
Design and implementation of a distributed
Web IoT application using microservice

architecture for device control and
measuring
Diploma Thesis

By

Christos Theologou

Department of Electrical and Computer Engineering
University of Thessaly

A dissertation submitted to the University of Thessaly in accor-
dance with the requirements of the Diploma degree in the depart-
ment of Electrical and Computer Engineering.

September 2020

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Περίληψη

Τα τελευταία χρόνια,με τη συνεχή ανάπτυξη και εξέλιξη του Internet of Things (IoT), η μονολιθική
αρχιτεκτονική εφαρμογών γίνεται πολύ μεγαλύτερη σε κλίμακα και ακόμη πιο περίπλοκη δομή.
Αυτό οδηγεί σε κακή επεκτασιμότητα και συντηρησιμότητα. Ανταποκρινόμενοι σε αυτές τις

προκλήσεις, η αρχιτεκτονική των microservices έχει εισαχθεί στον τομέα των εφαρμογών IoT, λόγω
της ευελιξίας, της ελαφριάς και χαλαρής ζεύξης που προσφέρει.

Η προσφορά της παρούσας εργασίας είναι η περιγραφή και η ανάλυση της αρχιτεκτονικής των
μικρο-υπηρεσιών(microservices), παρουσιάζοντας τις λύσεις και τις δυνατότητες που προσφέρει αυτή η
αρχιτεκτονική σε σύγκριση με τα μονολιθικά συστήματα. Επιπλέον, παρουσιάζουμε τον σχεδιασμό και
την υλοποίηση ενός συστήματος IoT με microservices και δίνουμε έμφαση στην βασική εξυπηρέτηση
και επικοινωνία των συσκευών απο επέπεδο υπηρεσίας σε φυσικό επίπεδο.

i

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Abstract

In recent years, with the continuous development and evolution of the Internet of Things (IoT),
the monolithic application architecture becomes much larger in scale and even more complex in
structure. This leads to poor scalability and maintainability. Responding to these challenges, the

microservices architecture has been introduced in the field of IoT applications, due to the flexibility,
light and loose connection it offers.

The presentation of this work is the description and analysis of the microservices architecture, pre-
senting the solutions and possibilities offered by this architecture in comparison with the monolithic
systems. In addition, we present the design and implementation of an IoT system with microservices
and emphasize the basic service and communication of devices from service level at the physical level.

iii

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Dedication and acknowledgements

In the first place I want to thank my lead supervisor, Dr. Athanasios Korakis and Dr. Dimitrios Kat-
saros for their assistance and guidance for the completion of this work. I would also like to thank
my friends and my family that were by my side all these years.

To my family and friends.

v

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the re-
quirements of the University’s Regulations and Code of Practice for Research Degree
Programmes and that it has not been submitted for any other academic award. Except

where indicated by specific reference in the text, the work is the candidate’s own work.
Work done in collaboration with, or with the assistance of, others, is indicated as such. Any
views expressed in the dissertation are those of the author.

SIGNED: .. DATE: ..

vii

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Table of Contents

Page

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Internet of Things . 1
1.2 IoT Capabilities . 2

2 Background 5
2.1 Monolithic Architecture . 5
2.2 Microservice Architecture . 7

2.2.1 What is microservice . 7
2.2.2 Architecture . 7

3 Implementation 11
3.1 System model . 11
3.2 Edge Devices . 11
3.3 Cloud Services . 13

3.3.1 Mqtt Broker . 13
3.3.2 Data Analytics . 15
3.3.3 Device Inventory . 15
3.3.4 Web Application . 17

4 Evalutation 19
4.1 Tests and Results . 19

4.1.1 Development methodology and efforts . 19

5 Conclusion 23
5.1 Summary . 23

ix

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

List of Tables

Table Page

1.1 Thesis Chapters . 3

3.1 Topics in Mqtt Broker service. 15
3.2 Device Inventory microservice. 17

xi

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

List of Figures

Figure Page

2.1 Monolithic Architecture . 6
2.2 Architectures . 9

3.1 IoT System Architecture . 12
3.2 Changing Flying Areas . 12
3.3 Mqtt Broker . 13
3.4 Backend Architecture . 14
3.5 Backend Microservices . 16
3.6 User Management Service . 17
3.7 Users Web Application . 18
3.8 Device Map View . 18

4.1 Performance Tests 1 . 20
4.2 Performance Tests 2 . 20
4.3 Performance Tests 2 . 21

xiii

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

C
h
a
p
te

r

1
Introduction

1.1 Internet of Things

The term IoT (Internet of things) is not very new, there have been several different names and one of
such names is “Internet of Infinite Things”, the dreamworld which everything may communicate with
each other. Today, we have a large number of physical entities interconnected and integrated into the
information space to interchange generated data using communication technologies. Previously a num-
ber of research work focused on the connectivity challenges. However, with newly developed systems,
the existing structure has given birth to several new research challenges. With the development of tech-
nology, the IoT applications have started to consider how to integrate the existing network facilities and
the openness and scalability of the system design. Compared with existing services, such as telecommu-
nication services or Internet applications, IoT service faces with new situation. The huge information
collected from perception layer (involving a large number of sensors) is further processed and delivered
to different applications according to the requirements, then is used to trigger the corresponding collab-
orative business system. As the IoT technology is widely used in daily life, the events produced by
sensors and objects are becoming astronomical. The task is enormous and immense services response
to the requests. IoT services system should coordinate man-power and business process to quickly in-
teract with the physical entities across the business domains, even across the organizations based on
the processing and integrating of distributed multisource sensing information. Because of the variety
of business process, personal and physical entities involved, physical world continuously changes, IoT
services are characterized by real time changes. It brings new technical challenges to IoT services such
as: heterogeneity of hardware, network and operating system, interoperability between applications and
services, fusion of massive heterogeneous data, scalability and continuous integration.

Interoperability between applications and services. In the IoT application, many actors comprising
human and nonhuman objects and many systems are designed for specific applications, adopting spe-

1

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

CHAPTER 1. INTRODUCTION

cific data standards and communication platforms. Different platforms lead to great inconvenience for
achieving interoperability and mutual communication in IoT applications.

Fusion of massive heterogeneous data. While data collected in the IoT generates billion pieces of
information with hundreds of data formats, it’s hard to classify vast amount of raw data by a complex
module in traditional architecture, and it also easily leads to system overload if a large number of re-
dundant data directly goes to the application layer.

Scalability and continuous integration. IoT aims to keep on growing all the time and it has generated
a lot of complex code. Developers with different technological skills often concern differently and
everyone has their own limitations. So a good and independent architecture can offer a mechanism
that the programmers can enjoy the freedom of coding with simplified integration.

In a nutshell, with the development of IoT technology, traditional architecture can’t meet the re-
quirements of heterogeneous, interoperable, customizable and scalable systems. To deal with above
challenges, we put forward an open IoT framework by decomposing IoT system into microservices to
perform different kinds of tasks. By using message driven and registry/discovery mechanism in core
service, the framework can easily extend, evolve and integrate third party applications to support interop-
erability and scalability. Moreover, the system uses device plugins to shield the differences of hardware
facilities in order to support more heterogeneous platforms. In particular, as integrated with a series of
microservices, the framework delivers strong mechanism for fusing heterogeneous data through hierar-
chical preprocessing mass sensors data.

1.2 IoT Capabilities

There are 2 billion PCs in use today across the globe. There are over 10 billion mobile phones. By
2020, it is predicted that there will be over 250 billion devices connected to the Internet. Some of
these devices will be new products, but most will be existing things we use every day that will be
enhanced with sensors, such as thermostats, cars, eyeglasses, wrist watches, clothing, street lamps, cars,
buildings...you name it, it will likely become connected.

Each of these devices will be gathering data through sensors and sending data to the cloud. The
amount of data that will be collected will be measured in petabytes, exabytes, and zettabytes. In other
words, IoT is not just about devices but also about data, a lot of data. The reason that we want to collect
all this data is to extract knowledge, to provide real-time visualization and data feeds, and to perform
historical and predictive analytics that will drive business decisions at velocity and provide real-time
notification and status.

To fully realize an IoT solution, several capabilities will be required. These capabilities include the
following:

• Device Management: The device, upon initialization, will want to establish a relationship with
the cloud environment, usually through its unique identifier, such as a serial number, so that
the business is notified that the device is active. The business will also want the ability to send

2

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

1.2. IOT CAPABILITIES

commands to the device for the purposes of providing software updates or updating local data
caches.

• Telemetry Ingestion: Devices may be sending multiple messages a second, and there may be
hundreds to thousands of devices or more, which would result in 10’s of thousands to possibly
millions of messages a day. The cloud platform provides high-volume message ingestion using a
single logical endpoint.

• Transformation and Storage: Once the messages arrive, the cloud provides a mechanism to
select, transform, and route messages to various storage mediums for the purpose of archival and
staging for downstream processing.

• Status and Notifications: The cloud solution will want to provide the ability to visualize the
status of the message pool in real time through tabular or graphical UI components. In addition,
some messages may contain information of an alert status so the IoT solution must provide a
mechanism for real-time notifications.

• Analytics and Data Visualization: The value of collecting so much data in a continuous fashion
is to build up an historical record for the purpose of performing analytics to glean business in-
sight. Traditional data warehouse techniques ormoremodernmap-reduce and predictive analytics
mechanisms can be employed.

The chapters included in this thesis are organized in three parts, as can be seen in table

Organization of Chapters
Chapters Parts Themes
Chapter 1 Introduction Internet of Things
Chapter 2 Background Monolithic Architecture

Microservices Architecture
Chapter 3 Implementation System Model
Chapter 4 Evaluation Tests and Results
Chapter 5 Conclusion Conclusion and Future Work

Table 1.1: Thesis Chapters

3

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

C
h
a
p
te

r

2
Background

2.1 Monolithic Architecture

In the monolithic architecture software system is deployed as a single solution, in which functionally
distinguishable aspects are all interwoven. The natural advantages of monolithic architecture aremodule
independent, uniform standards and technology stack. Many researches offer solutions from perspective
ofmonolithic architecture. Earlier IoT studiesmainly focus on hardware network and low-level software
technology. For instance,Wireless Sensor Networks (WSN) is amajor approach of IoT, but it has limited
capacity and weak scalablity. To address these issues, some researches like ubiSOAP WoT/SDN focus
on high-level IoT application programming, which uses standard middleware to implement a layered
communication. However, these systems are low reusability and portability. TinySOA , Servilla and
a series of typical Service Oriented Architectures (SOA) have been applied in different applica-tions.
To improve the scalablity of SOA, an Event-Driven SOA (EDSOA) IoT technology has also been put
forward. In addition, OpenIoT expands the concept of SOA, and implements Web of Things (WoT).

However, with the increasing of the system functions, the IoT becomes more and more complex
in the distributed environment. Monolithic architecture has some inevitable defects. First, the entire
system is a united application; only multiple deployments can improve the system performance, while
the overloaded functions create bottleneck, which is a waste of computing resources. Second, in the case
of the change and evolution of the system, a change in a function may affect other functions due to high
dependencies. This also brings complexity for re-deployment, maintenance and continuous integration.
Finally, the whole system uses a sole technology stack and development standards, which in turn limits
the methods to solve the problem of physical heterogeneity.

Consider an example of Ecommerce application, that authorizes customer, takes an order, check
products inventory, authorize payment and ships ordered products. This application consists of several
components including e-Store User interface for customers (Store web view) along with some backend

5

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

CHAPTER 2. BACKGROUND

services to check products inventory, authorize and charge payments and shipping orders.

Figure 2.1. Monolithic Architecture (for E-commerce system)

Despite having different components/modules/services, the application is built and deployed as one
Application for all platforms (i.e. desktop, mobile and tablet) using RDBMS as a data source. The
benefits of this approach are:

• Simple to develop — At the beginning of a project it is much easier to go with Monolithic Archi-
tecture.

• Simple to test. For example, you can implement end-to-end testing by simply launching the ap-
plication and testing the UI with Selenium.

• Simple to deploy. You have to copy the packaged application to a server.

• Simple to scale horizontally by running multiple copies behind a load balancer.

On the other hand, despite the above benefits, deploying an application with the structure of mono-
lithic architecture, also has a lot of disadvantages and issues:

• Maintenance — If Application is too large and complex to understand entirely, it is challenging
to make changes fast and correctly.

• The size of the application can slow down the start-up time.

• You must redeploy the entire application on each update.

• Monolithic applications can also be challenging to scale when different modules have conflicting
resource requirements.

• Reliability—Bug in anymodule (e.g. memory leak) can potentially bring down the entire process.
Moreover, since all instances of the application are identical, that bug impact the availability of
the entire application.

6

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

2.2. MICROSERVICE ARCHITECTURE

• Regardless of how easy the initial stages may seem, Monolithic applications have difficulty to
adopting new and advance technologies. Since changes in languages or frameworks affect an
entire application, it requires efforts to thoroughly work with the app details, hence it is costly
considering both time and efforts.

2.2 Microservice Architecture

2.2.1 What is microservice

The term microservice can be a bit misleading. The prefix “micro” implies that microservices are
either tiny little entities that run around doing tasks on our behalf,like vacuuming the floor or
fixing a flat tire, or that form a vast swarm of microscopic insect-like devices that self-replicate

through the consumption of matter and energy, and are capable of disintegrating any substance they
touch. Microservices do work on our behalf but they are not always tiny.

The “micro” in microservices is actually in reference to the scope of functionality that the service
provides. A microservice provides a business or platform capability through a well-defined API, data
contract, and configuration. It provides this function and only this function. It does one thing and it
does it well. This simple concept provides the foundation for a framework that will guide the design,
development, and deployment of your microservices.

Within the context of doing one thing and doing it well, microservices also exhibit a number of other
properties and behaviors; it is these elements that differentiate microservices from previous incarnations
of service-oriented approaches. These elements affect every aspect of how we develop software today,
from team structure, source code organization, and control to continuous integration, packaging, and
deployment.

2.2.2 Architecture

Microservices are an approach to application development in which a large application is built as a
suite of modular services (i.e. loosely coupled modules/components). Each module supports a specific
business goal and uses a simple, well-defined interface to communicate with other sets of services.

Instead of sharing a single database as in Monolithic application, each microservice has its own
database. Having a database per service is essential if you want to benefit from microservices, because
it ensures loose coupling. Each of the services has its own database. Moreover, a service can use a type
of database that is best suited to its needs.

Many researchers begin to provide IoT solution usingmicroservice architecture. For example, Vresk
and Tomislav present a microservice based architecture focusing on connecting with heterogeneous de-
vices, where the system confines to data model aspect. An approach of Krylovskiy discusses how to
apply microservice architecture to design a Smart City IoT platform. Another approach presents three
cloud microservices: contextual triggering microservice, visualization microservice, and anomaly de-
tection and root cause microservice, to accelerate and facilitate the development of context and location

7

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

CHAPTER 2. BACKGROUND

based applications. However, the above mentioned microservice IoT systems only consider a specific
application. Therefore, it is necessary to design a more generic and open framework in IoT system.

To summarize, the architecture of microservices has plenty of benefits such as:

• Enables the continuous delivery and deployment of large, complex applications.

• Better testability — services are smaller and faster to test.

• Better deployability — services can be deployed independently.

• It enables you to organize the development effort aroundmultiple teams. Each team is responsible
for one or more single service. Each team can develop, deploy and scale their services indepen-
dently of all of the other teams.

• Each microservice is relatively small

• Comfortable for a developer to understand.

• The IDE is faster making developers more productive.

• The application starts faster, which makes developers more productive, and speeds up deploy-
ments.

• Improved fault isolation. For example, if there is a memory leak in one service then only that ser-
vice is affected. The other services continue to handle requests. In comparison, one misbehaving
component of a monolithic architecture can bring down the entire system.

• Microservices Eliminates any long-term commitment to a technology stack. When developing a
new service you can pick a new technology stack. Similarly, when making major changes to an
existing service you can rewrite it using a new technology stack.

On the other hand using microservice architecture, also has some critical drawbacks, such as:

• Developers must deal with the additional complexity of creating a distributed system.

• Developer tools/IDEs are oriented on building monolithic applications and don’t provide explicit
support for developing distributed applications.

• Testing is more difficult as compared to Monolith applications.

• Developers must implement the inter-service communication mechanism.

• mplementing use cases that span multiple services without using distributed transactions is diffi-
cult.

• Deployment complexity. In production, there is also the operational complexity of deploying and
managing a system comprised of many different service types.

8

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

2.2. MICROSERVICE ARCHITECTURE

Figure 2.2. Difference between monolith and microservice architectures

9

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

C
h
a
p
te

r

3
Implementation

In this chapter we are going to demonstrate our distributed web IoT platform for device monitoring
and data analysis. We will describe and survey all parts of the application and analyze how each
component works in the system.

3.1 System model

The design of a new generation of IoT framework considers the integration and reusability of existing
information service system with high cohesion and loose coupling in open and scalable platform design.
The core idea of the design is adopting the concept of microservice architecture, based on the analyse
of the existing IoT system, reconstructing all the business functions of the system by decoupling them
into independent and specific services.The design is using lightweight communication mechanism to
interact between services with a minimal overload.

The Web IoT application is designed to handle large data traffic from the edge devices that are
spread at the outdoor environment. Moreover, the system goal is to push all these data to a set of frontend
applications (user application, admin application) managing to serve a large number of user requests at
the same time. Figure 3.1 shows the big picture of our IoT system.

3.2 Edge Devices

Our platform is powered by data that being sent from edge devices. This set of devices consists of sensor
and gateways nodes. Each sensor node consists of a set of sensors that measure and detect changes or
events in the outdoor environment. Also, each sensor node is mapped to a gateway node. The between
communication is achieved by a low power wireless protocol, either Zigbee or LoRa(Long Range),
depending on the distance between them.

11

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

CHAPTER 3. IMPLEMENTATION

Figure 3.1. The Figure shows our IoT system model.

As we see in the Figure 3.2 the gateway node is responsible to collect all the data from the sensor
nodes and forwards them to the cloud through 4g connection. In case of an error, the gateway still keeps
the data in its memory and it will retry when the network become stable again.

Each sensor node works on low power consumption. They are scheduled to make a sampling every
30 minutes, and the rest of the time are in sleep mode. So, they only wake up when it is time to make
a measurement from the environment. After sampling is finished, sensor nodes enter the transmission
mode to send their data to gateways. When transmission process complete successfully, the nodes return
again to sleep mode. On the other hand, gateway nodes must be all the time in full power mode. This is
necessary because gateways should be ready at any time to catch data from sensor nodes and forward
them to cloud.

Figure 3.2. The Figure shows the edge devices and how the can communicate with the cloud.

12

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

3.3. CLOUD SERVICES

3.3 Cloud Services

3.3.1 Mqtt Broker

The IoT application is separated in two distinct parts, the Backend and the Frontend part. The Backend
is also divided to a set of independent services, as we can see in Figure 3.4. At this point, we assume
that data from sensor nodes, reached our web IoT application through the gateway. The service that is
responsible to gather all the sensors data, that coming from the gateway, is an Mqtt broker. We use the
VerneMq Mqtt broker, as it a distributed service that has high performance and support high number
of concurrent devices. The broker service has its own memory and use it to buffer all that data coming
from the field devices.

The communication between the gateways and the broker is done through the MQTT protocol.
MQTT protocol it is very efficient and lightweight, allowsmessaging between device to cloud and cloud
to device, it is scalable ,reliable and also offers security as it is easy to encrypt messages using TLS and
authenticate clients using modern authentication protocols, such as OAuth. Thus, ΜQTT broker works
under the publish/subscribe architecture as we can observe at the Figure 3.3.

Figure 3.3. The Figure shows the MQTT broker architecture.

13

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

CHAPTER 3. IMPLEMENTATION

Figure 3.4. The Figure shows the services that run in the backend.

14

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

3.3. CLOUD SERVICES

So, when a gateway node receives measurement values, publish each value to a specific Mqtt Bro-
ker’s topic aswe can see at the Table 3.2. Another service responsible for datamanagement, is subscribed
in every measurement topic. So, when a new value arrives from gateway, that the service listen to topics,
grubs and saves that values to a timescale database, InfluxDB.

MQTT Broker
Topics Measurements

Temperature 25°C
Humidity 98%

SolarRadiation 2043K
Leaf wetness 3%

Table 3.1: Topics in Mqtt Broker service.

3.3.2 Data Analytics

As we mentioned above, our sensor data are located now to our timescale database. Our web IoT ap-
plication gathers data from sensor nodes and applies to them several algorithms to produce significant
and crucial results. For that purpose, we built every algorithm as a standalone service, which fetch data
from database and calculates the result. That services are written in the Javascript runtime engine of
Nodejs and served via the daemon process manager PM2.

At Figure 3.5 we can see an instance of all standalone services that each one runs a specific algorithm
and and calculates its result using the sensors data. Every time sensors send data to gateway and in turn
the gateway forwards the data to application, each microservice algorithm, grabs data and recalculate
the new algorithms results. Since the sensor nodes sends data every 30 minutes, the algorithms updating
the results in 30 minutes too. In case of an error in one of these services, does not generate a conflict
in the rest of them. So, these results saved in our database and a database API is responsible to provide
them in the Frontend application when a user requests them.

3.3.3 Device Inventory

Our IoT application collects data from the edge devices and offers the end-users a raw data visualization
but also a visualization of algorithm results from the data analytics microservices, as we described above.
Therefore, the functionality of our application is based on this data. However, there are times when a
problem may arise and data from a device does not reach our system. This could be due to either a
possible bug in our application or a malfunction of the device or even worse the operation of this device
has been interrupted.

So it is a very difficult task for the engineers to figure out where the fault lies, as it is two different
parts of the system. The edge devices, sensor and gateway nodes, are placed at the outdoor environment,
so there are many possible scenarios that may cause an interrupt of an edge device’s functionality. For
example, a sensor node’s battery may be empty or there is a power supply problem in the area where

15

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

CHAPTER 3. IMPLEMENTATION

Figure 3.5. The Figure shows the list of active microservices in the Web IoT platform.

it is located the gateway node, thus causing an energy device interrupt. Moreover, these devices are
exposed to bad weather conditions and device hardware problems may conflict the device’s operation.

Hence, it is very useful to know at each time the state of the devices. For that reason, we implemented
a device inventory microservice. There are 4 possible states for each device:

• online state, in which the device works properly,

• inactive state depicts that a device is not working due to a functional error,

• stopped, in which the device is intentionally powered off from the system

• and malfunctioning, means that the device has stopped sending data for a period of time, but
now is working again.

A device being in mulfunctioning state is for example when a sensor node’s wireless connection
drops due to bad weather conditions and our system lost its measurements during that period of time.
But after that time if wireless signal restore, makes the data reception stable again.

Every sensor node transmits measurements every 30 minutes. Device inventory service check every
one hour the last data transmission for each declared device in the database. If a device managed to send
measurements the last one hour, its state updates to active. In case a device have not managed to send
data the last hour, algorithm checks if there are any data from this device the last 3 days. In case we
find data within this time period,the device’s state update to mulfunctioning. On the other hand, if there
are no data from that device the last 3 days, the service update its state to inactive. Finally, if we have
deliberately decided to shutdown a device for any reason, we must update its state to stopped.

16

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

3.3. CLOUD SERVICES

Moreover, an edge device incorporates in the measurements packet information related to its battery
status and its gps location. Hence, the device inventory microservice collects all that data and informs
the system with all these information about a device, offering the engineers a very useful tool for remote
monitoring edge devices. Also, our microservice keeps track of when a device last send a data packet,
helping engineers draw some conclusions about their device deployments.

Device Inventory States
Devices States Coordinates Remaining Energy Last Received Packet

SensorNode1 Active (23,4983, 32,4098) 92% 01/09/2020
GatewayNode1 Stopped (26,4983, 34,6778) 70% 23/12/2019
SensorNode2 Inactive (21,42933, 35,0098) 20% 05/03/2020

GatewayNode2 Mulfunctioning (27,3403, 38,9998) 85% 30/08/2020

Table 3.2: Device Inventory microservice.

3.3.4 Web Application

The final part of our system is the frontend which consists of two different applications, each of which
addressed to a different group of users. The two groups are the the simple users and the admin users.
For that purpose we developed a user management service in order to redirect a each user to the proper
web application,depending on the group that belongs to (Figure 3.6).

Figure 3.6. The Figure shows user management service.

The first application is addressed to simple users, offers them the ability to monitor their data and
also provide them a set of notifications and consultings that our system generates from our data analytics
microservices. In Figure 3.7 you can see an instance of the simple user monitoring application.

The second is for admin users also for monitoring data but also devices and users. Admin application
offers the ability to set devices into fields and users. Thus, a simple user can see only his device data

17

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

CHAPTER 3. IMPLEMENTATION

Figure 3.7. The Figure shows the frontend application for simple users.

from his field. Furthermore, we can monitor the devices functionality and the devices location inside a
map view as we can see in Figure 3.8.

Figure 3.8. The Figure shows the device monitorin and location in map view.

18

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

C
h
a
p
te

r

4
Evalutation

In this chapter we will evaluate our decision to build the Web IoT platform into separate standalone
microservices that communicates to each other.

4.1 Tests and Results

4.1.1 Development methodology and efforts

The development of applications usingmicroservice architectures requires a change in the way that most
companies and software vendors have traditionally been developing monolithic applications using sin-
gle codebases.Microservice architectures allow small teams towork on small applications(microservices)
without worrying about how other microservices or teams work. Every team can use different technolo-
gies to implement microservices/gateways according to the business and technical requirements; to
avoid the use of a lot of technologies that can be difficult to be managed some guidelines should be
offered to all teams so they can decide which set of technologies to use in each microservice/gateway.
The design, documentation and publication of REST API is very important to allow that services pub-
lished by microservices can be easily consumed by gateways, and services published by gateways can
be easily consumed by end-user applications (browsers, mobile apps, APIs, etc.).

In order to test our implementation, we used Apache Jmeter. Apache JMeter is an Apache project
that can be used as a load testing tool for analyzing and measuring the performance of a variety of
services, with a focus on web applications. We start our application and we run several tests with a
varied number of users making the same requests in a specific time.

In Figure 4.1 we can see how our application responds and serves a total number of 50 HTTP
requests in 2 seconds. In this test we simulate 10 users that everyone makes the same 5 HTTP requests.
The max response time reach 1̃.1 sec and the min response time is 300 ms. Also we can see that after

19

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

CHAPTER 4. EVALUTATION

the max upper bound the response time decreases as a result of caching. For a more realistic depiction
of how our system works we increase the number of users to 100 but kept the same request per user.

Figure 4.1. The Figure shows a performance test with 10 users making 5 HTTP requests in
a 2 seconds time.

In Figure 4.2 we can see the performance of our application and response time. The max response
time reached the 7̃.5 sec but the average response time is about 5̃ seconds. Compared with the first test in
which the average response time was 600 ms, here we observe a large increase in response time which
is very normal as our system serves 500 total requests in 2 seconds.

Figure 4.2. The Figure shows a performance test with 100 users making 5 HTTP requests in
a 2 seconds time.

In the last test we decided to increase our total number of requests to 1000 HTTP requests. We kept

20

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

4.1. TESTS AND RESULTS

the serve time to 2 seconds as in the above tests. In Figure 4.3 we have 100 users where each one makes
10 same requests. It can be seen that the max response time is 9̃.5 seconds, the min response time is 7̃00
ms and the average is 6̃.5 seconds.

Figure 4.3. The Figure shows a performance test with 100 users making 10 HTTP requests
in a 2 seconds time.

Doing these stress tests we observe that using microservice architecture in our system, makes the
systemmore stable and it manages to serve all the requests without losing any data in a very short period
of time.

21

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

C
h
a
p
te

r

5
Conclusion

5.1 Summary

As we mentioned in the introduction the microservices architecture has a lot of benefits and todays it is
a ”de facto” choice for building web applications, especially in the sector of IoT in which the system
has to manage a large number of data and users.

The contribution of this dissertation is to provide a distributedweb IoT platform for IoT deployments
with an efficient, scalable and more productive design. Each microservice is responsible for a specific
process giving the engineers the ability to make better debugs, better response times and making the
application more robust as if one microservice is down the rest system still runs.

23

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

Institutional Repository - Library & Information Centre - University of Thessaly
20/04/2024 08:24:08 EEST - 3.15.141.244

	List of Tables
	List of Figures
	Introduction
	Internet of Things
	IoT Capabilities

	Background
	Monolithic Architecture
	Microservice Architecture
	What is microservice
	Architecture

	Implementation
	System model
	Edge Devices
	Cloud Services
	Mqtt Broker
	Data Analytics
	Device Inventory
	Web Application

	Evalutation
	Tests and Results
	Development methodology and efforts

	Conclusion
	Summary

