each detected bounding box. The model

will give as two outputs. The first output will be about what letter-number that contour is

(0-9, A-Z, a-z). The second output will be a probability number (0-1) that this contour is a

character. Finally, we threshold those probability numbers and form characters into words

using again some topology and structure techniques.

4.2 NN Model Creation

One way of improving the learning efficiency of deep learning models is semi-

supervised learning [3]. In semi-supervised learning, the model can learn from labeled

examples, but also gets better in classification by studying unlabeled examples even though

those examples have no class labels. In Semi-supervised classification with GANs we set up

the discriminator to work as a two-stage classifier.

GANs contain two models the generator and the discriminator, usually we train

both and then use only the generator NN at the end of training to create samples.

29

Discriminator is usually of secondary importance and only used to train the generator. For

semi-supervised learning we will focus on the discriminator. Discriminator is used to classify

new data after we are done training and now generator becomes less important. The

discriminator can not only learn from labeled data come from the dataset but also from

unlabeled data come from generator. It contains two outputs, fist output for the labeled

classes and second for the input image if it is real or fake. Ιn our project the two-stage

classification problem will be the 62 character classes, and if the given input is a character

or not. We build a GAN with convolutional layers in the generator and the discriminator.

This GAN architecture is called Deep Convolutional GAN (DCGAN).

 Figure 20. Detected contours of an image with outlier

4.2.1 Generator

The generative NN that we use in our DCGAN was proposed by Alec Radford and his

associates [2], and its architecture is shown in figure 21. The input of generator will be a

random vector `z` with size 1x100. The output will be a tanh output, but this time with size

32x32x1 (not 64x64 as the paper) i.e., size of our Chars74K images.

The first made layer is a fully connected layer which is reshaped into a deep and

narrow layer, 4x4x1024 as in the original DCGAN paper. Then we use batch normalization

and a leaky ReLU activation function. Next is a transposed convolution layer where typically

you would halve the depth and double the width and height of the previous layer. This

30

convolution transpose takes place in several layers as we want to get a larger and larger

image with fewer and fewer channels until eventually, we have the desirable output image.

Again, we use batch normalization and leaky ReLU.

 Figure 21. Alec Radford generative model [2].

The presented model is used only for training our classifier. It can create images

related to characters with an input `z` but not successfully enough. There are other papers

that focus on the generator and can create acceptable or even identical samples like the

one [41]. In Figure 22, we show a sample of generator output images in the last stage of

training. We can see some fair sample of the dataset like images with 6, 2 or a. But there

are also a lot of samples that are not recognizable or have a slight similarity with characters.

Classifier will take as input this samples and it will be trained to understand that this are

from generator. After trying classifier can determines the character samples from the non-

characters.

 Figure 22. Sample images created by generator.

31

4.2.2 Discriminator

The next step is to create our discriminator network. This network in train process

takes as input half of the time images from the dataset and the other half from generator.

Our goal in semi supervised learning is to make a good classifier that generalizes well for

the test set even though we do not have many labeled examples. We are going to train the

discriminator network, which is now a multi class model (more than an output). We use

convolution and batch normalization, and we do not use any Max pooling [38] or average

pooling [38]. We follow the recommendations from the paper by Tim Salimans at OpenAI

with tittle “Improved Techniques for Training GANs” [3].

 We do not use any batch normalization in the first three layers of the discriminator

in order to have the correct mean and standard deviation as we get deeper in the network.

We do use batch normalization and pooling to reduce the feature size. Batch normalization

subtracts off the mean of every feature value and then adds on an offset parameter. Batch

normalization goes ahead and sets the mean to be exactly equal to its bias parameter. That

means at least feature values would all get set to just have that particular mean. We use

dropout [36] a little bit more frequently here than some of the other models. The reason is

that dropout helps to make sure that testing is not too much higher than the training error

and reduce the amount of overfitting.

In figure 23, we can see the architecture of discriminator. This is slightly deferent

from the architecture of OpenAI’s paper. The purpose is to have a simple architecture in

order to be faster and can be quantized by DNNDK tool. This model contains approximately

453K trainable parameters (Float32) with input size 32x32x1.

After the creation of the discriminator, we must return its outputs. Remember that

we have two outputs. The first output is the probability over all the real classes (62 classes

of chars), and it is the SoftMax of the dense output (class logits). The second output is the

GAN logits. We set that GAN logits to give as the probability that the input is character,

such that:

𝑃(𝑖𝑛𝑝𝑢𝑡 𝑖𝑠 𝑐ℎ𝑎𝑟) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐺𝐴𝑁 𝑙𝑜𝑔𝑖𝑡𝑠)

32

We need to transform class logits, which is multiclass SoftMax distribution, into a binary

real-vs-fake decision that can be described with a sigmoid. Class logits is a 62-demational

vector (62-classes) with log probability values. That means that its values may be very

large, and either negative or positive. We need a function that can characterize GAN

logits with all values of Class logits. With these ideas in mind, Tim Salimans proposed [3]

the log-sum-exp (LSE) operation calculating the GAN logits such as:

𝐺𝐴𝑁 𝑙𝑜𝑔𝑖𝑡𝑠 = log (∑ 𝑒𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑔𝑖𝑡𝑠(𝑛))

62

𝑛=1

= 𝑚 + log (∑ 𝑒𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑔𝑖𝑡𝑠(𝑛)− 𝑚

62

𝑛=1

)

This is numerical stable when 𝑚 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 (𝑐𝑙𝑎𝑠𝑠_𝑙𝑜𝑔𝑖𝑡𝑠). This is because we ensure

that the largest positive exponentiated term is exp(0) = 1.

Figure 23. Architecture of discriminator with Keras.

33

4.2.3 Model training

 The training process starts by identifying and preparing dataset. The Chars74k

dataset [9] contains only 7705 characters obtained from natural images. This is quite small

for training our classifier, so data augmentation helps as toward better generalization. To

enrich our dataset, we transform each image 50 times by:

• Random rotation between -10 and 10 degrees.

• Random translation between -10 and 10 pixels in any direction.

• Random zoom between factors of 1 and 1.3.

• Random shearing between -25 and 25 degrees.

• Boolean choice to invert colors.

• Sobel edge detector filter [29] applied to 1/4 of images.

The new dataset is now 7705x50 after the data augmentation. Sobel filter along with the

other applied filters create new versions of existing images that can prevent our generator

to learn from a specific distributed dataset. Data normalization also applied to each image

by scale pixel values to the range 0-1. This step is essential for our classifier to avoid

overfitting.

The next step is to calculate the loss and to pose the optimization operations of the

DCGAN. This step is the same as the paper at OpenAI. At the loss functions we first run our

models. Firstly, the generator to generate new images and then the discriminator two

times, for the real and for the fake classes. Then we compute the losses. For the

discriminator, the loss function should combine two different losses:

1. The loss for the GAN problem, where we minimize the cross-entropy loss for the

binary real-vs-fake classification problem.

2. The loss for character’s classification problem, where we minimize the cross-

entropy loss for the multi-class SoftMax.

The first part is the unsupervised part. In Figure 24, we show how this implementation in

TensorFlow 1.12. The unsupervised part is divided into two different terms, real data loss

and on fake data loss. We are dealing with a binary classification problem, so we use this

sigmoid cross entropy loss function. In the discriminator, real loss calculation

(d_loss_real), i.e., real data that comes from the dataset output should be all ones, because

we want to say that all real data are characters. For the fake data (d_loss_fake), labels are

all zeros, because we want to say all fake data coming from the generator are not

34

characters. The second part of the loss is the supervised portion of the semi supervised

learning algorithm. It is used the cross entropy in terms of SoftMax between the labels for

which class is present and the output over all the different classes (class_cross_entropy).

The mean of the class_cross_entropy gives as the classifier’s loss (d_loss_class). Finally, we

add all those losses to calculate the discriminator loss (d_loss).

In the generator loss calculation, we use a loss function called feature matching

that was embedded by Tim at open AI [2]. The basic idea of feature matching is that we

take some features from a hidden layer of the discriminator and make sure that the average

feature value on the training data is roughly comparable to the average feature value.

In statistics terminology when we take some statistics, from one dataset and from

another dataset we ask those statistics to be similar. There is a learning technique called

Moment Matching [34]. The use of the moment matching in GANs is described in the paper

of Yujia Li, Kevin Swersky, and Richard S. Zemel with title “Generative moment matching

networks”. Each of the statistics that we extract is called a moment. According to Tim at

open AI [2], the moments of generator are average values of features from the last

convolutional layer of the discriminator.

First, we compute the moments of the dataset by taking the mean across all the features

that we pulled out of the discriminator.

 𝑑𝑎𝑡𝑎 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝑀𝑒𝑎𝑛(𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

Next, we compute the same moments in the same way but for the distribution of values

that come from the generator (sample features) rather than from the training dataset.

Finally, we compute the mean absolute difference between these two sets of moments,

and we use that as the loss for the generator.

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 = 𝑀𝑒𝑎𝑛(𝑎𝑏𝑠(𝑑𝑎𝑡𝑎_𝑚𝑜𝑚𝑒𝑡𝑠 − 𝑠𝑎𝑚𝑝𝑙𝑒_𝑚𝑜𝑚𝑒𝑛𝑡𝑠))

That encouraged the generator to make sure that all the feature values of the discriminator

have approximately the same average value regardless of whether the discriminator is run

on the input or on generator’s samples.

For the optimization operations we use Adam optimizer to reduce the loss of the

generator and the discriminator. The learning rate is 0.001. Learning rate is a

hyperparameter that controls how quickly the model is adapted to the problem and

35

because of its importance it was calculated experimentally. We try lots of learning rate

values to find the most appropriate.

 Figure 24. Discriminator loss calculation with TensorFlow

 1 d_loss_real = tf.reduce_mean(

 2 tf.nn.sigmoid_cross_entropy_with_logits(logits=gan_logits_on_data,

 3 labels=tf.ones_like(gan_logits_on_data)

 4)

 5)

 6 d_loss_fake = tf.reduce_mean(

 7 tf.nn.sigmoid_cross_entropy_with_logits(logits=gan_logits_on_samples,

 8 labels=tf.zeros_like(gan_logits_on_samples)

 9)

10)

11 y = tf.squeeze(y)

12 class_cross_entropy = tf.nn.softmax_cross_entropy_with_logits(

13 logits=class_logits_on_data,

14 labels=tf.one_hot(y, num_classes,dtype=tf.float32)

15)

16 class_cross_entropy = tf.squeeze(class_cross_entropy)

17

18

19

20 d_loss_class = tf.reduce_mean(class_cross_entropy)

21

4.3 Character Isolation

4.3.1 Introduction
In section 4.2, we present our classifier design. Our classifier ia ask to differentiate

characters from non-characters, so now finding an algorithm that detects contours with a
topologic structure to be characters will solve our problem. We decide to use an algorithm
that computes the MSER of the source image. The algorithm was taken from D. Nister’s and
H. Stewenius’ paper published in 2008 entitled “Linear Time Maximally Stable Extremal
Regions” [14]. This algorithm claims to use less memory and has better cache-locality than
other similar ones. We found the algorithm source code on OpenCV’s GitHub repository. A
result of this algorithm after Νon-Maximum suppression was shown earlier in figure 18.
After that we keep only the bounding boxes that have a strong probability to be characters
using our algorithm named ER Tracking. Finally, we run our classifier that can recognize the
characters from the remaining outliers. The pseudocode is shown below in figure 25.

An Extremal Region (ER), which is the output of the MSER algorithm, is a structure
that contains multiple information for the OCR task. It is like a bounding box with extra
information. This information is about:

36

1. MSER algorithm

a. Seed point and threshold (max gray-level value)

2. Features of the bounding box

a. Area

b. Center

c. Boundaries of the box (X, Y coordinates of the start and end point)

d. The Color domains

3. OCR

a. Classified character of the box

b. Probability to be a letter

Figure 25. Pseudocode of Character detection unit.
 1 Character_detection {

 2 Detected_ERs = MSER(scr)//input: source image Out: detect the Ers

 3

 4 Non_max_ERs = Non_Max_Suppressipn(Detected_ERs)//Decrease

 5 the number of Ers with Non-Maximum suppression

 6 Tracked_Ers = Er_traking(Non_max_ERs) // Track the Ers with

 7 strong possibility to be chars

 8 Final_ERs = Classifier(Tracked_Ers) // Run Classifier on DPU

 9 }

3.3.2 MSER

.

The linear MSER algorithm first transforms the RGB image to YCrCb color space.

MSER take as input the Y, Cr and Cb images along with the deference of their max and

current intensity (255 - Y, 255 – Cr, 255 - Cb). These six inputs correspond to the different

intensity values to detect an object.

In this paragraph we will now describe the algorithm from an abstract point of view

as exactly mentioned in [14]. The algorithm needs the following data-structures:

37

Figure 26: State graph for the algorithm [14].

• A binary mask of accessible pixels. These are the pixels to which the water already

has access.

• A priority queue of boundary pixels, where priority is minus the grey-level. These

pixels can be thought of as partially flooded pixels in the sense that water has access

to the pixel in question, but has either not yet entered, or not yet explored all the

edges out from the pixel. Along with the pixel id, an edge number indicating the

next edge to be explored can be stored.

• A stack C of component information. Each entry holds the pixels in a component

and/or the first and second order moments of the pixels in the component, as well

as the size history of the component and the current grey-level at which the

component is being processed. The maximum number of entries on the stack will

be the number of grey-levels.

 During execution of the algorithm for each of the six inputs, the components in the

component info stack C may not correspond to components in the component tree. Rather,

there will a number of components representing the ’down-stream’ of water streaming

START

Mark source

pixel and

Pop heap of

pixels

Accumulate

current pixel to

component on

top of stack

Is there

neighbor to current

pixel?

 Empty?

Same grey-

level as

Process

on the top

of stack

 Grey-level

Queue neighbor

onto heap

New grey-

level < 2nd on

stack?

stack

top of stack?

Queue current

pixel onto heap

and consider

new

onto stack

N

N

Y

38

downhill towards a minimum, where each component is the set of pixels at a single grey-

level that is part of the down-stream. A single component represents the pixels covered by

the water currently filling back out of a minimum. The algorithm in a sense has two states,

one where the down-stream is flowing downhill in search of a minimum, and one where a

minimum has been found, and the water level is currently rising out of it.

To execute the algorithm, a pixel from which flooding will proceed is arbitrary chosen. This

pixel can be thought of as the point at which water is being poured on, and the output

result will be the same regardless of which pixel is selected, so we may simply pick the

upper left corner of the image. We will refer to this as the source pixel. The algorithm is as

follows, see also Figure 15:

1. Clear the accessible pixel mask, the heap of boundary pixels and the component stack. Push

a dummy-component onto the stack, with grey-level higher than any allowed in the image.

2. Make the source pixel (with its first edge) the current pixel, mark it as accessible and store

the grey-level of it in the variable current level.

3. Push an empty component with current level onto the component stack.

4. Explore the remaining edges to the neighbors of the current pixel, in order, as follows: For

each neighbor, check if the neighbor is already accessible. If it is not, mark it as accessible

and retrieve its grey-level. If the grey-level is not lower than the current one, push it onto

the heap of boundary pixels. If on the other hand the grey-level is lower than the current

one, enter the current pixel back into the queue of boundary pixels for later processing

(with the next edge number), consider the new pixel and its grey-level and go to 3.

5. Accumulate the current pixel to the component at the top of the stack (water saturates the

current pixel).

6. Pop the heap of boundary pixels. If the heap is empty, we are done. If the returned pixel is

at the same grey-level as the previous, go to 4.

7. The returned pixel is at a higher grey-level, so we must now process all components on the

component stack until we reach the higher grey-level. This is done with the ProcessStack

sub-routine, see below. Then go to 4.

39

The ProcessStack sub-routine is as follows:

Sub-routine ProcessStack(new pixel grey level)

1. Process component on the top of the stack. The next grey-level is the minimum of

new pixel grey level and the grey-level for the second component on the stack.

2. If new pixel grey level is smaller than the grey-level on the second component on

the stack, set the top of stack grey-level to new pixel grey level and return from sub-

routine (This occurs when the new pixel is at a grey-level for which there is not yet

a component instantiated, so we let the top of stack be that level by just changing

its grey-level.

3. Remove the top of stack and merge it into the second component on stack as

follows: Add the first and second moment accumulators together and/or join the

pixel lists. Either merge the histories of the components, or take the history from

the winner. Note here that the top of stack should be considered one ’time-step’

back, so its current size is part of the history. Therefore, the top of stack would be

the winner if its current size is larger than the previous size of second on stack.

4. If(new pixel grey level>top of stack grey level) go to 1.

3.3.3 Non-Maximum suppression

One of the problems in linear MSER [14] is that the algorithm may find multiple

detections of the same object. Remember that linear MSER will try to detect objects in six

deferent input images, each of which correspond to a different intensity value. An object

can be appearing more than once in these inputs, and rather than detecting an object just

ones it might detect it more times. Non-Maximum suppression is a way to make sure that

the algorithm detects this object only ones. An example of non-maximum suppression is

shown in Figure 27.

The Non-Maximum Suppression algorithm is as follows:

1. Create a list of indexes by sorting them with the biggest Y end point of the bounding box.

2. Take the last index in the index list and add the index value to a list of picked indexes.

3. First find the largest (x, y) coordinates for the start of the bounding box and the smallest

(x, y) coordinates of the end of the bounding box in the index list.

4. This coordinate can create a new bounding box, compute its Hight(H) and Width(W).

40

5. Compute the rotation vector of the overlap = (W*H)/area, where area is the area vector

of the bounding boxes in the index list.

6. Delete all indexes from the index list that have overlap bigger than a threshold.

7. Keep looping until all indexes in the list are deleted.

The picked indexes that are related to the bounding boxes are the result.

 Figure 27. Non-Maximum suppression example.

3.3.4 ER Tracking

 Characters have a certain structure, they have common height, color, and topology.

For example, characters that form a word are in the same line. That makes our problem a

lot easier because we could scan the image and detect from the ERs, the bounding boxes

that have this significant structure. This would help us decrease the number of outliers

exponentially without a lot of computer resources. ER Tracking is not a sophisticated

algorithm, with computational complexity of 𝑂(NlogN) where N is the number of ERs after

MSER algorithm. We can see the pseudocode in figure 28. This algorithm in order to

understand that A, B ERs are in the same line, calculates in every iteration an adaptive

threshold. This threshold must be less than the distance of A, B. This algorithm will extract

41

two large or two small bounding boxes that are alienated. Finally, we could run our

classifier and detect all the characters.

 Figure 28. ER Tracking pseudocode.

 1 ER_Traking {

 2 for(a in Ers) {

 3 for(b in remaining Ers) {

 4 if (a,b are in the same line) and (a,b have close colors) {

 5 Keep(a,b)//This means that they might be letters.

 6 }

 7 }

 8 }

 9 }

42

Chapter 5

ZOCR on ZedBoard Platform

5.1 NN Introduction

In this chapter we are going to see how we run our ZOCR application on ZedBoard

FPGA. This OCR application consists of two separate tasks, the classifier and the character

isolation unit. Our classifier is an NN model so it will use the DPU of ZedBoard. The character

isolation unit is a software tool that will use the ARM CPU embedded on board. To quantile

the DPU, NN must be transformed to a file identifiable by the bord (.elf). The final step is

to combine the drivers with the characters Isolation/classification parts and use a Linux

image to run OCR on ZedBoard. In figure 29, we illustrate a high-level project overview.

Figure 29. Project graph.

5.2 NN Model Deployment

5.2.1 NN Model Compression
 In this subchapter we are going to see how we compress and prepare our model to

import Xilinx tools. DNNDK tool is Xilinx’s deep neural network development kit which can

create the .elf file.

After training of the DCGAN, we save the discriminator model using the appropriate

commands proposed by TensorFlow documentation [11]. In figure 30 we can see the files

that create our model. The data_set folder contains all the character images from both

the Char74K, and ICDAR 2003 and must be in this style for no errors. To run the train process,

delete the checkpoint and saved_model folders and execute the train.py script. The

43

frozen_model_dnndk.pb is the frozen graph in which DNNDK tools will quantize the

model [4]. It contains the weights and the biases along with the structure of the model. The

Create_DNNDK_files.py take as input the saves_model, saved by TensorFlow

and create the DNNDK frozen graph. In also prints the names of input and output nodes.

 Figure 30. DCGAN folder.

$ sem-supervised_chars74k

| -- data_set

| | -- img

| |-- natural_images_BadImag #\

| |-- natural_images_GoodImag# }Chars74k
| |-- ICDAR 2003

| -- .py files

| -- train.py

| -- Create_DNNDK_files.py

| -- chepoint

| -- install.sh

| -- samples

| -- common

 | -- saved_model

 | -- saved_model.pb

 | -- frozen_model_dnndk.pb

The next step is to prepare the floating-point frozen model and dataset. The

data_gen.py is shown as below in figure 31. This python script is used to preprocess

and load the training images for our NN. As we can see, Feature_Extraction()class

is responsible to preprocess and load our data.

Table 1: Input files for DECENT_Q [4].

No. Name description

1 Frozen_graph Located in ${dnndk_chars74k}/frozen_model_dnndk.pb

2 Data_gen
A python function to read images in Chars74k dataset and do

preprocess, locates in ${DNNDK_chars74k}/data_gen.py

44

 Figure 31: load_data file.

The third step is to run decent. Because we create a lot of files in ${dnndk_chars74k} directory

we create a second one (${dnndk_chars74k}) where we include the appropriate scripts to create “.elf”

file. DECENT takes a floating-point network model, pre-trained weights(float-32), and a calibration

dataset as inputs to generate a lightweight quantized model with INT8 weights.

A script file in ${dnndk_chars74k} directory named decent_q.sh is shown as below in Figure

32. Run ssh decent_q.sh to invoke the DECENT_Q tool to perform quantization with the

appropriate parameters. The inputs of the script file are the graph we saw later, the input and output

nodes are the parameter names in the TensorFlow graph which are tensor names and are printed by

Create_DNNDK_files.py. Input shape is the shape of the input_real and the

input_fn is the function we discussed above. The method is by default the first which is proposed

by Xilinx. The tool can also be installed using in the host machine with GPU support for faster results.

The number of iterations is like the epochs and ten is best suited for this model.

 Figure 32: decent_q script file.

45

The script may take several minutes to finish. Once quantization is done, the quantization summary will be

displayed as below [4]:

Two files as shown in Table 1 will be generated under the ${dnndk_chars74k}/quantize_results

directory. Then you could use the “deploy_model.pb” to compile the model using DNNC compiler

and deploy it on DPU.

Table 1: DECENT_Q output files [4].

No. Name Description

1 deploy_model.pb Quantized model for DNNC (extended Tensorflow format)

2 quantize_eval_model.pb Quantized model for evaluation and dump

Finally, we evaluate the quantized model. One python file named “eval.py” can be

found in ${dnndk_chars74k}, it is used to perform evaluation for the float and quantized

model, respectively. The validation dataset is stored in the ${semi supervised_chars74k}/

Dataset/ICDCAR 2003. This dataset contains the validation and test images from RCR.

Run the evaluate_dnndk_model() located in the eval python script file, to

perform evaluation. We must specify the input and output nodes from the frozen graph.

For this example, the accuracy on this data should be 78% to continue the process. Once

evaluation is done, the accuracy of the model will be displayed as below:

Figure 33: Evaluation results of the float and quantizes model.

46

5.2.2 NN Model Compilation

DNNC can support TensorFlow model compilation into an executable file undeniable by the

DPU. DNNDK provides dnnc.sh script files that with some adjustments can compile our model

specifically for ZedBoard FPGA.

The script file dnnc_Zedboar.sh under ${dnndk _chars74k}, for compiling TensorFlow

model, is shown in the following figure. For TensorFlow model compilation, you must specify the

parser type using TensorFlow through the -- parser option, otherwise DNNC will display an error.

Figure 34: DNNC Compilation Script for
TensorFlow chars74k

 In Figure 35 we can see DNNC output information when compilation is completed

successfully. DNNC compiles the NN model into an equivalent DPU assembly file, which is then assembled

into one ELF object file. For this application, our NN model was named after the dataset to chars74k. This

also shows the information about layers unsupported by the DPU. The DPU ELF object file is regarded as

DPU kernel, which then becomes one execution unit from the perspective of runtime N2Cube after invoking

the API dpuLoadKernel(). N2Cube loads the DPU kernel, including the DPU instructions and network

parameters, into the DPU dedicated memory space and allocate hardware resources. After that, each DPU

kernel can be instantiated into several DPU tasks by calling dpuCreateTask() to enable the

47

multithreaded programming. The network model is compiled and transformed into two different kernels:

• Kernel 0: chars74k_0 (Run on DPU)

• Kernel 1: chars74k _1 (Deploy on CPU)

The kernel _0 runs on the DPU. DNNC generates an ELF object file for this kernel in the

output_dir directory. The other kernel is for “SoftMax” operation, which is not supported by DPU and

must be deployed and run on the CPU. Workload MACs reference to the total computation workload of

the NN in the PE unit, without including the computation of bias. In other words, chars74k NN executes

14.47 million operations per classification.

 Figure 35: DNNC Compilation Log for TensorFlow chras74k

The following graph illustrates the steps for creating the .elf file as a summary for
virtualization purposes:

48

5.3 Run ZOCR on ZedBoard DPU

Connect the ZedBoard to a LAN using ethernet. With an ethernet connection

established, you can copy the DNNDK package from the host machine to the evaluation

board. The steps below illustrate how to setup DNNDK running environment for ZedBoard,

provided that DNNDK package is stored on a Linux system.

Boot ZedBoard by opening a terminal and run minicom. Find the IP of the board

with ifconfig. Copy the file ${OCR_ZedBoard} on the board. In this case, use the following

commands to extract and copy the package with IP address 192.168.0.10 of the board:

scp -r xilinx_dnndk_v3.1/ZedBoard root@192.168.0.10:~/ (default password

is root)
scp -r ./OCR_ZedBoard root@192.168.0.10:~/

1. Log in to ZedBoard board, change to the ${ZedBoard} directory and run install.sh

ssh root@192.168.0.10:~/ #Log in to ZedBoard

Saved Model (.pd
format)

deploy_model.pd

Create_DNNDK_files.py

frozen_model.pd

decent_q.sh

quantize_eval_model.pd

dnnc_Zedboar.sh

.ELF file

eval.py

valiation accuracy of quantized moel

49

~/OCR_ZedBoard $./install.sh # to install DNNDK tools to

Zedborad

The messages ”Complete installation successfully” will display if the installation completes

successfully.

2. Use the make file to build OCR code and execute the binaries.

~/OCR_ZedBoard$make

~/OCR_ZedBoard$./OCR -i img.png

After the execution of the code the predicted words will appear in the terminal. The

application will also save a result image under the ${OCR_ZedBoard/result.png} for

virtualization purposes. We can see a result image in figure 36.

 Figure 36: ZOCR result image.

50

Chapter 6

Experimental Results

The proposed OCR application was evaluated in the ICDAR 2003 dataset. As it was

mentioned in a previous chapter, ICDAR 2003 dataset contains the RRTL and RCR sub-

dataset. In figure 37 we can see how RRTL and RCR are associated. The RRTL (37a) contains

natural scene images, while RCR (37b) contains natural character images extracted from

the RCR. We want to validate the accuracy of our NN with the RCR, and the accuracy of

character isolation-localization with the RRTL. We also provide a comparison between

some of the most know OCR applications.

 a). b).

 Figure 37: RRTL vs RCR.

6.1 NN Performance

To calculate the accuracy of our NN, we download the RCR sub-dataset which is like the

chars74K dataset. We split this dataset into a test and validation set, to calculate the

accuracy of the model in deferent distributed samples. The validation set is used to

calculate the accuracy during training, and the test set is used to calculate the accuracy

after training is finished. The accuracy of the model is 78% where 77% was the test set and

80% the validation set. Figure 38 presents the validation accuracy (Y-axis) of the model

during training for each second. We train it for three epochs. This hyperparameter

determines the number of times the model learn from the entire dataset. We noted that if

we train it with more epochs the accuracy will increased slightly, but then the model could

not recognize characters from non-characters (real-vs-fake class).

51

 Figure 38. Model train and validation accuracy.

After a failure analysis, we noticed that 2% was from pure error. Also, 6% was from non-

distributed characters like the example in figure 39a. We can see that this “R” does not look

like the “R” images from the dataset. Α rate of 3% was from some images of vary bad quality

like the example in figure 39b. Finally, 11% of the error was some confusion that can be

understand, due to 11 duplicate character classes like:

• C with c

• I with l

• K with k

• 0 with o and O

• P with p

• S with s

• etc.

 a).
 b).

Figure 39. Miss-classified images.

52

It is noticeable that, we can increase accuracy of ZOCR by making a small misspelling

correction to these 11 duplicate character classes. When a character of these duplicate

classes is detected, we could easily change its upper-case or lower-case depending on the

previous character of the word. We call this technique the upper/low-case check. This will

increase our ZOCR recognition accuracy to 89%.

We also test the real-vs-fake performance in the RCR sub-dataset. During the test

of the NN we calculate for each image in the dataset the probability to be character (P(real-

vs-fake)). We noticed that 92% (called P(identification)) of this probability values were

greater than 95%. We then took a picture from the street and run our NN to see its

performance with another distributed image. In figure 40 we can see the results from this

image. In the left image we run the OCR application and we print for each bounding box

the detected class and the probability P to be a character. We can see that for the

characters the P value is 95% or greater and the outliers (in the bottom corner) have P value

significantly lower. In the right image of figure 40, we can see the OCR application if we

apply a threshold of 95% to these P values. Most of the outliers were extracted from the

image except from the exclamation mark that mistakenly identified as a character.

6.1.1 NN Performance Comparison

To compare our NN with the most known stare-of-the-art methods, we calculate

the performance of our NN in word recognition. To calculate the accuracy of the NN in

word recognition, we randomly choose 50 words from the ICDAR 2003 dataset, and we

truck each individual character in the RCR sub-dataset. From these characters we found the

misclassified ones related to some words from the ICDAR 2003 dataset i.e., these words

are misclassified. The accuracy that was measured was 84,64%, using the upper/low-case

check technique. In table 2, we can see the performance comparison with some of the most

known word recognition methods. In the IC03, which is the dataset, we can see the Scene

text recognition accuracies (%) for each method. In the second row, “50”, and “Full” denote

the lexicon used, and “None” denotes recognition without a lexicon. Table also presents,

the classification technique used in each method. SVM is the support vector machine, a

model that can map the input data to a higher dimensional space to assign a decision

boundary. Parameters (Params.) correspond to the number of weights and biases of the

NN. We also provide the floating-point operations (FLOPs) or linear operation for a few of

53

the methods. To calculate our model’s FLOPs, we multiple “10” times the MACs. “10” is the

average number of characters in a word of IC03 dataset, and MACs, as we said in the

previous chapter, represent the number of multiplications and accumulations in the PE unit

calculated by DNNC. Thus, our system executes 144 million linear operations on average to

predict a word, which is quite lower than the other methods. In conclusion, we implement

a recognition model which is more efficient than other state-of-the-art methods, due to its

vary low computational complexity and its high enough accuracy.

 Figure 40. Run OCR application.

54

Methods IC03 Classifier Param. FLOPs

50 Full 0

 F-32 M-A

Wang et al. [55] 76.0 62.0 - SVM - -

Wang et al. [56] 90.0 84.0 - CNN+SVM - -

Bissacco et al. [57] 90.4 78.0 - DNN - -

Jaderberg et al. [52] 96.2 91.5 - DCNN 300M -

Su and Lu [58] 92.0 82.0 - DCRNN - -

Jaderberg et al. [47] 98.7 98.6 93.1 DCNN 500M -

Jaderberg et al. [48] 97.8 97.0 89.6 DCNN 304M -

Shi et al. [49] 98.7 98.0 91.9 DCRNN 8.3 M ≈10.9B

Lee et al. [50] 97.9 97.0 88.7 DCRNN 2.9M 2B

Yang et al. [51] 97.7 - - DCRNN 144M -

Cheng et al. [53] 99.2 97.3 94.2 DCRNN - -

Cheng et al. [59] 98.5 97.1 91.5 DCRNN - -

W. Liu et al. [54] 96.9 95.3 89.9 DCRNN 48.7M -

SAR (Li et all.) [45] 98.8 - - DCRNN 44M 16.4B

SATRN (Lee et al.) [46] 96.7 - - DCRNN 55M 35.9B

Shi et al. [60] 98.8 98.0 94.5 DCRNN - -

ZOCR (ours) - - 84.6 DCNN 144Κ 144M

Table 2: Performance results of the most known word
recognition methods.

6.1.2 DPU Performance Comparison

To compere the performance of Xilinx ZedBoard DPU, we calculate the time taken

needed to run our NN for a singe classification in three deferent systems. The systems used

are:

• CPU: Intel(R) Core(TM) i5-7200U CPU 2.50GHz, 2 Cores

• GPU: Nvidia 1060 3GB

• Xilinx ZedBoard DPU

For our calculations to be as precise as possible, we run for each system our NN one

hundred times and calculate the average time. Table 3 presents these calculations. We can

see that DPU using the quantized model with 8-bit integers can run approximately 45%

faster than a GPU and 150% faster than a CPU.

55

CPU (F-32) GPU (F-32) DPU (INT8)

1317 us 769 us 540 us

Table 3: Time taken needed for a single classification in three
deferent systems.

6.2 Characters Isolation Performance

Character isolation task first runs the linear MSER to extract potential characters.

The accuracy of linear MSER in the RRTL sub-dataset was 70%. After a failure analysis, we

noticed that the detection works without any error when the characters of the given image

defer from the background.

According to the paper, the time required for linear MSER, can be shown to be

bounded by 𝑂(N𝛼(𝛮)) , where N is the number of pixels and α(N) is the inverse of the

Ackermann function, whose value is smaller than 5 if N is of the order 108. Figure 9 presents

the execution time of linear MSER as a function of image size on square images ranging

from one pixel to one mega-pixel. The pixels are from a natural scene image like the one in

ICDAR dataset. This experiment ran with single-threaded code on a laptop with 3GB of RAM

and an Intel T7400 2.16GHz processor. We also noticed that if we resize the input image of

the dataset to a fixed size of 600x480, the accuracy will not be decreased.

After MSER (and ER extraction and Non-Max suppression) we run our NN to localize

the characters and extract the outlier. Our NN can identify without error the characters of

IC03 dataset. This is because, NN cannot identify only the 8% of the IC03 characters (1-

P(identification)), and these characters weren’t tracked by linear MSER. Which means that,

the probability of character localization in the IC03 is 70%. This is the precision of character

localization. We also noticed that 4% of the outliers was mistaken recognized as character

from the NN. After a failure analysis we nosed that the error was from some symbols that

looked close enough with characters e.g., question mark (“?”), exclamation mark (“!”) etc.

The demanding time for this step is 𝑶𝒖𝒕𝒍𝒊𝒆𝒓𝒔 ∗ 𝑫𝑷𝑼_𝒕𝒊𝒎𝒆, where Outliers is the number

of outliers after implementing ER tracking algorithm and 𝐷𝑃𝑈_𝑡𝑖𝑚𝑒 is the time of DPU to

run the NN. To calculate the execution time of the NN in the DPU, we run 10-character

images and we measure the mean of their execution time. This time is 540 μs. This OCR

application can detect and classify letters even if the image is rotated. The classification of

56

each detected character can be done in between (-30, +30) degrees. The detection part

can be accomplished no matter the degrees.

 Figure 41. Execution time of linear MSER [15].

57

Chapter 7

Conclusions and future work

OCR systems are very important in our world and can make our lives a lot easier. In

professional sector they can achieve high productivity, cost reduction, and provide high

accuracy and accessibility. For example, a business that receives a lot of documents daily

and needs to search them, now in real time they can transform the paper documents into

digital ones and track a key word without going through the extensive slot of files. Another

application of OCRs is that it can help people with learning difficulties such as dyslexia.

People with dyslexia have the ability understand a problem (e.g., mathematical problem)

by listening rather that by reading it. So, we could transform this problem to a digital

representation and then with another tool to a speech representation. Once the problem

is converted to speech people with dyslexia can hear and understand the problem in

shorter time.

Our OCR system is developed to run on a standard local hardware and can be

trained on a custom dataset for specific applications. It computes 90% less linear

operations per image and the time taken is significantly lower than others.

In the future we plan to increase the efficiency and the performance of our

application. We also want to run it on cloud instance to solve real IoT problems that need

a faster OCR. At first, we want to take as input frame data coming from a camera connected

to the board. Moreover, we want to perform the OCR task to Greek words. To achieve this,

we need to train our model with 27 extra Greek character classes using our own dataset.

That would be challenging because creating our own dataset need to collect eight thousand

characters from natural images and label them. We also want to implement the most used

functions of our model like SoftMax on Hardware-LUTs for even faster results. Finally, by

using another detecting technique we want to increase the accuracy of the detection unit.

In the paper with title “Detecting Text in Natural Scenes with Stroke Width Transform” [7]

is proposed a new algorithm that can detect characters with even better accuracy than

linear MSER.

58

 REFRENCES

[1] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, R. Young (2003): “ICDAR 2003 Robust

Reading Competitions”, Proc. Seventh Int’l. Conf. on Document Analysis and Recognition

(ICDAR).

[2] Alec Radford, Luke Metz, and Soumith Chintala (2015): “Unsupervised representation

learning with deep convolutional generative adversarial networks”.

[3] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen

(2016): “Improved Techniques for Training GANs”

[4] Xilinx. DNNDK User Guide (UG1327) v.16 2019,

https://www.xilinx.com/support/documentation/sw_manuals/ai_inference/v1_6/ug1327

-dnndk-user-guide.pdf

[5] OpenCV Scene Text Detection and Recognition in Natural Scene Images,

https://github.com/opencv/opencv_contrib/tree/master/modules/text

[6] H. Cho, M. Sung and B. Jun, “Canny Text Detector: Fast and robust scene text localization

algorithm”, Computer Vision and Pattern Recognition, 2016.

[7] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natural scenes with stroke width

transform”, Computer Vision and Pattern Recognition

[8] [online] Stroke Width Transform with python, https://github.com/sunsided/stroke-width-

transform

[9] [online] Available: Chars74K dataset, http://www.ee.surrey.ac.uklCVSSP/demos/chars74k.

[10] Schalkoff, R.J., 1997. Artificial Neural Networks. McGraw-Hill, “Demystifying knowledge

acquiring black boxes”. IEEE Trans. New York.

[11] [online] TensorFlow 1.12 documentation,

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf

[12] [online] OpenCV documentation, https://docs.opencv.org/master/index.html

[13] Raymond Smith, Chunhui Gu, Dar-Shyang Lee, Huiyi Hu, Ranjith Unnikrishnan, Julian Ibarz,

Sacha Arnoud, Sophia Lin (2016): End-to-End Interpretation of the French Street Name

Signs Dataset.

https://www.xilinx.com/support/documentation/sw_manuals/ai_inference/v1_6/ug1327-dnndk-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ai_inference/v1_6/ug1327-dnndk-user-guide.pdf
https://github.com/opencv/opencv_contrib/tree/master/modules/text
https://github.com/sunsided/stroke-width-transform
https://github.com/sunsided/stroke-width-transform
http://www.ee.surrey.ac.uklcvssp/demos/chars74k
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf
https://docs.opencv.org/master/index.html

59

[14] [online] Artificial Neural Networks Wikipedia

https://en.wikipedia.org/wiki/Artificial_neural_network

[15] Nistér D., Stewénius H. (2008): Linear Time Maximally Stable Extremal

https://doi.org/10.1007/978-3-540-88688-4_14

[16] [online] OpenCV MSER Class References,

https://docs.opencv.org/master/d3/d28/classcv_1_1MSER.html

[17] [online] OpenAI official site, https://openai.com/

[18] Schantz, H. F. (1982): The history of OCR: optical character recognition, Recognition

Technologies Users Association.

[19] D'Albe, E. E. Fournier (1914): “On a Type-Reading Optophone”,

https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1914.0061

[20] Gerardus Blokdyk (2018): “Recurrent neural network: Real Life Actions Paperback “

[21] [online] Xilinx ZedBoard, xilinx.com/support/university/boards-portfolio/xup-

boards/DigilentZedBoard.html

[22] Sheikh Faisal Rashid (2014): Optical Character Recognition - A Combined ANN/HMM

Approach

[23] Rosenblatt F. (1958): "The Perceptron: A Probabilistic Model For Information Storage And

Organization in the Brain"

[24] Schmidhuber, J. (2015): "Deep Learning in Neural Networks: An Overview". Neural

Networks.

[25] O. Russakovsky, Hao Su,, Li Fei-Fei (2010): ImageNet Large Scale Visual Recognition

Challenge

[26] Ashwin Vijayakumar (2019): A Machine Learning Approach for Document Image Repair

and Enhancement of Severely Degraded Printed Text

[27] Sepp Hochreiter and Jürgen Schmidhuber (1997): Long Short-Term memory. Neural

computation

[28] [online] YCrCb color spaces, learnopencv.com/color-spaces-in-opencv-cpp-python/

[29] [online] Sobel Filter, docs.opencv.org/3.4/d2/d2c/tutorial_sobel_derivatives.html

https://en.wikipedia.org/wiki/Artificial_neural_network
https://doi.org/10.1007/978-3-540-88688-4_14
https://docs.opencv.org/master/d3/d28/classcv_1_1MSER.html
https://openai.com/
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1914.0061
xilinx.com/support/university/boards-portfolio/xup-boards/DigilentZedBoard.html
xilinx.com/support/university/boards-portfolio/xup-boards/DigilentZedBoard.html
https://learnopencv.com/color-spaces-in-opencv-cpp-python/
https://docs.opencv.org/3.4/d2/d2c/tutorial_sobel_derivatives.html

60

[30] Irwin Sobel (2014): History and Definition of the Sobel Operator

[31] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2012):

Improving Neural Networks by Preventing Co-adaptation of Feature Detectors

[32] F. Schilling (2016): The Effect of Batch Normalization on Deep Convolutional Neural

Networks

[33] Diederik Kingma, Jimmy Ba (2015): “Adam: A Method for Stochastic Optimization”

[34] Yujia Li, Kevin Swersky, and Richard S. Zemel. (2015): Generative moment matching

networks.

[35] [online] VGG Net.: https://neurohive.io/en/popular-networks/vgg16/

[36] N. Srivastava, ..., R. Salakhutdinov (2015): Dropout: A Simple Way to Prevent Neural

Networks from Overfitting

[37] Sergey Ioffe, Christian Szegedy (2015): Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift

[38] S. J. Nowlan, J. C. Platt (1994): A convolutional neural network hand tracker, in:

Proceedings of the Advances in Neural Information Processing Systems (NIPS)

[39] [online] FSNS dataset: https://rrc.cvc.uab.es/?ch=6

[40] Valueva, M.V.; Nagornov, N.N.; Lyakhov, P.A.; Valuev, G.V.; Chervyakov, N.I. (2020):

Application of the residue number system to reduce hardware costs of the convolutional

neural network implementation

[41] Yanghua Jin, ..., Zhihao Fang (2017): Towards the Automatic Anime Characters Creation

with Generative Adversarial Networks

[42] [Online] Hardware Description Languages:

paginas.fe.up.pt/~jcf/ensino/disciplinas/mieec/pcvlsi/2010-

11/cmosvlsidesign_4e_App.pdf

[43] [Online] Xilinx DPU:

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-

dpu.pdf

[44] [Online] Python: https://www.python.org/

https://neurohive.io/en/popular-networks/vgg16/
https://rrc.cvc.uab.es/?ch=6
https://paginas.fe.up.pt/~jcf/ensino/disciplinas/mieec/pcvlsi/2010-11/cmosvlsidesign_4e_App.pdf
https://paginas.fe.up.pt/~jcf/ensino/disciplinas/mieec/pcvlsi/2010-11/cmosvlsidesign_4e_App.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_0/pg338-dpu.pdf
https://www.python.org/

61

[45] Li, H.; Wang, P.; Shen, C.; and Zhang, G. 2019. Show, attend and read: A simple and strong

baseline for irregular text recognition. In The Thirty-Third AAAI Conference on Artificial

Intelligence

[46] Junyeop Lee, Sungrae Park, et al (2019): On Recognizing Texts of Arbitrary Shapes with 2D

Self-Attention

[47] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman (2015): Reading text in the wild

with convolutional neural networks

[48] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman (2015): Deep structured output

learning for unconstrained text recognition.

[49] Shi, X. Bai, and C. Yao (2017): An end-to-end trainable neural network for image-based

sequence recognition and its application to scene text recognition.

[50] C.-Y. Lee and S. Osindero (2016) Recursive recurrent nets with attention modeling for ocr

in the wild.

[51] X. Yang, D. He, Z. Zhou, D. Kifer, and C. L. Giles. (2017): Learning to read irregular text with

attention mechanisms.

[52] M. Jaderberg, A. Vedaldi, and A. Zisserman. (2014): Deep features for text spotting.

[53] Z. Cheng, F. Bai, Y. Xu, G. Zheng, S. Pu, and S. Zhou (2017): Focusing attention: Towards

accurate text recognition in natural images.

[54] Wei Liu, Chaofeng Chen, Kwan-Yee K Wong, Zhizhong Su, and Junyu Han (2016): Star-net:

A spatial attention residue network for scene text recognition.

[55] K. Wang, B. Babenko, and S. J. Belongie (2011): End-to-end scene text recognition.

[56] T.Wang, D. J.Wu, A. Coates, and A. Y. Ng. (2012): End-to-end text recognition with

convolutional neural networks.

[57] A. Bissacco, M. Cummins, Y. Netzer, and H. Neven. (2013): Photoocr: Reading text in

uncontrolled conditions

[58] B. Su and S. Lu. (2014): Accurate scene text recognition based on recurrent neural

network.

62

[59] Z. Cheng, Y. Xu, F. Bai, Y. Niu, S. Pu, and S. Zhou. (2019): Aon: Towards arbitrarily-oriented

text recognition.

[60] B. Shi, M. Yang, X.Wang, P. Lyu, C. Yao, and X. Bai. (2018): Aster: an attentional scene text

recognizer with flexible rectification.

