
 

UNIVERSITY OF THESSALY 

SCHOOL OF ENGINEERING 

DEPARTMENT OF MECHANICAL ENGINEERING 

 

 

 

 

 

NEURAL NETWORKS FOR INTELLIGENT FAULT DIAGNOSIS OF 

MECHANICAL EQUIPMENT 

 

by 

ILIAS KONSTANTINIDIS 

 

 

 

 

 

 

 

 

 

Submitted in partial fulfillment of the requirements for the degree of Diploma  

in Mechanical Engineering at the University of Thessaly 

 

 

 

Volos, 2021 

 



ii 

  

 

UNIVERSITY OF THESSALY 

SCHOOL OF ENGINEERING 

DEPARTMENT OF MECHANICAL ENGINEERING 

 

 

 

 

 

NEURAL NETWORKS FOR INTELLIGENT FAULT DIAGNOSIS OF 

MECHANICAL EQUIPMENT 

 

by 

ILIAS KONSTANTINIDIS 

 

 

 

 

 

 

 

 

 

Submitted in partial fulfillment of the requirements for the degree of Diploma  

in Mechanical Engineering at the University of Thessaly 

 

 

  

Volos, 2021 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 ILIAS KONSTANTINIDIS 

 

All rights reserved. The approval of the present D Thesis by the Department of 

Mechanical Engineering, School of Engineering, University of Thessaly, does not 

imply acceptance of the views of the author (Law 5343/32 art. 202). 

 



iv 

 

Approved by the Committee on Final Examination: 

 

 

Advisor Dr. Ampountolas Konstantinos,  

 Associate Professor, Department of Mechanical Engineering, 

University of Thessaly 

 

Member Dr. Spiridon Karamanos,  

 Professor, Department of Mechanical Engineering, University 

of Thessaly 

 

Member Dr. Grigorios Haidemenopoulos,  

 Professor, Department of Mechanical Engineering, University 

of Thessaly 

 

 

Date Approved:  September 29, 2021 



v 

 

Acknowledgments 

Writing this thesis marks the near end of five exciting academic years in the 

Mechanical Engineering Department of the University of Thessaly. Five years with a 

lot of challenges that hopefully prepared a new generation of young Engineers. On 

this small section I wholeheartedly want to thank my immediate family and friends, 

that supported me through the lows and cheered with me through the highs. I need 

to thank my parents for their remarkable emotional and financial support in those 5 

years. I want to thank Dr Ampountolas for supervising this thesis, and who gave me 

the opportunity to study in more detail a subject that already intrigued me. Finally, I 

need to thank Dr Karamanos and Dr Haidemenopoulos for taking the time to read 

and evaluate my efforts.  



vi 

 

NEURAL NETWORKS FOR INTELLIGENT FAULT DIAGNOSIS OF 

MECHANICAL EQUIPMENT 

 

ILIAS KONSTANTINIDIS 

Department of Mechanical Engineering, University of Thessaly 

 

Supervisor: Dr Konstantinos Ampountolas  

Associate Professor University of Thessaly 

 

Abstract 

The ever-growing scale and complexity of mechanical systems used on plant floors 

and research labs across the world, ordains the deployment of fast, reliable and - in 

the spirit of the 4
th

 industrial revolution - fully automated solutions for the detection 

of possibly dangerous defects, resulted by their operation. Intelligent fault diagnosis 

is presented as a solution to the problem, and it relies on the usage of classification 

algorithms which are responsible to differentiate between the healthy state of the 

monitored mechanical system and the faulty state. In the context of the present 

work, different Artificial Neural Networks architectures, supervised learning methods 

and traditional classification techniques will be reviewed.  After the theoretical 

ground for the methods mentioned above is laid, we will proceed to try them out on 

a case study in order to juxtapose their results and review each method’s 

weaknesses and advantages. For the case study the rolling bearings dataset provided 

by the Case Western Reserve University (CWRU) will be used to detect faulty and 

healthy states of rolling bearings using vibrational data acquired from the CWRU’s 

testing rigs.  
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Chapter 1.  Introduction 

 

 

1.1 Fault Diagnosis of Mechanical Equipment 
 

When discussing fault diagnosis of mechanical equipment on the context of this 

work, we will be referring to the process of vibrational signal analysis, usually 

acquired from accelerometers attached to a rotating mechanical system being 

monitored (e.g., rolling bearing, turbines, fans), in order to classify the component as 

healthy or not. Vibrational signatures of rotating mechanical components are the 

most reliable fault indication, and they were used for traditional fault detection way 

before intelligent solutions like Neural Networks (NN) or other supervised learning 

methods were established. Fault diagnosis is quite a broad field of study, with 

varying implementations so the above lens is defined to help focus the context of 

the subjects being discussed. 

1.2 Motivation and importance 
 

Failures of rotating mechanical parts is something that needs to be expected when 

studying any mechanical system. Due to fatigue phenomena, every component of a 

larger system has the potential to fail, which can compromise the entire system and 

result in considerable productivity and economic losses. This realization drives the 

effort for robust and fast fault detection technologies which have the potential to 

provide warnings when a defected item is detected, so it can be replaced to ensure 

the safety and effectiveness of the overall system. 

 

1.3 Literature review 
 

 Fault detection of mechanical equipment is a subject which interests the field’s 

researchers since the mid-20
th

 century, establishing several - now considered - 

traditional techniques. Piety, Magette [1] presented in 1979 a statistical technique 

for automatic fault detection, based on time and frequency domain descriptors to 

compose an overall signature that characterizes the health status of the component. 

R.B Randall [2] proposed in 1978 a methodology which utilizes Fast Fourier 

Transform (FFT) of the vibrational signal collected by faulty and healthy rotating 

parts to compare their frequency domain representations and classify the results. 

These traditional techniques have been the object of further research even in recent 

years, with papers verifying or improving on existing results [3] [4] [5].  
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 Although traditional fault diagnosis methodologies have been proven to be 

effective, they focus their efforts on extracting the more obvious features of the 

vibrational signatures and as a result their performance is limited [6]. To combat 

that, research efforts are steered towards intelligent classification methods, such as 

NN. Eren et. Al. [7] proposed a Convolutional Neural Network (CNN) architecture for 

rolling bearing fault classification which exhibited great performance. Yuanhong 

Chang et. Al. [8] presented a different CNN architecture for detection of wind 

turbines faults. QiaoHu et. Al. [9] combined WPT with a supervised learning model 

called Support Vector Machine (SVM), while Diego Fernández-Francos et. Al. [10] 

used a one class SVM to differentiate between healthy and faulty conditions. SVM 

structures was also used by Junyan Yang et. Al. [11] on their work.  

 

1.4 Thesis organization 
 

The remaining of the thesis will be compartmentalized in four remaining chapters. 

First, several traditional fault detection techniques will be presented, alongside their 

respective historical context and their theoretical backbone. In continuum, the 

concepts of supervised machine learning algorithms will be introduced on a general 

mathematical and theoretical framework and then they will be recontextualized on 

the specific problem of fault classification of mechanical equipment. To close the 

third chapter, the relevant literature will be reviewed more closely, and specific 

structures and architectures of supervised methods will be thoroughly presented to 

lay the ground for the final chapter. Finally, the methodologies that have been 

introduced though out this work will be implemented on the problem of fault 

classification of rolling bearing defects, using a dataset from the public repository of 

CWRU. Traditional techniques and several intelligent methods will be applied, and 

their results will be documented and compared to help us draw our results. 
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Chapter 2. Traditional Fault Diagnosis of Rotating Equipment 

 

2.1 Introduction to Envelope Spectrum Fault Detection 

 

The most used traditional fault diagnosis technique for rotating machinery in the 

relevant literature is Envelope Spectrum Fault Detection (ESFD). There are three 

general stages to follow in order to successfully diagnose a defected part using ESFD. 

First comes the data acquisition, followed by the signal processing which leads to the 

last stage and the goal, the diagnosis [12]. Mechanical components that comprise 

most of the literary work on the subject, are rotating equipment such as rolling 

bearings and gears.  This 3-step procedure mostly focuses on analyzing vibration 

signatures in form of time-series data acquired by accelerometers attached to the 

monitored system. Vibration signatures are demonstrated to be reliable indications 

of faulty equipment due to the way that a fault in a component influences its 

vibrational behavior [13]. 

 

2.2 Data acquisition 

 

As it has been established by now, in order to perform health status diagnosis, 

vibrational signals need to be acquired by the part being monitored. To do that, 

some kind of vibration sensor needs to be attached to the part, with the most 

common types of sensors being accelerometers, tachometers, strain gauges and 

capacitive displacement sensors. For the purposes of this work, we will focus on 

accelerometers since they are the easiest and cheapest option to implement, and 

they are by far the most used type of sensor (Image 1.).  

 

Image 1. [A] In this image four rotating shafts are presented, alongside their respective rolling 

bearings in both of their ends. In red, the vibration sensors (accelerometers) are highlighted, mounted 

on each bearing.                                                                             
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The typical micro electrical mechanical accelerometer (MEMA) is nothing more than 

a mass mounted on a spring, with some fixed plates as reference points. When the 

kinetic state of the accelerometer is altered due to an external force, the mass is 

displaced from its fixed-as-zero position and as a result the spring is moving along 

with the mass. Then the displacement of the spring is transformed into electrical 

signal, proportional to said displacement. [14] 

 

 

Image 2. [14] Schematic representation of a MEM accelerometer. 

In order to acquire reliable and behaviorally descriptive data from the monitored 

component, as large a sampling rate as possible needs to be achieved. For example, 

the CWRU vibration signals dataset, was acquired using sampling rates of up to 48 

kHz.  To achieve that, first and foremost an accelerometer with high enough 

sampling capability needs to be selected. A fast accelerometer however is able to 

measure as fast as the computational device that is connected to is able to record. 

To optimize the system, a dedicated computational device called Data Logger is 

connected to the sensor and is responsible for recording the electrical signals and 

move them to the last component of the system, the computer. There, the signal 

received from the accelerometer, through the data logger, is transformed to 

acceleration units and is ready for further analysis. The combination of all the 

components described above, comprises the Vibrational Data Acquisition System 

(VDAS) which is responsible for the first of our 3-stage procedure described 

previously [15]. 

 

Image 3. VDAS system representation. 



5 

 

2.3 Signal processing 
 

After the first step of the process is complete, and the vibrational data have reached 

the computer, signal analysis can take place. The data are recorded as discrete 

acceleration values on each sampling point, so they are represented in the time 

domain. In order to represent them in the frequency domain, the data need to be 

transformed using Discrete Fourier Transform (DFT):  

𝑋(𝑘) =  ∑ 𝑥(𝑛) ∗ 𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0     [2.1] 

Where, N is all the sample points, n is the respected sampling point, k discrete 

frequency k = 0, 1, 2, …, N-1 

DFT analyzes the sequential discrete data into components of different frequencies, 

which can be very useful since it reveals periodicity in its input data. In order to 

perform the DFT efficiently and fast, the algorithm known as Fast Fourier Transform 

(FFT) is employed [16]. Also, in order to combat unwanted noise in our data, or 

intrusions of high energy nearby rotating machinery (or other environmental factors) 

an envelope filter needs to be applied on the time domain data, before the FFT. In 

order to remove the unwanted frequencies, the envelop filter imposes a bandpass 

filter around the band area we are interested in (more on that later) [17]. 

 

Figure 1. Time domain representation of a normal bearing, operating under 1772 rpm (CWRU Data). 
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Figure 2. Frequency domain representation of a normal bearing operating at 1772 rpm (CWRU Data). 

When a local fault exists in a rotating mechanical component, it produces an impact 

signal whose periodic nature can be accurately described by a specific frequency 

called fault characteristic frequency. One big shortcoming of this method is that 

these frequencies cannot be known a priori and in order to define them, a defected 

item needs to be isolated, put-on test rig and analyzed. One the other hand, the 

work on this field is quite extensive and as a result, empirical relations for most of 

the known faults of popular mechanical components such as gears, shafts and rolling 

bearings have been established [12]. 

 

Image 4. [2] Local fault on rolling bearing and its periodic time-domain representation.  
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One very crucial aspect of the signal processing is the careful selection of the right 

band limits when applying the denoising procedures. A wider than it should 

bandwidth will hide the fault characteristic frequencies inside the noise, but a 

narrow one will block them from ever appearing on the frequency domain 

representation. There are two popularly used methodologies to follow when tackling 

the envelop filtering problem: squaring and low pass filtering the signal or using 

Hilbert transformation to analyze the signal.  

● Following the first method, these next steps need to be implemented [12] [17]: 

A1) Square the input signal which results in half the signal to be pushed to higher 

frequencies while the other half is shifted downwards. 

A2) Down sample the signal in order to reduce the sampling frequency. 

A3) Apply a minimum phase, lowpass filter to expunge the high energy frequencies. 

A4) Amplify the signal by a factor of two, since only the low half of the original signal 

is preserved. 

A5) Take the square root of the signal to fix the distortion introduced by the first 

step. 

● Mathematically the envelope 𝑒(𝑡) of a signal 𝑥(𝑡) according to the second method 

is defined by the following: 

𝑒(𝑡) = √𝑥2(𝑡) + 𝑥2̂(𝑡)   [2.2] 

Where �̂�(𝑡) is the Hilbert transform of 𝑥(𝑡). 

Following the second method, these next steps need to be implemented [18]: 

B1) Perform Hilbert Transform (HT) on the signal. Mathematically defined, the HT of 

a signal 𝑥(𝑡) can be described be the following: 𝐻(𝑥)(𝑡) = 1𝜋 𝑃𝑉 ∫ 𝑥(𝜏)𝑡 − 𝜏∞
−∞ 𝑑𝜏    [2.3] 

Where, PV is the Cauchy Principal Value. 

A more useful way to calculate the HT of a signal is to use a 32-point Parks-McClellan 

FIR filter. 

B2) Multiply the resulted HT with √−1 and add it to the time-delayed original signal 

to from the analytical signal. 

B3) Take the absolute value of the analytical signal. 

B4) Down sample and impose a low pass filter. 

Both can be very effective, but the HT method can better handle signals that are 

aliased due to great concentration of high frequencies. 
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2.4 Fault Diagnosis 
 

As a result of the above, it is reasonable to expect that if a rotating mechanical 

component presents a local fault, its envelope spectrum will depict amplitude spikes 

on its fault frequency and on the harmonics of that frequency. That way it can be 

concluded visually, by observing the envelope spectrum of a monitored component, 

not only if it is faulty but also the location of the fault (provided that every possible 

fault frequency for every possible local failure is known) [12].  

As an example, using the CWRU Dataset, two different envelope spectrums of faulty 

equipment are presented below. The example presents one rolling bearing with fault 

on its inner ring, and the second on its outer ring. The rolling bearings used in the 

example have identical specifications, their rotational speed is 1772 rpm, and their 

fault frequencies can be calculated in accordance with the table 1 provided by 

CWRU. 

 

Fault frequencies, multiple of running speeds in Hz. 

 

Inner ring Outer ring 

5.4152 3.5848 

Table 1. [III] Fault Frequency table (CWRU Data). 

Therefore, the fault frequencies can be calculated to be 159,9287 Hz for the inner 

ring fault and 105,8710 Hz for the outer ring.  
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Figure 3. Envelope spectrum of a bearing with inner race fault operating at 1772 rpm (CWRU Data). 

 

 

Figure 4. Envelope spectrum of a bearing with outer race fault operating at 1772 rpm (CWRU Data). 
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As it can be observed on the figures 3 and 4, the fault fundamental frequencies of 

the inner and outer faults coincide exactly with some of the highest peaks on their 

respective areas. Therefore, it is reasonable to conclude that the monitored bearings 

are indeed faulty.  

On the other hand, if the same procedure is repeated, but this time the vibrational 

data will be derived by a healthy bearing, the following envelope spectrums will be 

produced (figures 5 and 6). 

As it can be observed on the figures 5 and 6, the fault fundamental frequencies do 

not coincide with any amplitude peaks and are unable to demonstrate any kind 

recurring pattern in relation to the frequencies that they do coincide with. 

Therefore, it is reasonable to conclude that the monitored bearing does not 

demonstrate nor inner race fault, neither outer race fault. 

 

Figure 5. Envelope spectrum of a normal bearing operating at 1772 rpm (CWRU Data). 
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Figure 6. Envelope spectrum of a normal bearing operating at 1772 rpm (CWRU Data). 

 

 

2.5 Other Traditional Fault Diagnosis Techniques and ESFD 

 

In the literature concerning fault diagnosis of rotating machinery, several other 

techniques have been established. Temperature monitoring, acoustic emission 

analysis, wear debris analysis, nondestructive tests, statistical kurtosis analysis and 

shock pulse monitoring, just to name a few different approaches that can be found 

[19]. Despite the existence of all the alternatives mentioned above, EFSD has 

managed to prevail as the most used in both the relevant academic body of work in 

the subject, as well as in its usage in industrial environments. It can adapt to the 

needs of different applications, provided that fault specific details are known, in 

addition to its ability to provide the user with detailed information about the 

location of the fault. As a result of the above, EFSD was chosen as the focus of this 

chapter and as the traditional technique to be used as a comparison for the modern 

intelligent methods that will be presented in the remaining of the work. 

2.6 Chapter Conclusions 

 

In this chapter the most commonly used traditional fault diagnosis technique for 

rotating equipment has been presented. A combination of FFT and envelope filtering 
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techniques have the potential to discard all the noise that is inherent in data 

acquisition and unsheathe the health condition of the monitored component. 

Unfortunately, this does not come without drawbacks, since in order to classify a 

rotating component as faulty or not, all the possible faults a component can present 

must be already known, as well as their specific fundamental frequencies. This 

reality introduces a lot of a priori knowledge that might not be available in any given 

possible application. Additionally, even if FFT is considered to be a very efficient way 

to perform Time-Frequency decomposition, is quite computationally expensive 

which can cause severe problems when trying to implement the method on a Real-

Time environment. 

Closing this chapter, the ground has been laid for the introduction of more intelligent 

ways of tackling the problem. Even if the concepts that will be discussed in 

continuum will be quite different, they are a built on the same 3-step procedure of 

Data Acquisition, Signal Processing and Diagnosis. 
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Chapter 3. Intelligent Fault Diagnosis of Rotating Equipment 

 

3.1 Introduction 
 

Intelligent fault diagnosis maintains the same 3-step core that has already been 

presented in the previous chapter. Vibrational data needs to be acquired from the 

monitored system and then got through some processing to reach a health 

diagnosis. The way the processing step works though, is fundamentally different. In 

the place of domain transformations and fault specific frequency calculations, 

supervised learning classification algorithms are being employed. The biggest 

advantage of this approach is that these algorithms are able to classify the 

vibrational signal as heathy or faulty, based on close-to raw time series data, thus 

eliminating the need for time and resource consuming domain transformations or 

other preprocessing procedures. 

The main tool intelligent fault diagnosis uses to classify the vibrational samples it 

receives are Neural Networks (NN). These kinds of algorithms are designed to mimic 

the way biological preceptors, like the human brain, are working in order to detect 

patterns and conjunctive relations in the data they are fed with. There are two large 

categories in which Neural Networks can be subdivided, supervised and 

unsupervised learning, but in the context on this work the focus will be on 

supervised learning methodologies. That term refers to machine learning algorithms 

which utilizes a weighted function called prediction function. The weights of this 

function are determined by a repeating exposure of the function on pairs of input 

and their desired output. This repeating procedure is referred to as training of the 

Neural Network. The goal is, provided that the data are descriptive enough of the 

problem in hand, to create a precise enough prediction function during the training, 

that it can predict the right result for any input that is being fed with. That way if a 

function is trained good enough on a big dataset of vibrational signal inputs of 

mechanical equipment and their corresponding health state (e.g., healthy, ball fault, 

etc.), the resulted function will be able to predict the health state of any given 

vibrational signal. Because we are directing the NN by providing it with the right 

answers in the training data, this procedure is called supervised learning. 

 

3.2 Neural Networks: A Basic Framework 
 

The fundamental concept of NN [20] can be mathematically expressed by the 

following simple relation.  𝑦 = 𝜑(𝑥)   [3.1] 
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Where 𝑦 is the output, 𝜑 is the prediction function and 𝑥 is the input. 

The main goal of the NN is to determine a function 𝜑 which, given a value 𝑥, can 

relieably predict the value 𝑦. A few other basic concepts need to be understood to 

frame the above relation in a clearer context, are the following: 

● Raw data: The data just as they have been collected by the sensors. A sensor could 

be an accelerometer, a camera, a pressure sensor, it depends on the context of the 

application. 

 ●Labels: A value that is attached to every single one of the raw data samples and 

describes the class this data sample belongs to.  

● Dataset: The data structure that contains both the collected data samples (raw 

data is the desired approach, but it is not always feasible) and their corresponding 

labels. 

● Preprocessing: Data rarely come in neat formats, ready to be imported in the NN, 

so some light formatting in appropriately sized and dimensioned matrixes usually 

should take place. It is also common to do some data mapping, like normalization 

before the next stages. 

● Training Procedure: As already stated, the repeated exposure of the NN to a part 

of the Dataset (called Training Dataset), which aims to determine the prediction 

function 𝜑. Training is a fundamentally feedforward procedure. 

● Testing Procedure: The exposure of the NN to a different part of the Dataset 

(called Testing Dataset) with which it had no previous interaction, but this time the 

NN only “sees” the input, tries to predict the output using the 𝜑 function and then 

cross validates the label it produced with the real label. This process also defines and 

calculates a performance metric (e.g., accuracy, precision, etc.) which is needed to 

decide whether the training was successful, and whether the prediction function has 

gained the ability to actually predict the label of any given data sample it encounters 

for the first time. 

● Validation Dataset: A part of the dataset that its samples are not part of the 
training dataset, but they are used in the training procedure at the end of each 

training iteration to provide the Network with an unbiased evaluation of its 

performance on that particular iteration. What the model learned from the 

validation data though are incorporated into the model, which can lead to a more 

biased NN. Its usage is not necessary.  

● Prediction: When all the procedures described above are completed, the resulted 

prediction function is ready to be fed with new data and classify them in accordance 

with its training. 

The following flow chart represents the consecutive process of building a supervised 

learning model with the concepts that have been introduced. 
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Image 5. Flow chart for machine learning model building.  

As it has been established by now, the core of any machine learning problem is to 

determine a good enough prediction function 𝜑. So, it stands to reason to focus on 

this, more complicated than it initially seems, problem. First and foremost, the 

equation 3.1 is not actually neither what 𝜑 is expected nor what it is been demanded 

by it to do. A better mathematical representation of the NN goal when it tries to 

determine the prediction function is the following. 𝑦𝑖 ≈ 𝜑(𝑥𝑖; 𝑎)   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚   [3.2] 

Where, 𝑦 is a vector containing class labels, 𝑥 is a vector containing the input data 

and 𝑚 is the population of the pairs data samples – class labels.  

The prediction function can be defined in terms of some parametric vector 𝑎, thus 

the problem can now be framed as a data fitting optimization problem, with an 

objective of finding the best 𝑎 to map every 𝑥𝑖  to a value 𝑦𝑖. To calculate this vector 𝑎, the NN selects through its training the parameters (𝑊𝐴, 𝑔𝐴), 𝐴 = 1,2,3, … , 𝐽 . 

These parameters are usually called weights 𝑊 and biases 𝑔. The training of the NN, 

essentially is the calculation of this parameters which ultimately define the 

prediction function φ, through successive transformations to the input vector 𝑥𝑖 ∈ ℝ𝑑𝑗 . These transformations are made in layers, the type of layer defines the 

type of the transformation that takes place. The first layer receives as input the 𝑥𝑖  
vector and outputs a vector that represents the odds of the input to belong in each 

of the classes that the problem is working with. In continuum, the output is being fed 

on the next layer and so on until all the defined layers and their corresponding 

transformations have taken place. An example of a layer is a canonical fully 

connected layer, which performs the following element-wise transformation [21]. 𝑥𝑖(𝑗) = 𝜎 (𝑊𝑗𝑥𝑖(𝑗−1) + 𝑔𝑗)    [3.3] 

Where 𝑥𝑖(0) = 𝑥𝑖, 𝑊𝑗 ∈ ℝ𝑑𝑗×𝑑𝑗−1  and 𝑔𝑗 ∈ ℝ𝑑𝑗  contain the 𝑗𝑡ℎ layer’s weights and 

biases, 𝜎 represents the element-wise activation function which is an inseparable 

part of any layer and is responsible for the way that the weighted sum of the input is 

being moved to the next layer. Every layer contains a number of nodes which are the 

actual part of the network that the transformations take place, their number and 

size is determined by the designer but is relevant to different things like the size of 

the input, the kind of layer they comprise and more.  



16 

 

 

 

Image 6. Schematic representation of the structure of simple one-layer-deep Neural Network. 

Generally speaking, there is no particular rule of thumb to follow when selecting the 

number and kind of layers, the number of nodes, their size, the loss function or the 

activation function. There are a few empirical observations of approaches that work 

best, but they are by no means absolute rules and the safest approach to select the 

proper architecture for the task in hand, is a combination of experience with the 

subject matter and performing comparative tests of different architectures.  

Through this successive procedure, the final output vector 𝑥𝑖(𝐽)
 results to the 

calculation of a prediction function 𝜑(𝑥𝑖; 𝑎), where the parameter vector 𝑎 is the 

collection of weights and biases acquired by each layer {(𝑊1, 𝑔1), … , (𝑊𝐽, 𝑔𝐽)}. Of 

course this has to repeat for every sample of the dataset. 

As a logical consequence of the above, the following objective function needs to be 

minimized in order to find the 𝑎 vector which better defines the prediction function 𝜑. 

∑ ℎ((𝑥𝑖; 𝑎), 𝑦𝑖)𝑚
𝑖=1    [3.4] 

Where 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, … ) which are the weights and biases the NN calculates 

and ℎ measures the mismatch between the real 𝑦𝑖 and the 𝑦𝑖 produced by the 

model [20].  

As a result, the goal of the training of a NN can be redefined as the minimization of 

the difference between the real samples and the samples produced by the NN. 

In order to frame this mismatch that the function 𝜑 represents in a manner that can 

actually be used to perform the optimization, it can be expressed as the expected 

loss 𝐿(𝛼) . In a perfect world, the parametric vector 𝛼 is minimizing the expected 

loss for any input-output pair. This would entail for one, to know a probability 

distribution 𝑃(𝑥, 𝑦) which is able to encapsulate the true relationship between the 

dataset pairs. Assuming that the input-output space ℝ𝑑𝑥 × ℝ𝑑𝑦  is endowed with 𝑃: ℝ𝑑𝑥 × ℝ𝑑𝑦  → [0,1] , then the objective function that needs to be minimized i.e., 

the expected loss function, is defined as follows.  𝐿(𝛼) = ∫ 𝑙𝑜𝑠𝑠(𝜑(𝑥; 𝑎), 𝑦) 𝑑𝑃(𝑥, 𝑦) = 𝑬[𝑙𝑜𝑠𝑠(𝜑(𝑥; 𝑎), 𝑦)] 
ℝ𝒅𝒙×ℝ𝒅𝒚    [3.5] 



17 

 

Where 𝑬 is the expected value of 𝜑(𝑥) and 𝑙𝑜𝑠𝑠 is a function which provides a 

continuous approximation of a cost measurement for predicting the value of 𝜑 when 

actual label is 𝑦. 

Unfortunately, to calculate the 𝐸 a possibility function 𝑃(𝑥, 𝑦) is needed and there is 

no way to estimate it. So, in the place of expected loss, the empirical loss 𝐿𝑒 can be 

used. Mathematically, empirical loss can be defined in 𝐿𝑒: ℝ𝑑 → ℝ as follows. 

𝐿𝑒(𝛼) =  1𝑚 ∑ 𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎), 𝑦𝑖))𝑚
𝑖    [3.6] 

Where 𝑚 ∈ Ν and represents the size of a dataset {(𝑥𝑖, 𝑦𝑖)}𝑖=1𝑛 ⊆ ℝ𝑑𝑥 × ℝ𝑑𝑦. 

Finally, to redefine the problem one last time, the goal of the training of a NN is the 

minimization of the empirical loss 𝐿𝑒 [21]. 

 This optimization problem though usually is highly nonlinear and nonconvex, which 

makes it near impossible to solve in a global minimum. To counter this, gradient 

methods have been used in the relevant literature, resulting in sufficiently good 

approximations. The fundamental observation these gradient based approaches use, 

is that the gradient of the objective function [3.6] with respect to the parametric 

vector 𝑎 can be computed by the chain rule, using algorithmic differentiation [21]. 

Machine learning researchers refer to this technique as backwards propagation, and 

it is the bedrock of modern Neural Networks. Backpropagation, for short, is 

responsible for computing the gradient of the empirical loss function in respect to its 

weights and biases i.e., the vector 𝑎, but how the gradient is used to optimize the 

objective is bound by the optimization algorithm that one chooses to apply on the 

NN. Famous examples of optimization algorithms are stochastic gradient (SG), batch 

gradient descent, etc. 

It is important to note that there is a good reason that equations 3.1 and 3.2 have 

different comparative operators (= and ≈, respectively), and that the discussion 

revolves around approximate minimization of the empirical loss. Even if the 

optimization procedure could construct an exact minimizer of the stated objective 

function (like the = implies in equation 3.1) that is decidedly not desired, because it 

would constitute overfitting the prediction function 𝜑. An overfitted 𝜑 will be 

excellent in predicting the behavior of the data that is trained on, but it becomes so 

tailored to them that is unable to unsheathe the features on any new data it 

encounters. Overfitting usually is the result of prolonged training or insufficient 

volumes of data, and it can be countered by setting an upper threshold on the 

desired metric which will terminate the training when reached [20]. For example, if 

an accuracy threshold of 95% for the predictions is set, the training will end if 

reached before the predetermined time. Also using less data from the set, 

implementing regulation and constructing as simple a NN as possible can protect the 

model from overfitting on its training data. All the above, work in service of a very 

important property that the final solution is expected to have, generalizability. It is 
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essential for a NN to be able to provide its user with reliable label classification on as 

big a range of data as possible. [20] 

3.3 Optimization methods for Neural Networks 

 

Since the basic lens through machine learning is viewed i.e., the minimization of 

empirical loss, has been established, the next step is to review exactly how this 

optimization problem can be resolved. To do that, the concept of gradient descent 

needs to be formally introduced. On top of this pretty straight forward concept, the 

majority of the most used optimization algorithms for NNs are built. It is also 

important to point out that for the remaining of the chapter 3.3, the assumption is 

made that the minimized functions are continuously differentiable on ℝ𝑛 → ℝ , that 

full gradients can be computed in each iteration but also that the functions are not 

necessarily convex.  

3.3.1 Gradient Descent 

 

Assuming a hypothetical multi-variable function 𝐹 is differentiable on point 𝑥, 

assuming 𝑥 is part of the domain of 𝐹, then 𝐹 decreases the fastest in the direction 

of the negative gradient of 𝐹 on 𝑥 i.e., −∇𝐹(𝑥). The logical continuum of this 

observation is that if 𝑥𝑛+1 are also part of 𝐹’s domain and defined like so: 𝑥𝑛+1 = 𝑥𝑛 − 𝛾∇𝐹(𝑥𝑛)   [3.7] 

with 𝛾 ∈ ℝ+ small enough for the following to be true. 𝐹(𝑥𝑛)  ≥ 𝐹(𝑥𝑛+1)   [3.8] 

To contextualize the above, one can take small steps (the size of the steps is defined 

be 𝛾) by subtracting the term 𝛾∇𝐹(𝑥𝑛) from 𝑥𝑛, while fiddling with the size of the 

step 𝛾, until a local minimum for 𝐹 is reached. In theory, in the (𝑛 + 1) in which the 

relation [3.8] is no longer true, the value of 𝑥𝑛 is the local minimum. If the 

hypothetical function 𝐹 is convex, then all local minima are also global, so an 

absolute minimization can be achieved.  
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Image 7. [B] Visual representation of gradient descent for a 2-variable function. 

One very important aspect of the algorithm presented above, is how one goes about 

choosing a 𝛾 to use in each step. One approach would be exact line search, which 

decides 𝛾 using the following relation. 𝛾𝑛+1 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑛[𝑥𝑛 − 𝛾𝑛∇𝐹(𝑥𝑛)]   [3.9] 

This method is reliable, but quite computationally expensive, so another method 

that is being derived from exact line search and constitutes the most popular way of 

selecting 𝛾 for every iteration of the gradient descent algorithm is backtracking line 

search. In this method, parameters 𝑐 ∈ (0, 12) and 𝑏 ∈ (0,1) are assumed and then 

the multiplication 𝑥𝑛+1 = 𝑏𝑥𝑛 is performed until the following condition is satisfied. 

Then, the inequality becomes an equality, and it is resolved for 𝛾𝑛. 𝐹( 𝑥𝑛+1 − 𝛾𝑛+1∇𝐹(𝑥𝑛+1)) ≤ 𝐹(𝑥𝑛) −  𝑐𝛾𝑛 ∥ ∇𝐹(𝑥𝑛) ∥ 2   [3.10] 

The parameter γ is also known as learning rate in the context of machine learning 

optimization [20]. 

Gradient descent is a very elementary but effective optimization algorithm which 

entails some computationally expensive steps, especially for large datasets like the 

ones that are being used for machine learning. As a direct result of this realization, 

some of the most used and useful optimization schemes for machine learning 

applications are based on it but are cleverly tweaking its formula to make it even 

more effective and faster. Some of these methods will be presented in the remaining 

of this subsection are full gradient, accelerated gradient, stochastic gradient, ADAM, 

etc. Although, it should be noted that in some cases using gradient descent is still 

doable and actually quite effective, for example shallowly trained NN demonstrate 

sufficient results even with the most elementary gradient descent implementation.  

It is quite noteworthy that some of the most useful optimization techniques are not 

modern approaches, but they were actually conceived as far back as 1951, when 

Robbins & Monroe published their, now classic of machine learning literature, paper: 
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A stochastic gradient approximation [22]. Other examples are Frank & Wolfe (1956) 

Conditional Gradient [23], Bertsekas and Tsitsiklis (1989) Parallel coordinate descent 

and incremental gradient algorithms [24] and Eckstein & Bertsekas (1991) 

Alternating direction method of multipliers (ADMM) [25]. It is interesting that the 

theoretical bedrock for artificial intelligence (AI) was laid so far back, but the 

computational complexity of these algorithms was too much for the computers of 

the time to cope with. 

It is important to note that rarely, if ever, gradient descent methods converge in only 

one training session upon the training dataset. So, it is very important to perform 

multiple passes of the entire dataset through the network. The number of times the 

training upon the entire dataset is repeated is called an epoch.  

3.3.2 Stochastic Gradient Descent 

 

One of the most elementary but powerful improvements upon gradient descent is 

stochastic gradient descent (SGD) [22]. Commonly viewed as a stochastic 

approximation of gradient descent, SGD instead of computing the full gradient using 

the entirety of the dataset, it calculates an estimate derived by a randomly selected 

subset of the dataset. The goal of SGD is to minimize the empirical loss function with 

the smallest possible computational complexity, in expense of a lower convergence 

rate (meaning more time until the optimization finishes). Mathematically, SGD can 

be expressed as follows. 𝑎𝑛+1 ←  𝑎𝑛 − 𝛾∇[𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎𝑛), 𝑦𝑖))]𝑛    [3.11] 

Where 𝑛 ∈ 𝑁, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, … ) as presented in subception 3.2, 𝑎1 is given, 

the pair (𝑥𝑖, 𝑦𝑖) is randomly selected from the entirety of the dataset and 𝛾 is a 

positive constant step also known as learning rate. 

As a result of the above, each iteration of the algorithm calculates just the gradient ∇[𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎𝑛), 𝑦𝑖))]𝑛 and nothing else before the parameters of the NN update, 

which leads to really computationally cheap iterations. These frequent updates also 

help the algorithm to move out of local minima due to the violent way they change 

the value of the learning rate in each iteration. Another feature that differentiates 

the method from the crowd is the non-deterministic aspect of its implementation. 

The iteration sequence is not determined only by fixed resources, namely the loss 

function 𝐿𝑒, the starting point 𝑎1 and the step size 𝛾𝑛, but also by the random 

selection of the data point (𝑥𝑖, 𝑦𝑖). 

On the downside, the effect on the computational expense cannot be noticed unless 

the dataset is really large and in fact the intensity of the large number of iterations 

might harm the overall computational cost in smaller datasets. Also, the very feature 

that defines SGD, the fact that each step of the descent is computed from just one 

sample, is possible to have the opposite of the intended effect and steer the descent 

into completely wrong direction. 
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3.3.3 Batch Gradient Descent 

 

Another really useful and frequent variation of gradient descent is Batch Gradient 

Descent (BGD). This optimization algorithm follows the formula of gradient descent 

much closer than SGD did and it does not use just one sample to derive the network 

parameters before each update. In contrast, BGD compartmentalizes the dataset in 

much smaller mini datasets called batches. Then, each batch is fed into the NN, their 

gradient is computed, and then the weights and biases are updated. Mathematically 

BGD can be expressed like so. 𝑎𝑛+1 ←  𝑎𝑛 − 𝛾𝑛∇𝐿𝑒𝑛(𝑎𝑛)   [3.12] 

Where 𝑛 ∈ 𝛮 and represents the number of batches, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, … ) as 

presented in subsection 3.2, 𝛾𝑛 is a positive constant step selected using 

backtracking line search as presented in subsection 3.3.1, or even be selected a 

steady value depending on the implementation and 𝐿𝑒 is the empirical loss function 

defined in 3.6. 

Using BGD requires the computation of a gradient which entails the parameters 

derived from all the data points in a batch. This could be quite computationally 

expensive, compared to SGD, but the result is expected to be significantly better 

oriented towards the minimum of the function [20] [21].  

Both SGD and BGD are two of the most elementary and effective optimization 

methodologies there are. As a result of this it stands to reason to frame in a 

comparative way, as they have already been presented. They also provide the basis 

for building much of the more complicated algorithms used in industry and academic 

level. 

3.3.4 Gradient Descent with Momentum 

 

Also commonly referred to as heavy ball method, Gradient Descent with Momentum (GDM) 

is yet another differentiation of the original gradient descent algorithm. On this alteration, 

each step of the descent is computed by a combination of the steepest step direction and 

the by the difference of the last two iterations. Mathematically this procedure can be 

expressed like so. 𝑎𝑛+1 ←  𝑎𝑛 − 𝑤𝑛∇𝐿𝑒𝑛(𝑎𝑛) + 𝑏𝑛(𝑎𝑛 − 𝑎𝑛−1)   [3.13] 

Where 𝑛 ∈ 𝛮, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, … ) as presented in subsection 3.2, 𝑤𝑛 and 𝑏𝑛 

are scalar sequences that can be either set dynamically or be predetermined and 𝐿𝑒 

is the empirical loss function defined in 3.6. The term 𝑏𝑛(𝑎𝑛 − 𝑎𝑛−1) is often 

referred to as momentum term and, depending on the intensity of 𝑏𝑛, regulates the 

direction of the descent and does not allow great oscillations from step to step.  

There are two main approaches for deciding the values of 𝑤𝑛 and 𝑏𝑛. The first is 

setting a fixed value, for which 𝑤𝑛 = 𝑤 > 0 and 𝑏𝑛 = 𝑏 > 0. The optimal selection 
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of this global values is the result of trial and error, but the more experience one has 

with this method the easier it gets to choose them effectively. There also analytical 

ways to find the optimal 𝑤 and 𝑏, but they required knowledge of information that 

might not be available, for example the minimum and maximum eigenvalues of the 

minimized function. Alternatively, if and only if the objective function is strictly 

convex quadratic, then 𝑤𝑛 and 𝑏𝑛 can be optimally selected for each 𝑛 ∈ ℝ by 

finding the pair that satisfies the following condition. 𝑚𝑖𝑛(𝑤,𝑏)[𝐿𝑒(𝑎𝑛 − 𝑤∇𝐿𝑒(𝑎𝑛) + 𝑏(𝑎𝑛 − 𝑎𝑛−1))]   [3.14] 

This method has demonstrated significantly superior results regarding the rate of 

convergence from a simple gradient descent, both with stationary and with dynamic 

parameter selection. The key difference between the two approaches, is that the 

dynamic method - even though it is computationally more expensive, and its 

convergence behavior is more complex than the linear convergence rate of the 

stationary method – provides finite convergence guarantee, while its stationary 

counterpart does not [20] [21]. 

As it is expected, GDM can work both with stochastic and batch approaches, 

inheriting each methods problems and advantages. 

3.3.5 Accelerated Gradient Descent 

 

Another similar, but distinctly different method is Accelerated Gradient Descent 

(AGD) or Forward-Backward Method, as its author named it [26]. It can be viewed as 

a reversal of the GDM method. If we consider the GDM procedure to act by taking 

the steepest descent step first and then applying the momentum term, the AGD acts 

in the opposite way by letting the effect of the momentum term take place first and 

from that point taking the steepest descent step. This procedure can be represented 

as a two-step approach like so. �̃�𝑛 ←  𝑎𝑛 + 𝑏𝑛(𝑎𝑛 − 𝑎𝑛−1)   [𝑠𝑡𝑒𝑝 1] 

                                                                                                                                        [3.15] 𝑎𝑛+1  ←  �̃�𝑛 − 𝑤𝑛∇𝐿𝑒𝑛(�̃�𝑛)   [𝑠𝑡𝑒𝑝 2]  
Where 𝑛 ∈ 𝛮, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, … ) as presented in subsection 3.2, 𝑤𝑛 and 𝑏𝑛 

are scalar sequences that can be either set dynamically or be predetermined and 𝐿𝑒 

is the empirical loss function defined in 3.6. 

The distinction between AGD and GDM presented above could seem minor. On the 

contrary though, it has been demonstrated that for 𝑤𝑛 = 𝑤 > 0, for all 𝑛 ∈ 𝛮, for 𝑏𝑛 ↗ 1, convex and continuously differentiable 𝐿𝑒 and Lipschitz continuous gradient 

the optimal complexity of iterations can be achieved. In fact, for the exact same case 

the GD method would converge in a rate of ℴ(1𝑛), while the AGD method would 

converge in a rate of ℴ( 1𝑛2). Obviously, the difference between the two is huge and 
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this result is considered to be, in the time of writing, the fastest converging rate for a 

traditional gradient descent-based method there is [20] [21]. 

On the other hand, while the rate of descent for AGD is quite impressive, the 

computational burden to perform the iteration [3.15] is quite heavy. As a result of 

the above, caution is advised when AGD is implemented because the overall time 

until convergence could be larger than other methods due to the size of the dataset. 

As a rule of thumb, bigger sets tend to gain the most from computationally 

expensive methods like AGD. 

3.3.6 The Adam Optimizer  

 

The final optimization algorithm that will be presented on the context of this work, is 

the Adam optimizer. Interestingly enough, Adam is not an acronym, and the name is 

rooted in the term adaptive moment estimation which is the underlying concept the 

optimizer is based on. The algorithm is an advancement of the previously reviewed 

method SGD and has proven itself to be one of the most computationally efficient 

algorithms there is, even for quite noisy or sparse gradients. Since its conception in 

2015, it has become one of the staples of machine learning due to its straightforward 

implementation, efficiency and universality with minimal tuning.  

Adam is a prime example of modern approaches in machine learning optimization 

algorithms, so it is quite more complex than any of the algorithms previously 

presented in this work. It can be compartmentalized into six distinct steps that are 

responsible for each iterative descent step. 𝑔𝑛+1 ←  ∇[𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎𝑛), 𝑦𝑖))]𝑛   [𝑠𝑡𝑒𝑝 1] 𝑚𝑛+1 ←  𝑏1𝑚𝑛 + (1 − 𝑏1)𝑔𝑛+1   [𝑠𝑡𝑒𝑝 2] 𝑢𝑛+1  ←  𝑏2𝑢𝑛 + (1 − 𝑏2)𝑔𝑛+12    [𝑠𝑡𝑒𝑝 3] �̂�𝑛+1 ←  𝑚𝑛+11 − 𝑏1𝑛+1    [𝑠𝑡𝑒𝑝 4] 

�̂�𝑛+1 ← 𝑢𝑛+11 − 𝑏2𝑛+1    [𝑠𝑡𝑒𝑝 5] 

𝑎𝑛+1 ←  𝑎𝑛 − 𝛾�̂�𝑛+1√�̂�𝑛+1 + 𝜖    [𝑠𝑡𝑒𝑝 6] 

The above is the iteration scheme [3.16] where, 𝑛 ∈ 𝛮, 𝑎 = (𝑊1, 𝑔1, 𝑊2, 𝑔2, … ) as 

presented in subsection 3.2, [𝑙𝑜𝑠𝑠(𝜑(𝑥𝑖; 𝑎𝑛), 𝑦𝑖))]𝑛 is the stochastic gradient as 

presented in 3.3.2, 𝑚 and 𝑛 are the first and second moment estimates respectively 

(from where the method takes its name), 𝑏1 and 𝑏2 ∈ [0,1) are the exponential 

decay rates for the first and second moment estimate, �̂� and �̂� are the bias-

corrected first and second moment estimates, 𝑏1𝑛 𝑎𝑛𝑑 𝑏2𝑛 are the decay rates 

denoted to the power of the 𝑛 which is the number of the iteration the algorithm is 
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currently on, 𝑎 > 0 is the step size and finally 𝜖 > 0 is a really small, steady 

stabilization factor which exists to prevent division with zero. 

 According to the original creators of Adam, as well as multiple empirical 

observations, the parameters of Adam typically require little to no tunning in a case-

to-case basis. The parameters they recommend as default values are, 𝑎 = 0.001,𝑏1 = 0.9, 𝑏2 = 0.999, 𝜀 = 10−8 and initialization of the estimates with 𝑚0 = 0 and   𝑢0 = 0. Of course, if a particular case needs some reconfiguration of the parameters 

described above, some trial and error will be needed to retune them to the 

appropriate values. In the general case though, they work fairly well [27]. 

Adam is very powerful optimization algorithm which outperforms its contemporaries 

when it comes to computational efficiency and drastically reduces training times. Of 

course, like other algorithms presented in this work, Adam needs to be implemented 

carefully and cannot be viewed a panacea against all optimization problems. Despite 

of its great performance, Adam performs best in really big and complex datasets and 

is the go-to algorithm for many applications. If the dataset though is relatively small 

or lacks complexity the usage of Adam, withs its multi-step iteration scheme, can 

actually harm the overall. Also, the type of machine learning approach implemented 

plays an important role in the overall performance. For example, for Neural 

Networks that are the focus of this work, and for a fairly big and complex datasets 

like the image based MNIST and CIFAR-10, the researchers behind Adams original 

paper found that all other factors considered steady, their method easily 

outperformed the best of their contemporaries as one can observe in figure 7 and 

figure 8 with two different architectures. The architectures referenced in figures 7 

and 8, are the Multi-Layer Preceptor (MPL) and a Convolutional Neural Network 

(CNN) which will be explained and analyzed in the following sections of this work. 

 



25 

 

Figure 7. [27] Training cost of an MLP Neural Network on the MNIST dataset, using the Adam 

optimizer compared to other popular modern optimizers.  

 

Figure 8. [27] Training cost of an CNN Neural Network on the CIFAR-10 dataset, using the 

Adam optimizer compared to other popular modern optimizers.  

3.3.7 Acknowledgements of Omissions 

 

It is important to recognize that this work neglected to mention and review a lot of 

fairly important optimization algorithms often used in machine learning. One 

especially important category of methods that this work omitted, are the Newton 

Method based algorithms. On these kinds of approaches, minimization of the 

objective function is not based on the original gradient descent method. Briefly 

described, one uses the second order approximation of the objective function 

obtained from the Taylor series of the function and, after selecting an appropriate 

step size, uses the gradient of the approximation to decide the direction of descent. 

This method can converge in fewer iterations compared to gradient descent and also 

guarantees a solution. Unfortunately obtaining the second order representation of 

the function either through numerical means (as mentioned above) or analytically 

could be from computationally expensive down to completely impossible. That said, 

there are certain cases that Newton based approaches are suitable, but in the 

context of this work is preferred not to formally introduce them [20]. The main 

reason behind this decision is that the literature review of the relevant papers about 

fault diagnosis of rotating machinery, revealed that gradient based approaches are 

more than capable to handle the problem of time-series classification and the 

consensus around the best optimization algorithms for fault diagnosis is heavily 

tilted towards gradient based methods.  

It is also important to point out that the sub selection of methods presented above 

are by no means a thorough review of the vast field of optimization methods for 

machine learning problems. The goal of this section is to present the basics of the 
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field (gradient descent, SGD, BGD), a few improvements upon this basic (GDM, AGD) 

and a modern approach (Adam), in order to present the ever-evolving world of 

machine learning optimization and how modern methods are building upon the 

previous work, while laying the ground for the case study and the specific methods 

that will be used. In order to achieve that goal, only the above methods are 

presented, and many other modern and more complex methods are not. 

Finally, the methods presented in this section are well documented and thoroughly 

tested in the relevant literature. As a result of that, there are considered useful and 

effective so their respective convergence analysis that shows exactly why these 

methods work will be omitted. Such an analysis is considered beside the point of this 

thesis and the methods will be used as presented without additional proof of their 

effectiveness. 

3.3.8 Some Observations for the Selection of an Optimization Method 

 

Optimization algorithms are an essential part of every machine learning problem and 

the selection of the right one could greatly affect the efficiency, performance and 

success of the training procedure. However, this easier said than done since there 

are literary hundreds of different ones to choose from, each one accompanied by its 

own perks and traits. Luckily though most of the methods can be boiled down to the 

basics, which are the SGD and BGD methods, so one can decide which suits the 

problem in hand and start from there. In any case, selecting an optimization 

algorithm is not a trivial task and a useful tool can always be trial and error tests. 

Also, having extensive knowledge of the relevant literature and a fair amount of 

experience is essential to be able to find the methods that better work with one’s 

case. There are no strict rules to follow when deciding optimization approaches, and 

chances are that more than a few can perform the task in hand, after that it is 

matter of each case’s requirements in performance and effectiveness. 

3.4 The Backpropagation Algorithm 

 

As previously stated, the backpropagation algorithm is responsible for the important 

task of actually calculating the gradients that the optimization algorithm will use to 

minimize the empirical loss function. Calculating the gradient of a function might be 

a trivial task for a simple function with a few parameters, but even for a relatively 

small NN the empirical loss functions are comprised by many thousands of different 

parameters. As a result of that an efficient and fast algorithm needs to be introduced 

to perform that task. Backpropagation is by far the most used algorithm for the task, 

is incredible efficient on its job and will be the focus of this work on that field.  

By now, a handful of different algorithms have been presented and have been 

layered upon each other, so it is a good time to compartmentalize the training 

procedure of the NN in order to simplify it and better understand it. The training of 
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the NN can be divided into two stages, first comes the forward pass and the 

backwards pass. The forward pass begins the moment a training value is introduced 

to the first layer of the NN, then follows every transformation that is happening on 

this value to every other hidden layer and finishes when then value, now 

transformed by the effect of the layers, the activation functions and the 

weights/biases of each node, reaches the output layer. At this point, the backwards 

pass can take place. First, the backpropagation algorithm using the chain rule 

calculates the gradients, then these gradients are fed into the optimization algorithm 

that decides the direction of descent and finally the weights and biases of each node 

are updated, and the network is ready to perform this task again. The result of each 

iteration of the backwards pass, is a swift to the weights and biases of the whole NN, 

to a direction and magnitude that will most effectively move the objective function 

of the problem towards its minimum [21]. 

Let us review now exactly how the backpropagation algorithm handles the 

calculation of these huge gradients efficiently. As previously stated, backpropagation 

takes advantage of the chain rule the for calculation of derivatives, so defining the 

chain rule seems like a great place to start the analysis. Assuming 𝑛 function𝑠 𝑓1, 𝑓2, … , 𝑓𝑛  differentiable, which can define a composite function 𝑓1 ∘ (𝑓2 ∘ … (𝑓𝑛−1 ∘ 𝑓𝑛)), then the generalized chain rule can be expressed like so. 𝑑𝑓1𝑑𝑥 = 𝑑𝑓1𝑑𝑓2 ⋅ 𝑑𝑓2𝑑𝑓3 ⋅ … ⋅ 𝑑𝑓𝑛𝑑𝑥     [3.17] 

The chain rule, in practice, means that knowing the rate of change of 𝑓𝑛 relative to 𝑥 

and every other rate of change of  
𝑑𝑓𝑛−1𝑑𝑓𝑛   for every function of the convolution, then 

the rate of change  
𝑑𝑓1𝑑𝑥   can be computed [IV]. In the context of NN this property can 

be extremely useful, because when the time comes during the training of a NN to 

calculate the gradient of the empirical loss function, which in most cases is 

comprised from thousands of parameters, instead of computing directly that huge 

gradient, one can calculate the much smaller gradients between each node starting 

from the back of the NN, and then multiply them to find the gradient of interest. This 

exactly what the backpropagation algorithm does, and it is the reason than NN are 

computationally manageable instead of impossible. 

Since the intuitive explanation of the backpropagation algorithm has been 

presented, and with that understanding in mind, it can be useful to rephrase the 

chain rule in the context of the backpropagation algorithm. This is a good point to 

remind that what the actual quantity that the algorithm aims to calculate is the 

partial derivative of the empirical loss function in respect to the parametric vector 𝑎 

which contains the weights and biases of the network. Mathematically, it can be 

represented as follows. 𝜕𝐿𝑒𝜕𝑎 = ∑[ 1𝑛 ∑ 𝜕𝐿𝑒𝑘,𝑙𝜕𝑎𝑛,𝑙
𝑛−1
𝑘=0   ]𝑙𝐿

𝑙=0   [3.18] 
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Where 𝑙 is the index of the layer in which the algorithm currently is, 𝐿 is the number 

of all the layers. In order to calculate the right-hand term, the equation [3.19] is 

needed. 𝜕𝐿𝑒𝑛,𝑙𝜕𝑎𝑛,𝑙 = 𝜕𝑧𝑛,𝑙𝜕𝑎𝑛,𝑙 ∙ 𝜕𝑥𝑛,𝑙𝜕𝑧𝑛,𝑙 ∙ 𝜕𝐿𝑒,𝑙𝜕𝑥𝑛,𝑙    [3.19] 

In order to calculate the result of the equation [3.19], some extra definitions need to 

be established. First, 𝑧𝑛𝑙 is basically the right-hand term of the previously reviewed 

[3.3] equation. 

𝑧𝑛,𝑙 = ∑(𝑎𝑛,𝑙𝑥𝑛,𝑙−1) =𝑛
𝑖=0  (𝑊0,𝑙𝑥0,𝑙−1 + 𝑔0,𝑙) + (𝑊1,𝑙𝑥1,𝑙−1 + 𝑔1,𝑙) + ⋯   [3.20] 

As a result of the above, it is possible to calculate all the derivates of the [3.19] 

equation, and the following results. 𝜕𝐿𝑒𝜕𝑎𝑛,𝑙 = 𝑥𝑛,𝑙−1𝜎′(𝑧𝑛,𝑙) 𝜕𝐿𝑒𝜕𝑥𝑛,𝑙    [3.21] 

Where 𝜎′ is the derivative of the activation function. As one can observe, there is 

still a partial derivative on the expression [3.21], but one shall fear not because the 

useful tool of the chain rule, applied over the entire layer leads to the following 

expression. 𝜕𝐿𝑒𝜕𝑥𝑛,𝑙 = ∑ 𝑥𝑛,𝑙+1𝜎′(𝑧𝑛,𝑙+1) 𝜕𝐿𝑒𝜕𝑥𝑛,𝑙+1
𝑙−1
𝑛=0    [3.21] 

Unfortunately, there is yet another derivative in [3.21] as well, but as one can see, it 

is for the layer 𝑛 + 1, so one can use the expression again and again, for all the 

layers of the NN. The great thing though, is that the number of layers is finite and the 

last layer – the output layer – does not have any weights or biases and the last 

derivate can be calculated to be the following. 𝜕𝐿𝑒𝜕𝑥𝑛,𝐿 =  2(𝑥𝑛,𝐿 − 𝑦𝑛)   [3.22] 

Now everything is known, and the backpropagation algorithm can finally compute 

the gradient and then update every weight and bias in the network. This procedure 

is often referred to as “learning”. On each iteration of the algorithm, for every data 

point of the training dataset that is, the NN is “learning” a few more things about the 

dataset and gets a small step towards the minimum of the objective function [IV] 

[28]. 
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3.5 Activation functions 
 

Activation functions, as presented in subsection 3.3, are responsible for the way 

each transformed sample moves from one layer of the network to the next. The 

selection of activation functions between the layers can have drastic impact on the 

training of a NN and has to be done carefully. The main reason behind their 

importance is that they introduce non-linearity into the network. Taking another 

look on the equation [3.3], it can become quite clear that without the 𝜎 activation 

function this would be nothing more than a linear transformation of the receiving 

signals. 𝑥𝑖(𝑗) = (𝑊𝑗𝑥𝑖(𝑗−1) + 𝑔𝑗)    [3.3 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝜎] 

Practically, a NN formed from layers connected with just linear functions between 

them would inevitably result in a prediction function 𝜑 that would be itself a linear 

function, since the composition of linear functions is also a linear function. That could 

be a problem since there is no chance that the data the NN tries to model are linear. 

So, in order to capture this non-linearity of the data the network is trained on, a non-

linear activation function is introduced to parse the output of one layer to the next.  

The selection of the exact function that will be placed in each layer is actually quite 

arbitrary and, like so many things in machine learning, there is no particular 

cookbook to follow when designing a network. Some of the most frequently used 

though are the following activation functions. 

● The sigmoid function. It is one of the most used activation functions there are and 

maps the output of the layer in the range (0,1). Sigmoid function and functions that 

occur from the sigmoid (e.g., the derivative of the sigmoid is also commonly used as 

activation function) are often used in classifiers. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  11 + 𝑒𝑥    [3.23] 
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Figure 9. The sigmoid activation function. 

● The hyperbolic tangent function. It maps the output of the layer in the range (0,1), 

and it is most commonly used also in classifiers, but its use has been linked to the 

vanishing gradient problem, which can cause gradient based optimization methods 

to completely fail in training.  tanh(x) =  21 + 𝑒−2𝑥 − 1   [3.24]  

 

Figure 10. The tanh function. 

● The rectified linear unit function or ReLU for short. This is one of the most modern 

and by far most used activation function. It is really computationally efficient, 

because if the output of the layer is smaller than zero, the neuron is not activated 

(i.e., just a zero is returned). At time of writing, ReLU has become pretty much the 

default for most cases of NN and has demonstrated itself to be really effective. ReLU 

is so successful that a good rule of thumb when one tries to select an activation 
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function, is to start from ReLU and if the results are not optimal then try some other 

function. 𝑅𝑒𝐿𝑈(𝑥) = 0, 𝑖𝑓 𝑥 < 0  𝑜𝑟                                                                        [3.25] 𝑅𝑒𝐿𝑈(𝑥) = 𝑥, 𝑖𝑓 𝑥 ≥ 0        

 

Figure 11. The ReLU function. 

● The SoftMax function. This function is most commonly used on the last layer 

before the output layer for multiclass classification problems and returns the 

possibility of a sample to be part of each class involved in the problem.  𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥)𝑗 =  𝑒𝑥𝑗∑ 𝑒𝑥𝑘𝑁𝑛=1    [3.26] 

Where 𝑗 = 1, … , 𝐾 the number of classes of the problem. 

 

Figure 12. The SoftMax function. 
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3.6 Loss Functions 
 

Looking back to the equation [3.6], the term 𝑙𝑜𝑠𝑠 function has been used, but not 

yet thoroughly explained. As previously presented, 𝑙𝑜𝑠𝑠 is a function which provides 

a continuous approximation of the cost measurements for predicting the value of 𝜑 

when actual label is 𝑦. To frame it in a more intuitively way, the loss function has the 

challenging job of trying to unsheathe the underlying effect that previous layers had 

on the sample and boil down to a single value which, if shrank, will indicate an 

improvement of the model. The described task is by no means an easy one, but 

extensive research on the field has presented a few different options for on to 

choose from when constructing a NN. Again, the selection of the right loss function 

has an innate arbitrariness and is based on comparative trials, as well as some 

experience with the field. That being said, at this point it has become pretty standard 

that for classification problems the best and most useful loss function is by far the 

cross-entropy loss. 

Cross-Entropy Loss simply known as cross-entropy, is an approach that each 

predicted probability is compared to the actual output, known by the training 

dataset, and their comparison produces a score that penalizes the probability in 

accordance with its distance from the actual value [29].  

To understand it, the first thing that needs a definition is entropy itself. Entropy is 

the measure of uncertainty of a randomly selected variable. Mathematically 

expressed like so. 𝐻(𝑥) =  − ∑ 𝑝(𝑥) log(𝑥)    [3.27]𝑥  

Where 𝐻 is the entropy, 𝑥 the random variable and 𝑝 the probability mass function 

of 𝑥.  

Taking a closer look on the equation [3.27], it is revealed that the entropy is closely 

connected to the expectation of 𝑥. 𝐻(𝑥) =  𝔼𝑋~𝑝(𝑥) [log ( 1𝑝(𝑥))]   [3.28] 

From [3.28] it can be concluded that the entropy of a random variable 𝑥 is the 

expected value of log ( 1𝑝(𝑥)) and it can be denoted as 𝐻(𝑝).  
If a distribution 𝑞(𝑥) is assumed, which describes a model’s approximation of the 

distribution of 𝑝(𝑥), the relative entropy between 𝑝 and 𝑞 which measures their 

difference.  𝐷(𝑝||𝑞) =  𝔼𝑋~𝑝(𝑥) [log (𝑞(𝑥)𝑝(𝑥))]   [3.29] 
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The equation that defines the cross-entropy loss distribution, denoted as 𝐻(𝑝, 𝑞) is 

the addition of [3.28] and [3.29]. 𝐻(𝑝, 𝑞) =  𝐻(𝑝) + 𝐷(𝑝||𝑞)   [3.30] 

Finally, if the equation [3.30] is expanded, the final form of the cross-entropy loss 

distribution can be expressed by the following.  𝐻(𝑝, 𝑞) =  𝔼𝑋~𝑝(𝑥) [log ( 1𝑞(𝑥))]   [3.31] 

The goal of every machine learning that employs the cross-entropy approach is to 

minimize this expected value described by [3.31]. 

 

3.7 Common Neural Network Layers and Architectures 
 

Everything that has been presented by this point, was presented under the 

assumption that [3.3] is the equation that governs the transformations that take 

place in every layer in a NN, that assumption though is not always the case. Equation 

[3.3] defines a type of layer called canonical fully connected layer and the NN built 

with these kinds of layers are known as Multilayer Perceptrons (MLP). They are the 

introductory point for every analysis of how the NN work because they are simpler 

than different architectures, but also the scope of their success can be limited due to 

their simplicity. That being said, other layers and different architectures (that ones 

that are of interest in the context of this work at least) are based on the same 

analysis and use the same optimization methods, forward passes and backward 

passes to minimize their empirical loss function. The sole difference between the 

architectures that will be presented in this subsection is the transformation that 

happens when a sample reaches the node of the layer. It is important to note that, 

as simple as MLPs might be, they are still a useful tool and in certain problems can 

work with satisfactory results, but they certainly leave plenty of room for 

improvements that different layers and architectures try to address.  

3.7.1 Convolutional Neural Networks  

 

Convolutional Neural Networks (CNN) are by a landslide the most referenced and 

most commonly used network architecture there is as figure 13 clearly shows. 
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Figure 13. [VII] Comparative figure of the evolution of the number of references for CNN, 

SVM, LSTM, MLP and RNN in the English literature from 1970 to 2019. 

CNNs were designed with the task of image classification in mind, and in that 

respect, they are extremely successful and are the bedrock of some of the most well-

known NN on the field like AlexNet and ResNet. Their main advantage is their ability 

to preserve the spatial relationship between the data due to the sparse connectivity 

that governs the weight and biases matrix. Another biproduct of that fact is that 

CNNs are much more computationally cheap than their alternatives due to the small 

number of weights and biases that a sparse matrix need to contain. That also means 

that a CNN can be drastically larger in scope than any other architecture. For all 

those reasons CNNs are really effective in feature extraction from two-dimensional 

images, three-dimensional video feeds and, most importantly for this work, from 

one-dimensional time series data. Additionally, another important feature of CNNs is 

weight sharing. In CNNs, the weights are not node-specific like the ones previously 

reviewed on MLPs, rather they are layer-specific meaning that the whole layer 

shares the same weights which drastically reduces the computational burden of the 

model [30] [31] [32]. 

Typically, two kinds of layers are needed to build a CNN, the convolutional layer and 

the pooling layer. Usually, canonical fully connected layers are also used towards the 

end of the network to connect the convolutional layers with the output layer. 

● Convolutional Layers: Arguably the most important part of the network, they are 

responsible with the task of performing convolutional transformations between a 

predetermined filter and the input. Filters are matrixes with predefined size, that 

contain the weights of the layer. Typically, the initialization filter in the beginning of 

the training is just an array of random numbers. In general terms, convolution is the 

procedure of taking the filter and performing a sliding dot operation with the 

entirety of a given sample signal. Mathematically this idea can be expressed like so. 

𝑥𝑘𝑙 = 𝜎(𝑔𝑘𝑙 + ∑ (𝐹𝑖𝑘𝑙−1 ∗𝑁𝑙−1
𝑖=1 𝑥𝑘𝑙−1))   [3.32] 
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Where 𝑘 ∈ 𝑁 is the number of layers in the 𝑙 ∈ 𝑁 layer, 𝐹 is the filter containing the 

weights of the layer and ∗ is the convolutional operator.  

The most important thing about any CNN is its filter because it is responsible what is 

referred to as feature extraction. Features are the parameters that define a data 

sample, and their existence or absence in the data is moving the training forward. 

For example, if one tries to train a NN to predict if a person will develop a disease 

based on their weight, height, age and BMI, those four things would be the features 

defining the problem. In other NN architectures, this categorization into features 

needs to happen manually from the NN’s designer, but CNNs are able to 

automatically extract the features from the dataset through the use of their filter. 

Generally speaking, filter size heavily effects the level of detailed features extracted 

from the data. Larger filters tend to extract more abstract features from a dataset, 

while smaller ones extract more detail. For that reason, bigger filters tend to be 

placed earlier on the network and smaller later on. For example, if a CNN is fed an 

image of a person, the first layers might extract the contour of the person and the 

final layers the color of their eyes. 

There are also two more important parameters unique in convolutional layers, 

padding and stride. Padding is a relic of the image recognition origins of CNNs, and 

its aim is to enhance the models’ capabilities along the border of the image. 

Depending on the value of the padding, a 𝑝-sized frame of zeros is placed around the 

image, like image 8 represents. Of course, the same principle is also true for 

convolutional layers applied on time series data and not images, but in this context, 

padding is not as useful or needed and a zero-padding approach is preferred. 

 

 

 

 

   Padding = 1 

 

 

 

 

 

Image 8. Example of 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 1 for a random two-dimensional matrix. 

Stride is the step that the sliding filter is making on the data sample. Larger strides 

have the effect of lowering the dimension of the layers output which can lighten the 

computational error, but in expense to networks effectiveness since bigger steps 
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means less information to extract features from. Tunning this parameter usually 

means trial and error testing. An example can be seen in image 9. 

Step 1 

of the 

convol

ution. 

                                         

 

Step 2 

of the 

convol

ution 

 

Step 3 

of the 

convol

ution  

 

 

Image 9. Example of 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 for random matrixes. The red numbers represents the part 

of the sample that convolutes with the filter in each step. 

The dimension 𝑑′ of the output of every layer can be calculated from the following 

formula. 𝑑′ = 𝑑 − 𝑓 + 𝑝𝑠 + 1   [3.33] 

Where 𝑑 is the dimension of the input, 𝑓 is the size of the filter, 𝑝 is the padding and 𝑠 is the stride. 

● Pooling layers: They are placed after a convolutional layer and their purpose is to 

subsample the output of the convolutional layer. This accomplishes two things, first 

it scales down the transformed samples, thus further adding to the computational 

efficiency of CNNs and secondly due to the way the subsampling is performed, it 

preserves only the most pronounced features of the sample. Pooling is performed by 

specifying the dimension of the pooling region on the sample and a stride 

parameter, in similar fashion to the convolution. There are different types of pooling 
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layers, like max pooling, min pooling, average polling, etc. The most commonly used 

though is arguably max pooling, which looks at the specified region and only 

transports its biggest value to the next layer.  

Pooling layers do not need an activation function, since they do not perform a linear 

transformation to the sample, they just cherry-pick the most important values of the 

sample.  

The problem with pooling arises when the information cut from proceeding through 

the network is more that it should, thus bringing down the overall performance of 

the network. This occurs when the pooling region is 

greater 

than it 

should. 

Max Pooling 

Dim=3, Str=1 

Image 10. Example of Max Pooling with a pooling filter of dimension=3 and a stride=1. 

The dimension 𝑑′ of the output of every layer can be calculated from the following 

formula. 𝑑′ = 𝑑 − 𝑓𝑠    [3.34] 

Where 𝑑 is the dimension of the input, 𝑓 is the size of the pooling filter and 𝑠 is the 

stride. 

3.7.2 Multilayer Perceptrons  

 

Also frequently referred to simple as Artificial Neural Networks (ANNs), MLPs are 

one the fundamental NN structures and they utilize the fully connected layers that 

were presented in subsection 3.2. They are much simpler than CNNs and they utilize 

just one type of layer, the fully connected. One of their defining characteristics is 

that feature selection is not done by the network itself, like a CNN does, and the user 

needs to manually define the features of the dataset for the MLP to use. This is also 

its biggest drawback, since its fast and easy implementation make it an appealing 

option for classification problems [21]. 

3.8 Other Supervised Machine Learning Algorithms: SVMs 
 

Support Vector Machines (SVM) are another supervised machine learning algorithm 

distinctly different from NN, but still following the same general principles of training 

on dataset and optimizing an objective function in order to perform predictions for 

unencountered data. SVM’s exist for a while, in many different form factors, 

improvements and differentiations, but in the context of this work the focus will be 
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on multi-dimensional SVM’s because of their proved efficiency and effectiveness on 

binary classification problems.  

Intuitively explained, the main goal of an SVM is to calculate a hyperplane which 

optimally separates the classes on which a dataset is divided to. Hyperplanes are 

subspaces of the defining space of the problem, whose dimension is equal to the 

defining space minus one. So, for a two-dimensional classification problem for 

example, the hyperplane is a one-dimensional line (or curve depending on the kind 

of SVM). This line separates the space into two subspaces which, hopefully, they will 

be occupied by the datapoints of each class, respectively. Two more hyperplanes are 

being defined by the points closest to the first line on each side of the space, those 

new hyperplanes are the support vectors which give the algorithm its name. They 

define the margins of the SVM, and they help the SVM to find the actual optimal 

hyperplane to separate the two classes out of many possibilities [20]. The example of 

a two-dimensional SVM can be seen in image 11. 

 

Image 11. [20] Example of two-dimensional linear SVM. 

The training of an SVM adheres to the same principles as a NN, an objective function 

needs to be optimized and loss functions are employed to compute the error during 

training. Unlike NN, there is no need for different layers, and SVM’s are dependent 

just on one transformation on the input data, thus eliminating the need for multiple 

layers and by extend the backpropagation algorithm.  

The main boundary of the SVM can be formally expressed like so. 𝑤 ∙ 𝑥 + 𝑏 = 0   [3.35] 
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Where 𝑤 is the vector defining the boundary, 𝑥 is the input vector and 𝑏 is a scalar 

threshold. Following the same logic, the upper and lower margins defined by the 

support vectors can be expressed accordingly. 𝑤 ∙ 𝑥 + 𝑏 = 1   [3.36] 

For the upper margin. 𝑤 ∙ 𝑥 + 𝑏 = −1  [3.37] 

For the lower margin. As a result of the right hand side parts of equations [3.35]-

[3.37], the prediction function of a two-dimensional linear SVM can be formally 

expressed by the following expression. 𝜑(𝑥) = 𝑠𝑖𝑛𝑔((𝑤 ∙ 𝑥) + 𝑏)   [3.38] 

Where 𝜑 is the prediction function, 𝑤 is the vector that optimally defines the 

boundary-hyperplane between the classes, 𝑥 is the input data, 𝑏 is a scalar threshold 

and finally 𝑠𝑖𝑔𝑛 is the function defined below. 

𝑠𝑖𝑛𝑔(𝑥) =  {−1    𝑖𝑓 𝑥 < 00    𝑖𝑓 𝑥 = 01     𝑖𝑓 𝑥 > 0    [3.39] 

A fair question though is how the optimal 𝑤 vector is calculated. For that, some 

constrained quadratic optimization should be employed, and the solution of the 

following problem is the optimal 𝑤. 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{ 𝜏(𝑤) =  12 ‖𝑤‖2 }                                                                                                      [3.40] 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶  𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) ≥ 1,   𝑖 = 1,2, … , 𝑛 

Where 𝑦 are the labels of the dataset and 𝑛 is the total number of training sets. 

The solution obtained if the problem [3.40] gets resolved, should look like the 

following statement. 𝑤 = ∑ 𝑣𝑖 ∙ 𝑠𝑖    [3.41] 

Where 𝑠 are the support vectors obtained by the training, and 𝑣 are parameters that 

act like weights and determine which input vectors are actually the support vectors, 

so they are defined in 𝑣 ∈ [0, ∞]. As a result, the equation [3.38] can be restated like 

so. 

𝜑(𝑥) = 𝑠𝑖𝑛𝑔 (∑ 𝑣𝑖(𝑥 ∙ 𝑥𝑖)𝑛
𝑖=1 + 𝑏)   [3.42] 



40 

 

Unfortunately, the capabilities of a linear approach are quite limited, since there are 

many classification problems that their dataset is comprised of data points of higher 

dimension vectors. The generalization of the problem to a non-linear one though, is 

not such a challenging task since the backbone of the method remains the same. 

One popular way to perform that transformation is to select a kernel function which 

can transform a non-linear separable input space to a linear one.  𝐾(𝑥, 𝑦) = 𝑡(𝑥) ∙ 𝑡(𝑦)   [3.43] 

Where 𝐾 is the kernel function, while 𝑡 is a function that transforms its input from a 

N-dimensional space to a Q-dimensional one ℛ𝑛 → ℛ𝑄. So, the equation [3.42] can 

be now written like so. 

𝜑(𝑥) = 𝑠𝑖𝑛𝑔 (∑ 𝑣𝑖𝐾(𝑥 ∙ 𝑦)𝑛
𝑖=1 + 𝑏)   [3.42] 

There are a few options when selecting a kernel function, with the most common 

being polynomials, the sigmoid function or radial basis function [9] [33] [34].  

3.9 Chapter Conclusions 

 

As it has been clearly established, designing and using a machine learning apparatus 

is not a trivial task. A lot of things are left up to comparative trials to find the optimal 

decision, from optimization methods to activation functions. This is probably the 

most significant challenge facing the development of robust machine learning 

detection systems, but it is not an insurmountable obstacle. The most valuable tools 

when trying to take these decisions are a thorough knowledge of the relevant 

scientific literature and the trial-and-error tests.  

In this chapter an elementary but thorough review of some of the most important 

machine learning algorithms has been done. The focus of this work was on 

classification since this is the most relevant to the context of the thesis problem that 

machine learning methods are able to tackle. The different approaches that has been 

presented – MLPs, CNNs and SVMs – are just a sub selection of many different 

methods, but they form the basis of the most used classification for intelligent fault 

diagnosis of rotating mechanical machinery one can find in the relevant literature. It 

should be pointed out that several things regarding NN and SVMs has been omitted. 

This choice was made to keep the discussion on this work within the bounds of fault 

diagnosis and to present only what is relevant to that context. This work is by no 

means a thorough review of the vast field of machine learning and its goal is to 

utilize some of the tools find there to achieve an approach to the much more 

focused problem of rotating machine fault diagnosis.  

That being said, some very useful techniques has been presented by this point and 

the ground has been properly laid to test the approaches presented in a case study, 
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compare them to each other and to traditional methods of fault detection and finally 

evaluate their performance. 

 

 

 

 

Chapter 4. Case Study 

 

4.1 Introduction 
 

By this point a few different approaches in the context of vibrational time series 

classification have been presented in the previous chapters. Everything presented 

before shall be put to test in this chapter in a case study on rolling bearing fault 

detection. An implementation of the traditional methodology, one MLP architecture, 

two different CNN architectures and an SVM will be tasked with the classification 

problem of diagnosing whether a rolling bearing is healthy, and if not to recognize 

their respective location specific defect. To do that, the publicly available rolling 

bearings defects dataset provided by the CWRU, the python programming language, 

MATLAB’s programming environment and the Keras machine learning library will be 

employed. 

 

4.2 Presenting the Problem of Rolling Bearings Fault Diagnosis 

 

Rolling bearings are an extremely important piece of any mechanical system with 

moving or rotating parts. Their main role in a system is to reduce the friction 

between two parts of a system and allow their combined movement to take place. 

Damaged or broken rolling bearings can cause destructive failures for the systems 

they are part of, since the high friction can cause overheating problems, or even 

complete shutdown of the system due to inability of movement. Indicative of the 

importance of such components is that failed bearings are to blame for about 70% of 

the gearbox failures in mechanical systems [12]. As a result of the above, accurately 

and timely detecting bearings that are defected in order to replace them before they 

cause failure of the system is crucial. That way plant floors and research labs can 

maintain their equipment more efficiently which can save time, money and protect 

the bodily integrity of any personnel that manages the monitored system.  
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Image 12. [C] Rolling bearing in a hydro powered generator’s shaft. 

As it has already been presented in the subsection 2.3, when a local fault exists in a 

rotating mechanical component – in this case a rolling bearing – a unique vibrational 

signature is produced because of its rotation. These vibrational signatures resonate 

in specific frequencies that can be calculated from case specific empirical relations. 

In particular for the case of rolling bearings, three main fault frequencies can be 

defined, depending on the location of the fault on the bearing. These frequencies are 

depended on the geometrical characteristics of the bearing as well as the 𝑓𝑟𝑚 

rotational speed (in Hz) of the component they are attached to. These characteristics 

are the pitch diameter represented as 𝑃𝐷, the ball diameter represented as 𝐵𝐷 and 

the number of balls that exists in the bearing represented by 𝑛 [35]. 

 

Image 12. Schematic representation of a rolling bearing and its characteristics. 
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● Outer race fault. It is a fault that effects the outer part of the rolling bearing, 

where the upper part of the balls are in touch with while they roll. Its fault specific 

frequency can be calculated by the following relation. 𝑓𝑂𝐹 = 𝑛2 𝑓𝑟𝑚 (1 − 𝐵𝐷𝑃𝐷)   [4.1] 

● Inner race fault. It is a fault that effects the inner part of the rolling bearing, where 

the bottom part of the balls are in touch with while they roll. Its fault specific 

frequency can be calculated by the following relation. 𝑓𝐼𝐹 = 𝑛2 𝑓𝑟𝑚 (1 + 𝐵𝐷𝑃𝐷)   [4.2] 

● Ball fault. It is a fault that effects one or more of the balls inside the bearing’s 

races. Its fault specific frequency can be calculated by the following relation. 

𝑓𝐵𝐹 = 𝑃𝐷2𝐵𝐷 𝑓𝑟𝑚 (1 − (𝐵𝐷𝑃𝐷)2 )   [4.3] 

As a result of the above, any rolling bearing can exist in one the following states: 

healthy state, with inner race fault, with outer race fault or with ball fault. So, the 

problem of detecting faulty rolling bearing and localize their defect can be 

recontextualized as a classification problem. Depending on the existence of 

particular fault frequencies in the vibrational signals sampled from operating 

bearings, one can determine in which of the predefined state-classes the bearing 

belongs to.  

 

Image 13. [26] Bearings with local the three local faults described in this work. 

In the context of this work, five different approaches will be used to tackle this 

classification problem. First, a version of the traditional envelope spectrum analysis 

will be reviewed, followed by a MLP approach, two different CNN architectures and 

finally an SVM approach.  
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4.3 Presenting the CWRU Rolling Bearing Dataset 
 

One rather important part of any attempt to review a heavily data driven problem 

like the one currently reviewed in this work, is the actual data that will be used to 

test out these different approaches. The data that will be used in this work are kindly 

provided by the Case Western Reserve University as a publicly available dataset of 

real vibrational measurements, sampled from a variety of rolling bearings, in 

different rotational speeds, different motor loads and with different sampling rates. 

The excellent and multivariant work that CWRU has done and made public for 

anyone to use, has made this particular dataset the golden standard and the starting 

point for any research done on the field.  

The test rig used by CWRU to obtain the signals consists of a 2 hp Reliance Electric 

Motor, a torque transcoder to accurately measure the operating rotational speed, a 

dynamometer to accurately measure the load from the motor to the bearing, SFK 

rolling bearings used to support the motor’s shaft, accelerometers attached to the 

housing of the bearings using magnetic bases and a 16-channel data logger 

connected to a computer to collect the obtained data like the subsections 2.1 - 2.3 

demonstrated. Several different tests were performed, under different conditions, 

which led to the following tables with data under different combinations of motor 

load, fault diameter and rotational speed of the shaft. Table 2 shows the benchmark 

data, obtained by healthy bearings under different conditions, Table 3 was obtained 

under a sampling rate of 12kHz, while Table 4 under a sampling rate of 48kHz. 

 

Table 2. [III] Different condition specific vibrational measurements for healthy bearings 

(CWRU). 
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Table 3. [III] Different condition specific vibrational measurements for faulty bearings placed 

in the drive end of the motor under a sampling rate of 12kHz (CWRU). 

 

Table 4. [III] Different condition specific vibrational measurements for faulty bearings placed 

in the drive end of the motor under a sampling rate of 48kHz (CWRU). 

The tables 3 and 4 were obtained for bearings placed in the drive end of the motor, 

but the CWRU also made experiments for bearings placed in the fan end of the 

motor with a sampling rate of 12kHz. These data, according to their specific 

conditions can be found in table 5. 
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Table 5. [III] Different condition specific vibrational measurements for faulty bearings placed 

in the fan end of the motor under a sampling rate of 12kHz (CWRU). 

Obviously to reliable test and compare the methods selected in this work, the data 

used should be sampled under the same conditions. So, in the context of this work, 

will be used data obtained from bearings placed to the drive end of the motor, with 

a fault of 0.007 inches in diameter, under a motor load of 0hp, a rotational speed of 

the shaft at 1797rpm and a sampling rate of 12kHz will be used, with a benchmark of 

normal bearings sampled at 0hp motor load, a rotational speed of the shaft at 

1797rpm and a sampling rate of 12kHz. All the data are downloadable MATLAB files. 

The CWRU also provides detailed information for the exact type of bearings used in 

the tests and their respective fault specific frequencies, seen in table 6 as well as 

information for the faults of the bearings, seen in table 7. 
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Table 6. [III] Rolling bearings used in CWRU’s test and their geometric characteristics. 

 

Table 7. [III] Fault specifications of the defected bearings used in CWRU’s tests. 
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Image 14 [III] The testing rig used by CWRU to construct their publicly available faulty rolling 

bearings dataset. 

As a final note, one can observe in tables 3-5 three different possible positions for 

the outer race fault to be. For purposes of simplification from now on, as outer faults 

in the context of this work, only the centered @6:00 outer race faults will be taken 

into consideration, since the fault frequency remains the same for either of the three 

possible outer location [III]. 

4.4 Differentiations Between ESFD and Intelligent Methods 

 

Traditional fault diagnosis techniques are pretty straight forward, but they work in 

an entirely different way than intelligent fault diagnosis. When EFSD is used to 

determine if a rolling bearing is defected or not, the program expects a big volume of 

acceleration data, then transforms them from the time domain to the frequency 

domain, as explained in chapter 2, and in this big volume of frequency domain data, 

the characteristic fault frequencies and their harmonics are searched for. The 

program then returns the state-class of the bearing, according to the existence or 

not of the aforementioned frequencies on the frequency domain representation of 

its acceleration data. In order to reliably perform the process described above, a 

significant amount of data is need. In contrast to that when a machine learning 

algorithm is used, the data are split up to smaller chunks called data samples. 

Typically, as sample consists of a few hundred data points and each sample is 

reviewed separately from an already trained machine learning algorithm and 

classified accordingly. The problem this reality introduces, is that because of the very 

different way the two methods treat their fed data, they are not directly 

comparable. The machine learning approaches will be evaluated in a percentage of 

successful data sample classification, while the ESFD approach can only be evaluated 

on the grounds of correct classification of the entire volume of data samples, as a 
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whole. So to conclude on that, while the machine learning approaches will be 

compared to each other on a percentage of success basis, they will be compared to 

the ESFD method on different merits like computational efficiency and their ability 

for real time application.  

4.5 ESFD Implementation on CWRU’s Data 
 

To implement the ESFD method, the very first thing that needs to be done is 

calculating the location specific fault frequencies for the rolling bearing under study. 

Following the information from table 6 and using the equations [4.1] – [4.3] the fault 

frequencies for the rolling bearing used in the measurements can be calculated. 

Also, the fault frequencies can be calculated directly from the table 6’s defect 

frequencies section. The multipliers given by CWRU in that section are just the 

implementation of the relations [4.1] – [4.3]. Using either approach, the following 

table will result. 

- Rotation Speed of 

the Shaft (Hz) 

Fault Frequency 

Multiplier 

Fault Frequency 

(Hz) 

Inner Race Fault 29.93 5.4152 162.077 

Ball Fault 29.93 4.7135 141.075 

Outer Race Fault 29.93 3.5848 107.293 

Table 8. Location Specific Fault Frequencies (in red). 

Using code developed in MATLAB’s programming environment, the acceleration data 

obtained by CWRU, specifically the data for drive end bearings operating under 0hp 

motor load, 1796 rpm (or 29.93Hz) shaft rotational speed, 12kHz sampling rate and 

faults with variant diameters, ranging from 0.007 inches to 0.021 inches, are 

processed and the results are the following. The code used for that can be found in 

the appendix. Figures 14 – 16, are the ESFD results for a fault of 0.007” diameter. 

Figures 17 – 19, are the ESFD results for a fault of 0.014” diameter. Figures 20 – 22, 

are the ESFD results for a fault of 0.021” diameter. Figures 23 – 25, are the ESFD 

results for a normal bearing against the fault frequencies of the three faults. 

As it can be observed from figures 14 – 25, the method generally works. The fault 

frequencies and their harmonics line up almost perfectly with the highest peaks on 

their immediate frequency areas which is a great indication that the rolling bearing 

has that location specific fault. Additionally, in figures 23-25 that a normal bearing is 

being tested against all three of the fault specific frequencies from table 8, these 

frequencies or their harmonics do not coincide with any peaks in a statistically 

important manner, so it is safe to assume that their figures represent a bearing 

without any of the main faults presented on this work. Unfortunately though, this 

method is not foolproof, which can become apparent when observing figures 18 and 

19. Even though there is a pattern of matching fault frequencies and high peaks to  
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Figure 14. EFSD results for Inner Fault Bearing with a fault diameter of 0.007’’. 

 

Figure 15. EFSD results for Outer Fault Bearing with a fault diameter of 0.007’’. 
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Figure 16. EFSD results for Ball Fault Bearing with a fault diameter of 0.007’’. 

 

Figure 17. EFSD results for Inner Fault Bearing with a fault diameter of 0.014’’. 
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Figure 18. EFSD results for Outer Fault Bearing with a fault diameter of 0.014’’. 

 

Figure 19. EFSD results for Ball Fault Bearing with a fault diameter of 0.014’’. 
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Figure 20. EFSD results for Inner Fault Bearing with a fault diameter of 0.021’’. 

 

Figure 21. EFSD results for Outer Fault Bearing with a fault diameter of 0.021’’. 
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Figure 22. EFSD results for Ball Fault Bearing with a fault diameter of 0.021’’. 

 

Figure 23. EFSD results for Normal Bearings against the Inner Fault Harmonics. 
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Figure 24. EFSD results for Normal Bearings against the Outer Fault Harmonics. 

 

Figure 25. EFSD results for Normal Bearings against the Ball Fault Harmonics. 
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be found, these figures are much fuzzier than the others and more difficult to 

definitively claim that they belong to a faulty bearing. The reality of the matter is 

that, even with the attempts the method makes to eliminate much of the noise, 

some of it is bound to end up in the final frequency domain representation and make 

it harder to decide on the fault state of the monitored bearing. That is happening 

because the frequencies produced by the faults are much smaller than the 

frequencies from the shaft’s rotation, so they are difficult to pin down through the 

noise. 

To conclude, ESFD is a traditional method for bearing fault diagnosis which is used 

for years in the field with acceptable results overall, but with a few drawbacks that 

forces researchers on the field to look for alternatives. One of the main drawbacks is 

the one explained in the previous paragraph. Even beyond that, a serious problem 

for ESFD is its inability for real time application. To frame that on context, to get the 

results described in figures 14 – 25, the data samples need were 121,864. Since the 

sampling rate is 12kHz, these figures are the result of about ten seconds of operation 

time. Even if the processing time for the implementation of EFSD is to be ignored, 

these ten seconds are unacceptable for a real time implementation of the method. 

Additionally, using this approach makes it impossible to know exactly when a fault 

frequency was detected since the classification is performed from the frequency 

domain. Everything described above are problems that will be attempted to be 

solved with the use of intelligent fault diagnosis methods in the remaining of this 

work. 

 

4.6 Intelligent Methods Implementation on CWRU’s Data 
 

On this subsection the four aforementioned intelligent methods will be reviewed 

using four indicative architectures, respectively. These architectures will be sourced 

from the papers referenced in their respective subsections and they will act as 

examples of everything presented by now. Before that though, how the data will be 

split into data samples, training dataset and testing dataset must be addressed. 

4.6.1 Data Preparation 

 

As mentioned before, there are four possible state-classes any vibrational sample 

can belong to. These classes are designated with code numbers 0 – 3 as the table 9 

clearly represents. The sampling rate of the data used in this work is 12kHz, while 

the speed with which the shaft is rotating is 1797rpm or 29.93Hz. As a result, each 

revolution of the shaft corresponds to almost 401 data points of acceleration.  

Bearing State – Class Corresponding Number Label 

Healthy 0 
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Inner Race Fault 1 

Outer Race Fault 2 

Ball Fault 3 

Table 9. Classes and their corresponding labels. 

The total sum of the data for each class is comprised by 121,000 discrete data points. 

These data points need to be arranged into data samples in order to be fed into the 

training pipelines of the intelligent methods. In this work, half a revolution of the 

shaft is defined as the data sample. In accordance with the description above, each 

data sample is comprised by 200 data points (which corresponds to 0.01667 seconds 

of operation), which totals to 605 samples per class. One of the most common rules 

of thump used for training any machine learning framework is the 70-30 rule, which 

means that 70% of the dataset will be used for training and the rest 30% for testing. 

Following that, out of the 605 total samples per class, the 423 will be used for 

training and 182 for validation and testing. This results to 1,692 data samples which 

make up a training dataset of 338,400 data points, and 728 data samples which 

make up a validation dataset of 72,800 data points and a testing dataset of different 

72,800 data points. The abondance of data is quite clear, which raises the concern of 

not efficiently training and testing the Network. To compensate and control for that, 

a second dataset is used for training and testing in which every sixth data sample is 

omitted. This results in a total of 212 data samples for training (or 53 per class), 96 

for validation (24 per class) and 96 for testing (24 per class) [30] [III].  

 

Figure 26. Time domain representation of the Normal Time Series (1
st

 sample in red). 

 

Figure 27. Time domain representation of the Inner Fault Time Series (1
st

 sample in red). 
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Figure 28. Time domain representation of the Outer Fault Time Series (1
st

 sample in red). 

 

Figure 29. Time domain representation of the Ball Fault Time Series (1
st

 sample in red). 

4.6.2 MLP Implementation for the CWRU’s Data 

 

For the purposes of this work, a three-layer deep MLP will be trained using the 

backpropagation algorithm. As previously explained, MLPs need their user to define 

the features of the dataset for them. Handpicking some statics from the time domain 

or the frequency domain representations of the signal to serve as the data the MLP 

will use for training, can pose some challenges. For that reason, a powerful signal 

analysis tool will be used, the Continuous Wavelet Transform (CWT). Traditional 

signal analysis is able to represent an acquired signal to either the time domain or 

the frequency domain. That reality can be quite limiting, since in many cases 

temporal information is just as important as frequency information. In the context of 

this case study for example, the goal is to determine if a data sample (acquired in the 

short span of half a shaft’s revolution) belongs to a faulty or healthy rolling bearing. 

As previously presented, this cannot be reliable if only the frequency domain data 

are to be used, so in order to enhance the information that can be extracted from 

the data, CWT is used to provide some temporal context for the MLP to chew on.  

The basic idea behind CWT is taking a wavelet, meaning a wave-like signal which is 

time localized, sliding it over the signal that is being transformed, and evaluating 

how much the wavelet matches with the signal. Formally, this concept can be 

represented by the following relation. 𝐹(𝜏, 𝑠) =  1√|𝑠| ∫ 𝑓(𝑡) ∙ 𝜓∗ (𝑡 − 𝜏𝑠 ) 𝑑𝑡    [+∞
−∞ 4.4] 

Where 𝐹 is the transformed signal, 𝑓 is the original signal, 𝜓∗ is the wavelet of 

choice, 𝑠 is the scale and 𝜏 is the translation parameter [36]. 
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Some context on the newly introduced parameters from [4.4] is highly needed. As 

previously explained, the wavelet is a time localized signal which needs to be 

selected in accordance with its application. There are hundreds of different wavelets 

to choose from, and some of the most well-known can be found in the figures 26-29. 

For the purposes of this work, the morlet wavelet is chosen.   

 

 

Figure 30. Debauche2 wavelet.                                     Figure 31. Debauche10 wavelet. 

 

Figure 32. Mexican Hat wavelet.                                   Figure 33. Morlet wavelet.  

 

Additionally, 𝑠 which stands for scale, is a parameter that controls how spread out in 

time a wavelet is as the figure 30 clearly represents. Finally, the parameter 𝜏 controls 

the location of the wavelet and swifts it left to right as figure 31 represents. 

Usually, CWT is performed on the signal for multiple scales. Bigger scales typically 

provide more frequency information, while lower scales provide more temporal 

information. So, by performing CTW in different scales both temporal and frequency 

information is extracted from the data [VIII]. 
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Figure 34. The same wavelet for different scale parameters. 

 

Figure 35. The same wavelet for different time translation parameters. 

For the purposes of this work, CWT with a scale range of 1 - 8, a translation 

parameter of zero and the morlet wavelet will be applied on each data sample. This 

results to 212 matrixes with dimension 8x200 for shallow training, 8 because of the 

scale range, and 200 because of the data point’s population in each data sample. 

From each of the scales of the 8x200 matrix, the root mean square value, the crest 

factor and the kurtosis will be calculated resulting to 24 features for each data 

sample [36]. To wrap it all together, a final matrix with dimensions 212x24 is 

constructed. In this matrix each line contains the three statistic values mentioned 
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above for each scale of every data sample of the dataset, so each line encapsulates 

the information that the MLP will use to train itself. Alongside this matrix, a second 

matrix with 212x1 dimensions is constructed which contains the labels of every data 

sample as they were prescribed in table 9. For testing the methods accuracy, the 

same preprocess is applied to the testing and validation datasets. 

The MLP will be comprised from three fully connected layers. These layers will be 

connected to each other using the tanh activation function, while the final layer will 

output its results through a sigmoid activation function. The first layer of the MLP 

will be comprised from 8 nodes, the second from 9 nodes and the third from 8 

nodes. The MLP will be trained using the Adam optimizer, the backpropagation 

algorithm and the cross-entropy loss function. The architecture presented above, is 

also represented visually in the image 15. This particular architecture converged 

using a batch size of 100 and in 200 epochs [36]. 

 

Image 15. Visualization of the MLP architecture. 

4.6.3 CNN Implementation for the CWRU’s Data 

 

For the CNN implementation, there is no feature extraction preprocess. Unlike the 

more traditional NN such as MLPs, CNNs are able through the convolution that 

occurs in each layer, to automatically extract the features from any given set of data. 

One-dimensional CNNs are great for time series feature extraction, because the 

kernel windows is moving across the time dimension of the data it is being fed, 

making it very good for time-sensitive datasets (see image 16). Of course, that is a 

huge advantage for their implementation, since no additional preprocess is needed, 

and they are ready to accept properly formatted, but raw acceleration data. So, the 

only thing that needs to be done is setting up the NN and feeding it the training and 

testing data as they were presented in subsection 4.6.1. Therefore, the input to the 

Network is a 212x200 matrix with the training data and its corresponding 212x1 

targets matrix and a 96x200 matrix with the testing data withs its corresponding 

96x1 targets matrix Also, a 96x200 matrix with the validation data and its 

corresponding 96x1 targets matrix is used during training. 
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Image 16. [IX] Why an 1D-CNN can be good for time-series date. 

The architecture used in this implementation consists of three one-dimensional 

convolution layers, intercepted by two max-pooling layers and then followed by two 

fully connected layers to actually perform the classification and output the results. 

The first convolution layer has 60 nodes, the second 40 and the third also 40, while 

the fully connected layer consists by 20 layers. The filter size of the convolution 

layers is set to 9, stride is set to 1 and the padding is set to 0 for all three layers. For 

the pooling layers, their dimension is set to 4 and their stride also to 1 for both 

layers. The activation function tanh is selected across the board for all the layers 

(expect the pooling layers which do not need one), and the output of the layer is 

filtered through a SoftMax activation function. Also, to ensure that overfitting will be 

avoided, the maximum number of epochs is set to 20 and if the classification 

accuracy of an epoch reaches 98%, training is automatically terminated [35] [37]. To 

train the CNN, the Adam optimizer, the backpropagation algorithm and the cross-

entropy loss function will be used. A visual representation of the architecture can be 

seen in image 17. 
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Image 17. Visualization of the CNN architecture. 

4.6.4 C-CNN Implementation for the CWRU’s Data 

 

CNNs are a great option for a big variety of classification problems, especially for 

time series and image classification problems, due to their ability to extract features 

from the data on their own. One big problem with CNNs though, is that their 

effectiveness is highly depended on their filter size. The usual approach to deal with 

that problem is to perform multiple experiments with different filter sizes and 

selecting the optimal. In order to tackle that problem an implementation named 

Concurrent Convolutional Neural Network (C-CNN) was introduce by [38]. C-CNN 

utilizes a parallel multi-branched architecture, in which the raw vibrational data are 

being simultaneously input in five iterations of the same architecture, but each 

iteration has a different scale of filter sizes on the convolutional layers. The output of 

each branch is fed into a concatenation layer in which the extracted features of each 

iteration are fused together. Then the concatenated data are passed through a 

flatten layer which properly formats them to be fed into the fully connected layer 
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which will perform the final classification. A visual representation of the C-CCN 

architecture can be seen in image 17. Another biproduct of that architecture, other 

than eliminating the need for selection of just one filter size arrangement, is that 

because the features are extracted from many different filters, they describe the 

data with more nuisance and detail than a normal CNN could. The input to the 

Network is for shallow training is a 212x200 matrix with the training data with its 

corresponding 212x1 targets matrix, a 96x200 matrix with the testing data withs its 

corresponding 92x1 targets matrix and a 96x200 matrix with the validation data and 

its corresponding 92x1 targets matrix. 

Each branch consists of two convolutional layers and two pooling layers. Every 

convolutional layer has 64 nodes, 0 padding and a stride of one. Each convolution is 

performed with filter of size 5, 25, 50, and 125 in both layers of each branch. The 

pooling layers have a dimension of 10, with 0 padding and stride of 1. Finally, the 

fully connected layer has as many nodes as the classes of the problem. The 

activation function transferring the output of the convolutional layers is ReLU in 

every case, and the fully connected layer outputs its predictions through a SoftMax 

activation function. To train the C-CNN, the Adam optimizer, the backpropagation 

algorithm and the cross-entropy loss function will be used. This particular 

architecture converged using a batch size of 150 and in 20 epochs. 

 

4.6.5 SVM Implementation for the CWRU’s data. 

 

Just like the MLP before it, the SVM implementation needs to be given a selection of 

features that can describe the signal in order to use them for its training. So, once 

again the CWT is being deployed to help with that problem. Same as before, CWT 

with a scale range of 1 - 8, a translation parameter of zero and the morlet wavelet 

will be applied on each data sample to preserve some consistency between the 

experiments.  

For the purposes of this work, a nonlinear SVM with a Radial Basis Function (RBF) 

kernel is employed. The definition of RBF can be seen in [4.5]. 𝐾(𝑥, 𝑦) = exp (− ‖𝑥 − 𝑦‖22𝜎2 )   [4.5] 

Where 𝐾 is the kernel as presented in subsection 3.8, 𝑥 are the data points of the 

training dataset, 𝑦 is the label of the data point and 𝜎 is the variance of the data [9] 

[10] [11]. 
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Image 18. Visualization of C-CNN architecture, in the parenthesis of each convolutional layer          

the filter size of each layer can be seen. 

4.7 Results and Method Comparison 

 

The appraisal of each intelligent method will be performed in many different levels. 

First, for the testing dataset a classification accuracy metric is calculated, which 

represents how many out of a hundred data samples were classified correctly. In 

addition, the precision metric is calculated, which represents the percentage of the 

true positive classifications in each class. Also, the recall metric is evaluated which 

represents the percentage of the actually true positive samples that were classified 

as true positives. The final metric will be the so-called f1 score, which is the harmonic 

mean of the precision and recall metrics. A good f1 score, suggest that the model 

balances precision and recall effectively. Finally, a confusion matrix for the testing 

dataset is contracted. Confusion matrixes are a popular way of reviewing the 

classification results of any classification method. They are matrixes with dimension 

of (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)𝑥(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠), the horizontal axes contains the 

predicted class according to the method, and the vertical axes contain the actual 

class. That way, one can see how the model classified each sample, and it provides 

more information about what mistakes the model made. As a final comparison 

metric, the time each method needed to complete its training is reviewed, alongside 
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the time every model needs to make a prediction for just one sample. Everything 

above is presented in the following tables.  

First, the time every method needed to complete its training can been seen in table 

10. The overall training time is the worst case (C-CNN) about 41.5 seconds and in the 

best (SVM) almost 2.01 seconds. These training times are almost non-consequential 

because once the training of a model is done, the weights and biases that optimized 

the model are stored and they are ready to use in any other data sample. 

- SVM MLP CNN C-CNN 

Time 2.01sec 14.2sec 4.8sec 41.5sec 

Table 10. Training time for each model. 

In continuum, the time each model needs to make a prediction for just one data 

sample is presented in table 11. These times are almost 0, which means that every 

single one of these models is able to be used in a close to real-time application. 

- SVM MLP CNN C-CNN 

Time 0.000sec 0.068sec 0.066sec 0.085sec 

Table 11. Predictions of a data sample for each model and each dataset. 

- MLP CNN C-CNN 

Number of Layers 4 7 (Con-Pool-Con-

Pool-Con-Fully-Fully) 

4*5 (parallel, Con-

Pool-Con-Pool)  

+  

3*1 (Concatenation-

Flatten-Fully)  

Number of Nodes-

Kernels 

(8, 9, 8, 4) (60, 4, 40, 4, 40, 20, 

4) 

(64, 10, 64, 10, -, -, 

4) 

Kernel size (for 

CNNs) 

- (9, 9, 9) Check image 17 

Training time in 

seconds 

14.2 4.8 41.5 

Table 12. Comparative structures of the Neural Networks. 

Following that, in tables 13 – 14 the accuracy with which each model predicted the 

class of the data samples in the final iteration of training and in the testing datasets 

is presented. It’s evident from the table, that all the methods yielded respectable 

results when tested in a dataset which contained defects with diameter of 0.007’’, 
even if they had never encountered that data before. Especially the convolution-

based C-CNN, which returned perfect results. As a result, considerable generalization 

ability can be achieved, even for samples that are different from the ones used for 

the training of the models. Additionally, in the tables 15 – 18, the Precision, Recall 

and F1 scores of each model for the classification of the testing data can be seen.  

Training data SVM MLP CNN C-CNN 

Accuracy 96.87% 98.96% 95.83% 100% 

Table 13. Accuracy metric for the testing data. 

Test Data SVM MLP CNN C-CNN 



67 

 

Accuracy 96.87% 97.91% 95.8% 100% 

Table 14. Accuracy metric for the validation data. 

SVM - Test Precision Recall F1 

0 100% 100% 100% 

1 96% 92% 94% 

2 92% 100% 96% 

3 100% 96% 98% 

Table 15. Different classification metrics for testing data with SVM, organized by class. 

MLP – Test  Precision Recall F1 

0 100% 100% 100% 

1 92% 100% 96% 

2 100% 100% 100% 

3 100% 92% 96% 

Table 16. Different classification metrics for testing data with MLP, organized by class. 

CNN – Test Precision Recall F1 

0 100% 100% 100% 

1 86% 100% 92% 

2 100% 83% 91% 

3 100% 100% 100% 

Table 17. Different classification metrics for testing data with CNN, organized by class. 

C-CNN – Test  Precision Recall F1 

0 100% 100% 100% 

1 100% 100% 100% 

2 100% 100% 100% 

3 100% 100% 100% 

Table 18. Different classification metrics for testing data with C-CNN, organized by class. 

To have a better understanding of the way each classification scheme worked, their 

respective confusion matrixes are presented in tables 19 – 22. 

 

Table 19. Confusion matrix for the classification of the testing data using the SVM. 
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Table 20. Confusion matrix for the classification of the testing data using the MLP. 

 

Table 21. Confusion matrix for the classification of the testing data using the CNN. 

 

Table 22. Confusion matrix for the classification of the testing data using the C-CNN. 
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Another interesting thing to see is how the value of the loss function converges 

towards zero over each epoch. These figures can help decide the number of epochs 

used for training. When the curves tend to became parallel with the x-axis, that is a 

good number of epochs to choose for training, because the loss of the model will not 

get any lower than that. Additionaly, it helps to avoid overfitting by minimizing the 

number of times the model gets exposed to the training set. To that end the 

following figures are presented in figures 36 – 38 . 

 

Figure 36. Progress of loss over each epoch for the training of MLP. 
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Figure 37. Progress of loss over each epoch for the training of CNN. 

 

Figure 38. Progress of loss over each epoch for the training of C-CNN. 

Figures 36 – 38 ensure that training took place just over enough epochs for the 

model to converge. If the training were to continue even further the overfitting 

problem would be making its appearance in the confusion matrices and the metrics 

of the testing dataset.  
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Finally, to have a better visual representation of how each model handled the 

feature extraction and the classification task, the t-SNE [39] dimensional reduction 

technique is used.  

 

Figure 39. Feature Visualization of the raw data using t-SNE. 

 

Figure 40. Feature Visualization of the output of the SVM using t-SNE. 
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Figure 41. Feature Visualization of the output of the MLP using t-SNE. 

 

Figure 42. Feature Visualization of the output of the CNN using t-SNE. 

 

Figure 43. Feature Visualization of the output of the C-CNN using t-SNE. 
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By reviewing all of the results presented in tables 10 – 22 and in figures 36 – 43, a 

few conclusions can be drawn. All of the methods managed to successfully classify 

the testing samples with a very good accuracy, more than 95% in every case. In a 

sensitive problem like fault detection though, where finding a defective sample 

could be the difference between system failure and system stability, a good accuracy 

metric is perhaps not the most important thing to look for. For example, if a healthy 

sample were to be classified as having an inner fault, or if an inner fault sample were 

to be classified as a ball fault, the core goal of the application – preventing faulty 

machinery from keep working – wouldn’t be hindered. But if a faulty sample were to 

be classified as healthy, that could have dangerous side effects for the monitored 

system. To control for that, the deployed method needs good recall across the board 

in order to be sure that a high percentage of the true positives of each class is 

actually found. Also, good precision is needed to make sure that all the samples 

classified as one class actually belong to that class. In other words, a good F1 score is 

needed which is a combined metric of recall and precision. Finally, it is fairly 

important to have a confusion matrix and a t-SNE plot that clearly indicates a low 

percentage of faulty samples classified as healthy. Even with these much steeper 

demands, observing the results shows that none of the methods classified a faulty 

sample as a healthy one and all of the have a F1 score of over 91%, even reaching 

100% in multiple cases. So, it is safe to conclude that all of the presented methods 

work fairly well for the problem in hand. If one needed to be picked out, based on 

the metrics described above, the C-CNN method would be the clear selection since it 

scored 100% in all of the used metrics when tested on a never before reviewed part 

of the data. That being said, the convolutional based methods have another 

important advantage, they do not need manual feature selection (done with CWT 

here) like the MLP and the SVM do. That means that raw data, directly from the 

sensors, can be fed to the model which is always a welcome simplification of the 

procedure. All of the above lead to the C-CNN being the best of the described 

methods, even if it is the slowest to trained and the slowest in sample evaluation. It 

could be important to note that the results obtained in tables 10 – 22 and in figures 

36 – 43 does comply with the relevant literature. 

Comparing the best intelligent method (C-CNN) with the traditional EFSD method 

could be challenging. Both methods can provide their user with useful information 

about the health state of the monitored rolling bearing, but the context the two are 

working is quite different. If the user needs an online, automated, real-time 

application that monitors a system continuously, then a well-trained C-CNN model 

would be the only choice between the two. But if the application requires a system 

that will periodically check the system and the user will visually inspect the resulted 

figures, then EFSD will be sufficient. So, the most important factor when considering 

a choice between traditional and intelligent fault diagnosis techniques, will be the 

requirements of the end user. 
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4.8 System Specifications 

For the implementation of this case study, the computational unit that was used is 

an Intel CORE i5, 8
th

 Gen CPU. For the EFSD, the MATLAB programming environment 

was used. For the intelligent methods, the data preparation was performed in 

MATLAB’s programming environment and the training, testing and validating of all 

the intelligent methods was performed using the python programming language, 

version 3.7.10. Also, the Keras deep learning framework for python was used for the 

compilation, training and validation of the NN reviewed in this work. The SVM 

implementation was made with the help of the sklearn python module. The CWT 

needed for MLP and SVM was performed with the help of the pywt python module. 

Additionally, for the visualization and figures needed in this work, both python and 

MATLAB were used. Finally, the flow charts present in this work were made with the 

help of visme. All the code used for this thesis, is present in the Appendix. 
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Chapter 5. Conclusions – Suggestions for Further Study 

 

In this thesis, the problem of fault diagnosis on rotating mechanical equipment was 

presented. The most commonly used traditional method (EFSD) and some of the 

most common intelligent approaches in the relevant literature (SVM, MLP, CNN) 

were reviewed. This work had to delve as deep as possible in the theory behind EFSD 

and Neural Networks, present the main points of interest when a network is devised, 

review one of the staple datasets in the field of fault diagnosis (CWRU’s). All the 

above, culminated to a case study that in practice demonstrated everything 

presented previously and manage to draw some useful conclusions about the 

applicability of each presented method.  

From the analysis that preceded, the following can be concluded. Fault detection can 

be quite useful in order to ensure maximum performance and safety in any 

mechanical system with rotating parts. That being said whether EFSD or a C-CNN 

based approach (since C-CNN was demonstrated to be the best out of the reviewed 

intelligent methods) is the best choice, depends on each applications needs. Real-

time applications are best suited for intelligent methods, while application that are 

not time sensitive could work just fine with EFSD. Also, the cost of each method 

needs to be taken into consideration. While EFSD pretty much works out-of-the-box 

with any application that the fault-specific frequencies are known. In order to 

implement an intelligent method, big volumes of data needs to be acquired and a 

detailed study needs to be performed in order to find the best architecture to use in 

each particular case, which amounts to a bigger deployment cost. 

To conclude this work, a few suggestions for further study can be made. One of the 

areas that the C-CNN and every other intelligent method were demonstrated to lack 

in, was their generalization ability. The intelligent models were trained using a 

dataset comprised by faults of 0.007’’ in diameter, in 1797 rpm and with a 0hp 

motor load. This is a pretty narrow point of view considering that defects can be 

found on rolling bearing in various diameters, and machines operate in a various rpm 

and motor loads. A dataset containing data acquired from rolling bearings with more 

diverse operating motor conditions, and with different diameter of defects to be 

used for training is one suggestion, but more research is needed. Also, the results of 

this work could be used to create an online, automated, real-time application to 

monitor an experimental set-up, in order to evaluate how the concepts of this thesis 

would work in real operational conditions. 
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Appendix A – MATLAB and Python Code for Visualization 

 

%SCRIPT TO PLOT THE RAW DATA FROM THE CWRU 
format compact 
clear all 
clc 
  
%load all my data files 
load('../vis_data/outer_0.021icn_1hp_1772rpm_6oclock.
mat'); 
xInner = X235_DE_time; 
  
%moving to the right time scale (sample rate 12khz) 
fsInner = 12000; 
tInner = (0:length(xInner)-1)/fsInner; 
  
%plotting for acceleration vs time 
figure 
plot(tInner, xInner) 
xlabel('Time, (s)') 
ylabel('Acceleration (g)') 
title('Raw Signal: Normal bearing') 
%zoom in the first 0.1sec to see the form of the 
singal better 
xlim([0 0.5]) 
  
%calling matlab commands to move to the frequency 
domain through an envelope spectrum diagramm 
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = 
envspectrum(xInner, fsInner);  
figure 
plot(fEnvInner, pEnvInner) 
xlim([0 900])        
                                                     
Script 1. Visualization of raw acceleration vs time and vs frequency (MATLAB). 

import matplotlib.pyplot as plt 

import numpy as np  

 

x = np.linspace(-5,5,100) 

 

y = 1/(1+np.exp(-x)) 

 

plt.plot(x,y) 

plt.show() 

 

Script 2. Visualization of sigmoid activation function (Python). 
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import matplotlib.pyplot as plt 

import numpy as np  

 

x = np.linspace(-5,5,100) 

 

y = (2/(1+np.exp(-x)))-1 

 

plt.plot(x,y) 

plt.show() 

 

Script 3. Visualization of tanh activation function (Python). 

import matplotlib.pyplot as plt 

import numpy as np  

 

def relu(X): 

   return np.maximum(0,X) 

 

x = np.linspace(-5,5,100) 

 

y = relu(x) 

 

plt.plot(x,y) 

plt.show() 

 

Script 4. Visualization of ReLU activation function (Python). 

import matplotlib.pyplot as plt 

import numpy as np  

 

def softmax(X): 

    expo = np.exp(X) 

    expo_sum = np.sum(np.exp(X)) 

    return expo/expo_sum 

 

x = np.linspace(-5,5,100) 

 

y = softmax(x) 

 

plt.plot(x,y) 

plt.show() 

 

Script 5. Visualization of SoftMax activation function (Python). 

import pywt 

import matplotlib.pyplot as plt 

 

[phi, psi, x] = pywt.Wavelet('db2').wavefun(level=4) 
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plt.plot(x, psi) 

 

Script 6. Visualization of Debauche2 wavelet (Python). 

import pywt 

import matplotlib.pyplot as plt 

 

[phi, psi, x] = pywt.Wavelet('db10').wavefun(level=4) 

 

plt.plot(x, psi) 

 

Script 7. Visualization of Debauche10 wavelet (Python). 

lb = -5; 
ub = 5; 
N = 1000; 
[psi,xval] = mexihat(lb,ub,N); 
plot(xval,psi) 
title('Mexican Hat Wavelet') 
 

Script 8. Visualization of Mexican Hat wavelet (MATLAB). 

lb = -4; 
ub = 4; 
n = 1000; 
[psi,xval] = morlet(lb,ub,n); 
plot(xval,psi) 
grid on 
title('Morlet Wavelet') 
 

Script 9. Visualization of Morlet wavelet (MATLAB). 

import numpy as np 

import pywt 

import matplotlib.pyplot as plt 

 

wav = pywt.ContinuousWavelet('cmor1.5-1.0') 

 

width = wav.upper_bound - wav.lower_bound 

 

scales = [1, 2, 3, 4, 10, 15] 

 

max_len = int(np.max(scales)*width + 1) 

t = np.arange(max_len) 

fig, axes = plt.subplots(len(scales), 2, figsize=(12, 6)) 

for n, scale in enumerate(scales): 

 

    # The following code is adapted from the internals of cwt 

    int_psi, x = pywt.integrate_wavelet(wav, precision=10) 
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    step = x[1] - x[0] 

    j = np.floor( 

        np.arange(scale * width + 1) / (scale * step)) 

    if np.max(j) >= np.size(int_psi): 

        j = np.delete(j, np.where((j >= np.size(int_psi)))[0]) 

    j = j.astype(np.int_) 

 

    # normalize int_psi for easier plotting 

    int_psi /= np.abs(int_psi).max() 

 

    # discrete samples of the integrated wavelet 

    filt = int_psi[j][::-1] 

 

    nt = len(filt) 

    t = np.linspace(-nt//2, nt//2, nt) 

    axes[n, 0].plot(t, filt.real) 

    axes[n, 0].set_xlim([-max_len//2, max_len//2]) 

    axes[n, 0].set_ylim([-1, 1]) 

    axes[n, 0].text(50, 0.35, 'scale = {}'.format(scale)) 

 

Script 10. Visualization of different scales for the same wavelet (Python). 

import scipy.io as sio 

import numpy as np 

from sklearn.manifold import TSNE 

import seaborn as sns 

palette = sns.color_palette("bright", 4) 

 

# load training data, testing data, validation data and their respective labels 

# change file paths and reshape sizes for shallow or deep training 

training_dataX = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007_shallo
w/training_dataXs.mat') 

training_dataX = np.array(training_dataX['training_dataX']).reshape(212, 200) 

training_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007_shallo

w/training_dataYs.mat') 

training_dataY = np.array(training_dataY['training_dataY']).reshape(212,) 

 

testing_dataX = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007_shallo
w/testing_dataXs.mat') 

testing_dataX = np.array(testing_dataX['testing_dataX']).reshape(92, 200) 

testing_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007_shallo
w/testing_dataYs.mat') 

testing_dataY1 = np.array(testing_dataY['testing_dataY']).reshape(92,) 
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validation_dataX = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.021_shallo
w/testing_dataXs.mat') 

validation_dataX = np.array(validation_dataX['testing_dataX']).reshape(92, 200) 

validation_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.021_shallo
w/testing_dataYs.mat') 

validation_dataY = np.array(validation_dataY['testing_dataY']).reshape(92,) 

 

X_embedded = TSNE(n_components=2, perplexity=25, 

n_iter=5000).fit_transform(testing_dataX) 

X_embedded.shape 

 

sns.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=testing_dataY1, legend='full', 

palette=palette) 

Script 11. T-SNE visualization of the raw training data set before classification. 
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Appendix B – MATLAB Code for EFSD Implementation 

 

format compact 
clear all 
clc 
  
load('../../../data/1797_0_0.007/inner.mat');                      
%load all my data files 
  
xInner = X105_DE_time; 
fsInner = 12000; 
  
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = 
envspectrum(xInner, fsInner); %calling matlab comants 
to move to the frequency domain through an envelope 
spectrum diagramm 
figure 
plot(fEnvInner, pEnvInner)                                                 
%plotting fro amplitude vs frequency 
xlim([0 900])                                                           
ncomb = 10; 
helperPlotCombs(ncomb, 162.077)                                            
%plotting the fundamental fault frequency of the 
bearing and its harmonics 
xlabel('Frequency (Hz)') 
ylabel('Peak Amplitude') 
title('Envelope Spectrum: Inner Fault Bearing') 
legend('Envelope Spectrum', 'Inner Fault Harmonics') 
  
function helperPlotCombs(ncomb, f)                                         
%defining the helper function to plot the fault 
frequencies 
  
ylimit = get(gca, 'YLim'); 
ylim(ylimit); 
ycomb = repmat([ylimit nan], 1, ncomb); 
hold(gca, 'on') 
for i = 1:length(f) 
    xcomb = f(i)*(1:ncomb); 
    xcombs = [xcomb; xcomb; nan(1, ncomb)]; 
    xcombs = xcombs(:)'; 
    plot(xcombs, ycomb, '--') 
end 
hold(gca, 'off') 
end 
 

Script 12. EFSD Implementation for Inner Fault (MATLAB). 
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format compact 
clear all 
clc 
  
load('../../../data/1797_0_0.021/outer.mat');                      
%load all my data files 
  
xInner = X234_DE_time; 
fsInner = 12000; 
  
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = 
envspectrum(xInner, fsInner); %calling matlab comants 
to move to the frequency domain through an envelope 
spectrum diagramm 
figure 
plot(fEnvInner, pEnvInner)                                                 
%plotting fro amplitude vs frequency 
xlim([0 900])                                                           
ncomb = 10; 
helperPlotCombs(ncomb, 107.293)                                            
%plotting the fundamental fault frequency of the 
bearing and its harmonics 
xlabel('Frequency (Hz)') 
ylabel('Peak Amplitude') 
title('Envelope Spectrum: Outer Fault Bearing') 
legend('Envelope Spectrum', 'Outer Fault Harmonics') 
  
function helperPlotCombs(ncomb, f)                                         
%defining the helper function to plot the fault 
frequencies 
  
ylimit = get(gca, 'YLim'); 
ylim(ylimit); 
ycomb = repmat([ylimit nan], 1, ncomb); 
hold(gca, 'on') 
for i = 1:length(f) 
    xcomb = f(i)*(1:ncomb); 
    xcombs = [xcomb; xcomb; nan(1, ncomb)]; 
    xcombs = xcombs(:)'; 
    plot(xcombs, ycomb, '--') 
end 
hold(gca, 'off') 
end 
 

Script 13. EFSD Implementation for Outer Fault (MATLAB). 

 

format compact 
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clear all 
clc 
  
load('../../../data/1797_0_0.007/ball.mat');                                    
%load all my data files 
  
xInner = X118_DE_time; 
fsInner = 12000; 
  
[pEnvInner, fEnvInner, xEnvInner, tEnvInner] = 
envspectrum(xInner, fsInner); %calling matlab comants 
to move to the frequency domain through an envelope 
spectrum diagramm 
figure 
plot(fEnvInner, pEnvInner)                                                   
%plotting fro amplitude vs frequency 
xlim([0 900])                                                           
ncomb = 10; 
helperPlotCombs(ncomb, 70.5375)                                             
%plotting the fundamental fault frequency of the 
bearing and its harmonics 
xlabel('Frequency (Hz)') 
ylabel('Peak Amplitude') 
title('Envelope Spectrum: Ball Fault Bearing') 
legend('Envelope Spectrum', 'Ball Fault Harmonics') 
  
function helperPlotCombs(ncomb, f)                                         
%defining the helper function to plot the fault 
frequencies 
  
ylimit = get(gca, 'YLim'); 
ylim(ylimit); 
ycomb = repmat([ylimit nan], 1, ncomb); 
hold(gca, 'on') 
for i = 1:length(f) 
    xcomb = f(i)*(1:ncomb); 
    xcombs = [xcomb; xcomb; nan(1, ncomb)]; 
    xcombs = xcombs(:)'; 
    plot(xcombs, ycomb, '--') 
end 
hold(gca, 'off') 
end 
 

Script 14. EFSD Implementation for Outer Fault (MATLAB). 
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Appendix C – MATLAB and Python Code for Data Preparation 

 

% preproccess for cnn 
format compact 
clear all 
clc 
%load all my data files and change the paths and 
X***_DE_time lables accordingly 
load('..\..\..\data\1797_0_0.007\inner.mat'); 
load('..\..\..\data\1797_0_0.007\ball.mat'); 
load('..\..\..\data\1797_0_0.007\outer.mat'); 
load('..\..\..\data\normal.mat'); 
  
inner = X105_DE_time; 
ball = X118_DE_time; 
outer = X130_DE_time; 
normal = X097_DE_time; 
%organise every data file in a 605*200 matrix 
for i = 1:605                                                               
    k = 200*i;  
    l = k-199; 
    data_i(:,i) = inner(l:k); 
    data_b(:,i) = ball(l:k); 
    data_o(:,i) = outer(l:k); 
    data_n(:,i) = normal(l:k); 
end 
%decimate every 8th column from these matrices 
data_i = transpose(data_i(:,1:6:end));                      
data_b = transpose(data_b(:,1:6:end)); 
data_o = transpose(data_o(:,1:6:end)); 
data_n = transpose(data_n(:,1:6:end)); 
  
% keep only the first 53 samples of each class to 
constract the training dataset 
training_data_i = data_i(1:53,:); 
training_data_b = data_b(1:53,:); 
training_data_o = data_o(1:53,:); 
training_data_n = data_n(1:53,:); 
  
% organise them into one matrix and save them 
training_dataX=vertcat(training_data_n,training_data_
i,training_data_o,training_data_b); 
a=size(training_dataX,1); 
save('..\..\..\data\train_data\0.007_shallow\training
_dataXs.mat','training_dataX') 
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% constract the matrix with the labels for the data 
for i=1:a 
    b=a/4; 
    c=2*a/4; 
    d=3*a/4; 
    training_dataY(1:b,1)=double(0); 
    training_dataY(b+1:c,1)=double(1); 
    training_dataY(c+1:d,1)=double(2); 
    training_dataY(d+1:a,1)=double(3); 
end 
  
save('..\..\..\data\train_data\0.007_shallow\training
_dataYs.mat','training_dataY') 
  
% constract the testing data set 
testing_data_i = data_i(54:77,:); 
testing_data_b = data_b(54:77,:); 
testing_data_o = data_o(54:77,:); 
testing_data_n = data_n(54:77,:); 
  
% concatenate the matrixes and save them 
testing_dataX=vertcat(testing_data_n,testing_data_i,t
esting_data_o,testing_data_b); 
a=size(testing_dataX,1); 
save('..\..\..\data\train_data\0.007_shallow\testing_
dataXs.mat','testing_dataX') 
  
% constract the label's matrix for the testing data 
for i=1:a 
    b=a/4; 
    c=2*a/4; 
    d=3*a/4; 
    testing_dataY(1:b,1)=double(0); 
    testing_dataY(b+1:c,1)=double(1); 
    testing_dataY(c+1:d,1)=double(2); 
    testing_dataY(d+1:a,1)=double(3); 
end 
  
save('..\..\..\data\train_data\0.007_shallow\testing_
dataYs.mat','testing_dataY') 
  
% constract the testing data set 
validation_data_i = data_i(78:101,:); 
validation_data_b = data_b(78:101,:); 
validation_data_o = data_o(78:101,:); 
validation_data_n = data_n(78:101,:); 
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% concatenate the matrixes and save them 
validation_dataX=vertcat(validation_data_n,validation
_data_i,validation_data_o,validation_data_b); 
a=size(validation_dataX,1); 
save('..\..\..\data\train_data\0.007_shallow\validati
on_dataXs.mat','validation_dataX') 
  
% constract the label's matrix for the testing data 
for i=1:a 
    b=a/4; 
    c=2*a/4; 
    d=3*a/4; 
    validation_dataY(1:b,1)=double(0); 
    validation_dataY(b+1:c,1)=double(1); 
    validation_dataY(c+1:d,1)=double(2); 
    validation_dataY(d+1:a,1)=double(3); 
end 
  
save('..\..\..\data\train_data\0.007_shallow\validati
on_dataYs.mat','validation_dataY') 
 

Script 15. Data preparation for training/validation/testing dataset (MATLAB). 

 

import scipy.io as sio 

from scipy import stats 

import pywt 

import math 

import numpy as np 

 

def rmsValue(arr, n): 

    square = 0 

    mean = 0.0 

    root = 0.0 

      

    #Calculate square 

    for i in range(0,n): 

        square += (arr[i]**2) 

      

    #Calculate Mean 

    mean = (square / (float)(n)) 

      

    #Calculate Root 

    root = math.sqrt(mean) 

      

    return root 
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def crest_factorValue(x): 

    # calculate the crest factor of a signal 

    crest_factor = np.max(np.abs(x))/rmsValue(x, len(x)) 

    return crest_factor 

 

def featureExtraction(data_path, dataset_name): 

    # load the .mat data in a pre-arranged matrix 

    dataX = sio.loadmat(data_path) 

    dataX1 = dataX[dataset_name] 

 

    # define the scales of the transform and the type of wavelet 

    scales = np.arange(1, 9) 

    wavelet = 'morl' 

    shape1 = dataX1.shape[0] 

    res = [] 

 

    # use wavelet transform on the data and store the resulted coefficients 

    for i in range(0,shape1): 

        coeffs, freqs = pywt.cwt(dataX1[i], scales, wavelet = wavelet) 

        res.append(coeffs) 

 

    # create the features matrix using rms, crest and kurtosis values for each scale of 

each sample   

    features = [] 

    for i in range(0, shape1): 

        for j in range(0, 8): 

            rms = rmsValue(res[i][j], len(res[i][j])) 

            crest = crest_factorValue(res[i][j]) 

            kurt = stats.kurtosis(res[i][j]) 

            features.append(rms) 

            features.append(crest) 

            features.append(kurt) 

 

    # format the features matrix in a 24*shape1 matrix, ready for input in the network 

    struct_features = np.array(features).reshape((shape1, 24)) 

    return struct_features 

Script 16. Feature extraction using Continuous Wavelet Transform (Python). 
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Appendix D – Python Code for Intelligent Methods 

 

''' Create multi-class SVM with sklearn and python ''' 

# import all necessary modules 

import scipy.io as sio 

import numpy 

import time 

from sklearn import svm 

from sklearn import metrics 

from sklearn.metrics import confusion_matrix 

from keras.utils import np_utils 

import seaborn as sn 

import matplotlib.pyplot as plt 

import sys 

import numpy as np 

from sklearn.manifold import TSNE 

palette = sn.color_palette("bright", 4) 

 

sys.path.append('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/CWRU/scripts/dat
a_preprocess') 

from wavelet_transform import featureExtraction 

 

# initialize a time counter and a random seed to ensure reproducability 

start_time = time.time() 

np.random.seed(7) 

 

# load training data, testing data and their respective labels 

training_dataX = 

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/training_dataXs.mat', 'training_dataX') 

training_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataYs.mat') 

training_dataY = np.array(training_dataY['training_dataY']).reshape(212,) 

 

testing_dataX = 

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/

0.007_shallow/testing_dataXs.mat', 'testing_dataX') 

testing_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataYs.mat') 

testing_dataY1 = np.array(testing_dataY['testing_dataY']).reshape(96,) 
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validation_dataX = 

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/validation_dataXs.mat', 'validation_dataX') 

validation_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataYs.mat') 

validation_dataY = np.array(validation_dataY['validation_dataY']).reshape(96,) 

 

# import the SVM from sklearn and define RBF as the kernel function 

classification = svm.SVC(kernel='rbf') 

 

# train the SVM on the training dataset 

classification.fit(training_dataX, training_dataY)  

 

testing_dataY2 = np_utils.to_categorical(testing_dataY1) 

validation_dataY2 = np_utils.to_categorical(validation_dataY) 

 

# make prediction based on the trained model 

Y_predict = classification.predict(testing_dataX) 

Y_predict = Y_predict.reshape(Y_predict.shape[0],) 

print("Accuracy Validation:", metrics.accuracy_score(testing_dataY1, Y_predict))  

print(metrics.classification_report(testing_dataY1, Y_predict))  

# calculate and print the time needed for training 

end_time = time.time() 

execution_time = end_time - start_time 

print('SVM Training time(in sec): %.2f' % execution_time) 

 

# make predictions for the testing data and constract the confusion matrix 

conf_matrix = confusion_matrix(testing_dataY1, Y_predict) 

print('Cofusion Matrix for the test data:') 

print(conf_matrix) 

 

# plot the heatpam of the confusion matrix 

sn.heatmap(conf_matrix, annot=True, fmt='g', annot_kws={"size": 16}, 

cmap="YlGnBu") 

plt.show() 

 

# make prediction based on the trained model 

Y_predict2 = classification.predict(validation_dataX) 

Y_predict2 = Y_predict2.reshape(Y_predict2.shape[0],) 

print("Accuracy Test:", metrics.accuracy_score(validation_dataY, Y_predict2)) 

print(metrics.classification_report(validation_dataY, Y_predict2))  

 

# make predictions for the validation data and constract the confusion matrix 
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conf_matrix2 = confusion_matrix(validation_dataY, Y_predict2) 

print('Cofusion Matrix for the validation data:') 

print(conf_matrix2) 

 

# plot the heatpam of the confusion matrix 

sn.heatmap(conf_matrix2, annot=True, annot_kws={"size": 16}, cmap="YlGnBu") 

plt.show() 

 

# time each prediction 

time_test_sample = validation_dataX[0] 

time_test_sample = time_test_sample.reshape(1,24) 

 

prediction_time_s = time.time() 

Y_predict3 = classification.predict(time_test_sample) 

prediction_time_e = time.time() 

print('Time per sample', prediction_time_e - prediction_time_s) 

 

# use t-SNE to visualize output 

vis_preds = classification.predict(testing_dataX) 

vis_preds = np.array(vis_preds).reshape(96, 1) 

 

X_embedded = TSNE(n_components=2, perplexity=50, 

n_iter=1000).fit_transform(vis_preds) 

X_embedded.shape 

 

sn.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=testing_dataY1, 

legend='full', palette=palette) 

Script 17. SVM Implementation (Python). 

 

''' Create multi-class MLP with Keras and python ''' 

# import all necessary modules 

from keras.models import Sequential, Model 

from keras.layers import Dense 

import seaborn as sn 

from sklearn.metrics import confusion_matrix 

from sklearn import metrics 

import matplotlib.pyplot as plt 

import scipy.io as sio 

import numpy as np 

import sys 

import time 

from sklearn.preprocessing import LabelEncoder 

from keras.utils import np_utils 

from sklearn.manifold import TSNE 
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palette = sn.color_palette("bright", 4) 

 

sys.path.append('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/CWRU/scripts/dat
a_preprocess') 

from wavelet_transform import featureExtraction 

 

# initialize a time counter and a random seed to ensure reproducability 

start_time = time.time() 

np.random.seed(7) 

 

# load training data, testing data and their respective labels 

# change file paths and reshape sizes for shallow or deep training 

training_dataX = 

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/training_dataXs.mat', 'training_dataX') 

training_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataYs.mat') 

training_dataY1 = np.array(training_dataY['training_dataY']).reshape(212,) 

 

testing_dataX = 

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/testing_dataXs.mat', 'testing_dataX') 

testing_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataYs.mat') 

testing_dataY = np.array(testing_dataY['testing_dataY']).reshape(96,) 

 

validation_dataX = 

featureExtraction('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/
0.007_shallow/validation_dataXs.mat', 'validation_dataX') 

validation_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataYs.mat') 

validation_dataY1 = np.array(validation_dataY['validation_dataY']).reshape(96,) 

 

# encode class values as integers 

encoder = LabelEncoder() 

encoder.fit(training_dataY1) 

encoded_Y = encoder.transform(training_dataY1) 

# convert integers to dummy variables (i.e. one hot encoded) 

training_dataY = np_utils.to_categorical(encoded_Y) 

 

encoder2 = LabelEncoder() 
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encoder2.fit(validation_dataY1) 

encoded_Y = encoder2.transform(validation_dataY1) 

# convert integers to dummy variables (i.e. one hot encoded) 

validation_dataY = np_utils.to_categorical(encoded_Y) 

 

# define the multiclass MLP 

def baseline_model(): 

    model = Sequential() 

    model.add(Dense(8, input_dim=24, activation='tanh')) 

    model.add(Dense(9, activation='tanh')) 

    model.add(Dense(8, activation='tanh')) 

    model.add(Dense(4, activation='softmax')) 

    return model 

 

# Compile model 

model = baseline_model() 

model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

# Fit the model 

his = model.fit(training_dataX, training_dataY, validation_data=(validation_dataX, 

validation_dataY), epochs=200, batch_size=100) 

 

# evaluate the model 

scores = model.evaluate(validation_dataX, validation_dataY) 

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

 

# plot the training and validation loss 

plt.plot(his.history['loss'], label="Train") 

plt.plot(his.history['val_loss'], label="Test") 

plt.legend(loc="upper right") 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.show() 

 

# calculate and print the time needed for training 

end_time = time.time() 

execution_time = end_time - start_time 

print('MLP Training time(in sec): %.2f' % execution_time) 

 

# make predictions for the validation data and constract the confusion matrix 

predictions = model.predict_classes(validation_dataX, batch_size=100, verbose=0) 

conf_matrix = confusion_matrix(validation_dataY1, predictions) 

print('Cofusion Matrix for the validation data:') 
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print(conf_matrix) 

 

# plot the heatpam of the confusion matrix 

sn.heatmap(conf_matrix, annot=True, fmt='g', annot_kws={"size": 16}, 

cmap="YlGnBu") 

plt.show() 

 

# make predictions for the testing data and constract the confusion matrix 

predictions2 = model.predict_classes(testing_dataX, batch_size=100, verbose=0) 

conf_matrix2 = confusion_matrix(testing_dataY, predictions2) 

print('Cofusion Matrix for the validation data:') 

print(conf_matrix2) 

 

# print full metrics for the test data 

print("Accuracy Test:",metrics.accuracy_score(testing_dataY, predictions2)) 

print(metrics.classification_report(testing_dataY, predictions2))  

 

# plot the heatpam of the confusion matrix for the test data 

sn.heatmap(conf_matrix2, annot=True, fmt='g', annot_kws={"size": 16}, 

cmap="YlGnBu") 

plt.show() 

 

# time each prediction 

time_test_sample = validation_dataX[0] 

time_test_sample = time_test_sample.reshape(1,24) 

 

prediction_time_s = time.time() 

Y_predict3 = model.predict_classes(time_test_sample) 

prediction_time_e = time.time() 

print('Time per sample', prediction_time_e - prediction_time_s) 

 

# use t-SNE to visualize output 

model2 = Model(model.input, model.layers[3].output) 

vis_preds=model2.predict(testing_dataX) 

 

X_embedded = TSNE(n_components=2, perplexity=30, 

n_iter=5000).fit_transform(vis_preds) 

X_embedded.shape 

 

sn.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=testing_dataY, legend='full', 

palette=palette) 

Script 18. MLP Implementation (Python). 

 

''' Create CNN with Keras and python ''' 
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# import all necessary modules 

import numpy 

import keras 

import time 

import scipy.io as sio 

import seaborn as sn 

import numpy as np 

from sklearn import metrics 

from sklearn.metrics import confusion_matrix 

from keras.models import Sequential, Model 

from keras.layers import Dense 

from keras.layers import Flatten 

from keras.layers.convolutional import Conv1D 

from keras.layers.convolutional import MaxPooling1D 

from keras.utils import np_utils 

import matplotlib.pyplot as plt 

from sklearn.manifold import TSNE 

 

palette = sn.color_palette("bright", 4) 

 

# define a callback class to end training when accuracy of 98% is reached 

class myCallback(keras.callbacks.Callback): 

    def on_epoch_end(self, epoch, logs={}): 

        e=0.98 

        if(logs.get('accuracy') > e): 

            print("\nReached %2.2f%% accuracy in last epoch, so stopping training!!" 

%(e*100)) 

            self.model.stop_training = True 

Callback = myCallback() 

 

# initialize a time counter and a random seed to ensure reproducability 

start_time = time.time() 

numpy.random.seed(7)  

 

# load training data, testing data, validation data and their respective labels 

# change file paths and reshape sizes for shallow or deep training 

training_dataX = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007

_shallow/training_dataXs.mat') 

training_dataX = np.array(training_dataX['training_dataX']).reshape(212, 200, 1) 

training_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataYs.mat') 

training_dataY1 = np.array(training_dataY['training_dataY']).reshape(212,) 



99 

 

 

testing_dataX = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataXs.mat') 

testing_dataX = np.array(testing_dataX['testing_dataX']).reshape(96, 200, 1) 

testing_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataYs.mat') 

testing_dataY = np.array(testing_dataY['testing_dataY']).reshape(96,) 

 

validation_dataX = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataXs.mat') 

validation_dataX = np.array(validation_dataX['validation_dataX']).reshape(96, 200, 

1) 

validation_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataYs.mat') 

validation_dataY1 = np.array(validation_dataY['validation_dataY']).reshape(96,) 

 

# convert integers to dummy variables (i.e. one hot encoded) 

training_dataY = np_utils.to_categorical(training_dataY1) 

validation_dataY = np_utils.to_categorical(validation_dataY1) 

 

# take the input dimensions from the data 

timesteps = training_dataX.shape[1] 

features = training_dataX.shape[2] 

 

# define the CNN 

def baseline_model(): 

    model = Sequential() 

    

model.add(Conv1D(60,9,input_shape=(timesteps,features),activation='tanh',padding

='same')) 

    model.add(MaxPooling1D(4)) 

    model.add(Conv1D(40,9,activation='tanh',padding='same')) 

    model.add(MaxPooling1D(4)) 

    model.add(Conv1D(40,9,activation='tanh',padding='same')) 

    model.add(Flatten()) 

    model.add(Dense(20,activation='tanh')) 

    model.add(Dense(4,activation='softmax')) 

    model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

    return model 
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# compile model and start training 

model = baseline_model() 

history = model.fit(training_dataX, training_dataY, 

validation_data=(validation_dataX, validation_dataY), epochs=15, batch_size=100, 

callbacks=[Callback]) 

 

scores = model.evaluate(validation_dataX, validation_dataY) 

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

 

# plot the training and testing loss  

plt.plot(history.history['loss'], label="Train") 

plt.plot(history.history['val_loss'], label="Test") 

plt.legend(loc="upper right") 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.show() 

 

# calculate and print the time needed for training 

end_time = time.time() 

execution_time = end_time - start_time 

print('CNN Training time(in sec): %.2f' % execution_time) 

 

# make predictions for the validation data and constract the confusion matrix 

predictions = model.predict_classes(validation_dataX, batch_size=100, verbose=0) 

print("Accuracy Val:",metrics.accuracy_score(validation_dataY1, predictions)) 

print(metrics.classification_report(validation_dataY1, predictions)) 

conf_matrix = confusion_matrix(validation_dataY1, predictions) 

print('Cofusion Matrix for the test data:') 

print(conf_matrix) 

 

# make predictions for the testing data and constract the confusion matrix 

predictions2 = model.predict_classes(testing_dataX, batch_size=100, verbose=0) 

conf_matrix2 = confusion_matrix(testing_dataY, predictions2) 

print('Cofusion Matrix for the validation data:') 

print(conf_matrix2) 

 

# print metrics of testing data 

print("Accuracy Test:",metrics.accuracy_score(testing_dataY, predictions2)) 

print(metrics.classification_report(testing_dataY, predictions2)) 

 

# plot the heatpam of the confusion matrix 
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sn.heatmap(conf_matrix, annot=True, fmt='g', annot_kws={"size": 16}, 

cmap="YlGnBu") 

plt.show() 

 

# plot the heatpam of the confusion matrix 

sn.heatmap(conf_matrix2, annot=True, annot_kws={"size": 16}, cmap="YlGnBu") 

plt.show() 

 

# time each prediction 

time_test_sample = validation_dataX[0] 

time_test_sample = time_test_sample.reshape(1,200,1) 

 

prediction_time_s = time.time() 

Y_predict3 = model.predict_classes(time_test_sample) 

prediction_time_e = time.time() 

print('Time per sample', prediction_time_e - prediction_time_s) 

 

# use t-SNE to visualize output 

testing_dataX2 = np.array(validation_dataX).reshape(96, 200) 

model2 = Model(model.input,model.layers[7].output) 

vis_preds=model2.predict(testing_dataX2) 

 

X_embedded = TSNE(n_components=2, perplexity=30, 

n_iter=5000).fit_transform(vis_preds) 

X_embedded.shape 

 

sn.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=validation_dataY1, 

legend='full', palette=palette) 

 

Script 19. CNN Implementation (Python). 

 

''' Create C-CNN with Keras and python ''' 

# import all necessary modules 

import numpy 

import time 

import scipy.io as sio 

from sklearn import metrics 

from sklearn.metrics import confusion_matrix 

from keras import Model 

from keras import Input 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import Flatten 

from keras.layers import Concatenate 
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from keras.layers.convolutional import Conv1D 

from keras.layers.convolutional import MaxPooling1D 

from keras.utils import np_utils 

import matplotlib.pyplot as plt 

import seaborn as sn 

import numpy as np 

from sklearn.manifold import TSNE 

 

palette = sn.color_palette("bright", 4) 

 

# initialize a time counter and a random seed to ensure reproducability 

start_time = time.time() 

numpy.random.seed(7)  

 

# load training data, testing data, validation data and their respective labels 

# change file paths and reshape sizes for shallow or deep training 

training_dataX = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataXs.mat') 

training_dataX = np.array(training_dataX['training_dataX']).reshape(212, 200, 1) 

training_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/training_dataYs.mat') 

training_dataY1 = np.array(training_dataY['training_dataY']).reshape(212,) 

 

testing_dataX = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataXs.mat') 

testing_dataX = np.array(testing_dataX['testing_dataX']).reshape(96, 200, 1) 

testing_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/testing_dataYs.mat') 

testing_dataY = np.array(testing_dataY['testing_dataY']).reshape(96,) 

 

validation_dataX = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataXs.mat') 

validation_dataX = np.array(validation_dataX['validation_dataX']).reshape(96, 200, 

1) 

validation_dataY = 

sio.loadmat('C:/Users/ilias/Desktop/MHX.MHX/διπλωματικη/data/train_data/0.007
_shallow/validation_dataYs.mat') 

validation_dataY1 = np.array(validation_dataY['validation_dataY']).reshape(96,) 
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# convert integers to dummy variables (i.e. one hot encoded) 

training_dataY = np_utils.to_categorical(training_dataY1) 

validation_dataY = np_utils.to_categorical(validation_dataY1) 

 

# take the input dimensions from the data 

timesteps = training_dataX.shape[1] 

features = training_dataX.shape[2] 

 

# define the number of filters, the different filter sizes and the number of different 

branches 

n_filters = 64 

filter_size = [5, 25, 50, 100, 125] 

input_shape = (timesteps, features) 

pool_size = 10 

n_paraller_branches = 5 

 

# define the different parallel branches 

inp = Input(shape=input_shape) 

convolutions = [] 

for k in range(len(filter_size)): 

    convolution1 = Conv1D(n_filters, filter_size[k], padding='same', activation='relu', 

input_shape=input_shape)(inp) 

    pool1 = MaxPooling1D(pool_size=pool_size)(convolution1) 

    convolution2 = Conv1D(n_filters, filter_size[k], padding='same', 

activation='relu')(pool1) 

    pool2 = MaxPooling1D(pool_size=pool_size)(convolution2) 

    convolutions.append(pool2) 

 

# feed the output in the concatenation layer 

out = Concatenate()(convolutions) 

 

# create the parallel model 

conv_model = Model(inp, out) 

 

# define the C-CNN 

def baseline_model(): 

    model = Sequential() 

    model.add(conv_model) 

    model.add(Flatten()) 

    model.add(Dense(4, activation='softmax')) 

    model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

    return model 
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# start the training of the network 

model = baseline_model() 

history = model.fit(training_dataX, training_dataY, 

validation_data=(validation_dataX, validation_dataY), epochs=20, batch_size=150) 

 

scores = model.evaluate(validation_dataX, validation_dataY) 

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

 

# plot the loss  

plt.plot(history.history['loss'], label="Train") 

plt.plot(history.history['val_loss'], label="Test") 

plt.legend(loc="upper right") 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.show() 

 

# calculate and print the time needed for training 

end_time = time.time() 

execution_time = end_time - start_time 

print('C-CNN Training time(in sec): %.2f' % execution_time) 

 

# make predictions for the validation data and constract the confusion matrix 

predictions = model.predict_classes(validation_dataX, batch_size=150, verbose=0) 

print(metrics.classification_report(validation_dataY1, predictions)) 

conf_matrix = confusion_matrix(validation_dataY1, predictions) 

print('Cofusion Matrix for the test data:') 

print(conf_matrix) 

 

# make predictions for the testing data and constract the confusion matrix 

predictions2 = model.predict_classes(testing_dataX, batch_size=150, verbose=0) 

conf_matrix2 = confusion_matrix(testing_dataY, predictions2) 

print('Cofusion Matrix for the validation data:') 

print(conf_matrix2) 

 

# print metrics of validation data 

print("Accuracy:",metrics.accuracy_score(testing_dataY, predictions2)) 

print(metrics.classification_report(testing_dataY, predictions2)) 

 

# plot the heatpam of the confusion matrix 

sn.heatmap(conf_matrix, annot=True, fmt='g', annot_kws={"size": 16}, 

cmap="YlGnBu") 

plt.show() 
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# plot the heatpam of the confusion matrix 

sn.heatmap(conf_matrix2, annot=True, fmt='g', annot_kws={"size": 16}, 

cmap="YlGnBu") 

plt.show() 

 

# time each prediction 

time_test_sample = validation_dataX[0] 

time_test_sample = time_test_sample.reshape(1,200,1) 

 

prediction_time_s = time.time() 

Y_predict3 = model.predict_classes(time_test_sample) 

prediction_time_e = time.time() 

print('Time per sample', prediction_time_e - prediction_time_s) 

 

# use t-SNE to visualize output 

testing_dataX2 = np.array(testing_dataX).reshape(96, 200) 

model2 = Model(model.input, model.layers[2].output) 

vis_preds=model2.predict(testing_dataX2) 

 

X_embedded = TSNE(n_components=2, perplexity=30, 

n_iter=1000).fit_transform(vis_preds) 

X_embedded.shape 

 

sn.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=testing_dataY, legend='full', 

palette=palette) 

 

Script 20. C-CNN Implementation (Python). 
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