

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

NEURAL NETWORKS FOR INTELLIGENT FAULT DIAGNOSIS OF

MECHANICAL EQUIPMENT

by

ILIAS KONSTANTINIDIS

Submitted in partial fulfillment of the requirements for the degree of Diploma

in Mechanical Engineering at the University of Thessaly

Volos, 2021

ii

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

NEURAL NETWORKS FOR INTELLIGENT FAULT DIAGNOSIS OF

MECHANICAL EQUIPMENT

by

ILIAS KONSTANTINIDIS

Submitted in partial fulfillment of the requirements for the degree of Diploma

in Mechanical Engineering at the University of Thessaly

Volos, 2021

iii

© 2021 ILIAS KONSTANTINIDIS

All rights reserved. The approval of the present D Thesis by the Department of

Mechanical Engineering, School of Engineering, University of Thessaly, does not

imply acceptance of the views of the author (Law 5343/32 art. 202).

iv

Approved by the Committee on Final Examination:

Advisor Dr. Ampountolas Konstantinos,

 Associate Professor, Department of Mechanical Engineering,

University of Thessaly

Member Dr. Spiridon Karamanos,

 Professor, Department of Mechanical Engineering, University

of Thessaly

Member Dr. Grigorios Haidemenopoulos,

 Professor, Department of Mechanical Engineering, University

of Thessaly

Date Approved: September 29, 2021

v

Acknowledgments

Writing this thesis marks the near end of five exciting academic years in the

Mechanical Engineering Department of the University of Thessaly. Five years with a

lot of challenges that hopefully prepared a new generation of young Engineers. On

this small section I wholeheartedly want to thank my immediate family and friends,

that supported me through the lows and cheered with me through the highs. I need

to thank my parents for their remarkable emotional and financial support in those 5

years. I want to thank Dr Ampountolas for supervising this thesis, and who gave me

the opportunity to study in more detail a subject that already intrigued me. Finally, I

need to thank Dr Karamanos and Dr Haidemenopoulos for taking the time to read

and evaluate my efforts.

vi

NEURAL NETWORKS FOR INTELLIGENT FAULT DIAGNOSIS OF

MECHANICAL EQUIPMENT

ILIAS KONSTANTINIDIS

Department of Mechanical Engineering, University of Thessaly

Supervisor: Dr Konstantinos Ampountolas

Associate Professor University of Thessaly

Abstract

The ever-growing scale and complexity of mechanical systems used on plant floors

and research labs across the world, ordains the deployment of fast, reliable and - in

the spirit of the 4
th

 industrial revolution - fully automated solutions for the detection

of possibly dangerous defects, resulted by their operation. Intelligent fault diagnosis

is presented as a solution to the problem, and it relies on the usage of classification

algorithms which are responsible to differentiate between the healthy state of the

monitored mechanical system and the faulty state. In the context of the present

work, different Artificial Neural Networks architectures, supervised learning methods

and traditional classification techniques will be reviewed. After the theoretical

ground for the methods mentioned above is laid, we will proceed to try them out on

a case study in order to juxtapose their results and review each method’s

weaknesses and advantages. For the case study the rolling bearings dataset provided

by the Case Western Reserve University (CWRU) will be used to detect faulty and

healthy states of rolling bearings using vibrational data acquired from the CWRU’s

testing rigs.

vii

viii

CONTENTS
Chapter 1. Introduction.. 1

1.1 Fault Diagnosis of Mechanical Equipment .. 1

1.2 Motivation and importance .. 1

1.3 Literature review ... 1

1.4 Thesis organization .. 2

Chapter 2. Traditional Fault Diagnosis of Rotating Equipment ... 3

2.1 Introduction to Envelope Spectrum Fault Detection .. 3

2.2 Data acquisition ... 3

2.3 Signal processing ... 5

2.4 Fault Diagnosis ... 8

2.5 Other Traditional Fault Diagnosis Techniques and ESFD ... 11

2.6 Chapter Conclusions .. 11

Chapter 3. Intelligent Fault Diagnosis of Rotating Equipment .. 13

3.1 Introduction ... 13

3.2 Neural Networks: A Basic Framework ... 13

3.3 Optimization methods for Neural Networks ... 18

3.3.1 Gradient Descent .. 18

3.3.2 Stochastic Gradient Descent .. 20

3.3.3 Batch Gradient Descent .. 21

3.3.4 Gradient Descent with Momentum ... 21

3.3.5 Accelerated Gradient Descent .. 22

3.3.6 The Adam Optimizer ... 23

3.3.7 Acknowledgements of Omissions .. 25

3.3.8 Some Observations for the Selection of an Optimization Method 26

3.4 The Backpropagation Algorithm .. 26

3.5 Activation functions ... 29

3.6 Loss Functions ... 32

3.7 Common Neural Network Layers and Architectures ... 33

3.7.1 Convolutional Neural Networks ... 33

3.7.2 Multilayer Perceptrons ... 37

3.8 Other Supervised Machine Learning Algorithms: SVMs ... 37

3.9 Chapter Conclusions .. 40

Chapter 4. Case Study ... 41

ix

4.1 Introduction ... 41

4.2 Presenting the Problem of Rolling Bearings Fault Diagnosis ... 41

4.3 Presenting the CWRU Rolling Bearing Dataset .. 44

4.4 Differentiations Between ESFD and Intelligent Methods ... 48

4.5 ESFD Implementation on CWRU’s Data .. 49

4.6 Intelligent Methods Implementation on CWRU’s Data... 56

4.6.1 Data Preparation .. 56

4.6.2 MLP Implementation for the CWRU’s Data ... 58

4.6.3 CNN Implementation for the CWRU’s Data ... 61

4.6.4 C-CNN Implementation for the CWRU’s Data .. 63

4.6.5 SVM Implementation for the CWRU’s data. .. 64

4.7 Results and Method Comparison .. 65

4.8 System Specifications .. 74

Chapter 5. Conclusions – Suggestions for Further Study ... 75

References ... 76

Media References ... 79

Appendix A – MATLAB and Python Code for Visualization ... 80

Appendix B – MATLAB Code for EFSD Implementation .. 85

Appendix C – MATLAB and Python Code for Data Preparation .. 88

Appendix D – Python Code for Intelligent Methods ... 92

x

LIST OF TABLES

Table 1. Fault Frequency table (CWRU)……………………………………………………………...... 8

Table 2. Different condition specific vibrational measurements for healthy bearings

(CWRU).. 44

Table 3. Different condition specific vibrational measurements for faulty bearings

placed in the drive end of the motor under a sampling rate of 12kHz (CWRU)...... 45

Table 4. Different condition specific vibrational measurements for faulty bearings

placed in the drive end of the motor under a sampling rate of 48kHz (CWRU)...... 45

Table 5. Different condition specific vibrational measurements for faulty bearings

placed in the fan end of the motor under a sampling rate of 12kHz (CWRU).......... 45

Table 6. Rolling bearings used in CWRU’s test and their geometric characteristics 47

Table 7. Fault specifications of the defected bearings used in CWRU’s tests.......... 47

Table 8. Location Specific Fault Frequencies.. 49

Table 9. Classes and their corresponding labels.. 57

Table 10. Training time for each model... 66

Table 11. Predictions of a data sample for each model and each dataset.............. 66

Table 12. Comparative structures of the Neural Networks..................................... 66

Table 13. Accuracy metric for the testing data.. 66

Table 14. Accuracy metric for the validation data... 67

Table 15. Different classification metrics for testing data with SVM, organized by

class... 67

Table 16. Different classification metrics for testing data with MLP, organized by

class... 67

Table 17. Different classification metrics for testing data with CNN, organized by

class... 67

Table 18. Different classification metrics for testing data with C-CNN, organized by

class... 67

Table 19. Confusion matrix for the classification of the testing data using the

SVM... 67

Table 20. Confusion matrix for the classification of the testing data using the

MLP.. 68

Table 21. Confusion matrix for the classification of the testing data using the

CNN.. 68

Table 22. Confusion matrix for the classification of the testing data using the C-

CNN.. 68

xi

LIST OF FIGURES

Figure 1. Time domain representation of a normal bearing………………………………… 5

Figure 2. Frequency domain representation of a normal bearing……………………….. 6

Figure 3. Envelope spectrum of a bearing with inner race fault…………………………… 9

Figure 4. Envelope spectrum of a bearing with outer race fault…………………………… 9
Figure 5. Envelope spectrum of a normal bearing……………………………………………… 10
Figure 6. Envelope spectrum of a normal bearing……………………………………………… 11

Figure 7. Training cost of an MLP Neural Network on the MNIST dataset, using the

Adam optimizer compared to other popular modern optimizers 25

Figure 8. Training cost of an CNN Neural Network on the CIFAR-10 dataset, using the

Adam optimizer compared to other popular modern optimizers............................25

Figure 9. The sigmoid activation function.. 30

Figure 10. The tanh function... 30

Figure 11. The ReLU function... 31

Figure 12. The SoftMax function.. 31

Figure 13. Comparative figure of the evolution of the number of references for CNN,

SVM, LSTM, MLP and RNN in the English literature from 1970 to 2019.................. 34

Figure 14. EFSD results for Inner Fault Bearing with a fault diameter of 0.007’’.... 50

Figure 15. EFSD results for Outer Fault Bearing with a fault diameter of 0.007’’... 50

Figure 16. EFSD results for Ball Fault Bearing with a fault diameter of 0.007’’....... 51

Figure 17. EFSD results for Inner Fault Bearing with a fault diameter of 0.014’’.... 51

Figure 18. EFSD results for Outer Fault Bearing with a fault diameter of 0.014’’... 52

Figure 19. EFSD results for Ball Fault Bearing with a fault diameter of 0.014’’...... 52

Figure 20. EFSD results for Inner Fault Bearing with a fault diameter of 0.021’’... 53

Figure 21. EFSD results for Outer Fault Bearing with a fault diameter of 0.021’’.. 53

Figure 22. EFSD results for Ball Fault Bearing with a fault diameter of 0.021’’....... 54

Figure 23. EFSD results for Normal Bearings against the Inner Fault Harmonics... 54

Figure 24. EFSD results for Normal Bearings against the Outer Fault Harmonics.. 55

Figure 25. EFSD results for Normal Bearings against the Ball Fault Harmonics..... 55

Figure 26. Time domain representation of the Normal Time Series................... .. 57

Figure 27. Time domain representation of the Inner Fault Time Series.............. .. 57

Figure 28. Time domain representation of the Outer Fault Time Series................ 58

Figure 29. Time domain representation of the Ball Fault Time Series................... 58

Figure 30. Debauche2 wavelet... 59

Figure 31. Debauche10 wavelet... 59

Figure 32. Mexican Hat wavelet... 59

Figure 33. Morlet wavelet.. 59

Figure 34. The same wavelet for different scale parameters................................ 60

Figure 35. The same wavelet for different time translation parameters.............. 60

Figure 36. Progress of loss over each epoch for the training of MLP.................... 69

xii

Figure 37. Progress of loss over each epoch for the training of CNN.................... 70

Figure 38. Progress of loss over each epoch for the training of C-CNN................. 70

Figure 39. Feature Visualization of the raw data using t-SNE................................ 71

Figure 40. Feature Visualization of the output of the SVM using t-SNE................ 71

Figure 41. Feature Visualization of the output of the MLP using t-SNE................ 72

Figure 42. Feature Visualization of the output of the CNN using t-SNE................ 72

Figure 43. Feature Visualization of the output of the C-CNN using t-SNE............. 72

1

Chapter 1. Introduction

1.1 Fault Diagnosis of Mechanical Equipment

When discussing fault diagnosis of mechanical equipment on the context of this

work, we will be referring to the process of vibrational signal analysis, usually

acquired from accelerometers attached to a rotating mechanical system being

monitored (e.g., rolling bearing, turbines, fans), in order to classify the component as

healthy or not. Vibrational signatures of rotating mechanical components are the

most reliable fault indication, and they were used for traditional fault detection way

before intelligent solutions like Neural Networks (NN) or other supervised learning

methods were established. Fault diagnosis is quite a broad field of study, with

varying implementations so the above lens is defined to help focus the context of

the subjects being discussed.

1.2 Motivation and importance

Failures of rotating mechanical parts is something that needs to be expected when

studying any mechanical system. Due to fatigue phenomena, every component of a

larger system has the potential to fail, which can compromise the entire system and

result in considerable productivity and economic losses. This realization drives the

effort for robust and fast fault detection technologies which have the potential to

provide warnings when a defected item is detected, so it can be replaced to ensure

the safety and effectiveness of the overall system.

1.3 Literature review

 Fault detection of mechanical equipment is a subject which interests the field’s

researchers since the mid-20
th

 century, establishing several - now considered -

traditional techniques. Piety, Magette [1] presented in 1979 a statistical technique

for automatic fault detection, based on time and frequency domain descriptors to

compose an overall signature that characterizes the health status of the component.

R.B Randall [2] proposed in 1978 a methodology which utilizes Fast Fourier

Transform (FFT) of the vibrational signal collected by faulty and healthy rotating

parts to compare their frequency domain representations and classify the results.

These traditional techniques have been the object of further research even in recent

years, with papers verifying or improving on existing results [3] [4] [5].

2

 Although traditional fault diagnosis methodologies have been proven to be

effective, they focus their efforts on extracting the more obvious features of the

vibrational signatures and as a result their performance is limited [6]. To combat

that, research efforts are steered towards intelligent classification methods, such as

NN. Eren et. Al. [7] proposed a Convolutional Neural Network (CNN) architecture for

rolling bearing fault classification which exhibited great performance. Yuanhong

Chang et. Al. [8] presented a different CNN architecture for detection of wind

turbines faults. QiaoHu et. Al. [9] combined WPT with a supervised learning model

called Support Vector Machine (SVM), while Diego Fernández-Francos et. Al. [10]

used a one class SVM to differentiate between healthy and faulty conditions. SVM

structures was also used by Junyan Yang et. Al. [11] on their work.

1.4 Thesis organization

The remaining of the thesis will be compartmentalized in four remaining chapters.

First, several traditional fault detection techniques will be presented, alongside their

respective historical context and their theoretical backbone. In continuum, the

concepts of supervised machine learning algorithms will be introduced on a general

mathematical and theoretical framework and then they will be recontextualized on

the specific problem of fault classification of mechanical equipment. To close the

third chapter, the relevant literature will be reviewed more closely, and specific

structures and architectures of supervised methods will be thoroughly presented to

lay the ground for the final chapter. Finally, the methodologies that have been

introduced though out this work will be implemented on the problem of fault

classification of rolling bearing defects, using a dataset from the public repository of

CWRU. Traditional techniques and several intelligent methods will be applied, and

their results will be documented and compared to help us draw our results.

3

Chapter 2. Traditional Fault Diagnosis of Rotating Equipment

2.1 Introduction to Envelope Spectrum Fault Detection

The most used traditional fault diagnosis technique for rotating machinery in the

relevant literature is Envelope Spectrum Fault Detection (ESFD). There are three

general stages to follow in order to successfully diagnose a defected part using ESFD.

First comes the data acquisition, followed by the signal processing which leads to the

last stage and the goal, the diagnosis [12]. Mechanical components that comprise

most of the literary work on the subject, are rotating equipment such as rolling

bearings and gears. This 3-step procedure mostly focuses on analyzing vibration

signatures in form of time-series data acquired by accelerometers attached to the

monitored system. Vibration signatures are demonstrated to be reliable indications

of faulty equipment due to the way that a fault in a component influences its

vibrational behavior [13].

2.2 Data acquisition

As it has been established by now, in order to perform health status diagnosis,

vibrational signals need to be acquired by the part being monitored. To do that,

some kind of vibration sensor needs to be attached to the part, with the most

common types of sensors being accelerometers, tachometers, strain gauges and

capacitive displacement sensors. For the purposes of this work, we will focus on

accelerometers since they are the easiest and cheapest option to implement, and

they are by far the most used type of sensor (Image 1.).

Image 1. [A] In this image four rotating shafts are presented, alongside their respective rolling

bearings in both of their ends. In red, the vibration sensors (accelerometers) are highlighted, mounted

on each bearing.

4

The typical micro electrical mechanical accelerometer (MEMA) is nothing more than

a mass mounted on a spring, with some fixed plates as reference points. When the

kinetic state of the accelerometer is altered due to an external force, the mass is

displaced from its fixed-as-zero position and as a result the spring is moving along

with the mass. Then the displacement of the spring is transformed into electrical

signal, proportional to said displacement. [14]

Image 2. [14] Schematic representation of a MEM accelerometer.

In order to acquire reliable and behaviorally descriptive data from the monitored

component, as large a sampling rate as possible needs to be achieved. For example,

the CWRU vibration signals dataset, was acquired using sampling rates of up to 48

kHz. To achieve that, first and foremost an accelerometer with high enough

sampling capability needs to be selected. A fast accelerometer however is able to

measure as fast as the computational device that is connected to is able to record.

To optimize the system, a dedicated computational device called Data Logger is

connected to the sensor and is responsible for recording the electrical signals and

move them to the last component of the system, the computer. There, the signal

received from the accelerometer, through the data logger, is transformed to

acceleration units and is ready for further analysis. The combination of all the

components described above, comprises the Vibrational Data Acquisition System

(VDAS) which is responsible for the first of our 3-stage procedure described

previously [15].

Image 3. VDAS system representation.

5

2.3 Signal processing

After the first step of the process is complete, and the vibrational data have reached

the computer, signal analysis can take place. The data are recorded as discrete

acceleration values on each sampling point, so they are represented in the time

domain. In order to represent them in the frequency domain, the data need to be

transformed using Discrete Fourier Transform (DFT):

𝑋(𝑘) = ∑ 𝑥(𝑛) ∗ 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0 [2.1]

Where, N is all the sample points, n is the respected sampling point, k discrete

frequency k = 0, 1, 2, …, N-1

DFT analyzes the sequential discrete data into components of different frequencies,

which can be very useful since it reveals periodicity in its input data. In order to

perform the DFT efficiently and fast, the algorithm known as Fast Fourier Transform

(FFT) is employed [16]. Also, in order to combat unwanted noise in our data, or

intrusions of high energy nearby rotating machinery (or other environmental factors)

an envelope filter needs to be applied on the time domain data, before the FFT. In

order to remove the unwanted frequencies, the envelop filter imposes a bandpass

filter around the band area we are interested in (more on that later) [17].

Figure 1. Time domain representation of a normal bearing, operating under 1772 rpm (CWRU Data).

6

Figure 2. Frequency domain representation of a normal bearing operating at 1772 rpm (CWRU Data).

When a local fault exists in a rotating mechanical component, it produces an impact

signal whose periodic nature can be accurately described by a specific frequency

called fault characteristic frequency. One big shortcoming of this method is that

these frequencies cannot be known a priori and in order to define them, a defected

item needs to be isolated, put-on test rig and analyzed. One the other hand, the

work on this field is quite extensive and as a result, empirical relations for most of

the known faults of popular mechanical components such as gears, shafts and rolling

bearings have been established [12].

Image 4. [2] Local fault on rolling bearing and its periodic time-domain representation.

7

One very crucial aspect of the signal processing is the careful selection of the right

band limits when applying the denoising procedures. A wider than it should

bandwidth will hide the fault characteristic frequencies inside the noise, but a

narrow one will block them from ever appearing on the frequency domain

representation. There are two popularly used methodologies to follow when tackling

the envelop filtering problem: squaring and low pass filtering the signal or using

Hilbert transformation to analyze the signal.

● Following the first method, these next steps need to be implemented [12] [17]:

A1) Square the input signal which results in half the signal to be pushed to higher

frequencies while the other half is shifted downwards.

A2) Down sample the signal in order to reduce the sampling frequency.

A3) Apply a minimum phase, lowpass filter to expunge the high energy frequencies.

A4) Amplify the signal by a factor of two, since only the low half of the original signal

is preserved.

A5) Take the square root of the signal to fix the distortion introduced by the first

step.

● Mathematically the envelope 𝑒(𝑡) of a signal 𝑥(𝑡) according to the second method

is defined by the following:

𝑒(𝑡) = √𝑥2(𝑡) + 𝑥2̂(𝑡) [2.2]

Where �̂�(𝑡) is the Hilbert transform of 𝑥(𝑡).

Following the second method, these next steps need to be implemented [18]:

B1) Perform Hilbert Transform (HT) on the signal. Mathematically defined, the HT of

a signal 𝑥(𝑡) can be described be the following: 𝐻(𝑥)(𝑡) = 1𝜋 𝑃𝑉 ∫ 𝑥(𝜏)𝑡 − 𝜏∞
−∞ 𝑑𝜏 [2.3]

Where, PV is the Cauchy Principal Value.

A more useful way to calculate the HT of a signal is to use a 32-point Parks-McClellan

FIR filter.

B2) Multiply the resulted HT with √−1 and add it to the time-delayed original signal

to from the analytical signal.

B3) Take the absolute value of the analytical signal.

B4) Down sample and impose a low pass filter.

Both can be very effective, but the HT method can better handle signals that are

aliased due to great concentration of high frequencies.

8

2.4 Fault Diagnosis

As a result of the above, it is reasonable to expect that if a rotating mechanical

component presents a local fault, its envelope spectrum will depict amplitude spikes

on its fault frequency and on the harmonics of that frequency. That way it can be

concluded visually, by observing the envelope spectrum of a monitored component,

not only if it is faulty but also the location of the fault (provided that every possible

fault frequency for every possible local failure is known) [12].

As an example, using the CWRU Dataset, two different envelope spectrums of faulty

equipment are presented below. The example presents one rolling bearing with fault

on its inner ring, and the second on its outer ring. The rolling bearings used in the

example have identical specifications, their rotational speed is 1772 rpm, and their

fault frequencies can be calculated in accordance with the table 1 provided by

CWRU.

Fault frequencies, multiple of running speeds in Hz.

Inner ring Outer ring

5.4152 3.5848

Table 1. [III] Fault Frequency table (CWRU Data).

Therefore, the fault frequencies can be calculated to be 159,9287 Hz for the inner

ring fault and 105,8710 Hz for the outer ring.

9

Figure 3. Envelope spectrum of a bearing with inner race fault operating at 1772 rpm (CWRU Data).

Figure 4. Envelope spectrum of a bearing with outer race fault operating at 1772 rpm (CWRU Data).

10

As it can be observed on the figures 3 and 4, the fault fundamental frequencies of

the inner and outer faults coincide exactly with some of the highest peaks on their

respective areas. Therefore, it is reasonable to conclude that the monitored bearings

are indeed faulty.

On the other hand, if the same procedure is repeated, but this time the vibrational

data will be derived by a healthy bearing, the following envelope spectrums will be

produced (figures 5 and 6).

As it can be observed on the figures 5 and 6, the fault fundamental frequencies do

not coincide with any amplitude peaks and are unable to demonstrate any kind

recurring pattern in relation to the frequencies that they do coincide with.

Therefore, it is reasonable to conclude that the monitored bearing does not

demonstrate nor inner race fault, neither outer race fault.

Figure 5. Envelope spectrum of a normal bearing operating at 1772 rpm (CWRU Data).

11

Figure 6. Envelope spectrum of a normal bearing operating at 1772 rpm (CWRU Data).

2.5 Other Traditional Fault Diagnosis Techniques and ESFD

In the literature concerning fault diagnosis of rotating machinery, several other

techniques have been established. Temperature monitoring, acoustic emission

analysis, wear debris analysis, nondestructive tests, statistical kurtosis analysis and

shock pulse monitoring, just to name a few different approaches that can be found

[19]. Despite the existence of all the alternatives mentioned above, EFSD has

managed to prevail as the most used in both the relevant academic body of work in

the subject, as well as in its usage in industrial environments. It can adapt to the

needs of different applications, provided that fault specific details are known, in

addition to its ability to provide the user with detailed information about the

location of the fault. As a result of the above, EFSD was chosen as the focus of this

chapter and as the traditional technique to be used as a comparison for the modern

intelligent methods that will be presented in the remaining of the work.

2.6 Chapter Conclusions

In this chapter the most commonly used traditional fault diagnosis technique for

rotating equipment has been presented. A combination of FFT and envelope filtering

12

techniques have the potential to discard all the noise that is inherent in data

acquisition and unsheathe the health condition of the monitored component.

Unfortunately, this does not come without drawbacks, since in order to classify a

rotating component as faulty or not, all the possible faults a component can present

must be already known, as well as their specific fundamental frequencies. This

reality introduces a lot of a priori knowledge that might not be available in any given

possible application. Additionally, even if FFT is considered to be a very efficient way

to perform Time-Frequency decomposition, is quite computationally expensive

which can cause severe problems when trying to implement the method on a Real-

Time environment.

Closing this chapter, the ground has been laid for the introduction of more intelligent

ways of tackling the problem. Even if the concepts that will be discussed in

continuum will be quite different, they are a built on the same 3-step procedure of

Data Acquisition, Signal Processing and Diagnosis.

13

Chapter 3. Intelligent Fault Diagnosis of Rotating Equipment

3.1 Introduction

Intelligent fault diagnosis maintains the same 3-step core that has already been

presented in the previous chapter. Vibrational data needs to be acquired from the

monitored system and then got through some processing to reach a health

diagnosis. The way the processing step works though, is fundamentally different. In

the place of domain transformations and fault specific frequency calculations,

supervised learning classification algorithms are being employed. The biggest

advantage of this approach is that these algorithms are able to classify the

vibrational signal as heathy or faulty, based on close-to raw time series data, thus

eliminating the need for time and resource consuming domain transformations or

other preprocessing procedures.

The main tool intelligent fault diagnosis uses to classify the vibrational samples it

receives are Neural Networks (NN). These kinds of algorithms are designed to mimic

the way biological preceptors, like the human brain, are working in order to detect

patterns and conjunctive relations in the data they are fed with. There are two large

categories in which Neural Networks can be subdivided, supervised and

unsupervised learning, but in the context on this work the focus will be on

supervised learning methodologies. That term refers to machine learning algorithms

which utilizes a weighted function called prediction function. The weights of this

function are determined by a repeating exposure of the function on pairs of input

and their desired output. This repeating procedure is referred to as training of the

Neural Network. The goal is, provided that the data are descriptive enough of the

problem in hand, to create a precise enough prediction function during the training,

that it can predict the right result for any input that is being fed with. That way if a

function is trained good enough on a big dataset of vibrational signal inputs of

mechanical equipment and their corresponding health state (e.g., healthy, ball fault,

etc.), the resulted function will be able to predict the health state of any given

vibrational signal. Because we are directing the NN by providing it with the right

answers in the training data, this procedure is called supervised learning.

3.2 Neural Networks: A Basic Framework

The fundamental concept of NN [20] can be mathematically expressed by the

following simple relation. 𝑦 = 𝜑(𝑥) [3.1]

14

Where 𝑦 is the output, 𝜑 is the prediction function and 𝑥 is the input.

The main goal of the NN is to determine a function 𝜑 which, given a value 𝑥, can

relieably predict the value 𝑦. A few other basic concepts need to be understood to

frame the above relation in a clearer context, are the following:

● Raw data: The data just as they have been collected by the sensors. A sensor could

be an accelerometer, a camera, a pressure sensor, it depends on the context of the

application.

 ●Labels: A value that is attached to every single one of the raw data samples and

describes the class this data sample belongs to.

● Dataset: The data structure that contains both the collected data samples (raw

data is the desired approach, but it is not always feasible) and their corresponding

labels.

● Preprocessing: Data rarely come in neat formats, ready to be imported in the NN,

so some light formatting in appropriately sized and dimensioned matrixes usually

should take place. It is also common to do some data mapping, like normalization

before the next stages.

● Training Procedure: As already stated, the repeated exposure of the NN to a part

of the Dataset (called Training Dataset), which aims to determine the prediction

function 𝜑. Training is a fundamentally feedforward procedure.

● Testing Procedure: The exposure of the NN to a different part of the Dataset

(called Testing Dataset) with which it had no previous interaction, but this time the

NN only “sees” the input, tries to predict the output using the 𝜑 function and then

cross validates the label it produced with the real label. This process also defines and

calculates a performance metric (e.g., accuracy, precision, etc.) which is needed to

decide whether the training was successful, and whether the prediction function has

gained the ability to actually predict the label of any given data sample it encounters

for the first time.

● Validation Dataset: A part of the dataset that its samples are not part of the
training dataset, but they are used in the training procedure at the end of each

training iteration to provide the Network with an unbiased evaluation of its

performance on that particular iteration. What the model learned from the

validation data though are incorporated into the model, which can lead to a more

biased NN. Its usage is not necessary.

● Prediction: When all the procedures described above are completed, the resulted

prediction function is ready to be fed with new data and classify them in accordance

with its training.

The following flow chart represents the consecutive process of building a supervised

learning model with the concepts that have been introduced.

15

Image 5. Flow chart for machine learning model building.

As it has been established by now, the core of any machine learning problem is to

determine a good enough prediction function 𝜑. So, it stands to reason to focus on

this, more complicated than it initially seems, problem. First and foremost, the

equation 3.1 is not actually neither what 𝜑 is expected nor what it is been demanded

by it to do. A better mathematical representation of the NN goal when it tries to

determine the prediction function is the following. 𝑦𝑖 ≈ 𝜑(𝑥𝑖; 𝑎) 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚 [3.2]

Where, 𝑦 is a vector containing class labels, 𝑥 is a vector containing the input data

and 𝑚 is the population of the pairs data samples – class labels.

The prediction function can be defined in terms of some parametric vector 𝑎, thus

the problem can now be framed as a data fitting optimization problem, with an

objective of finding the best 𝑎 to map every 𝑥𝑖 to a value 𝑦𝑖. To calculate this vector 𝑎, the NN selects through its training the parameters (𝑊𝐴, 𝑔𝐴), 𝐴 = 1,2,3, … , 𝐽 .

These parameters are usually called weights 𝑊 and biases 𝑔. The training of the NN,

essentially is the calculation of this parameters which ultimately define the

prediction function φ, through successive transformations to the input vector 𝑥𝑖 ∈ ℝ𝑑𝑗 . These transformations are made in layers, the type of layer defines the

type of the transformation that takes place. The first layer receives as input the 𝑥𝑖
vector and outputs a vector that represents the odds of the input to belong in each

of the classes that the problem is working with. In continuum, the output is being fed

on the next layer and so on until all the defined layers and their corresponding

transformations have taken place. An example of a layer is a canonical fully

connected layer, which performs the following element-wise transformation [21]. 𝑥𝑖(𝑗) = 𝜎 (𝑊𝑗𝑥𝑖(𝑗−1) + 𝑔𝑗) [3.3]

Where 𝑥𝑖(0) = 𝑥𝑖, 𝑊𝑗 ∈ ℝ𝑑𝑗×𝑑𝑗−1 and 𝑔𝑗 ∈ ℝ𝑑𝑗 contain the 𝑗𝑡ℎ layer’s weights and

biases, 𝜎 represents the element-wise activation function which is an inseparable

part of any layer and is responsible for the way that the weighted sum of the input is

being moved to the next layer. Every layer contains a number of nodes which are the

actual part of the network that the transformations take place, their number and

size is determined by the designer but is relevant to different things like the size of

the input, the kind of layer they comprise and more.

16

Image 6. Schematic representation of the structure of simple one-layer-deep Neural Network.

Generally speaking, there is no particular rule of thumb to follow when selecting the

number and kind of layers, the number of nodes, their size, the loss function or the

activation function. There are a few empirical observations of approaches that work

best, but they are by no means absolute rules and the safest approach to select the

proper architecture for the task in hand, is a combination of experience with the

subject matter and performing comparative tests of different architectures.

Through this successive procedure, the final output vector 𝑥𝑖(𝐽)
 results to the

calculation of a prediction function 𝜑(𝑥𝑖; 𝑎), where the parameter vector 𝑎 is the

collection of weights and biases acquired by each layer {(𝑊1, 𝑔1), … , (𝑊𝐽, 𝑔𝐽)}. Of

course this has to repeat for every sample of the dataset.

As a logical consequence of the above, the following objective function needs to be

minimized in order to find the 𝑎 vector which better defines the prediction function 𝜑.

∑ ℎ((𝑥𝑖; 𝑎), 𝑦𝑖)𝑚
𝑖=1 [3.4]

Where 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, …) which are the weights and biases the NN calculates

and ℎ measures the mismatch between the real 𝑦𝑖 and the 𝑦𝑖 produced by the

model [20].

As a result, the goal of the training of a NN can be redefined as the minimization of

the difference between the real samples and the samples produced by the NN.

In order to frame this mismatch that the function 𝜑 represents in a manner that can

actually be used to perform the optimization, it can be expressed as the expected

loss 𝐿(𝛼) . In a perfect world, the parametric vector 𝛼 is minimizing the expected

loss for any input-output pair. This would entail for one, to know a probability

distribution 𝑃(𝑥, 𝑦) which is able to encapsulate the true relationship between the

dataset pairs. Assuming that the input-output space ℝ𝑑𝑥 × ℝ𝑑𝑦 is endowed with 𝑃: ℝ𝑑𝑥 × ℝ𝑑𝑦 → [0,1] , then the objective function that needs to be minimized i.e.,

the expected loss function, is defined as follows. 𝐿(𝛼) = ∫ 𝑙𝑜𝑠𝑠(𝜑(𝑥; 𝑎), 𝑦) 𝑑𝑃(𝑥, 𝑦) = 𝑬[𝑙𝑜𝑠𝑠(𝜑(𝑥; 𝑎), 𝑦)]
ℝ𝒅𝒙×ℝ𝒅𝒚 [3.5]

17

Where 𝑬 is the expected value of 𝜑(𝑥) and 𝑙𝑜𝑠𝑠 is a function which provides a

continuous approximation of a cost measurement for predicting the value of 𝜑 when

actual label is 𝑦.

Unfortunately, to calculate the 𝐸 a possibility function 𝑃(𝑥, 𝑦) is needed and there is

no way to estimate it. So, in the place of expected loss, the empirical loss 𝐿𝑒 can be

used. Mathematically, empirical loss can be defined in 𝐿𝑒: ℝ𝑑 → ℝ as follows.

𝐿𝑒(𝛼) = 1𝑚 ∑ 𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎), 𝑦𝑖))𝑚
𝑖 [3.6]

Where 𝑚 ∈ Ν and represents the size of a dataset {(𝑥𝑖, 𝑦𝑖)}𝑖=1𝑛 ⊆ ℝ𝑑𝑥 × ℝ𝑑𝑦.

Finally, to redefine the problem one last time, the goal of the training of a NN is the

minimization of the empirical loss 𝐿𝑒 [21].

 This optimization problem though usually is highly nonlinear and nonconvex, which

makes it near impossible to solve in a global minimum. To counter this, gradient

methods have been used in the relevant literature, resulting in sufficiently good

approximations. The fundamental observation these gradient based approaches use,

is that the gradient of the objective function [3.6] with respect to the parametric

vector 𝑎 can be computed by the chain rule, using algorithmic differentiation [21].

Machine learning researchers refer to this technique as backwards propagation, and

it is the bedrock of modern Neural Networks. Backpropagation, for short, is

responsible for computing the gradient of the empirical loss function in respect to its

weights and biases i.e., the vector 𝑎, but how the gradient is used to optimize the

objective is bound by the optimization algorithm that one chooses to apply on the

NN. Famous examples of optimization algorithms are stochastic gradient (SG), batch

gradient descent, etc.

It is important to note that there is a good reason that equations 3.1 and 3.2 have

different comparative operators (= and ≈, respectively), and that the discussion

revolves around approximate minimization of the empirical loss. Even if the

optimization procedure could construct an exact minimizer of the stated objective

function (like the = implies in equation 3.1) that is decidedly not desired, because it

would constitute overfitting the prediction function 𝜑. An overfitted 𝜑 will be

excellent in predicting the behavior of the data that is trained on, but it becomes so

tailored to them that is unable to unsheathe the features on any new data it

encounters. Overfitting usually is the result of prolonged training or insufficient

volumes of data, and it can be countered by setting an upper threshold on the

desired metric which will terminate the training when reached [20]. For example, if

an accuracy threshold of 95% for the predictions is set, the training will end if

reached before the predetermined time. Also using less data from the set,

implementing regulation and constructing as simple a NN as possible can protect the

model from overfitting on its training data. All the above, work in service of a very

important property that the final solution is expected to have, generalizability. It is

18

essential for a NN to be able to provide its user with reliable label classification on as

big a range of data as possible. [20]

3.3 Optimization methods for Neural Networks

Since the basic lens through machine learning is viewed i.e., the minimization of

empirical loss, has been established, the next step is to review exactly how this

optimization problem can be resolved. To do that, the concept of gradient descent

needs to be formally introduced. On top of this pretty straight forward concept, the

majority of the most used optimization algorithms for NNs are built. It is also

important to point out that for the remaining of the chapter 3.3, the assumption is

made that the minimized functions are continuously differentiable on ℝ𝑛 → ℝ , that

full gradients can be computed in each iteration but also that the functions are not

necessarily convex.

3.3.1 Gradient Descent

Assuming a hypothetical multi-variable function 𝐹 is differentiable on point 𝑥,

assuming 𝑥 is part of the domain of 𝐹, then 𝐹 decreases the fastest in the direction

of the negative gradient of 𝐹 on 𝑥 i.e., −∇𝐹(𝑥). The logical continuum of this

observation is that if 𝑥𝑛+1 are also part of 𝐹’s domain and defined like so: 𝑥𝑛+1 = 𝑥𝑛 − 𝛾∇𝐹(𝑥𝑛) [3.7]

with 𝛾 ∈ ℝ+ small enough for the following to be true. 𝐹(𝑥𝑛) ≥ 𝐹(𝑥𝑛+1) [3.8]

To contextualize the above, one can take small steps (the size of the steps is defined

be 𝛾) by subtracting the term 𝛾∇𝐹(𝑥𝑛) from 𝑥𝑛, while fiddling with the size of the

step 𝛾, until a local minimum for 𝐹 is reached. In theory, in the (𝑛 + 1) in which the

relation [3.8] is no longer true, the value of 𝑥𝑛 is the local minimum. If the

hypothetical function 𝐹 is convex, then all local minima are also global, so an

absolute minimization can be achieved.

19

Image 7. [B] Visual representation of gradient descent for a 2-variable function.

One very important aspect of the algorithm presented above, is how one goes about

choosing a 𝛾 to use in each step. One approach would be exact line search, which

decides 𝛾 using the following relation. 𝛾𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑛[𝑥𝑛 − 𝛾𝑛∇𝐹(𝑥𝑛)] [3.9]

This method is reliable, but quite computationally expensive, so another method

that is being derived from exact line search and constitutes the most popular way of

selecting 𝛾 for every iteration of the gradient descent algorithm is backtracking line

search. In this method, parameters 𝑐 ∈ (0, 12) and 𝑏 ∈ (0,1) are assumed and then

the multiplication 𝑥𝑛+1 = 𝑏𝑥𝑛 is performed until the following condition is satisfied.

Then, the inequality becomes an equality, and it is resolved for 𝛾𝑛. 𝐹(𝑥𝑛+1 − 𝛾𝑛+1∇𝐹(𝑥𝑛+1)) ≤ 𝐹(𝑥𝑛) − 𝑐𝛾𝑛 ∥ ∇𝐹(𝑥𝑛) ∥ 2 [3.10]

The parameter γ is also known as learning rate in the context of machine learning

optimization [20].

Gradient descent is a very elementary but effective optimization algorithm which

entails some computationally expensive steps, especially for large datasets like the

ones that are being used for machine learning. As a direct result of this realization,

some of the most used and useful optimization schemes for machine learning

applications are based on it but are cleverly tweaking its formula to make it even

more effective and faster. Some of these methods will be presented in the remaining

of this subsection are full gradient, accelerated gradient, stochastic gradient, ADAM,

etc. Although, it should be noted that in some cases using gradient descent is still

doable and actually quite effective, for example shallowly trained NN demonstrate

sufficient results even with the most elementary gradient descent implementation.

It is quite noteworthy that some of the most useful optimization techniques are not

modern approaches, but they were actually conceived as far back as 1951, when

Robbins & Monroe published their, now classic of machine learning literature, paper:

20

A stochastic gradient approximation [22]. Other examples are Frank & Wolfe (1956)

Conditional Gradient [23], Bertsekas and Tsitsiklis (1989) Parallel coordinate descent

and incremental gradient algorithms [24] and Eckstein & Bertsekas (1991)

Alternating direction method of multipliers (ADMM) [25]. It is interesting that the

theoretical bedrock for artificial intelligence (AI) was laid so far back, but the

computational complexity of these algorithms was too much for the computers of

the time to cope with.

It is important to note that rarely, if ever, gradient descent methods converge in only

one training session upon the training dataset. So, it is very important to perform

multiple passes of the entire dataset through the network. The number of times the

training upon the entire dataset is repeated is called an epoch.

3.3.2 Stochastic Gradient Descent

One of the most elementary but powerful improvements upon gradient descent is

stochastic gradient descent (SGD) [22]. Commonly viewed as a stochastic

approximation of gradient descent, SGD instead of computing the full gradient using

the entirety of the dataset, it calculates an estimate derived by a randomly selected

subset of the dataset. The goal of SGD is to minimize the empirical loss function with

the smallest possible computational complexity, in expense of a lower convergence

rate (meaning more time until the optimization finishes). Mathematically, SGD can

be expressed as follows. 𝑎𝑛+1 ← 𝑎𝑛 − 𝛾∇[𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎𝑛), 𝑦𝑖))]𝑛 [3.11]

Where 𝑛 ∈ 𝑁, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, …) as presented in subception 3.2, 𝑎1 is given,

the pair (𝑥𝑖, 𝑦𝑖) is randomly selected from the entirety of the dataset and 𝛾 is a

positive constant step also known as learning rate.

As a result of the above, each iteration of the algorithm calculates just the gradient ∇[𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎𝑛), 𝑦𝑖))]𝑛 and nothing else before the parameters of the NN update,

which leads to really computationally cheap iterations. These frequent updates also

help the algorithm to move out of local minima due to the violent way they change

the value of the learning rate in each iteration. Another feature that differentiates

the method from the crowd is the non-deterministic aspect of its implementation.

The iteration sequence is not determined only by fixed resources, namely the loss

function 𝐿𝑒, the starting point 𝑎1 and the step size 𝛾𝑛, but also by the random

selection of the data point (𝑥𝑖, 𝑦𝑖).

On the downside, the effect on the computational expense cannot be noticed unless

the dataset is really large and in fact the intensity of the large number of iterations

might harm the overall computational cost in smaller datasets. Also, the very feature

that defines SGD, the fact that each step of the descent is computed from just one

sample, is possible to have the opposite of the intended effect and steer the descent

into completely wrong direction.

21

3.3.3 Batch Gradient Descent

Another really useful and frequent variation of gradient descent is Batch Gradient

Descent (BGD). This optimization algorithm follows the formula of gradient descent

much closer than SGD did and it does not use just one sample to derive the network

parameters before each update. In contrast, BGD compartmentalizes the dataset in

much smaller mini datasets called batches. Then, each batch is fed into the NN, their

gradient is computed, and then the weights and biases are updated. Mathematically

BGD can be expressed like so. 𝑎𝑛+1 ← 𝑎𝑛 − 𝛾𝑛∇𝐿𝑒𝑛(𝑎𝑛) [3.12]

Where 𝑛 ∈ 𝛮 and represents the number of batches, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, …) as

presented in subsection 3.2, 𝛾𝑛 is a positive constant step selected using

backtracking line search as presented in subsection 3.3.1, or even be selected a

steady value depending on the implementation and 𝐿𝑒 is the empirical loss function

defined in 3.6.

Using BGD requires the computation of a gradient which entails the parameters

derived from all the data points in a batch. This could be quite computationally

expensive, compared to SGD, but the result is expected to be significantly better

oriented towards the minimum of the function [20] [21].

Both SGD and BGD are two of the most elementary and effective optimization

methodologies there are. As a result of this it stands to reason to frame in a

comparative way, as they have already been presented. They also provide the basis

for building much of the more complicated algorithms used in industry and academic

level.

3.3.4 Gradient Descent with Momentum

Also commonly referred to as heavy ball method, Gradient Descent with Momentum (GDM)

is yet another differentiation of the original gradient descent algorithm. On this alteration,

each step of the descent is computed by a combination of the steepest step direction and

the by the difference of the last two iterations. Mathematically this procedure can be

expressed like so. 𝑎𝑛+1 ← 𝑎𝑛 − 𝑤𝑛∇𝐿𝑒𝑛(𝑎𝑛) + 𝑏𝑛(𝑎𝑛 − 𝑎𝑛−1) [3.13]

Where 𝑛 ∈ 𝛮, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, …) as presented in subsection 3.2, 𝑤𝑛 and 𝑏𝑛

are scalar sequences that can be either set dynamically or be predetermined and 𝐿𝑒

is the empirical loss function defined in 3.6. The term 𝑏𝑛(𝑎𝑛 − 𝑎𝑛−1) is often

referred to as momentum term and, depending on the intensity of 𝑏𝑛, regulates the

direction of the descent and does not allow great oscillations from step to step.

There are two main approaches for deciding the values of 𝑤𝑛 and 𝑏𝑛. The first is

setting a fixed value, for which 𝑤𝑛 = 𝑤 > 0 and 𝑏𝑛 = 𝑏 > 0. The optimal selection

22

of this global values is the result of trial and error, but the more experience one has

with this method the easier it gets to choose them effectively. There also analytical

ways to find the optimal 𝑤 and 𝑏, but they required knowledge of information that

might not be available, for example the minimum and maximum eigenvalues of the

minimized function. Alternatively, if and only if the objective function is strictly

convex quadratic, then 𝑤𝑛 and 𝑏𝑛 can be optimally selected for each 𝑛 ∈ ℝ by

finding the pair that satisfies the following condition. 𝑚𝑖𝑛(𝑤,𝑏)[𝐿𝑒(𝑎𝑛 − 𝑤∇𝐿𝑒(𝑎𝑛) + 𝑏(𝑎𝑛 − 𝑎𝑛−1))] [3.14]

This method has demonstrated significantly superior results regarding the rate of

convergence from a simple gradient descent, both with stationary and with dynamic

parameter selection. The key difference between the two approaches, is that the

dynamic method - even though it is computationally more expensive, and its

convergence behavior is more complex than the linear convergence rate of the

stationary method – provides finite convergence guarantee, while its stationary

counterpart does not [20] [21].

As it is expected, GDM can work both with stochastic and batch approaches,

inheriting each methods problems and advantages.

3.3.5 Accelerated Gradient Descent

Another similar, but distinctly different method is Accelerated Gradient Descent

(AGD) or Forward-Backward Method, as its author named it [26]. It can be viewed as

a reversal of the GDM method. If we consider the GDM procedure to act by taking

the steepest descent step first and then applying the momentum term, the AGD acts

in the opposite way by letting the effect of the momentum term take place first and

from that point taking the steepest descent step. This procedure can be represented

as a two-step approach like so. �̃�𝑛 ← 𝑎𝑛 + 𝑏𝑛(𝑎𝑛 − 𝑎𝑛−1) [𝑠𝑡𝑒𝑝 1]

 [3.15] 𝑎𝑛+1 ← �̃�𝑛 − 𝑤𝑛∇𝐿𝑒𝑛(�̃�𝑛) [𝑠𝑡𝑒𝑝 2]
Where 𝑛 ∈ 𝛮, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, …) as presented in subsection 3.2, 𝑤𝑛 and 𝑏𝑛

are scalar sequences that can be either set dynamically or be predetermined and 𝐿𝑒

is the empirical loss function defined in 3.6.

The distinction between AGD and GDM presented above could seem minor. On the

contrary though, it has been demonstrated that for 𝑤𝑛 = 𝑤 > 0, for all 𝑛 ∈ 𝛮, for 𝑏𝑛 ↗ 1, convex and continuously differentiable 𝐿𝑒 and Lipschitz continuous gradient

the optimal complexity of iterations can be achieved. In fact, for the exact same case

the GD method would converge in a rate of ℴ(1𝑛), while the AGD method would

converge in a rate of ℴ(1𝑛2). Obviously, the difference between the two is huge and

23

this result is considered to be, in the time of writing, the fastest converging rate for a

traditional gradient descent-based method there is [20] [21].

On the other hand, while the rate of descent for AGD is quite impressive, the

computational burden to perform the iteration [3.15] is quite heavy. As a result of

the above, caution is advised when AGD is implemented because the overall time

until convergence could be larger than other methods due to the size of the dataset.

As a rule of thumb, bigger sets tend to gain the most from computationally

expensive methods like AGD.

3.3.6 The Adam Optimizer

The final optimization algorithm that will be presented on the context of this work, is

the Adam optimizer. Interestingly enough, Adam is not an acronym, and the name is

rooted in the term adaptive moment estimation which is the underlying concept the

optimizer is based on. The algorithm is an advancement of the previously reviewed

method SGD and has proven itself to be one of the most computationally efficient

algorithms there is, even for quite noisy or sparse gradients. Since its conception in

2015, it has become one of the staples of machine learning due to its straightforward

implementation, efficiency and universality with minimal tuning.

Adam is a prime example of modern approaches in machine learning optimization

algorithms, so it is quite more complex than any of the algorithms previously

presented in this work. It can be compartmentalized into six distinct steps that are

responsible for each iterative descent step. 𝑔𝑛+1 ← ∇[𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎𝑛), 𝑦𝑖))]𝑛 [𝑠𝑡𝑒𝑝 1] 𝑚𝑛+1 ← 𝑏1𝑚𝑛 + (1 − 𝑏1)𝑔𝑛+1 [𝑠𝑡𝑒𝑝 2] 𝑢𝑛+1 ← 𝑏2𝑢𝑛 + (1 − 𝑏2)𝑔𝑛+12 [𝑠𝑡𝑒𝑝 3] �̂�𝑛+1 ← 𝑚𝑛+11 − 𝑏1𝑛+1 [𝑠𝑡𝑒𝑝 4]

�̂�𝑛+1 ← 𝑢𝑛+11 − 𝑏2𝑛+1 [𝑠𝑡𝑒𝑝 5]

𝑎𝑛+1 ← 𝑎𝑛 − 𝛾�̂�𝑛+1√�̂�𝑛+1 + 𝜖 [𝑠𝑡𝑒𝑝 6]

The above is the iteration scheme [3.16] where, 𝑛 ∈ 𝛮, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, …) as

presented in subsection 3.2, [𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎𝑛), 𝑦𝑖))]𝑛 is the stochastic gradient as

presented in 3.3.2, 𝑚 and 𝑛 are the first and second moment estimates respectively

(from where the method takes its name), 𝑏1 and 𝑏2 ∈ [0,1) are the exponential

decay rates for the first and second moment estimate, �̂� and �̂� are the bias-

corrected first and second moment estimates, 𝑏1𝑛 𝑎𝑛𝑑 𝑏2𝑛 are the decay rates

denoted to the power of the 𝑛 which is the number of the iteration the algorithm is

24

currently on, 𝑎 > 0 is the step size and finally 𝜖 > 0 is a really small, steady

stabilization factor which exists to prevent division with zero.

 According to the original creators of Adam, as well as multiple empirical

observations, the parameters of Adam typically require little to no tunning in a case-

to-case basis. The parameters they recommend as default values are, 𝑎 = 0.001,𝑏1 = 0.9, 𝑏2 = 0.999, 𝜀 = 10−8 and initialization of the estimates with 𝑚0 = 0 and 𝑢0 = 0. Of course, if a particular case needs some reconfiguration of the parameters

described above, some trial and error will be needed to retune them to the

appropriate values. In the general case though, they work fairly well [27].

Adam is very powerful optimization algorithm which outperforms its contemporaries

when it comes to computational efficiency and drastically reduces training times. Of

course, like other algorithms presented in this work, Adam needs to be implemented

carefully and cannot be viewed a panacea against all optimization problems. Despite

of its great performance, Adam performs best in really big and complex datasets and

is the go-to algorithm for many applications. If the dataset though is relatively small

or lacks complexity the usage of Adam, withs its multi-step iteration scheme, can

actually harm the overall. Also, the type of machine learning approach implemented

plays an important role in the overall performance. For example, for Neural

Networks that are the focus of this work, and for a fairly big and complex datasets

like the image based MNIST and CIFAR-10, the researchers behind Adams original

paper found that all other factors considered steady, their method easily

outperformed the best of their contemporaries as one can observe in figure 7 and

figure 8 with two different architectures. The architectures referenced in figures 7

and 8, are the Multi-Layer Preceptor (MPL) and a Convolutional Neural Network

(CNN) which will be explained and analyzed in the following sections of this work.

25

Figure 7. [27] Training cost of an MLP Neural Network on the MNIST dataset, using the Adam

optimizer compared to other popular modern optimizers.

Figure 8. [27] Training cost of an CNN Neural Network on the CIFAR-10 dataset, using the

Adam optimizer compared to other popular modern optimizers.

3.3.7 Acknowledgements of Omissions

It is important to recognize that this work neglected to mention and review a lot of

fairly important optimization algorithms often used in machine learning. One

especially important category of methods that this work omitted, are the Newton

Method based algorithms. On these kinds of approaches, minimization of the

objective function is not based on the original gradient descent method. Briefly

described, one uses the second order approximation of the objective function

obtained from the Taylor series of the function and, after selecting an appropriate

step size, uses the gradient of the approximation to decide the direction of descent.

This method can converge in fewer iterations compared to gradient descent and also

guarantees a solution. Unfortunately obtaining the second order representation of

the function either through numerical means (as mentioned above) or analytically

could be from computationally expensive down to completely impossible. That said,

there are certain cases that Newton based approaches are suitable, but in the

context of this work is preferred not to formally introduce them [20]. The main

reason behind this decision is that the literature review of the relevant papers about

fault diagnosis of rotating machinery, revealed that gradient based approaches are

more than capable to handle the problem of time-series classification and the

consensus around the best optimization algorithms for fault diagnosis is heavily

tilted towards gradient based methods.

It is also important to point out that the sub selection of methods presented above

are by no means a thorough review of the vast field of optimization methods for

machine learning problems. The goal of this section is to present the basics of the

26

field (gradient descent, SGD, BGD), a few improvements upon this basic (GDM, AGD)

and a modern approach (Adam), in order to present the ever-evolving world of

machine learning optimization and how modern methods are building upon the

previous work, while laying the ground for the case study and the specific methods

that will be used. In order to achieve that goal, only the above methods are

presented, and many other modern and more complex methods are not.

Finally, the methods presented in this section are well documented and thoroughly

tested in the relevant literature. As a result of that, there are considered useful and

effective so their respective convergence analysis that shows exactly why these

methods work will be omitted. Such an analysis is considered beside the point of this

thesis and the methods will be used as presented without additional proof of their

effectiveness.

3.3.8 Some Observations for the Selection of an Optimization Method

Optimization algorithms are an essential part of every machine learning problem and

the selection of the right one could greatly affect the efficiency, performance and

success of the training procedure. However, this easier said than done since there

are literary hundreds of different ones to choose from, each one accompanied by its

own perks and traits. Luckily though most of the methods can be boiled down to the

basics, which are the SGD and BGD methods, so one can decide which suits the

problem in hand and start from there. In any case, selecting an optimization

algorithm is not a trivial task and a useful tool can always be trial and error tests.

Also, having extensive knowledge of the relevant literature and a fair amount of

experience is essential to be able to find the methods that better work with one’s

case. There are no strict rules to follow when deciding optimization approaches, and

chances are that more than a few can perform the task in hand, after that it is

matter of each case’s requirements in performance and effectiveness.

3.4 The Backpropagation Algorithm

As previously stated, the backpropagation algorithm is responsible for the important

task of actually calculating the gradients that the optimization algorithm will use to

minimize the empirical loss function. Calculating the gradient of a function might be

a trivial task for a simple function with a few parameters, but even for a relatively

small NN the empirical loss functions are comprised by many thousands of different

parameters. As a result of that an efficient and fast algorithm needs to be introduced

to perform that task. Backpropagation is by far the most used algorithm for the task,

is incredible efficient on its job and will be the focus of this work on that field.

By now, a handful of different algorithms have been presented and have been

layered upon each other, so it is a good time to compartmentalize the training

procedure of the NN in order to simplify it and better understand it. The training of

27

the NN can be divided into two stages, first comes the forward pass and the

backwards pass. The forward pass begins the moment a training value is introduced

to the first layer of the NN, then follows every transformation that is happening on

this value to every other hidden layer and finishes when then value, now

transformed by the effect of the layers, the activation functions and the

weights/biases of each node, reaches the output layer. At this point, the backwards

pass can take place. First, the backpropagation algorithm using the chain rule

calculates the gradients, then these gradients are fed into the optimization algorithm

that decides the direction of descent and finally the weights and biases of each node

are updated, and the network is ready to perform this task again. The result of each

iteration of the backwards pass, is a swift to the weights and biases of the whole NN,

to a direction and magnitude that will most effectively move the objective function

of the problem towards its minimum [21].

Let us review now exactly how the backpropagation algorithm handles the

calculation of these huge gradients efficiently. As previously stated, backpropagation

takes advantage of the chain rule the for calculation of derivatives, so defining the

chain rule seems like a great place to start the analysis. Assuming 𝑛 function𝑠 𝑓1, 𝑓2, … , 𝑓𝑛 differentiable, which can define a composite function 𝑓1 ∘ (𝑓2 ∘ … (𝑓𝑛−1 ∘ 𝑓𝑛)), then the generalized chain rule can be expressed like so. 𝑑𝑓1𝑑𝑥 = 𝑑𝑓1𝑑𝑓2 ⋅ 𝑑𝑓2𝑑𝑓3 ⋅ … ⋅ 𝑑𝑓𝑛𝑑𝑥 [3.17]

The chain rule, in practice, means that knowing the rate of change of 𝑓𝑛 relative to 𝑥

and every other rate of change of
𝑑𝑓𝑛−1𝑑𝑓𝑛 for every function of the convolution, then

the rate of change
𝑑𝑓1𝑑𝑥 can be computed [IV]. In the context of NN this property can

be extremely useful, because when the time comes during the training of a NN to

calculate the gradient of the empirical loss function, which in most cases is

comprised from thousands of parameters, instead of computing directly that huge

gradient, one can calculate the much smaller gradients between each node starting

from the back of the NN, and then multiply them to find the gradient of interest. This

exactly what the backpropagation algorithm does, and it is the reason than NN are

computationally manageable instead of impossible.

Since the intuitive explanation of the backpropagation algorithm has been

presented, and with that understanding in mind, it can be useful to rephrase the

chain rule in the context of the backpropagation algorithm. This is a good point to

remind that what the actual quantity that the algorithm aims to calculate is the

partial derivative of the empirical loss function in respect to the parametric vector 𝑎

which contains the weights and biases of the network. Mathematically, it can be

represented as follows. 𝜕𝐿𝑒𝜕𝑎 = ∑[1𝑛 ∑ 𝜕𝐿𝑒𝑘,𝑙𝜕𝑎𝑛,𝑙
𝑛−1
𝑘=0]𝑙𝐿

𝑙=0 [3.18]

28

Where 𝑙 is the index of the layer in which the algorithm currently is, 𝐿 is the number

of all the layers. In order to calculate the right-hand term, the equation [3.19] is

needed. 𝜕𝐿𝑒𝑛,𝑙𝜕𝑎𝑛,𝑙 = 𝜕𝑧𝑛,𝑙𝜕𝑎𝑛,𝑙 ∙ 𝜕𝑥𝑛,𝑙𝜕𝑧𝑛,𝑙 ∙ 𝜕𝐿𝑒,𝑙𝜕𝑥𝑛,𝑙 [3.19]

In order to calculate the result of the equation [3.19], some extra definitions need to

be established. First, 𝑧𝑛𝑙 is basically the right-hand term of the previously reviewed

[3.3] equation.

𝑧𝑛,𝑙 = ∑(𝑎𝑛,𝑙𝑥𝑛,𝑙−1) =𝑛
𝑖=0 (𝑊0,𝑙𝑥0,𝑙−1 + 𝑔0,𝑙) + (𝑊1,𝑙𝑥1,𝑙−1 + 𝑔1,𝑙) + ⋯ [3.20]

As a result of the above, it is possible to calculate all the derivates of the [3.19]

equation, and the following results. 𝜕𝐿𝑒𝜕𝑎𝑛,𝑙 = 𝑥𝑛,𝑙−1𝜎′(𝑧𝑛,𝑙) 𝜕𝐿𝑒𝜕𝑥𝑛,𝑙 [3.21]

Where 𝜎′ is the derivative of the activation function. As one can observe, there is

still a partial derivative on the expression [3.21], but one shall fear not because the

useful tool of the chain rule, applied over the entire layer leads to the following

expression. 𝜕𝐿𝑒𝜕𝑥𝑛,𝑙 = ∑ 𝑥𝑛,𝑙+1𝜎′(𝑧𝑛,𝑙+1) 𝜕𝐿𝑒𝜕𝑥𝑛,𝑙+1
𝑙−1
𝑛=0 [3.21]

Unfortunately, there is yet another derivative in [3.21] as well, but as one can see, it

is for the layer 𝑛 + 1, so one can use the expression again and again, for all the

layers of the NN. The great thing though, is that the number of layers is finite and the

last layer – the output layer – does not have any weights or biases and the last

derivate can be calculated to be the following. 𝜕𝐿𝑒𝜕𝑥𝑛,𝐿 = 2(𝑥𝑛,𝐿 − 𝑦𝑛) [3.22]

Now everything is known, and the backpropagation algorithm can finally compute

the gradient and then update every weight and bias in the network. This procedure

is often referred to as “learning”. On each iteration of the algorithm, for every data

point of the training dataset that is, the NN is “learning” a few more things about the

dataset and gets a small step towards the minimum of the objective function [IV]

[28].

29

3.5 Activation functions

Activation functions, as presented in subsection 3.3, are responsible for the way

each transformed sample moves from one layer of the network to the next. The

selection of activation functions between the layers can have drastic impact on the

training of a NN and has to be done carefully. The main reason behind their

importance is that they introduce non-linearity into the network. Taking another

look on the equation [3.3], it can become quite clear that without the 𝜎 activation

function this would be nothing more than a linear transformation of the receiving

signals. 𝑥𝑖(𝑗) = (𝑊𝑗𝑥𝑖(𝑗−1) + 𝑔𝑗) [3.3 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝜎]

Practically, a NN formed from layers connected with just linear functions between

them would inevitably result in a prediction function 𝜑 that would be itself a linear

function, since the composition of linear functions is also a linear function. That could

be a problem since there is no chance that the data the NN tries to model are linear.

So, in order to capture this non-linearity of the data the network is trained on, a non-

linear activation function is introduced to parse the output of one layer to the next.

The selection of the exact function that will be placed in each layer is actually quite

arbitrary and, like so many things in machine learning, there is no particular

cookbook to follow when designing a network. Some of the most frequently used

though are the following activation functions.

● The sigmoid function. It is one of the most used activation functions there are and

maps the output of the layer in the range (0,1). Sigmoid function and functions that

occur from the sigmoid (e.g., the derivative of the sigmoid is also commonly used as

activation function) are often used in classifiers. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 11 + 𝑒𝑥 [3.23]

30

Figure 9. The sigmoid activation function.

● The hyperbolic tangent function. It maps the output of the layer in the range (0,1),

and it is most commonly used also in classifiers, but its use has been linked to the

vanishing gradient problem, which can cause gradient based optimization methods

to completely fail in training. tanh(x) = 21 + 𝑒−2𝑥 − 1 [3.24]

Figure 10. The tanh function.

● The rectified linear unit function or ReLU for short. This is one of the most modern

and by far most used activation function. It is really computationally efficient,

because if the output of the layer is smaller than zero, the neuron is not activated

(i.e., just a zero is returned). At time of writing, ReLU has become pretty much the

default for most cases of NN and has demonstrated itself to be really effective. ReLU

is so successful that a good rule of thumb when one tries to select an activation

31

function, is to start from ReLU and if the results are not optimal then try some other

function. 𝑅𝑒𝐿𝑈(𝑥) = 0, 𝑖𝑓 𝑥 < 0 𝑜𝑟 [3.25] 𝑅𝑒𝐿𝑈(𝑥) = 𝑥, 𝑖𝑓 𝑥 ≥ 0

Figure 11. The ReLU function.

● The SoftMax function. This function is most commonly used on the last layer

before the output layer for multiclass classification problems and returns the

possibility of a sample to be part of each class involved in the problem. 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥)𝑗 = 𝑒𝑥𝑗∑ 𝑒𝑥𝑘𝑁𝑛=1 [3.26]

Where 𝑗 = 1, … , 𝐾 the number of classes of the problem.

Figure 12. The SoftMax function.

32

3.6 Loss Functions

Looking back to the equation [3.6], the term 𝑙𝑜𝑠𝑠 function has been used, but not

yet thoroughly explained. As previously presented, 𝑙𝑜𝑠𝑠 is a function which provides

a continuous approximation of the cost measurements for predicting the value of 𝜑

when actual label is 𝑦. To frame it in a more intuitively way, the loss function has the

challenging job of trying to unsheathe the underlying effect that previous layers had

on the sample and boil down to a single value which, if shrank, will indicate an

improvement of the model. The described task is by no means an easy one, but

extensive research on the field has presented a few different options for on to

choose from when constructing a NN. Again, the selection of the right loss function

has an innate arbitrariness and is based on comparative trials, as well as some

experience with the field. That being said, at this point it has become pretty standard

that for classification problems the best and most useful loss function is by far the

cross-entropy loss.

Cross-Entropy Loss simply known as cross-entropy, is an approach that each

predicted probability is compared to the actual output, known by the training

dataset, and their comparison produces a score that penalizes the probability in

accordance with its distance from the actual value [29].

To understand it, the first thing that needs a definition is entropy itself. Entropy is

the measure of uncertainty of a randomly selected variable. Mathematically

expressed like so. 𝐻(𝑥) = − ∑ 𝑝(𝑥) log(𝑥) [3.27]𝑥

Where 𝐻 is the entropy, 𝑥 the random variable and 𝑝 the probability mass function

of 𝑥.

Taking a closer look on the equation [3.27], it is revealed that the entropy is closely

connected to the expectation of 𝑥. 𝐻(𝑥) = 𝔼𝑋~𝑝(𝑥) [log (1𝑝(𝑥))] [3.28]

From [3.28] it can be concluded that the entropy of a random variable 𝑥 is the

expected value of log (1𝑝(𝑥)) and it can be denoted as 𝐻(𝑝).
If a distribution 𝑞(𝑥) is assumed, which describes a model’s approximation of the

distribution of 𝑝(𝑥), the relative entropy between 𝑝 and 𝑞 which measures their

difference. 𝐷(𝑝||𝑞) = 𝔼𝑋~𝑝(𝑥) [log (𝑞(𝑥)𝑝(𝑥))] [3.29]

33

The equation that defines the cross-entropy loss distribution, denoted as 𝐻(𝑝, 𝑞) is

the addition of [3.28] and [3.29]. 𝐻(𝑝, 𝑞) = 𝐻(𝑝) + 𝐷(𝑝||𝑞) [3.30]

Finally, if the equation [3.30] is expanded, the final form of the cross-entropy loss

distribution can be expressed by the following. 𝐻(𝑝, 𝑞) = 𝔼𝑋~𝑝(𝑥) [log (1𝑞(𝑥))] [3.31]

The goal of every machine learning that employs the cross-entropy approach is to

minimize this expected value described by [3.31].

3.7 Common Neural Network Layers and Architectures

Everything that has been presented by this point, was presented under the

assumption that [3.3] is the equation that governs the transformations that take

place in every layer in a NN, that assumption though is not always the case. Equation

[3.3] defines a type of layer called canonical fully connected layer and the NN built

with these kinds of layers are known as Multilayer Perceptrons (MLP). They are the

introductory point for every analysis of how the NN work because they are simpler

than different architectures, but also the scope of their success can be limited due to

their simplicity. That being said, other layers and different architectures (that ones

that are of interest in the context of this work at least) are based on the same

analysis and use the same optimization methods, forward passes and backward

passes to minimize their empirical loss function. The sole difference between the

architectures that will be presented in this subsection is the transformation that

happens when a sample reaches the node of the layer. It is important to note that,

as simple as MLPs might be, they are still a useful tool and in certain problems can

work with satisfactory results, but they certainly leave plenty of room for

improvements that different layers and architectures try to address.

3.7.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are by a landslide the most referenced and

most commonly used network architecture there is as figure 13 clearly shows.

34

Figure 13. [VII] Comparative figure of the evolution of the number of references for CNN,

SVM, LSTM, MLP and RNN in the English literature from 1970 to 2019.

CNNs were designed with the task of image classification in mind, and in that

respect, they are extremely successful and are the bedrock of some of the most well-

known NN on the field like AlexNet and ResNet. Their main advantage is their ability

to preserve the spatial relationship between the data due to the sparse connectivity

that governs the weight and biases matrix. Another biproduct of that fact is that

CNNs are much more computationally cheap than their alternatives due to the small

number of weights and biases that a sparse matrix need to contain. That also means

that a CNN can be drastically larger in scope than any other architecture. For all

those reasons CNNs are really effective in feature extraction from two-dimensional

images, three-dimensional video feeds and, most importantly for this work, from

one-dimensional time series data. Additionally, another important feature of CNNs is

weight sharing. In CNNs, the weights are not node-specific like the ones previously

reviewed on MLPs, rather they are layer-specific meaning that the whole layer

shares the same weights which drastically reduces the computational burden of the

model [30] [31] [32].

Typically, two kinds of layers are needed to build a CNN, the convolutional layer and

the pooling layer. Usually, canonical fully connected layers are also used towards the

end of the network to connect the convolutional layers with the output layer.

● Convolutional Layers: Arguably the most important part of the network, they are

responsible with the task of performing convolutional transformations between a

predetermined filter and the input. Filters are matrixes with predefined size, that

contain the weights of the layer. Typically, the initialization filter in the beginning of

the training is just an array of random numbers. In general terms, convolution is the

procedure of taking the filter and performing a sliding dot operation with the

entirety of a given sample signal. Mathematically this idea can be expressed like so.

𝑥𝑘𝑙 = 𝜎(𝑔𝑘𝑙 + ∑ (𝐹𝑖𝑘𝑙−1 ∗𝑁𝑙−1
𝑖=1 𝑥𝑘𝑙−1)) [3.32]

35

Where 𝑘 ∈ 𝑁 is the number of layers in the 𝑙 ∈ 𝑁 layer, 𝐹 is the filter containing the

weights of the layer and ∗ is the convolutional operator.

The most important thing about any CNN is its filter because it is responsible what is

referred to as feature extraction. Features are the parameters that define a data

sample, and their existence or absence in the data is moving the training forward.

For example, if one tries to train a NN to predict if a person will develop a disease

based on their weight, height, age and BMI, those four things would be the features

defining the problem. In other NN architectures, this categorization into features

needs to happen manually from the NN’s designer, but CNNs are able to

automatically extract the features from the dataset through the use of their filter.

Generally speaking, filter size heavily effects the level of detailed features extracted

from the data. Larger filters tend to extract more abstract features from a dataset,

while smaller ones extract more detail. For that reason, bigger filters tend to be

placed earlier on the network and smaller later on. For example, if a CNN is fed an

image of a person, the first layers might extract the contour of the person and the

final layers the color of their eyes.

There are also two more important parameters unique in convolutional layers,

padding and stride. Padding is a relic of the image recognition origins of CNNs, and

its aim is to enhance the models’ capabilities along the border of the image.

Depending on the value of the padding, a 𝑝-sized frame of zeros is placed around the

image, like image 8 represents. Of course, the same principle is also true for

convolutional layers applied on time series data and not images, but in this context,

padding is not as useful or needed and a zero-padding approach is preferred.

 Padding = 1

Image 8. Example of 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 1 for a random two-dimensional matrix.

Stride is the step that the sliding filter is making on the data sample. Larger strides

have the effect of lowering the dimension of the layers output which can lighten the

computational error, but in expense to networks effectiveness since bigger steps

3 9 4 7

5 9 0 1

2 6 0 9

7 8 8 2

0 0 0 0 0 0

0 3 9 4 7 0

0 5 9 0 1 0

0 2 6 0 9 0

0 7 8 8 2 0

0 0 0 0 0 0

36

means less information to extract features from. Tunning this parameter usually

means trial and error testing. An example can be seen in image 9.

Step 1

of the

convol

ution.

Step 2

of the

convol

ution

Step 3

of the

convol

ution

Image 9. Example of 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 for random matrixes. The red numbers represents the part

of the sample that convolutes with the filter in each step.

The dimension 𝑑′ of the output of every layer can be calculated from the following

formula. 𝑑′ = 𝑑 − 𝑓 + 𝑝𝑠 + 1 [3.33]

Where 𝑑 is the dimension of the input, 𝑓 is the size of the filter, 𝑝 is the padding and 𝑠 is the stride.

● Pooling layers: They are placed after a convolutional layer and their purpose is to

subsample the output of the convolutional layer. This accomplishes two things, first

it scales down the transformed samples, thus further adding to the computational

efficiency of CNNs and secondly due to the way the subsampling is performed, it

preserves only the most pronounced features of the sample. Pooling is performed by

specifying the dimension of the pooling region on the sample and a stride

parameter, in similar fashion to the convolution. There are different types of pooling

5 1 9 4 1 8

Sample

1 0

Filter ∗

5 1 9 4 1 8

Sample

1 0

Filter ∗

5 1 9 4 1 8

Sample

1 0

Filter ∗

37

layers, like max pooling, min pooling, average polling, etc. The most commonly used

though is arguably max pooling, which looks at the specified region and only

transports its biggest value to the next layer.

Pooling layers do not need an activation function, since they do not perform a linear

transformation to the sample, they just cherry-pick the most important values of the

sample.

The problem with pooling arises when the information cut from proceeding through

the network is more that it should, thus bringing down the overall performance of

the network. This occurs when the pooling region is

greater

than it

should.

Max Pooling

Dim=3, Str=1

Image 10. Example of Max Pooling with a pooling filter of dimension=3 and a stride=1.

The dimension 𝑑′ of the output of every layer can be calculated from the following

formula. 𝑑′ = 𝑑 − 𝑓𝑠 [3.34]

Where 𝑑 is the dimension of the input, 𝑓 is the size of the pooling filter and 𝑠 is the

stride.

3.7.2 Multilayer Perceptrons

Also frequently referred to simple as Artificial Neural Networks (ANNs), MLPs are

one the fundamental NN structures and they utilize the fully connected layers that

were presented in subsection 3.2. They are much simpler than CNNs and they utilize

just one type of layer, the fully connected. One of their defining characteristics is

that feature selection is not done by the network itself, like a CNN does, and the user

needs to manually define the features of the dataset for the MLP to use. This is also

its biggest drawback, since its fast and easy implementation make it an appealing

option for classification problems [21].

3.8 Other Supervised Machine Learning Algorithms: SVMs

Support Vector Machines (SVM) are another supervised machine learning algorithm

distinctly different from NN, but still following the same general principles of training

on dataset and optimizing an objective function in order to perform predictions for

unencountered data. SVM’s exist for a while, in many different form factors,

improvements and differentiations, but in the context of this work the focus will be

3 1 7 3 9

7 7 9

38

on multi-dimensional SVM’s because of their proved efficiency and effectiveness on

binary classification problems.

Intuitively explained, the main goal of an SVM is to calculate a hyperplane which

optimally separates the classes on which a dataset is divided to. Hyperplanes are

subspaces of the defining space of the problem, whose dimension is equal to the

defining space minus one. So, for a two-dimensional classification problem for

example, the hyperplane is a one-dimensional line (or curve depending on the kind

of SVM). This line separates the space into two subspaces which, hopefully, they will

be occupied by the datapoints of each class, respectively. Two more hyperplanes are

being defined by the points closest to the first line on each side of the space, those

new hyperplanes are the support vectors which give the algorithm its name. They

define the margins of the SVM, and they help the SVM to find the actual optimal

hyperplane to separate the two classes out of many possibilities [20]. The example of

a two-dimensional SVM can be seen in image 11.

Image 11. [20] Example of two-dimensional linear SVM.

The training of an SVM adheres to the same principles as a NN, an objective function

needs to be optimized and loss functions are employed to compute the error during

training. Unlike NN, there is no need for different layers, and SVM’s are dependent

just on one transformation on the input data, thus eliminating the need for multiple

layers and by extend the backpropagation algorithm.

The main boundary of the SVM can be formally expressed like so. 𝑤 ∙ 𝑥 + 𝑏 = 0 [3.35]

39

Where 𝑤 is the vector defining the boundary, 𝑥 is the input vector and 𝑏 is a scalar

threshold. Following the same logic, the upper and lower margins defined by the

support vectors can be expressed accordingly. 𝑤 ∙ 𝑥 + 𝑏 = 1 [3.36]

For the upper margin. 𝑤 ∙ 𝑥 + 𝑏 = −1 [3.37]

For the lower margin. As a result of the right hand side parts of equations [3.35]-

[3.37], the prediction function of a two-dimensional linear SVM can be formally

expressed by the following expression. 𝜑(𝑥) = 𝑠𝑖𝑛𝑔((𝑤 ∙ 𝑥) + 𝑏) [3.38]

Where 𝜑 is the prediction function, 𝑤 is the vector that optimally defines the

boundary-hyperplane between the classes, 𝑥 is the input data, 𝑏 is a scalar threshold

and finally 𝑠𝑖𝑔𝑛 is the function defined below.

𝑠𝑖𝑛𝑔(𝑥) = {−1 𝑖𝑓 𝑥 < 00 𝑖𝑓 𝑥 = 01 𝑖𝑓 𝑥 > 0 [3.39]

A fair question though is how the optimal 𝑤 vector is calculated. For that, some

constrained quadratic optimization should be employed, and the solution of the

following problem is the optimal 𝑤. 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{ 𝜏(𝑤) = 12 ‖𝑤‖2 } [3.40]

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) ≥ 1, 𝑖 = 1,2, … , 𝑛

Where 𝑦 are the labels of the dataset and 𝑛 is the total number of training sets.

The solution obtained if the problem [3.40] gets resolved, should look like the

following statement. 𝑤 = ∑ 𝑣𝑖 ∙ 𝑠𝑖 [3.41]

Where 𝑠 are the support vectors obtained by the training, and 𝑣 are parameters that

act like weights and determine which input vectors are actually the support vectors,

so they are defined in 𝑣 ∈ [0, ∞]. As a result, the equation [3.38] can be restated like

so.

𝜑(𝑥) = 𝑠𝑖𝑛𝑔 (∑ 𝑣𝑖(𝑥 ∙ 𝑥𝑖)𝑛
𝑖=1 + 𝑏) [3.42]

40

Unfortunately, the capabilities of a linear approach are quite limited, since there are

many classification problems that their dataset is comprised of data points of higher

dimension vectors. The generalization of the problem to a non-linear one though, is

not such a challenging task since the backbone of the method remains the same.

One popular way to perform that transformation is to select a kernel function which

can transform a non-linear separable input space to a linear one. 𝐾(𝑥, 𝑦) = 𝑡(𝑥) ∙ 𝑡(𝑦) [3.43]

Where 𝐾 is the kernel function, while 𝑡 is a function that transforms its input from a

N-dimensional space to a Q-dimensional one ℛ𝑛 → ℛ𝑄. So, the equation [3.42] can

be now written like so.

𝜑(𝑥) = 𝑠𝑖𝑛𝑔 (∑ 𝑣𝑖𝐾(𝑥 ∙ 𝑦)𝑛
𝑖=1 + 𝑏) [3.42]

There are a few options when selecting a kernel function, with the most common

being polynomials, the sigmoid function or radial basis function [9] [33] [34].

3.9 Chapter Conclusions

As it has been clearly established, designing and using a machine learning apparatus

is not a trivial task. A lot of things are left up to comparative trials to find the optimal

decision, from optimization methods to activation functions. This is probably the

most significant challenge facing the development of robust machine learning

detection systems, but it is not an insurmountable obstacle. The most valuable tools

when trying to take these decisions are a thorough knowledge of the relevant

scientific literature and the trial-and-error tests.

In this chapter an elementary but thorough review of some of the most important

machine learning algorithms has been done. The focus of this work was on

classification since this is the most relevant to the context of the thesis problem that

machine learning methods are able to tackle. The different approaches that has been

presented – MLPs, CNNs and SVMs – are just a sub selection of many different

methods, but they form the basis of the most used classification for intelligent fault

diagnosis of rotating mechanical machinery one can find in the relevant literature. It

should be pointed out that several things regarding NN and SVMs has been omitted.

This choice was made to keep the discussion on this work within the bounds of fault

diagnosis and to present only what is relevant to that context. This work is by no

means a thorough review of the vast field of machine learning and its goal is to

utilize some of the tools find there to achieve an approach to the much more

focused problem of rotating machine fault diagnosis.

That being said, some very useful techniques has been presented by this point and

the ground has been properly laid to test the approaches presented in a case study,

41

compare them to each other and to traditional methods of fault detection and finally

evaluate their performance.

Chapter 4. Case Study

4.1 Introduction

By this point a few different approaches in the context of vibrational time series

classification have been presented in the previous chapters. Everything presented

before shall be put to test in this chapter in a case study on rolling bearing fault

detection. An implementation of the traditional methodology, one MLP architecture,

two different CNN architectures and an SVM will be tasked with the classification

problem of diagnosing whether a rolling bearing is healthy, and if not to recognize

their respective location specific defect. To do that, the publicly available rolling

bearings defects dataset provided by the CWRU, the python programming language,

MATLAB’s programming environment and the Keras machine learning library will be

employed.

4.2 Presenting the Problem of Rolling Bearings Fault Diagnosis

Rolling bearings are an extremely important piece of any mechanical system with

moving or rotating parts. Their main role in a system is to reduce the friction

between two parts of a system and allow their combined movement to take place.

Damaged or broken rolling bearings can cause destructive failures for the systems

they are part of, since the high friction can cause overheating problems, or even

complete shutdown of the system due to inability of movement. Indicative of the

importance of such components is that failed bearings are to blame for about 70% of

the gearbox failures in mechanical systems [12]. As a result of the above, accurately

and timely detecting bearings that are defected in order to replace them before they

cause failure of the system is crucial. That way plant floors and research labs can

maintain their equipment more efficiently which can save time, money and protect

the bodily integrity of any personnel that manages the monitored system.

42

Image 12. [C] Rolling bearing in a hydro powered generator’s shaft.

As it has already been presented in the subsection 2.3, when a local fault exists in a

rotating mechanical component – in this case a rolling bearing – a unique vibrational

signature is produced because of its rotation. These vibrational signatures resonate

in specific frequencies that can be calculated from case specific empirical relations.

In particular for the case of rolling bearings, three main fault frequencies can be

defined, depending on the location of the fault on the bearing. These frequencies are

depended on the geometrical characteristics of the bearing as well as the 𝑓𝑟𝑚

rotational speed (in Hz) of the component they are attached to. These characteristics

are the pitch diameter represented as 𝑃𝐷, the ball diameter represented as 𝐵𝐷 and

the number of balls that exists in the bearing represented by 𝑛 [35].

Image 12. Schematic representation of a rolling bearing and its characteristics.

43

● Outer race fault. It is a fault that effects the outer part of the rolling bearing,

where the upper part of the balls are in touch with while they roll. Its fault specific

frequency can be calculated by the following relation. 𝑓𝑂𝐹 = 𝑛2 𝑓𝑟𝑚 (1 − 𝐵𝐷𝑃𝐷) [4.1]

● Inner race fault. It is a fault that effects the inner part of the rolling bearing, where

the bottom part of the balls are in touch with while they roll. Its fault specific

frequency can be calculated by the following relation. 𝑓𝐼𝐹 = 𝑛2 𝑓𝑟𝑚 (1 + 𝐵𝐷𝑃𝐷) [4.2]

● Ball fault. It is a fault that effects one or more of the balls inside the bearing’s

races. Its fault specific frequency can be calculated by the following relation.

𝑓𝐵𝐹 = 𝑃𝐷2𝐵𝐷 𝑓𝑟𝑚 (1 − (𝐵𝐷𝑃𝐷)2) [4.3]

As a result of the above, any rolling bearing can exist in one the following states:

healthy state, with inner race fault, with outer race fault or with ball fault. So, the

problem of detecting faulty rolling bearing and localize their defect can be

recontextualized as a classification problem. Depending on the existence of

particular fault frequencies in the vibrational signals sampled from operating

bearings, one can determine in which of the predefined state-classes the bearing

belongs to.

Image 13. [26] Bearings with local the three local faults described in this work.

In the context of this work, five different approaches will be used to tackle this

classification problem. First, a version of the traditional envelope spectrum analysis

will be reviewed, followed by a MLP approach, two different CNN architectures and

finally an SVM approach.

44

4.3 Presenting the CWRU Rolling Bearing Dataset

One rather important part of any attempt to review a heavily data driven problem

like the one currently reviewed in this work, is the actual data that will be used to

test out these different approaches. The data that will be used in this work are kindly

provided by the Case Western Reserve University as a publicly available dataset of

real vibrational measurements, sampled from a variety of rolling bearings, in

different rotational speeds, different motor loads and with different sampling rates.

The excellent and multivariant work that CWRU has done and made public for

anyone to use, has made this particular dataset the golden standard and the starting

point for any research done on the field.

The test rig used by CWRU to obtain the signals consists of a 2 hp Reliance Electric

Motor, a torque transcoder to accurately measure the operating rotational speed, a

dynamometer to accurately measure the load from the motor to the bearing, SFK

rolling bearings used to support the motor’s shaft, accelerometers attached to the

housing of the bearings using magnetic bases and a 16-channel data logger

connected to a computer to collect the obtained data like the subsections 2.1 - 2.3

demonstrated. Several different tests were performed, under different conditions,

which led to the following tables with data under different combinations of motor

load, fault diameter and rotational speed of the shaft. Table 2 shows the benchmark

data, obtained by healthy bearings under different conditions, Table 3 was obtained

under a sampling rate of 12kHz, while Table 4 under a sampling rate of 48kHz.

Table 2. [III] Different condition specific vibrational measurements for healthy bearings

(CWRU).

45

Table 3. [III] Different condition specific vibrational measurements for faulty bearings placed

in the drive end of the motor under a sampling rate of 12kHz (CWRU).

Table 4. [III] Different condition specific vibrational measurements for faulty bearings placed

in the drive end of the motor under a sampling rate of 48kHz (CWRU).

The tables 3 and 4 were obtained for bearings placed in the drive end of the motor,

but the CWRU also made experiments for bearings placed in the fan end of the

motor with a sampling rate of 12kHz. These data, according to their specific

conditions can be found in table 5.

46

Table 5. [III] Different condition specific vibrational measurements for faulty bearings placed

in the fan end of the motor under a sampling rate of 12kHz (CWRU).

Obviously to reliable test and compare the methods selected in this work, the data

used should be sampled under the same conditions. So, in the context of this work,

will be used data obtained from bearings placed to the drive end of the motor, with

a fault of 0.007 inches in diameter, under a motor load of 0hp, a rotational speed of

the shaft at 1797rpm and a sampling rate of 12kHz will be used, with a benchmark of

normal bearings sampled at 0hp motor load, a rotational speed of the shaft at

1797rpm and a sampling rate of 12kHz. All the data are downloadable MATLAB files.

The CWRU also provides detailed information for the exact type of bearings used in

the tests and their respective fault specific frequencies, seen in table 6 as well as

information for the faults of the bearings, seen in table 7.

47

Table 6. [III] Rolling bearings used in CWRU’s test and their geometric characteristics.

Table 7. [III] Fault specifications of the defected bearings used in CWRU’s tests.

48

Image 14 [III] The testing rig used by CWRU to construct their publicly available faulty rolling

bearings dataset.

As a final note, one can observe in tables 3-5 three different possible positions for

the outer race fault to be. For purposes of simplification from now on, as outer faults

in the context of this work, only the centered @6:00 outer race faults will be taken

into consideration, since the fault frequency remains the same for either of the three

possible outer location [III].

4.4 Differentiations Between ESFD and Intelligent Methods

Traditional fault diagnosis techniques are pretty straight forward, but they work in

an entirely different way than intelligent fault diagnosis. When EFSD is used to

determine if a rolling bearing is defected or not, the program expects a big volume of

acceleration data, then transforms them from the time domain to the frequency

domain, as explained in chapter 2, and in this big volume of frequency domain data,

the characteristic fault frequencies and their harmonics are searched for. The

program then returns the state-class of the bearing, according to the existence or

not of the aforementioned frequencies on the frequency domain representation of

its acceleration data. In order to reliably perform the process described above, a

significant amount of data is need. In contrast to that when a machine learning

algorithm is used, the data are split up to smaller chunks called data samples.

Typically, as sample consists of a few hundred data points and each sample is

reviewed separately from an already trained machine learning algorithm and

classified accordingly. The problem this reality introduces, is that because of the very

different way the two methods treat their fed data, they are not directly

comparable. The machine learning approaches will be evaluated in a percentage of

successful data sample classification, while the ESFD approach can only be evaluated

on the grounds of correct classification of the entire volume of data samples, as a

49

whole. So to conclude on that, while the machine learning approaches will be

compared to each other on a percentage of success basis, they will be compared to

the ESFD method on different merits like computational efficiency and their ability

for real time application.

4.5 ESFD Implementation on CWRU’s Data

To implement the ESFD method, the very first thing that needs to be done is

calculating the location specific fault frequencies for the rolling bearing under study.

Following the information from table 6 and using the equations [4.1] – [4.3] the fault

frequencies for the rolling bearing used in the measurements can be calculated.

Also, the fault frequencies can be calculated directly from the table 6’s defect

frequencies section. The multipliers given by CWRU in that section are just the

implementation of the relations [4.1] – [4.3]. Using either approach, the following

table will result.

- Rotation Speed of

the Shaft (Hz)

Fault Frequency

Multiplier

Fault Frequency

(Hz)

Inner Race Fault 29.93 5.4152 162.077

Ball Fault 29.93 4.7135 141.075

Outer Race Fault 29.93 3.5848 107.293

Table 8. Location Specific Fault Frequencies (in red).

Using code developed in MATLAB’s programming environment, the acceleration data

obtained by CWRU, specifically the data for drive end bearings operating under 0hp

motor load, 1796 rpm (or 29.93Hz) shaft rotational speed, 12kHz sampling rate and

faults with variant diameters, ranging from 0.007 inches to 0.021 inches, are

processed and the results are the following. The code used for that can be found in

the appendix. Figures 14 – 16, are the ESFD results for a fault of 0.007” diameter.

Figures 17 – 19, are the ESFD results for a fault of 0.014” diameter. Figures 20 – 22,

are the ESFD results for a fault of 0.021” diameter. Figures 23 – 25, are the ESFD

results for a normal bearing against the fault frequencies of the three faults.

As it can be observed from figures 14 – 25, the method generally works. The fault

frequencies and their harmonics line up almost perfectly with the highest peaks on

their immediate frequency areas which is a great indication that the rolling bearing

has that location specific fault. Additionally, in figures 23-25 that a normal bearing is

being tested against all three of the fault specific frequencies from table 8, these

frequencies or their harmonics do not coincide with any peaks in a statistically

important manner, so it is safe to assume that their figures represent a bearing

without any of the main faults presented on this work. Unfortunately though, this

method is not foolproof, which can become apparent when observing figures 18 and

19. Even though there is a pattern of matching fault frequencies and high peaks to

50

Figure 14. EFSD results for Inner Fault Bearing with a fault diameter of 0.007’’.

Figure 15. EFSD results for Outer Fault Bearing with a fault diameter of 0.007’’.

51

Figure 16. EFSD results for Ball Fault Bearing with a fault diameter of 0.007’’.

Figure 17. EFSD results for Inner Fault Bearing with a fault diameter of 0.014’’.

52

Figure 18. EFSD results for Outer Fault Bearing with a fault diameter of 0.014’’.

Figure 19. EFSD results for Ball Fault Bearing with a fault diameter of 0.014’’.

53

Figure 20. EFSD results for Inner Fault Bearing with a fault diameter of 0.021’’.

Figure 21. EFSD results for Outer Fault Bearing with a fault diameter of 0.021’’.

54

Figure 22. EFSD results for Ball Fault Bearing with a fault diameter of 0.021’’.

Figure 23. EFSD results for Normal Bearings against the Inner Fault Harmonics.

55

Figure 24. EFSD results for Normal Bearings against the Outer Fault Harmonics.

Figure 25. EFSD results for Normal Bearings against the Ball Fault Harmonics.

56

be found, these figures are much fuzzier than the others and more difficult to

definitively claim that they belong to a faulty bearing. The reality of the matter is

that, even with the attempts the method makes to eliminate much of the noise,

some of it is bound to end up in the final frequency domain representation and make

it harder to decide on the fault state of the monitored bearing. That is happening

because the frequencies produced by the faults are much smaller than the

frequencies from the shaft’s rotation, so they are difficult to pin down through the

noise.

To conclude, ESFD is a traditional method for bearing fault diagnosis which is used

for years in the field with acceptable results overall, but with a few drawbacks that

forces researchers on the field to look for alternatives. One of the main drawbacks is

the one explained in the previous paragraph. Even beyond that, a serious problem

for ESFD is its inability for real time application. To frame that on context, to get the

results described in figures 14 – 25, the data samples need were 121,864. Since the

sampling rate is 12kHz, these figures are the result of about ten seconds of operation

time. Even if the processing time for the implementation of EFSD is to be ignored,

these ten seconds are unacceptable for a real time implementation of the method.

Additionally, using this approach makes it impossible to know exactly when a fault

frequency was detected since the classification is performed from the frequency

domain. Everything described above are problems that will be attempted to be

solved with the use of intelligent fault diagnosis methods in the remaining of this

work.

4.6 Intelligent Methods Implementation on CWRU’s Data

On this subsection the four aforementioned intelligent methods will be reviewed

using four indicative architectures, respectively. These architectures will be sourced

from the papers referenced in their respective subsections and they will act as

examples of everything presented by now. Before that though, how the data will be

split into data samples, training dataset and testing dataset must be addressed.

4.6.1 Data Preparation

As mentioned before, there are four possible state-classes any vibrational sample

can belong to. These classes are designated with code numbers 0 – 3 as the table 9

clearly represents. The sampling rate of the data used in this work is 12kHz, while

the speed with which the shaft is rotating is 1797rpm or 29.93Hz. As a result, each

revolution of the shaft corresponds to almost 401 data points of acceleration.

Bearing State – Class Corresponding Number Label

Healthy 0

57

Inner Race Fault 1

Outer Race Fault 2

Ball Fault 3

Table 9. Classes and their corresponding labels.

The total sum of the data for each class is comprised by 121,000 discrete data points.

These data points need to be arranged into data samples in order to be fed into the

training pipelines of the intelligent methods. In this work, half a revolution of the

shaft is defined as the data sample. In accordance with the description above, each

data sample is comprised by 200 data points (which corresponds to 0.01667 seconds

of operation), which totals to 605 samples per class. One of the most common rules

of thump used for training any machine learning framework is the 70-30 rule, which

means that 70% of the dataset will be used for training and the rest 30% for testing.

Following that, out of the 605 total samples per class, the 423 will be used for

training and 182 for validation and testing. This results to 1,692 data samples which

make up a training dataset of 338,400 data points, and 728 data samples which

make up a validation dataset of 72,800 data points and a testing dataset of different

72,800 data points. The abondance of data is quite clear, which raises the concern of

not efficiently training and testing the Network. To compensate and control for that,

a second dataset is used for training and testing in which every sixth data sample is

omitted. This results in a total of 212 data samples for training (or 53 per class), 96

for validation (24 per class) and 96 for testing (24 per class) [30] [III].

Figure 26. Time domain representation of the Normal Time Series (1
st

 sample in red).

Figure 27. Time domain representation of the Inner Fault Time Series (1
st

 sample in red).

58

Figure 28. Time domain representation of the Outer Fault Time Series (1
st

 sample in red).

Figure 29. Time domain representation of the Ball Fault Time Series (1
st

 sample in red).

4.6.2 MLP Implementation for the CWRU’s Data

For the purposes of this work, a three-layer deep MLP will be trained using the

backpropagation algorithm. As previously explained, MLPs need their user to define

the features of the dataset for them. Handpicking some statics from the time domain

or the frequency domain representations of the signal to serve as the data the MLP

will use for training, can pose some challenges. For that reason, a powerful signal

analysis tool will be used, the Continuous Wavelet Transform (CWT). Traditional

signal analysis is able to represent an acquired signal to either the time domain or

the frequency domain. That reality can be quite limiting, since in many cases

temporal information is just as important as frequency information. In the context of

this case study for example, the goal is to determine if a data sample (acquired in the

short span of half a shaft’s revolution) belongs to a faulty or healthy rolling bearing.

As previously presented, this cannot be reliable if only the frequency domain data

are to be used, so in order to enhance the information that can be extracted from

the data, CWT is used to provide some temporal context for the MLP to chew on.

The basic idea behind CWT is taking a wavelet, meaning a wave-like signal which is

time localized, sliding it over the signal that is being transformed, and evaluating

how much the wavelet matches with the signal. Formally, this concept can be

represented by the following relation. 𝐹(𝜏, 𝑠) = 1√|𝑠| ∫ 𝑓(𝑡) ∙ 𝜓∗ (𝑡 − 𝜏𝑠) 𝑑𝑡 [+∞
−∞ 4.4]

Where 𝐹 is the transformed signal, 𝑓 is the original signal, 𝜓∗ is the wavelet of

choice, 𝑠 is the scale and 𝜏 is the translation parameter [36].

59

Some context on the newly introduced parameters from [4.4] is highly needed. As

previously explained, the wavelet is a time localized signal which needs to be

selected in accordance with its application. There are hundreds of different wavelets

to choose from, and some of the most well-known can be found in the figures 26-29.

For the purposes of this work, the morlet wavelet is chosen.

Figure 30. Debauche2 wavelet. Figure 31. Debauche10 wavelet.

Figure 32. Mexican Hat wavelet. Figure 33. Morlet wavelet.

Additionally, 𝑠 which stands for scale, is a parameter that controls how spread out in

time a wavelet is as the figure 30 clearly represents. Finally, the parameter 𝜏 controls

the location of the wavelet and swifts it left to right as figure 31 represents.

Usually, CWT is performed on the signal for multiple scales. Bigger scales typically

provide more frequency information, while lower scales provide more temporal

information. So, by performing CTW in different scales both temporal and frequency

information is extracted from the data [VIII].

60

Figure 34. The same wavelet for different scale parameters.

Figure 35. The same wavelet for different time translation parameters.

For the purposes of this work, CWT with a scale range of 1 - 8, a translation

parameter of zero and the morlet wavelet will be applied on each data sample. This

results to 212 matrixes with dimension 8x200 for shallow training, 8 because of the

scale range, and 200 because of the data point’s population in each data sample.

From each of the scales of the 8x200 matrix, the root mean square value, the crest

factor and the kurtosis will be calculated resulting to 24 features for each data

sample [36]. To wrap it all together, a final matrix with dimensions 212x24 is

constructed. In this matrix each line contains the three statistic values mentioned

61

above for each scale of every data sample of the dataset, so each line encapsulates

the information that the MLP will use to train itself. Alongside this matrix, a second

matrix with 212x1 dimensions is constructed which contains the labels of every data

sample as they were prescribed in table 9. For testing the methods accuracy, the

same preprocess is applied to the testing and validation datasets.

The MLP will be comprised from three fully connected layers. These layers will be

connected to each other using the tanh activation function, while the final layer will

output its results through a sigmoid activation function. The first layer of the MLP

will be comprised from 8 nodes, the second from 9 nodes and the third from 8

nodes. The MLP will be trained using the Adam optimizer, the backpropagation

algorithm and the cross-entropy loss function. The architecture presented above, is

also represented visually in the image 15. This particular architecture converged

using a batch size of 100 and in 200 epochs [36].

Image 15. Visualization of the MLP architecture.

4.6.3 CNN Implementation for the CWRU’s Data

For the CNN implementation, there is no feature extraction preprocess. Unlike the

more traditional NN such as MLPs, CNNs are able through the convolution that

occurs in each layer, to automatically extract the features from any given set of data.

One-dimensional CNNs are great for time series feature extraction, because the

kernel windows is moving across the time dimension of the data it is being fed,

making it very good for time-sensitive datasets (see image 16). Of course, that is a

huge advantage for their implementation, since no additional preprocess is needed,

and they are ready to accept properly formatted, but raw acceleration data. So, the

only thing that needs to be done is setting up the NN and feeding it the training and

testing data as they were presented in subsection 4.6.1. Therefore, the input to the

Network is a 212x200 matrix with the training data and its corresponding 212x1

targets matrix and a 96x200 matrix with the testing data withs its corresponding

96x1 targets matrix Also, a 96x200 matrix with the validation data and its

corresponding 96x1 targets matrix is used during training.

62

Image 16. [IX] Why an 1D-CNN can be good for time-series date.

The architecture used in this implementation consists of three one-dimensional

convolution layers, intercepted by two max-pooling layers and then followed by two

fully connected layers to actually perform the classification and output the results.

The first convolution layer has 60 nodes, the second 40 and the third also 40, while

the fully connected layer consists by 20 layers. The filter size of the convolution

layers is set to 9, stride is set to 1 and the padding is set to 0 for all three layers. For

the pooling layers, their dimension is set to 4 and their stride also to 1 for both

layers. The activation function tanh is selected across the board for all the layers

(expect the pooling layers which do not need one), and the output of the layer is

filtered through a SoftMax activation function. Also, to ensure that overfitting will be

avoided, the maximum number of epochs is set to 20 and if the classification

accuracy of an epoch reaches 98%, training is automatically terminated [35] [37]. To

train the CNN, the Adam optimizer, the backpropagation algorithm and the cross-

entropy loss function will be used. A visual representation of the architecture can be

seen in image 17.

63

Image 17. Visualization of the CNN architecture.

4.6.4 C-CNN Implementation for the CWRU’s Data

CNNs are a great option for a big variety of classification problems, especially for

time series and image classification problems, due to their ability to extract features

from the data on their own. One big problem with CNNs though, is that their

effectiveness is highly depended on their filter size. The usual approach to deal with

that problem is to perform multiple experiments with different filter sizes and

selecting the optimal. In order to tackle that problem an implementation named

Concurrent Convolutional Neural Network (C-CNN) was introduce by [38]. C-CNN

utilizes a parallel multi-branched architecture, in which the raw vibrational data are

being simultaneously input in five iterations of the same architecture, but each

iteration has a different scale of filter sizes on the convolutional layers. The output of

each branch is fed into a concatenation layer in which the extracted features of each

iteration are fused together. Then the concatenated data are passed through a

flatten layer which properly formats them to be fed into the fully connected layer

64

which will perform the final classification. A visual representation of the C-CCN

architecture can be seen in image 17. Another biproduct of that architecture, other

than eliminating the need for selection of just one filter size arrangement, is that

because the features are extracted from many different filters, they describe the

data with more nuisance and detail than a normal CNN could. The input to the

Network is for shallow training is a 212x200 matrix with the training data with its

corresponding 212x1 targets matrix, a 96x200 matrix with the testing data withs its

corresponding 92x1 targets matrix and a 96x200 matrix with the validation data and

its corresponding 92x1 targets matrix.

Each branch consists of two convolutional layers and two pooling layers. Every

convolutional layer has 64 nodes, 0 padding and a stride of one. Each convolution is

performed with filter of size 5, 25, 50, and 125 in both layers of each branch. The

pooling layers have a dimension of 10, with 0 padding and stride of 1. Finally, the

fully connected layer has as many nodes as the classes of the problem. The

activation function transferring the output of the convolutional layers is ReLU in

every case, and the fully connected layer outputs its predictions through a SoftMax

activation function. To train the C-CNN, the Adam optimizer, the backpropagation

algorithm and the cross-entropy loss function will be used. This particular

architecture converged using a batch size of 150 and in 20 epochs.

4.6.5 SVM Implementation for the CWRU’s data.

Just like the MLP before it, the SVM implementation needs to be given a selection of

features that can describe the signal in order to use them for its training. So, once

again the CWT is being deployed to help with that problem. Same as before, CWT

with a scale range of 1 - 8, a translation parameter of zero and the morlet wavelet

will be applied on each data sample to preserve some consistency between the

experiments.

For the purposes of this work, a nonlinear SVM with a Radial Basis Function (RBF)

kernel is employed. The definition of RBF can be seen in [4.5]. 𝐾(𝑥, 𝑦) = exp (− ‖𝑥 − 𝑦‖22𝜎2) [4.5]

Where 𝐾 is the kernel as presented in subsection 3.8, 𝑥 are the data points of the

training dataset, 𝑦 is the label of the data point and 𝜎 is the variance of the data [9]

[10] [11].

65

Image 18. Visualization of C-CNN architecture, in the parenthesis of each convolutional layer

the filter size of each layer can be seen.

4.7 Results and Method Comparison

The appraisal of each intelligent method will be performed in many different levels.

First, for the testing dataset a classification accuracy metric is calculated, which

represents how many out of a hundred data samples were classified correctly. In

addition, the precision metric is calculated, which represents the percentage of the

true positive classifications in each class. Also, the recall metric is evaluated which

represents the percentage of the actually true positive samples that were classified

as true positives. The final metric will be the so-called f1 score, which is the harmonic

mean of the precision and recall metrics. A good f1 score, suggest that the model

balances precision and recall effectively. Finally, a confusion matrix for the testing

dataset is contracted. Confusion matrixes are a popular way of reviewing the

classification results of any classification method. They are matrixes with dimension

of (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)𝑥(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠), the horizontal axes contains the

predicted class according to the method, and the vertical axes contain the actual

class. That way, one can see how the model classified each sample, and it provides

more information about what mistakes the model made. As a final comparison

metric, the time each method needed to complete its training is reviewed, alongside

66

the time every model needs to make a prediction for just one sample. Everything

above is presented in the following tables.

First, the time every method needed to complete its training can been seen in table

10. The overall training time is the worst case (C-CNN) about 41.5 seconds and in the

best (SVM) almost 2.01 seconds. These training times are almost non-consequential

because once the training of a model is done, the weights and biases that optimized

the model are stored and they are ready to use in any other data sample.

- SVM MLP CNN C-CNN

Time 2.01sec 14.2sec 4.8sec 41.5sec

Table 10. Training time for each model.

In continuum, the time each model needs to make a prediction for just one data

sample is presented in table 11. These times are almost 0, which means that every

single one of these models is able to be used in a close to real-time application.

- SVM MLP CNN C-CNN

Time 0.000sec 0.068sec 0.066sec 0.085sec

Table 11. Predictions of a data sample for each model and each dataset.

- MLP CNN C-CNN

Number of Layers 4 7 (Con-Pool-Con-

Pool-Con-Fully-Fully)

4*5 (parallel, Con-

Pool-Con-Pool)

+

3*1 (Concatenation-

Flatten-Fully)

Number of Nodes-

Kernels

(8, 9, 8, 4) (60, 4, 40, 4, 40, 20,

4)

(64, 10, 64, 10, -, -,

4)

Kernel size (for

CNNs)

- (9, 9, 9) Check image 17

Training time in

seconds

14.2 4.8 41.5

Table 12. Comparative structures of the Neural Networks.

Following that, in tables 13 – 14 the accuracy with which each model predicted the

class of the data samples in the final iteration of training and in the testing datasets

is presented. It’s evident from the table, that all the methods yielded respectable

results when tested in a dataset which contained defects with diameter of 0.007’’,
even if they had never encountered that data before. Especially the convolution-

based C-CNN, which returned perfect results. As a result, considerable generalization

ability can be achieved, even for samples that are different from the ones used for

the training of the models. Additionally, in the tables 15 – 18, the Precision, Recall

and F1 scores of each model for the classification of the testing data can be seen.

Training data SVM MLP CNN C-CNN

Accuracy 96.87% 98.96% 95.83% 100%

Table 13. Accuracy metric for the testing data.

Test Data SVM MLP CNN C-CNN

67

Accuracy 96.87% 97.91% 95.8% 100%

Table 14. Accuracy metric for the validation data.

SVM - Test Precision Recall F1

0 100% 100% 100%

1 96% 92% 94%

2 92% 100% 96%

3 100% 96% 98%

Table 15. Different classification metrics for testing data with SVM, organized by class.

MLP – Test Precision Recall F1

0 100% 100% 100%

1 92% 100% 96%

2 100% 100% 100%

3 100% 92% 96%

Table 16. Different classification metrics for testing data with MLP, organized by class.

CNN – Test Precision Recall F1

0 100% 100% 100%

1 86% 100% 92%

2 100% 83% 91%

3 100% 100% 100%

Table 17. Different classification metrics for testing data with CNN, organized by class.

C-CNN – Test Precision Recall F1

0 100% 100% 100%

1 100% 100% 100%

2 100% 100% 100%

3 100% 100% 100%

Table 18. Different classification metrics for testing data with C-CNN, organized by class.

To have a better understanding of the way each classification scheme worked, their

respective confusion matrixes are presented in tables 19 – 22.

Table 19. Confusion matrix for the classification of the testing data using the SVM.

68

Table 20. Confusion matrix for the classification of the testing data using the MLP.

Table 21. Confusion matrix for the classification of the testing data using the CNN.

Table 22. Confusion matrix for the classification of the testing data using the C-CNN.

69

Another interesting thing to see is how the value of the loss function converges

towards zero over each epoch. These figures can help decide the number of epochs

used for training. When the curves tend to became parallel with the x-axis, that is a

good number of epochs to choose for training, because the loss of the model will not

get any lower than that. Additionaly, it helps to avoid overfitting by minimizing the

number of times the model gets exposed to the training set. To that end the

following figures are presented in figures 36 – 38 .

Figure 36. Progress of loss over each epoch for the training of MLP.

70

Figure 37. Progress of loss over each epoch for the training of CNN.

Figure 38. Progress of loss over each epoch for the training of C-CNN.

Figures 36 – 38 ensure that training took place just over enough epochs for the

model to converge. If the training were to continue even further the overfitting

problem would be making its appearance in the confusion matrices and the metrics

of the testing dataset.

71

Finally, to have a better visual representation of how each model handled the

feature extraction and the classification task, the t-SNE [39] dimensional reduction

technique is used.

Figure 39. Feature Visualization of the raw data using t-SNE.

Figure 40. Feature Visualization of the output of the SVM using t-SNE.

72

Figure 41. Feature Visualization of the output of the MLP using t-SNE.

Figure 42. Feature Visualization of the output of the CNN using t-SNE.

Figure 43. Feature Visualization of the output of the C-CNN using t-SNE.

73

By reviewing all of the results presented in tables 10 – 22 and in figures 36 – 43, a

few conclusions can be drawn. All of the methods managed to successfully classify

the testing samples with a very good accuracy, more than 95% in every case. In a

sensitive problem like fault detection though, where finding a defective sample

could be the difference between system failure and system stability, a good accuracy

metric is perhaps not the most important thing to look for. For example, if a healthy

sample were to be classified as having an inner fault, or if an inner fault sample were

to be classified as a ball fault, the core goal of the application – preventing faulty

machinery from keep working – wouldn’t be hindered. But if a faulty sample were to

be classified as healthy, that could have dangerous side effects for the monitored

system. To control for that, the deployed method needs good recall across the board

in order to be sure that a high percentage of the true positives of each class is

actually found. Also, good precision is needed to make sure that all the samples

classified as one class actually belong to that class. In other words, a good F1 score is

needed which is a combined metric of recall and precision. Finally, it is fairly

important to have a confusion matrix and a t-SNE plot that clearly indicates a low

percentage of faulty samples classified as healthy. Even with these much steeper

demands, observing the results shows that none of the methods classified a faulty

sample as a healthy one and all of the have a F1 score of over 91%, even reaching

100% in multiple cases. So, it is safe to conclude that all of the presented methods

work fairly well for the problem in hand. If one needed to be picked out, based on

the metrics described above, the C-CNN method would be the clear selection since it

scored 100% in all of the used metrics when tested on a never before reviewed part

of the data. That being said, the convolutional based methods have another

important advantage, they do not need manual feature selection (done with CWT

here) like the MLP and the SVM do. That means that raw data, directly from the

sensors, can be fed to the model which is always a welcome simplification of the

procedure. All of the above lead to the C-CNN being the best of the described

methods, even if it is the slowest to trained and the slowest in sample evaluation. It

could be important to note that the results obtained in tables 10 – 22 and in figures

36 – 43 does comply with the relevant literature.

Comparing the best intelligent method (C-CNN) with the traditional EFSD method

could be challenging. Both methods can provide their user with useful information

about the health state of the monitored rolling bearing, but the context the two are

working is quite different. If the user needs an online, automated, real-time

application that monitors a system continuously, then a well-trained C-CNN model

would be the only choice between the two. But if the application requires a system

that will periodically check the system and the user will visually inspect the resulted

figures, then EFSD will be sufficient. So, the most important factor when considering

a choice between traditional and intelligent fault diagnosis techniques, will be the

requirements of the end user.

74

4.8 System Specifications

For the implementation of this case study, the computational unit that was used is

an Intel CORE i5, 8
th

 Gen CPU. For the EFSD, the MATLAB programming environment

was used. For the intelligent methods, the data preparation was performed in

MATLAB’s programming environment and the training, testing and validating of all

the intelligent methods was performed using the python programming language,

version 3.7.10. Also, the Keras deep learning framework for python was used for the

compilation, training and validation of the NN reviewed in this work. The SVM

implementation was made with the help of the sklearn python module. The CWT

needed for MLP and SVM was performed with the help of the pywt python module.

Additionally, for the visualization and figures needed in this work, both python and

MATLAB were used. Finally, the flow charts present in this work were made with the

help of visme. All the code used for this thesis, is present in the Appendix.

75

Chapter 5. Conclusions – Suggestions for Further Study

In this thesis, the problem of fault diagnosis on rotating mechanical equipment was

presented. The most commonly used traditional method (EFSD) and some of the

most common intelligent approaches in the relevant literature (SVM, MLP, CNN)

were reviewed. This work had to delve as deep as possible in the theory behind EFSD

and Neural Networks, present the main points of interest when a network is devised,

review one of the staple datasets in the field of fault diagnosis (CWRU’s). All the

above, culminated to a case study that in practice demonstrated everything

presented previously and manage to draw some useful conclusions about the

applicability of each presented method.

From the analysis that preceded, the following can be concluded. Fault detection can

be quite useful in order to ensure maximum performance and safety in any

mechanical system with rotating parts. That being said whether EFSD or a C-CNN

based approach (since C-CNN was demonstrated to be the best out of the reviewed

intelligent methods) is the best choice, depends on each applications needs. Real-

time applications are best suited for intelligent methods, while application that are

not time sensitive could work just fine with EFSD. Also, the cost of each method

needs to be taken into consideration. While EFSD pretty much works out-of-the-box

with any application that the fault-specific frequencies are known. In order to

implement an intelligent method, big volumes of data needs to be acquired and a

detailed study needs to be performed in order to find the best architecture to use in

each particular case, which amounts to a bigger deployment cost.

To conclude this work, a few suggestions for further study can be made. One of the

areas that the C-CNN and every other intelligent method were demonstrated to lack

in, was their generalization ability. The intelligent models were trained using a

dataset comprised by faults of 0.007’’ in diameter, in 1797 rpm and with a 0hp

motor load. This is a pretty narrow point of view considering that defects can be

found on rolling bearing in various diameters, and machines operate in a various rpm

and motor loads. A dataset containing data acquired from rolling bearings with more

diverse operating motor conditions, and with different diameter of defects to be

used for training is one suggestion, but more research is needed. Also, the results of

this work could be used to create an online, automated, real-time application to

monitor an experimental set-up, in order to evaluate how the concepts of this thesis

would work in real operational conditions.

76

References

Papers:

[1] Piety, K. R.; Magette, T. E. (1979) Statistical techniques for automating the

detection of anomalous performance in rotating machinery

[2] R.B. Randall (1978) Efficient Machine Monitoring using an FFT Analyzer and

Calculator

[3] Henrique Dias Machado de Azevedo, Alex Maurício Araújo n, Nadège

Bouchonneau (2016) A review of wind turbine bearing condition monitoring: State of

the art and challenges

[4] Issam Attoui, Nadir Boutasseta, Nadir Fergani, Brahim Oudjani, Adel Deliou

(2015) Vibration-based bearing fault diagnosis by an integrated DWT-FFT approach

and an adaptive neuro-fuzzy inference system

[5] Vikram Talekar1, Prof. L. S. Dhamande (2015) Condition Monitoring of Deep

Groove Ball Bearing using FFT Analyzer

[6] Amit Aherwar, 2Md. Saifullah Khalid, 3Hemant Kumar Nayak (2012) Vibration

analysis of machine fault signature

[7] Levent Eren (2017) Bearing Fault Detection by One-Dimensional Convolutional

Neural Networks

[8] Yuanhong Chang, Jinglong Chen, Cheng Qu, Tongyang Pan (2020) Intelligent fault

diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution

Layers with Multi-Scale Kernels

[9] Qiao Hua, Zhengjia Hea,b, Zhousuo Zhanga, Yanyang Zia (2007) Fault diagnosis of

rotating machinery based on improved wavelet package transform and SVMs

ensemble

[10] Diego Fernández-Francos , David Martínez-Rego, Oscar Fontenla-Romero,

Amparo Alonso-Betanzos (2013) Automatic bearing fault diagnosis based on one-

class m-SVM

[11] Junyan Yang, Youyun Zhang, Yongsheng Zhu (2007) Intelligent fault diagnosis of

rolling element bearing based on SVMs and fractal dimension

[12] Seokgoo Kim, Dawn An, and Joo-Ho Choi (2020) Diagnostics 101: A Tutorial for

Fault Diagnostics of Rolling Element Bearing Using Envelope Analysis in MATLAB

[13] Haidong Shao, Hongkai Jiang, Fuan Wang, Huiwei Zhao (2017) An enhancement

deep feature fusion method for rotating machinery fault diagnosis

[14] Rob O'Reilly, Alex Khenkin, and Kieran Harney (2009) Sonic Nirvana: Using

MEMS Accelerometers as Acoustic Pickups in Musical Instruments

77

[15] Viral K. Patel, Maitri N. Patel (2017) Development of Smart Sensing Unit for

Vibration Measurement by Embedding Accelerometer with the Arduino

Microcontroller

[16] Jing ZHOU, Yong QIN, Linlin KOU, Mitchell YUWONO and Steven SU (2015) Fault

detection of rolling bearing based on FFT and classification

[17] Eric Bechhoefer (2018) A quick introduction to bearing envelope analysis

[18] Jianhong Wang, Liyan Qiao, Yongqiang Ye, YangQuan Chen (2017) Fractional

Envelope Analysis for Rolling Element Bearing Weak Fault Feature Extraction

[19] Pratesh Jayaswal, A. K. Wadhwani and K. B. Mulchandani (2008) Machine Fault

Signature Analysis

[20] Elias Houstis (2020) 101 Machine Learning Algorithms for Data Science

[21] L´ eon Bottou, Frank E. Curtis, Jorge Nocedal (2018) Optimization Methods for

Large-Scale Machine Learning

[22] Herbert Robbins, Sutton Monro (1951) A Stochastic Approximation Method

[23] Frank & Wolfe (1956) Conditional Gradient

[24] Bertsekas and Tsitsiklis (1989) Parallel coordinate descent and incremental

gradient algorithms

[25] Eckstein & Bertsekas (1991) Alternating direction method of multipliers (ADMM)

[26] Hedy Attouch & Juan Peypouquet (2017) The rate of convergence of Nesterov’s

accelerated forward-backward method is actually faster than 1/k−2

[27] Diederik P. Kingma & Jimmy Lei Ba (2015) ADAM: A method for stochastic

optimization

[28] Robert Hecht-Nielsen (1989) Theory of the Backpropagation Neural Network

[29] Pieter-Tjerk De Boer, Dirk P. Kroese, Shie Mannor, Reuven Y. Rubenstein (2004)

A Tutorial on the Cross-Entropy Method

[30] Levent Eren & Turker Ince & Serkan Kiranyaz (2017) A Generic Intelligent

Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier

[31] Anirudha Ghosh, Abu Sufian, Farhana Sultana, Amlan Chakrabarti, Debashis De

(2020) Fundamental Concepts of Convolutional Neural Network

[32] I. Halil Ozcan, Levent Eren, Turker Ince, Bulent Bilir, Murat Askar (2019)

Comparison of time-domain and time-scale data in bearing fault detection

[33] Theodoros Evgeniou and Massimiliano Pontil (2001) Workshop on Support

Vector Machines: Theory and applications

[34] B. Samanta, K.R. Al-Balushi, S.A. Al-Araimi (2008) Artificial neural networks and

support vector machines with genetic algorithm for bearing fault detection

78

[35] Levent Eren & Turker Ince & Serkan Kiranyaz (2017) A Generic Intelligent

Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier

[36] P. Konar, P. Chattopadhyay (2011) Bearing fault detection of induction motor

using wavelet and Support Vector Machines (SVMs)

[37] Levent Eren (2017) Bearing Fault Detection by One-Dimensional Convolutional

Neural Networks

[38] Yuanhong Chang, Jinglong Chen, Cheng Qu, Tongyang Pan (2020) Intelligent

fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel

Convolution Layers with Multi-Scale Kernels

[39] Laurens van der Maaten, Geoffrey Hinton (2008) Visualizing Data using t-SNE

Internet resources:

[I] https://dewesoft.com/daq/measure-shock-vibration-with-accelerometers

[II] https://lastminuteengineers.com/adxl335-accelerometer-arduino-tutorial/

[III] https://csegroups.case.edu/bearingdatacenter/home

[IV] https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

[V] https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-

8820568eada1

[VI] https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-

learning/

[VII] https://books.google.com/ngrams

[VIII] https://towardsdatascience.com/the-wavelet-transform-e9cfa85d7b34

[IX] https://www.macnica.co.jp/business/ai_iot/columns/135112/

https://dewesoft.com/daq/measure-shock-vibration-with-accelerometers
https://lastminuteengineers.com/adxl335-accelerometer-arduino-tutorial/
https://csegroups.case.edu/bearingdatacenter/home
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-8820568eada1
https://medium.com/@divakar_239/stochastic-vs-batch-gradient-descent-8820568eada1
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://books.google.com/ngrams
https://towardsdatascience.com/the-wavelet-transform-e9cfa85d7b34
https://www.macnica.co.jp/business/ai_iot/columns/135112/

79

Media References

[A] https://www.processingmagazine.com/pumps-motors-drives/bearings-

seals/article/15587814/sensors-for-mounted-bearings

[B] https://www.hackerearth.com/blog/developers/3-types-gradient-descent-

algorithms-small-large-data-sets/

[C] https://www.hydropower-dams.com/news/reducing-maintenance-with-water-

lubricated-turbine-guide-bearings/

https://www.processingmagazine.com/pumps-motors-drives/bearings-seals/article/15587814/sensors-for-mounted-bearings
https://www.processingmagazine.com/pumps-motors-drives/bearings-seals/article/15587814/sensors-for-mounted-bearings
https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-data-sets/
https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-data-sets/
https://www.hydropower-dams.com/news/reducing-maintenance-with-water-lubricated-turbine-guide-bearings/
https://www.hydropower-dams.com/news/reducing-maintenance-with-water-lubricated-turbine-guide-bearings/

80

Appendix A – MATLAB and Python Code for Visualization

%SCRIPT TO PLOT THE RAW DATA FROM THE CWRU
format compact
clear all
clc

%load all my data files
load('../vis_data/outer_0.021icn_1hp_1772rpm_6oclock.
mat');
xInner = X235_DE_time;

%moving to the right time scale (sample rate 12khz)
fsInner = 12000;
tInner = (0:length(xInner)-1)/fsInner;

%plotting for acceleration vs time
figure
plot(tInner, xInner)
xlabel('Time, (s)')
ylabel('Acceleration (g)')
title('Raw Signal: Normal bearing')
%zoom in the first 0.1sec to see the form of the
singal better
xlim([0 0.5])

%calling matlab commands to move to the frequency
domain through an envelope spectrum diagramm
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] =
envspectrum(xInner, fsInner);
figure
plot(fEnvInner, pEnvInner)
xlim([0 900])

Script 1. Visualization of raw acceleration vs time and vs frequency (MATLAB).

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(-5,5,100)

y = 1/(1+np.exp(-x))

plt.plot(x,y)

plt.show()

Script 2. Visualization of sigmoid activation function (Python).

81

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(-5,5,100)

y = (2/(1+np.exp(-x)))-1

plt.plot(x,y)

plt.show()

Script 3. Visualization of tanh activation function (Python).

import matplotlib.pyplot as plt

import numpy as np

def relu(X):

 return np.maximum(0,X)

x = np.linspace(-5,5,100)

y = relu(x)

plt.plot(x,y)

plt.show()

Script 4. Visualization of ReLU activation function (Python).

import matplotlib.pyplot as plt

import numpy as np

def softmax(X):

 expo = np.exp(X)

 expo_sum = np.sum(np.exp(X))

 return expo/expo_sum

x = np.linspace(-5,5,100)

y = softmax(x)

plt.plot(x,y)

plt.show()

Script 5. Visualization of SoftMax activation function (Python).

import pywt

import matplotlib.pyplot as plt

[phi, psi, x] = pywt.Wavelet('db2').wavefun(level=4)

82

plt.plot(x, psi)

Script 6. Visualization of Debauche2 wavelet (Python).

import pywt

import matplotlib.pyplot as plt

[phi, psi, x] = pywt.Wavelet('db10').wavefun(level=4)

plt.plot(x, psi)

Script 7. Visualization of Debauche10 wavelet (Python).

lb = -5;
ub = 5;
N = 1000;
[psi,xval] = mexihat(lb,ub,N);
plot(xval,psi)
title('Mexican Hat Wavelet')

Script 8. Visualization of Mexican Hat wavelet (MATLAB).

lb = -4;
ub = 4;
n = 1000;
[psi,xval] = morlet(lb,ub,n);
plot(xval,psi)
grid on
title('Morlet Wavelet')

Script 9. Visualization of Morlet wavelet (MATLAB).

import numpy as np

import pywt

import matplotlib.pyplot as plt

wav = pywt.ContinuousWavelet('cmor1.5-1.0')

width = wav.upper_bound - wav.lower_bound

scales = [1, 2, 3, 4, 10, 15]

max_len = int(np.max(scales)*width + 1)

t = np.arange(max_len)

fig, axes = plt.subplots(len(scales), 2, figsize=(12, 6))

for n, scale in enumerate(scales):

 # The following code is adapted from the internals of cwt

 int_psi, x = pywt.integrate_wavelet(wav, precision=10)

83

 step = x[1] - x[0]

 j = np.floor(

 np.arange(scale * width + 1) / (scale * step))

 if np.max(j) >= np.size(int_psi):

 j = np.delete(j, np.where((j >= np.size(int_psi)))[0])

 j = j.astype(np.int_)

 # normalize int_psi for easier plotting

 int_psi /= np.abs(int_psi).max()

 # discrete samples of the integrated wavelet

 filt = int_psi[j][::-1]

 nt = len(filt)

 t = np.linspace(-nt//2, nt//2, nt)

 axes[n, 0].plot(t, filt.real)

 axes[n, 0].set_xlim([-max_len//2, max_len//2])

 axes[n, 0].set_ylim([-1, 1])

 axes[n, 0].text(50, 0.35, 'scale = {}'.format(scale))

Script 10. Visualization of different scales for the same wavelet (Python).

import scipy.io as sio

import numpy as np

from sklearn.manifold import TSNE

import seaborn as sns

palette = sns.color_palette("bright", 4)

load training data, testing data, validation data and their respective labels

change file paths and reshape sizes for shallow or deep training

training_dataX =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007_shallo
w/training_dataXs.mat')

training_dataX = np.array(training_dataX['training_dataX']).reshape(212, 200)

training_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007_shallo

w/training_dataYs.mat')

training_dataY = np.array(training_dataY['training_dataY']).reshape(212,)

testing_dataX =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007_shallo
w/testing_dataXs.mat')

testing_dataX = np.array(testing_dataX['testing_dataX']).reshape(92, 200)

testing_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007_shallo
w/testing_dataYs.mat')

testing_dataY1 = np.array(testing_dataY['testing_dataY']).reshape(92,)

84

validation_dataX =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.021_shallo
w/testing_dataXs.mat')

validation_dataX = np.array(validation_dataX['testing_dataX']).reshape(92, 200)

validation_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.021_shallo
w/testing_dataYs.mat')

validation_dataY = np.array(validation_dataY['testing_dataY']).reshape(92,)

X_embedded = TSNE(n_components=2, perplexity=25,

n_iter=5000).fit_transform(testing_dataX)

X_embedded.shape

sns.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=testing_dataY1, legend='full',

palette=palette)

Script 11. T-SNE visualization of the raw training data set before classification.

85

Appendix B – MATLAB Code for EFSD Implementation

format compact
clear all
clc

load('../../../data/1797_0_0.007/inner.mat');
%load all my data files

xInner = X105_DE_time;
fsInner = 12000;

[pEnvInner, fEnvInner, xEnvInner, tEnvInner] =
envspectrum(xInner, fsInner); %calling matlab comants
to move to the frequency domain through an envelope
spectrum diagramm
figure
plot(fEnvInner, pEnvInner)
%plotting fro amplitude vs frequency
xlim([0 900])
ncomb = 10;
helperPlotCombs(ncomb, 162.077)
%plotting the fundamental fault frequency of the
bearing and its harmonics
xlabel('Frequency (Hz)')
ylabel('Peak Amplitude')
title('Envelope Spectrum: Inner Fault Bearing')
legend('Envelope Spectrum', 'Inner Fault Harmonics')

function helperPlotCombs(ncomb, f)
%defining the helper function to plot the fault
frequencies

ylimit = get(gca, 'YLim');
ylim(ylimit);
ycomb = repmat([ylimit nan], 1, ncomb);
hold(gca, 'on')
for i = 1:length(f)
 xcomb = f(i)*(1:ncomb);
 xcombs = [xcomb; xcomb; nan(1, ncomb)];
 xcombs = xcombs(:)';
 plot(xcombs, ycomb, '--')
end
hold(gca, 'off')
end

Script 12. EFSD Implementation for Inner Fault (MATLAB).

86

format compact
clear all
clc

load('../../../data/1797_0_0.021/outer.mat');
%load all my data files

xInner = X234_DE_time;
fsInner = 12000;

[pEnvInner, fEnvInner, xEnvInner, tEnvInner] =
envspectrum(xInner, fsInner); %calling matlab comants
to move to the frequency domain through an envelope
spectrum diagramm
figure
plot(fEnvInner, pEnvInner)
%plotting fro amplitude vs frequency
xlim([0 900])
ncomb = 10;
helperPlotCombs(ncomb, 107.293)
%plotting the fundamental fault frequency of the
bearing and its harmonics
xlabel('Frequency (Hz)')
ylabel('Peak Amplitude')
title('Envelope Spectrum: Outer Fault Bearing')
legend('Envelope Spectrum', 'Outer Fault Harmonics')

function helperPlotCombs(ncomb, f)
%defining the helper function to plot the fault
frequencies

ylimit = get(gca, 'YLim');
ylim(ylimit);
ycomb = repmat([ylimit nan], 1, ncomb);
hold(gca, 'on')
for i = 1:length(f)
 xcomb = f(i)*(1:ncomb);
 xcombs = [xcomb; xcomb; nan(1, ncomb)];
 xcombs = xcombs(:)';
 plot(xcombs, ycomb, '--')
end
hold(gca, 'off')
end

Script 13. EFSD Implementation for Outer Fault (MATLAB).

format compact

87

clear all
clc

load('../../../data/1797_0_0.007/ball.mat');
%load all my data files

xInner = X118_DE_time;
fsInner = 12000;

[pEnvInner, fEnvInner, xEnvInner, tEnvInner] =
envspectrum(xInner, fsInner); %calling matlab comants
to move to the frequency domain through an envelope
spectrum diagramm
figure
plot(fEnvInner, pEnvInner)
%plotting fro amplitude vs frequency
xlim([0 900])
ncomb = 10;
helperPlotCombs(ncomb, 70.5375)
%plotting the fundamental fault frequency of the
bearing and its harmonics
xlabel('Frequency (Hz)')
ylabel('Peak Amplitude')
title('Envelope Spectrum: Ball Fault Bearing')
legend('Envelope Spectrum', 'Ball Fault Harmonics')

function helperPlotCombs(ncomb, f)
%defining the helper function to plot the fault
frequencies

ylimit = get(gca, 'YLim');
ylim(ylimit);
ycomb = repmat([ylimit nan], 1, ncomb);
hold(gca, 'on')
for i = 1:length(f)
 xcomb = f(i)*(1:ncomb);
 xcombs = [xcomb; xcomb; nan(1, ncomb)];
 xcombs = xcombs(:)';
 plot(xcombs, ycomb, '--')
end
hold(gca, 'off')
end

Script 14. EFSD Implementation for Outer Fault (MATLAB).

88

Appendix C – MATLAB and Python Code for Data Preparation

% preproccess for cnn
format compact
clear all
clc
%load all my data files and change the paths and
X***_DE_time lables accordingly
load('..\..\..\data\1797_0_0.007\inner.mat');
load('..\..\..\data\1797_0_0.007\ball.mat');
load('..\..\..\data\1797_0_0.007\outer.mat');
load('..\..\..\data\normal.mat');

inner = X105_DE_time;
ball = X118_DE_time;
outer = X130_DE_time;
normal = X097_DE_time;
%organise every data file in a 605*200 matrix
for i = 1:605
 k = 200*i;
 l = k-199;
 data_i(:,i) = inner(l:k);
 data_b(:,i) = ball(l:k);
 data_o(:,i) = outer(l:k);
 data_n(:,i) = normal(l:k);
end
%decimate every 8th column from these matrices
data_i = transpose(data_i(:,1:6:end));
data_b = transpose(data_b(:,1:6:end));
data_o = transpose(data_o(:,1:6:end));
data_n = transpose(data_n(:,1:6:end));

% keep only the first 53 samples of each class to
constract the training dataset
training_data_i = data_i(1:53,:);
training_data_b = data_b(1:53,:);
training_data_o = data_o(1:53,:);
training_data_n = data_n(1:53,:);

% organise them into one matrix and save them
training_dataX=vertcat(training_data_n,training_data_
i,training_data_o,training_data_b);
a=size(training_dataX,1);
save('..\..\..\data\train_data\0.007_shallow\training
_dataXs.mat','training_dataX')

89

% constract the matrix with the labels for the data
for i=1:a
 b=a/4;
 c=2*a/4;
 d=3*a/4;
 training_dataY(1:b,1)=double(0);
 training_dataY(b+1:c,1)=double(1);
 training_dataY(c+1:d,1)=double(2);
 training_dataY(d+1:a,1)=double(3);
end

save('..\..\..\data\train_data\0.007_shallow\training
_dataYs.mat','training_dataY')

% constract the testing data set
testing_data_i = data_i(54:77,:);
testing_data_b = data_b(54:77,:);
testing_data_o = data_o(54:77,:);
testing_data_n = data_n(54:77,:);

% concatenate the matrixes and save them
testing_dataX=vertcat(testing_data_n,testing_data_i,t
esting_data_o,testing_data_b);
a=size(testing_dataX,1);
save('..\..\..\data\train_data\0.007_shallow\testing_
dataXs.mat','testing_dataX')

% constract the label's matrix for the testing data
for i=1:a
 b=a/4;
 c=2*a/4;
 d=3*a/4;
 testing_dataY(1:b,1)=double(0);
 testing_dataY(b+1:c,1)=double(1);
 testing_dataY(c+1:d,1)=double(2);
 testing_dataY(d+1:a,1)=double(3);
end

save('..\..\..\data\train_data\0.007_shallow\testing_
dataYs.mat','testing_dataY')

% constract the testing data set
validation_data_i = data_i(78:101,:);
validation_data_b = data_b(78:101,:);
validation_data_o = data_o(78:101,:);
validation_data_n = data_n(78:101,:);

90

% concatenate the matrixes and save them
validation_dataX=vertcat(validation_data_n,validation
_data_i,validation_data_o,validation_data_b);
a=size(validation_dataX,1);
save('..\..\..\data\train_data\0.007_shallow\validati
on_dataXs.mat','validation_dataX')

% constract the label's matrix for the testing data
for i=1:a
 b=a/4;
 c=2*a/4;
 d=3*a/4;
 validation_dataY(1:b,1)=double(0);
 validation_dataY(b+1:c,1)=double(1);
 validation_dataY(c+1:d,1)=double(2);
 validation_dataY(d+1:a,1)=double(3);
end

save('..\..\..\data\train_data\0.007_shallow\validati
on_dataYs.mat','validation_dataY')

Script 15. Data preparation for training/validation/testing dataset (MATLAB).

import scipy.io as sio

from scipy import stats

import pywt

import math

import numpy as np

def rmsValue(arr, n):

 square = 0

 mean = 0.0

 root = 0.0

 #Calculate square

 for i in range(0,n):

 square += (arr[i]**2)

 #Calculate Mean

 mean = (square / (float)(n))

 #Calculate Root

 root = math.sqrt(mean)

 return root

91

def crest_factorValue(x):

 # calculate the crest factor of a signal

 crest_factor = np.max(np.abs(x))/rmsValue(x, len(x))

 return crest_factor

def featureExtraction(data_path, dataset_name):

 # load the .mat data in a pre-arranged matrix

 dataX = sio.loadmat(data_path)

 dataX1 = dataX[dataset_name]

 # define the scales of the transform and the type of wavelet

 scales = np.arange(1, 9)

 wavelet = 'morl'

 shape1 = dataX1.shape[0]

 res = []

 # use wavelet transform on the data and store the resulted coefficients

 for i in range(0,shape1):

 coeffs, freqs = pywt.cwt(dataX1[i], scales, wavelet = wavelet)

 res.append(coeffs)

 # create the features matrix using rms, crest and kurtosis values for each scale of

each sample

 features = []

 for i in range(0, shape1):

 for j in range(0, 8):

 rms = rmsValue(res[i][j], len(res[i][j]))

 crest = crest_factorValue(res[i][j])

 kurt = stats.kurtosis(res[i][j])

 features.append(rms)

 features.append(crest)

 features.append(kurt)

 # format the features matrix in a 24*shape1 matrix, ready for input in the network

 struct_features = np.array(features).reshape((shape1, 24))

 return struct_features

Script 16. Feature extraction using Continuous Wavelet Transform (Python).

92

Appendix D – Python Code for Intelligent Methods

''' Create multi-class SVM with sklearn and python '''

import all necessary modules

import scipy.io as sio

import numpy

import time

from sklearn import svm

from sklearn import metrics

from sklearn.metrics import confusion_matrix

from keras.utils import np_utils

import seaborn as sn

import matplotlib.pyplot as plt

import sys

import numpy as np

from sklearn.manifold import TSNE

palette = sn.color_palette("bright", 4)

sys.path.append('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/CWRU/scripts/dat
a_preprocess')

from wavelet_transform import featureExtraction

initialize a time counter and a random seed to ensure reproducability

start_time = time.time()

np.random.seed(7)

load training data, testing data and their respective labels

training_dataX =

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/training_dataXs.mat', 'training_dataX')

training_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataYs.mat')

training_dataY = np.array(training_dataY['training_dataY']).reshape(212,)

testing_dataX =

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/

0.007_shallow/testing_dataXs.mat', 'testing_dataX')

testing_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataYs.mat')

testing_dataY1 = np.array(testing_dataY['testing_dataY']).reshape(96,)

93

validation_dataX =

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/validation_dataXs.mat', 'validation_dataX')

validation_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataYs.mat')

validation_dataY = np.array(validation_dataY['validation_dataY']).reshape(96,)

import the SVM from sklearn and define RBF as the kernel function

classification = svm.SVC(kernel='rbf')

train the SVM on the training dataset

classification.fit(training_dataX, training_dataY)

testing_dataY2 = np_utils.to_categorical(testing_dataY1)

validation_dataY2 = np_utils.to_categorical(validation_dataY)

make prediction based on the trained model

Y_predict = classification.predict(testing_dataX)

Y_predict = Y_predict.reshape(Y_predict.shape[0],)

print("Accuracy Validation:", metrics.accuracy_score(testing_dataY1, Y_predict))

print(metrics.classification_report(testing_dataY1, Y_predict))

calculate and print the time needed for training

end_time = time.time()

execution_time = end_time - start_time

print('SVM Training time(in sec): %.2f' % execution_time)

make predictions for the testing data and constract the confusion matrix

conf_matrix = confusion_matrix(testing_dataY1, Y_predict)

print('Cofusion Matrix for the test data:')

print(conf_matrix)

plot the heatpam of the confusion matrix

sn.heatmap(conf_matrix, annot=True, fmt='g', annot_kws={"size": 16},

cmap="YlGnBu")

plt.show()

make prediction based on the trained model

Y_predict2 = classification.predict(validation_dataX)

Y_predict2 = Y_predict2.reshape(Y_predict2.shape[0],)

print("Accuracy Test:", metrics.accuracy_score(validation_dataY, Y_predict2))

print(metrics.classification_report(validation_dataY, Y_predict2))

make predictions for the validation data and constract the confusion matrix

94

conf_matrix2 = confusion_matrix(validation_dataY, Y_predict2)

print('Cofusion Matrix for the validation data:')

print(conf_matrix2)

plot the heatpam of the confusion matrix

sn.heatmap(conf_matrix2, annot=True, annot_kws={"size": 16}, cmap="YlGnBu")

plt.show()

time each prediction

time_test_sample = validation_dataX[0]

time_test_sample = time_test_sample.reshape(1,24)

prediction_time_s = time.time()

Y_predict3 = classification.predict(time_test_sample)

prediction_time_e = time.time()

print('Time per sample', prediction_time_e - prediction_time_s)

use t-SNE to visualize output

vis_preds = classification.predict(testing_dataX)

vis_preds = np.array(vis_preds).reshape(96, 1)

X_embedded = TSNE(n_components=2, perplexity=50,

n_iter=1000).fit_transform(vis_preds)

X_embedded.shape

sn.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=testing_dataY1,

legend='full', palette=palette)

Script 17. SVM Implementation (Python).

''' Create multi-class MLP with Keras and python '''

import all necessary modules

from keras.models import Sequential, Model

from keras.layers import Dense

import seaborn as sn

from sklearn.metrics import confusion_matrix

from sklearn import metrics

import matplotlib.pyplot as plt

import scipy.io as sio

import numpy as np

import sys

import time

from sklearn.preprocessing import LabelEncoder

from keras.utils import np_utils

from sklearn.manifold import TSNE

95

palette = sn.color_palette("bright", 4)

sys.path.append('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/CWRU/scripts/dat
a_preprocess')

from wavelet_transform import featureExtraction

initialize a time counter and a random seed to ensure reproducability

start_time = time.time()

np.random.seed(7)

load training data, testing data and their respective labels

change file paths and reshape sizes for shallow or deep training

training_dataX =

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/training_dataXs.mat', 'training_dataX')

training_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataYs.mat')

training_dataY1 = np.array(training_dataY['training_dataY']).reshape(212,)

testing_dataX =

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/testing_dataXs.mat', 'testing_dataX')

testing_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataYs.mat')

testing_dataY = np.array(testing_dataY['testing_dataY']).reshape(96,)

validation_dataX =

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/validation_dataXs.mat', 'validation_dataX')

validation_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataYs.mat')

validation_dataY1 = np.array(validation_dataY['validation_dataY']).reshape(96,)

encode class values as integers

encoder = LabelEncoder()

encoder.fit(training_dataY1)

encoded_Y = encoder.transform(training_dataY1)

convert integers to dummy variables (i.e. one hot encoded)

training_dataY = np_utils.to_categorical(encoded_Y)

encoder2 = LabelEncoder()

96

encoder2.fit(validation_dataY1)

encoded_Y = encoder2.transform(validation_dataY1)

convert integers to dummy variables (i.e. one hot encoded)

validation_dataY = np_utils.to_categorical(encoded_Y)

define the multiclass MLP

def baseline_model():

 model = Sequential()

 model.add(Dense(8, input_dim=24, activation='tanh'))

 model.add(Dense(9, activation='tanh'))

 model.add(Dense(8, activation='tanh'))

 model.add(Dense(4, activation='softmax'))

 return model

Compile model

model = baseline_model()

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

Fit the model

his = model.fit(training_dataX, training_dataY, validation_data=(validation_dataX,

validation_dataY), epochs=200, batch_size=100)

evaluate the model

scores = model.evaluate(validation_dataX, validation_dataY)

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

plot the training and validation loss

plt.plot(his.history['loss'], label="Train")

plt.plot(his.history['val_loss'], label="Test")

plt.legend(loc="upper right")

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.show()

calculate and print the time needed for training

end_time = time.time()

execution_time = end_time - start_time

print('MLP Training time(in sec): %.2f' % execution_time)

make predictions for the validation data and constract the confusion matrix

predictions = model.predict_classes(validation_dataX, batch_size=100, verbose=0)

conf_matrix = confusion_matrix(validation_dataY1, predictions)

print('Cofusion Matrix for the validation data:')

97

print(conf_matrix)

plot the heatpam of the confusion matrix

sn.heatmap(conf_matrix, annot=True, fmt='g', annot_kws={"size": 16},

cmap="YlGnBu")

plt.show()

make predictions for the testing data and constract the confusion matrix

predictions2 = model.predict_classes(testing_dataX, batch_size=100, verbose=0)

conf_matrix2 = confusion_matrix(testing_dataY, predictions2)

print('Cofusion Matrix for the validation data:')

print(conf_matrix2)

print full metrics for the test data

print("Accuracy Test:",metrics.accuracy_score(testing_dataY, predictions2))

print(metrics.classification_report(testing_dataY, predictions2))

plot the heatpam of the confusion matrix for the test data

sn.heatmap(conf_matrix2, annot=True, fmt='g', annot_kws={"size": 16},

cmap="YlGnBu")

plt.show()

time each prediction

time_test_sample = validation_dataX[0]

time_test_sample = time_test_sample.reshape(1,24)

prediction_time_s = time.time()

Y_predict3 = model.predict_classes(time_test_sample)

prediction_time_e = time.time()

print('Time per sample', prediction_time_e - prediction_time_s)

use t-SNE to visualize output

model2 = Model(model.input, model.layers[3].output)

vis_preds=model2.predict(testing_dataX)

X_embedded = TSNE(n_components=2, perplexity=30,

n_iter=5000).fit_transform(vis_preds)

X_embedded.shape

sn.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=testing_dataY, legend='full',

palette=palette)

Script 18. MLP Implementation (Python).

''' Create CNN with Keras and python '''

98

import all necessary modules

import numpy

import keras

import time

import scipy.io as sio

import seaborn as sn

import numpy as np

from sklearn import metrics

from sklearn.metrics import confusion_matrix

from keras.models import Sequential, Model

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import np_utils

import matplotlib.pyplot as plt

from sklearn.manifold import TSNE

palette = sn.color_palette("bright", 4)

define a callback class to end training when accuracy of 98% is reached

class myCallback(keras.callbacks.Callback):

 def on_epoch_end(self, epoch, logs={}):

 e=0.98

 if(logs.get('accuracy') > e):

 print("\nReached %2.2f%% accuracy in last epoch, so stopping training!!"

%(e*100))

 self.model.stop_training = True

Callback = myCallback()

initialize a time counter and a random seed to ensure reproducability

start_time = time.time()

numpy.random.seed(7)

load training data, testing data, validation data and their respective labels

change file paths and reshape sizes for shallow or deep training

training_dataX =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007

_shallow/training_dataXs.mat')

training_dataX = np.array(training_dataX['training_dataX']).reshape(212, 200, 1)

training_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataYs.mat')

training_dataY1 = np.array(training_dataY['training_dataY']).reshape(212,)

99

testing_dataX =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataXs.mat')

testing_dataX = np.array(testing_dataX['testing_dataX']).reshape(96, 200, 1)

testing_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataYs.mat')

testing_dataY = np.array(testing_dataY['testing_dataY']).reshape(96,)

validation_dataX =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataXs.mat')

validation_dataX = np.array(validation_dataX['validation_dataX']).reshape(96, 200,

1)

validation_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataYs.mat')

validation_dataY1 = np.array(validation_dataY['validation_dataY']).reshape(96,)

convert integers to dummy variables (i.e. one hot encoded)

training_dataY = np_utils.to_categorical(training_dataY1)

validation_dataY = np_utils.to_categorical(validation_dataY1)

take the input dimensions from the data

timesteps = training_dataX.shape[1]

features = training_dataX.shape[2]

define the CNN

def baseline_model():

 model = Sequential()

model.add(Conv1D(60,9,input_shape=(timesteps,features),activation='tanh',padding

='same'))

 model.add(MaxPooling1D(4))

 model.add(Conv1D(40,9,activation='tanh',padding='same'))

 model.add(MaxPooling1D(4))

 model.add(Conv1D(40,9,activation='tanh',padding='same'))

 model.add(Flatten())

 model.add(Dense(20,activation='tanh'))

 model.add(Dense(4,activation='softmax'))

 model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

 return model

100

compile model and start training

model = baseline_model()

history = model.fit(training_dataX, training_dataY,

validation_data=(validation_dataX, validation_dataY), epochs=15, batch_size=100,

callbacks=[Callback])

scores = model.evaluate(validation_dataX, validation_dataY)

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

plot the training and testing loss

plt.plot(history.history['loss'], label="Train")

plt.plot(history.history['val_loss'], label="Test")

plt.legend(loc="upper right")

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.show()

calculate and print the time needed for training

end_time = time.time()

execution_time = end_time - start_time

print('CNN Training time(in sec): %.2f' % execution_time)

make predictions for the validation data and constract the confusion matrix

predictions = model.predict_classes(validation_dataX, batch_size=100, verbose=0)

print("Accuracy Val:",metrics.accuracy_score(validation_dataY1, predictions))

print(metrics.classification_report(validation_dataY1, predictions))

conf_matrix = confusion_matrix(validation_dataY1, predictions)

print('Cofusion Matrix for the test data:')

print(conf_matrix)

make predictions for the testing data and constract the confusion matrix

predictions2 = model.predict_classes(testing_dataX, batch_size=100, verbose=0)

conf_matrix2 = confusion_matrix(testing_dataY, predictions2)

print('Cofusion Matrix for the validation data:')

print(conf_matrix2)

print metrics of testing data

print("Accuracy Test:",metrics.accuracy_score(testing_dataY, predictions2))

print(metrics.classification_report(testing_dataY, predictions2))

plot the heatpam of the confusion matrix

101

sn.heatmap(conf_matrix, annot=True, fmt='g', annot_kws={"size": 16},

cmap="YlGnBu")

plt.show()

plot the heatpam of the confusion matrix

sn.heatmap(conf_matrix2, annot=True, annot_kws={"size": 16}, cmap="YlGnBu")

plt.show()

time each prediction

time_test_sample = validation_dataX[0]

time_test_sample = time_test_sample.reshape(1,200,1)

prediction_time_s = time.time()

Y_predict3 = model.predict_classes(time_test_sample)

prediction_time_e = time.time()

print('Time per sample', prediction_time_e - prediction_time_s)

use t-SNE to visualize output

testing_dataX2 = np.array(validation_dataX).reshape(96, 200)

model2 = Model(model.input,model.layers[7].output)

vis_preds=model2.predict(testing_dataX2)

X_embedded = TSNE(n_components=2, perplexity=30,

n_iter=5000).fit_transform(vis_preds)

X_embedded.shape

sn.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=validation_dataY1,

legend='full', palette=palette)

Script 19. CNN Implementation (Python).

''' Create C-CNN with Keras and python '''

import all necessary modules

import numpy

import time

import scipy.io as sio

from sklearn import metrics

from sklearn.metrics import confusion_matrix

from keras import Model

from keras import Input

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Concatenate

102

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.utils import np_utils

import matplotlib.pyplot as plt

import seaborn as sn

import numpy as np

from sklearn.manifold import TSNE

palette = sn.color_palette("bright", 4)

initialize a time counter and a random seed to ensure reproducability

start_time = time.time()

numpy.random.seed(7)

load training data, testing data, validation data and their respective labels

change file paths and reshape sizes for shallow or deep training

training_dataX =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataXs.mat')

training_dataX = np.array(training_dataX['training_dataX']).reshape(212, 200, 1)

training_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataYs.mat')

training_dataY1 = np.array(training_dataY['training_dataY']).reshape(212,)

testing_dataX =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataXs.mat')

testing_dataX = np.array(testing_dataX['testing_dataX']).reshape(96, 200, 1)

testing_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataYs.mat')

testing_dataY = np.array(testing_dataY['testing_dataY']).reshape(96,)

validation_dataX =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataXs.mat')

validation_dataX = np.array(validation_dataX['validation_dataX']).reshape(96, 200,

1)

validation_dataY =

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataYs.mat')

validation_dataY1 = np.array(validation_dataY['validation_dataY']).reshape(96,)

103

convert integers to dummy variables (i.e. one hot encoded)

training_dataY = np_utils.to_categorical(training_dataY1)

validation_dataY = np_utils.to_categorical(validation_dataY1)

take the input dimensions from the data

timesteps = training_dataX.shape[1]

features = training_dataX.shape[2]

define the number of filters, the different filter sizes and the number of different

branches

n_filters = 64

filter_size = [5, 25, 50, 100, 125]

input_shape = (timesteps, features)

pool_size = 10

n_paraller_branches = 5

define the different parallel branches

inp = Input(shape=input_shape)

convolutions = []

for k in range(len(filter_size)):

 convolution1 = Conv1D(n_filters, filter_size[k], padding='same', activation='relu',

input_shape=input_shape)(inp)

 pool1 = MaxPooling1D(pool_size=pool_size)(convolution1)

 convolution2 = Conv1D(n_filters, filter_size[k], padding='same',

activation='relu')(pool1)

 pool2 = MaxPooling1D(pool_size=pool_size)(convolution2)

 convolutions.append(pool2)

feed the output in the concatenation layer

out = Concatenate()(convolutions)

create the parallel model

conv_model = Model(inp, out)

define the C-CNN

def baseline_model():

 model = Sequential()

 model.add(conv_model)

 model.add(Flatten())

 model.add(Dense(4, activation='softmax'))

 model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

 return model

104

start the training of the network

model = baseline_model()

history = model.fit(training_dataX, training_dataY,

validation_data=(validation_dataX, validation_dataY), epochs=20, batch_size=150)

scores = model.evaluate(validation_dataX, validation_dataY)

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

plot the loss

plt.plot(history.history['loss'], label="Train")

plt.plot(history.history['val_loss'], label="Test")

plt.legend(loc="upper right")

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.show()

calculate and print the time needed for training

end_time = time.time()

execution_time = end_time - start_time

print('C-CNN Training time(in sec): %.2f' % execution_time)

make predictions for the validation data and constract the confusion matrix

predictions = model.predict_classes(validation_dataX, batch_size=150, verbose=0)

print(metrics.classification_report(validation_dataY1, predictions))

conf_matrix = confusion_matrix(validation_dataY1, predictions)

print('Cofusion Matrix for the test data:')

print(conf_matrix)

make predictions for the testing data and constract the confusion matrix

predictions2 = model.predict_classes(testing_dataX, batch_size=150, verbose=0)

conf_matrix2 = confusion_matrix(testing_dataY, predictions2)

print('Cofusion Matrix for the validation data:')

print(conf_matrix2)

print metrics of validation data

print("Accuracy:",metrics.accuracy_score(testing_dataY, predictions2))

print(metrics.classification_report(testing_dataY, predictions2))

plot the heatpam of the confusion matrix

sn.heatmap(conf_matrix, annot=True, fmt='g', annot_kws={"size": 16},

cmap="YlGnBu")

plt.show()

105

plot the heatpam of the confusion matrix

sn.heatmap(conf_matrix2, annot=True, fmt='g', annot_kws={"size": 16},

cmap="YlGnBu")

plt.show()

time each prediction

time_test_sample = validation_dataX[0]

time_test_sample = time_test_sample.reshape(1,200,1)

prediction_time_s = time.time()

Y_predict3 = model.predict_classes(time_test_sample)

prediction_time_e = time.time()

print('Time per sample', prediction_time_e - prediction_time_s)

use t-SNE to visualize output

testing_dataX2 = np.array(testing_dataX).reshape(96, 200)

model2 = Model(model.input, model.layers[2].output)

vis_preds=model2.predict(testing_dataX2)

X_embedded = TSNE(n_components=2, perplexity=30,

n_iter=1000).fit_transform(vis_preds)

X_embedded.shape

sn.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=testing_dataY, legend='full',

palette=palette)

Script 20. C-CNN Implementation (Python).

	Chapter 1. Introduction
	1.1 Fault Diagnosis of Mechanical Equipment
	1.2 Motivation and importance
	1.3 Literature review
	1.4 Thesis organization
	Chapter 2. Traditional Fault Diagnosis of Rotating Equipment
	2.1 Introduction to Envelope Spectrum Fault Detection
	2.2 Data acquisition
	2.3 Signal processing
	2.4 Fault Diagnosis
	2.5 Other Traditional Fault Diagnosis Techniques and ESFD
	2.6 Chapter Conclusions
	Chapter 3. Intelligent Fault Diagnosis of Rotating Equipment
	3.1 Introduction
	3.2 Neural Networks: A Basic Framework
	3.3 Optimization methods for Neural Networks
	3.3.1 Gradient Descent
	3.3.2 Stochastic Gradient Descent
	3.3.3 Batch Gradient Descent
	3.3.4 Gradient Descent with Momentum
	3.3.5 Accelerated Gradient Descent
	3.3.6 The Adam Optimizer
	3.3.7 Acknowledgements of Omissions
	3.3.8 Some Observations for the Selection of an Optimization Method

	3.4 The Backpropagation Algorithm
	3.5 Activation functions
	3.6 Loss Functions
	3.7 Common Neural Network Layers and Architectures
	3.7.1 Convolutional Neural Networks
	3.7.2 Multilayer Perceptrons

	3.8 Other Supervised Machine Learning Algorithms: SVMs
	3.9 Chapter Conclusions
	Chapter 4. Case Study
	4.1 Introduction
	4.2 Presenting the Problem of Rolling Bearings Fault Diagnosis
	4.3 Presenting the CWRU Rolling Bearing Dataset
	4.4 Differentiations Between ESFD and Intelligent Methods
	4.5 ESFD Implementation on CWRU’s Data
	4.6 Intelligent Methods Implementation on CWRU’s Data
	4.6.1 Data Preparation
	4.6.2 MLP Implementation for the CWRU’s Data
	4.6.3 CNN Implementation for the CWRU’s Data
	4.6.4 C-CNN Implementation for the CWRU’s Data
	4.6.5 SVM Implementation for the CWRU’s data.

	4.7 Results and Method Comparison
	4.8 System Specifications
	Chapter 5. Conclusions – Suggestions for Further Study
	References
	Media References
	Appendix A – MATLAB and Python Code for Visualization
	Appendix B – MATLAB Code for EFSD Implementation
	Appendix C – MATLAB and Python Code for Data Preparation
	Appendix D – Python Code for Intelligent Methods

