
i

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

OFFLINE REINFORCEMENT LEARNING

Diploma Thesis

VASILOPOULOS VASILEIOS

Supervisor: Tsalapata Hariklia

Volos year 2021

ii

iii

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

OFFLINE REINFORCEMENT LEARNING

Diploma Thesis

VASILOPOULOS VASILEIOS

Supervisor: Tsalapata Hariklia

Volos year 2021

iv

v

vi

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΚΤΟΣ ΣΥΝΔΕΣΗΣ ΕΝΙΣΧΥΤΙΚΗ ΜΑΘΗΣΗ

Διπλωματική Εργασία

ΒΑΣΙΛΟΠΟΥΛΟΣ ΒΑΣΙΛΕΙΟΣ

 Επιβλέπων: Τσαλαπάτα Χαρίκλεια

Βόλος 2021

vii

viii

Approved by the examination Committee:

Supervisor Tsalapata Hariklia

E.DI.P, Department of Electrical and Computer Engineering,
University of Thessaly

Member Daskalopoulou Aspasia

Assistant Professor, Department of Electrical and Computer
Engineering, University of Thessaly

Member Vassilakopoulos Michael

Associate Professor, Department of Electrical and Computer
Engineering, University of Thessaly

Date of approval: 22-02-2021

ix

x

ACKNOWLEDGEMENTS

Ευχαριστώ όλους όσους βοήθησαν στην περάτωση της διπλωματικής.

xi

xii

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL

PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the

course of this thesis, are solely the product of my personal work and do not infringe any

rights of intellectual property, personality and personal data of third parties, do not

contain work / contributions of third parties for which the permission of the authors /

beneficiaries is required and are not a product of partial or complete plagiarism, while the

sources used are limited to the bibliographic references only and meet the rules of

scientific citing. The points where I have used ideas, text, files and / or sources of other

authors are clearly mentioned in the text with the appropriate citation and the relevant

complete reference is included in the bibliographic references section. I fully, individually

and personally undertake all legal and administrative consequences that may arise in the

event that it is proven, in the course of time, that this thesis or part of it does not belong

to me because it is a product of plagiarism».

The declarant

Vasilopoulos Vasileios

22-02-2021

xiii

xiv

ABSTRACT

With the current popularity of neural networks, both supervised and unsupervised

learning have received a tremendous amount of recognition and have been used

everywhere. Reinforcement learning had been on the background for quite a while , just

because it required a breakthrough , which happened with the introduction of Deep

Reinforcement Learning. DeepMind practically revived deep RL , a technology which dates

back to the 80’s and was implemented by TD-Gammon[16] (one of the first successful RL

applications using neural networks). As a result, RL’s popularity began to rise and found

its usage in many games, aswell as robotics, autonomous driving, healthcare. RL , in

contrast with supervised learning which is trained by a dataset, is a reward based

method, where the agent chooses actions that yield rewards, either positive or negative,

that help him train. In this particular thesis, we will explore the world of RL , the particular

reasons why it holds such great promise and focus on offline RL , which is a form of RL

that uses supervision in order to learn. There will also be a reference to neural networks

and deep learning, as an important piece in the promotion of reinforcement learning. We

will also provide currently open topics for research, as well as datasets that are currently

free to use and are being offered in order to promote the field of offline reinforcement

learning.

xv

xvi

ΠΕΡΙΛΗΨΗ

Με την τρέχουσα δημοτικότητα των νευρωνικών δικτύων, η επιβλεπόμενη καθώς

και η μη επιβλεπόμενη μάθηση , έχουν λάβει ένα σημαντικό ποσό αναγνώρισης και

ουσιαστικά χρησιμοποιούνται παντού. Αντιθέτως, η ενισχυτική μάθηση κειτόταν στο

βάθος της επικαιρότητας, αφού χρειαζόταν μία εξέλιξη, η οποία κατέστη δυνατή με την

άνοδο της βαθιάς ενισχυτικής μάθησης. Η εταιρεία DeepMind έφερε στο προσκήνιο την

βαθιά ενισχυτική μάθηση , η οποία χρονολογείται στη δεκαετία του ’80 και

εφαρμόστηκε το 1992 στο TD-Gammon (μία από τις πρώτες επιτυχημένες εφαρμογές

ενισχυτικής μάθησης χρησιμοποιώντας νευρωνικά δίκτυα). Αυτό είχε ως αποτέλεσμα, η

βαθιά ενισχυτική μάθηση να χρησιμοποιηθεί σε τομείς όπως παιχνίδια , ρομποτική,

αυτόνομη οδήγηση και ιατροφαρμακευτική περίθαλψη. Η ενισχυτική μάθηση ,σε

αντίθεση με την επιβλεπόμενη που χρησιμοποιεί ένα σύνολο από δεδομένα για να

εκπαιδευτεί, έχει τη μορφή της μάθησης μέσω ανταμοιβής , όπου ο πράκτορας επιλέγει

ενέργειες οι οποίες του δίνουν ορισμένες ανταμοιβές , είτε θετικές είτε αρνητικές, μέσω

των οποίων εκπαιδεύεται. Στη συγκεκριμένη διπλωματική, θα εξερευνήσουμε τον κόσμο

της ενισχυτικής μάθησης, τους λόγους για τους οποίους είναι πολλά υποσχόμενη και θα

αφοσιωθούμε στην εκτός σύνδεσης ενισχυτική μάθηση, η οποία είναι ένα είδος

ενισχυτικής μάθησης που χρησιμοποιεί επίβλεψη για να εκπαιδευτεί. Θα γίνει επίσης

αναφορά σε νευρωνικά δίκτυα, καθώς αποτελούν ένα σημαντικό κομμάτι της ανάδειξης

της ενισχυτικής μάθησης. Τέλος , θα αναφέρουμε και ανοιχτά ερευνητικά θέματα ,καθώς

και δεδομένα τα οποία διατίθενται δωρεάν από ερευνητικά κέντρα για την ανάδειξη του

χώρου της εκτός σύνδεσης ενισχυτικής μάθησης.

xvii

xviii

TABLE OF CONTENTS

Acknowledgements..vi

Disclaimer...vii

Περίληψη..viii

Abstract...ix

List of figures...xii

1 Introduction ... 1

2 Deep Learning .. 3
2.1 Introduction to Machine Learning ..3
2.2 Feed-Forward Neural Networks..5

2.2.1 Perceptron .. 5
 2.2.2 Multi Layer Perceptron...7
 2.2.3 Convolutional Neural Networks...7
 2.3 Recurrent Neural Networks...9
 2.4 Radial Basis Function Networks...10
 2.5 Variational Autoencoders ..10

3 Reinforcement Learning…................………………………………………………………………..………...12
 3.1 Introduction..12
 3.1.1 MDPs…...12
 3.1.2 Bellman Equations...13
 3.1.3 Bellman Optimality Equations...14
 3.1.4 On-policy vs off-policy..15
 3.1.5 Prediction and Control...15
 3.1.6 Behavioral Cloning...16
 3.2 Value-based Methods..16
 3.2.1 Dynamic Programming...16
 3.2.2 Monte-Carlo methods..18
 3.2.3 Temporal-Difference Learning...20
 3.2.4 SARSA...22
 3.2.5 Q-Learning...22
 3.26 Deep Q networks..23
 3.3 Policy-based Methods...24
 3.3.1 Introduction...24
 3.3.2 Policy Gradient Theorem..25
 3.3.3 REINFORCE...26
 3.4 Actor-Critic methods..27

xix

 3.4.1 Standard AC..28
 3.4.2 A3C and A2C...29
 3.4.3 SAC..30

4 Offline Learning .. 33
 4.1 Introduction...33
 4.2 Policy-based methods..34
 4.2.1 BCQ...35
 4.2.2 BEAR...36
 4.3 Uncertainty-based methods..38
 4.3.1 Model-based uncertainty methods..38
 4.3.2 Model-free uncertainty methods...40
 4.4 Policy evaluation methods...42
 4.4.1 Importance-sampling methods..42
 4.5 Value regularization methods...46
 4.5.1 CQL...46
5 Research and Conclusions... 48
 5.1 Datasets and Research...48
 5.2 Conclusions..52

xiv

List of Figures

Figure 2.1- Representation of a perceptron...5
Figure 2.2- Convolutional Neural Network..8
Figure 2.3- Recurrent Neural Network..9
Figure 3.1- Representation of a MDP..12
Figure 3.2- Policy iteration algorithm..18
Figure 3.3- Sarsa Pseudocode..22
Figure 3.4- Actor-critic representation..28
Figure 4.1- Policy constraint categories..35
Figure 4.2- Ensemble-DQN and REM architectures...42
Figure 4.3- Bias-variance tradeoff...45
Figure 5.1- Stitching of two different trajectories..49

1

CHAPTER 1

INTRODUCTION

RL is an area of machine learning that possesses a wide variety of innovations and

improvements over the years. The exact steps that were undertaken in order to lead us

to today’s state of RL are referenced in [3] and split into two distinct categories.

The first breakthrough became apparent around the mid-50’s when Richard

Bellman introduced the notion of “optimal control”[17] based on the works of Hamilton

and Jacobi a century earlier [3]. This formed the basis for Dynamic Programming, the

Bellman Equation that gave birth to all the elements contained in the field of RL.

However, control theory implementations revolve around the idea that the environment

in a given setting is perfectly known, which is somewhat counterintuitive to the whole

aspect of RL being trial and error. But when and how were the foundations set on RL to

intuitively become acknowledged as trial and error?

The works of [17][18] gave birth to a very prominent methodology, namely the

Temporal Difference Learning. There were also projects that date earlier, which

introduced trial and error setting but it was these papers that set the ground for the

current state of RL. TD methods originate from studies on animal learning and were

conjuncted by the works of Harry Klopf [19][20] .Both the TD methods and optimal

control problems were unified under the scope of Q-learning[21], which is basically a TD

control algorithm described later in Chapter 3.

In this thesis our aim is to provide the reader some insight on the very broad topic

of RL and focus on a specialized field called Offline Reinforcement Learning, a subset of

RL. This of course, cannot be achieved without a reference to machine learning and

neural networks.

So, in Chapter 2 we provide the reader with some basic information about

machine learning and different kinds of neural networks that are consistently used in RL

and will assist at understanding the algorithms later on. Also, grasping fundamental

knowledge about different kinds of learning, such as supervised or unsupervised, will

definitely prove to be helpful in understanding the importance of RL.

2

In Chapter 3, we familiarize the reader with RL theory and algorithms and some of

the most important methodologies currently being in use in the field. The comprehension

of such notions is obligatory for the offline RL field to become understandable.

In Chapter 4, we present the most recent advancements on the topic of offline RL

and why it is a key factor in the development of a wide range of recent technologies.

Furthermore, the results from different experiments conducted by authors of several

papers involving offline RL are summarized and the conclusions that are being deduced

are displayed, noting the significance of the field.

In Chapter 5, we take a holistic approach to RL as a whole, providing insight on

how offline RL can aid in the evolvement of the field, discussing the material presented in

the thesis and referring to open problems currently open for research, as well as datasets

that can provide useful to a researcher.

3

CHAPTER 2

DEEP LEARNING

2.1 Introduction to Machine Learning

When we hear of the term Machine Learning we probably think of machines

learning using some kind of technique. Machine Learning is actually that and is comprised

of 3 particular main types:

1. Supervised Learning: A class of problems that involve learning a mapping

from inputs to outputs, with them belonging in a dataset. There are 2 types

of supervised learning, classification which involves the prediction of a

class and regression which involves the prediction of a numerical value.

2. Unsupervised Learning: A class of problems whose outputs are unknown

and the algorithm tries to make sense of the input data.

3. Reinforcement Learning: A class of problems that involve an agent acting

on the environment and getting the maximum possible cumulative reward

from all these actions.

So, supervised learning is basically approximating the function g with input

variables X and Y where 𝑌 = 𝑔(𝑋). An important concept that arises from that is the

need to generalize to new data that the model has not seen. The term generalization

refers to how well the model responds to new input data presented to it, having learnt

from the training data we provided. Two issues arise as problems of generalization,

overfitting and underfitting.

Overfitting is apparent when the model learns from the data too well, meaning

that it models the noise of the training data as a part of them. Overfitting is usually

present in the case of nonlinear models where the model is much more flexible to exactly

fit the data than linear models who don’t possess the flexibility to completely match the

training examples. On the other hand, underfitting refers to a model not being able to

either generalize or model the training data. We do not usually care about this case,

because it’s easy to detect, unlike overfitting. A solution that’s used for overfitting is

employing a validation set, which is used after the model has seen the training data to

evaluate how well the model reacts to previously unseen data.

4

Unsupervised learning is , as we saw , trying to label unlabeled data into clusters.

The data is being handed to the model and it tries to correlate them with an outcome,

with the goal being the identification of hidden patterns in the data that the computer

will unearth. The main methods in which we apply unsupervised learning are clustering,

that is forming clusters of data and anomaly detection, which is discovering extreme

cases in the data that are usually denoted as suspicious, something that’s useful in

malware and fraud detection. It is a generally complex type of learning which we will not

get too much into in this thesis.

Reinforcement learning is a subset of ML that allows agents to experiment with

their environment and learn from it. It has had increasing success, as it resembles the

learning of human beings and animals in general, a process that seems very natural. The

model can learn from experience and is useful for achieving long term goals, something

which is hard to accomplish. It suffers from a lot of problems aswell , with some being the

curse of dimensionality, a problem that comes up when we analyze high-dimensional

spaces, the hunger for computation resources as the model needs to replay the situation

especially in video games and the assumption that the world is Markovian (explained at

Chapter 3). But one of the biggest disadvantages and the one we will talk about the most

in this thesis is real-world sampling, a problem which rises from the usage of RL in

robotics and autonomous driving, where we don’t have the luxury to perform replays as

the hardware is usually too expensive. That can be combated with offline RL , which we

will address in Chapter 4.

The rise in popularity of these machine learning categories is definitely correlated

with the advance of deep neural networks - that was caused by the advancement of

GPUs-, just because it is now possible to model high-dimensional input data. As a

consequence, deep neural networks are an integral part of machine learning and have

helped the technology to rise steadily over the years.

2.2 Feed-Forward Neural Networks

Artificial neural networks are function approximators that were inspired by

biological neural networks. They consist of the input and output layers aswell as hidden

5

layers that exist between them. Their role is to handle input data, adapt to them changing

and estimating the output by performing calculations in the hidden layer(s). Specifically,

Feed-Forward neural networks are the simplest type of neural networks. Their main

feature is that the movement is only forward , from the inputs to the outputs, so there

are no loops or cycles involved.

2.2.1 Perceptron

The unit and simplest form of a feed-forward neural network, is the perceptron.

As we can observe in the image below, the perceptron performs the cartesian product of

the inputs and the weights, which is called the weighted sum. The activation function,

which we can arbitrarily choose but has an impact on the convergence and the general

behavior of the neural network, provides a mapping from the weighted sum to the values

of the function. So the result that stems from the activation function is the output and the

output decides the weight updates. That means that the weights are updated constantly

until all outputs are classified correctly. In general, perceptrons are guaranteed to

converge when the data they are provided with are linearly separable but for nonlinear

approximation we perform different strategies.

Figure 2.1: Representation of a perceptron[41]

6

Let’s analyze the components of a perceptron:

• Weights : They define the direction of our decision hyperplane

• Net input function : The sum of the weighted inputs that gets fed to our activation

function

• Activation Function : An activation function is a function that handles the sum of

the weighted input data. The output of a perceptron results from this interaction.

Three types of activation functions are mainly used and are the following:

➢ Ridge functions: Functions that are a linear combination of inputs (step

function, logistic function)

➢ Radial functions: Functions whose value at each point depends on their

distance from the origin and that point (Gaussian function)

➢ Folding functions: Functions that are mainly used in Convolutional NN’s and

classification, because they are used to calculate things like the mean,

maximum, minimum of a set of inputs.

Each activation function has its own usage, meaning that usually we pick an activation

function, based on the specific function that we are trying to approximate. For instance, if

we encounter a classification problem our first guess is to choose the sigmoid function, as

it is a great depiction of what a classifier should resemble.

• Error : The error is the difference between the actual output and the desired

output.

• Perceptron learning rule : The weights of a perceptron are updated after each

step, if our training output, fails to match our target output, according to the

learning rule, also called delta rule[38]:

𝑤𝑖 = 𝑤𝑖 + 𝛥𝑤𝑖,

where 𝛥𝑤𝑖 is equal to

𝛥𝑤𝑖 = 𝑎(𝑡 − 𝑜)𝑥𝑖

where a is the learning rate (we prefer to keep it low in order not to blow up the

weights) , t is the target value (that’s provided in our dataset) , o is our predicted

7

output, and 𝑥𝑖 is the i’th input. This process ends when every pattern matches the

target value and the linear function is approximated.

We just analyzed the simplest form of an ANN but the truth is that we are kind of limited

to linear models because non-linear approximation is out of the question using plain

perceptrons. A solution to this is Multi Layer Perceptron.

2.2.2 Multi Layer Perceptron

 MLP is a deep neural network that consists of perceptrons. More specifically, it

contains an input layer that receives the input data, an output layer which classifies or

predicts the input and between those, any number of hidden layers. MLPs are fully

connected , meaning that each node in a layer is connected with all the nodes in the next

layer, until we reach the output node. The thing that’s new in this network is the learning

update, the notorious backpropagation which is a generalization of the previous seen

delta rule, used in perceptrons.

 Backpropagation is a backward pass that occurs after the forward pass of the

network. After the error is calculated, we need to update the weights but that is done by

checking the ‘sensitivity’ of them related to our output. So we basically apply the chain

rule in order to calculate a gradient of the form
𝑑𝑂𝑢𝑡𝑝𝑢𝑡

𝑑𝑊𝑒𝑖𝑔ℎ𝑡
 . After we compute the gradient

then we perform our gradient descent algorithm to update the weight.

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑎 ∗
𝑑𝑂𝑢𝑡𝑝𝑢𝑡

𝑑𝑊𝑒𝑖𝑔ℎ𝑡

The whole process of backpropagation is to calculate the partial derivatives from the

error function to the neuron with the specific weight that we want to update. When all of

the weights of the network are updated, then we can begin the forward pass again.

2.2.3 Convolutional Neural Network

CNNs[28][11] are a type of feed-forward neural network that is being used

extensively in RL and is mainly used in case of images , i.e two-dimensional data. CNNs are

composed of convolution layers and a fully connected layer at the end that classifies the

input. The process of training in these networks, as we see in Figure 2.2, comprises of x

steps.

8

First, in every convolution layer a convolution is performed with our input data

and the filter that we’re using and an output,which is called feature map, is extracted.

The feature map is passed to a pooling layer that downsamples the dimensionality of it.

One of the most popular ways of achieving this is max pooling, a method that extracts

patches from our feature map and outputs the maximum of each patch. For example, a

max pooling with a 2x2 filter and a stride(the amount that the filter is shifting) of 2,

outputs one element (the maximum) for every 2x2 array in our feature map. When we

reach the last convolution or pooling layer and receive the final feature map, we

transform it to a 1D array (flattening) and connect it to a set of fully connected layers that

map to the outputs of the network. The final fully connected layer usually has the same

number of output nodes as the number of classes.

Figure 2.2 : A convolutional neural network[42]

The advantage of using CNNs over MLPs in image classification is that a MLP

requires great loads of hardware in order to train high resolution image with all the

connections that are required. CNNs on the other hand, take advantage of the temporal

and spatial features of an image, meaning that if we see a cat in an image , it will not

matter whether the cat is on the top right corner or the top left corner, whereas with

MLPs we would have to relearn the same feature extractor for the different locations.

With all that said, CNNs are an obvious choice for this task.

9

2.3 Recurrent Neural Networks

 RNNs are a type of neural network that differ from feedforward NNs in the sense

that they can loop backwards and not just follow a straight path. They are mainly used for

sequential data, I.e data that follow a pattern , because they store memory of past

actions. So, the architecture is having loops in the hidden layers that feedback the

previous inputs to our node, along with our current input. That means that the input that

is fed to the NN is comprised of current and past inputs, so it can model the whole

sequence and produce more reliable results regarding that sequence.

 A RNN updates its values using some form of backpropagation called

backpropagation through time, which basically is backpropagation taking into acoount

multiple timesteps. BPTT unrolls all input timesteps and each timestep is regarded as a

layer of a network. As we can guess, if a network has loads of timesteps then the

backpropagation may cause weights to approximate zero or overflow. An activation

function like hyperbolic tangent that has values in the range(-1,1) may cause the first case

, while gradients with a value above 1, when accumulated, can cause the second case.

Figure 2.3 : A recurrent neural network and its unfolding in time[43].

𝑋𝑡 is the input at timestep t

𝑆𝑡 is the hidden state at timestep t and is calculated using the previous hidden state and

𝑋𝑡 by 𝑓(𝑊𝑠{𝑡−1} + 𝑈𝑥𝑡) where f is an activation function like tanh or ReLU

10

𝑂𝑡 is the output at timestep t

As we can observe, 𝑆𝑡 holds information about what happened in previous timesteps but

in practice it’s hard to retain information about states that occurred a lot of timesteps

ago. That is improved with the introduction of LSTMs.

 LSTMs are used in order to tackle the problem of long-term dependencies, i.e the

problem of remembering long sequences and the problem of vanishing gradient. Their

characteristic is that in each timestep , the repeating module has 4 layers instead of 1 in

the classic RNNs, which form the forget gate, input gate and output gate. That way we are

able to keep the useful information that we gathered from previous data. There are other

variants of LSTM networks , most notably GRU , that are gaining popularity.

2.4 Radial-Basis function Networks

Radial-basis function networks resemble feed-forward neural nets but differ on

the activation function which is non-linear. They usually contain 3 layers , the input , the

hidden and the output layer. They differ from MLPs , because instead of just multiplying

the inputs with the weights and summing the results in the end, they compare the inputs

with the trained values producing a similarity value, which is then multiplied with the

weights and summed in the output. The most common function used in RBFs is the

Gaussian that takes into account the input and the distance of the input from the center.

2.5 Variational Autoencoders

 A technology that’s helpful in many situations where supervised learning does not

apply, are variational autoencoders. They work with unlabeled data, that is they belong in

the unsupervised learning region, but contrary to other famous unsupervised algorithms

like k-means, they are practically neural networks. They are composed of two main parts,

the first one being the encoder and the second one being the decoder. The first part is

about receiving an input and encoding it into the latent space and the second part is

about recovering that input and outputting it. The whole idea of this method is to figure

out the underlying connection between features, as VAs are generative models that try to

11

learn a probability distribution instead of discriminative models that are aimed towards

mapping the input data into a prediction[9].

 In mathematical terms, the encoder receives an n-dimensional input 𝑥, which for

example might be an image with √𝑛 ∗ √𝑛 pixels and maps them to a latent space 𝑧 ,with

it being a probability distribution and having less dimensions than the encoder. So the

encoder is represented as 𝑞𝜑(𝑧|𝑥). Then using the information from 𝑧 as an input, the

decoder outputs 𝑥 which is now an n-dimensional space like before, that contains a value

between 0 and 1 for each element, in our example for each pixel.

12

CHAPTER 3

REINFORCEMENT LEARNING

3.1 Introduction

 We’ve briefly discussed about RL in the previous chapters but now we’re going to

dive deeper into the matter. In this particular subsection of the chapter we are going to

introduce some basic terminology of RL that will help us explain the methodologies being

used most in RL currently.

3.1.1 MDPs

The simple figure below describes the interaction between an agent and the environment

that he’s in, that’s modelled like a Markov Decision Process.

Figure 3.1: A typical RL scenario[4]

A MDP consists of the following tuple (S,A,𝑅𝑎 , 𝑃𝑎 ,γ) where:

- S is the set of states in the environment

- A is the set of actions in the environment

- 𝑅𝑎 is the reward received by performing action a in a given state

- 𝑃𝑎 is the probability of getting to a state, given a previous state and an action

- 𝛾 is the discount factor for future rewards, that makes earlier rewards more

appealing

13

The most basic property of MDPs is the “Markov” property, which is about the

conclusion that any given process 𝑋𝑡+1 is dependent upon the previous timestep 𝑋𝑡 that

coincides with every timestep before that. So in general, we only care about the state

before and not of all the previous states

𝑃[𝑆𝑡+1|𝑆𝑡] = 𝑃[𝑆𝑡+1|𝑆𝑡, 𝑆𝑡−1, … , 𝑆1]

MDPs in RL can be without knowledge (model-free) or with full knowledge of the

full transition dynamics and rewards (model-based). Model-free methods are solved via

trying to figure out the environment’s principles, while model-based can be solved by

Dynamic programming. So, we categorize RL methods into those that rely on the model

and those who do not.

What we are trying to calculate in RL environments is the policy π(s) , which might

be deterministic for each state 𝜋(𝑠) = 𝑎 , or might be stochastic 𝜋(𝑎|𝑠) =

 𝑃𝜋(𝐴 = 𝑎|𝑆 = 𝑠) and the value function 𝑉𝜋(𝑠) , which is the expected amount of

rewards being in a state and acting according to a policy. But how do we evaluate a value

function?

3.1.2 Bellman Equations

A value function under a policy π is the expected return when starting in a state 𝑠 ∈ 𝑆 and

following that policy. So we can express it as :

Vπ(s) = Eπ[Rt|st = s] = Eπ [∑ γkrt+k+1| st = s

∞

k=0

] 𝐄𝐪 𝟑. 𝟏

and it represents the expected value of discounted rewards that we can get from this

state. The discount factor γ used here , which is bounded between 0 and 1 is a metric for

how much we care about immediate or future rewards. If γ approximates 0 then we

prioritize immediate rewards, while if γ approximates 1 then we place great value on

future rewards and long term thinking. We generally prefer immediate rewards over

those further in time, from both a natural standpoint because later rewards tend to be

14

more uncertain and a mathematical standpoint because γ helps convergence instead of

having to keep track of a large number of future steps.

Another term that is used extensively in RL is the state-action value function Q-value

Qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ [∑ γkrt+k+1| st = s

∞

k=0

 , 𝑎𝑡 = 𝑎] 𝐄𝐪 𝟑. 𝟐

 , which is the expected return after being in state s , performing action a and then

following policy π. Furthermore, the Q-function and V-function are related to each other

by 𝑉𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)𝑎 , meaning that the V-value of state is equal to the sum of

every state-action value regarding that state multiplied by the probability of picking that

action in that state. We can take the equation a step further, showcasing its recursive

element by

𝑉𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠) ∑ 𝑃𝑠𝑠′
𝑎

𝑠′𝑎 (𝑟(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)) 𝐄𝐪 𝟑. 𝟑

This important equation is called the Bellman equation for 𝑉𝜋.

Finally, action value 𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃
𝑠𝑠′
𝑎

𝑠′ (𝑟(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)) , with 𝑃
𝑠𝑠′
𝑎 being the

probability of going from state s to state s’ by following action a, 𝑟(𝑠, 𝑎) being the reward

from following that action and 𝛾𝑉𝜋(𝑠′) being the recursive discounted term. We can also

describe recursiveness in Q-function by the Bellman equation for 𝑄𝜋

𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎

𝑠′

(𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝜋(𝑎′|𝑠′)𝑄𝜋(𝑠′, 𝑎′))

𝑎′

 𝐄𝐪 𝟑. 𝟒

3.1.3 Bellman Optimality Equations

 In RL our goal is to find the optimal policy, which is achieved by picking a policy

that has the highest expected return than every other policy. So it’s obvious that 𝜋 > 𝜋′

iff 𝑉𝜋(𝑠) > 𝑉𝜋(𝑠′) for all 𝑠 ∈ 𝑆. We define the optimal policy as 𝜋∗ (we may have more

than 1 optimal policy) and its optimal value and state-value function as :

𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠) 𝑄∗(𝑠) = max
𝜋

𝑄𝜋(𝑠)

15

We can reuse our previous Bellman equations in order to derive the optimal ones. So the

Bellman optimality equation for 𝑉∗ , using Eq 3.3, is:

𝑉∗(𝑠) = max
a

∑ 𝑃𝑠𝑠′
𝑎

𝑠′

(𝑟(𝑠, 𝑎) + 𝛾𝑉∗(𝑠′)) 𝐄𝐪 𝟑. 𝟓

and for Q*, using Eq 3.4 :

𝑄∗(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎

𝑠′

(𝑟(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)) 𝐄𝐪 𝟑. 𝟔

As we can observe, summation of the policy from Eqs 3.3 and 3.4 is being replaced with

the max term, which picks the action that maximises the value and action value functions

respectively.

If we have complete information of the environment, then we are able to solve the

problem with Dynamic Programming but in most cases this is not doable, as we are

usually not provided with the dynamics of it.

3.1.4 On-policy vs Off-policy

 One of the most important concepts in RL is the distinction between on-policy ,

off-policy and offline algorithms. In general, when our agent acts, according to a

behaviour policy we established, he receives a reward. Based on the action picked by the

behaviour policy, the reward he received and the next state, we update its Q- values

(Q(s, a)). That is what we call an on-policy algorithm, because we use the same action as

the one picked by the behaviour policy , in order to update our policy. However, off-policy

algorithms use actions to update the agent’s policy , that might be independent of those

that were picked. For example, we may follow an epsilon-greedy algorithm to select the

action and we may update our policy with an action picked by a different algorithm, i.e

the action that maximizes Q(s,a). Lastly, offline RL algorithms is another subdivision of

algorithms that have no interaction with the environment , unlike on-policy and off-

policy, and they are provided with a static dataset , which they must utilize for the

purpose of finding a policy. These algorithms resemble the supervised learning methods

16

we saw, with the static dataset being our policy training set. We will take a closer look

into offline RL in Chapter 4.

3.1.5 Prediction and Control

 A prediction task in RL is the process of estimating the value function when having

a fixed policy 𝜋(𝑎|𝑠). That means that we are interested in predicting if the policy

behaves adequately by calculating these state values. On the other hand, a control task is

the task of approximating the optimal policy, in order to get the maximum expected

reward from each state. As we will later see in GPI (Generalized Policy Iteration), both the

policy and the value function are approximated concurrently , with the value function

approximating the policy and the policy improving by usually maximizing the value

function.

3.1.6 Behavioral Cloning (BC)

 Behavioral cloning is a way of learning using the training data provided by a

demonstrator[9] and then training a classifier or regressor to match the original

behaviour policy. So, there is a dependence between the demonstrator and the trained

policy, in the sense that if the data provided is not optimal, then the extracted policy will

most likely be suboptimal also. It is mostly used in the form of images where a CNN

extracts the information and uses it to classify its actions that are available. It has had its

fair share of success in the fields of autonomous driving.

3.2 Value-based methods

 As we described earlier, in a RL environment we are trying to optimize our agent’s

policy or value function. We can actually focus on modelling the policy with the policy-

based methods, modelling the value function with the value-based methods or modelling

both with actor-critic methods. So, the value-based methods do not explicitly instruct the

agent on what action to pick but rather update the value function on the states, so he is

aware of each state’s utility. Let’s analyze some of these methods.

17

3.2.1 Dynamic Programming

 Dynamic Programming assumes that the model is known[3]and uses Bellman

equations in order to derive the optimal value function and subsequently the policy. It

comprises of 3 parts, that form the algorithm GPI. First, we have the policy evaluation,

which uses Eq 3.3 so it can compute the value function for a given policy π. The next part

is the policy improvement, where we act greedily as a means to improve our value

function. That makes sense because if we set 𝜋 ′(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑞𝜋(𝑠, 𝑎) then our action

value function 𝑞𝜋 (𝑠, 𝜋(𝑠 ′)) should be greater or equal to the action value function using

the given policy. In other words,

𝑞𝜋(𝑠, 𝜋(𝑠′)) = max
a

𝑞𝜋(𝑠, 𝑎) ≥ 𝑞𝜋(𝑠, 𝜋(𝑠)) = 𝑣𝜋(𝑠)

But the term 𝑞𝜋(𝑠, 𝜋(𝑠′)) can be decomposed recursively into a value function, as it

constitutes the expectation of following policy 𝜋′ in state 𝑠 and then following policy π

afterwards . So,

𝑞𝜋(𝑠, 𝜋(𝑠′)) = Eπ′[Rt+1 + 𝛾𝑉𝜋(𝑆𝑡+1)| 𝑆𝑡 = 𝑠]

≤ Eπ′[Rt+1 + 𝛾𝑞𝜋(𝑆𝑡+1, 𝜋′(𝑆𝑡+1))| 𝑆𝑡 = 𝑠]

≤ Eπ′[Rt+1 + 𝛾Rt+2 + 𝛾2𝑞𝜋(𝑆𝑡+2, 𝜋′(𝑆𝑡+2))| 𝑆𝑡 = 𝑠]

≤ Eπ′[Rt+1 + 𝛾Rt+2 + 𝛾3𝑅𝑡+3 + ⋯ | 𝑆𝑡 = 𝑠] = 𝑉𝜋′(𝑠)

Which means that 𝑉𝜋(𝑠) ≤ 𝑉𝜋
′(𝑠). Improvement in the policy can happen until the state-

action value of the greedy policy is equal to the state-action value of our policy:

𝑞𝜋(𝑠, 𝜋(𝑠′)) = max
a

𝑞𝜋(𝑠, 𝑎) = 𝑞𝜋(𝑠, 𝜋(𝑠)) = 𝑣𝜋(𝑠)

,then we have the optimal policy π’ . The last part is the policy iteration , where we

combine the first 2 parts , as we first evaluate the policy by computing the value function

and then we improve it by applying the greedy policy.

18

Figure 3.2 : Policy iteration algorithm in DP [8].

3.2.2 Monte-Carlo methods

 Monte-Carlo methods are methods that take advantage of the full episode of

states, actions and rewards until it is finished. They are model-free so the only way to

collect information about the environment is by interacting with it and they don’t require

any knowledge of the MDP but can only be applied to episodic MDPs , i.e MDPs that

finish. So we know that 𝑉𝜋(𝑠) = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] , where 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +

⋯ is the total sum of the discounted rewards. The basic idea of MC methods is that the

average returns after visiting a state should converge to the expected value of the state.

 MC prediction methods are split into 2 categories: first-visit MC and every-visit

MC. The first category refers to the estimation of 𝑉(𝑠) by averaging the returns after the

first visit of state s, while the second category calculates 𝑉(𝑠) by averaging the returns

after every visit of state s. Every time a state s is visited we update the number of visits to

that state , 𝑁(𝑠) = 𝑁(𝑠) + 1 and we update the returns after state s , 𝑅(𝑠) = 𝑅(𝑠) + 𝐺𝑡.

Then we calculate the value of the state by the mean return 𝑉(𝑠) =
𝑅(𝑠)

𝑁(𝑠)

 A very useful way in terms of memory that we can use MC is using the incremental

implementation. For example, if we want to average some values then:

19

𝜇𝑛 =
1

𝑛
∑ 𝑦𝑖 =

1

𝑛
(∑ 𝑦𝑖 + 𝑦𝑛)

𝑛−1

𝑖=1

𝑛

𝑖=1

=
1

𝑛
((𝑛 − 1)

1

𝑛 − 1
 ∑ 𝑦𝑖 + 𝑦𝑛)

𝑛−1

𝑖=1

=
1

𝑛
((𝑛 − 1)𝜇𝑛−1 + 𝑦𝑛) = 𝜇𝑛−1 −

1

𝑛
𝜇𝑛−1 +

1

𝑛
𝑦𝑛 = 𝜇𝑛−1 +

1

𝑛
(𝑦𝑛 − 𝜇𝑛−1)

Now using the value functions instead we get :

 𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝑎(𝐺𝑡 − 𝑉(𝑆𝑡)) 𝐄𝐪. 𝟑. 𝟕

,where a is a constant with a value between (0,1]. So, in order to update our value

function , we only need our previous V-function for the state and the cumulated reward

after timestep t.

 As with DP we can use policy iteration for MC control , with the exception of using

the state action values Q(s, a) instead of the state values as the description of the model

is unknown. So again our policy iteration algorithms is comprised of the 3 parts, policy

evaluation, policy improvement and policy iteration. In the policy evaluation step, after

we have initialized a policy π, we repeat a designated number of episodes in which we

use our policy 𝜋 to perform actions and calculate the total reward 𝑅(𝑠, 𝑎) for every

episode. After we’ve finished the episodes, we compute the Q-value of each state-action

pair with the average of 𝑅(𝑠, 𝑎) starting from that pair. Then, on the policy improvement

step, we improve the policy by picking the greedy actions 𝜋′(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎). The

policy iteration part is where we alternate between evaluation and improvement until π

converges to π*.

 A problem unravelling with that approach is that many states might not get

visited because of the greediness of the new policy 𝜋′. A solution to this would be

exploring starts , i.e to grant each state action pair a non-zero probability of being the

starting pair. That way, more exploration is ensured. Another way to achieve this without

having to start with random pairs is to just use an epsilon-soft policy:

20

𝜋(𝑠) = {

1 − 휀 +
휀

𝐴(𝑆𝑡)
, 𝑖𝑓 𝑎 = 𝐴∗

휀

𝐴(𝑆𝑡)
, 𝑖𝑓 𝑎 ≠ 𝐴∗

, where 𝐴(𝑆𝑡) is the total number of actions that can be performed from state 𝑆𝑡 . So ,

this softmax policy allows each action to have a non-zero probability of being chosen.

 In general, on a model-free environment, MC can work well if the state-action

space is not immense, as that would require too much computation power for every

state-action pair to be visited.

3.2.3 Temporal-Difference Learning

 TD learning resembles MC methods at being model-free and learning from

episodes, but the advantage over MC is that with TD we can learn from incomplete

episodes, so we do not need a full trajectory in order to update our Q-function. The only

thing that differs from the MC incremental implemention in Eq. 3.7 is the substitution of

𝐺𝑡:

 𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝑎(𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)) 𝐄𝐪. 𝟑. 𝟖

,which is called bootstrapping and refers to updating the target with the use of existing

estimates as opposed to complete trajectories. We know that 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) ,

because

𝑉𝜋(𝑠) ≈ 𝛦𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝛦𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠] = 𝛦𝜋[𝑅𝑡+1 + 𝛾𝑉𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]

 Eq. 3.8 refers to the TD(0) method, which looks one step into the future. But what if we

want to make more steps into the future? We could, for instance, take an n-step TD:

𝑅𝑡
𝑛 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉𝑡(𝑠𝑡+𝑛)

But another justifiable question is could we combine multiple n-step returns?

 For example, we may want to backup half of a 3-step return and half of a 4-step return.

That’s where TD(λ) comes into play.

21

 TD(λ) is a generalization of TD(0) and MC methods that looks an arbitrary amount

of steps into the future. It works by averaging each of the n-step updates, weighted by

𝜆𝑛−1 , 𝜆 ∈ [0,1] and is normalized with (1 − 𝜆) so the sum cannot exceed 1. It is

described by the following equation:

 𝐺𝑡
𝜆 ≈ (1 − 𝜆) ∑ 𝜆𝑛−1𝐺𝑡:𝑡+𝑛

∞

𝑛=1

+ 𝜆𝑇−𝑡−1𝐺𝑡 𝐄𝐪. 𝟑. 𝟗

So, the weight of each n-step return gets smaller as time progresses. The second term in

Eq 3.9 refers to the all of the n-returns that happen after we reach a terminal state. We

can observe here that for the maxima points of λ , that is λ = 0 and λ = 1 , we get the one-

step TD method and the MC method respectively. However, there is a problem with the

previous approach, called forward view , and that is the need to look forward in order to

update each state, which causes the updates to become off-line and take place at the end

of the episode. This issue is tackled utilizing the backward view.

 The backward view is associated with eligibility traces, a variable that keeps up

with the state’s visitation. The formula for the eligibility trace is:

𝑒𝑡(𝑠) = {
𝛾𝜆𝑒𝑡−1(𝑠), 𝑖𝑓 𝑠 ≠ 𝑠𝑡

 𝛾𝜆𝑒𝑡−1(𝑠) + 1 , 𝑖𝑓 𝑠 = 𝑠𝑡
 𝐄𝐪. 𝟑. 𝟏𝟎

This is telling us that whenever we visit a state the eligibility trace of that state increases.

But, every step that we do not visit a state , that state decreases by the trace-decay

parameter λ. So, the frequency and the recency of state visitation comes into play with Eq

3.10. The way we use the eligibility trace in updating the value functions is by placing it

into the Eq. 3.8:

 𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝑎(𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡))𝑒𝑡(𝑠)

This is the backward view, because it’s like we are observing the state visitation

backwards and depending on the value of the eligibility trace , we perform a bigger or

smaller update step.

22

 This was a review of the model-free TD prediction method, which evaluates the

state functions. But as always, we also care about the control as a way to improve both

the value and the policy functions.

3.2.4 SARSA

 Model-free control is about optimizing the value and the policy function for an

unknown MDP. Value functions cannot improve a policy in a model-free environment, as

the probability transitions and the maximum rewards are not known for each state. That

leads us to using action-state values in order to improve the policy. Thus, the control

equivalent in TD prediction is a variation of the Eq 3.8:

 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝑎(𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆, 𝐴)) 𝑬𝒒 𝟑. 𝟏𝟏

SARSA is an on-policy algorithm, because it uses the action selected to update the Q-

values , as the Figure 3.3 shows.

Figure 3.3 : Sarsa Pseudocode

A policy that’s often employed for the purpose of selecting actions is the epsilon soft

algorithm that was described in section 3.2.2. SARSA(λ) is defined as well, by applying Eq.

3.9 into our SARSA update:

 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝑎 (𝑞𝑡
𝜆 − 𝑄(𝑆, 𝐴)) 𝑬𝒒 𝟑. 𝟏𝟐

3.2.5 Q-learning

 Q-learning is an algorithm very similar to SARSA , however it possesses a

significant difference, the off-policy property. That means that whatever action we

choose, does not matter into the update rule. For example, we could perform an ε-soft

23

policy for the action selection and a greedy algorithm for the update rule. The update rule

of Q-learning exhibits that:

𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝑎 (𝑅𝑡+1 + 𝛾 max
𝛼

𝑄(𝑆𝑡+1, 𝛼) − 𝑄(𝑆, 𝐴)) 𝑬𝒒 𝟑. 𝟏𝟑

The difference is obvious and it is the reason of the separation in notion between on

policy and off policy algorithms. Still, the most sensational breakthrough in RL algorithms

came into being with the fusion of deep learning and RL (in this case specifically Q-

learning).

3.2.6 Deep Q network

 An issue that arises with the methods of updating the Q values, is that in

environments where the state and action spaces are immense, the process of updating

the whole table of values is practically infeasible. A solution to this are function

approximators and as we’ve seen in the previous chapter, NNs can help in that.

 The algorithm is basically Q-learning performed in a deep learning setting, with

added features that result in a method that has had much success in the state action

spaces we discussed above. One of these features is the memory replay dataset [38].

DQN utilizes the replay memory dataset in order to remove correlations. Sequential data

like the data provided in RL environments are very likely to be correlated, as the next

state is affected by the action taken and thus handling experiences sequentially results in

instabilities regarding the function approximator, the neural network . In general, neural

networks work better with data that are i.i.d, i.e data that are independent and identically

distributed without possessing sequential properties. But there seems to be a hindrance

regarding the update of the Q-functions. We saw that in Q-learning the update was

directed by the term in parentheses in Eq. 3.13, which is the target value (the value we

get using the recursive property of Q-functions) minus our estimate of the Q-function in

the state we are into and the action that is chosen. But if we are to perform updates the

same way in DQN, then we would be updating every Q value in each iteration update,

because the weights of the NN would constantly change. The solution to this is referred at

[39], and is the parameterization of the target network with a different parameter than

24

the one used in updating the Q function. This leads to certain benefits from a stability

viewpoint, as now the target network resembles a supervised learning target that

remains mostly fixed throughout the update phase. The parameter of the target network

is, let’s say, 𝜃− with 𝜃− being different than 𝜃. The idea that makes the parameters of the

two networks stay relevant is that the parameters of the prediction network are copied

into the target network every predefined number of steps, for example C. So, while the

prediction network constantly changes values, the target network stays fixed for C steps

and then basically takes on the prediction network values. Thus, the loss function is

defined like:

𝐿 = (𝑟 + 𝛾 max
𝛼′

𝑄(𝑠′, 𝑎′; 𝜃′) − 𝑄(𝑠, 𝑎; 𝜃))2

And the parameter update rule becomes:

𝜃𝑘+1 ← 𝜃𝑘 − 𝛼∇𝜃𝐸
𝑠′~𝑃(𝑠′

|𝑠, 𝑎)
[(𝑟 + 𝛾 max

𝛼′
𝑄𝑘(𝑠′, 𝑎′; 𝜃′) − 𝑄𝑘(𝑠, 𝑎; 𝜃)]

3.3 Policy-based methods

3.3.1 Introduction

 These kind of methods are aiming towards learning the policy directly without

learning the value function. They are generally more useful in cases where the number of

states and actions are vast and value-based methods cannot compete, since they require

a full scan of the space. The “wellness” of a policy is measured based on the context. For

instance, in episodic environments a metric of a policy would be 𝐽(𝜃) = 𝑉𝜋𝜃(𝑠0) . But in

continuing environments the metric is the average value:

 𝐽(𝜃) = ∑ 𝑑𝜋𝜃(𝑠)𝑉𝜋𝜃(𝑠)

𝑠

= ∑ 𝑑𝜋𝜃(𝑠) ∑ 𝜋𝜃(𝛼|𝑠)𝑄𝜋(𝑠, 𝑎)

𝛼𝑠

 𝑬𝒒 𝟑. 𝟏𝟒

, where 𝑑𝜋𝜃(𝑠) is the stationary distribution of Markov chain for the policy 𝜋𝜃 . In other

words, this distribution is the probability that we end up with state 𝑠𝑡 when starting from

a state 𝑠0 and following policy 𝜋𝜃 for 𝑡 number of steps:

25

𝑑𝜋(𝑠) = lim
𝑡→∞

𝑃(𝑠𝑡 = 𝑠|𝑠0, 𝜋𝜃)

The basic goal here is to calculate the gradient of our reward function 𝐽(𝜃) in respect to

the parameter 𝜃 and move towards the direction that maximizes the function. This

approach in policy based methods is effective in high-dimensional spaces and has better

convergence properties but a common problem is that with the gradient ascent that we

perform on our reward function, we converge to a local and not a global maximum.

3.3.2 Policy Gradient Theorem

The calculation of the gradient ∇𝜃𝐽(𝜃) is tricky because it involves differentiating

the stationary distribution and the value function. Below the process of computing that

gradient is displayed, following the policy gradient theorem[2]:

First we perform the gradient of the value function:

∇𝑉𝜋(𝑠) = ∇ [∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

a

]

= ∑[∇𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎) + 𝜋(𝑎|𝑠)∇𝑞𝜋(𝑠, 𝑎)]

a

= ∑ [∇𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎) + 𝜋(𝑎|𝑠)∇ ∑ p(s′, r|𝑠, 𝑎)(𝑟 + 𝑉𝜋
′(𝑠)

s′,r

)]

a

= ∑ [∇𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎) + 𝜋(𝑎|𝑠) ∑ p(s′|𝑠, 𝑎)∇𝑉𝜋
′(𝑠)

s′

] (𝟏) 𝑬𝒒 𝟑. 𝟏𝟓

a

In step (1) we remove the rewards because p(s′|𝑠, 𝑎) = ∑ 𝑝(𝑠 ′, 𝑟|𝑠, 𝑎)𝑟 which means that the probability of getting into

a next state is the sum of probabilities of all the next state transitions along with their rewards. So if there are 2

transitions to the same state, we sum both of their probabilities based on the different rewards.

As we see, Eq. 3.15 has a recursive form so the gradient of the value function can be

unrolled into future states. Now we need to define the probability of going from state s to

state x in k steps using policy π, which is itself recursive because for k = 1 :

𝜌𝜋(𝑠 → 𝑠′, 𝑘 = 1, 𝜋) = ∑ 𝜋𝜃(𝛼|𝑠)𝑃(𝑠′|𝑠, 𝑎)

𝑎

26

That equation takes into account every action that can lead to state s’. So the general

recursive equation of 𝜌𝜋 is:

 𝜌𝜋(𝑠 → 𝑥, 𝑘 + 1, 𝜋) = ∑ 𝜌𝜋(𝑠 → 𝑠′, 𝑘)𝜌𝜋(𝑠′ → 𝑥, 𝑘 = 1)

𝑠′

 𝑬𝒒 𝟑. 𝟏𝟔

The general equation here shows its recursiveness in its first term which will unroll until

we reach state 𝑠′. So using that equation in unrolling the value function of the next states

in Eq. 3.15, we derive the following equation:

∇𝜃𝐽(𝜃) = ∇𝑉𝜋(𝑠0)

= ∑ ∑ 𝜌𝜋(𝑠0 → 𝑠, 𝑘, 𝜋) ∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

a

∞

𝑘=0𝑠

= ∑ 𝜂(𝑠)

𝑠

∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

a

= (∑ 𝜂(𝑠)

𝑠

)
𝜂(𝑠)

∑ 𝜂(𝑠)𝑠
∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

a

,

which is analogous to
𝜂(𝑠)

∑ 𝜂(𝑠)𝑠
∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎) a since ∑ 𝜂(𝑠)𝑠 is a constant. Therefore:

∇𝜃𝐽(𝜃) ∝ ∑ 𝑑𝜋(𝑠)

𝑠

∑ 𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

a

= ∑ 𝑑𝜋(𝑠)

𝑠

∑ 𝜋𝜃(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)
∇𝜃𝜋𝜃(𝛼|𝑠)

𝜋𝜃(𝛼|𝑠)
a

= 𝛦𝜋[𝑄𝜋(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠)] 𝑬𝒒 𝟑. 𝟏𝟕

In the above equation
𝜂(𝑠)

∑ 𝜂(𝑠)𝑠
= 𝑑𝜋(𝑠) because it is a stationary distribution. Eq 3.17 is the

basis for a lot of policy based algorithms. In the next subsection we will introduce a

policy based algorithm.

3.3.3 REINFORCE (Monte Carlo policy gradient)

 In this algorithm the approach is very similar to our value-based MC[2], since we

are using a full trajectory, in order to update our 𝜃 parameter of our reward function. In

other words:

27

∇𝜃𝐽(𝜃) = 𝛦𝜋[𝑄𝜋(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠)] = 𝛦𝜋[𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎|𝑠)] ,

as 𝛦𝜋[𝐺𝑡|𝑠𝑡, 𝑎𝑡] = 𝑄𝜋(𝑠𝑡, 𝑎𝑡)

So the whole idea is to sample a full trajectory using an arbitrary policy 𝜃 as in

𝜋𝜃: 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2, … 𝑠𝑇 and then for every timestep 𝑡 = 1, . . , 𝑇 the return 𝐺𝑡 is

estimated and the parameter 𝜃 is updated by:

𝜃 ← 𝜃 + 𝛼𝛾𝑡𝐺𝑡∇𝜃 ln 𝜋𝜃(𝑎|𝑠) 𝑬𝒒 𝟑. 𝟏𝟖

A problem with the approach of a full trajectory is the high variance that is apparent. A

common approach to this issue is to introduce an advantage function[1]. A simple and

common used example of advantage function is subtracting the state value from the

action value as in 𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) and using it instead in place of 𝐺𝑡. Here the

state value is called a baseline function, that generally serves as a basis for the actions

that are being picked, with the advantage being large in actions that deviate from the

average value of the state function.

3.4 Actor-Critic methods

One of the most used methodologies in RL is the actor critic and for a good

reason. It basically combines the policy based aspect with the value function approach.

The way this is implemented is by the usage of 2 models, the critic model and the actor

model. The critic model keeps up with updating the value function parameters while the

actor model is busy with updating the policy in the way that is proposed by the critic, as

can be seen in figure 3.4. We usually model this with two separate parameterized

networks, one that keeps up with updating the policy, which is the actor and the other

with updating the value function which is the critic. Actor critic methods are composed of

the policy update, following the action that was sampled from our policy 𝜋𝜃, then the TD

error is computed for the action value function at the given state-action pair and that

particular error is used to update the parameters of our critic network. So the critic works

towards helping the actor on improving its policy by updating the Q function parameters

which are used in the update of the policy 𝜋𝜃.

28

Figure 3.4 : Actor-critic network presentation[4].

3.4.1 Standard AC

The way the standard actor critic works in practice is by sampling an action 𝑎,

followed by sampling the given reward 𝑟 and the next state 𝑠′ and then sampling again

𝑎′ given our current state. What this means is that our introductory steps are exactly the

same as SARSA and Q learning but the main difference is apparent in the next step. After

sampling states and actions, the derivative of the actor-critic cost function 𝐽 is defined by

following Eq. 3.17 and replacing the Q-function with a parameter 𝑤 that’s being

monitored by a neural network. The resulting equation is

∇𝜃𝐽(𝜃) = 𝛦𝜋[𝑄𝜔
𝜋(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠)]

and then the update on the policy parameter θ is similar to Eq 3.18, but involves the

parameterized Q function instead of the trajectory 𝐺𝑡.

𝜃 ← 𝜃 + 𝛼𝑄𝜔
𝜋(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠)

After we updated the policy parameter, we still have to update the Q-function parameter

𝑤 aswell as compute the TD error regarding the actions that were sampled. So, the

correction error is computed as normal

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑄𝜔
𝜋 (𝑠′, 𝑎′) − 𝑄𝜔

𝜋 (𝑠, 𝑎)

29

Afterwards, the only thing that’s left is to update the Q-function parameters with the

computed TD error in mind

𝜔 = 𝜔 + 𝛼𝛿𝑡∇𝜔𝑄𝜔
𝜋 (𝑠, 𝑎)

That is the standard actor-critic algorithm that trains 2 parameters, namely 𝜔 and 𝜃 in

order to unravel the optimal policy.

3.4.2 A3C and A2C

 But there are also variations of this algorithm that aim at reducing the variance by

replacing the Q function with the so called advantage term that we introduced earlier in

3.3.3. Specifically, Eq. 17 now turns into:

∇𝜃𝐽(𝜃) = 𝛦𝜋[𝐴(𝑠, 𝑎)∇𝜃 ln 𝜋𝜃(𝑎|𝑠)]

We’ve seen the advantage formula before but it poses a problem. The difference

between the Q function with a designated state-action pair and the value function of a

state, requires the approximation of them both by a neural network. Since that would be

extremely cost inefficient we can use the Bellman equations established in the

introductory chapter 3.1, as a means to end up with one parameterized function. Indeed:

𝐴(𝑠𝑡 , 𝑎𝑡) = 𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑉𝜅(𝑠𝑡) = 𝑟𝑡+1 + 𝛾𝑉𝜅(𝑠𝑡+1) − 𝑉𝜅(𝑠𝑡)

The algorithm that employs this technique is called the Asynchronous Advantage

Actor Critic(A3C) and is an algorithm that employs several asynchronous actor-learners to

train in parallel, by utilizing CPU threads keeping the training on the same machine[29].

The advantage of training multiple learners is that the diversity of the chosen actions is

big and the updates occurring in the parameters are less likely to be correlated over time,

especially if each actor possesses different exploration policies which results in exploring

even more. So, in contrast to the DQN employing a replay memory dataset, the multiple

actors here are in charge of the stabilizing element of the function approximator that is

otherwise induced by the replay dataset. The main problem though, is that asynchrony

means that some of the actors that are not updated as frequently, will have to use older

versions of the network parameter. That’s why a variation of the A3C was introduced, the

30

A2C algorithm that performs synchronous updates (removing the asynchronous aspect of

A3C) , meaning that it waits for all the actors to finish the segment of experience specified

before executing the update, which is basically the average over all the actors. But In

general, A2C seems to enjoy more success than its asynchronous counterpart as specified

in [30] , mainly because of the more effective usage of GPUs by the A2C algorithm.

3.4.3 SAC

But one of the most used variations of the standard Actor Critic methods is the

SAC (Soft Actor Critic) that’s being used in alot of experiments involving both online and

offline RL, being compared to other algorithms in terms of expected returns. The

interesting part about SAC is that in addition to the standard expected return, an entropy

regularization term is appended to the formula. Entropy represents the randomness of a

variable in a given distribution, so we can intuitively guess that the more entropy we

have, the more exploration will be achieved in our environment. That brings a change to

the main RL problem, which is maximizing the policy in order to get the maximum reward:

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐽(𝜋), 𝑤ℎ𝑒𝑟𝑒 𝐽(𝜋) = 𝐸𝜏~𝜋[𝑅(𝜏)]

Now instead of that we get the following equation:

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐸𝜏~𝜋[∑ 𝛾𝑡(𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛼𝐻(𝜋(∙ |𝑠𝑡)))] 𝑬𝒒 𝟑. 𝟏𝟗

∞

𝑡=0

With 𝐻 being the entropy term 𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)log 𝑃(𝑥𝑖)
𝑛
𝑖=1 and 𝛼 being the

coefficient that regulates the importance of the entropy term, better known as

temperature parameter. Likewise the value and state value functions are formulated:

𝑉𝜋(𝑠) = 𝐸𝜏~𝜋[∑ 𝛾𝑡 (𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + 𝛼𝐻(𝜋(∙ |𝑠𝑡))) |𝑠0 = 𝑠]

∞

𝑡=0

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜏~𝜋[∑ 𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) + ∑ 𝛼𝐻(𝜋(∙ |𝑠𝑡))

∞

𝑡=1

|𝑠0 = 𝑠, 𝑎0 = 𝑎]

∞

𝑡=0

31

With the only difference in the action value function being that we evaluate the

entropy term starting from timestep 𝑡 = 1 [33]. The layout of the algorithm is the policy

parameterized by , 𝜋𝜃 , the soft Q-value that’s parameterized by 𝜔, 𝑄𝜔 and the soft state

value function that’s parameterized by 𝜓, 𝑉_𝜓. Although the policy and Q-value function

are sufficient enough for us to deduce the state-value function V, the algorithm still uses a

NN to approximate it for stability reasons during the training. In [32] the soft value

function becomes:

𝑉(𝑠𝑡) = 𝐸𝑎𝑡~𝜋[𝑄(𝑠𝑡, 𝑎𝑡) − log 𝜋(𝑎𝑡|𝑠𝑡)] 𝑬𝒒 𝟑. 𝟐𝟎

, where the value function is contained inside the Q-function according to the Bellman

equations:

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝐸𝑠𝑡+1~𝑝[𝑉(𝑠𝑡+1)] 𝑬𝒒 𝟑. 𝟐𝟏

 Now that our value functions are defined, we can delve deeper into the algorithm

described by the original paper [35]. The cost function of the value function with respect

to parameter 𝜓 is:

𝐽𝑉(𝜓) = 𝐸𝑠𝑡~𝐷[
1

2
(𝑉𝜓(𝑠𝑡) − 𝐸[𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)])

2
]

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑏𝑒𝑖𝑛𝑔 ∇𝜓𝐽𝑉(𝜓) = ∇𝜓𝑉𝜓(𝑠𝑡)(𝑉𝜓(𝑠𝑡) − 𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡))

The D in the cost function of the value function is the replay buffer that is used to store

states and actions. Similarly we can define the cost function of the action value function:

𝐽𝑄(𝜔) = 𝐸(𝑠𝑡,𝑎𝑡)~𝐷[
1

2
(𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝐸𝑠𝑡+1~𝑝[𝑉𝜓′(𝑠𝑡+1))

2

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑏𝑒𝑖𝑛𝑔∇𝜔𝐽𝑄(𝜔) = ∇𝜔𝑄𝜔(𝑠𝑡, 𝑎𝑡)(𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑉𝜓′(𝑠𝑡+1))

In this case of the action value cost function we can see that a new variable is introduced,

𝜓′, which is the parameter of a target value function 𝑉𝜓′ . That’s called the exponentially

moving average of the value network weights and it’s used to improve stability because

of the reason that the weights of our network are updated according to it. A similar logic

32

is followed in the DQN case that was covered in earlier chapters, with the parameter of

the target Q network. Lastly, the policy is updated according to the KL divergence, which

is a metric of the difference between two distributions. Here we would like to minimize

the KL divergence between our policy and the exponent of the Q-function divided by a

normalization function 𝑍𝜃. So the cost function of our policy is :

𝐽𝜋(𝜃) = 𝛦𝑠𝑡~𝐷[𝐷𝐾𝐿(𝜋𝜃(∙ |𝑠𝑡)||
exp(𝑄𝜔(𝑠𝑡,∙))

𝑍𝜔(𝑠𝑡)
]

,which is then minimized according to the gradient. So, after all these steps that every

cost function was defined, the process is really simple. At first, the parameters

𝜃, 𝜔 𝑎𝑛𝑑 𝜓, 𝜓′ are initialized along with their respective learning rates 𝜆𝜋, 𝜆𝑄 , 𝜆𝑉. After

that, for each step in the environment, we sample an action 𝑎 from our policy 𝜋𝜃 given a

particular state (starting from 𝑠0), receive the reward from executing that action and

sample the next state 𝑠𝑡+1 using the transition probability 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) . This tuple is

then appended to our replay buffer as a stored experience tuple:

𝐷 ← 𝐷 ∪ {(𝑠𝑡, 𝑎𝑡, 𝑟(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1}

Then after we’ve taken some steps and want to update the parameters we’ve previously

defined, we just update them by subtracting them with their learning rate multiplied by

their respective cost function. Only the update of the 𝜓′ parameter is different because it

is special case parameter and is defined as:

𝜓′ = 𝜏𝜓 + (1 − 𝜏)𝜓′ ,

𝑤ℎ𝑒𝑟𝑒 𝜏 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

SAC is in general a fairly complex algorithm that with the addition of the entropy factor

manages to achieve state of the art results in experiments conducted.

33

CHAPTER 4

OFFLINE REINFORCEMENT LEARNING

4.1 Introduction

A real problem with RL is the fact that generalization is hard to achieve without

many simulations. We really do not fancy having to perform simulations upon simulations

in order to improve the policy, especially in real world environments, where the data

collection procedure is costly and time-consuming. What paves the way for generalization

,as we know from machine learning, are large static datasets that contain information

about the environment we are interested into. But how can we import large datasets into

the RL world? That is achieved with offline RL, which is the topic for discussion in this

thesis.

We have previously covered the on-policy and off-policy methods. The on-policy

methods operate by performing actions dictated by a designated policy and then using

these actions to update the policy. Off-policy choose actions based on a policy and then

update that policy with actions that stem from another policy, so they are not policy

dependent and issue more exploration. They also utilize a buffer that the states, actions

and rewards at each iteration are added into. This buffer, which is dynamic since it is

always being refreshed with new entries, serves as training examples for our agent in off-

policy methods. Meanwhile, offline learning is the process of our agent learning from

static datasets, unlike the dynamic buffer, which is constantly being added upon new

information. Overall, in offline learning the agent learns a policy from our static dataset

without being able to interact with an environment.

However, many hindrances are apparent when working with offline learning and

they come up because of the inability of the agent to interact with his environment. One

of the difficulties is the static dataset D containing suboptimal data, affecting the training

process and as a consequence, the trained policy. But that is something that we cannot

control so we will not get into that. Another issue with the offline approach, is the test

data being different from the training data. Then, the agent having not seen the test data

before, might overestimate the Q values and think it’s performing well but in reality it

34

might choose the wrong actions that will eventually accumulate and form a completely

wrong trajectory. That problem is called distribution shift or extrapolation error and it

forms a big issue when trying to train an agent offline. The error that’s induced by

distribution shift is the overestimation of Q values , due to OOD(out of distribution)

actions, i.e actions that were not met during the training phase[4][5].In the next chapter,

we will discuss ways of dealing with distribution shift.

4.2 Policy constraint methods

A really important concept in reinforcement learning without feedback , is the

policy constraint. Policy constraint methods are methods that try to combat the problem

of distribution shift, by taking into account both the behaviour policy distribution of the

dataset and the policy distribution that’s being trained. There are 2 main types of policy

constraint methods, support and distribution constraints.

Distribution constraints are generally concerned about our policy distribution

being close to the behaviour policy distribution, so the actions picked are more in line

with our dataset. Meanwhile, support constraints impel our trained policy 𝜋𝜃 to choose

actions where the density is larger. Support of a function is the set of values for which the

function is non-zero, so this constraint does not bother with datapoints that are equal to

zero. In other words, distribution constraints mainly compel the distribution of the

trained policy to be similar to the distribution of the behaviour policy of the dataset,

while support constraints constrain the agent into picking actions that the behaviour

policy is highly likely to pick given a particular state. As we can observe in Figure 4.1, in

the left plot we are presented with out of distribution actions (OOD) in a circle. These

actions are not induced by the behaviour policy β that’s denoted by the dashed lines, so

what they will end up achieving is propagating Q values that are much higher than what

they truly are. The distribution constraint on the middle plot constrains the training

policy expressed in purple colour to resemble the distribution of the original behaviour

policy β , while support constraint on the right constrains our actions to the specific

boundary, specified by the yellow lines, of the behaviour distribution. The distributions in

yellow colour refer to our training distribution placing above zero probability on actions

with non negligible behaviour policy density.

35

Figure 4.1 : Policy constraint categories[44]

Recent advances have been observed in both categories. Specifically, in the distrib

ution constraint area, Batch Constrained deep Q-Learning (BCQ) is an algorithm that

attempts to solve the issue of distribution shift. As its name suggests, BCQ constraints the

actions picked into being similar with those contained in the batch and afterwards selects

the highest-valued action through a Q-network [6]. BCQ resembles Q-Learning but in the

update step, instead of choosing the maximum action in a given state , it selects the

actions that appear in the batch of data or eliminates actions that are unlikely to be

selected by the behaviour policy 𝜋𝛽. The algorithm is described below.

4.2.1 BCQ

 BCQ trains a variational Autoencoder, from which actions are sampled. This

autoencoder tries to approximate the state-conditioned marginal probability 𝑃𝐵
𝐺(𝑎|𝑠).

The policy that tries to maximize this probability would in turn minimize the

extrapolation error by selecting the most likely actions in our dataset for a particular

state. The generative model is used because the probability is difficult to calculate in high-

dimensional spaces. Furthermore, a perturbation model is used in order to increase the

diversity of the actions being chosen and to prohibit us from having to sample alot of

times. The perturbation model is defined as 𝜉𝜑(𝑠, 𝑎, 𝛷) and adds to the actions values in

the range of [−𝛷, 𝛷]. So, the process is to sample N actions via the generator, perturb

each action using our model and then choose the action with the highest Q-value. The

formula of the policy is described below:

36

𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑖+𝜉𝜑(𝑠,𝑎𝑖,𝛷)
𝑄𝜃 (𝑠, 𝑎𝑖 + 𝜉𝜑(𝑠, 𝑎𝑖, 𝛷)) , {𝑎𝑖~𝐺𝜔(𝑠)} , 𝑖 = 1, … , 𝑛 𝑬𝒒 𝟒. 𝟏

As we can observe, the selection of Φ and n gives either behavioral cloning where

Φ = 0 and n=1 as we are sampling only 1 action, or Q-learning where 𝛷 → 𝑎{𝑚𝑎𝑥} − 𝑎{𝑚𝑖𝑛}

and → ∞ , meaning that the whole action space is being sampled. Another element of

this algorithm is the usage of a modification of Clipped Double Q-learning, which

estimates the Q-value by taking the minimum of 2 distinct Q-networks that are being

trained. So, to sum up BCQ contains four networks, the generative model 𝐺𝜔(𝑠), the

perturbation model 𝜉𝜑(𝑠, 𝑎) and the two Q-networks 𝑄𝜃1, 𝑄𝜃2.

Experiments done using BCQ, show that compared to DQN and DDPG, BCQ

approximates the true value way better and does not overestimate its Q-values. Another

interesting fact is that in the imperfect demonstration case showcased at the paper,

where there is noise in picking actions by the behaviour policy and also noise added in the

remaining actions for high exploration, BCQ is able to extract the superior actions and

provide a much higher return than the other algorithms. Also, BCQ learns in a small

number of steps compared to deep RL methods that require alot of iterations. All in all,

BCQ seems to consistently outperform the behaviour policy and the other agents used,

except in the imitation learning task where behaviour cloning was in any case expected to

come on top.

4.2.2 BEAR

 Bootstrapping error accumulation reduction is a support constraint algorithm that

is involved into solving the bootstrapping error, the accumulated error that’s caused by

the bootstrapping of actions that lie outside of the training data[4]. The key difference

between BEAR and BCQ[6]is that BCQ constrains the distribution of the learned policy to

be close to the distribution of the behaviour policy. This is a restriction because for

example, if the distribution of the behaviour policy is uniform then the policy will also act

uniformly, while with a support constraint, our trained policy will pick the optimal actions

with the highest reward in an almost deterministic way.

BEAR is implemented by using K Q-functions and choosing the minimum Q-value

for the policy improvement step. Then we maximize the conservative estimate of Q-

37

values by choosing the searching in the policy space, where all the policies share the same

support as our behaviour policy. The formula of the new policy improvement step is :

𝜋𝜑 ≔ max
𝜋∈𝛥|𝑠|

𝐸𝑠~𝐷𝐸𝑎~𝜋(∙|𝑠)[𝑄𝜃(𝑠, 𝑎)] , 𝑤𝑖𝑡ℎ 𝐸𝑠~𝐷[𝑀𝑀𝐷(𝛽(. |𝑠), 𝜋(∙ |𝑠))] ≤ 휀 𝑬𝒒 𝟒. 𝟐

, with ε being an arbitrary value. As described in [4], MMD (maximum mean discrepancy)

is implented by using samples from both the behaviour and the trained policies and

computing the difference in support between them. MMD is described as:

𝑀𝑀𝐷2(𝛸, 𝛶) =
1

𝑛2
∑ 𝑘(𝑥𝑖, 𝑥𝑖′) −

2

𝑛𝑚
∑ 𝑘(𝑥𝑖 , 𝑦𝑗) +

1

𝑚2
∑ 𝑘(𝑦𝑗, 𝑦𝑗′)

𝑗,𝑗′𝑖,𝑗𝑖,𝑖′

, with 𝑘(∙,∙) being any RBF kernel. Kernel is basically a similarity function that aims at

computing the dot product between two vectors in a feature space where the data are

linearly separable. The fascinating thing about kernels is that if we wanted to project our

data in a high-dimensional space , this would be computationally infeasible but with

kernels we do not have to use extensive computations as the domain knowledge of the

feature space is contained in the kernel formula. A simple example of a kernel is (𝑥, 𝑥′) =

 𝑥𝑇𝑥′ . In this particular algorithm, both Laplassian and Gaussian kernels were found to

work well.

 The interesting part of the experiments though, is the comparison between the

previous algorithm presented, BCQ and some other algorithms like naive RL and

behaviour cloning. The experiments were divided into 3 parts, our dataset D spawning

from a random policy, from a mediocre scoring policy and from an optimal policy. The

results are impressive, as BEAR consistently outperforms the other algorithms in the

average quality data, which ofcourse are the most important category of data, as the

most commonly available data fall into that category. In the random dataset, BEAR fares

better than most of the other algorithms, except naive RL which sometimes gets on top,

as every actions has the same probability. BCQ on random data resembles the behaviour

policy so it fails to find the optimal actions and just behaves randomly, showcasing bad

results. On the other hand, on data generated by an optimal policy, BEAR achieves similar

results to BC, which is expected to do the best, as it mimics the actions of the optimal

policy. BCQ also performs similar to BC, because it constrains its distribution to be close

to the original optimal behaviour policy distribution.

38

4.3 Uncertainty based methods

 While policy constraint methods provide a solution to the OOD action problem,

there are also negatives associated with them. For example, the behaviour policy needs

to be estimated from our static dataset in order to constrain our training policy, with

wrong estimation of the behaviour policy leading to unexpectedly bad results. Another

negative effect is that they are usually described as being too conservative in the sense

that they resemble the behaviour policy in a large scale. For instance, if some arbitrary

actions in the action space of the environment offer 0 reward, then we would not want to

constrain the policy in these actions, but policy constraint methods blindly following the

behaviour distribution would not treat these states as a special case. A way to deal with

the problem of conservatism in the action space is to implement uncertainty based

methods that introduce an uncertainty factor and are being divided into model-based and

model-free.

4.3.1 Model-based uncertainty methods

We can extend the notion of offline RL into model-based offline RL by using our

dataset and training NN’s into modeling the environment. So, we train a probability

transition model that given a state and an action, provides us with the next state and a

reward function model that predicts the reward granted. Then we can perform planning

given our handmade model of the world. But even in the process of planning, unseen

outcomes will occur, leading into the OOD action problem. To solve this we can either use

policy constraints as we’ve shown before or we can shape the parameterized reward

function into being conservative. This means that in actions which we have encountered

the reward function will remain consistent, whereas in unseen actions it will behave in a

conservative way.

A recent example of such a method is Model-Based Offline Reinforcement

Learning (MOReL). MOReL’s main goal is the avoidance of over-estimating rewards that

are involved in unexplored spaces of the environment, according to the dataset given. So,

if the dataset does not span the entire action space then the model will be flawed. The

way this is addressed in [13] is by dissecting the state-action space into known and

unknown regions. Then whenever an unknown state-action pair is met, the reward

39

function becomes conservative, while when a known pair is encountered then the reward

function stays unchanged. This is achieved by using an uncertainty factor 𝑢(𝑠, 𝑎)

𝑟′(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) − 𝜆𝑢(𝑠, 𝑎)

This uncertainty term is linked with the estimation of the knowledge of a given state-

action pair. The modelling of uncertainty is achieved by training an ensemble of

models[13] and inspecting their accordance. The variance of OOD actions will be much

higher than the variance of actions present in the dataset, amongst the models. This is

used by model based algorithms in different ways.

 First, [13] uses the disagreement notion, meaning that the difference between

model predictions is dictating the value of 𝑢(𝑠, 𝑎). So, if the maximum distance between

models in a given state-action pair is bigger than an arbitrary threshold, then the

uncertainty factor is maximized. That leads to avoiding state-action pairs that cause the

models to deviate from each other. On the other hand, Model-based Offline Policy

Optimization (MOPO) takes a different approach. The dynamics of the environment are

modelled by a neural network outputting a Gaussian distribution over the next state and

reward and 𝑁 dynamic models are being trained independently[14]. As [14] describes,

model ensembles are used a lot in model-based RL because of their ability to capture the

essence of the population mean and the variance of a Gaussian model can retrieve the

uncertainty. So a solution to that is to set the uncertainty factor 𝑢(𝑠, 𝑎) equal to:

𝑢(𝑠, 𝑎) = max
i=1

𝑁
||𝛴𝜑

𝑖 (𝑠, 𝑎)||
𝐹

,where φ is the parameter of the variance in the neural network. The final formula using

this method is :

𝑟~(𝑠, 𝑎) = 𝑟′(𝑠, 𝑎) − 𝜆 max
i=1

𝑁
||𝛴𝜑

𝑖 (𝑠, 𝑎)||
𝐹

 𝑬𝒒 𝟒. 𝟑

,where 𝑟′(𝑠, 𝑎) is the mean reward predicted by the neural network. In both cases of

MOReL and MOPO, after we obtain the reward function we can simply perform planning

under our model.

40

 Regarding the experimental results featured in both [13] and [14] we notice that

model-based methods consistently outperform the policy constraint methods by

averaging a larger amount of returns. As we discussed earlier, that is completely expected

for the reason that policy constraint methods exhibit too much conservatism even in

unnecessary cases. The fact that interests us the most though, is the observations in the

MOPO algorithm [14] in tasks that require OOD generalization. Specifically, a SAC is

trained for two environments and the rewards handed to the trajectories are altered

from the original rewards in order to incentivize the agent to achieve something else. So,

the agent now has to perform a different task. The results show that model-based

algorithms like MOPO are significantly outperforming model-free methods and are able

to generalize given the need for an OOD policy.

4.3.2 Model-free uncertainty methods

 Generalization is a very important concept in offline RL, as it is a requirement for

the solid behaviour of the trained policy compared to the behaviour policy of the static

dataset. So, in order to achieve a different , in a better way, policy we really need our

model to be able to generalize. In [15] two deep Q-learning algorithms are presented,

Ensemble-DQN and REM, which use ensembles in order to attain generalization.

 Ensemble-DQN is what its name suggests and basically is an ensemble of Q-

functions that are approximated by a neural network. So, it resembles DQN but does take

into account the expectation of multiple TD learning errors, averaging them. To be more

precise to formulate the error at the 𝑘𝑡ℎ Q-function we use:

𝛥𝜃
𝑘 (𝑠, 𝑎, 𝑟, 𝑠′) = 𝑄𝜃

𝑘(𝑠, 𝑎) − 𝑟 − 𝛾 max
𝑎′

𝑄𝜃′
𝑘 (𝑠′, 𝑎′)

As we observe, each error is the TD learning update between our estimate 𝑄𝜃 and the

target Q-value. So, the way the loss function is modelled in the algorithm is:

𝐿(𝜃) =
1

𝐾
∑ 𝐸𝑠,𝑎,𝑟,𝑠′~𝐷[𝑙𝜆

𝐾

𝑘=1

(𝛥𝜃
𝑘 (𝑠, 𝑎, 𝑟, 𝑠′))] 𝑬𝒒 𝟒. 𝟒

41

, and it is the average of the expectation of each Q-function passed on to 𝑙𝜆 which is the

Huber loss[23] defined as :

𝑙𝜆(𝑢) = {

1

2
𝑢2, 𝑖𝑓 |𝑢| ≤ 𝜆

𝜆 (|𝑢| −
1

2
𝜆) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 REM however, deploys an ensemble of Q-functions like ensemble-DQN with the

main difference being that these Q-functions are mixed at the end and the TD update

takes into account the ensemble of Q-functions as a single Q-function. More specifically:

𝛥𝜃
𝛼(𝑠, 𝑎, 𝑟, 𝑠′) = ∑ 𝛼𝑘𝑄𝜃

𝑘(𝑠, 𝑎)

𝑘

− 𝑟 − 𝛾 max
𝑎′

∑ 𝛼𝑘𝑄𝜃′
𝑘 (𝑠′, 𝑎′)

𝑘

If you pay close attention here you will notice that 𝛼 is different than the 𝑎 denoted as

action. That is because 𝛼 is a coefficient of each Q-function with the sum of them being

equal to 1, i.e a convex combination. These coefficients stem from a probability

distribution that is arbitrarily selected and is chosen to be a uniform distribution that’s

normalized in order to become a valid categorical distribution [16]. So, the previous

equation of ensemble-DQN, becomes:

𝐿(𝜃) = 𝐸𝑠,𝑎,𝑟,𝑠′~𝐷 [𝐸𝛼~𝑃𝛥
[𝑙𝜆(𝛥𝜃

𝛼(𝑠, 𝑎, 𝑟, 𝑠′))]] 𝑬𝒒 𝟒. 𝟓

,with the main difference being that the coefficients are chosen from the distribution 𝑃𝛥

which we described earlier and the loss function not being averaged, since the error term

𝛥𝜃
𝛼 already contains the sums of the Q-functions

42

Figure 4.2 : Ensemble-DQN and REM architectures[15].

 Experiments conducted by the authors of [16] show that in the offline case REM

performs better than standard DQN and ensemble-DQN, because of the noise of random

ensembles leading to more robustness, whereas the ensemble-DQN just averages the

values. While in the paper they don’t consider uncertainty , REM in particular works well

in high coverage datasets for the reason that it grasps the essence of the environment by

the random ensembles that it deploys. That also provides a boost to the generalization

problem because as we covered earlier, the abundance of Q-function estimates renders

the algorithm able to draw better conclusions on its predictions.

4.4 Policy evaluation methods

 All the methods that were described previously regarding to offline RL, were

attempting to discover the most optimal policy that would characterize the environment.

But what if we want to calculate the value function of a given policy without running

simulations of that policy in the environment? That’s where the offline policy evaluation

methods come into play.

4.4.1 Importance sampling (IS)

 The objective of RL is the expected return following a given policy:

𝐽(𝜋) = 𝐸𝜏~𝑝𝜋(𝜏)[∑ 𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

𝑇

𝑡=0

]

43

But the issue arising here is that we are not able to sample from policy , so we have to

acquire samples from the behaviour policy 𝜋𝛽 in an offline setting. This can be attained by

using importance sampling which follows the methodology below:

𝐸𝜋[𝛸] = ∑ 𝑥𝜋(𝑥) = ∑ 𝑥𝜋(𝑥) (
𝜋𝛽(𝑥)

𝜋𝛽(𝑥)
) =

𝑥∈𝑋

𝑥∈𝑋

∑ 𝑥𝜌(𝑥)𝜋𝛽(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝜌(𝑥) =
𝜋(𝑥)

𝜋𝛽(𝑥)

𝑥∈𝑋

𝜌(𝑥) is called the importance sampling ratio and is the ratio between the policy that we

want to evaluate and the policy which we can sample upon. The previous equation is

approximately equal to:

1

𝑛
∑ 𝑥𝑖𝑝(𝑥𝑖)

𝑛

𝑖=1

 as:

𝐸[𝑋] ≈
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 with the samples 𝑥𝑖 being drawn from our distribution 𝜋𝛽(𝑥). So, the previous objective

function that was induced can be transformed with importance sampling into:

𝐽(𝜋) = 𝐸𝜏~𝜋𝛽(𝜏)
[

𝜋(𝜏)

𝜋𝛽(𝜏)
∑ 𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

𝑇

𝑡=0

] = 𝐸𝜏~𝜋𝛽(𝜏)
[∏

𝜋(𝑎𝑡|𝑠𝑡)

𝜋𝛽(𝑎𝑡|𝑠𝑡)

𝑇

𝑡=0

∑ 𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

𝑇

𝑡=0

] 𝑬𝒒 𝟒. 𝟔

where

𝜋(𝜏)

𝜋𝛽(𝜏)
=

𝑝(𝑠1) ∏ 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡)𝑡

𝑝(𝑠1) ∏ 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋𝛽(𝑎𝑡|𝑠𝑡) 𝑡
=

𝜋(𝑎𝑡|𝑠𝑡)

𝜋𝛽(𝑎𝑡|𝑠𝑡)

because the transition probabilities are the same for each policy and that’s very

convenient for us in a model-free environment. Lastly Equation 4.6 becomes :

𝐽 ≈ ∑ 𝑤𝑇
𝑖

𝑛

𝑖=1

∑ 𝛾𝑡𝑟𝑡
𝑖

𝑇

𝑡=0

 𝑬𝒒 𝟒. 𝟕

which stems from the importance sampling methodology with 𝑤𝑇
𝑖 being the average of

the importance sampling ratio. A problem with this approach is the product of the policy

44

probabilities is exponential and may attain high variance as they tend to zero. A way to

get around this is using the Weighted Importance Sampling (WIS), which is a

normalization of the Importance Sampling formula induced by dividing the return

function 𝐽(𝜋) with the average cumulative reward importance ratio at horizon 𝑡

regarding our dataset, 𝜔𝑡 [23][24] .Indeed:

𝜔𝑡 = ∑
𝜌1:𝑡

𝑖

𝑛

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝜌𝑡 =
𝜋(𝜏)

𝜋𝛽(𝜏)

And

𝐽 ≈ ∑
𝑤𝑇

𝑖

𝜔𝑡

𝑛

𝑖=1

∑ 𝛾𝑡𝑟𝑡
𝑖

𝑇

𝑡=0

 𝑬𝒒 𝟒. 𝟖

WIS greatly improves the variance of the estimator but introduces some bias, as each

instance of 𝜌 is divided by the weighted sum 𝜔𝑡. Another detail that gives somewhat

better results with lower variance than IS is the per-step importance sampling estimator,

a modification that constrains the sampling ratio until timestep t, as we do not require

future actions and states in order to update until that timestep[26]. So, with that in mind,

Eq. 4.7 and 4.8 become:

𝐽𝑠𝑡𝑒𝑝𝐼𝑆 =
1

𝑛
∑ ∑ 𝑤𝑡

𝑖𝛾𝑡𝑟𝑡
𝑖

𝑇

𝑡=0

𝑛

𝑖=1

 𝑎𝑛𝑑 𝐽𝑠𝑡𝑒𝑝𝑊𝐼𝑆 =
1

𝑛
∑ ∑

𝑤𝑡
𝑖

𝜔(𝑡)
𝛾𝑡𝑟𝑡

𝑖

𝑇

𝑡=0

𝑛

𝑖=1

Still after implementing these methods, variance is something that bothers us and

an attempt to address this issue became reality with the Doubly Robust Estimator. The

logic behind using the Doubly Robust Estimator is to achieve a balance between variance

and bias in a standard environment. As Fig. 4.3 shows, high variance is described by

having many predictions that fall short in achieving the true value, while some do but in

general is something that we want to avoid as being unreliable. We can recall the MC

methods as having too much variance, because we need to specify the full trajectory

before updating, but the number of trajectories existing in the environment could be

massive. Meanwhile, the bias is a systematic error of the true value that’s not big in

numbers as some predictions in a case with high variance could be, but happens to

45

almost every sample. The best match, of course is both the variance and bias being low

which is presented in the top left of Fig 4.3. So, Doubly Robust Estimator is trying to

achieve this particular case by deploying a model planning term which has high bias and

low variance combined with a high variance importance sampling term. This methodology

is well known in statistics and has been transferred into the field of Machine Learning and

in our case Reinforcement Learning by [23][35].

Figure 4.3 : Bias-variance tradeoff [35].

In order to derive the doubly robust estimator we need to implement the

recursive form of Eq. 4.7 . We know that the value function in the form of Bellman

equation is the product of the policy (in our case the importance sampling) with the

rewards gotten in that timestep plus the value of the previous value function. In that

case:

𝐽𝑠𝑡𝑒𝑝−𝐼𝑆
𝛨+1−𝑡 = 𝜌𝑡(𝑟𝑡 + 𝛾𝐽𝑠𝑡𝑒𝑝−𝐼𝑆

𝐻−𝑡)

Since J is basically the value function 𝑉 at that timestep, we observe that the expected

value of the sum in the parentheses is the action value function 𝑄. In that way we can

form a subtraction using a baseline 𝑄′ function, which can be estimated via regression or

by using a model-free algorithm or even by planning on an environment whose dynamics

46

are known. The new value in the parentheses is 𝑟𝑡 + 𝛾𝐽𝑠𝑡𝑒𝑝−𝐼𝑆
𝐻−𝑡 − 𝑄′(𝑠𝑡, 𝑎𝑡), which is a

much smaller value than 𝑟𝑡 + 𝛾𝐽𝑠𝑡𝑒𝑝−𝐼𝑆
𝐻−𝑡 , especially if the estimated Q function is close

to the value of the recursive term and this is performed as a means to reduce the

variance like we did in chapter 3 using the advantage function. Also an estimate of the

value function is added to that product to promote the lower of bias [25]. The final

formula is :

𝐽𝐷𝑅
𝛨+1−𝑡 = 𝑉′(𝑠𝑡) + 𝜌𝑡 (𝑟𝑡 + 𝛾𝐽𝑠𝑡𝑒𝑝−𝐼𝑆

𝐻−𝑡 − 𝑄′(𝑠𝑡, 𝑎𝑡)) 𝑬𝒒 𝟒. 𝟗

There are many variations of Doubly Robust Importance Sampling apart from the

standard case which was introduced in [36]. Some of them use the bias-variance tradeoff

more efficiently in order to achieve a better balance, but the underlying notion is what

we described above.

4.5 Value function regularization methods

 We’ve previously encountered constraint methods that employ constraints in the

policy in order to make the learned policy stay relevant with the behaviour policy

provided. But what if we could interfere with the Q-functions and the Q-values which are

causing the OOD action problem, directly?

4.5.1 Conservative Q-Learning (CQL)

 Conservative Q-Learning is basically a regularizer that can be added in a standard

actor-critic setting in order to lower bound the Q-values selected, preventing them from

bootstrapping into infinity. As referred in [27] the way to handle this overestimation

problem is via modifying the objective of the Q-function update, as simply subtracting a

term, like a policy divergence term, from the standard Q-function update would also form

a constraint like the ones we’ve encountered before. The regularization term are two and

they intuitively make sense as the first one samples the biggest Q-values in the whole

state-action space that are in general the values of OOD actions and it minimizes them.

So, the peaks that form and would form even more with bootstrapping, are avoided with

that minimization term. The other term only samples from actions that belong into our

47

dataset in a way to promote them by increasing their value. This way, the algorithm

works by simultaneously lowering the Q-values of actions that make the bootstrapping

error explode and are generally not reliable into being picked and increasing the actions

that we’ve seen in the dataset and lead to reliably good results.

 Experiments conducted using the CQL method seem to perform better than other

much used methods in the field both in the reward return section and in the

overestimation of Q values section. Agents trained with CQL are able to score higher than

other agents and also perform better in tasks that require generalization by stitching

trajectories that are suboptimal to form a highly optimal one. Furthermore, analysis of Q-

function estimation by these methods was conducted and showed that the CQL algorithm

estimates the Q-values much better than the other methods and even better than policy

constraint methods, while attaining better results than them. The greatest thing about

CQL is that it’s able to outperform state of the art algorithms and its simplistic usage[27].

48

 CHAPTER 5

RESEARCH AND CONCLUSIONS

5.1 Offline Datasets and Research

This subchapter is mainly focused on datasets that provide research opportunities

and useful insight that comes up with the extensive study of dataset influence into the

general field of offline RL. Here we’ll examine the latest news on the field regarding

benchmark opportunities for researchers that do not possess the resources in order to

conduct offline RL real world experiments.

 A very interesting project for those interested in doing practical research in offline

reinforcement learning is the D4RL, which is short for Datasets for Deep Data-Driven

Reinforcement Learning. D4RL provides benchmark tasks and datasets publicly, in order

for aspiring researchers to get a hands-on experience with offline RL, given that most

online RL benchmarks (like MuJoCo) are not aimed towards the offline aspect of it. There

are a couple of design variables that one has to take into account if he is to design a well

defined offline RL task [31]. Some of the hindrances that are apparent in RL environments

and we would like to maneuver offline RL towards tackling them are described below.

First, we have the case of narrow datasets where the majority of data in the

distribution are close to the mean. That poses a challenge, because the offline agent

might diverge or even train a worse policy than the behaviour policy provided. As we

observed in Chapter 4, a way to get around distributions that are close together is to

deploy a conservative algorithm, namely a policy constraint one that does not make the

resulting policy wander far away from the behaviour one.

 In addition, a significant issue that surfaces in RL as a whole, are environments

that provide sparse rewards. For example, Montezuma’s Revenge(a grand challenge in

the RL community as it’s known for being one of Atari’s hardest to solve games) is a case

of environment that proves this issue, as in the game you have to do alot of unrewarded

work in order to acquire a key that gets you to the next level. So, the goal here is to plan

the path towards obtaining the objective and finally getting the reward, while in the

meantime the rewards that the agent is receiving are very few and sparse. In offline RL

49

though, sparse rewards without exploration add on additional burden, as we have no way

to explore the environment, as for instance the sophisticated algorithms that now solve

the Montezuma’s Revenge game.

Moreover, a classical problem in offline RL is associated with the data provided by

the behaviour policy. There is a problem when the data is suboptimal mainly in the

imitation learning cases where the agent blindly follows the demonstrator’s action to the

point where it will mimic him even if he acts suboptimally. But as we’ve seen some offline

algorithms work quite well in these cases where the data come from suboptimal

demonstrators, in the sense that they outperform the most standard algorithms like AC

and DQN. The data, apart from being suboptimal, might also be logged. This means that

they cannot be explicitly used for a particular task we want to accomplish, but may come

in handy in the so called process of “stitching” [32]. For example, if a car is given the

directions in the dataset to reach a certain destination from the starting point and then

from the middle point to reach the final destination, it should learn to generalize and

“stitch” these trajectories together by forming the path from the starting to the endpoint.

Practically, in Figure 5.1 we observe the red line combining the two different trajectories.

Figure 5.1 : Stitching of two different trajectories[32].

 So, we’ve covered some of the basic problems that an offline agent will have to

face if he is to succeed in offline RL training. With this in mind, the D4RL team created

some tasks that utilize the previous issues we mentioned, providing the datasets which

makes for a unique opportunity of being able to conduct research without requiring

prohibiting amount of resources. The datasets provided consist of some mazes with the

first one being a simple 2D maze but the more demanding one is the AntMaze, which

employs an 8 degrees of freedom ant robot containing a much more complex

50

morphology, which resembles the motions of a robot. These two tasks determine the

agent’s performance on stitching trajectories in an attempt to discover the shortest path

between two nodes. MuJoCo and GymAI benchmarks are also included with added

datasets for offline RL learning.

There is a variety of benchmarks being offered by the conductors of the project

but they are mainly focused on the aspect of robotics, traffic control and autonomous

driving[32]. They also add that important topics of research are not included in the

benchmark environments, such as stochastic systems, mainly healthcare, financial

markets and advertisement, which can pose a challenge into research. Furthermore, since

the benchmark datasets are composed of simulated data, the desire to move into real

world environments with real world data is apparent.

Another very interesting and innovative project is the RoboNet, a dataset that’s

specifically focused on the field of robotics[37]. The author’s main concern was that in

order to train robotic models effectively so they would be capable of generalizing, not

only a sophisticated algorithm is required, but also the dataset should be large enough.

This is required not only for generalization’s sake but also for the need to pre-train an

algorithm with a diverse dataset, before jumping into the training part with a smaller

dataset[37]. Something along the lines of ImageNet dataset is what the authors dreamt,

which is a database that accommodates around 15 million images. So, the inspiration

came from ImageNet and its diversity, having a wide range of image classes is what

motivated the creators of RoboNet into including a dataset with 7 different robots from 4

different research institutions. The whole dataset consists of approximately 162k

trajectories that translate into 15 million frames, but the categories are broad and ranging

from different robot types to different gripper types and even camera configurations and

arena environments.

Apart from the description of the datasets, in [38] experiments are also conducted

for the large scale data to be tested. The first step, is defining the task that is to be

evaluated which is referred to as a relocation task. A relocation task involves moving an

object that is not present in the dataset to an arbitrary location. The task is considered

successful if the object that our agent moved, is covering most of the space of the

location. After the task is defined, we move on to the next part which is a test of

generalization. After the model has been trained with RoboNet, a test is conducted to

51

observe whether it can generalize to new viewpoints. Two cases are compared, the case

where a model has been trained on 90 different viewpoints and the case where a model

has been trained on 1 viewpoint, different than the one that they are tested upon. The

results show that the model that has been trained on the most viewpoints, relocates the

object on a lesser distance from the goal than the other model, something which signifies

the generalization that is achieved by being trained on multiple viewpoints. But the

greatest challenge is referred to as the model being able to generalize in a setting with a

previously unseen robot. Robots do not only vary in appearance but they also possess

different dynamics [37] . This experiment is conducted following 3 separate training

cases. The first case is initializing the weights randomly and training the model using data

from the target robot and specifically 400 trajectories. The second case is to train the

model using data from the target robot, but with more than 400 trajectories. The third

case is pretraining on the RoboNet without using target robot trajectories and then fine-

tuning using 300 to 400 trajectories of the target robot like before. The success rate of the

third case is higher than the other 2, a result that praises the usefulness of training with a

big and diverse dataset for better generalization, even if the dataset does not contain the

target values. This experiment shows that the models pretrained on the RoboNet perform

better than if they were trained from scratch with the target robot trajectories. A

problem that’s observed in the RoboNet dataset is underfitting, regarding models that are

video predicting. So, the next step is to train two different models, one that has 200

million parameters and another one with 500 million parameters. The result they got is

that logically, the model with the most parameters had the lowest error but still suffered

from underfitting. To sum up regarding this paper, the authors after performing the

experiments conclude that although the results were encouraging, the tasks were mostly

trivial, with most of them requiring to pick an object and place it in the goal. The dataset

is also something that worries them, because the policy used to generate the data in it,

was a random policy so future work would require picking up a more sophisticated policy.

 In this chapter we saw some of the datasets currently deployed in the field of

offline RL. Regarding the D4RL project the benchmarks provided are quite sophisticated,

with tasks requiring extensive generalization and could lead to significant breakthroughs

through research, while the RoboNet project with its huge capacity of data could assist

52

researchers into not having to spend valuable time and resources into generating their

own data .

 5.2 Conclusions

 To conclude with, we covered some of the advancements happening in the field of

Offline RL at this very instance, trying to solve the difficult problem of estimating a better

policy than the one that we’re provided with by the data. There are plenty of different

methods as we’ve noticed in chapter 4, that are aiming towards correcting the OOD

action overestimation and take better advantage of the behaviour policy. Policy

constraint methods that endeavour to make the policy learned to resemble the behaviour

policy in some way or the other. Uncertainty model based methods that deploy an

ensemble of models into punishing unknown actions and choosing the known or model

free methods that grind towards picking the best actions by estimating a plethora of Q

functions. Importance sampling methods that utilize the samples of the known policy in

order to evaluate the value function and also regularization methods that make use of

regularizing terms in order to bound the Q-function into not exploding during backups.

But there is also work to be done according to some open issues arising from these recent

advances. In subchapter 5.1 we took a deep dive into the datasets that have been

deployed recently and have unlimited potential regarding the research capabilities that

they provide.

 Each methodology that’s being introduced in this paper has its own set of

drawbacks and space for future corrections. For example, policy constraints, while

possessing the capability of fixing the distributional shift problem, tend to rely too much

upon the estimation of the behaviour policy[6]. Also the conservatism is an issue in the

offline setting because we would never want to conserve the policy or Q-function if we

were able to generalize well enough. So, there is a need for balance between the

overestimation and underestimation of unseen actions. Also, importance sampling

methods are comprised of high variance if the horizon in the current environment is too

big and are in general too unreliable if our behaviour policy and our trained policy are

different at large. Obviously, these algorithms suffer in the context of large state and

action spaces and big horizon steps.

53

 All in all, there’s too much research to be continued in offline RL, as significant

progress has been made over the last two years, as a result of the apparent potential that

the field possesses. With the improvement of datasets quality and the algorithms

capabilities we can expect breakthroughs in automated driving, robotic control, decision

making in healthcare and generally any activity that has a sequential form and does not

allow for intensive interaction with the environment.

54

REFERENCES

[1] Gu, S., Lillicrap, T., Sutskever, I. & Levine, S.. (2016). Continuous Deep Q-Learning with

Model-based Acceleration. Proceedings of The 33rd International Conference on Machine

Learning, in PMLR 48:2829-2838

[2] Sutton, R., McAllester, D.A., Singh, S., & Mansour, Y. (1999). Policy Gradient Methods for

Reinforcement Learning with Function Approximation. NIPS.

[3] Li, H., & Lau, T. (2019). Reinforcement Learning: Prediction, Control and Value Function

Approximation. ArXiv, abs/1908.10771.

[4] Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge,

Mass: MIT Press.

[5] Kumar, A., Fu, J., Tucker, G., & Levine, S. (2019). Stabilizing Off-Policy Q-Learning via

Bootstrapping Error Reduction. NeurIPS.

[6] Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline Reinforcement Learning: Tutorial,

Review, and Perspectives on Open Problems. ArXiv, abs/2005.01643.

[7] Fujimoto, S., Meger, D., & Precup, D. (2019). Off-Policy Deep Reinforcement Learning

without Exploration. ICML.

[8] Fujimoto, S., Hoof, H.V., & Meger, D. (2018). Addressing Function Approximation Error in

Actor-Critic Methods. ArXiv, abs/1802.09477.

[9] Torabi, F., Warnell, G., & Stone, P. (2018). Behavioral Cloning from Observation. ArXiv,

abs/1805.01954

[10] Kingma, D.P., & Welling, M. (2019). An Introduction to Variational Autoencoders. Found.

Trends Mach. Learn., 12, 307-392.

[11] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition.

[12] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M.A. (2014).

Deterministic Policy Gradient Algorithms. ICML.

55

[13] Kidambi, R., Rajeswaran, A., Netrapalli, P., & Joachims, T. (2020). MOReL : Model-Based

Offline Reinforcement Learning. ArXiv, abs/2005.05951.

[14] Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., & Ma, T. (2020). MOPO:

Model-based Offline Policy Optimization. ArXiv, abs/2005.13239.

[15] Agarwal, R., Schuurmans, D., & Norouzi, M. (2020). An Optimistic Perspective on Offline

Reinforcement Learning. ICML.

[16] Tesauro, G. (1994). “TD-Gammon, a self-teaching backgammon program, achieves

master-level play”. Neural Computation, 6(2), 215–219

[17] Bellman, R. (1958). Dynamic Programming and Stochastic Control Processes. Inf. Control.,

1, 228-239.

[18] Witten, I. (1977). An Adaptive Optimal Controller for Discrete-Time Markov

Environments. Inf. Control., 34, 286-295.

[19] Sutton, R., & Barto, A. (1981). Toward a modern theory of adaptive networks: expectation

and prediction. Psychological review, 88 2, 135-70 .

[20] Klopf, A. (1997). Drive-reinforcement learning and hierarchical networks of control

systems as models of nervous system function. International Journal of Psychophysiology,

25, 42-43.

[21] Klopf, A. (1988). A neuronal model of classical conditioning. Psychobiology, 16, 85-125.

[22] Watkins, C., & Dayan, P. (2004). Q-learning. Machine Learning, 8, 279-292.

[23] Huber, P. (1964). Robust Estimation of a Location Parameter. Annals of Mathematical

Statistics, 35, 492-518.

[24] Jiang, N., & Li, L. (2016). Doubly Robust Off-policy Value Evaluation for Reinforcement

Learning. ICML.

[25] Precup, D., Sutton, R., & Singh, S. (2000). Eligibility Traces for Off-Policy Policy

Evaluation. ICML.

[26] Aviral , K.(2019, Dec 5). Data-driven deep reinforcement learning. BAIR.

https://bair.berkeley.edu/blog/2019/12/05/bear/

https://bair.berkeley.edu/blog/

56

[27] Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020). Conservative Q-Learning for Offline

Reinforcement Learning. ArXiv, abs/2006.04779.

[28] Yamashita, R., Nishio, M., Do, R., & Togashi, K. (2018). Convolutional neural networks: an

overview and application in radiology. Insights into Imaging, 9, 611 - 629.

[29] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., &

Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning. ArXiv,

abs/1602.01783.

[30] Wu Y., Mansimov E., Liao S., Radford A., Schulman J. (2017, Aug 18) . OpenAI Baselines:

ACKTR & A2C . OpenAI. https://openai.com/blog/baselines-acktr-a2c/

[31] Fu, J., Kumar, A., Nachum, O., Tucker, G., & Levine, S. (2020). D4RL: Datasets for Deep

Data-Driven Reinforcement Learning. ArXiv, abs/2004.07219.

[32] Tucker G.(2020, Aug 20). Tackling Open Challenges in Offline Reinforcement Learning.

Google AI Blog. https://ai.googleblog.com/2020/08/tackling-open-challenges-in-

offline.html

[33] Soft Actor-Critic. OpenAISpinningUp. Retrieved February 24, 2021 , from

https://spinningup.openai.com/en/latest/algorithms/sac.html#exploration-vs-

exploitation

[34] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic: Off-Policy

Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. ICML.

[35] Yashwanth N. (2020, Sep 21) What is Bias-Variance Tradeoff? Avoid the mistake of

overfitting and underfitting. Towardsdatascience. https://towardsdatascience.com/what-

is-bias-variance-tradeoff-c8b19772e054

[36] Dudík, M., Langford, J., & Li, L. (2011). Doubly Robust Policy Evaluation and

Learning. ICML.

[37] Dasari, S., Ebert, F., Tian, S., Nair, S., Bucher, B., Schmeckpeper, K., Singh, S., Levine, S., &

Finn, C. (2019). RoboNet: Large-Scale Multi-Robot Learning. ArXiv, abs/1910.11215.

[38] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller,

M.A. (2013). Playing Atari with Deep Reinforcement Learning. ArXiv, abs/1312.5602.

https://openai.com/blog/baselines-acktr-a2c/
https://spinningup.openai.com/en/latest/algorithms/sac.html#exploration-vs-exploitation
https://spinningup.openai.com/en/latest/algorithms/sac.html#exploration-vs-exploitation

57

[39] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,

Riedmiller, M.A., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,

Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-

level control through deep reinforcement learning. Nature, 518, 529-533.

[40] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65 6, 386-408

[41] Song, T. (2018, Feb 18). Implementing the Perceptron algorithm from scratch with Python.

Tianyu Song. https://tianyusong.com/2018/02/23/implementing-the-perceptron-

algorithm-from-scratch-with-python/

[42] Saha, S.(2018, Dec 15). A comprehensive guide to Convolutional Neural Networks - the

ELI5 way. Towardsdatascience. https://towardsdatascience.com/a-comprehensive-guide-

to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[43] Britz, D.(2015, Oct). Recurrent Neural Networks, Introduction. KDnuggets.

https://www.kdnuggets.com/2015/10/recurrent-neural-networks-tutorial.html

[44] Seita, D. (2020, Jun 28). Offline (Batch) Reinforcement Learning: A review of Literature and

Applications. Seita’s Place. https://danieltakeshi.github.io/2020/06/28/offline-rl/

[45] Kumar, A., Levine S. (2020, Dec 12). Offline Reinforcement Learning: From Algorithms to

Practical Challenges. Offline RL Tutorial- NeurIPS 2020.

https://sites.google.com/view/offlinerltutorial-neurips2020/home

https://tianyusong.com/2018/02/23/implementing-the-perceptron-algorithm-from-scratch-with-python/
https://tianyusong.com/2018/02/23/implementing-the-perceptron-algorithm-from-scratch-with-python/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.kdnuggets.com/2015/10/recurrent-neural-networks-tutorial.html
https://danieltakeshi.github.io/2020/06/28/offline-rl/
https://sites.google.com/view/offlinerltutorial-neurips2020/home

58

