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ABSTRACT 

With the current popularity of neural networks, both supervised and unsupervised 

learning have received a tremendous amount of recognition and have been used 

everywhere. Reinforcement learning had been on the background for quite a while , just 

because it required a breakthrough , which happened with the introduction of Deep 

Reinforcement Learning. DeepMind practically revived deep RL , a technology which dates 

back to the 80’s and was implemented by TD-Gammon[16] ( one of the first successful RL 

applications using neural networks). As a result, RL’s popularity began to rise and found 

its usage in  many games, aswell as robotics, autonomous driving, healthcare. RL , in 

contrast with supervised learning which is trained by a dataset, is a reward based 

method, where the agent chooses actions that yield rewards, either positive or negative, 

that help him train. In this particular thesis, we will explore the world of RL , the particular 

reasons why it holds such great promise and focus on offline RL , which is a form of RL 

that uses supervision in order to learn. There will also be a reference to neural networks 

and deep learning, as an important piece in the promotion of reinforcement learning. We 

will also provide currently open topics for research, as well as datasets that are currently 

free to use and are being offered in order to promote the field of offline reinforcement 

learning. 
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ΠΕΡΙΛΗΨΗ 

Με την τρέχουσα δημοτικότητα των νευρωνικών δικτύων, η επιβλεπόμενη καθώς 

και η μη επιβλεπόμενη μάθηση , έχουν λάβει ένα σημαντικό ποσό αναγνώρισης και 

ουσιαστικά χρησιμοποιούνται παντού. Αντιθέτως, η ενισχυτική μάθηση κειτόταν στο 

βάθος της επικαιρότητας, αφού χρειαζόταν μία εξέλιξη, η οποία κατέστη δυνατή με την 

άνοδο της βαθιάς ενισχυτικής μάθησης. Η εταιρεία DeepMind έφερε στο προσκήνιο την 

βαθιά ενισχυτική μάθηση , η οποία χρονολογείται στη δεκαετία του ’80 και 

εφαρμόστηκε το 1992 στο TD-Gammon (μία από τις πρώτες επιτυχημένες εφαρμογές 

ενισχυτικής μάθησης χρησιμοποιώντας νευρωνικά δίκτυα). Αυτό είχε ως αποτέλεσμα, η 

βαθιά ενισχυτική μάθηση να χρησιμοποιηθεί σε τομείς όπως παιχνίδια , ρομποτική, 

αυτόνομη οδήγηση και ιατροφαρμακευτική περίθαλψη. Η ενισχυτική μάθηση ,σε 

αντίθεση με την επιβλεπόμενη που χρησιμοποιεί ένα σύνολο από δεδομένα για να 

εκπαιδευτεί, έχει τη μορφή της μάθησης μέσω ανταμοιβής , όπου ο πράκτορας επιλέγει 

ενέργειες οι οποίες του δίνουν ορισμένες ανταμοιβές , είτε θετικές είτε αρνητικές, μέσω 

των οποίων εκπαιδεύεται. Στη συγκεκριμένη διπλωματική, θα εξερευνήσουμε τον κόσμο 

της ενισχυτικής μάθησης, τους λόγους για τους οποίους είναι πολλά υποσχόμενη και θα 

αφοσιωθούμε στην εκτός σύνδεσης ενισχυτική μάθηση, η οποία είναι ένα είδος 

ενισχυτικής μάθησης που χρησιμοποιεί επίβλεψη για να εκπαιδευτεί. Θα γίνει επίσης 

αναφορά σε νευρωνικά δίκτυα, καθώς αποτελούν ένα σημαντικό κομμάτι της ανάδειξης 

της ενισχυτικής μάθησης. Τέλος , θα αναφέρουμε και ανοιχτά ερευνητικά θέματα ,καθώς 

και δεδομένα τα οποία διατίθενται δωρεάν από ερευνητικά κέντρα για την ανάδειξη του 

χώρου της εκτός σύνδεσης ενισχυτικής μάθησης. 
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CHAPTER 1 

INTRODUCTION 

RL is an area of machine learning that possesses a wide variety of innovations and 

improvements over the years.  The exact steps that were undertaken in order to lead us 

to today’s state of RL are referenced in [3] and split into two distinct categories. 

The first breakthrough became apparent around the mid-50’s when Richard 

Bellman introduced the notion of “optimal control”[17] based on the works of Hamilton 

and Jacobi a century earlier [3]. This formed the basis for Dynamic Programming, the 

Bellman Equation that gave birth to all the elements contained in the field of RL. 

However, control theory implementations revolve around the idea that the environment 

in a given setting is perfectly known, which is somewhat counterintuitive to the whole 

aspect of RL being trial and error. But when and how were the foundations set on RL to 

intuitively become acknowledged as trial and error? 

The works of [17][18] gave birth to a very prominent methodology, namely the 

Temporal Difference Learning. There were also projects that date earlier, which 

introduced trial and error setting but it was these papers that set the ground for the 

current state of RL. TD methods originate from studies on animal learning and were 

conjuncted by the works of Harry Klopf [19][20] .Both the TD methods and optimal 

control problems were unified under the scope of Q-learning[21], which is basically a TD 

control algorithm described later in Chapter 3. 

In this thesis our aim is to provide the reader some insight on the very broad topic 

of RL and focus on a specialized field called Offline Reinforcement Learning, a subset of 

RL. This of course, cannot be achieved without a reference to machine learning and 

neural networks. 

So, in Chapter 2 we provide the reader with some basic information about 

machine learning and different kinds of neural networks that are consistently used in RL 

and will assist at understanding the algorithms later on. Also, grasping fundamental 

knowledge about different kinds of learning, such as supervised or unsupervised, will 

definitely prove to be helpful in understanding the importance of RL. 
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In Chapter 3, we familiarize the reader with RL theory and algorithms and some of 

the most important methodologies currently being in use in the field. The comprehension 

of such notions is obligatory for the offline RL field to become understandable. 

In Chapter 4, we present the most recent advancements on the topic of offline RL 

and why it is a key factor in the development of a wide range of recent technologies. 

Furthermore, the results from different experiments conducted by authors of several 

papers involving offline RL are summarized and the conclusions that are being deduced  

are displayed, noting the significance of the field. 

In Chapter 5, we take a holistic approach to RL as a whole, providing insight on 

how offline RL can aid in the evolvement of the field, discussing the material presented in 

the thesis and referring to open problems currently open for research, as well as datasets 

that can provide useful to a researcher. 
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CHAPTER 2 

DEEP LEARNING 

2.1 Introduction to Machine Learning 

When we hear of the term Machine Learning we probably think of machines 

learning using some kind of technique. Machine Learning is actually that and is comprised 

of 3 particular main types: 

1. Supervised Learning: A class of problems that involve learning a mapping 

from inputs to outputs, with them belonging in a dataset. There are 2 types 

of supervised learning, classification which involves the prediction of a 

class and regression which involves the prediction of a numerical value. 

2. Unsupervised Learning: A class of problems whose outputs are unknown 

and the algorithm tries to make sense of the input data.  

3. Reinforcement Learning: A class of problems that involve an agent acting 

on the environment and getting the maximum possible cumulative reward 

from all these actions. 

So, supervised learning is basically approximating the function g with input 

variables X and Y where  𝑌 = 𝑔(𝑋). An important concept that arises from that is the 

need to generalize to new data that the model has not seen. The term generalization 

refers to how well the model responds to new input data presented to it, having learnt 

from the training data we provided.  Two issues arise as problems of generalization, 

overfitting and underfitting.  

Overfitting is apparent when the model learns from the data too well, meaning 

that it models the noise of the training data as a part of them. Overfitting is usually 

present in the case of nonlinear models where the model is much more flexible to exactly 

fit the data than linear models who don’t possess the flexibility to completely match the 

training examples. On the other hand, underfitting refers to a model not being able to 

either generalize or model the training data. We do not usually care about this case, 

because it’s easy to detect, unlike overfitting. A solution that’s used for overfitting is 

employing a validation set, which is used after the model has seen the training data to 

evaluate how well the model reacts to previously unseen data. 
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Unsupervised learning is , as we saw , trying to label unlabeled data into clusters. 

The data is being handed to the model and it tries to correlate them with an outcome, 

with the goal being the identification of hidden patterns in the data that the computer 

will unearth. The main methods in which we apply unsupervised learning are clustering, 

that is forming clusters of data and anomaly detection, which is discovering extreme 

cases in the data that are usually denoted as suspicious, something that’s useful in 

malware and fraud detection. It is a generally complex type of learning which we will not 

get too much into in this thesis. 

Reinforcement learning is a subset of ML that allows agents to experiment with 

their environment and learn from it. It has had increasing success, as it resembles the 

learning of human beings and animals in general, a process that seems very natural. The 

model can learn from experience and is useful for achieving long term goals, something 

which is hard to accomplish. It suffers from a lot of problems aswell , with some being the 

curse of dimensionality, a problem that comes up when we analyze high-dimensional 

spaces, the hunger for computation resources as the model needs to replay the situation 

especially in video games and the assumption that the world is Markovian ( explained at 

Chapter 3). But one of the biggest disadvantages and the one we will talk about the most 

in this thesis is real-world sampling, a problem which rises from the usage of RL in 

robotics and autonomous driving, where we don’t have the luxury to perform replays as 

the hardware is usually too expensive. That can be combated with offline RL , which we 

will address in Chapter 4. 

The rise in popularity of these machine learning categories is definitely correlated 

with the advance of deep neural networks - that was caused by the advancement of 

GPUs-, just because it is now possible to model high-dimensional input data. As a 

consequence, deep neural networks are an integral part of machine learning and have 

helped the technology to rise steadily over the years. 

 

 

2.2 Feed-Forward Neural Networks 

Artificial neural networks are function approximators that were inspired by 

biological neural networks. They consist of the input and output layers aswell as hidden 
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layers that exist between them. Their role is to handle input data, adapt to them changing 

and estimating the output by performing calculations in the hidden layer(s). Specifically, 

Feed-Forward neural networks are the simplest type of neural networks. Their main 

feature is that the movement is only forward , from the inputs to the outputs, so there 

are no loops or cycles involved.  

 

2.2.1 Perceptron 

The unit and simplest form of a feed-forward neural network, is the perceptron. 

As we can observe in the image below, the perceptron performs the cartesian product of 

the inputs and the weights, which is called the weighted sum. The activation function, 

which we can arbitrarily choose but has an impact on the convergence and the general 

behavior of the neural network, provides a mapping from the weighted sum to the values 

of the function. So the result that stems from the activation function is the output and the 

output decides the weight updates. That means that the weights are updated constantly 

until all outputs are classified correctly. In general, perceptrons are guaranteed to 

converge when the data they are provided with are linearly separable but for nonlinear 

approximation we perform different strategies. 

 

 

Figure 2.1: Representation of a perceptron[41] 
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Let’s analyze the components of a perceptron: 

• Weights : They define the direction of our decision hyperplane  

• Net input function : The sum of the weighted inputs that gets fed to our activation 

function 

• Activation Function : An activation function is a function that handles the sum of 

the weighted input data. The output of a perceptron results from this interaction. 

Three types of activation functions are mainly used and are the following: 

➢ Ridge functions: Functions that are a linear combination of inputs ( step 

function, logistic function) 

➢ Radial functions: Functions whose value at each point depends on their 

distance from the origin and that point ( Gaussian function) 

➢ Folding functions: Functions that are mainly used in Convolutional NN’s and 

classification, because they are used to calculate things like the mean, 

maximum, minimum of a set of inputs. 

Each activation function has its own usage, meaning that usually we pick an activation 

function, based on the specific function that we are trying to approximate. For instance, if 

we encounter a classification problem our first guess is to choose the sigmoid function, as 

it is a great depiction of what a classifier should resemble. 

• Error : The error is the difference between the actual output and the desired 

output.  

• Perceptron learning rule : The weights of a perceptron are updated after each 

step, if our training output, fails to match our target output, according to the 

learning rule, also called delta rule[38]: 

𝑤𝑖 = 𝑤𝑖 +  𝛥𝑤𝑖, 

where 𝛥𝑤𝑖  is equal to  

𝛥𝑤𝑖 = 𝑎(𝑡 − 𝑜)𝑥𝑖  

where a is the learning rate ( we prefer to keep it low in order not to blow up the 

weights) , t is the target value (that’s provided in our dataset) , o is our predicted 
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output, and 𝑥𝑖  is the i’th input. This process ends  when every pattern matches the 

target value and the linear function is approximated. 

We just analyzed the simplest form of an ANN but the truth is that we are kind of limited 

to linear models because non-linear approximation is out of the question using plain 

perceptrons. A solution to this is Multi Layer Perceptron. 

 

2.2.2 Multi Layer Perceptron 

 MLP is a deep neural network that consists of perceptrons. More specifically, it 

contains an input layer that receives the input data, an output layer which classifies or 

predicts the input and between those, any number of hidden layers. MLPs are fully 

connected , meaning that each node in a layer is connected with all the nodes in the next 

layer, until we reach the output node. The thing that’s new in this network is the learning 

update, the notorious backpropagation which is a generalization of the previous seen 

delta rule, used in perceptrons. 

 Backpropagation is a backward pass that occurs after the forward pass of the 

network. After the error is calculated, we need to update the weights but that is done by 

checking the ‘sensitivity’ of them related to our output. So we basically apply the chain 

rule in order to calculate a gradient of the form 
𝑑𝑂𝑢𝑡𝑝𝑢𝑡

𝑑𝑊𝑒𝑖𝑔ℎ𝑡
  . After we compute the gradient 

then we perform our gradient descent algorithm to update the weight. 

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑎 ∗
𝑑𝑂𝑢𝑡𝑝𝑢𝑡

𝑑𝑊𝑒𝑖𝑔ℎ𝑡
 

The whole process of backpropagation is to calculate the partial derivatives from the 

error function to the neuron with the specific weight that we want to update. When all of 

the weights of the network are updated, then we can begin the forward pass again. 

2.2.3 Convolutional Neural Network 

CNNs[28][11] are a type of feed-forward neural network that is being used 

extensively in RL and is mainly used in case of images , i.e two-dimensional data. CNNs are 

composed of convolution layers and a fully connected layer at the end that classifies the 

input. The process of training in these networks, as we see in Figure 2.2, comprises of x 

steps.  
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First, in every convolution layer a convolution is performed with our input data 

and the filter that we’re using and an output,which is called feature map, is extracted. 

The feature map is passed to a pooling layer that downsamples the dimensionality of it. 

One of the most popular ways of achieving this is max pooling, a method that extracts 

patches from our feature map and outputs the maximum of each patch. For example, a 

max pooling with a 2x2 filter and a stride(the amount that the filter is shifting) of 2, 

outputs one element (the maximum) for every 2x2 array in our feature map. When we 

reach the last convolution or pooling layer and receive the final feature map, we 

transform it to a 1D array (flattening) and connect it to a set of fully connected layers that 

map to the outputs of the network. The final fully connected layer usually has the same 

number of output nodes as the number of classes.  

 

 
 

Figure 2.2 : A convolutional neural network[42] 

The advantage of using CNNs over MLPs in image classification is that a MLP 

requires great loads of hardware in order to train high resolution image with all the 

connections that are required. CNNs on the other hand, take advantage of the temporal 

and spatial features of an image, meaning that if we see a cat in an image , it will not 

matter whether the cat is on the top right corner or the top left corner, whereas with 

MLPs we would have to relearn the same feature extractor for the different locations. 

With all that said, CNNs are an obvious choice for this task. 

 

 

 

 



9 

 

 

 

2.3 Recurrent Neural Networks 

 RNNs are a type of neural network that differ from feedforward NNs in the sense 

that they can loop backwards and not just follow a straight path. They are mainly used for 

sequential data, I.e data that  follow a pattern , because they store memory of past 

actions. So, the architecture is having loops in the hidden layers that feedback the 

previous inputs to our node, along with our current input. That means that the input that 

is fed to the NN is comprised of current and past inputs, so it can model the whole 

sequence and produce more reliable results regarding that sequence. 

 A RNN updates its values using some form of backpropagation called 

backpropagation through time, which basically is backpropagation taking into acoount 

multiple timesteps. BPTT unrolls all input timesteps and each timestep is regarded as a 

layer of a network. As we can guess, if a network has loads of timesteps then the 

backpropagation may cause weights to approximate zero or overflow. An activation 

function like hyperbolic tangent that has values in the range(-1,1) may cause the first case 

, while gradients with a value above 1, when accumulated, can cause the second case. 

 

 

Figure 2.3 : A recurrent neural network and its unfolding in time[43]. 

 

𝑋𝑡 is the input at timestep t 

𝑆𝑡 is the hidden state at timestep t and is calculated using the previous hidden state and 

𝑋𝑡 by 𝑓(𝑊𝑠{𝑡−1} +  𝑈𝑥𝑡) where f is an activation function like tanh or ReLU 
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𝑂𝑡 is the output at timestep t 

 

 

As we can observe, 𝑆𝑡 holds information about what happened in previous timesteps but 

in practice it’s hard to retain information about states that occurred a lot of timesteps 

ago. That is improved with the introduction of LSTMs. 

 LSTMs are used in order to tackle the problem  of long-term dependencies, i.e the 

problem of remembering long sequences and the problem of vanishing gradient. Their 

characteristic is that in each timestep , the repeating module has 4 layers instead of 1 in 

the classic RNNs, which form the forget gate, input gate and output gate. That way we are 

able to keep the useful information that we gathered from previous data. There are other 

variants of LSTM networks , most notably GRU , that are gaining popularity. 

 

2.4 Radial-Basis function Networks 

Radial-basis function networks resemble feed-forward neural nets but differ on 

the activation function which is non-linear. They usually contain 3 layers , the input , the 

hidden and the output layer. They differ from MLPs , because instead of just multiplying 

the inputs with the weights and summing the results in the end, they compare the inputs 

with the trained values producing a similarity value, which is then multiplied with the 

weights and summed in the output. The most common function used in RBFs is the 

Gaussian that takes into account the input and the distance of the input from the center. 

 

2.5 Variational Autoencoders 

 A technology that’s helpful in many situations where supervised learning does not 

apply, are variational autoencoders. They work with unlabeled data, that is they belong in 

the unsupervised learning region, but contrary to other famous unsupervised algorithms 

like k-means, they are practically neural networks. They are composed of two main parts, 

the first one being the encoder and the second one being the decoder. The first part is 

about receiving an input and encoding it into the latent space and the second part is 

about recovering that input and outputting it. The whole idea of this method is to figure 

out the underlying connection between features, as VAs are generative models that try to 
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learn a probability distribution instead of discriminative models that are aimed towards 

mapping the input data into a prediction[9]. 

 In mathematical terms, the encoder receives an n-dimensional input 𝑥, which for 

example might be an image with √𝑛 ∗ √𝑛 pixels and maps them to a latent space 𝑧 ,with 

it being a probability distribution and having less dimensions than the encoder. So the 

encoder is represented as 𝑞𝜑(𝑧|𝑥). Then using the information from 𝑧 as an input, the 

decoder outputs 𝑥 which is now an n-dimensional space like before, that contains a value 

between 0 and 1 for each element, in our example for each pixel.  
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CHAPTER 3 

REINFORCEMENT LEARNING 

 

3.1 Introduction 

 We’ve briefly discussed about RL in the previous chapters but now we’re going to 

dive deeper into the matter. In this particular subsection of the chapter we are going to 

introduce some basic terminology of RL that will help us explain the methodologies being 

used most in RL currently.  

 

3.1.1 MDPs 

The simple figure below describes the interaction between an agent and the environment 

that he’s in, that’s modelled like a Markov Decision Process. 

 

Figure 3.1: A typical RL scenario[4] 

  

A MDP consists of the following tuple (S,A,𝑅𝑎 , 𝑃𝑎 ,γ) where: 

- S is the set of states in the environment 

- A is the set of actions in the environment 

- 𝑅𝑎 is the reward received by performing action a in a given state 

- 𝑃𝑎 is the probability of getting to a state, given a previous state and an action 

- 𝛾 is the discount factor for future rewards, that  makes earlier rewards more 

appealing 
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The most basic property of MDPs is the “Markov” property, which is about the  

conclusion that any given process 𝑋𝑡+1 is dependent upon the previous timestep 𝑋𝑡 that 

coincides with every timestep before that. So in general, we only care about the state 

before and not of all the previous states  

𝑃[𝑆𝑡+1|𝑆𝑡] =  𝑃[𝑆𝑡+1|𝑆𝑡, 𝑆𝑡−1, … , 𝑆1] 

MDPs in RL can be without knowledge (model-free) or with full knowledge of the 

full transition dynamics and rewards (model-based). Model-free methods are solved via 

trying to figure out the environment’s principles, while model-based can be solved by 

Dynamic programming. So, we categorize RL methods into those that rely on the model 

and those who do not. 

What we are trying to calculate in RL environments is the policy π(s) , which might 

be deterministic   for each state 𝜋(𝑠)  =  𝑎  , or might be stochastic 𝜋(𝑎|𝑠) =

  𝑃𝜋(𝐴 = 𝑎|𝑆 = 𝑠) and the value function 𝑉𝜋(𝑠) , which is the expected amount of 

rewards being in a state and acting according to a policy.  But how do we evaluate a value 

function? 

 
3.1.2 Bellman Equations 
 

A value function under a policy π is the expected return when starting in a state 𝑠 ∈ 𝑆 and 

following that policy. So we can express it as : 

Vπ(s) = Eπ[Rt|st = s] = Eπ [∑ γkrt+k+1| st = s

∞

k=0

]                  𝐄𝐪 𝟑. 𝟏 

and it represents the expected value of discounted rewards that we can get from this 

state. The discount factor γ used here , which is bounded between 0 and  1 is a metric for 

how much we care about immediate or future rewards. If γ approximates 0 then we 

prioritize immediate rewards, while if γ approximates 1 then we place great value on 

future rewards and long term thinking. We generally prefer immediate rewards over 

those further in time, from both a natural standpoint because later rewards tend to be 



14 

 

 

more uncertain and a mathematical standpoint because γ helps convergence instead of 

having to keep track of a large number of future steps. 

Another term that is used extensively in RL is the state-action value function Q-value  

Qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ [∑ γkrt+k+1| st = s

∞

k=0

 , 𝑎𝑡 =  𝑎]                    𝐄𝐪 𝟑. 𝟐  

 , which is the expected return after being in state s , performing action a and then 

following policy π. Furthermore, the Q-function and V-function are related to each other 

by  𝑉𝜋(𝑠) =  ∑ 𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)𝑎  , meaning that the V-value of state is equal to the sum of 

every state-action value regarding that state multiplied by the probability of picking that 

action in that state.  We can take the equation a step further, showcasing its recursive 

element by  

𝑉𝜋(𝑠) =  ∑ 𝜋(𝑎|𝑠) ∑ 𝑃𝑠𝑠′
𝑎

𝑠′𝑎 (𝑟(𝑠, 𝑎) +  𝛾𝑉𝜋(𝑠′))                 𝐄𝐪 𝟑. 𝟑   

This important equation is called the Bellman equation for 𝑉𝜋. 

Finally, action value  𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃
𝑠𝑠′
𝑎

𝑠′  (𝑟(𝑠, 𝑎) +  𝛾𝑉𝜋(𝑠′))  , with  𝑃
𝑠𝑠′
𝑎   being the 

probability of going from state s to state s’ by following action a,  𝑟(𝑠, 𝑎) being the reward 

from following that action and 𝛾𝑉𝜋(𝑠′) being the recursive discounted term. We can also 

describe recursiveness in Q-function by the Bellman equation for 𝑄𝜋 

𝑄𝜋(𝑠, 𝑎) =  ∑ 𝑃𝑠𝑠′
𝑎

𝑠′

( 𝑟(𝑠, 𝑎) +  𝛾 ∑ 𝜋(𝑎′|𝑠′)𝑄𝜋(𝑠′, 𝑎′))

𝑎′

             𝐄𝐪 𝟑. 𝟒  

3.1.3 Bellman Optimality Equations 

 In RL our goal is to find the optimal policy, which is achieved by picking a policy 

that has the highest expected return than every other policy. So it’s obvious that  𝜋 > 𝜋′ 

iff 𝑉𝜋(𝑠) >  𝑉𝜋(𝑠′)  for all 𝑠 ∈ 𝑆.  We define the optimal policy as 𝜋∗ (we may have more 

than 1 optimal policy) and its optimal value and state-value function as : 

𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠)     𝑄∗(𝑠) = max
𝜋

𝑄𝜋(𝑠) 
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We can reuse our previous Bellman equations in order to derive the optimal ones. So the 

Bellman optimality equation for  𝑉∗ , using Eq 3.3, is: 

𝑉∗(𝑠) = max
a

∑ 𝑃𝑠𝑠′
𝑎

𝑠′

(𝑟(𝑠, 𝑎) +  𝛾𝑉∗(𝑠′))                 𝐄𝐪 𝟑. 𝟓  

and for Q*, using Eq 3.4 : 

𝑄∗(𝑠, 𝑎) =  ∑ 𝑃𝑠𝑠′
𝑎

𝑠′

( 𝑟(𝑠, 𝑎) +  𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′))               𝐄𝐪 𝟑. 𝟔  

As we can observe, summation of the policy from Eqs 3.3 and 3.4  is being replaced with 

the max term, which picks the action that maximises the value and action value functions 

respectively. 

If we have complete information of the environment, then we are able to solve the 

problem with Dynamic Programming but in most cases this is not doable, as we are 

usually not provided with the dynamics of it. 

 

3.1.4  On-policy  vs Off-policy  

 One of the most important concepts in RL is the distinction between on-policy , 

off-policy and offline algorithms. In general, when our agent acts, according to a 

behaviour policy we established, he receives a reward. Based on the action picked by the 

behaviour policy, the reward he received and the next state, we update its Q- values 

( Q(s, a) ).  That is what we call an on-policy algorithm, because we use the same action as 

the one picked by the behaviour policy , in order to update our policy. However, off-policy 

algorithms use actions to update the agent’s policy , that might be independent of those 

that were picked. For example, we may follow an epsilon-greedy algorithm to select the 

action and we may update our policy with an action picked by a different algorithm, i.e 

the action that maximizes Q(s,a). Lastly, offline RL algorithms is another subdivision of 

algorithms that have no interaction with the environment , unlike on-policy and off-

policy, and they are provided with a static dataset , which they must utilize for the 

purpose of finding a policy. These algorithms resemble the supervised learning methods 
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we saw, with the static dataset being our policy training set. We will take a closer look 

into offline RL in Chapter 4. 

 

3.1.5  Prediction and Control 

 A prediction task in RL is the process of estimating the value function when having 

a fixed policy 𝜋(𝑎|𝑠). That means that we are interested in predicting if the policy 

behaves adequately by calculating these state values. On the other hand, a control task is 

the task of approximating the optimal policy, in order to get the maximum expected 

reward from each state. As we will later see in GPI (Generalized Policy Iteration), both the 

policy and the value function are approximated concurrently , with the value function 

approximating the policy and the policy improving by usually maximizing the value 

function. 

 

3.1.6 Behavioral Cloning (BC) 

 Behavioral cloning is a way of learning using the training data provided by a 

demonstrator[9] and then training a classifier or regressor to match the original 

behaviour policy. So, there is a dependence between the demonstrator and the trained 

policy, in the sense that if the data provided is not optimal, then the extracted policy will 

most likely be suboptimal also. It is mostly used in the form of images where a CNN 

extracts the information and uses it  to classify its actions that are available. It has had its 

fair share of success in the fields of autonomous driving. 

 

3.2 Value-based methods 

 As we described earlier, in a RL environment we are trying to optimize our agent’s 

policy or value function.  We can actually focus on modelling the policy with the policy-

based methods, modelling the value function with the value-based methods or modelling 

both with actor-critic methods. So, the value-based methods do not explicitly instruct the 

agent on what action to pick but rather update the value function on the states, so he is 

aware of each state’s utility. Let’s analyze some of these methods. 
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3.2.1  Dynamic Programming 

 Dynamic Programming assumes that the model is known[3]and uses Bellman 

equations in order to derive the optimal value function and subsequently the policy. It 

comprises of 3 parts, that form the algorithm GPI. First, we have the policy evaluation, 

which uses Eq 3.3 so it can compute the value function for a given policy π. The next part 

is the policy improvement, where we act greedily as a means to improve our value 

function. That makes sense because if we set 𝜋 ′(𝑠) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞𝜋(𝑠, 𝑎)  then our action 

value function 𝑞𝜋 (𝑠, 𝜋(𝑠 ′)) should be greater or equal to the action value function using 

the given policy. In other words, 

𝑞𝜋(𝑠, 𝜋(𝑠′)) = max
a

𝑞𝜋(𝑠, 𝑎) ≥ 𝑞𝜋(𝑠, 𝜋(𝑠)) = 𝑣𝜋(𝑠) 

But the term 𝑞𝜋(𝑠, 𝜋(𝑠′)) can be decomposed recursively into a value function, as it 

constitutes the expectation of following policy 𝜋′ in state 𝑠 and then following policy π 

afterwards . So,  

𝑞𝜋(𝑠, 𝜋(𝑠′)) =  Eπ′[Rt+1 + 𝛾𝑉𝜋(𝑆𝑡+1)| 𝑆𝑡 = 𝑠]  

≤  Eπ′[Rt+1 + 𝛾𝑞𝜋(𝑆𝑡+1, 𝜋′(𝑆𝑡+1))| 𝑆𝑡 = 𝑠]     

≤  Eπ′[Rt+1 + 𝛾Rt+2 + 𝛾2𝑞𝜋(𝑆𝑡+2, 𝜋′(𝑆𝑡+2))| 𝑆𝑡 = 𝑠]

≤  Eπ′[Rt+1 + 𝛾Rt+2 + 𝛾3𝑅𝑡+3 + ⋯ | 𝑆𝑡 = 𝑠] = 𝑉𝜋′(𝑠)    

Which means that 𝑉𝜋(𝑠) ≤ 𝑉𝜋
′(𝑠). Improvement in the policy can happen until the state-

action value of the greedy policy is equal to the state-action value of our policy: 

𝑞𝜋(𝑠, 𝜋(𝑠′)) = max
a

𝑞𝜋(𝑠, 𝑎) = 𝑞𝜋(𝑠, 𝜋(𝑠)) = 𝑣𝜋(𝑠) 

,then we have the optimal policy π’ . The last part is the policy iteration , where we 

combine the first 2 parts , as we first evaluate the policy by computing the value function 

and then we improve it by applying the greedy policy. 
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Figure 3.2 : Policy iteration algorithm in DP [8]. 

 

 

3.2.2 Monte-Carlo methods 

 Monte-Carlo methods are methods that take advantage of the full episode of 

states, actions and rewards until it is finished. They are model-free so the only way to 

collect information about the environment is by interacting with it and they don’t require 

any knowledge of the MDP but can only be applied to episodic MDPs , i.e MDPs that 

finish. So we know that 𝑉𝜋(𝑠) =  𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] , where 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +

⋯  is the total sum of the discounted rewards. The basic idea of MC methods is that the 

average returns after visiting a state should converge to the expected value of the state.  

 MC prediction methods are split into 2 categories: first-visit MC and every-visit 

MC. The first category refers to the estimation of 𝑉(𝑠) by averaging the returns after the 

first visit of state s, while the second category calculates 𝑉(𝑠) by averaging the returns 

after every visit of state s. Every time a state s is visited we update the number of visits to 

that state , 𝑁(𝑠) = 𝑁(𝑠) + 1 and we update the returns after state s , 𝑅(𝑠) = 𝑅(𝑠) +  𝐺𝑡. 

Then we calculate the value of the state by the mean return 𝑉(𝑠) =
𝑅(𝑠)

𝑁(𝑠)
 

 A very useful way in terms of memory that we can use MC is using the incremental 

implementation. For example, if we want to average some values then: 
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𝜇𝑛 =
1

𝑛
∑ 𝑦𝑖 =

1

𝑛
( ∑ 𝑦𝑖 +  𝑦𝑛)

𝑛−1

𝑖=1

𝑛

𝑖=1

=
1

𝑛
( (𝑛 − 1)

1

𝑛 − 1
 ∑ 𝑦𝑖 + 𝑦𝑛)                                                           

𝑛−1

𝑖=1

=
1

𝑛
( (𝑛 − 1)𝜇𝑛−1 + 𝑦𝑛) = 𝜇𝑛−1 −

1

𝑛
𝜇𝑛−1 +

1

𝑛
𝑦𝑛 = 𝜇𝑛−1 +

1

𝑛
(𝑦𝑛 − 𝜇𝑛−1) 

Now using the value functions instead we get : 

         𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝑎(𝐺𝑡 −  𝑉(𝑆𝑡))                              𝐄𝐪. 𝟑. 𝟕 

,where a is a constant with a value between (0,1].  So, in order to update our value 

function , we only need our previous V-function for the state and the cumulated reward 

after timestep t. 

 As with DP we can use policy iteration for MC control , with the exception of using 

the state action values Q(s, a) instead of the state values as the description of the model 

is unknown. So again our policy iteration algorithms is comprised of the 3 parts, policy 

evaluation, policy improvement and policy iteration. In the policy evaluation step, after 

we have initialized a policy π, we repeat a designated number of episodes in which we 

use our policy 𝜋  to perform actions and calculate the total reward 𝑅(𝑠, 𝑎) for every 

episode. After we’ve finished the episodes, we compute the Q-value of each state-action 

pair with the average of 𝑅(𝑠, 𝑎) starting from that pair. Then, on the policy improvement 

step, we improve the policy by picking the greedy actions  𝜋′(𝑠) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎). The 

policy iteration part is where we alternate between evaluation and improvement until π 

converges to π*.  

 A problem unravelling with that approach is that many states might not get 

visited because of the greediness of the new policy 𝜋′. A solution to this would be 

exploring starts , i.e to grant each state action pair a non-zero probability of being the 

starting pair. That way, more exploration is ensured. Another way to achieve this without 

having to start with random pairs is to just use an epsilon-soft policy: 
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𝜋(𝑠) =  {

1 − 휀 +
휀

𝐴(𝑆𝑡)
, 𝑖𝑓 𝑎 = 𝐴∗

휀

𝐴(𝑆𝑡)
,                           𝑖𝑓 𝑎 ≠ 𝐴∗  

 

, where 𝐴(𝑆𝑡) is the total number of actions that can be performed from state 𝑆𝑡 . So , 

this softmax policy allows each action to have a non-zero probability of being chosen. 

 In general, on a model-free environment, MC can work well if the state-action 

space is not immense, as that would require too much computation power for every 

state-action pair to be visited. 

 

3.2.3 Temporal-Difference Learning 

 TD learning resembles MC methods at being model-free and learning from 

episodes, but the advantage over MC is that with TD we can learn from incomplete 

episodes, so we do not need a full trajectory in order to update our Q-function. The only 

thing that differs from the MC incremental implemention in Eq. 3.7 is the substitution of 

𝐺𝑡: 

 𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝑎(𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) −  𝑉(𝑆𝑡))                              𝐄𝐪. 𝟑. 𝟖 

,which is called bootstrapping and refers to updating the target with the use of existing 

estimates as opposed to complete trajectories. We know that 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) , 

because 

𝑉𝜋(𝑠) ≈ 𝛦𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] =  𝛦𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠] = 𝛦𝜋[𝑅𝑡+1 + 𝛾𝑉𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]  

 Eq. 3.8 refers to the TD(0) method, which looks one step into the future. But what if we 

want to make more steps into the future? We could, for instance, take an n-step TD: 

𝑅𝑡
𝑛 = 𝑟𝑡+1 +  𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉𝑡(𝑠𝑡+𝑛) 

But another justifiable question is could we combine multiple n-step returns? 

 For example, we may want to backup half of a 3-step return and half of a 4-step return. 

That’s where TD(λ) comes into play. 
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 TD(λ) is a generalization of TD(0) and MC  methods that looks an arbitrary amount 

of steps into the future. It works by averaging each of the n-step updates, weighted by 

𝜆𝑛−1 , 𝜆 ∈ [0,1]  and is normalized with (1 − 𝜆) so the sum cannot exceed 1. It is 

described by the following equation: 

                  𝐺𝑡
𝜆 ≈ (1 − 𝜆) ∑ 𝜆𝑛−1𝐺𝑡:𝑡+𝑛

∞

𝑛=1

+  𝜆𝑇−𝑡−1𝐺𝑡                          𝐄𝐪. 𝟑. 𝟗 

So, the weight of each n-step return gets smaller as time progresses. The second term in 

Eq 3.9 refers to the all of the n-returns that happen after we reach a terminal state. We 

can observe here that for the maxima points of λ , that is λ = 0 and λ = 1 , we get the one-

step TD method and the MC method respectively. However, there is a problem with the 

previous approach, called forward view , and that is the need to look forward in order to 

update each state, which causes the updates to become off-line and take place at the end 

of the episode. This issue is tackled utilizing the backward view. 

 The backward view is associated with eligibility traces, a variable that keeps up 

with the state’s visitation. The formula for the eligibility trace is: 

𝑒𝑡(𝑠) =  {
𝛾𝜆𝑒𝑡−1(𝑠),    𝑖𝑓 𝑠 ≠ 𝑠𝑡

      𝛾𝜆𝑒𝑡−1(𝑠) +  1 , 𝑖𝑓 𝑠 = 𝑠𝑡
                                𝐄𝐪. 𝟑. 𝟏𝟎 

This is telling us that whenever we visit a state the eligibility trace of that state increases. 

But, every step that we do not visit a state , that state decreases by the trace-decay 

parameter λ. So, the frequency and the recency of state visitation comes into play with Eq 

3.10.  The way we use the eligibility trace in updating the value functions is by placing it 

into the Eq. 3.8: 

 𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝑎(𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) −  𝑉(𝑆𝑡))𝑒𝑡(𝑠)  

This is the backward view, because it’s like we are observing the state visitation 

backwards and depending on the value of the eligibility trace , we perform a bigger or 

smaller update step. 
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 This was a review of the model-free TD prediction method, which evaluates the 

state functions. But as always, we also care about the control  as a way to improve both 

the value and the policy functions.  

 

3.2.4 SARSA 

 Model-free control is about optimizing the value and the policy function for an 

unknown MDP. Value functions cannot improve a policy in a model-free environment, as 

the probability transitions and the maximum rewards are not known for each state. That 

leads us to using action-state values in order to improve the policy. Thus, the control 

equivalent in TD prediction is a variation of the Eq 3.8: 

 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝑎(𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) −  𝑄(𝑆, 𝐴))                     𝑬𝒒 𝟑. 𝟏𝟏 

SARSA is an on-policy algorithm, because it uses the action selected to update the Q-

values , as the Figure 3.3 shows. 

 

Figure 3.3 : Sarsa Pseudocode 

A policy that’s often employed for the purpose of selecting actions is the epsilon soft 

algorithm that was described in section 3.2.2.  SARSA(λ) is defined as well, by applying Eq. 

3.9 into our SARSA update: 

          𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝑎 (𝑞𝑡
𝜆 −  𝑄(𝑆, 𝐴))                                       𝑬𝒒 𝟑. 𝟏𝟐 

 

3.2.5 Q-learning 

 Q-learning is an algorithm very similar to SARSA , however it possesses a 

significant difference, the off-policy property. That means that whatever action we 

choose, does not matter into the update rule. For example, we could perform an ε-soft 
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policy for the action selection and a greedy algorithm for the update rule. The update rule 

of Q-learning exhibits that: 

𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝑎 (𝑅𝑡+1 + 𝛾 max
𝛼

𝑄(𝑆𝑡+1, 𝛼) −  𝑄(𝑆, 𝐴))                      𝑬𝒒 𝟑. 𝟏𝟑 

The difference is obvious and it is the reason of the separation in notion between on 

policy and off policy algorithms. Still, the most sensational breakthrough in RL algorithms 

came into being with the fusion of deep learning and RL (in this case specifically Q-

learning). 

 

3.2.6 Deep Q network 

 An issue that arises with the methods of updating the Q values, is that in 

environments where the state and action spaces are immense, the process of updating 

the whole table of values is practically infeasible. A solution to this are function 

approximators and as we’ve seen in the previous chapter, NNs can help in that.  

 The algorithm is basically Q-learning performed in a deep learning setting, with 

added features that result in a method that has had much success in the state action 

spaces we discussed above. One of these features is the memory replay dataset [38]. 

DQN utilizes the replay memory dataset in order to remove correlations. Sequential data 

like the data provided in RL environments are very likely to be correlated, as the next 

state  is affected by the action taken and thus handling experiences sequentially results in 

instabilities regarding the function approximator, the neural network . In general, neural 

networks work better with data that are i.i.d, i.e data that are independent and identically 

distributed without possessing sequential properties. But there seems to be a hindrance 

regarding the update of the Q-functions. We saw that in Q-learning the update was 

directed by the term in parentheses in Eq. 3.13, which is the target value (the value we 

get using the recursive property of Q-functions) minus our estimate of the Q-function in 

the state we are into and the action that is chosen. But if we are to perform updates the 

same way in DQN, then we would be updating every Q value in each iteration update, 

because the weights of the NN would constantly change. The solution to this is referred at 

[39], and is the parameterization of the target network with a different parameter than 
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the one used in updating the Q function. This leads to certain benefits from a stability 

viewpoint, as now the target network resembles a supervised learning target that 

remains mostly fixed throughout the update phase. The parameter of the target network 

is, let’s say, 𝜃− with 𝜃− being different than 𝜃. The idea that makes the parameters of the 

two networks stay relevant is that the parameters of the prediction network are copied 

into the target network every predefined number of steps, for example C. So, while the 

prediction network constantly changes values, the target network stays fixed for C steps 

and then basically takes on the prediction network values. Thus, the loss function is 

defined like: 

𝐿 = (𝑟 + 𝛾 max
𝛼′

𝑄(𝑠′, 𝑎′; 𝜃′) − 𝑄(𝑠, 𝑎; 𝜃))2          

And the parameter update rule becomes: 

𝜃𝑘+1 ← 𝜃𝑘 − 𝛼∇𝜃𝐸
𝑠′~𝑃(𝑠′

|𝑠, 𝑎)
[(𝑟 + 𝛾 max

𝛼′
𝑄𝑘(𝑠′, 𝑎′; 𝜃′) − 𝑄𝑘(𝑠, 𝑎; 𝜃)]      

 

  

3.3 Policy-based methods 

3.3.1 Introduction 

 These kind of methods are aiming towards learning the policy directly without 

learning the value function. They are generally more useful in cases where the number of 

states and actions are vast and value-based methods cannot compete, since they require 

a full scan of the space. The “wellness” of a policy is measured based on the context. For 

instance, in episodic environments a metric of a policy would be   𝐽(𝜃) = 𝑉𝜋𝜃(𝑠0) . But in 

continuing environments the metric is the average value: 

             𝐽(𝜃) =  ∑ 𝑑𝜋𝜃(𝑠)𝑉𝜋𝜃(𝑠)

𝑠

= ∑ 𝑑𝜋𝜃(𝑠) ∑ 𝜋𝜃(𝛼|𝑠)𝑄𝜋(𝑠, 𝑎)

𝛼𝑠

                    𝑬𝒒 𝟑. 𝟏𝟒 

, where 𝑑𝜋𝜃(𝑠) is the stationary distribution of Markov chain for the policy 𝜋𝜃 . In other 

words, this distribution is the probability that we end up with state 𝑠𝑡 when starting from 

a state 𝑠0 and following policy 𝜋𝜃 for 𝑡 number of steps: 
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𝑑𝜋(𝑠) =  lim
𝑡→∞

𝑃(𝑠𝑡 = 𝑠|𝑠0, 𝜋𝜃) 

The basic goal here is to calculate the gradient of our reward function 𝐽(𝜃)  in respect to 

the parameter 𝜃 and move towards the direction that maximizes the function. This 

approach in policy based methods is effective in high-dimensional spaces and has better 

convergence properties but a common problem is that with the gradient ascent that we 

perform on our reward function, we converge to a local and not a global maximum. 

 

3.3.2 Policy Gradient Theorem  

The calculation of the gradient ∇𝜃𝐽(𝜃) is tricky because it involves differentiating 

the stationary distribution and the value function. Below the process of computing that 

gradient is displayed, following the policy gradient theorem[2]: 

First we perform the gradient of the value function: 

∇𝑉𝜋(𝑠) =  ∇ [∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

a

]

=  ∑[∇𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎) + 𝜋(𝑎|𝑠)∇𝑞𝜋(𝑠, 𝑎) ]

a

= ∑ [∇𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎) + 𝜋(𝑎|𝑠)∇ ∑ p(s′, r|𝑠, 𝑎)(𝑟 + 𝑉𝜋
′(𝑠)

s′,r

)  ]

a

=  ∑ [∇𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎) + 𝜋(𝑎|𝑠) ∑ p(s′|𝑠, 𝑎)∇𝑉𝜋
′(𝑠)

s′

 ] (𝟏)   𝑬𝒒 𝟑. 𝟏𝟓  

a

 

 

 
In step (1) we remove the rewards because p(s′|𝑠, 𝑎) =  ∑ 𝑝(𝑠 ′, 𝑟|𝑠, 𝑎)𝑟  which means that the probability of getting into 

a next state is the sum of probabilities of all the next state transitions along with their rewards. So if there are 2 

transitions to the same state, we sum both of their probabilities based on the different rewards. 
 

As we see, Eq. 3.15 has a recursive form so the gradient of the value function can be 

unrolled into future states. Now we need to define the probability of going from state s to 

state x in k steps using policy π, which is itself recursive because for k = 1 : 

𝜌𝜋(𝑠 → 𝑠′, 𝑘 = 1, 𝜋) =  ∑ 𝜋𝜃(𝛼|𝑠)𝑃(𝑠′|𝑠, 𝑎)

𝑎
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That equation takes into account every action that can lead to state s’. So the general 

recursive equation of 𝜌𝜋 is: 

 

  𝜌𝜋(𝑠 → 𝑥, 𝑘 + 1, 𝜋) =  ∑ 𝜌𝜋(𝑠 → 𝑠′, 𝑘)𝜌𝜋(𝑠′ → 𝑥, 𝑘 = 1)

𝑠′

        𝑬𝒒 𝟑. 𝟏𝟔  

The general equation here shows its recursiveness in its first term which will unroll until 

we reach state 𝑠′. So using that equation in unrolling the value function of the next states 

in Eq. 3.15, we derive the following equation: 

∇𝜃𝐽(𝜃) = ∇𝑉𝜋(𝑠0)

=  ∑ ∑ 𝜌𝜋(𝑠0 → 𝑠, 𝑘, 𝜋) ∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

a

∞

𝑘=0𝑠

=    ∑ 𝜂(𝑠)

𝑠

∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)  

a

= ( ∑ 𝜂(𝑠)

𝑠

)
𝜂(𝑠)

∑ 𝜂(𝑠)𝑠
∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎) 

a

,       

which is analogous to 
𝜂(𝑠)

∑ 𝜂(𝑠)𝑠
∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)  a  since ∑ 𝜂(𝑠)𝑠   is a constant. Therefore: 

∇𝜃𝐽(𝜃) ∝ ∑ 𝑑𝜋(𝑠) 

𝑠

∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

a

= ∑ 𝑑𝜋(𝑠) 

𝑠

∑ 𝜋𝜃(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)
∇𝜃𝜋𝜃(𝛼|𝑠)

𝜋𝜃(𝛼|𝑠)
a

= 𝛦𝜋[𝑄𝜋(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠)]                                   𝑬𝒒 𝟑. 𝟏𝟕 
 

In the above equation 
𝜂(𝑠)

∑ 𝜂(𝑠)𝑠
= 𝑑𝜋(𝑠)  because it is a stationary distribution. Eq 3.17 is the 

basis for a lot of  policy based algorithms. In the next subsection  we will introduce a 

policy based algorithm. 

 
 
 
3.3.3 REINFORCE (Monte Carlo policy gradient) 

 In this algorithm the approach is very similar to our value-based MC[2], since we 

are using a full trajectory, in order to update our 𝜃 parameter of our reward function. In 

other words: 
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∇𝜃𝐽(𝜃) = 𝛦𝜋[𝑄𝜋(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠)] = 𝛦𝜋[𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎|𝑠)]   ,  

as  𝛦𝜋[𝐺𝑡|𝑠𝑡, 𝑎𝑡] =   𝑄𝜋(𝑠𝑡, 𝑎𝑡) 

So the whole idea is to sample a full trajectory using an arbitrary policy 𝜃 as in 

𝜋𝜃: 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2, … 𝑠𝑇  and then for every timestep 𝑡 = 1, . . , 𝑇  the return 𝐺𝑡 is 

estimated and the parameter 𝜃 is updated by: 

𝜃 ← 𝜃 + 𝛼𝛾𝑡𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎|𝑠)                 𝑬𝒒 𝟑. 𝟏𝟖 

A problem with the approach of a full trajectory is the high variance that is apparent. A 

common approach to this issue is to introduce an advantage function[1]. A simple and 

common used example of advantage function is subtracting the state value from the 

action value as in 𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) −  𝑉(𝑠) and using it instead in place of 𝐺𝑡. Here the 

state value is called a baseline function, that generally serves as a basis for the actions 

that are being picked, with the advantage being large in actions that deviate from the 

average value of the state function. 

 

3.4 Actor-Critic methods 

One of the most used methodologies in RL is the actor critic and for a good 

reason. It basically combines the policy based aspect with the value function approach. 

The way this is implemented is by the usage of 2 models, the critic model and the actor 

model. The critic model keeps up with updating the value function parameters while the 

actor model is busy with updating the policy in the way that is proposed by the critic, as 

can be seen in figure 3.4. We usually model this with two separate parameterized 

networks, one that keeps up with updating the policy, which is the actor and the other 

with updating the value function which is the critic. Actor critic methods are composed of 

the policy update, following the action that was sampled from our policy 𝜋𝜃, then the TD 

error is computed for the action value function at the given state-action pair and that 

particular error is used to update the parameters of our critic network. So the critic works 

towards helping the actor on improving its policy by updating the Q function parameters 

which are used in the update of the policy 𝜋𝜃. 
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Figure 3.4 : Actor-critic network presentation[4]. 

 

3.4.1 Standard AC 

The way the standard actor critic works in practice is by sampling an action 𝑎, 

followed by sampling the given reward 𝑟 and the next state 𝑠′  and then sampling  again 

𝑎′ given our current state. What this means is that our introductory steps are exactly the 

same as SARSA and Q learning but the main difference is apparent in the next step. After 

sampling states and actions, the derivative of the actor-critic cost function 𝐽 is defined by 

following Eq. 3.17 and replacing the Q-function with a parameter 𝑤 that’s being 

monitored by a neural network. The resulting equation is 

∇𝜃𝐽(𝜃) =  𝛦𝜋[𝑄𝜔
𝜋(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠)] 

and then the update on the policy parameter θ is similar to Eq 3.18, but involves the 

parameterized Q function instead of the trajectory 𝐺𝑡. 

𝜃 ← 𝜃 + 𝛼𝑄𝜔
𝜋(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠) 

After we updated the policy parameter, we still have to update the Q-function parameter 

𝑤 aswell as compute the TD error regarding the actions that were sampled. So, the 

correction error is computed as normal  

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑄𝜔
𝜋 (𝑠′, 𝑎′) − 𝑄𝜔

𝜋 (𝑠, 𝑎) 
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Afterwards, the only thing that’s left is to update the Q-function parameters with the 

computed TD error in mind 

𝜔 = 𝜔 + 𝛼𝛿𝑡∇𝜔𝑄𝜔
𝜋 (𝑠, 𝑎) 

That is the standard actor-critic algorithm that trains 2 parameters, namely 𝜔 and 𝜃 in 

order to unravel the optimal policy. 

3.4.2 A3C and A2C 

 But there are also variations of this algorithm that aim at reducing the variance by 

replacing the Q function with the so called advantage term that we introduced earlier in 

3.3.3. Specifically, Eq. 17 now turns into: 

∇𝜃𝐽(𝜃) =  𝛦𝜋[𝐴(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠)] 

We’ve seen the advantage formula before but it poses a problem. The difference 

between the Q function with a designated state-action pair and the value function of a 

state, requires the approximation of them both by a neural network. Since that would be 

extremely cost inefficient we can use the Bellman equations established in the 

introductory chapter 3.1, as a means to end up with one parameterized function. Indeed: 

𝐴(𝑠𝑡 , 𝑎𝑡) = 𝑄𝜔(𝑠𝑡, 𝑎𝑡) −  𝑉𝜅(𝑠𝑡) =  𝑟𝑡+1 + 𝛾𝑉𝜅(𝑠𝑡+1) − 𝑉𝜅(𝑠𝑡) 

The algorithm that employs this technique is called the Asynchronous Advantage 

Actor Critic(A3C) and is an algorithm that employs several asynchronous actor-learners to 

train in parallel, by utilizing CPU threads keeping the training on the same machine[29]. 

The advantage of training multiple learners is that the diversity of the chosen actions is 

big and the updates occurring in the parameters are less likely to be correlated over time, 

especially if each actor possesses different exploration policies which results in exploring 

even more. So, in contrast to the DQN employing a replay memory dataset, the multiple 

actors here are in charge of the stabilizing element of the function approximator that is 

otherwise induced by the replay dataset. The main problem though, is that asynchrony 

means that some of the actors that are not updated as frequently, will have to use older 

versions of the network parameter. That’s why a variation of the A3C was introduced, the 
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A2C algorithm that performs synchronous updates ( removing the asynchronous aspect of 

A3C) , meaning that it waits for all the actors to finish the segment of experience specified 

before executing the update, which is basically the average over all the actors. But  In 

general, A2C seems to enjoy more success than its asynchronous counterpart as specified 

in [30] , mainly because of the more effective usage of GPUs by the A2C algorithm. 

 

3.4.3 SAC 

But one of the most used variations of the standard Actor Critic methods is the 

SAC (Soft Actor Critic) that’s being used in alot of experiments involving both online and 

offline RL, being compared to other algorithms in terms of expected returns. The 

interesting part about SAC is that in addition to the standard expected return, an entropy 

regularization term is appended to the formula. Entropy represents the randomness of a 

variable in a given distribution, so we can intuitively guess that the more entropy we 

have, the more exploration will be achieved in our environment. That brings a change to 

the main RL problem, which is maximizing the policy in order to get the maximum reward: 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐽(𝜋),           𝑤ℎ𝑒𝑟𝑒 𝐽(𝜋) = 𝐸𝜏~𝜋[𝑅(𝜏)] 

Now instead of that we get the following equation: 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐸𝜏~𝜋[∑ 𝛾𝑡(𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛼𝐻(𝜋(∙ |𝑠𝑡)))]     𝑬𝒒 𝟑. 𝟏𝟗

∞

𝑡=0

 

With 𝐻 being the entropy term 𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)log 𝑃(𝑥𝑖)
𝑛
𝑖=1   and 𝛼 being the 

coefficient that regulates the importance of the entropy term, better known as 

temperature parameter. Likewise the value and state value functions are formulated: 

𝑉𝜋(𝑠) = 𝐸𝜏~𝜋[∑ 𝛾𝑡 (𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛼𝐻(𝜋(∙ |𝑠𝑡))) |𝑠0 = 𝑠]    

∞

𝑡=0

  

𝑄𝜋(𝑠, 𝑎) =  𝐸𝜏~𝜋[∑ 𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + ∑ 𝛼𝐻(𝜋(∙ |𝑠𝑡))

∞

𝑡=1

|𝑠0 = 𝑠, 𝑎0 = 𝑎]    

∞

𝑡=0
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With the only difference in the action value function being that we evaluate the 

entropy term starting from timestep 𝑡 = 1 [33]. The layout of the algorithm is the policy 

parameterized by , 𝜋𝜃  , the soft Q-value that’s parameterized by 𝜔, 𝑄𝜔  and the soft state 

value function that’s parameterized by 𝜓, 𝑉_𝜓. Although the policy and Q-value function 

are sufficient enough for us to deduce the state-value function V, the algorithm still uses a 

NN to approximate it for stability reasons during the training. In [32] the soft value 

function becomes: 

𝑉(𝑠𝑡) = 𝐸𝑎𝑡~𝜋[𝑄(𝑠𝑡, 𝑎𝑡) − log 𝜋(𝑎𝑡|𝑠𝑡)]     𝑬𝒒 𝟑. 𝟐𝟎 

, where the value function is contained inside the Q-function according to the Bellman 

equations: 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝐸𝑠𝑡+1~𝑝[𝑉(𝑠𝑡+1)]         𝑬𝒒 𝟑. 𝟐𝟏 

 Now that our value functions are defined, we can delve deeper into the algorithm 

described by the original paper [35]. The cost function of the value function with respect 

to parameter 𝜓  is: 

𝐽𝑉(𝜓) = 𝐸𝑠𝑡~𝐷[
1

2
(𝑉𝜓(𝑠𝑡) − 𝐸[𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)])

2
] 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑏𝑒𝑖𝑛𝑔 ∇𝜓𝐽𝑉(𝜓) = ∇𝜓𝑉𝜓(𝑠𝑡)(𝑉𝜓(𝑠𝑡) − 𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)) 

The D in the cost function of the value function is the replay buffer that is used to store 

states and actions. Similarly we can define the cost function of the action value function: 

𝐽𝑄(𝜔) = 𝐸(𝑠𝑡,𝑎𝑡)~𝐷[
1

2
(𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝐸𝑠𝑡+1~𝑝[𝑉𝜓′(𝑠𝑡+1))

2
 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑏𝑒𝑖𝑛𝑔∇𝜔𝐽𝑄(𝜔) = ∇𝜔𝑄𝜔(𝑠𝑡, 𝑎𝑡)(𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑉𝜓′(𝑠𝑡+1)) 

In this case of the action value cost function we can see that a new variable is introduced, 

𝜓′, which is the parameter of a target value function 𝑉𝜓′ . That’s called the exponentially 

moving average of the value network weights and it’s used to improve stability because 

of the reason that the weights of our network are updated according to it. A similar logic 
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is followed in the DQN case that was covered in earlier chapters, with the parameter of 

the target Q network. Lastly, the policy is updated according to the KL divergence, which 

is a metric of the difference between two distributions. Here we would like to minimize 

the KL divergence between our policy and the exponent of the Q-function divided by a 

normalization function 𝑍𝜃. So the cost function of our policy is : 

𝐽𝜋(𝜃) = 𝛦𝑠𝑡~𝐷[𝐷𝐾𝐿(𝜋𝜃(∙ |𝑠𝑡)||
exp(𝑄𝜔(𝑠𝑡,∙))

𝑍𝜔(𝑠𝑡)
] 

,which is then minimized according to the gradient. So, after all these steps that every 

cost function was defined, the process is really simple. At first, the parameters 

𝜃, 𝜔 𝑎𝑛𝑑 𝜓, 𝜓′ are initialized along with their respective learning rates 𝜆𝜋, 𝜆𝑄 , 𝜆𝑉. After 

that, for each step in the environment, we sample an action 𝑎 from our policy 𝜋𝜃 given a 

particular state (starting from 𝑠0), receive the reward from executing that action and  

sample the next state 𝑠𝑡+1 using the transition probability 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) . This tuple is 

then appended to our replay buffer as a stored experience tuple: 

𝐷 ← 𝐷 ∪ {(𝑠𝑡, 𝑎𝑡, 𝑟(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1} 

Then after we’ve taken some steps and want to update the parameters we’ve previously 

defined, we just update them by subtracting them with their learning rate multiplied by 

their respective cost function. Only the update of the 𝜓′ parameter is different because it 

is special case parameter and is defined as: 

𝜓′ = 𝜏𝜓 + (1 − 𝜏)𝜓′ ,     

𝑤ℎ𝑒𝑟𝑒 𝜏 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

SAC  is in general a fairly complex algorithm that with the addition of the entropy factor 

manages to achieve state of the art results in experiments conducted. 
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CHAPTER 4 

OFFLINE REINFORCEMENT LEARNING 

 

4.1 Introduction 

A real problem with RL is the fact that generalization is hard to achieve without 

many simulations. We really do not fancy having to perform simulations upon simulations 

in order to improve the policy, especially in real world environments, where the data 

collection procedure is costly and time-consuming. What paves the way for generalization 

,as we know from machine learning, are large static datasets that contain information 

about the environment we are interested into. But how can we import large datasets into 

the RL world? That is achieved with offline RL, which is the topic for discussion in this 

thesis.  

We have previously covered the on-policy and off-policy methods. The on-policy 

methods operate by performing actions dictated by a designated policy and then using 

these actions to update the policy. Off-policy choose actions based on a policy and then 

update that policy with actions that stem from another policy, so they are not policy 

dependent and issue more exploration. They also utilize a buffer that the states, actions 

and rewards at each iteration are added into. This buffer, which is dynamic since it is 

always being refreshed with new entries, serves as training examples for our agent in off-

policy methods. Meanwhile, offline learning is the process of our agent learning from 

static datasets, unlike the dynamic buffer, which is constantly being added upon new 

information. Overall, in offline learning the agent learns a policy from our static dataset 

without being able to interact with an environment. 

However, many hindrances are apparent when working with offline learning and 

they come up because of the inability of the agent to interact with his environment. One 

of the difficulties is the static dataset D containing suboptimal data, affecting the training 

process and as a consequence, the trained policy. But that is something that we cannot 

control so we will not get into that. Another issue with the offline approach, is the test 

data being different from the training data. Then, the agent having not seen the test data 

before, might overestimate the Q values and think it’s performing well but in reality it 
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might choose the wrong actions that will eventually accumulate and form a completely 

wrong trajectory. That problem is called distribution shift or extrapolation error and it 

forms a big issue when trying to train an agent offline. The error that’s induced by 

distribution shift is the overestimation of Q values , due to OOD(out of distribution) 

actions, i.e actions that were not met during the training phase[4][5].In the next chapter, 

we will discuss ways of dealing with distribution shift. 

 

 

4.2 Policy constraint methods 

A really important concept in reinforcement learning without feedback , is the 

policy constraint. Policy constraint methods are methods that try to combat the problem 

of distribution shift, by taking into account both the behaviour policy distribution of the 

dataset and the policy distribution that’s being trained. There are 2 main types of policy 

constraint methods, support and distribution constraints.  

Distribution constraints are generally concerned about our policy distribution 

being close to the behaviour policy distribution, so the actions picked are more in line 

with our dataset. Meanwhile, support constraints impel our trained policy 𝜋𝜃 to choose 

actions where the density is larger. Support of a function is the set of values for which the 

function is non-zero, so this constraint does not bother with datapoints that are equal to 

zero. In other words, distribution constraints mainly compel the distribution of the 

trained policy to be similar to the distribution of the behaviour policy of the dataset, 

while support constraints constrain the agent into picking actions that the behaviour 

policy is highly likely to pick given a particular state. As we can observe in Figure 4.1, in 

the left plot we are presented with out of distribution actions (OOD) in a circle. These 

actions are not induced by the behaviour policy β that’s denoted by the dashed lines, so 

what they will end up achieving is propagating Q values that are much higher than what 

they truly are.  The distribution constraint on the middle plot constrains the training 

policy expressed in purple colour to resemble the distribution of the original behaviour 

policy β , while support constraint on the right constrains our actions to the specific 

boundary, specified by the yellow lines, of the behaviour distribution. The distributions in 

yellow colour refer to our training distribution placing above zero probability on actions 

with non negligible behaviour policy density. 
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Figure 4.1 : Policy constraint categories[44] 

  

Recent advances have been observed in both categories. Specifically, in the distrib 

ution constraint area, Batch Constrained deep Q-Learning (BCQ) is an algorithm that 

attempts to solve the issue of distribution shift. As its name suggests, BCQ constraints the 

actions picked into being similar with those contained in the batch and afterwards selects 

the highest-valued action through a Q-network [6]. BCQ resembles Q-Learning but in the 

update step, instead of choosing the maximum action in a given state , it selects the 

actions that appear in the batch of data or eliminates actions that are unlikely to be 

selected by the behaviour policy 𝜋𝛽. The algorithm is described below. 

 

4.2.1 BCQ 

 BCQ trains a variational Autoencoder, from which actions are sampled. This 

autoencoder tries to approximate the state-conditioned marginal probability 𝑃𝐵
𝐺(𝑎|𝑠). 

The policy that tries to maximize this probability would in turn minimize the  

extrapolation error by selecting the most likely actions in our dataset for a particular 

state. The generative model is used because the probability is difficult to calculate in high-

dimensional spaces. Furthermore, a perturbation model is used in order to increase the 

diversity of the actions being chosen and to prohibit us from having to sample alot of 

times. The perturbation model is defined as 𝜉𝜑(𝑠, 𝑎, 𝛷) and adds to the actions values in 

the range of [−𝛷, 𝛷]. So, the process is to sample N actions via the generator, perturb 

each action using our model and then choose the action with the highest Q-value. The 

formula of the policy is described below: 
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𝜋(𝑠) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑖+𝜉𝜑(𝑠,𝑎𝑖,𝛷)
𝑄𝜃 (𝑠, 𝑎𝑖 + 𝜉𝜑(𝑠, 𝑎𝑖, 𝛷)) , {𝑎𝑖~𝐺𝜔(𝑠)} , 𝑖 = 1, … , 𝑛    𝑬𝒒 𝟒. 𝟏     

As we can observe, the selection of Φ and n gives either behavioral cloning where 

Φ = 0 and n=1 as we are sampling only 1 action, or Q-learning where 𝛷 → 𝑎{𝑚𝑎𝑥} − 𝑎{𝑚𝑖𝑛}  

and → ∞ , meaning that the whole action space is being sampled.  Another element of 

this algorithm is the usage of a modification of  Clipped Double  Q-learning, which 

estimates the Q-value by taking the minimum of 2 distinct Q-networks that are being 

trained. So, to sum up BCQ contains four networks, the generative model 𝐺𝜔(𝑠), the 

perturbation model 𝜉𝜑(𝑠, 𝑎)  and the two Q-networks 𝑄𝜃1, 𝑄𝜃2. 

Experiments done using BCQ, show that compared to DQN and DDPG, BCQ 

approximates the true value way better and does not overestimate its Q-values. Another  

interesting fact is that in the imperfect demonstration case showcased at the paper, 

where there is noise in picking actions by the behaviour policy and also noise added in the 

remaining actions for high exploration, BCQ is able to extract the superior actions and 

provide a much higher return than the other algorithms. Also, BCQ learns in a small 

number of steps compared to deep RL methods that require alot of iterations. All in all, 

BCQ seems to consistently outperform the behaviour policy and the other agents used, 

except in the imitation learning task where behaviour cloning was in any case expected to 

come on top. 

 

4.2.2 BEAR 

 Bootstrapping error accumulation reduction is a support constraint algorithm that 

is involved into solving the bootstrapping error, the accumulated error that’s caused by 

the bootstrapping of actions that lie outside of the training data[4].  The key difference 

between BEAR and BCQ[6]is that BCQ constrains the distribution of the learned policy to 

be close to the distribution of the behaviour policy. This is a restriction because for 

example, if the distribution of the behaviour policy is uniform then the policy will also act 

uniformly, while with a support constraint, our trained policy will pick the optimal actions 

with the highest reward in an almost deterministic way.  

BEAR is implemented by using K Q-functions and choosing the minimum Q-value 

for the policy improvement step. Then we maximize the conservative estimate of Q-
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values by choosing the searching in the policy space, where all the policies share the same 

support as our behaviour policy. The formula of the new policy improvement step is : 

𝜋𝜑 ≔ max
𝜋∈𝛥|𝑠|

𝐸𝑠~𝐷𝐸𝑎~𝜋(∙|𝑠)[𝑄𝜃(𝑠, 𝑎)]   , 𝑤𝑖𝑡ℎ   𝐸𝑠~𝐷[𝑀𝑀𝐷(𝛽(. |𝑠), 𝜋(∙ |𝑠))] ≤ 휀  𝑬𝒒 𝟒. 𝟐   

, with ε being an arbitrary value. As described in [4], MMD (maximum mean discrepancy) 

is implented by using samples from both the behaviour and the trained policies and 

computing the difference in support between them. MMD is described as: 

𝑀𝑀𝐷2(𝛸, 𝛶) =
1

𝑛2
∑ 𝑘(𝑥𝑖, 𝑥𝑖′) −

2

𝑛𝑚
∑ 𝑘(𝑥𝑖 , 𝑦𝑗) +

1

𝑚2
∑ 𝑘(𝑦𝑗, 𝑦𝑗′)

𝑗,𝑗′𝑖,𝑗𝑖,𝑖′

 

, with 𝑘(∙,∙) being any RBF kernel. Kernel is basically a similarity function that aims at 

computing the dot product between two vectors in a feature space where the data are 

linearly separable. The fascinating thing about kernels is that if we wanted to project our 

data in a high-dimensional space , this would be computationally infeasible but with 

kernels we do not have to use extensive computations as the domain knowledge of the 

feature space is contained in the kernel formula. A simple example of a kernel is (𝑥, 𝑥′) =

 𝑥𝑇𝑥′ . In this particular algorithm, both Laplassian and Gaussian kernels were found to 

work well. 

 The interesting part of the experiments though, is the comparison between the 

previous algorithm presented, BCQ and some other algorithms like naive RL and 

behaviour cloning. The experiments were divided into 3 parts, our dataset D spawning 

from a random policy, from a mediocre scoring policy and from an optimal policy. The 

results are impressive, as BEAR consistently outperforms the other algorithms in the 

average quality data, which ofcourse are the most important category of data, as the 

most commonly available data fall into that category. In the random dataset, BEAR fares 

better than most of the other algorithms, except naive RL which sometimes gets on top, 

as every actions has the same probability. BCQ on random data resembles the behaviour 

policy so it fails to find the optimal actions and just behaves randomly, showcasing bad 

results. On the other hand, on data generated by an optimal policy, BEAR achieves similar 

results to BC, which is expected to do the best, as it mimics the actions of the optimal 

policy. BCQ also performs similar to BC, because it constrains its distribution to be close 

to the original optimal behaviour policy distribution. 
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4.3 Uncertainty based methods 

 While policy constraint methods provide a solution to the OOD action problem, 

there are also negatives associated with them. For example, the behaviour policy needs 

to be estimated from our static dataset in order to constrain our training policy, with 

wrong estimation of the behaviour policy leading to unexpectedly bad results. Another 

negative effect is that they are usually described as being too conservative in the sense 

that they resemble the behaviour policy in a large scale. For instance, if some arbitrary 

actions in the action space of the environment offer 0 reward, then we would not want to 

constrain the policy in these actions, but policy constraint methods blindly following the 

behaviour distribution would not treat these states as a special case. A way to deal with 

the problem of conservatism in the action space is to implement uncertainty based 

methods that introduce an uncertainty factor and are being divided into model-based and 

model-free. 

 
4.3.1 Model-based uncertainty methods 

We can extend the notion of offline RL into model-based offline RL by using our 

dataset and training NN’s into modeling the environment. So, we train a probability 

transition model that given a state and an action, provides us with the next state and a 

reward function model that predicts the reward granted. Then we can perform planning 

given our handmade model of the world. But even in the process of planning, unseen 

outcomes will occur, leading into the OOD action problem. To solve this we can either use 

policy constraints as we’ve shown before or we can shape the parameterized reward 

function into being conservative. This means that in actions which we have encountered 

the reward function will remain consistent, whereas in unseen actions it will behave in a 

conservative way. 

A recent example of such a method is Model-Based Offline Reinforcement 

Learning (MOReL). MOReL’s main goal is the avoidance of over-estimating rewards that 

are involved in unexplored spaces of the environment, according to the dataset given. So, 

if the dataset does not span the entire action space then the model will be flawed. The 

way this is addressed in [13] is by dissecting the state-action space into known and 

unknown regions. Then whenever an unknown state-action pair is met, the reward 
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function becomes conservative, while when a known pair is encountered then the reward 

function stays unchanged. This is achieved by using an uncertainty factor 𝑢(𝑠, 𝑎) 

𝑟′(𝑠, 𝑎) =  𝑟(𝑠, 𝑎) − 𝜆𝑢(𝑠, 𝑎) 

This uncertainty term is linked with the estimation of the knowledge of a given state-

action pair. The modelling of uncertainty is achieved by training an ensemble of 

models[13] and inspecting their accordance. The variance of OOD actions will be much 

higher than the variance of actions present in the dataset, amongst the models. This is 

used by model based algorithms in different ways. 

 First, [13] uses the disagreement notion, meaning that the difference between 

model predictions is dictating the value of 𝑢(𝑠, 𝑎). So, if the maximum distance between 

models in a given state-action pair is bigger than an arbitrary threshold, then the 

uncertainty factor is maximized. That leads to avoiding state-action pairs that cause the 

models to deviate from each other. On the other hand, Model-based Offline Policy 

Optimization (MOPO) takes a different approach. The dynamics of the environment are 

modelled by a neural network outputting a Gaussian distribution over the next state and 

reward and 𝑁 dynamic models are being trained independently[14]. As [14] describes, 

model ensembles are used a lot in model-based RL because of their ability to capture the 

essence of the population mean and the variance of a Gaussian model can retrieve the 

uncertainty. So a solution to that is to set the uncertainty factor 𝑢(𝑠, 𝑎) equal to: 

𝑢(𝑠, 𝑎) = max
i=1

𝑁
||𝛴𝜑

𝑖 (𝑠, 𝑎)||
𝐹

 

,where φ is the parameter of the variance in the neural network. The final formula using 

this method is : 

𝑟~(𝑠, 𝑎) =  𝑟′(𝑠, 𝑎) −  𝜆 max
i=1

𝑁
||𝛴𝜑

𝑖 (𝑠, 𝑎)||
𝐹

                 𝑬𝒒 𝟒. 𝟑   

,where 𝑟′(𝑠, 𝑎) is the mean reward predicted by the neural network. In both cases of 

MOReL and MOPO, after we obtain the reward function we can simply perform planning 

under our model. 



40 

 

 

 Regarding the experimental results featured in both [13] and [14] we notice that 

model-based methods consistently outperform the policy constraint methods by 

averaging a larger amount of returns. As we discussed earlier, that is completely expected 

for the reason that policy constraint methods exhibit too much conservatism even in 

unnecessary cases. The fact that interests us the most though, is the observations in the 

MOPO algorithm [14] in tasks that require OOD generalization. Specifically, a SAC is 

trained for two environments and the rewards handed to the trajectories are altered 

from the original rewards in order to incentivize the agent to achieve something else. So, 

the agent now has to perform a different task. The results show that model-based 

algorithms like MOPO are significantly outperforming model-free methods and are able 

to generalize given the need for an OOD policy. 

 
 
4.3.2 Model-free uncertainty methods 

 Generalization is a very important concept in offline RL, as it is a requirement for 

the solid behaviour of the trained policy compared to the behaviour policy of the static 

dataset. So, in order to achieve a different , in a better way, policy we really need our 

model to be able to generalize. In [15] two deep Q-learning algorithms are presented, 

Ensemble-DQN and REM, which use ensembles in order to attain generalization.  

 Ensemble-DQN is what its name suggests and basically is an ensemble of Q-

functions that are approximated by a neural network. So, it resembles DQN but does take 

into account the expectation of multiple TD learning errors, averaging them. To be more 

precise to formulate the error at the 𝑘𝑡ℎ Q-function we use: 

𝛥𝜃
𝑘 (𝑠, 𝑎, 𝑟, 𝑠′) =  𝑄𝜃

𝑘(𝑠, 𝑎) − 𝑟 − 𝛾 max
𝑎′

𝑄𝜃′
𝑘 (𝑠′, 𝑎′)  

As we observe, each error is the TD learning update between our estimate 𝑄𝜃 and the 

target Q-value. So, the way the loss function is modelled in the algorithm is: 

𝐿(𝜃) =
1

𝐾
∑ 𝐸𝑠,𝑎,𝑟,𝑠′~𝐷[𝑙𝜆

𝐾

𝑘=1

(𝛥𝜃
𝑘 (𝑠, 𝑎, 𝑟, 𝑠′))]             𝑬𝒒 𝟒. 𝟒   
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, and it is the average of the expectation of each Q-function passed on to 𝑙𝜆 which is the 

Huber loss[23] defined as : 

𝑙𝜆(𝑢) =  {

1

2
𝑢2,                          𝑖𝑓  |𝑢| ≤ 𝜆 

𝜆 (|𝑢| −
1

2
𝜆) ,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
 REM however, deploys an ensemble of Q-functions like ensemble-DQN with the 

main difference being that these Q-functions are mixed at the end and the TD update 

takes into account the ensemble of Q-functions as a single Q-function. More specifically: 

𝛥𝜃
𝛼(𝑠, 𝑎, 𝑟, 𝑠′) =  ∑ 𝛼𝑘𝑄𝜃

𝑘(𝑠, 𝑎)

𝑘

− 𝑟 − 𝛾 max
𝑎′

∑ 𝛼𝑘𝑄𝜃′
𝑘 (𝑠′, 𝑎′)

𝑘

 

If you pay close attention here you will notice that 𝛼 is different than the 𝑎 denoted as 

action. That is because 𝛼 is a coefficient of each Q-function with the sum of them being 

equal to 1, i.e a convex combination. These coefficients stem from a probability 

distribution that is arbitrarily selected and is chosen to be a uniform distribution that’s 

normalized in order to become a valid categorical distribution [16]. So, the previous 

equation of ensemble-DQN, becomes: 

𝐿(𝜃) =  𝐸𝑠,𝑎,𝑟,𝑠′~𝐷 [𝐸𝛼~𝑃𝛥
[𝑙𝜆(𝛥𝜃

𝛼(𝑠, 𝑎, 𝑟, 𝑠′))]]                      𝑬𝒒 𝟒. 𝟓 

,with the main difference being that the coefficients are chosen from the distribution 𝑃𝛥 

which we described earlier and the loss function not being averaged, since the error term 

𝛥𝜃
𝛼  already contains the sums of the Q-functions 
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Figure 4.2 : Ensemble-DQN and REM architectures[15]. 

 Experiments conducted by the authors of [16] show that in the offline case REM 

performs better than standard DQN and ensemble-DQN, because of the noise of random 

ensembles leading to more robustness, whereas the ensemble-DQN just averages the 

values. While in the paper they don’t consider uncertainty , REM in particular works well 

in high coverage datasets for the reason that it grasps the essence of the environment by 

the random ensembles that it deploys. That also provides a boost to the generalization 

problem because as we covered earlier, the abundance of Q-function estimates renders 

the algorithm able to draw better conclusions on its predictions. 

 

4.4 Policy evaluation methods 

 All the methods that were described previously regarding to offline RL, were 

attempting to discover the most optimal policy that would characterize the environment. 

But what if we want to calculate the value function of a given policy without running 

simulations of that policy in the environment? That’s where the offline policy evaluation 

methods come into play.  

 

4.4.1 Importance sampling (IS) 

 The objective of RL is the expected return following a given policy: 

𝐽(𝜋) =  𝐸𝜏~𝑝𝜋(𝜏)[∑ 𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

𝑇

𝑡=0

] 
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But the issue arising here is that we are not able to sample from policy  , so we have to 

acquire samples from the behaviour policy 𝜋𝛽 in an offline setting. This can be attained by 

using importance sampling which follows the methodology below: 

𝐸𝜋[𝛸] =  ∑ 𝑥𝜋(𝑥) = ∑ 𝑥𝜋(𝑥) (
𝜋𝛽(𝑥)

𝜋𝛽(𝑥)
)  = 

𝑥∈𝑋

 

𝑥∈𝑋

∑ 𝑥𝜌(𝑥)𝜋𝛽(𝑥),    𝑤ℎ𝑒𝑟𝑒 𝜌(𝑥) =
𝜋(𝑥)

𝜋𝛽(𝑥)
 

𝑥∈𝑋

 

𝜌(𝑥) is called the importance sampling ratio and is the ratio between the policy that we 

want to evaluate and the policy which we can sample upon. The previous equation is 

approximately equal to: 

1

𝑛
∑ 𝑥𝑖𝑝(𝑥𝑖)

𝑛

𝑖=1  

 

 as: 

𝐸[𝑋] ≈
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

 with the samples 𝑥𝑖  being drawn from our distribution 𝜋𝛽(𝑥). So,  the previous objective 

function that was induced can be transformed with importance sampling into: 

𝐽(𝜋) =  𝐸𝜏~𝜋𝛽(𝜏)
[

𝜋(𝜏)

𝜋𝛽(𝜏)
∑ 𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

𝑇

𝑡=0

] =  𝐸𝜏~𝜋𝛽(𝜏)
[∏

𝜋(𝑎𝑡|𝑠𝑡)

𝜋𝛽(𝑎𝑡|𝑠𝑡)

𝑇

𝑡=0

∑ 𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

𝑇

𝑡=0

]  𝑬𝒒 𝟒. 𝟔 

 

where 

𝜋(𝜏)

𝜋𝛽(𝜏)
=

𝑝(𝑠1) ∏ 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡)𝑡

𝑝(𝑠1) ∏ 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋𝛽(𝑎𝑡|𝑠𝑡)     𝑡
=

𝜋(𝑎𝑡|𝑠𝑡)

𝜋𝛽(𝑎𝑡|𝑠𝑡)
 

because the transition probabilities are the same for each policy and that’s very 

convenient for us in a model-free environment. Lastly Equation 4.6 becomes : 

𝐽 ≈  ∑ 𝑤𝑇
𝑖

𝑛

𝑖=1

∑ 𝛾𝑡𝑟𝑡
𝑖

𝑇

𝑡=0

                 𝑬𝒒 𝟒. 𝟕 

which stems from the importance sampling methodology with 𝑤𝑇
𝑖  being the average of 

the importance sampling ratio. A problem with this approach is the product of the policy 
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probabilities is exponential and may attain high variance as they tend to zero. A way to 

get around this is using the Weighted Importance Sampling (WIS), which is a 

normalization of the Importance Sampling formula induced by dividing the return 

function 𝐽(𝜋) with the average cumulative reward importance ratio at horizon 𝑡  

regarding our dataset, 𝜔𝑡 [23][24] .Indeed: 

𝜔𝑡 = ∑
𝜌1:𝑡

𝑖

𝑛

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝜌𝑡 =
𝜋(𝜏)

𝜋𝛽(𝜏)
  

And 

𝐽 ≈  ∑
𝑤𝑇

𝑖

𝜔𝑡

𝑛

𝑖=1

∑ 𝛾𝑡𝑟𝑡
𝑖

𝑇

𝑡=0

     𝑬𝒒 𝟒. 𝟖 

WIS greatly improves the variance of the estimator but introduces some bias, as each 

instance of 𝜌 is divided by the weighted sum 𝜔𝑡. Another detail that gives somewhat 

better results with lower variance than IS is the per-step importance sampling estimator, 

a modification that constrains the sampling ratio until timestep t, as we do not require 

future actions and states in order to update until that timestep[26]. So, with that in mind, 

Eq. 4.7 and 4.8  become: 

𝐽𝑠𝑡𝑒𝑝𝐼𝑆 =
1

𝑛
∑ ∑ 𝑤𝑡

𝑖𝛾𝑡𝑟𝑡
𝑖

𝑇

𝑡=0

𝑛

𝑖=1

 𝑎𝑛𝑑  𝐽𝑠𝑡𝑒𝑝𝑊𝐼𝑆 =
1

𝑛
∑ ∑

𝑤𝑡
𝑖

𝜔(𝑡)
𝛾𝑡𝑟𝑡

𝑖

𝑇

𝑡=0

𝑛

𝑖=1

 

Still after implementing these methods, variance is something that bothers us and 

an attempt to address this issue became reality with the Doubly Robust Estimator. The 

logic behind using the Doubly Robust Estimator is to achieve a balance between variance 

and bias in a standard environment. As Fig. 4.3 shows, high variance is described by 

having many predictions that fall short in achieving the true value, while some do but in 

general is something that we want to avoid as being unreliable. We can recall the MC 

methods as having too much variance, because we need to specify the full trajectory 

before updating, but the number of trajectories existing in the environment could be 

massive. Meanwhile, the bias is a systematic error of the true value that’s not big in 

numbers as some predictions in a case with high variance could be, but happens to 
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almost every sample. The best match, of course is both the variance and bias being low 

which is presented in the top left of Fig 4.3. So, Doubly Robust Estimator is trying to 

achieve this particular case by deploying a model planning term which has high bias and 

low variance combined with a high variance importance sampling term. This methodology 

is well known in statistics and has been transferred into the field of Machine Learning and 

in our case Reinforcement Learning by [23][35].   

 

Figure 4.3 : Bias-variance tradeoff [35]. 

 

In order to derive the doubly robust estimator we need to implement the 

recursive form of Eq. 4.7 . We know that the value function in the form of Bellman 

equation is the product of the policy (in our case the importance sampling) with the 

rewards gotten in that timestep plus the value of the previous value function. In that 

case: 

𝐽𝑠𝑡𝑒𝑝−𝐼𝑆
𝛨+1−𝑡 = 𝜌𝑡(𝑟𝑡 + 𝛾𝐽𝑠𝑡𝑒𝑝−𝐼𝑆

𝐻−𝑡 ) 

Since J is basically the value function 𝑉 at that timestep, we observe that the expected 

value of the sum in the parentheses is the action value function 𝑄. In that way we can 

form a subtraction using a baseline 𝑄′ function, which can be estimated via regression or 

by using a model-free algorithm or even by planning on an environment whose dynamics 
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are known. The new value in the parentheses is   𝑟𝑡 + 𝛾𝐽𝑠𝑡𝑒𝑝−𝐼𝑆
𝐻−𝑡 −  𝑄′(𝑠𝑡, 𝑎𝑡),   which is a 

much smaller value than   𝑟𝑡 + 𝛾𝐽𝑠𝑡𝑒𝑝−𝐼𝑆
𝐻−𝑡    , especially if the estimated Q function is close 

to the value of the recursive term and this is performed as a means to reduce the 

variance like we did in chapter 3 using the advantage function. Also an estimate of the 

value function is added to that product to promote the lower of bias [25]. The final 

formula is : 

𝐽𝐷𝑅
𝛨+1−𝑡 = 𝑉′(𝑠𝑡) +  𝜌𝑡 (𝑟𝑡 + 𝛾𝐽𝑠𝑡𝑒𝑝−𝐼𝑆

𝐻−𝑡 − 𝑄′(𝑠𝑡, 𝑎𝑡))  𝑬𝒒 𝟒. 𝟗 

There are many variations of Doubly Robust Importance Sampling apart from the 

standard case which was introduced in [36]. Some of them use the bias-variance tradeoff 

more efficiently in order to achieve a better balance, but the underlying notion is what 

we described above. 

 

4.5 Value function regularization methods 

 We’ve previously encountered constraint methods that employ constraints in the 

policy in order to make the learned policy stay relevant with the behaviour policy 

provided. But what if we could interfere with the Q-functions and the Q-values which are 

causing the OOD action problem, directly?  

 

4.5.1 Conservative Q-Learning (CQL) 

 Conservative Q-Learning is basically a regularizer that can be added in a standard 

actor-critic setting in order to lower bound the Q-values selected, preventing them from 

bootstrapping into infinity. As referred in [27] the way to handle this overestimation 

problem is via modifying the objective of the Q-function update, as simply subtracting a 

term, like a policy divergence term, from the standard Q-function update would also form 

a constraint like the ones we’ve encountered before. The regularization term are two and 

they intuitively make sense as the first one samples the biggest Q-values in the whole 

state-action space that are in general the values of OOD actions and it minimizes them. 

So, the peaks that form and would form even more with bootstrapping, are avoided with 

that minimization term. The other term only samples from actions that belong into our 
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dataset in a way to promote them by increasing their value. This way, the algorithm 

works by simultaneously lowering the Q-values of actions that make the bootstrapping 

error explode and are generally not reliable into being picked and increasing the actions 

that we’ve seen in the dataset and lead to reliably good results.   

 Experiments conducted using the CQL method seem to perform better than other 

much used methods in the field both in the reward return section and in the 

overestimation of Q values section. Agents trained with CQL are able to score higher than 

other agents and also perform better in tasks that require generalization by stitching 

trajectories that are suboptimal to form a highly optimal one. Furthermore, analysis of Q-

function estimation by these methods was conducted and showed that the CQL algorithm 

estimates the Q-values much better than the other methods and even better than policy 

constraint methods, while attaining better results than them. The greatest thing about 

CQL is that it’s able to outperform state of the art algorithms and its simplistic usage[27]. 
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      CHAPTER 5 

RESEARCH AND CONCLUSIONS 

 

5.1  Offline Datasets and Research 

This subchapter is mainly focused on datasets that provide research opportunities 

and useful insight that comes up with the extensive study of dataset influence into the 

general field of offline RL. Here we’ll examine the latest news on the field regarding 

benchmark opportunities for researchers that do not possess the resources in order to 

conduct offline RL real world experiments. 

 A very interesting project for those interested in doing practical research in offline 

reinforcement learning is the D4RL, which is short for Datasets for Deep Data-Driven 

Reinforcement Learning. D4RL provides benchmark tasks and datasets publicly, in order 

for aspiring researchers to get a hands-on experience with offline RL, given that most 

online RL benchmarks (like MuJoCo) are not aimed towards the offline aspect of it. There 

are a couple of design variables that one has to take into account if he is to design a well 

defined offline RL task [31]. Some of the hindrances that are apparent in RL environments 

and we would like to maneuver offline RL towards tackling them are described below.    

First, we have the case of narrow datasets where the majority of data in the 

distribution are close to the mean. That poses a challenge, because the offline agent 

might diverge or even train a worse policy than the behaviour policy provided. As we 

observed in Chapter 4, a way to get around distributions that are close together is to 

deploy a conservative algorithm, namely a policy constraint one that does not make the 

resulting policy wander far away from the behaviour one. 

 In addition, a significant issue that surfaces in RL as a whole, are environments 

that provide sparse rewards. For example, Montezuma’s Revenge(a grand challenge in 

the RL community as it’s known for being one of Atari’s hardest to solve games) is a case 

of environment that proves this issue, as in the game you have to do alot of unrewarded 

work in order to acquire a key that gets you to the next level. So, the goal here is to plan 

the path towards obtaining the objective and finally getting the reward, while in the 

meantime the rewards that the agent is receiving are very few and sparse. In offline RL 
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though, sparse rewards without exploration add on additional burden, as we have no way 

to explore the environment, as for instance the sophisticated algorithms that now solve 

the Montezuma’s Revenge game. 

Moreover, a classical problem in offline RL is associated with the data provided by 

the behaviour policy. There is a problem when the data is suboptimal mainly in the 

imitation learning cases where the agent blindly follows the demonstrator’s action to the 

point where it will mimic him even if he acts suboptimally. But as we’ve seen some offline 

algorithms work quite well in these cases where the data come from suboptimal 

demonstrators, in the sense that they outperform the most standard algorithms like AC 

and DQN. The data, apart from being suboptimal, might also be logged. This means that 

they cannot be explicitly used for a particular task we want to accomplish, but may come 

in handy in the so called process of “stitching” [32].  For example, if a car is given the 

directions in the dataset to reach a certain destination from the starting point and then 

from the middle point to reach the final destination, it should learn to generalize and 

“stitch” these trajectories together by forming the path from the starting to the endpoint. 

Practically, in Figure 5.1 we observe the red line combining the two different trajectories. 

 

Figure 5.1 : Stitching of two different trajectories[32].  

 So, we’ve covered some of the basic problems that an offline agent will have to 

face if he is to succeed in offline RL training. With this in mind, the D4RL team created 

some tasks that utilize the previous issues we mentioned, providing the datasets which 

makes for a unique opportunity of being able to conduct research without requiring 

prohibiting amount of resources. The datasets provided consist of some mazes with the 

first one being a simple 2D maze but the more demanding one is the AntMaze, which 

employs an 8 degrees of freedom ant robot containing a much more complex 
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morphology, which resembles the motions of a robot. These two tasks determine the 

agent’s performance on stitching trajectories in an attempt to discover the shortest path 

between two nodes. MuJoCo and GymAI benchmarks are also included with added 

datasets for offline RL learning.  

There is a variety of benchmarks being offered by the conductors of the project 

but they are mainly focused on the aspect of robotics, traffic control and autonomous 

driving[32]. They also add that important topics of research are not included in the 

benchmark environments, such as stochastic systems, mainly healthcare, financial 

markets and advertisement, which can pose a challenge into research. Furthermore, since 

the benchmark datasets are composed of simulated data, the desire to move into real 

world environments with real world data is apparent. 

Another very interesting and innovative project is the RoboNet, a dataset that’s 

specifically focused on the field of robotics[37]. The author’s main concern was that in 

order to train robotic models effectively so they would be capable of generalizing, not 

only a sophisticated algorithm is required, but also the dataset should be large enough. 

This is required not only for generalization’s sake but also for the need to pre-train an 

algorithm with a diverse dataset, before jumping into the training part with a smaller 

dataset[37]. Something along the lines of ImageNet dataset is what the authors dreamt, 

which is a database that accommodates around 15 million images. So, the inspiration 

came from ImageNet and its diversity, having a wide range of image classes is what 

motivated the creators of RoboNet into including a dataset with 7 different robots from 4 

different research institutions. The whole dataset consists of approximately 162k 

trajectories that translate into 15 million frames, but the categories are broad and ranging 

from different robot types to different gripper types and even camera configurations and 

arena environments. 

Apart from the description of the datasets, in [38] experiments are also conducted 

for the large scale data to be tested. The first step, is defining the task that is to be 

evaluated which is referred to as a relocation task. A relocation task involves moving an 

object that is not present in the dataset to an arbitrary location. The task is considered 

successful if the object that our agent moved, is covering most of the space of the 

location. After the task is defined, we move on to the next part which is a test of 

generalization. After the model has been trained with RoboNet, a test is conducted to 
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observe whether it can generalize to new viewpoints. Two cases are compared, the case 

where a model has been trained on 90 different viewpoints and the case where a model 

has been trained on 1 viewpoint, different than the one that they are tested upon. The 

results show that the model that has been trained on the most viewpoints, relocates the 

object on a lesser distance from the goal than the other model, something which signifies 

the generalization that is achieved by being trained on multiple viewpoints. But the 

greatest challenge is referred to as the model being able to generalize in a setting with a 

previously unseen robot. Robots do not only vary in appearance but they also possess 

different dynamics [37] . This experiment is conducted following 3 separate training 

cases. The first case is initializing the weights randomly and training the model using data 

from the target robot and specifically 400 trajectories. The second case is to train the 

model using data from the target robot, but with more than 400 trajectories. The third 

case is pretraining on the RoboNet without using target robot trajectories and then fine-

tuning using 300 to 400 trajectories of the target robot like before. The success rate of the 

third case is higher than the other 2, a result that praises the usefulness of training with a 

big and diverse dataset for better generalization, even if the dataset does not contain the 

target values. This experiment shows that the models pretrained on the RoboNet perform 

better than if they were trained from scratch with the target robot trajectories. A 

problem that’s observed in the RoboNet dataset is underfitting, regarding models that are 

video predicting. So, the next step is to train two different models, one that has 200 

million parameters and another one with 500 million parameters. The result they got is 

that logically, the model with the most parameters had the lowest error but still suffered 

from underfitting. To sum up regarding this paper, the authors after performing the 

experiments conclude that although the results were encouraging, the tasks were mostly 

trivial, with most of them requiring to pick an object and place it in the goal. The dataset 

is also something that worries them, because the policy used to generate the data in it, 

was a random policy so future work would require picking up a more sophisticated policy. 

 In this chapter we saw some of the datasets currently deployed in the field of 

offline RL. Regarding the D4RL project the benchmarks provided are quite sophisticated, 

with tasks requiring extensive generalization and could lead to significant breakthroughs 

through research, while the RoboNet project with its huge capacity of data could assist 
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researchers into not having to spend valuable time and resources into generating their 

own data . 

 

 5.2 Conclusions 

 To conclude with, we covered some of the advancements happening in the field of 

Offline RL at this very instance, trying to solve the difficult problem of estimating a better 

policy than the one that we’re provided with by the data. There are plenty of different 

methods as we’ve noticed in chapter 4, that are aiming towards correcting the OOD 

action overestimation and take better advantage of the behaviour policy. Policy 

constraint methods that endeavour to make the policy learned to resemble the behaviour 

policy in some way or the other. Uncertainty model based methods that deploy an 

ensemble of models into punishing unknown actions and choosing the known or model 

free methods that grind towards picking the best actions by estimating a plethora of Q 

functions. Importance sampling methods that utilize the samples of the known policy in 

order to evaluate the value function and also regularization methods that make use of 

regularizing terms in order to bound the Q-function into not exploding during backups. 

But there is also work to be done according to some open issues arising from these recent 

advances. In subchapter 5.1 we took a deep dive into the datasets that have been 

deployed recently and have unlimited potential regarding the research capabilities that 

they provide.  

 Each methodology that’s being introduced in this paper has its own set of 

drawbacks and space for future corrections. For example, policy constraints, while 

possessing the capability of fixing the distributional shift problem, tend to rely too much 

upon the estimation of the behaviour policy[6]. Also the conservatism is an issue in the 

offline setting because we would never want to conserve the policy or Q-function if we 

were able to generalize well enough. So, there is a need for balance between the 

overestimation and underestimation of unseen actions. Also, importance sampling 

methods are comprised of high variance if the horizon in the current environment is too 

big and are in general too unreliable if our behaviour policy and our trained policy are 

different at large. Obviously, these algorithms suffer in the context of large state and 

action spaces and big horizon steps.  
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 All in all, there’s too much research to be continued in offline RL, as significant 

progress has been made over the last two years, as a result of the apparent potential that 

the field possesses. With the improvement of datasets quality and the algorithms 

capabilities we can expect breakthroughs in automated driving, robotic control, decision 

making in healthcare and generally any activity that has a sequential form and does not 

allow for intensive interaction with the environment. 
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