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Numerical methods for porous metals with
deformation-induced anisotropy

Orestis-Athanasios Gkaintes

Supervisor: Professor Nikolaos Aravas

Abstract

The present thesis is concerned with the development and numerical implementation of a
non-local constitutive model for porous metals. The non-local effect is incorporated through
the introduction of a non-local porosity variable, which is derived from the concurrent solution
of an additional partial differential equation along with the classical equilibrium equations.
The motivation for this work is twofold. First, we want to develop constitutive models that
describe the mechanical behavior of structural metals that account for “material damage” and
can be used in the material “softening regime” until final material failure. Second, to introduce
“material lengths“ that account for the material microstructure into the constitutive equations.
The non-local model is based on the advanced anisotropic model presented by Aravas and Ponte
Castañeda [3]. The model considers the evolution of porosity and the development of anisotropy
due to changes in the shape and the orientation of the voids during plastic deformation. A
methodology for the numerical integration of the constitutive equations is presented. The
implementation of a non-local model in a finite element code requires a variational formulation
of the problem and the development of new finite elements. Here the model is implemented in
the ABAQUS general purpose finite element program via a material “user subroutine” (UMAT
or VUMAT) and the coupled thermo-mechanical solution procedure. Several example problems
are solved numerically. In particular, the predictions of the model are compared to unit cell
finite element calculations and the problems of ductile fracture, necking and failure of a round
bar, and localization in plane-strain tension are analyzed in detail.

Keywords: Porous metals; Gradient plasticity; Finite Elements;
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Introduction

A well-known problem in the computational implementation of damage mechanics models
is that finite element solutions depend on the mesh size (i.e., are unreliable), when the material
enters the softening region that precedes material failure. The mathematical reason for the
mesh dependency is that the governing equations loose ellipticity and the boundary value
problem (BVP), as posed originally, becomes ill-conditioned. We are interested in the detailed
analysis of metal ductile fracture, which is known to be the result of growth and coalescence of
microscopic voids, which are nucleated at inclusions and second-phase particles by decohesion
of the particle–matrix interface or by particle cracking.

A non-local plasticity model for porous metals that accounts for deformation-induced aniso-
tropy is developed. The term “non-local” refers to material models in which, e.g., the de-
formation ε at material point A depends not only on the “local” values of the stress σ and
the internal variables s at A, but it also depends on the values of σ and s in the immediate
neighborhood of point A. The motivation for this work is twofold. First, we want to develop
constitutive models that describe the mechanical behavior of structural metals that account
for “material damage” and can be used in the material “softening regime” until final material
failure. Second, to introduce “material lengths“ that account for the material microstructure
into the constitutive equations.

The non-local model is based on the advanced anisotropic model presented by Aravas and
Ponte Castañeda [3]. The model considers the evolution of porosity and the development
of anisotropy due to changes in the shape and the orientation of the voids during plastic
deformation. At every material point, a “representative” ellipsoid is considered. The basic
“internal variables” are the local equivalent plastic strain ε̄p, the local porosity floc , the aspect
ratios (w1 = a3/a1, w2 = a3/a2) and the orientation of the principal axes (n(1),n(2),n(3)) of
the ellipsoid. The material is locally orthotropic with the axes of orthotropy defined by the
principal direction of the representative ellipsoid.

We developed a gradient version of the model, which is be based on a “non-local” porosity
variable f and introduces a “material length” ` to the constitutive equations. The non-local
porosity f is defined by an additional boundary value problem (BVP).

A methodology for the numerical integration of the constitutive equations is also presented.
The non-local model is then implemented in the ABAQUS general purpose finite element pro-
gram via a material “user subroutine” (UMAT or VUMAT) and the coupled thermo-mechanical
solution procedure. Several example problems are solved numerically.

The earlier chapters of this thesis build on basic theories of continuum mechanics and plas-
ticity so that the reader will get a better understanding on the anisotropic model for porous
metals. The Thesis proceeds with Chapter 4, where the formulation of the non-local anisotropic
model is presented. In Chapter 5 a methodology is presented for the numerical integration of
the constitutive equations and the implementation of the non-local model in ABAQUS general
purpose finite element program via a material “user subroutine” (UMAT or VUMAT) and the
coupled thermo-mechanical solution procedure. Finally, in Chapter 6 several example problems
are solved numerically. In particular, the predictions of the model are compared to unit cell
finite element calculations and the problems of ductile fracture, necking and failure of a round
bar, and localization in plane-strain tension are analyzed in detail.

1



Chapter 1

Notations and Nomenclatures

1.1 The Meaning of a Tensor

In continuum mechanics the term tensor is commonly used. A Cartesian tensor A of order
N , where N ≥ 1, is a quantity that is described by 3N components which can be expressed in
any arbitrary Cartesian coordinate system, with the property that, if Aijk... (where i, j, k · · ·
are N indexes taking the values 1, 2, 3) is an expression of A in a Cartesian frame with base
vectors ei and A′ijk... the corresponding expression to a Cartesian frame with base vectors e′i
which results from a rotation of the previous, then the components Aijk... and A′ijk... are related
by

A′ijk··· = QipQjqQkr · · ·Apqr··· (1.1)

A common tensor in continuum mechanics is the deformation gradient second-order tensor
Fij = ∂xi/∂Xj which shows how an infinitesimal fiber of length dX in the undeformed configu-
ration stretches to length dx and rotates. The symmetric and antisymmetric parts of the tensor
Fij symboled as εij and Ωij describe this stretching and rotation of the fiber respectively. An-
other common second-order tensor is the spatial velocity gradient tensor Lij = ∂vi/∂xj which
shows how the velocity field vi tends to change in the deformed configuration of xj, with its
symmetric and antisymmetric part the so-called strain rate Dij and strain rate Wij, respectively.
Lastly, it is worth mentioning the fourth-order elastic tensor Leijkl which relates the stresses to
strains by a constitutive relation of the form

σij = Leijklεkl or εij =Me
ijklσkl (1.2)

where Me
ijkl is called the elastic compliance tensor and it is the inverse of Leijkl.

1.2 Conventions

The summary convention (or repeated index form) will be used:

Lijklεkl ≡
3∑

k=1

3∑
l=1

Lijklεkl, (1.3)

meaning that the summation symbols will be omitted for simplicity and that repeated indexes
will mean summation over these indexes.

Index notation for vectors and tensors will be used throughout the text, unless mentioned
otherwise. All tensor components are written with respect to a fixed Cartesian coordinate

2



1.2. CONVENTIONS 3

system with base vectors ei (i = 1, 2, 3). Whenever possible, the base letter for a vector (first-
order tensor) will be a lowercase italic letter, for a second-order tensor it will be a lowercase
Greek letter, and for a fourth-order tensor it will be an upper-case italic letter. For example,
ui represents a vector, εij represents a second-order tensor, and Lijkl represents a fourth-order
tensor.

Alternately, when it is convenient, the direct (or matrix) notation of vectors and tensors will
be used as well. For this purpose, boldface symbols will denote tensors the order of which are
indicated by the context.

A superscript T over a second-order tensor denotes its transpose. The transpose of an
arbitrary second-order tensor A = Aijeiej is defined as

AT = Ajieiej = Aij ejei . (1.4)

The subscripts sym and skew denote the symmetric and antisymmetric parts of a second-
order tensor. A second-order tensor A is called symmetric if it satisfies the condition

AT = A or Aij = Aji , (1.5)

and antisymmetric if
AT = −A or Aij = −Aji . (1.6)

Any second-order tensor A can be written as

A =
1

2
(A + AT ) +

1

2
(A−AT ) , (1.7)

or
A = Asym + Askew , (1.8)

with

Asym =
1

2
(A + AT ) and Askew =

1

2
(A−AT ) , (1.9)

where it is readily proved that Asym and Askew are indeed symmetric and antisymmetric second-
order tensors.

A superimposed dot denotes the material time derivative, meaning that

Ȧijk··· =
dAijk···

dt
or Ȧijk··· =

dAijk···
dt

. (1.10)

A fourth-order tensor, L, is nonsingular if and only if there exists a fourth-order tensor, for
example, M, such that

L ·M = M ·L = I, (1.11)

where I is the symmetric fourth-order identity tensor with components Iijkl = (δikδjl + δilδjk).
In this case, it is said that M is the inverse of L, or L is the inverse of M, that is,

M = L−1 or L = M−1 . (1.12)

The symbol δij in the expression of I is called the Kronecker delta and it denotes the
components of a second-order identity tensor, that is,

δij =

{
1 if i = j,

0 if i 6= j,
or [δ] =

1 0 0
0 1 0
0 0 1

 . (1.13)



1.3. TENSORIAL OPERATIONS 4

1.3 Tensorial Operations

Let a,b be vectors, A,B second-order tensors and C a fourth order tensor; then the following
products are defined:

Dyadic product : (ab)ij = ai bj ⇔ a⊗ b, (ba)ij = biaj ⇔ b⊗ a

(AB)ijkl = Aij bkl ⇔ A⊗B
(1.14)

Dot product : (A · a)i = Aij aj, (a ·A)i = ajAji, (A ·B)ij = AikBkj

a ·A · b = aiAij bj
(1.15)

Double− dot product : (A : C)ij = AklCklij, (C : A)ij = CijklAkl, A : B = AijBij

A : C : B = Aij CijklBkl

(1.16)

1.4 The Jaumann Time Derivative

In continuum mechanics one usually requires the frame independence or objectivity of con-
stitutive equations while balance laws are only Galilean-invariant1. If constitutive equations
include time rates, then the question of building objective time derivatives is raised. The Jau-

mann co-rotational derivative, denoted by
O

(•), is such a derivative. For the second-order stress
tensor σ, it is defined by

O
σ = σ̇ −W · σ + σ ·W, with Wij =

1

2
(vi,j − vj,i) , (1.17)

where v denotes the velocity field with vi Cartesian components, and vi,j ≡ ∂vi/∂xj .

1Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames.



Chapter 2

Continuum Mechanics

2.1 Definition of Continuous Medium

1 A continuous medium is understood as an infinite set of particles which form part of
a body (solid or fluid) that will be studied macroscopically, that is, without considering the
possible discontinuities existing at microscopic level (atomic or molecular level). Accordingly,
one admits that there are no discontinuities between the particles and that the mathematical
description of this medium and its properties can be described by continuous functions.

2.2 Configurations of the Continuous Medium

Consider the continuous medium of Fig. 2.1 at a given instant of time t0 having an initial
volume V0 and a bounding surface Γ0, and occupying a certain region R0 of the physical space.
When the continuum is in motion or undergoes deformation, the particles (materials points)
within the continuum are displaced from one spatial position to another. At time t the body
changes to volume V and boundary surface Γ, and occupies region R. A material particle, say
P , in the initial configuration is characterized by a vector X and moves to another position
denoted by x. The equations of motion of such a particle are given by

x = φ (X, t)
not
=x (X, t) or xi = xi (X1, X2, X3, t) i ∈ {1, 2, 3}.2 (2.1)

The above equation provides a way to find the new location of each particle after the motion
or deformation of the body. This way of description of position (and any other quantity) is
called the Lagrangian description. Again vector X shows the position of a particle in the initial
configuration R0, and thus it can viewed as a label attached to it, while x indicates where the
particle is located at a given time t. In contrast, when someone wants to know which particle
X passed the spatial point x at a given time t, then he needs the inverse equations of (2.1)
such that

X = φ−1 (x, t)
not
=X (x, t) or Xi = Xi (x1, x2, x3, t) i ∈ {1, 2, 3} . (2.2)

I.e. Eq. (2.2) keeps track of which particle happens to be at the location xi at time t. Such
a description of any quantity is called the Eulerian description. Eqs. (2.1) and (2.2) may be
interpreted as a mapping between the initial configuration and the current configuration. In

1Big part of this chapter is based on the free notes of Xavier Oliver [31] and the lecture notes of Piaras Kelly
[19].

2The term ‘not ’ over the equality sign stands for ‘notation’.
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2.3. DEFORMATION GRADIENT TENSOR 6

order for this mapping to be one to one the Jacobian J = |∂xi/∂XJ | should not become zero
at any time t.

Figure 2.1: A body occupying the reference configuration R0 at time t0 and the configuration
R at t. A particle P initially located at point X at time t0 moves to point x at time t. The
transformation taking the body from the initial configuration R0 to the current configuration
R is φ(X, t), while the transformation φ−1(X, t) works vice versa.

The displacement field

The difference between the position vectors x and X of particle P in the current and initial
configuration is called the displacement of particle P and is denoted by the vector u. The
displacement of all the particles in the continuous medium defines a displacement vector field
which can be described in material form as

U(X, t) = x(X, t)−X or Ui(X, t) = xi(X, t)−Xi i ∈ {1, 2, 3} , (2.3)

or in spatial form as

u(x, t) = x−X(x, t) or ui(x, t) = xi −Xi(x, t) i ∈ {1, 2, 3} . (2.4)

2.3 Deformation Gradient Tensor

Consider the continuous medium of Fig. 2.2 in rigid body motion or after deformation. A
particle P in the reference configuration R0 occupies the point P ′ in the present configuration
R, and a particle Q situated in the differential neighborhood of P has relative positions with
respect to this particle in the reference and present times dX and dx, respectively.

Differentiating (2.1) with respect to the material coordinates X results in

dx = F · dX or dxi =
∂xi
∂Xj

dXj = Fij dXj i, j ∈ {1, 2, 3}. (2.5)

Eq. (2.5) defines the deformation gradient tensor F as

F
not
= x⊗∇ 3 or Fij =

∂xi
∂Xj

i, j ∈ {1, 2, 3}, (2.6)

3The bar over the Nabla operator denotes the material Nabla operator, such that ∇ ≡ ∂(•)/∂Xi.
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or in matrix form as

F = x⊗∇ =


x1

x2

x3

 · [ ∂
∂X1

∂
∂X2

∂
∂X3

]
=


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 (2.7)

Remark 2.1. The deformation gradient tensor F(X, t) contains the information of the relative
motion, along time t, of all the material particles in the differential neighborhood of a given
particle, identified by its material coordinates X. Eq. (2.5) provides the relative position vector
dx in terms of the corresponding relative position in the reference time, dX.

Differentiating (2.2) with respect to the spatial coordinates xi results in

dX = F−1 · dx or dXi =
∂Xi

∂xj
dxj = F−1

ij dxj i, j ∈ {1, 2, 3}. (2.8)

Eq. (2.8) defines the inverse of the deformation gradient tensor F−1 as

F−1 not
= X⊗∇ 4 or F−1

ij =
∂Xi

∂xj
i, j ∈ {1, 2, 3}, (2.9)

or in matrix form as

F−1 = X⊗∇ =


X1

X2

X3

 · [ ∂
∂x1

∂
∂x2

∂
∂x3

]
=


∂X1

∂x1

∂X1

∂x2

∂X1

∂x3

∂X2

∂x1

∂X2

∂x2

∂X2

∂x3

∂X3

∂x1

∂X3

∂x2

∂X3

∂x3

 (2.10)

Figure 2.2: A line segment dX and dx in the initial and current configuration, respectively,
emanating from point P to Q in the differential neighborhood of P.

4Here the symbolic form of the spatial Nabla operator, ∇ ≡ ∂(•)/∂xi, is used.
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Remark 2.2. Proof that F−1 is indeed the inverse of F:

FikF
−1
kj =

∂xi
∂Xk

∂Xk

∂xj
=
∂xi
∂xj

= δij ⇐⇒ F · F−1 = δ , (2.11)

F−1
ik Fkj =

∂Xi

∂xk

∂xk
∂Xj

=
∂Xi

∂Xj

= δij ⇐⇒ F · F−1 = δ . (2.12)

2.4 The Polar Decomposition of the Gradient Tensor

Theorem: The polar decomposition theorem of tensor analysis establishes that for any second
order tensor A which is invertible (detA 6= 0) there exist two positive definite 5, symmetric
tensors U, V and an orthogonal tensor R such that A can be written as

A = R ·U = V ·R , (2.13)

where the orthogonal6 tensor R is a proper (orthogonal) tensor if (detA > 0) and an improper
(orthogonal) tensor if (detA < 0). It is proven [1] that the polar decomposition of a tensor is
unique and that the tensors U and V take the form

U =
√

AT ·A and V =
√

A ·AT . (2.14)

The product A = R · U is called “right polar decomposition” and the product A = V · R
is called “left polar decomposition”. Let λi and Ni be the eigenvalues and the corresponding
unity eigenvectors of U. Then, it is also proven [2] that,
i) the eigenvalues and the corresponding unity eigenvectors of V are λi and ni such that

U =
3∑
i=1

λiNi ⊗Ni, and V =
3∑
i=1

λini ⊗ ni , where ni = R ·Ni , (2.15)

ii) A, A−1 and R can be written as

A =
3∑
i=1

λi ni ⊗Ni , A−1 =
3∑
i=1

1

λi
Ni ⊗ ni , R =

3∑
i=1

ni ⊗Ni . (2.16)

Considering now the polar decomposition of the deformation gradient tensor F and the
relation (2.5), the following is obtained,

dx = F · dX = (V ·R ) · dX =

stretching︷ ︸︸ ︷
V·

rotation︷ ︸︸ ︷
(R · dX) (2.17)

which implies the definition of an operator F which acts on a tensor (when doted with it) in

5A second order tensor A is called positive definite if a ·A · a = Aijaiaj > 0 for any vector a 6= 0.
6A second-order tensor R is orthogonal if (R · u) · (R · v) = u · v ∀ u,v ∈ R3. Furthermore, the meaning

of a proper (or improper) orthogonal second-order tensor R is found in chapter 1 of [2].
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the following manner

F · (•) ≡ stretching
not◦ rotation (•) 7, (2.18)

and

dx = F · dX = (R ·U) · dX =

rotation︷ ︸︸ ︷
R·

stretching︷ ︸︸ ︷
(U · dX) , (2.19)

so that

F · (•) ≡ rotation
not◦ stretching (•) . (2.20)

A graphical representation of the polar decomposition of F is shown in Fig. 2.3.

Figure 2.3: Polar decomposition of the gradient deformation tensor F.

2.5 The Material Strain Tensor

Consider again the particle P of Fig. 2.2 and another particle Q in its differential neighbor-
hood separated by a segment dX and dx in the initial and current configuration, respectively.
Let dS be the length of segment dX, T̂ the unit vector in the direction of dX and ds, t̂ be the
length and unit vector, respectively, of its counterpart dx such that

(ds)2 = dxk dxk = Fki dXiFkj dXj = dXiFkiFkj dXj = dXiF
T
ikFkj dXj

or

(ds)2 = dx · dx = dX · FT · F · dX
(2.21)

and
(dS)2 = dX · dX. (2.22)

Subtracting (2.22) from (2.21) results in

(ds)2 − (dS)2 = dX · FT · F · dX− dX · dX = dX ·
(
FT · F− δ

)
· dX . (2.23)

7The notation (◦) is used here to indicate the composition of two operations ξ and φ: z = φ ◦ ξ (x).



2.5. THE MATERIAL STRAIN TENSOR 10

Thus, defining the material (or Green - Lagrange ) strain tensor

E(X, t) =
1

2

(
FT · F− δ

)
or Eij =

1

2
(FkiFkj − δij) i, j ∈ {1, 2, 3}, (2.24)

then (2.23) reads
(ds)2 − (dS)2 = 2 dX · E · dX . (2.25)

Remark 2.3. The material strain tensor E is symmetric. The proof is the following

ET =
1

2

(
FT · F− δ

)T
=

1

2

(
FT ·

(
FT
)T − δT) =

1

2

(
FT · F− δ

)
= E . (2.26)

The Physical Meaning of the Diagonal Components

Considering the geometric expression dX = T̂dS (see Fig. 2.2), then it follows from (2.25)
that

(ds)2 − (dS)2 = 2 (dS)2 T̂ · E · T̂ , (2.27)

and by dividing both sides by (dS)2, results in(
ds

dS

)2

− 1 = λ2
T − 1 = 2 T̂ · E · T̂ ⇒ λT =

√
1 + 2 T̂ · E · T̂ , (2.28)

where λT denotes the stretch of a line segment initially along the direction of the unit vector
T̂ and it is equal to λT = ds/dS.

Let Eij i, j ∈ {1, 2, 3} be the components of E expressed in a Cartesian frame, then by
making use of (2.28) the following relations are obtained in terms of the diagonal components
of tensor E

ε1 = λ1 − 1 =
√

1 + 2E11 − 1 ,

ε2 = λ2 − 1 =
√

1 + 2E22 − 1 ,

ε3 = λ3 − 1 =
√

1 + 2E33 − 1 ,

(2.29)

where εT denotes the unit elongation of a line segment initially along the direction of the unit
vector T̂ and it is equal to

εT =
ds− dS
dS

= λT − 1 . (2.30)

Eq. (2.28) indicates that the material tensor E(X, t) contains information on the stretches
(and unit elongations) for any direction in the differential neighborhood of a given particle. In
particular, (2.29) shows that the diagonal components E11, E22 and E33 of tensor E contain
information on stretch and unit elongations of the differentials segments that were initially
oriented in the directions 1, 2 and 3, respectively.

The Physical Meaning of the off-Diagonal Components

Consider a particle P and two additional particles Q and R, belonging in the differential
neighborhood of P in the initial configuration, and the same particles occupying the spatial
positions P ′, Q′ and R′, as shown in Fig. 2.4. Consider the line segments dX(1) of PQ and
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dX(2) of PR with lengths dS(1) and dS(2), respectively, in the initial configuration and their
counterparts dx(1) of P ′Q′ and dx(2) of P ′R′ with lengths ds(1) and ds(2) in the current config-
uration. Let T̂(1), T̂(2) be the unit vectors in the direction of dX1 and dX2 and t̂(1), t̂(2) be the
unit vectors in the direction of dx1 and dx2, respectively.

Figure 2.4: Angles between differential segments in the reference and current configuration.

Then it follows that, {
dX(1) = dS(1) T̂(1) ,

dX(2) = dS(2) T̂(2) ,
(2.31)

and by taking the dot product of vectors dx(1) and dx(2) we obtain

dx(1) · dx(2) = |dx(1)||dx(2)| cos θ = ds(1)ds(2) cos θ ,

dx(1) · dx(2) = dX(1) ·
(
FT · F

)
· dX(2) =

= dX(1) · (2 E + δ) · dX(2) =

= dS(1) T̂(1) · (2 E + δ) · T̂(2) dS(2) =

= ds(1) ds(2) 1

λ(1)λ(2)
T̂(1) · (2 E + δ) · T̂(2) .

(2.32)

Now by comparing the initial and final terms in (2.32) and by making use of (2.28) for the
stretches λ(1) and λ(2) in the directions T̂1 and T̂2 we obtain

cos θ =
T̂(1) · (2 E + δ) · T̂(2)√

1 + 2 T̂(1) · E · T̂(1)
√

1 + 2 T̂(2) · E · T̂(2)
(2.33)

In view of (2.33) it is noticed that the tensor E(X, t) contains also information on the variation
of the angles between differentials segments in the differential neighborhood of a particle at
point X in the initial configuration.

If the line segments PQ and PR are aligned to Xi and Xj (i 6= j) axis, respectively, such

that T̂i · T̂j = 0 and their angle Θij = π/2 in the initial configuration, then according to (2.33)
the angle θij in the present configuration is

cos θij =
2Eij√

1 + 2Eii
√

1 + 2Ejj
(no summation over i and j) , (2.34)
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which is the same as

θij =
π

2
− arcsin

2Eij√
1 + 2Eii

√
1 + 2Ejj

(no summation over i and j) . (2.35)

Defining the increment of the final angle ∆Θij with respect to its initial value we have

∆Θij = θij − Θij︸︷︷︸
π/2

= − arcsin
2Eij√

1 + 2Eii
√

1 + 2Ejj
(no summation over i and j) (2.36)

Substituting the i, j’s with (1, 2, 3) for (i 6= j) and following a counterclockwise rotation the
following relations are obtained:

∆Θ12 = − arcsin
2E12√

1 + 2E11

√
1 + 2E22

∆Θ13 = − arcsin
2E13√

1 + 2E11

√
1 + 2E33

∆Θ23 = − arcsin
2E23√

1 + 2E22

√
1 + 2E33

.

(2.37)

Eqs. (2.37) determine the angle change of two line segments which are perpendicular to each
other in the reference configuration in terms of the components of tensor E. It is noticed that
both the off-diagonal and diagonal components contribute to this angle change, thus in finite
strain theory probably there is not a direct definition for the off-diagonal components. Figure
2.5 shows a graphical depiction of Eq. (2.36).

Figure 2.5: Angle variation of line segments which are perpendicular to each other in the
reference configuration.

2.6 The Velocity Gradient Tensor

Consider the configuration of a body at time t and two fixed neighbouring points P ′ and
Q′, see Fig. 2.6. The velocities of the material particles at these points at time t are v(x) and
v(x + dx), and

v(x + dx) = v(x) +
∂v

∂x
dx . (2.38)



2.6. THE VELOCITY GRADIENT TENSOR 13

The relative velocity between the points is

dv =
∂v

∂x
· x ≡ L · dx , (2.39)

with L defined to be the (spatial) velocity gradient,

L ≡ ∂v(x, t)

∂x
= v ⊗∇ or Lij =

∂vi
∂xj

i, j ∈ {1, 2, 3} (2.40)

Figure 2.6: Velocities of two neighbor particles in the continuous medium at time t.

Material Derivatives of the Deformation Gradient

The spatial velocity gradient may be written in repeated index form as

Lij =
∂vj
∂xi

=
∂vj
∂Xk

∂Xk

∂xi
=

∂

∂Xk

(
∂xj
∂t

)
∂Xk

∂xi
=

∂

∂t

(
∂xj
∂Xk

)
∂Xk

∂xi
, (2.41)

or in compact form

∂v

∂x
=
∂v

∂X

∂X

∂x
=

∂

∂X

(
∂x

∂t

)
∂X

∂x
=

∂

∂t

(
∂x

∂X

)
∂X

∂x
, (2.42)

which concludes that
L = Ḟ · F−1 or Ḟ = L · F . (2.43)

In a similar manner it can also be proven that

Ḟ−1 = −F−1 · L . (2.44)
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2.7 The Strain Rate and Spin Tensors

The velocity gradient tensor can be split into a symmetric and an antisymmetric part8,

L = D + W , (2.45)

where D is a symmetric tensor denominated strain rate tensor,

D =
1

2

(
L + LT

)
=

1

2
(v ⊗∇+∇⊗ v) , (2.46)

or

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
i, j ∈ {1, 2, 3}, (2.47)

and W is an antisymmetric tensor denominated rotation rate tensor or spin tensor, whose
expression is

W =
1

2

(
L− LT

)
=

1

2
(v ⊗∇−∇⊗ v) , (2.48)

or

Wij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
i, j ∈ {1, 2, 3}. (2.49)

Physical Interpretation of the Rate Tensor

Consider the continuous medium of Fig. 2.6. The rate at which the square of the length of
the line segment dx changes is

d

dt

(
|dx|2

)
= 2
(
|dx|

) d
dt

(
|dx|

)
,

d

dt

(
|dx|2

)
=

d

dt
(dx · dx) =

d

dt
(dx) · dx + dx · d

dt
(dx) =

= d

(
dx

dt

)
· dx + dx · d

(
dx

dt

)
= dv · dx + dx · dv

(2.50)

and by making use of (2.46) and (2.39), then

d

dt

(
|dx|2

)
=
(
dx · LT

)
· dx + dx · (L · dx) = dx ·

(
LT + L

)
· dx = 2 dx ·D · dx . (2.51)

Dividing both sides of (2.51) by 2|dx|2, then leads to

λ̇

λ
= t̂ ·D · t̂ , (2.52)

where λ = |dx|/|dX| is the stretch and t̂ = dx/|dx| is a unit vector in the direction of dx. Eq.
(2.52) computes the rate of stretching per unit of stretch in the direction t̂. Thus, the rate of
deformation D gives the rate of stretching of line segments. The diagonal components of D

Dii = ei ·D · ei for i ∈ {1, 2, 3} (no summation over i) , (2.53)

8A theorem of tensorial analysis establishes that any second order A can be decomposed into the sum of its
symmetric part and its antisymmetric or (skew-symmetric) part.
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represent unit rates of extension (if positive) in the coordinate directions.
Consider now the rate of change of the angle θ between two vectors dx(1), dx(2). Again by

making use of (2.46) and (2.39), we have

d

dt

(
dx(1) · dx(2)

)
=

d

dt

(
dx(1)

)
· dx(2) + dx(1) · d

dt

(
dx(2)

)
= L · dx(1) · dx(2) + dx(1) · L · dx(2)

=
(
L + LT

)
dx(1) · dx(2)

= 2 dx(1) ·D · dx(2) .

(2.54)

An alternative expression for this dot product is

d

dt

(
|dx(1)||dx(2)| cos θ

)
=

=
d

dt

(
|dx(1)|

)
|dx(2)| cos θ +

d

dt

(
|dx(2)|

)
|dx(1)| cos θ − θ̇ sin θ |dx(1)||dx(2)|

=

 d
dt

(
|dx(1)|

)
|dx(1)|

cos θ +

d
dt

(
|dx(2)|

)
|dx(2)|

cos θ − θ̇ sin θ

 |dx(1)||dx(2)| .

(2.55)

Equating (2.54) and (2.55) leads to

2 t̂(1) ·D · t̂(2) =

(
λ̇1

λ1

+
λ̇2

λ2

)
cos θ − θ̇ sin θ , (2.56)

where λi = |dx(i)|/|dX(i)| is the stretch of line segment i and t̂(i) = dx(i)/|dx(i)| is the unit
normal in the direction of dx(i).

It follows from (2.56) that the off-diagonal terms of the rate of deformation tensor represent
shear rates ; the rate of change of the right angle between line segments aligned with coordinate
directions. For example, taking the base vectors e1 = t̂(1), e2 = t̂(2), then (2.56) reduces to

D12 = −1

2
θ̇12 , (2.57)

where θ12 is the instantaneous right angle between the axes in the current configuration.
Note that in (2.53) the Dii’s are instantaneous rates of extension, in other words, they are

rates of extensions of line segments in the current configuration at the current time t; they are
not a measure of the rate at which a line segment in the original configuration changed into the
corresponding line segment in the current configuration. Accordingly, in (2.57) the Dij’s (i 6= j)
are instantaneous rates of angle change between two line segments in the current configuration
each one of which is aligned with one the of coordinate axes.

Physical Interpretation of the Spin Tensor

In view of (2.48) and (2.49) W is an antisymmetric tensor and in matrix form it can be
written as

Wij =
1

2

[
∂vi
∂xj
− ∂vj
∂xi

]
i, j ∈ {1, 2, 3} or [W] =

 0 W12 −W31

−W12 0 W23

W31 −W23 0

 . (2.58)
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The antisymmetric character of W implies that it has only three independent components and
thus a vector ω,

ω =
1

2
∇× v =

1

2



−
(
∂v2

∂x3

− ∂v3

∂x2

)
−
(
∂v3

∂x1

− ∂v1

∂x3

)
−
(
∂v1

∂x2

− ∂v2

∂x1

)


=

−W23

−W31

−W12

 , (2.59)

is extracted from W. The vector ω is called the vorticity vector. It is readily proven that

ω × r = W · r ∀ r ∈ R3 . (2.60)

Therefore, it is possible to characterize ω as the angular velocity of a rotation motion, and
ω × r = W · r as the rotation velocity of the point, that has r as the position vector, with
respect to the rotation center, as shown in Fig. 2.7.

Remark 2.4.. Proof of (2.60):

ω × r = det

e1 e2 e3

ω1 ω2 ω3

r1 r2 r3

 =

 e1 e2 e3

−W23 −W31 −W12

r1 r2 r3

 =


W12r2 −W31r3

W23r3 −W12r1

W31r1 −W23r2

 (2.61)

W · r =

 0 W12 −W31

−W12 0 W23

W31 −W23 0

 ·

r1

r2

r3

 =


W12r2 −W31r3

W23r3 −W12r1

W31r1 −W23r2

 (2.62)

Comparing (2.61) and (2.62) it is readily seen that they are the same.

Figure 2.7: Graphical representation of the vorticity vector acting with an outer product to a
vector r.

.
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Physical Interpretation of the Velocity Gradient Tensor

In view of (2.39) and (2.45) we have,

dv = L · dx = (D + W) · dx = D · dx︸ ︷︷ ︸
stretch
velocity

+ W · dx︸ ︷︷ ︸
rotation
velocity

, (2.63)

which allows describing the relative velocity dv of two neighbor particles P ′ and Q′ of the body
in the current configuration at time t as the sum of a relative stretch velocity (characterized by
the strain rate tensor D) and a relative rotation velocity (characterized by the spin tensor W
or the vorticity vector ω), as shown in Fig. 2.8.

Figure 2.8: Graphical representation of the decomposition of L.
.

Remark 2.5. Note that the theory presented in this chapter is general and it holds both for
finite and infinitesimal strain theory.



Chapter 3

The constituents of General Plasticity

for Rate-Independent Materials

A material enters the elastoplastic regime, when it undergoes some permanent deformation.
Significant permanent deformations occur when the stress reaches some critical value, called
the yield stress, σy, which is a material property. Plasticity theory is concerned with materials
that deform elastoplastically upon reaching the yield stress.

3.1 The Yielding Mechanism

One can imagine the lattice of a metal as a structured mesh of atoms and simulate their
interactive forces as that of a spring. Under the application of stresses the lattice deforms by
an increase in the distance between the atoms. In the tensile test this is observed as the elastic
domain. As their distance increases so does the resistance of the lattice to deformation. This
resistance coming as the analogous of a spring is described by the Young’s module, E. In that
sense one would expect the failure of the material to be the collateral breaking of the bonds.
Though, in the onset of stress yielding a new slope Eep is observed in the stress-strain diagram,
therefore a new mechanism must be triggered. That mechanism stems from imperfections of
the lattice, where in some parts of it an extra plane of atoms is located, as shown in Fig.
3.1. This extra plane of atoms is called a dislocation. What is observed as elongation of the
specimen after reaching the yield stress, is mainly due to the breaking of the bonds of the
dislocation A (see Fig. 3.1) in the so called slip plane. This dislocation is then transferred
to plane B, then C etc., up to reaching a free end. In most pure metals, only shear stresses
contribute to the breaking of the bonds to the slip plane and the movement of a dislocation.
Thus, the early theory of plasticity neglected the dependence of the yield stress on the normal
stress components of the stress tensor 1.

Figure 3.1: Dislocation motion [9]

1Which are also referred by the term hydrostatic pressure.

18
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3.2 Assumptions of Plasticity Theory

In the formulation of general plasticity theory the following assumptions are usually made:

1. the material is incompressible in the plastic region

2. there is no Bauschinger effect

3. the yield stress is independent of hydrostatic pressure

4. the material is isotropic

Note that only the first two are usually a good approximation, while the other two may or
may not be, depending on the material and the circumstances. For example, as mentioned
before, a porous material satisfies orthotropic symmetry in every point of the media, and also
the yield stress is dependent on the hydrostatic pressure, since the pores may act as a softening
mechanism in tensile loading and as a hardening mechanism in compression.

3.3 The Principal Stress Space

Consider a a cylindrical specimen subjected to a tensile load P and a torsion load T . Focusing
to an arbitrary infinitesimal cube of the specimen, i.e to a point of the material, one would
observe stresses induced on its surfaces (see Fig. 3.2). In that sense it is said that the stress state
to a point of a material is described by the stress tensor σ, which happens to be symmetric
and have six independent components as a consequence of the Angular Momentum Balance
Principle. In a mathematical sense a tensor can be written to its principal form, which always
has three non-zero components. Thus, the stress state to a point of the material corresponds
to a point in the principal stress space described by a Cartesian coordinate system with each
principal stress corresponding to an axis.

Figure 3.2: The principal stress space.

3.4 The Yield Condition

Now let s = {s1, s2, ..., sn} be a set of state or internal variables that characterize the
physical state of the material and σ be the tensor of stress components in each point of the
media resulting from the applied loads to the material. For a given material characterized by a
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vector of state variables s∗ and subjected to a stress state σ∗, one wishes to construct a function
Φ such that

Φ(σ∗, s∗)

{
< 0 ⇒ elastic response

= 0 ⇒ elastoplastic response
(3.1)

The function Φ is called the yield function and the condition Φ = 0 defines a surface in
the principal stress space which is called the yield surface. Note that by definition Φ can not
be greater than zero, because by trying to capture the physical model, one concludes that
whenever a material enters the elastoplastic zone its microstructure changes and therefore the
state variables change. Accordingly the yield surface in the principal stress space changes. It
expands and shrinks whenever the material experiences hardening and softening, respectively.
In general Φ can be written in the form

Φ(σ, sα) = σe(σ, s
β)− σy(sγ) , (3.2)

where sα, sβ, sγ are three arbitrary sets of state variables, σe is a properly defined equivalent
stress and σy is the yield stress.

3.5 The Normality Rule

Although a material may experience a large plastic deformation, the plasticity theory as-
sumes that it reaches this amount of deformation by successive, incrementally small plastic
deformations. Each one of these small plastic deformations is characterized by the plastic part
of deformation-rate-tensor Dp which can be computed by the so called normality rule:

Dp = Λ̇N , where N =
∂Φ

∂σ
, Λ̇ ≥ 0 , (3.3)

i.e. Eqn. (3.3) states that Dp is in the same direction with N. Λ̇ is called the plastic multiplier
and for now is just an arbitrary nonnegative number. Note that from the definition N =
∂Φ/∂σ, N is a ”vector” 2 which is normal to the plastic potential Φ. The reasoning to derive
Eqn. (3.3) is the following. Consider for the moment the one-dimensional loading of a hardening
material. Suppose that the material is initially fully elastic but has various loads, residual
stresses, etc acting, so that the state of stress at a certain point is σ∗, point A in Fig. 3.3. An
additional load is now applied to the material, bringing it to the current yield stress σ at point
B (if σ∗ is below the yield stress) and then plastically through the infinitesimal increment dσ to
point C. The additional load is then removed, bringing the stress back to σ∗ and point D. The
work done (per unit volume) by the additional loads during a stress cycle A-B-C-D is given by:

W =

∫
A−B−C−D

(σ(ε)− σ∗) dε . (3.4)

This work is the shaded area in Fig. 3.3. Writing

dε = dεe + dεp , (3.5)

and noting that the elastic work is recovered, i.e. the net work due to elastic strain is zero, this
work is due to the plastic strains,

2In reality N is a tensor, but we can imagine it as a vector of more than three components.
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W =

∫
B−C

(σ(ε)− σ∗) dεp . (3.6)

With dσ infinitesimal, this equals

W = (σ − σ∗) dεp +
1

2
dσ dεp ≥ 0. (3.7)

Note that the inequality holds, because it is assumed that the net work performed by the exter-
nal agency over a stress cycle is non-negative. This is a result from the laws of thermodynamics
where the total work is positive (or zero) in a complete cycle.

Figure 3.3: Work W done during a stress cycle of a strain-hardening material.

Assuming (σ − σ∗)� dσ, then Eqn. (3.7) reads

(σ − σ∗)dεp ≥ 0 . (3.8)

On the other hand, assuming σ = σ∗, Eqn. (3.7) reads

dσdεp ≥ 0 . (3.9)

The three dimensional case is illustrated in Fig. 3.4, for which one has

(σij − σ∗ij) dε
p
ij ≥ 0, dσijdε

p
ij ≥ 0 . (3.10)

Figure 3.4: Stresses during a loading/unloading cycle.
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In terms of vectors in principal stress space Eqn. (3.10) reads

(σ − σ∗) · dεp ≥ 0 . (3.11)

The rate form of Eqn. (3.11) is
(σ − σ∗) · ε̇p ≥ 0 . (3.12)

Since the dot product is non-negative, the angle between the vectors (σ − σ∗) and ε̇p (with
their starting points coincident) must be less than 90◦. Recall that σ is the current stress state
and it is always on the yield surface. The initial stress state σ∗ is arbitrary and it can be within
or on the yield surface. Let σ∗ take the values σ∗1 and σ∗2 then Eqn. (3.12) implies that

(σ − σ∗1) · ε̇p ≥ 0 ⇒ ε̇p ∈ A , (a)

(σ − σ∗2) · ε̇p ≥ 0 ⇒ ε̇p ∈ B , (b)
(3.13)

where A and B are the feasible spaces of vector ε̇p having as a starting point the one that
corresponds to stress state σ on the yield surface, see Fig. 3.5. To satisfy both (3.13a) and
(3.13b) ε̇p ∈ A∩B. In the limit case where σ∗1 → σ and σ∗2 → σ, ε̇p will be outwardly normal
to the yielding surface at stress state point σ.

Figure 3.5: Normality of the plastic strain increment vector.

Eqn. (3.12) implies also that the yielding surface will be convex. If it was not, then there
would exist an initial stress state σ∗ on the yield surface such that the angle between the
vectors (σ − σ∗) and ε̇p would be more than 90◦, as illustrated in Fig. 3.6

Figure 3.6: A non-convex surface.

Although Eqn. (3.12) was derived considering a hardening material, it is more general,
holding also for the case of perfectly plastic and softening materials. To see this, consider a
stress state σ∗ which is at or below the current yield stress σ, and apply a strain dε > 0. For
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a perfectly plastic material, σ − σ∗ ≥ 0 and dε = dεp > 0. For a softening material again
σ − σ∗ ≥ 0 and dεe < 0, dεp > dε > 0.

3.6 The Evolution Equations of the State Variables

When a material deforms plastically, the state variables evolve, and in turn, influence the
response of the material. The general form of the evolution equations of the state variables is

ṡα = G
(
σ, sβ, ε̇p

)
= G(σ, sβ, Λ̇N) , (3.14)

where sβ is a subset of the state variables sα. For a rate-independent material Eqn. (3.14) can
be written in the form

ṡα = Λ̇G(σ, sβ,N) . (3.15)

3.7 The Flow Rule

Consider the case of a hardening material subjected to a load causing the stress state (σAe )3

which is higher than its yield stress σy. In that case the material deforms plastically and σAe
becomes the current yield stress. The yield surface of the current state is determined by the
relation

Φ(σA, sa) = 0 , (3.16)

as shown in Fig. 3.7. An additional infinitesimal load dσA is now applied to the material
bringing it to the current yield stress (σA + dσA)e , where the yield surface of the current state
is determined by the relation

Φ(σA + dσA, sa + dsa) = 0 . (3.17)

Since the material hardens the yield surface expands, see Fig. 3.7. Note that as the material
deforms plastically its internal structure changes and that is described by the change sa + dsa

of the state variables.

Figure 3.7: The flow rule.

3The subscript ‘e’ denotes the equivalent stress of a stress state, such that (σA
e ) is the equivalent stress

resulting from the stress state σA.
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Taking the difference between (3.17) and (3.16) and dividing by the infinitesimal change dt
(t can be time) results in

Φ̇ =
∂Φ

∂σ
: σ̇ + Λ̇ ·

∑
α

∂Φ

∂sα
ṡα = 0 . (3.18)

Eqn. (3.18) is called the flow rule and one can compute Λ̇ with respect to the stresses σ or the
strains ε.

In terms of the stresses, Λ̇ is computed as follows. By denoting H = −
∑

α
∂Φ
∂sα

ṡα and
recalling that N = ∂Φ/∂σ, then Eqn. (3.18) results in

N : σ̇ − Λ̇H = 0⇒ Λ̇ =
1

H
N : σ̇ , H = −

∑
α

∂Φ

∂sα
ṡα . (3.19)

The parameter H determines the response of the material after surpassing its current σy,
meaning that if

• H > 0 then the material hardens

• H < 0 then the material softens

• H = 0 then the material behaves as perfectly plastic.

Note that in the case of a perfectly plastic material Eqn. (3.19) is not defined.
With respect to the strains Λ̇ is computed as follows

σ̇ = Le : ε̇e = Le : (ε̇− ε̇p) = Le : ε̇− Λ̇Le : N , (3.20)

where in Eqn. (3.20) we have used that ε̇ = ε̇e + ε̇p and ε̇p = Λ̇ N, and Le is the elastic
modulus tensor. By substituting (3.20) to (3.18) and introducing again the vector N and the
variable H, it follows that

N : (Le : ε̇)− Λ̇ N : (Le : N)− Λ̇H = 0 (3.21)

and by converting everything to tensor notation it is seen that the parentheses can be omitted

N : (Le : ε̇) = Nij(Le : ε̇)ij = NijLeijklεekl = N : Le : ε̇ , (3.22)

and
N : (Le : N) = Nij(Le : N)ij = NijLeijklNkl = N : Le : N , (3.23)

thus Eqn. (3.21) results in

Λ̇ =
1

L
N : Le : ε̇, L = (H + N : Le : N) . (3.24)

Note that the elastic modulus Le is positive definite4, therefore N : Le : N > 0.

4A forth order tensor L is called positive definite if A : L : A > 0 or AijLijklAkl > 0 ∀A 6= 0, A ∈ R9.
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3.8 The Rate Form of the Elastoplastic Equations

Figure 3.8: Moving along the hardening curve.

When Φ = 0 and dΦ = 0 one wishes to find a relation between the change dσ and dε such
that dσ = Lep : dε or σ̇ = Lep : ε̇. While this is the general three dimensional case, one can
view the one dimensional loading, Fig. 3.8, for simplicity. The following relations hold

σ̇ = Le : ε̇e = Le : (ε̇− ε̇p) = Le : (ε̇− Λ̇N) = Le : ε̇− Λ̇Le : N

= Le : ε̇− 1

L
(N : Le : ε̇)Le : N ,

(3.25)

Converting everything in notation form, Eqn. (3.25) reads

σ̇ij = Leijklε̇kl −
1

L
(NmnLemnklε̇kl)LeijpqNpq

= (Leijkl −
1

L
NmnLemnklLeijpqNpq)ε̇kl ,

(3.26)

and by making use of the minor symmetry of Le 5, Eqn. (3.26) results in

σ̇ij = [Leijkl −
1

L
(Le : N)ij(Le : N)kl]ε̇kl , (3.27)

or in compact form as
σ̇ = [Le − 1

L
(Le : N)(Le : N)] : ε̇ . (3.28)

I.e. Eqn. (3.27) reads

σ̇ = Lep : ε̇ , Lep = Le − 1

L
(Le : N)(Le : N) . (3.29)

Thus, a compact equation that relates the rate of stresses with the rates of strains in the elastic
or the elastoplastic regime is the following

σ̇ = L : ε̇, where L =

{
Le , if N : Le : ε̇ ≤ 0

Lep , if N : Le : ε̇ > 0
(3.30)

5The minor symmetry of tensor Le is the following: Le
mnkl = Le

klmn.
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For the reverse problem where ε̇ = Me : σ̇ or dε = Me : dσ the following relations hold

ε̇ = ε̇e + ε̇p = Me : σ̇ + Λ̇ N = Me : σ̇ +
1

H
(N : σ̇) N , (3.31)

where Eqn. (3.19) has been used. Writing everything in notation form, Eqn. (3.31) reads

ε̇ij =Me
ijkl σ̇kl +

1

H
Nkl σ̇klNij = (Me

ijkl +
1

H
NklNij) σ̇kl , (3.32)

or in compact form as

ε̇ = (Me +
1

H
NN) : σ̇ . (3.33)

Again, a compact equation that relates the rate of strains with the rate of stresses in the elastic
or elastoplastic regime is the following

ε̇ = M : σ̇, where M =

{
Me , if N : Le : ε̇ ≤ 0

Mep , if N : Le : ε̇ > 0
(3.34)

The inequalities in (3.34) and (3.30) define the “plastic loading condition” and determine
whether the material is in the elastic or in the elastoplastic regime. Formulated in this way the
plastic loading condition is general and it holds for hardening, softening and perfectly plastic
materials. For example, if the plastic loading condition was expressed in terms of the stresses
as N : σ̇, then for a softening material the condition N : σ̇ ≤ 0 would not necessarily imply
that the material is in the elastic regime.

Summary

Summarizing, the constituents of plasticity theory for rate-independent materials are the
following:

B Yield condition: Φ(σ, sα) ≤ 0

B The normality rule: Dp = Λ̇N(σ, sα) = Λ̇
∂Φ

∂σ
, Λ̇ ≥ 0

B Evolution of state variables: sα = Λ̇G(σ, sβ,N)

B The flow rule: Φ̇ = 0⇒ Λ̇ =
1

H
N : σ̇ =

1

L
N : Le : ε̇ ,

where H = −
∑
α

∂Φ

∂sα
ṡα and L = H + N : Le : N

B Rate form of elastoplastic equations:

• stresses with respect to strains: σ̇ = L : ε̇, where L =

{
Le , if N : Le : ε̇ ≤ 0

Lep , if N : Le : ε̇ > 0

with Lep = Le − 1

L
(Le : N)(Le : N)

• strains with respect to stresses: ε̇ = M : σ̇, where M =

{
Me , if N : Le : ε̇ ≤ 0

Mep , if N : Le : ε̇ > 0

with Mep = (Me +
1

H
NN) .



Chapter 4

The Constitutive Model for Porous

Materials

Description of the Model
In this chapter a gradient anisotropic model for porous materials is presented. The non-

local model builds on the work of [3]. The porous material is composed of two phases. The
matrix phase consists of an isotropic, incompressible, rate-independent material which behaves
with an elasto-plastic response after reaching its yield stress σy. In addition, it is assumed to
exhibit isotropic hardening and hence σy is taken to be a function of the equivalent plastic
strain ε̄p. The inclusion phase is vacuous and comprises of ellipsoidal voids of the same shape
and orientation distributed uniformly over the representative volume element1. It is assumed
[22, 29, 30] that the centers of the voids are distributed with ellipsoidal symmetry, i.e. the
distribution (or two-point correlation) function of the centers voids has also ellipsoidal shape.
Under finite deformations the voids evolve into ellipsoidal shapes and hence the porous medium
becomes at every material point locally orthotropic, with the local axes of orthotropy coinciding
with the principal axes of the representative local ellipsoid. The orientation of the principal
axes is defined by the unit vectors n(i), i = {1, 2, 3} and the corresponding lengths are 2a1, 2a2

and 2a3, as shown in Fig. 4.1. During finite deformations, the micro-structure of the material
changes inducing anisotropy to the material. A set of state variables describes the evolution of
the microstructure at every deformation state.

In the original formulation of the classical (local) anisotropy theory, the relevant state vari-
ables describing the state of the micro-structure are:

s = {ε̄p, floc, w1, w2,n
(1),n(2),n(3) = n(1) × n(2)}, (4.1)

where ε̄p is the local equivalent plastic strain in the matrix phase, floc is the local porosity (i.e.
volume fraction of the voids), w1 = a3/a1 and w2 = a3/a2 are two aspect ratios characterizing
the shape of the voids and their distribution functions, and the vectors n(i) (with i = 1, 2, 3), as
mentioned earlier, denote the orientation of the principal axes of the voids. Note that if Vv is
the total volume of the voids and V is the total material volume, then the local volume fraction
or local porosity floc is defined as

floc =
Vv
V
. (4.2)

1Since the material consists of two phases it is a heterogeneous material. However, the heterogeneity of the
material can only be identified below a certain scale with characteristic length d. For a microscopically length
scale D, such that d/D << 1 the material can be conceived as a homogeneous material by observing its mean
(or effective) properties. A volume element with characteristic dimensions of D is called a representative volume
element (RVE) because the overall properties on any RVE would be the same, i.e. the overall properties of the
RVE represent the overall properties of the heterogeneous material. In that sense the heterogeneous material
can be conceived as the summation of the RVEs in the volume of the medium.

27
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Moreover, the effective yield function Φ depends on the aforementioned internal variables

Φ = Φ(σ, s) = Φ(σ, ε̄p, floc, w1, w2,n
(1),n(2),n(3)). (4.3)

In the context of the gradient anisotropic constitutive model proposed in this thesis, a
nonlocal porosity variable f is introduced for the regularization of the aforementioned local
model. The nonlocal porosity f is determined from the solution of a boundary value problem
(BVP for short) of the form [32]:

f − `2∇2f = floc in V

B.C. :
∂f

∂n
= 0 on ∂V

(4.4)

where ∂V is the boundary of the domain V , with outward-pointing vector n, and ` is a char-
acteristic length scale of interest of the material. It is now assumed that the yield function Φ
depends on the nonlocal porosity f instead of floc :

Φ = Φ(σ, s) = Φ(σ, ε̄p, f, w1, w2,n
(1),n(2),n(3)) (4.5)

Figure 4.1: Graphical presentation of the microstructure in a RVE showing a representative
ellipsoidal void with the local orientation axes n(i) (i = 1, 2, 3) and corresponding lengths
(2a1, 2a2, 2a3).

4.1 Instantaneous Constitutive Relations

The rate-of-deformation tensor Dij = (vi,j + vj,i)/2 (with vi denoting the Cartesian compo-
nents of the overall applied velocity) can be written as

D = De + Dp or Dij = De
ij +Dp

ij, (4.6)

where De and Dp are the elastic and plastic parts. In other words the elastic and plastic response
are treated independently, and combined later to obtain the full elastic-plastic response. This
treatment is reasonably accurate, unless the material is subjected to cyclic loading.

Note that due to the presence of voids the overall material behavior is compressible implying
that the plastic strain-rate tensor is not deviatoric (i.e. Dp

kk 6= 0).

4.1.1 Elasticity

A hypoelastic2 form is assumed for the elastic part of the rate-deformation tensor. The
elastic response of the porous material is described in terms of an effective compliance tensor

2Materials considered hypoelastic are such that the work during a closed loading cycle is not zero even in the
absence of inelastic deformation and so, a stress-strain relationship cannot be derived from a potential function.
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Me via
De = Me :

◦
σ, (4.7)

where
◦
σ is a rate of the Cauchy stress which is co-rotational with the spin of the voids,

◦
σ = σ̇ − ω · σ + σ · ω, (4.8)

ω being the spin of the voids relative to a stationary frame. The antisymmetric tensor ω which
is called the “microstructural spin”, is calculated in section 4.2.2

The compliance tensor of the composite is written as [28]

Me = M +
f

1− f
Q−1, (4.9)

where Q is a fourth-order tensor that describes the microstructure of the material and depends
on (µ, ν, w1, w2,n

(1),n(2),n(3)). Q [28] is linked to the Eshelby tensor S [10] via

Q = L : (I − S). (4.10)

Note that the Eshelby tensor has the minor symmetries (Sijkl = Sjikl = Sijlk), whereas Q has
both the major (Qijkl = Qklij) and minor symmetries of the elasticity tensor. Expressions for
the tensors S and Q are given in Appendix A.

In (4.9), M is the elastic compliance tensor of the matrix material, which is the inverse of
the elastic modulus tensor L. Since the matrix phase is assumed to be isotropic both L and
M depend only on two variables, and can be written as

L = 2µK + 3κJ , M = L−1 =
1

2µ
K +

1

3κ
J =

1

2µ
(K +

1− 2ν

1 + ν
J ), (4.11)

with

Jijkl =
1

3
δijδkl, Kijkl = Iijkl − Jijkl, Iijkl =

1

2
(δikδjl + δilδjk) , (4.12)

where µ and κ denote the elastic shear and bulk moduli of the matrix, ν is the Poisson’s ratio
of the matrix, δ is the Kronecker delta.

4.1.2 Plasticity

Although the present study focuses on rate-independent materials, in order to derive the rate-
independent constitutive relations one has to construct a general homogenized dissipation (rate-
dependent) potential U(σij) and consider an appropriate limit to account for rate-independence.
Such a potential is explained in more detail in [20, 7] and takes the form

U(σ, s) = (1− f)
ε̇0 σy
n+ 1

[
σ̂e

σy (ε̄p)

]n+1

, (4.13)

where σ̂e(σ, s) is the equivalent stress containing all the information about the micro-structure
and it is detailed later in this section, σy is the yield stress of the matrix in tension, ε̇0 denotes
a reference strain rate, and n is the creep exponent (1 ≤ n ≤ ∞). The value n = 1 corresponds
to a linearly viscous material, whereby the limit n → ∞ leads to a rate-independent material
response.
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Thus, by considering the limit n→∞ in (4.13), one can obtain

U(σ, s) =

{
0, σ̂e ≤ σy(ε̄

p),

∞, otherwise,
(4.14)

which directly gives the yield function as

Φ(σ, s) = σ̂e − σy (ε̄p) , (4.15)

such that the yield condition is defined by Φ(σ, s) = 0.

The original Variational formulae (VAR)

In the original variational method, the effective stress measure σ̂e is given by the explicit
expression [23, 13]

σ̂e =

√
σijmijkl σkl

1− f
or σ̂e =

√
σ : m : σ

1− f
. (4.16)

The fourth order tensor m corresponds to an appropriately normalized effective viscous com-
pliance tensor for the fictitious linear comparison porous material and is defined as

mvar = mvar(f, w1, w2,n
(1),n(2),n(3)) = 3µMe|ν=1/2 =

3

2
K +

3f

1− f
µQ−1|ν=1/2 , (4.17)

where Me is exactly the same as in (4.9), computed in the limit ν → 1/2 to account for
the incompressibility of the matrix. The subscript “var” has been used to denote the original
result of Ponte Castañeda [20], which is a rigorous upper bound of the effective response of
the porous material. In the limit ν → 1/2 in (4.17), the tensor Q becomes a homogeneous
function of degree one in µ and hence the tensor m is independent of µ. In addition, Q and
consequently m are functions of the microstructural variables s and for a non-zero porosity f
are both compressible. Note further that when the voids become non-spherical, i.e., when the
aspect ratios, defined in (4.5), take values other than unity, m becomes anisotropic.

The modified variational or modified secant formulae (MVAR)

The original variational formulation of Ponte Castañeda [20], discussed previously, has been
found to be sufficiently accurate at low stress triaxialities but tends to overestimate the effective
response of the porous material at high stress triaxialities, especially at low porosities. In this
connection, Aravas N. and Danas K. [8] following the earlier work of Ponte Castañeda [21] and
Michel and Suquet [17], corrected expression (4.17) by modifying the hydrostatic part of m,
such that

mmvar = mvar + (q2
J − 1)J : mvar : J , qJ =

1− f√
f ln (1/f)

. (4.18)

The scalar factor qJ brings the yield function (4.15) into alignment with the spherical shell
(or equivalently the “composite sphere assemblage”) and the cylindrical shell (or equivalently
the “composite cylinder assemblage”) solutions when subjected to purely hydrostatic loadings,
while preserving standard requirements, such as convexity and smoothness of the yield surface
for the entire range of microstructural configurations. Note, however, that the new modified
variational model in (4.18) is not an upper bound but an estimate for the effective behavior
of porous materials. Nonetheless, it still reproduces the Gurson model in the special case of
spherical voids and purely hydrostatic loading.
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Therefore, the effective yield function of the composite can be written in the form

Φ(σ, s) =
1

1− f
σ : m : σ − σ2

y(ε̄
p), (4.19)

where m is computed either from (4.17) or (4.18). In the most general case Φ exhibits or-
thotropic symmetry with symmetry axes aligned with the axes of the voids, i.e. aligned with
the vectors n(i) (i = 1, 2, 3). Note that if perfect plasticity was assumed then σy = constant;
however, here the metal matrix is assumed to harden isotropically and σy is a function of the
equivalent plastic strain ε̄p.

The matrix material, with Young’s modulus E and Poisson’s ratio v, exhibits isotropic
hardening with

σy(ε̄
p) = σ0

(
1 +

ε̄p

ε0

)1/n

, (4.20)

where σ0 is the yield stress in tension, n ≥ 1 is the hardening exponent, and ε0 = σ0/E.
The plastic rate-of-deformation tensor Dp is obtained in terms of Φ from the normality rule

Dp = Λ̇N, N =
∂Φ

∂σ
=

2

1− f
m : σ, (4.21)

where Λ̇ ≥ 0 is the plastic multiplier, which is determined from the flow rule as discussed in
chapter 3.

4.2 Evolution of the Microstructure

When the porous material deforms plastically, its microstructure changes. The microstruc-
ture evolution, in turn affects the elasto-plastic response of the material since the yield condition
and the plastic flow rule depend on the current state of the microstructure. Thus, evolution
laws for the microstructural state variables s have to be prescribed. These evolution laws are
obtained by considering appropriate kinematic relations as discussed in this section. In this the-
ory of porous materials, it is assumed that all changes in the microstructure occur only due to
the plastic deformation of the matrix, which changes the volume, the shape and the orientation
of the voids. This is expected to be reasonable, since the elastic strains here are relatively small
compared to the plastic strains. A final note is that the purpose of homogenization models is
the description of the effective behaviour in average terms. The model discussed here suggests
that under applied deformation the ellipsoidal voids evolve-on average- to ellipsoidal voids with
different size and orientation. This in turn, implies that average change in size and orientation
of the voids depends only upon the average strain rate Dv and the average spin Wv in the
vacuous phase.

4.2.1 Evolution of the equivalent plastic strain ε̄p and local porosity
floc

The evolution of ε̄p is determined from the condition that the local macroscopic plastic work
σ : Dp = Λ̇σ : N equals the corresponding microscopic work (1− f)σy ˙̄εp, which implies that

˙̄εp = Λ̇
σ : N

(1− f)σy(ε̄p)
≡ Λ̇ g1(σ, s). (4.22)
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Since the presence of porosity in a metal can be viewed as some kind of “damage” in the
material and any changes in porosity due to elastic deformations are small and fully recoverable,
it is assumed that changes in floc are due to volumetric plastic deformation rates Dp

kk only (as
opposed to the total Dkk). In view of the plastic incompressibility of the matrix phase, the
evolution equation for the local porosity floc follows from the continuity equation and is given
by

ḟloc = (1− f)Dp
kk = Λ̇(1− f)Nkk ≡ Λ̇ g2(σ, s). (4.23)

4.2.2 Evolution of the local aspect ratios and the local axes of or-
thotropy

The average deformation rate and the average spin of the local ellipsoid are determined in
terms of the macroscopic plastic deformation rate Dp and the macroscopic continuum spin
W. In particular, the average deformation rate Dv and the average spin Wv in the local
representative ellipsoidal void are

Dv = A : Dp and Wv = W − C : Dp, (4.24)

where A and C are the relevant fourth-order “concentration tensors” defined as

A = [I − (1− f)S|ν=1/2]−1 and C = −(1− f)Π : A. (4.25)

The derivation of (4.24) and (4.25) can be found in [15, 23, 20]. Here Π is the fourth-order Es-
helby [10, 11] rotation tensor that determines the spin of an isolated void in infinite linear viscous
matrix and depends on (w1, w2,n

(1),n(2),n(3)). An expression for the evaluation of Π is given in
Appendix A. The “concentration tensors” A and C both depend on (f, w1, w2,n

(1),n(2),n(3)).
In the limit as f → 0 the expressions for A and C reduce to the corresponding formulae of the
Eshelby [10, 11] for the case of an isolated void in an infinite incompressible matrix.

The evolution of the aspect rations (w1, w2) is determined, by starting from their definition
w1 = a3/a1, as follows

ẇ1 =
α̇3

α1

− α3
α̇1

α2
1

= w1

(
α̇3

α3

− α̇1

α1

)
= w1

(
n(3) ·Dv · n(3) − n(1) ·Dv · n(1)

)
= w1

(
n(3)n(3) − n(1)n(1)

)
: Dv,

(4.26)

where 2αi is the length of the i− th principal axis of the local representative ellipsoid. Taking
into account that Dv = A : Dp and Dp = Λ̇N, then (4.26) is written as

ẇ1 = Λ̇w1

(
n(3)n(3) − n(1)n(1)

)
: A : N ≡ Λ̇ g3(σ, s). (4.27)

Similarly,
ẇ2 = Λ̇w2

(
n(3)n(3) − n(2)n(2)

)
: A : N ≡ Λ̇ g4(σ, s). (4.28)

Next the evolution equations for the orientation vectors n(i) are defined. Since the n(i)’s are
the unit vectors, their time derivative can be written in the form

ṅ(i) = ω · n(i), (4.29)

where ω is an antisymmetric tensor.
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The local representative ellipsoid can be thought as developing during plastic flow from a
“reference spherical void” of radius α0. The deformation gradient of the ellipsoidal void Fv(t)
relative to the reference spherical void can be written as

Fv(t) = F̄v(t) · F̄v
0, (4.30)

where F̄v
0 is the deformation gradient of the initial representative void relative to the reference

spherical void, and F̄v(t) the deformation gradient of the evolving ellipsoidal void relative to
its initial shape. Making use of a common identity in linear algebra3, it can be derived from
(4.30) that

(Fv(t))−1 = (F̄v
0)−1 · (F̄v(t))−1, (4.31)

and by making use of (2.43) and (2.45), then the average velocity gradient of the voids Lv can
be written as

Lv = Dv + Wv = Ḟv · (Fv)−1 = ˙̄Fv · Fv
0 · (Fv

0)−1 · (F̄v)−1 = ˙̄Fv · (F̄v)−1. (4.32)

Remark 4.1 Taking into account (4.24), then (4.32) can be written as

Ḟv · (Fv)−1 = Λ̇(A− C) : N + W , (4.33)

which is the differential equation that together with the initial condition Fv(0) = Fv
0 defines

the deformation gradient of the local representative ellipsoid Fv(t).

The orientation of the unit vectors n(i) along the principal axes of the local representative
ellipsoid coincide with the Eulerian axes of Fv. Therefore, the spin ω in (4.29) is determined
by the kinematical relationship (the derivation of which is found in Appendix B)

ω
′

ij = W v′

ij −
λ2
i + λ2

j

λ2
i − λ2

j

D
′v
ij , i 6= j, wi 6= wj, (no sum over i), (4.34)

where λi are the stretch ratios of Fv, i.e.,

λi =
αi
α0

=
α3/α0

α3/αi
=
λ3

wi
, i = 1, 2, 3 with w3 = 1. (4.35)

Therefore, (4.34) can be written as

ω
′

ij = W v′

ij +
w2
i + w2

j

w2
i − w2

j

D
′v
ij , i 6= j, wi 6= wj, (no sum over i). (4.36)

Note that in relations (4.34) and (4.36), and for the rest of this section, primed quantities in-
dicate components in a coordinate frame that coincides instantaneously with the principal axes
of the local representative ellipsoid, as determined by the vectors n(i) (e.g. Dp = Dp′

ijn
(i)n(j),

etc.).
In finite element computations it is convenient to refer to all tensor components with respect

to a fixed Cartesian coordinate system. Therefore, it is useful to state (4.36) in “direct notation”

3Let A, B be two invertible matrices then (A ·B)−1 = B−1 ·A−1.
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(for i 6= j, wi 6= wj)

n(i) · ω · n(j) = n(i) ·Wv · n(j) +
w2
i + w2

j

w2
i − w2

j

n(i) ·Dv · n(j) (no sum over i). (4.37)

Also, since Dv is symmetric, then

n(i) ·Dv · n(j) = (n(i)n(j)) : Dv =
1

2
(n(i)n(j) + n(j)n(i)) : Dv. (4.38)

Therefore, the microstructural spin ω = (n(i) ·ω ·n(j))n(i)n(j) can be written in direct notation
as

ω = Wv +
1

2

3∑
i,j=1
i6=j

wi 6=wj

w2
i + w2

j

w2
i − w2

j

[(n(i)n(j) + n(j)n(i)) : Dv]n(i)n(j) (w3 = 1), (4.39)

where Wv = (n(i) ·Wv · n(j))n(i)n(j) as well as (4.37) and (4.38) have been taken into account.
Taking into account that Dv = A : Dp, Wv = W − C : Dp, and Dp = Λ̇N then (4.39) can

be written as

ω = W − Λ̇

[
C : N− 1

2

3∑
i,j=1
i6=j

wi 6=wj

w2
i + w2

j

w2
i − w2

j

[
(n(i)n(j) + n(j)n(i)) : A : N

]
n(i)n(j)

]
. (4.40)

Finally, introducing the so-called plastic spin Wp = W − ω, then (4.40) can be written as

Wp = Λ̇Ωp, (4.41)

where

Ωp =

[
C : N− 1

2

3∑
i,j=1
i6=j

wi 6=wj

w2
i + w2

j

w2
i − w2

j

[
(n(i)n(j) + n(j)n(i)) : A : N

]
n(i)n(j)

]
, (w3 = 1) (4.42)

Taking the definition of
◦
n

(i)
which is the rate of n(i) corotational with the spin of the voids,

i.e.,
◦
n

(i)
= ṅ(i) − ω · n(i) then (4.29) takes the form

◦
n

(i)
= 0 . (4.43)

Taking into account that W = ω+ Wp and (4.41), (4.43) then the Jaumann derivative of n(i),
O
n

(i)

= ṅ(i) −W · n(i) can be written as

O
n

(i)

=
◦
n

(i)
−Wp · n(i) = −Wp · n(i) = −Λ̇ Ωp · n(i) . (4.44)

Remark 4.2 The evolution equations for all the microstructural s, as given by the relations
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(4.22), (4.23), (4.27), (4.28) and (4.44) can be written in compact form as

O
s = Λ̇G(σ, s) . (4.45)

where
O
s = { ˙̄εp, ḟ , ẇ1, ẇ2,

O
n

(1)

,
O
n

(2)

,
O
n

(3)

} and G is a collection of suitable isotropic functions.
The plastic multiplier Λ̇ will be computed from the flow rule in the next section.

Remark 4.3 The constitutive functions Φ,N, g1, g2, g3, g4, and Ωp are isotropic functions of
their arguments, i.e., they are such that

Φ
(
R · σ ·RT , f, w1, w2,R · n(i)

)
= Φ

(
σ, f, w1, w2,n

(i)
)
, (4.46)

N
(
R · σ ·RT , f, w1, w2,R · n(i)

)
= R ·N

(
σ, f, w1, w2,n

(i)
)
·RT , (4.47)

for all proper orthogonal tensors R. The mathematical isotropy of the aforementioned functions
guarantees the invariance of the constitutive equations under superposed rigid body rotations.
It should be empasized, however, that the material is anisotropic, due to the tensorial character
of the n(i)’s.

In summary, constitutive laws have now been developed to describe the behaviour of a
porous material. In the elastic regime the behaviour is characterized by Eqs. (4.7)-(4.11) and
in the plastic regime by Eqs.(4.19)-(4.21). The evolution of the microstructural variables s is
characterized by Eqs. (4.22), (4.23), (4.27), (4.28) and (4.44).

4.3 Rate Form of the Elastoplastic Equations

The procedure is the same as in chapter 3, though now we want to derive the relation between

the Jaumann derivative of the stress tensor
O
σ and the total deformation rate D. The derivation

is as follows.
Assuming plastic loading (Λ̇ > 0), substitution of De = D−Dp = D− Λ̇N into (4.7) yields

◦
σ = Le : D− Λ̇Le : N, (4.48)

where Le = Me−1. Since Φ is an isotropic function, the flow rule Φ̇ = 0 can be written in the
form [6]

Φ̇ =
∂Φ

∂σ
:
◦
σ +

∂Φ

∂s
· ◦s = 0 , (4.49)

where
◦
s = ( ˙̄εp, ḟ , ẇ1, ẇ2,

◦
n

(1)
,
◦
n

(2)
,
◦
n

(3)
). In view of the fact that

◦
n

(i)
= 0 (Eq.(4.43)), then

(4.49) can be written as

N :
◦
σ +

∂Φ

∂ε̄p
˙̄εp +

∂Φ

∂f
ḟ +

∂Φ

∂w1

ẇ1 +
∂Φ

∂w2

ẇ2 = 0. (4.50)

Substitution of ˙̄εp, ẇ1 and ẇ2 from (4.22), (4.27) and (4.28) into (4.50) yields

N :
◦
σ +

∂Φ

∂f
ḟ − Λ̇H = 0 or Λ̇ =

1

H
(N :

◦
σ +

∂Φ

∂f
ḟ) (for H 6= 0), (4.51)
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where

H = −
(
∂Φ

∂ε̄p
g1 +

∂Φ

∂w1

g3 +
∂Φ

∂w2

g4

)
. (4.52)

An alternative expression for Λ̇ is obtained if one substitutes
◦
σ from (4.48) in (4.51):

N : Le : D +
∂Φ

∂f
ḟ − Λ̇(N : Le : N +H) = 0 or Λ̇ =

1

L
(N : Le : D +

∂Φ

∂f
ḟ), (4.53)

where L = H + N : Le : N.

Remark 4.4 Note that H is of order (flow stress)3 and can be positive or negative; on the
other hand, the term N : Le : N is positive, since Le is positive definite. In metals, the
elastic modulus is several orders of magnitude larger than the flow stress; therefore, the term
N : Le : N dominates and L = H + N : Le : N is always positive.

For a stress state on the yield surface (i.e., such that Φ(σ, s) = 0, the requirement Λ̇ ≥ 0
defines the “plastic loading condition”

N : Le : D > 0, (4.54)

whereas N : Le : D = 0 corresponds to “neutral loading” (Λ̇ = 0), and N : Le : D < 0 to
“elastic unloading” (Λ̇ = 0 as well).

Substitution of Λ̇ from (4.53) into (4.48) yields

◦
σ =

(
Le − 1

L
Le : N N : Le

)
: D− 1

L
(Le : N)

∂Φ

∂f
ḟ . (4.55)

The Jaumann derivative
O
σ is related to

◦
σ by the following expression

O
σ =

◦
σ + σ ·Wp −Wp · σ =

◦
σ + Λ̇(σ ·Ωp −Ωp · σ). (4.56)

Finally, substitution of
◦
σ from (4.55) into (4.56) yields the desired equation

O
σ = Lep : D + A ḟ , (4.57)

where

Lep = Le − 1

L
(Le : N− σ ·Ωp + Ωp · σ)(Le : N), A = − 1

L
(Le : N− σ ·Ωp + Ωp · σ)

∂Φ

∂f

provided that N : Le : D > 0 (plastic loading).
When N : Le : D ≤ 0 (neutral loading or elastic unloading), the corresponding equation is

O
σ = Le : D. (4.58)

Also, substitution of the value of Λ̇ from (4.53) in (4.23), leads to the expression

ḟloc = B : D +K ḟ , where B =
g2

L
Le : N, K =

g2

L

∂Φ

∂f
. (4.59)



Chapter 5

Numerical Implementation

5.1 Numerical Integration of the Constitutive Equations

The solution of the problem is developed incrementally and the constitutive equations are
integrated at the element Gauss points. Let F denote the deformation gradient tensor. At a
given Gauss point, the solution (Fn,σn, sn) at time tn as well as the deformation gradient Fn+1

at time tn+1 are known, and the problem is to determine (σn+1, sn+1). The time variation of
the deformation gradient F during the time increment [tn, tn+1] can be written as

F(t) = ∆F(t) · Fn = R(t) ·U(t) · Fn, tn ≤ t ≤ tn+1 , (5.1)

where R(t) and U(t) are the rotation and right stretch tensors associated with ∆F(t). The
corresponding deformation rate D(t) and spin W(t) tensors are given by

D(t) = [L(t)]sym = [Ḟ(t) · F−1(t)]sym = [∆Ḟ(t) ·∆F−1(t)]sym (5.2)

and
W(t) = [L(t)]skew = [Ḟ(t) · F−1(t)]skew = [∆Ḟ(t) ·∆F−1(t)]skew , (5.3)

where the subscripts ‘sym’ and ‘skew’ denote the symmetric and anti-symmetric parts, respec-
tively of a tensor.

If it assumed that the Lagrangian triad associated with ∆F(t) (i.e. the eigenvectors of U(t))
remains fixed in the time interval [tn, tn+1], then it can be shown that

D(t) = R(t) · Ė(t) ·RT (t), W(t) = Ṙ(t) · ṘT (t) (5.4)

and
O
σ = R(t) · ˙̂σ · ṘT (t),

O
n (i)(t) = R(t) · ˙̂n(t) , (5.5)

where E(t) = ln U(t) is the logarithmic strain relative to the configuration at tn, σ̂(t) =
RT (t) · σ ·R(t), and n̂ (i)(t) = RT (t) · n(i)(t).

It is noted that at the start of the increment (t = tn)

Fn = Rn = Un = δ, σ̂n = σ, n̂(i)
n = n̂n En = 0 , (5.6)

whereas at the end of the increment (t = tn+1)

∆Fn+1 = Fn+1 · F−1
n = Rn+1 ·Un+1 = known, and En+1 = ln Un+1 = known. (5.7)

37
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Taking into account that Φ,N, g1, g2, g3, g4 and Ωp are isotropic functions of their arguments,
the elastoplastic equations can be written in the form

Ė = Ėe + Ėp , (5.8)

˙̂σ = L̂
e

: Ėe + Λ̇ [σ̂ ·Ωp(σ̂, ŝ)−Ωp(σ̂, ŝ) · σ̂] , (5.9)

Φ(σ̂, ŝ) = 0 , (5.10)

Ėp = Λ̇N(σ̂, ŝ) , (5.11)

˙̄εp = Λ̇ g1(σ̂, ŝ) =
σ̂ : Ėp

(1− f)σy(ε̄p)
, (5.12)

ḟloc = Λ̇ g2(σ̂, ŝ) = (1− f)Ėp
kk , (5.13)

ẇ1 = Λ̇ g3(σ̂, ŝ) = w1(n̂(3)n̂(3) − n̂(1)n̂(1)) : Â : Ėp , (5.14)

ẇ2 = Λ̇ g4(σ̂, ŝ) = w2(n̂(3)n̂(3) − n̂(2)n̂(2)) : Â : Ėp , (5.15)

˙̂n (i) = −Λ̇Ωp(σ̂, ŝ) · n̂ (i) , (5.16)

where L̂eijkl = RmiRnjRpkRqlL̂emnpq, ŝ =
(
ε̄p, f, w1, w2, n̂

(1), n̂ (2), n̂ (3)
)

and

Â = A
(
ε̄p, f, w1, w2, n̂

(1), n̂ (2), n̂ (3)
)
.

Remark 5.1 The corotational rates
O
σ and

O
n (i) in the original equations

O
σ = Le : De + Λ̇(σ ·

Ωp − Ωp · σ) and
O
n (i) = −Λ̇Ωp · n(i) are now replaced to (5.9) and (5.16) by the usual time

derivatives ˙̂σ and ˙̂n (i). This is a consequence of the assumption that the Lagrangian triad

associated with ∆F(t) remains fixed in the time interval [tn, tn+1] so that W = Ṙ ·RT , which

implies in turn that
O
σ = R · ˙̂σ ·RT and

O
n (i) = R · ˙̂n (i).

When in the elastic regime a forward Euler scheme of (5.9) will determine the evolution of
the stresses

σn+1 = σn + Le : ∆E , (5.17)

where ∆E = ∆Ee, since ∆Ep = 0 and there are no substantially rotations to account for.
Just before entering the elastoplastic regime one part of the strains will account only for pure
elasticity, while after entering the elastoplastic regime the strain increment will have an elastic
and a plastic part. Therefore, there is the need to compute the elastic fraction, r, for the
stresses such that

∆E = r∆E + (1− r)∆E, with r < 1, (5.18)

and r∆E = r∆Ee, since it is purely elastic in the elastic regime, thus just before reaching the
yield stress the new value of stress is determined as

σn+1 = σn + rLe : ∆Ee = σn + r∆σe , (5.19)
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where the value of r is determined by replacing (5.19) to the yield criterion (4.19), resulting

Φ(σn + r∆σe, s0) = 0

⇒ 1

1− f
(σn + r∆σe) : m : (σn + r∆σe)− σ2

y = 0

⇒ A2 · r2 + 2B · r + C = 0 with r =
−B +

√
B2 − A · C
A

,

(5.20)

where

A = ∆σe : m(s) : ∆σe, B = σn : m(s) : ∆σe, C = (1− fn)Φ(σn, s) . (5.21)

The fraction (1− r) of the strain increment will have an elastic part and a plastic part and
result to stresses that will be computed from the solution of Eqs.(5.8)-(5.16).

When in the elastoplastic regime, if forward Euler scheme is used in order to integrate
numerically the above set of equations, then the magnitude of the stain increment has to be
small relative to the yield strain, so that the results are accurate. An alternative method is
the following. A backward Euler scheme is used for the numerical integration of the flow rule
(5.11):

G = ∆Ep −∆ΛN̂n+1 = 0, N̂n+1 = N(σ̂n+1 , fn+1 , wa|n+1, n̂
(i)
n+1) . (5.22)

The quantities ∆Λ and ∆Ep are chosen as the primary unknowns and the flow rule (5.22) and
the yield condition:

Φ
(
σ̂n+1(∆Λ,∆Ep), ŝn+1

(
∆Λ,∆Ep)) = 0 , (5.23)

are treated as the basic equations.
A backward Euler scheme is also implemented for the numerical integration of the evolution

equations for ε̄p and floc:

ε̄pn+1(∆Ep) = ε̄pn +
σ̂n+1 : ∆Ep

(1− fn+1)σy(ε̄
p
n)
≡ ε̄pn + R2 : ∆Ep , (5.24)

floc|n+1 = floc|n + (1− fn+1)∆Ep
kk , (5.25)

σ̂n+1, w1|n+1, w2|n+1, and n̂
(i)
n+1 are defined by the following equations:

σ̂n+1(∆Λ, ∆Ep) = σ̂e −Le
n : ∆Ep + ∆Λ(σn ·Ωp −Ωp · σn)

≡ σ̂e −Le
n : ∆Ep + ∆ΛR1 ,

(5.26)

w1|n+1(∆Ep) = w1|n + w1|n(n(3)
n n(3)

n − n(1)
n n(1)

n ) : Ân : ∆Ep ≡ w1|n + R31 : ∆Ep , (5.27)

w2|n+1(∆Ep) = w2|n + w2|n(n(3)
n n(3)

n − n(2)
n n(2)

n ) : Ân : ∆Ep ≡ w2|n + R32 : ∆Ep , (5.28)

n̂
(i)
n+1(∆Λ) = exp(−∆ΛΩp

n) · n(i)
n , (5.29)

where σ̂e = σn+Le
n : ∆E = known is the “elastic predictor”, and use has been made of the fact

that σ̂n = σn, n̂
(i)
n = n

(i)
n and L̂

e

n = Le
n. The symbols R’s are introduced here to write simpler

formulas later, and their values are defined by the context. The notation ∆(•) = (•)n+1 − (•)n
is used, and ∆E = En+1 − En = known. Eqs. (5.26) - (5.28) derive from (5.9), (5.14), and
(5.15) by implementing a forward Euler scheme for their numerical integration.



5.1. NUMERICAL INTEGRATION OF THE CONSTITUTIVE EQUATIONS 40

Remark 5.2 Note that (5.29) requires the evaluation of the exponential of the antisymmet-
ric second order tensor −∆ΛΩp

n. The exponential of the antisymmetric second-order tensor
A (AT = −A) is an orthogonal tensor that can be determined from the following formula,
attributed to Gibbs [4]

exp(A) = δ +
sina

a
A +

1− cosa
a2

A2 (5.30)

where a =
√

A : A/2 is the magnitude of the axial vector of A.

Eqs. (5.22) and (5.23) are solved for ∆Λ and ∆Ep by using Newton’s method. First estimates
for starting the Newton iterations are obtained for (∆Λ,∆Ep) by using equations (4.53) and
(5.11)

∆Λest =
1

Ln
(Nn : Ln

e : ∆E +
∂Φ

∂f

∣∣∣∣
n

(fn+1 − fn)), ∆Ep
est = ∆Λest Nn. (5.31)

Renewed values for ∆Ep and ∆Λ are computed as follows:

(∆Λ)(k+1) = (∆Λ)(k) + δ(∆Λ) (5.32)

and
(∆Ep)(k+1) = (∆Ep)(k) + δ(∆Ep) , (5.33)

where the superscript ‘(k)’ denotes the k-th iteration in the Newton’s method, δ(•) denotes the
correction of its argument during the Newton’s method iterations. According to the Newton’s
method the values of δ(∆Λ) and δ(∆Ep) are determined from the solution of the linear system ∂Φ

∂∆Λ
∂Φ
∂∆Ep

∂∆G
∂∆Λ

∂∆G
∂∆Ep

 ·
 δ(∆Λ)

δ(∆Ep)

 =

Φ

G

 (5.34)

Explicit expressions for the quantities ∂Φ
∂∆Λ

, ∂Φ
∂∆Ep

, ∂∆G
∂∆Λ

, and ∂∆G
∂∆Ep

that appear in the calcula-
tion of the Jacobian in (5.34) can be derived by taking into account the analytical expressions
for all involved quantities and by using the chain rule on Φ and G as follows:

∂Φ

∂∆Λ
=
∂Φ

∂σ̂
:
∂σ̂

∂∆Λ
+

∂Φ

∂n̂(i)
· ∂n̂(i)

∂∆Λ
' N : R1 , (5.35)

∂Φ

∂∆Ep
=
∂Φ

∂σ̂
:

∂σ̂

∂∆Ep
+
∂Φ

∂ε̄p
· ∂ε̄p

∂∆Ep
+

∂Φ

∂wa

∂wa
∂∆Ep

=

= −N : Le
n +

∂Φ

∂ε̄p
R2 +

∂Φ

∂wa
R3a , α = 1, 2 ,

(5.36)

∂G

∂∆Λ
= −N−∆Λ

(
∂N

∂σ̂
:
∂σ̂

∂∆Λ
+

∂N

∂n̂(i)
· ∂n̂(i)

∂∆Λ

)
' −N−∆Λ

∂N

∂σ̂
: R1 , (5.37)
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∂G

∂∆Ep
= I−∆Λ

(
∂N

∂σ̂
:
∂σ̂

∂∆Ep
+
∂N

∂wa

∂wa
∂∆Ep

)
= I−∆Λ

(
−∂N

∂σ̂
: Le +

∂N

∂wa
R3a

)
,

(5.38)

where ∂Φ/∂n̂(i) and ∂N/∂n̂(i) are assumed to be relatively small, thus neglected. In addition,
by taking into consideration (4.21) the following relations are obtained:

∂Φ

∂σ̂
=
∂Φ

∂σ
= N , (5.39)

∂N

∂σ̂
=
∂N

∂σ
=

2

1− f
m , (5.40)

∂N

∂wa
=

2

1− f
∂m

∂wa
: σ̂, α = 1, 2 . (5.41)

Note that it is difficult to find an analytic expression for ∂m/∂wa, thus it is computed
numerically.

Finally, recalling the R′s introduced to Eqs.(5.24)-(5.28) the following differentials take the
form:

∂σ̂

∂∆Λ
= R1,

∂σ̂

∂∆Ep
= −Le,

∂ε̄p

∂∆Ep
= R2,

∂wa
∂∆Ep

= R3a (5.42)

When the values of the five unknowns ∆Λ and ∆Ep converge from the Newton’s method,
which means that (5.22) and (5.23) are satisfied, then σ̂n+1, ε̄pn+1, w1|n+1, w2|n+1, floc|n+1 and

n̂
(i)
n are determined from Eqs.(5.24) - (5.29). Finally, σn+1 and n

(i)
n+1 are computed from

σn+1 = Rn+1 · σ̂n+1 ·RT
n+1, n

(i)
n+1 = Rn+1 · n̂(i)

n+1 , (5.43)

which completes the integration process.

5.2 Non-local problems in ABAQUS/Standard via “UMAT”

The constitutive model described above is implemented into the ABAQUS general purpose
finite element code. Non-local constitutive models cannot be handled by the commercial finite
element codes, that are commonly used for the solution of structural mechanics problems. To
overcome this difficulty, we take advantage of the similarities between the BVP that defines
the non-local variable f and the steady-state heat transfer problem in an isotropic material,
and use the available elements in commercial codes for coupled thermo-mechanical analysis of
structures.

One version of the steady-state heat transfer problem in an isotropic material is :

k∇2T + r (∆ε, T ) = 0 in V

k n · ∇T = q̂ on ∂V,
(5.44)

where T is the temperature, k the thermal conductivity, r the heat supply per unit of volume, q̂
the prescribed boundary heat flux vector and ∆ε a strain increment properly defined in terms
of nodal displacements.
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As it was previously mentioned in Chapter 4 the BVP problem for the non-local porosity f
is

f − `2∇2f = floc in V

B.C. :
∂f

∂n
= 0 on ∂V .

(5.45)

Comparing the BVP (5.44) and (5.45), we conclude that the non-local variable f can be iden-
tified with the temperature field T provided the following correspondence is used

T ←→ f, k ←→ `2, r (∆ε, T )←→ floc(∆ε, f)− f , q̂ → 0 . (5.46)

It should be also noted that the coupled temperature - displacement in ABAQUS/Standard
can be used for the solution of quasi-static implicit strain-gradient plasticity problems, but it
cannot be used for dynamic problems, in which inertia effects become important.

So, in the special case of quasi-static problems, the solution can be obtained using user mate-
rial subroutine UMAT in ABAQUS/Standard together with a *COUPLED TEMPERATURE
DISPLACEMENT, STEADY STATE analysis option.

With a User Material (UMAT) subroutine, a new constitutive model can be introduced into
the ABAQUS finite element program. It is an out-source piece of code written in FORTRAN.
The UMAT subroutine is called by ABAQUS at every integration point for all elements where
user-defined material behaviour is specified. UMAT has a twofold role. First, it provides
ABAQUS the material Jacobian matrix ∂(∆σ)/∂(∆ε) corresponding to the mechanical consti-
tutive model under consideration. Secondly, in the case of a mechanical problem UMAT takes
as input at the start of the integration increment the values Fn, σn, and Fn+1 and calculates
σn+1, as well as a set of solution-dependent state variables at the end of the increment.

The constitutive equations are integrated numerically in user subroutine UMAT. In UMAT,
the value of f is provided as “temperature”, floc is determined from the numerical integration
of the constitutive equations using the algorithm described in section 5.1, and r (variable RPL
in UMAT) is identified with the difference floc− f . The derivatives ∂σ/∂ε (DDSDDE), ∂σ/∂θ
(DDSDDT), ∂r/∂∆ε (DRPLDE), and ∂r/∂θ (DRPLDT) are also evaluated in UMAT.

In view of (4.57) and (4.59), i.e.,

O
σ = Lep : D + A ḟ and ḟloc = B : D +K ḟ , (5.47)

∂σ/∂∆ε, ∂σ/∂θ, ∂r/∂∆ε and ∂r/∂θ are approximated as follows

∂σ

∂∆ε
= Lep,

∂σ

∂θ
=
∂σ

∂f
' A, (5.48)

and
∂r

∂∆ε
=
∂floc
∂∆ε

' B,
∂r

∂θ
=
∂floc
∂f
− 1 ' K − 1. (5.49)

where

Lep = Le − 1

L
(Le : N− σ ·Ωp + Ωp · σ)(Le : N), A = − 1

L
(Le : N− σ ·Ωp + Ωp · σ)

∂Φ

∂f
,

B =
g2

L
Le : N, K =

g2

L

∂Φ

∂f
.

Such an approximation of the Jacobian is first-order accurate as the size of the increment
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∆t→ 0. It should be emphasized, however, that the aforementioned approximation influences
only the rate of the convergence of the loop and not the accuracy of the results.

A typical UMAT code interface is presented below:

SUBROUTINE UMAT(STRESS, STATEV, DDSDDE, SSE, SPD, SCD,
+ RPL, DDSDDT, DRPLDE, DRPLDT,
+ STRAN, DSTRAN, TIME, DTIME, TEMP, DTEMP, PREDEF, DPRED, CMNAME,
+ NDI, NSHR, NTENS, NSTATV, PROPS, NPROPS, COORDS, DROT, PNEWDT,
+ CELENT, DFGRD0, DFGRD1, NOEL, NPT, LAYER, KSPT, JSTEP, KINC)

INCLUDE ’ABAPARAM. INC ’

CHARACTER*80 CMNAME
DIMENSION STRESS(NTENS), STATEV(NSTATV),
DDSDDE(NTENS,NTENS), DDSDDT(NTENS), DRPLDE(NTENS),
+ STRAN(NTENS), DSTRAN(NTENS), TIME(2), PREDEF(1), DPRED(1),
+ PROPS(NPROPS), COORDS(3), DROT(3,3), DFGRD0(3,3), DFGRD1(3,3),
+ JSTEP(4)

user coding to define DDSDDE, STRESS, STATEV, SSE, SPD, SCD and , if necessary ,
RPL, DDSDDT, DRPLDE, DRPLDT, PNEWDT

RETURN
END

The basic variables predefined in a general UMAT subroutine are summarized in Table 5.1.

Table 5.1: Description of the predefined variables in a UMAT subroutine.

Variable Description
NDI Number of direct stress components.
NSHR Number of engineering shear stress components.
NTENS Size of the stress or strain component array (NDI +

NSHR).
NSTATV Number of solution-dependent state variables that are as-

sociated with this material type.
NPROPS User-defined number of material constants associated with

this user material.
STRESS(NTENS) An array with the components of the stress tensor.
DDSDDE(NTENS,NTENS) The Jacobian matrix of the constitutive model, i.e.

∂∆σ/∂∆ε.
STATEV(NSTATV) An array containing the solution-dependent state variables.
SSE The specific elastic strain energy.
SPD The plastic dissipation energy.
SCD The creep dissipation energy.
RPL Volumetric heat generation per unit of time due to me-

chanical working of the material
DRPLDT Variation of RPL with respect to the temperature.
DRPLDE(NTENS) Variation of RPL with respect to the strain increments.
DDSDDT(NTENS) Variation of the stress increments with respect to the tem-

perature.
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TEMP Temperature at the start of the increment.
DTEMP Increment of temperature.
DFGRD0(3,3) Array containing the deformation gradient at the beginning

of the increment.
DFGRD1(3,3) Array containing the deformation gradient at the end of

the increment.
STRAN(NTENS) An array containing the total strains. It contains only the

mechanical strains.
DSTRAN(NTENS) Array of strain increments (only the mechanical strain in-

crements).
DROT(3,3) Rotation increment matrix.
TIME(1) Value of step time at the beginning of the current increment

or frequency.
TIME(2) Value of total time at the beginning of the current incre-

ment.
DTIME Time increment.
PREDEF An array of interpolated values of predefined field variables

at a point at the start of the increment.
DPRED An array of increments of predefined field variables.
CMNAME User-defined material name.
COORDS An array containing the coordinates of a point.
CELENT Characteristic element length.
NOEL Element number.
NPT Integration point number.
JSTEP(1) Step number.
KINC Increment number.



Chapter 6

Applications

The non-local model is implemented in the ABAQUS general purpose finite element program
via a material “user subroutine” (UMAT or VUMAT) and the coupled thermo-mechanical
solution procedure, in which temperature and displacements are the nodal degrees of freedom,
and temperature is identified with the non-local porosity. Several example problems are solved
numerically. In particular, the predictions of the model are compared to unit cell finite element
calculations and the problems of ductile fracture, necking and failure of a round bar, and
localization in plane-strain tension are analyzed in detail.

6.1 Unit Cell Finite Element Calculations

The scope of the present section is to validate the anisotropic model for porous metals which
was previously presented, using periodic three-dimensional unit cell calculations comprising a
large number of spherical pores distributed randomly in a matrix phase. The Mises plasticity
model is used in the finite element calculations.

The periodic unit cell is a cube with edge size L and is constructed using the method
presented by Segurado and Llorca [26]. The virtual microstructure contains a dispersion of a
sufficiently large number of non-overlapping spherical pores of uniform (monodisperse) size. The
inclusions are randomly located within the cell and are generated using the Random Sequential
Adsorption Algorithm (RSA) [24]. In these analyses the number of pores in the unit cell was
selected to be thirty. In addition, the unit cell is periodic, i.e., it can be repeated in all three
directions to represent a 3-D periodic structure.

According to the RSA algorithm, the center positions of the pores are generated randomly
and sequentially. The sequential addition of pores is constrained so that the distance between
the pores with other pores and with the boundaries of the cubic unit cell take a minimum value
that guaranties adequate spatial discretization(see, e.g., Segurado and Llorca, [26]; Fritzen et
al., [12]). In particular:

• The center-to-center distance between a new pore i in the sequential algorithm and any
previously accepted pore j = 1, 2, · · · , i − 1 has to be greater than the minimum value
s1 = 2Rm(1 + d1), where d1 is an offset distance. Mathematically this can be written as

‖Xi −Xj − h‖ ≥ s1, (6.1)

where Xi, Xj denote the location of the center of the pores i, j and h is a vector with
entries 0, L or -L for each of its three Cartesian components with respect to the principal
axes of the cubic unit cell.

45
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• The pores should be considerably distant from the boundaries of the unit cell as imposed
by the following inequalities

‖X i
k −Rm‖ ≥ s2 and ‖X i

k +Rm − L‖ ≥ s2 (k = 1, 2, 3), (6.2)

where s2 = d2Rm with d2 being an another offset value.

In (6.2) Rm represents the radius of the pores and it is equal to

Rm = L

(
3f

4πN

)1/3

, (6.3)

where N is the number of particles in the cell and f is the porosity.

Meshing
Finite element discretizations of the cubic unit cell were created using the mesh generator code
NETGEN [25], which has the capability to create periodic meshes as required. All calculations
were carried out using the ABAQUS general purpose finite element code. Three dimensional 10-
node quadratic tetrahedral elements with a constant pressure interpolation were used (C3D10H
in ABAQUS); all analyses were carried out incrementally and accounted for geometry changes
due to deformation (finite strain solutions).
Figure 6.1 illustrates (a) a representative unit cell generated by the above algorithm for N = 30
and porosity f = 3% and (b) the finite element mesh created using the mesh generator code
NETGEN.

(a) (b)

Figure 6.1: (a) Representative unit cell of unit volume L3 = 1 and porosity f = 3% ,containing
N = 30 randomly distributed spherical pores (b) the finite element mesh in the undeformed
configuration creared by NETGEN

Material
The matrix material, with Young’s modulus E and Poisson’s ratio v, exhibits isotropic

hardening following Eq. (4.20). The values E = 300 σ0, ν = 0.3 and n = 10 are used in the
calculations. The voids are assumed to be initially spherical and uniformly distributed in the
isotropic metal matrix with an initial porosity f0 = {1, 2, 3, 4, 5}%.

Loading Cases
In order to validate the anisotropic model for porous metals, multiple loading cases and initial
porosities f0 are examined. In addition, one-element finite element calculations are carried
out, in which the element is subjected to the same deformation gradient as the unit cell and
the corresponding uniform stress state in the element is calculated by using the algorithm
described in chapter 5 for the porous material. It should be noted that the same calculations
are conducted with two versions of the anisotropic costitutive model for porous metals. The
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first version is the original variational formulation (VAR) of Ponte Castañeda [20] and the
second is the modified variational method (MVAR) proposed by Aravas N. and Danas K. [8].
The original variational formulation has been found to be sufficiently accurate at low stress
triaxialities but tends to overestimate the effective response of the porous material at high
stress triaxialities. The modified variational method is in alignment with the spherical shell
and the cylindrical shell solutions. By examining multiple loading cases we will be able to
conclude how efficient this modification is.

We identify the coordinate axes of the unit cell with the principal directions of the stress
tensor and write the principal stresses in the form

σ1

σ2

σ3

 = σe

XΣ


1
1
1

+
2

3


cos
(
θ + π

6

)
sin θ

− cos
(
θ − π

6

)

 , (6.4)

where XΣ = p/σe is the stress triaxiality and θ is the “Lode angle”, so that

J3 = dets = − 2

27
σ3
e sin 3θ. (6.5)

Angle θ takes values in the range −30◦ ≤ θ ≤ 30◦, where, to within a hydrostatic stress,
θ = −30◦ corresponds to uniaxial tension, θ = 0 to pure shear, and θ = 30◦ to uniaxial
compression.
We studied the following cases:

For θ = −30◦ and θ = 0◦

• Initial porosity f0 = 1% and triaxialities XΣ = 1/3, XΣ = 1, XΣ = 3.

• Initial porosity f0 = 2% and triaxialities XΣ = 1/3, XΣ = 1, XΣ = 3.

• Initial porosity f0 = 3% and triaxialities XΣ = 1/3, XΣ = 1, XΣ = 3.

• Initial porosity f0 = 4% and triaxialities XΣ = 1/3, XΣ = 1, XΣ = 3.

• Initial porosity f0 = 5% and triaxialities XΣ = 1/3, XΣ = 1, XΣ = 3.

In the following, we present the most representative cases in order to be able to reach some
conclusions.

6.1.1 θ = −30◦ (uniaxial tension)

Figure 6.2 shows the (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE curves
for f0 = 0.01 and XΣ = 1/3. Recall that the label (VAR) stands for the original variational
formulae, on which the fourth order tensor m takes its value from (4.17), while (MVAR) stands
for the modified variational formulae where the tensor m takes its value from (4.18).

It is evident that, regarding the stress-strain curves both versions of the constitutive model
agree with the unit cell calculations. However, the modified variational method seems to
overestimate the evolution of the porosity whereas the variational method agrees very well
with the unit cell calculations. As far as the equivalent plastic strain there seems to be a
perfect match between the two versions of the constitutive model and the unit cell calculations.
Regarding the aspect ratio there is a general good agreement between the results, but the
original variational method seems to perform better.
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Figure 6.2: (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE curves for θ = −30◦,
f0 = 0.01 and XΣ = 1/3.

Figure 6.3: (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE curves for θ = −30◦,
f0 = 0.03 and XΣ = 1.

Figure 6.3 shows the (a) σ− logE, (b) f − logE, (c) ε̄p− logE, and (d) w− logE curves for
f0 = 0.03 and XΣ = 1.

Regarding the stress-strain curves there seems to be a slight mismatch with between the
results of the variational method and the other two methods. The porosity graph is quite
interesting because now we observe a very good agreement between the modified variational
method and the unit cell calculations. The original variational method seems to underestimate

(a)

(c)

(b)

(d)

(a)

(c)

(b)

(d)
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the porosity. As far as the equivalent plastic strain there seems to be a perfect match between
the two versions of the constitutive model and the unit cell calculations. Regarding the aspect
ratio there is a general good agrement between the results, but the original variational method
seems to perform better.

Finally, Fig. 6.4 shows the (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE
curves for f0 = 0.05 and XΣ = 3.

As we can see from the graphs below, the modified variational method predicts more accu-
rately the stress-strain curves, the porosity evolution and the equivalent plastic strain. As far
as the aspect ratio both versions of the constitutive model agree with the unit cell calculations.

Figure 6.4: (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE curves for θ = −30◦,
f0 = 0.05 and XΣ = 3.

6.1.2 θ = 0◦ (simple shear)

Figure 6.5 shows the (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE curves
for f0 = 0.01 and XΣ = 1/3. Recall that the label (VAR) stands for the original variational
formulae, while (MVAR) stands for the modified variational formulae.

It is evident that, regarding the stress-strain curves both versions of the constitutive model
agree with the unit cell calculations. However, the modified variational method seems to
overestimate the evolution of the porosity whereas the variational method agrees very well
with the unit cell calculations. As far as the equivalent plastic strain there seems to be a
perfect match between the two versions of the constitutive model and the unit cell calculations.
Regarding the aspect ratio both the original and the modified variational method deviate from
the unit cell calculations.

(a)

(c)

(b)

(d)
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Figure 6.5: (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE curves for θ = 0◦,
f0 = 0.01 and XΣ = 1/3.

Figure 6.6: (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE curves for θ = 0◦,
f0 = 0.03 and XΣ = 1.

Figure 6.6 shows the (a) σ− logE, (b) f − logE, (c) ε̄p− logE, and (d) w− logE curves for
f0 = 0.03 and XΣ = 1.

Regarding the stress-strain curves there seems to be a slight mismatch with between the
results of the variational method and the other two methods. The porosity graph is quite

(a)

(c)

(b)

(d)

(a)

(c)

(b)

(d)
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interesting because now we observe a very good agreement between the modified variational
method and the unit cell calculations. The original variational method seems to underestimate
the porosity. As far as the equivalent plastic strain there seems to be a perfect match between
the two versions of the constitutive model and the unit cell calculations. Regarding the aspect
ratio neither the original nor the modified variational method seems to agree with the unit cell
calculations, but the original variational method seems to perform better.

Finally, Fig. 6.7 shows the (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE
curves for f0 = 0.05 and XΣ = 3.

As we can see from the graphs below, the modified variational method predicts more accu-
rately the stress-strain curves, the porosity evolution and the equivalent plastic strain. As far
as the aspect ratio both versions of the constitutive model agree with the unit cell calculations.

Figure 6.7: (a) σ − logE, (b) f − logE, (c) ε̄p − logE, and (d) w − logE curves for θ = 0◦,
f0 = 0.05 and XΣ = 3.

6.1.3 Remarks

In this section we examined the accuracy of the MVAR model by studying multiple loading
cases with the initial porosity in the range 1% ≤ f0 ≤ 5%. The same calculations were
conducted by using the MVAR and the VAR model and the predictions of the models were
compared to unit cell calculations.

For both θ = −30◦ and θ = 0◦, it was observed that the MVAR model works quite well under
high triaxiality loading conditions but in cases where both the porosity and the triaxiality levels
are low the results generated are not accurate enough. In conclusion, an alternate modification
needs to be implemented in the model in order to make it perform better for low values of XΣ

and f0.

(a)

(c)

(b)

(d)
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6.2 Ductile Fracture

Description of the Problem

Consider the problem of a plane-strain mode-I crack in a homogeneous porous elastoplastic
material under small scale yielding conditions. Because of symmetry, only half of the region
(i.e., 0 ≤ θ ≤ π) is analyzed. The outermost radius of the mesh is R ∼= 1.2 × 103 b0, where b0

is the initial radius of the semicircular notch at the tip of the blunt crack. Note that near the
crack tip the field of displacements and stresses is difficult to be determined, and thus a larger
number of elements is used close to that region.

Calculations are carried out for the local and the non-local versions of the model. The ABA-
QUS elements used are CPE4H for the local model and CPE4HT in the coupled temperature-
displacement calculations for the non-local model. Two different meshes were used in the
calculations:

• mesh A: nodes = 1742 , elements = 1658

• mesh B: nodes = 3861 , elements = 3704

Figures 6.8a and 6.8b show the finite element meshes A and B of the model respectively, while
figures 6.8c and 6.8d show the meshes A and B in the region near the crack tip.

The purpose of this application is to conduct a convergence study, i.e., to compare the results
from the solutions obtained for the two different meshes.

(a) (b)

(c) (d)

Figure 6.8: Mesh of the model, (a) mesh A; (b) mesh B; (c) near the crack tip of mesh A; (d)
near the crack tip of mesh B

Boundary Conditions

The following displacement boundary conditions are imposed to the nodes along the circum-
ference of the disc (as shown in red in Fig. 6.9){

u1

u2

}
=
KI

2µ

√
r

2π
(3− 4ν cos θ)


cos

θ

2

sin
θ

2

 , (6.6)
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where ui are the displacement components, KI is the mode-I intensity factor, x1 and x2 are
crack-tip Cartesian coordinates with x1 being the axis of symmetry and x2 the direction of the
mode-I loading, and (r, θ) are crack-tip polar coordinates.

On the lower, right side of the disc the nodes are fixed, while on the lower, left side of the
disc traction free boundary conditions are used.

Figure 6.9: Schematic representation of the boundary conditions on the semicircular disc of
radius R ∼= 1.2× 103 b0 with the notch of radius b0.

Material

The matrix is an elastoplastic material with Young’s modulus E = 300σ0 and Poisson’s
ratio ν = 0.3 that hardens according to the relation (4.20). The value n = 10 for the hardening
exponent of the matrix is used in the calculations. The initial porosity is assumed to be
f0 = 0.01. In the non-local model, a material length ` = 0.3 b0 is used.

In this set of calculations the nucleation of new voids in the material by cracking or interfacial
decohesion of inclusion or precipitate particles is taken into account. The evolution equation
of local porosity floc is now written as

ḟloc = ḟgrowth + ḟnucleation , (6.7)

where the terms ḟgrowth and ḟnucleation are determined from the following relations:

ḟgrowth = (1− f)Dp
kk , (6.8)

and
ḟnucleation = A ˙̄εp , (6.9)

where the A-term accounts for the aforementioned void nucleation. The parameter A is
chosen so that the nucleation strain follows a normal distribution with mean value εN and



6.2. DUCTILE FRACTURE 54

standard deviation sN [5]:

A(ε̄p) =
fN

sN
√

2π
exp

[
−1

2

(
ε̄p − εN
sN

)2
]
, (6.10)

where fN is the volume fraction of void nucleating particles. The values fN = 0.04, εN = 0.4
and sN = 0.1 are used in the computations. Eq. (5.25) is now replaced by

floc|n+1(∆Ep) = floc|n + (1− fn+1)∆Ep
kk +A(ε̄pn) ∆ε̄p(∆Ep) , (6.11)

where ∆ε̄p(∆Ep) is determined from (5.24).

Results

Figures 6.10-6.13 show the variation of the opening stress σ22, the hydrostatic stress p =
σkk/3, the porosity f , and the equivalent plastic strain ε̄p, ahead of the crack tip at different
load levels K1 = KI/(σ0

√
b0) for both the local and the non-local anisotropic model. Note that

x is the distance of a material point in the undeformed configuration ahead from the crack tip.

Figure 6.10: Normal stress distribution ahead of the crack tip at different load levels.

Figure 6.11: Distribution of hydrostatic stress ahead of the crack tip at different load levels.



6.3. NECKING AND FAILURE OF A ROUND TENSILE BAR 55

Figure 6.12: Porosity distribution ahead of the crack tip at different load levels.

Figure 6.13: Distribution of the equivalent plastic strain ahead of the crack tip at different load
levels.

Remarks

Figures 6.12 and 6.13 show that the porosity f and the equivalent plastic strain ε̄p in the
material take a maximum value at the root of the blunt crack and become progressively smaller
ahead of the crack tip. On the other hand figures 6.10 and 6.11 show that the opening stress
σ22 and the hydrostatic pressure p increase until they reach a maximum a little further from the
crack tip and then progressively decrease again. This maximum which occurs at some distance
of the crack tip (and not at the crack tip) happens since the blunt crack tip is traction-free, i.e.
it has to do with the boundary conditions of the problem. Lastly, the results for the calculated
fields are the same for both meshes (A and B) i.e., the numerical solution of the non-local
formulation is mesh independent.

6.3 Necking and Failure of a Round Tensile Bar

Description of the Problem

The non-local anisotropic model for porous metals, which was presented in Chapter 4 is used
to study the problem of necking and failure of a cylinder with circular cross-section subjected
to uniaxial tension. The specimen has dimensions L0/R0 = 2, where 2L0 is its initial length in
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the direction of the applied loads and R0 is its initial radius. A cylindrical reference coordinate
system (r, θ, z) is used for the analysis of the round tensile bar, with its origin placed in the
centre of the bar ((i.e., r = 0 and z = 0)). Due to the symmetry of the problem only one
quarter of the bar is considered in the analysis. To promote necking a small initial geometric
imperfection ∆R of the form

∆R = −ξR0 cos
π z

L0

, (6.12)

is introduced, such that the initial radius of the cylindrical bar varies with the relation

R(z) = R0 − ξR0 cos
π z

L0

. (6.13)

Boundary conditions

Regarding the boundary conditions of the problem, the bottom face of the bar at z = 0 is
held fixed (i.e., u(r, θ, z = 0) = 0), while the upper face is subjected to a prescribed uniform
displacement û in the axial direction of z (i.e., uz(r, θ, z = L0) = û). The lateral faces of the
cylindrical bar are kept traction free. However, since one quarter of the bar is considered in
the analysis then the specimen has the boundary conditions as shown in Fig. 6.14.

Figure 6.14: Schematic representation of the boundary conditions imposed.

Material

The material matrix is assumed to behave elastoplastically and harden with respect to the
relation (4.20). A void nucleation model is assumed as described in Eqs. (6.7)-(6.11). The
initial porosity of the material is chosen to be f0 = 0.04 and the value of the intrinsic material
length ` = 0.01R0. The material parameters are summarized in table 6.1.

E ν n fN εn sN
396.22σ0 0.3 12 0.04 0.4 0.1

Table 6.1: Material properties for the problem of necking
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Material failure
To account for material failure at a material point, [27] replaced the porosity f in the Gurson

yield condition with a “modified porosity” f ∗(f) defined as

f ∗(f) =

f for f ≤ fc ,

fc +
1− fc
ff − fc (f − fc) for f > fc ,

(6.14)

where fc and ff are material parameters determined from experimental data involving specimen
failure. In the present formulation, the non-local porosity f is replaced by f ∗ in the yield
function (4.19) and the flow rule (4.21). Calculations are carried out with the modified non-
local version of the anisotropic model. The values fc = 0.10 and ff = 0.15 are used in the
calculations.

Numerical Implementation

ABAQUS/Standard has convergence difficulties with the element deletion, so ABAQUS/-
Explicit together with user subroutines VUMAT and VDFLUX [18] is used. Four-node bilinear
displacement and temperature, reduced integration with hourglass control (CAX4RT) elements
are used and a mesh of 50x200 (where the first and second numbers denote the number of
elements in the direction of the lengths R0 and L0 respectively). The material is assumed
to fail locally when the non-local porosity f ∗ reaches the value of 0.99 (instead of exactly 1).
When the value f ∗ = 0.99 is reached at a Gauss point, the material is assumed to lose its load
carrying capacity and the element is removed.

Results

A plot for the normalized load F̂ = F/(Aσ0), where A = πR2
0, over the normalized dis-

placement û/L0 is shown in Fig. 6.15.

Figure 6.15: The load-displacement diagram of the axisymmetric analysis.

Figures 6.16 and 6.17 show contours of the equivalent plastic strain ε̄p and the non local
porosity f as the crack at the center of the specimen grows leading progressively to failure.
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(a) Contour plot of ε̄p for û/L0 = 0.238.

(b) Contour plot of ε̄p for û/L0 = 0.241.

(c) Contour plot of ε̄p for û/L0 = 0.248.

Figure 6.16: Contour plots of ε̄p as the specimen leads progressively to failure. Whole specimen
is shown.
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(a) Contour plot of ε̄p for û/L0 = 0.238.

(b) Contour plot of f for û/L0 = 0.241.

(c) Contour plot of f for û/L0 = 0.248.

Figure 6.17: Contour plots of f as the specimen leads progressively to failure. Whole specimen
is shown.
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6.4 Localization in Plane-Strain Tension

Description of the Problem

Consider the quasi-static problem of plastic flow localization in a tension specimen under
plane strain conditions. It is known in the literature that, at large strains all the deformation
progressively localizes into narrow shears bands. Due to this phenomenon when in the softening
region, the governing equations of the problem are said to loose “ellipticity”, which means that
even after the refinement of the mesh, the numerical solution of the problem does not converge
at any value. To overcome this difficulties, additional terms are introduced to restore the
so-called “ellipticity”, increasing the order of the governing equations. The non-local model
presented in Chapter 4 is used in this application.

Boundary conditions

Due to symmetry one quarter of the specimen is considered in the analysis. Fig. 6.18 shows a
schematic representation of one quarter of the specimen with the imposed boundary conditions.
The right side of the specimen is traction free and the upper side is subjected to a prescribed
displacement û. The dimensions of the specimen are h = 0.75w, where h is the height of the
specimen in the direction of the applied loads, and w is the width of the specimen.

Figure 6.18: Schematic representation of one quarter of the rectangular specimen with the
boundary conditions.

Numerical Implementation

To trigger the initiation of non-uniform deformation in the specimen, an imperfection in the
material properties is introduced over as small square region of side d = 0.05w at the center of
the specimen, as shown in Fig. 6.18. In particular, the stress σ0 in (4.20) is replaced by 0.99σ0

in the imperfect region.
The finite elements used are 4-node plane strain CPE4RT coupled temperature-displacement

elements in ABAQUS/Explicit with reduced integration and hourglass control. The following
three meshes are used in the analysis:

• mesh A: 20x20, elements = 400
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• mesh B: 40x40, elements = 1600

• mesh C: 80x80, elements = 6400 .

Material

Again, the material matrix is assumed to behave elastoplastically and harden with respect
to the relation (4.20). A void nucleation model is assumed as described in Eqs. (6.7)-(6.11).
The initial porosity is selected to be f0 = 0.04 and the non-local analysis is carried out for an
intrinsic material length ` = 0.05w. In addition, the the material parameters are summarized
in table 6.2.

E ν n fN εn sN fc ff
396.22σ0 0.3 12 0.04 0.4 0.1 0.1 0.15

Table 6.2: Material properties for the problem of localization in plane strain tension.

The material, as in the previous example, is assumed to fail locally when the non-local
porosity f ∗ reaches the value of 0.99. When the value f ∗ = 0.99 is reached at a Gauss point,
the material in the element is assumed to lose its load carrying capacity, and the element is
removed.

Results

Figure 6.19 shows the plot of the normalized load F̂ = F/(σ0A) (where A = wt, w is the
width and t = 1 mm the thickness of the specimen) to the normalized applied displacement
û/h for the three different meshes 20 × 20, 40 × 40, and 80 × 80. It is readily seen that the
non-local solutions converge to the exact one as the mesh is refined.

Figure 6.19: Load-displacement curves in plane strain tension for the three different meshes:
20× 20, 40× 40, and 80× 80.

Figure 6.20 shows the contour plot of ε̂p at a prescribed displacement û/h = 0.44 for the
three different mesh sizes. A further note is that the shear band seems to form at an angle of
40◦ from the axis in the direction of w.
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Figure 6.20: Contour plots of ε̄p at û/h = 0.44 for the three different meshes; (a) mesh 20x20;
(b) mesh 40x40 (c) mesh 80x80;

(a) (b) (c)



Appendices

Appendix A - Expressions for the Eshelby Tensors

Willis [28, 30] has shown that the Eshelby tensor S and Π can be written in the form

S =
1

4πw1w2

∫
|ξ|=1

H(ξ) : L dS(ξ)

|Z−1 · ξ|3
, Π =

1

4πw1w2

∫
|ξ|=1

Ĥ(ξ) : L dS(ξ)

|Z−1 · ξ|3
(A.1)

and the tensors P = S : M and R = Π : M, and by noting that L : M = M : L = I, then

P =
1

4πw1w2

∫
|ξ|=1

H(ξ)
dS(ξ)

|Z−1 · ξ|3
, R =

1

4πw1w2

∫
|ξ|=1

Ĥ(ξ)
dS(ξ)

|Z−1 · ξ|3
(A.2)

where

Hijkl(ξ) =
[
L−1

2 (ξ)
]
ik
ξjξl|(ij)(kl), Ĥijkl(ξ) =

[
L−1

2 (ξ)
]
ik
ξjξl|[ij](kl), (A.3)

|L2(ξ)|ik = Lijklξjξl, Z = w1n
(1)n(1) + w2n

(2)n(2) + n(3)n(3) (A.4)

and the notations

A(ij)(kl) =
1

4
(Aijkl + Aijlk + Ajikl + Ajilk), A[ij](kl) =

1

4
(Aijkl + Aijlk − Ajikl − Ajilk) (A.5)

are used. Note that in (A.1) and (A.2) the integrals are evaluated along the surface of a unit
sphere and ξ is the position vector on that surface. Recall that w1 = a3/a1 and w2 = a3/a2

are the aspect ratios of the local ellipsoid with lengths (2a1, 2a2, 2a3).

For isotropic metals L = 2µK + 3kJ, so that

L2(ξ) = µ

(
|ξ|2δ +

1

1− 2ν
ξξ

)
and L(−1)

2 (ξ) =
1

µ|ξ|4

[
|ξ|2δ − 1

2 (1− ν)
ξξ

]
. (A.6)

Using (A.2) and (A.6), one can obtain after some algebra that

(H(ξ) : L)ijkl (ξ, ν) =
1

2|ξ|2
(δikξjξl + δjkξiξl + δilξjξk + δjlξiξk)

− 1

|ξ|4
1

1− ν
ξiξjξkξl +

1

|ξ|2
ν

1− ν
ξiξjδkl

(A.7)

and (
Ĥ(ξ) : L

)
ijkl

(ξ) =
1

2|ξ|2
(δikξjξl − δjkξiξl + δilξjξk − δjlξiξk) (A.8)

Kailasam et al. [14] have shown that Q can be written in the form

1

µ
Q =

1

4πw1w2

∫
|ξ|

E(ξ)
dS(ξ)

|Z−1 · ξ|3
, (A.9)

where

63
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Eijkl(ξ, ν) =δikδjl + δilδjk −
1

|ξ|2
(δikξjξl + δilξjξk + δjkξiξl + δjlξiξk)

+
2ν

1− ν

[
δijδkl −

1

|ξ|2
(δijξkξl + δklξiξj)

]
+

2

|ξ|4
1

1− ν
ξiξjξkξl.

(A.10)

Making use of (A.9) and (A.10) one can derive analytic expressions for the corresponding
components Q′ijkl of Q. Let α1 = α3/w1, α2 = α3/w2 with α3 = 1, and arrange the numbering
so that α1 ≥ α2 ≥ α3. In particular, it can be shown that the nonzero components Q′ijkl of Q

relative to the local coordinate system defined by the n(i)’s, and for
a ≡ α1 > b ≡ α2 ≡> c ≡ α3 are

Q′1111 =
µ

4π (1− ν)

(
8π − Ia − 3a2Iaa

)
, (A.11)

Q′1122 =
µ

8π (1− ν)

[
16πν + (1− 4ν) (Ia + Ib)− 3

(
a2 + b2

)
Iab
]
, (A.12)

Q′1212 =
µ

8π (1− ν)

[
8π + (1− 2ν) (Ia + Ib)− 3

(
a2 + b2

)
Iab
]
, (A.13)

where

Ia =
4πabc

(a2 − b2)
√
a2 − c2

[F (θ, k)− E(θ, k)] , (A.14)

Ic =
4πabc

(b2 − c2)
√
a2 − c2

[
b
√
a2 − c2

ac
− E(θ, k)

]
, (A.15)

Ib = 4π − Ia − Ic, (A.16)

Iab =
Ib − Ia

3 (a2 − b2)
, Iac =

Ic − Ia
3 (a2 − c2)

, Iaa =
4π

3a2
− Iab − Iac, (A.17)

θ = sin−1

√
1− a2

c2
, k =

√
a2 − b2

a2 − c2
(A.18)

and

F (θ, k) =

∫ θ

0

dφ√
1− k2 sin2 φ

, E(θ, k) =

∫ θ

0

√
1− k2 sin2 φ dφ (A.19)

are the elliptic integrals of left and second kinds. All other nonzero components Q′ijkl are
found by simultaneous cyclic interchange of (1, 2, 3) and (a, b, c). In the special cases where
a = b > c or a > b = c, the quantities Ia, Ib, Ic, Iab, Iac and Iaa take the values given on page
385 of Eshelby’s original article [10]. The special case of isotropy a = b = c is discussed in
page 3801 in [3].

Appendix B1

The Proof of the Kinematic Relation: ωij = Wij −
λ2
i+λ

2
j

λ2
i−λ

2
j
Dij

Recall from chapter 2 that the deformation gradient F can be written in spectral form as

F =
3∑
i=1

λi ni ⊗Ni , (B.1)

1This proof is found in [16].
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and by differentiating

Ḟ =
3∑
i=1

[
λ̇i ni ⊗Ni + λi

(
ṅi ⊗Ni + ni ⊗ Ṅi

)]
. (B.2)

Therefore, in view of (B.2) an expression must be found for the derivatives of the triads ni
and Ni. If ei (i = 1, 2, 3) are fixed reference unit vectors, the unit vectors Ni of the principal
directions of U can be expressed as (see Fig. B.1)

Ni = R0 · ei , (B.3)

where R0 is the rotation tensor that carries the orthogonal triad {ei} into the Lagrangian triad
{Ni}. Defining the spin of the Lagrangian triad by

Ω0 = Ṙ0 ·R−1
0 , (B.4)

it follows that
Ṅi = Ṙ0 · ei = Ω0 ·Ni = −Ni ·Ω0 . (B.5)

Note that on the axes of the Lagrangian triad Ni the spin tensor Ω0 is expressed as

Ω0 =
∑
i6=j

Ω0
ij Ni ⊗Nj . (B.6)

Now the principal directions ni of the left stretch tensor V, are related to the principal directions
Ni of the right stretch tensor U by

ni = R ·Ni = R · ei , R = R ·R0 . (B.7)

Recall that the rotation tensor R is from the polar decomposition of the deformation gradient
F = V ·R = R ·U. By differentiating (B.7) there follows

ṅi = ω · ni , (B.8)

where the spin of the Eulerian triad ni is defined by

ω = Ṙ ·R−1 = Ṙ ·R−1 + R ·Ω0 ·RT . (B.9)

On the axes ni, the spin ω can be decomposed as

ω =
∑
i6=j

ωij ni ⊗ nj . (B.10)

Making use of (B.1), (B.2), (B.5) and (B.8) it readily follows that

Ḟ =
3∑
i=1

(
λ̇i ni ⊗Ni + ω · F− F ·Ω0

)
. (B.11)

In view of (B.6) and (B.10) then (B.11) is written as

Ḟ =
3∑
i=1

λ̇i ni ⊗Ni +
∑
i6=j

(
λjωij − λiΩ0

ij

)
ni ⊗Nj . (B.12)

In correspondence with (B.1) the inverse of the deformation gradient can be written in terms
of the principal stresses as

F−1 =
3∑
i=1

1

λi
Ni ⊗ ni . (B.13)
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Using (B.13) and (2.43) from chapter 2 an expression for the velocity gradient L is obtained

L = Ḟ · F−1 =
3∑
i=1

λ̇i
λi

ni ⊗ ni +
∑
i6=j

(
ωij −

λi
λj

Ω0
ij

)
ni ⊗ nj . (B.14)

The symmetric part of L is the rate of deformation tensor,

D =
3∑
i=1

λ̇i
λi

ni ⊗ ni +
∑
i6=j

λ2
j − λ2

i

2λiλj
Ω0
ij ni ⊗ nj , (B.14)

while the antisymmetric part is the spin tensor,

W =
∑
i6=j

(
ωij −

λ2
i + λ2

j

2λiλj
Ω0
ij

)
ni ⊗ nj . (B.15)

For i 6= j from (B.14) we have

Ω0
ij =

2λiλj
λ2
j − λ2

i

Dij, λi 6= λj , (B.16)

which is an expression for the components of Lagrangian spin Ω0 in terms of the stretch ratios
and the components of the rate of deformation tensor. Substituting (B.16) into (B.15) the
following expression is obtained

ωij = Wij −
λ2
i + λ2

j

λ2
i − λ2

j

Dij, λi 6= λj . (B.17)

A final note is that the expressions derived here are generalizations of continuum mechanics
based on appropriate kinematic relations and hold for every point in a material’s medium. The
theory of a porous materials, takes into consideration only mean values. Thus, Wv and Dv are
the average spin and rate deformation tensors, respectively, so that (B.17) takes the form

ω′ij = W ν′

ij −
λ2
i + λ2

j

λ2
i − λ2

j

Dν′

ij , (B.25)

where the superscript ‘ν’ denotes for ‘void’ and primed quantities is just a notation used in the
context to indicate that they are expressed in the Eulerian triad {ni}.

Figure B.1: Schematic representation for the rotation of the orthogonal base {ei} to the
Lagrangian and Eulerian triad {Ni} and {ni} from the polar decomposition of F.
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