
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Full stack implementation of a car pooling web and mobile application

Diploma Thesis

NIKOLAOS PAPPAS

Supervisor: Georgios Stamoulis

Volos 2020

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Full stack implementation of a car pooling web and mobile application

Diploma Thesis

NIKOLAOS PAPPAS

Supervisor: Georgios Stamoulis

Volos 2020

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ανάπτυξη εφαρμογής διαμοιρασμού οχημάτων

Διπλωματική Εργασία

ΝΙΚΟΛΑΟΣ ΠΑΠΠΑΣ

Επιβλέπων/πουσα: Σταμούλης Γεώργιος

Βόλος 2020

v

Approved by the Examination Committee:

Supervisor Georgios Stamoulis

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Member George Thanos

Laboratory Teaching Staff, Department of Electrical and Com-

puter Engineering, University of Thessaly

Member Hariklia Tsalapata

Laboratory Teaching Staff, Department of Electrical and Com-

puter Engineering, University of Thessaly

Date of approval: 20-9-2020

vii

Acknowledgements

Firstly, I would like to thank Laboratory Teaching Staff George Thanos for his advice,

guidance and assistance throughout the whole project. Furthermore, i would like to thank my

family for their support and patience. Moreover, I would like to thank my friends Thanos,

Dimitris, Kostas, Kostas and Apostolis for their help and advice when needed! Lastly I would

like to thank Ioanna for her tolerance, patience and persistence.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re-

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

NIKOLAOS PAPPAS

15-9-2020

x

Abstract

In recent years, although technology has diminished travel time, travel costs have in-

creased due to the continuously increasing fuel prices and the privatization of public high-

ways that result in the creation of more and more toll stations. Carpooling is becoming a

common way to travel because it reduces each traveller’s travel costs and is also a more envi-

ronmental friendly and sustainable way to travel. It reduces air pollution, carbon emissions,

traffic congestion on the roads and the need for parking spaces. This diploma thesis deals

with the implementation of a web and mobile application that serves the purpose of carpool-

ing. The development involves implementing firstly the front-end of the application, the web

and the mobile user interface and secondly the back-end that serves all the requests a user

makes from the front-end. The web frameworks used are Django and ReactJS with the pro-

gramming languages Python and JavaScript respectively. The aim is to learn these two web

frameworks from development mode to production state and generally to develop existing

programming knowledge through this application development. More specifically on the ap-

plication, it enables a user to browse rides offered, to login or register, join the rides, or add

new ones.

Keywords

carpooling, web application, mobile application, Django, Django REST framework, Re-

actJS, React Native

xi

Περίληψη

Τα τελευταία χρόνια, αν και η τεχνολογία έχει μειώσει τον χρόνο ταξιδιού, το κόστος

του έχει αυξηθεί λόγω των συνεχώς αυξανόμενων τιμών των καυσίμων και της ιδιωτικοποί-

ησης των δημόσιων αυτοκινητοδρόμων που έχουν ως αποτέλεσμα τη δημιουργία όλο και

περισσότερων σταθμών διοδίων. Το Carpooling γίνεται ένας συνηθισμένος τρόπος για να

ταξιδέψετε επειδή μειώνει το κόστος ταξιδιού κάθε ταξιδιώτη και είναι επίσης ένας πιο φι-

λικός προς το περιβάλλον και βιώσιμος τρόπος ταξιδιού καθώς η κοινή χρήση αυτοκινήτων

για τα ταξίδια μειώνει την ατμοσφαιρική ρύπανση, τις εκπομπές διοξειδίου του άνθρακα, την

κυκλοφοριακή συμφόρηση στους δρόμους και την ανάγκη για θέσεις στάθμευσης. Αυτή η

διπλωματική εργασία ασχολείται με την υλοποίηση μιας εφαρμογής διαδικτύου και κινητών

τηλεφώνων που εξυπηρετεί τον σκοπό του carpooling. Η ανάπτυξη της εφαρμογής περιλαμ-

βάνει την υλοποίηση, πρώτον, του γραφικού περιβάλλοντος της εφαρμογής, του διαδικτύου

και της διεπαφής χρήστη για κινητά και, δεύτερον, την υλοποίηση του σέρβερ που εξυπη-

ρετεί όλα τα αιτήματα που κάνει ένας χρήστης από το γραφικό περιβάλλον. Οι τεχνολογίες

ανάπτυξης διαδικτυακών εφαρμογών που χρησιμοποιούνται είναι Django και ReactJS με τις

γλώσσες προγραμματισμού Python και JavaScript αντίστοιχα. Ο στόχος είναι να μάθουμε

αυτές τις δύο τεχνολογίες ανάπτυξης διαδικτυακών εφαρμογών διεξοδικά και σε βάθος, από

το αρχικό στάδιο ανάπτυξής τους έως την κατάσταση παραγωγής και γενικά να αναπτύξουμε

τις υπάρχουσες γνώσεις προγραμματισμού εφαρμογών. Πιο συγκεκριμένα η εφαρμογή, επι-

τρέπει στον χρήστη να περιηγηθεί στις προσφερόμενες διαδρομές, να συνδεθεί ή να εγγραφεί,

να συμμετάσχει στις διαδρομές ή να προσθέσει νέες.

Λέξεις Κλειδιά

carpooling, web application, mobile application, Django, Django REST framework, Re-

actJS, React Native

xiii

xiv Περίληψη

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xix

List of Abbreviations xxi

1 Introduction 1

1.1 Idea Description . 1

1.2 Main Objective . 2

1.3 Thesis Structure . 2

2 Knowledge base 5

2.1 Software Stack . 5

2.2 Back-end . 5

2.3 Front-End . 5

2.4 Full Stack Development . 6

2.5 Client - server model . 6

2.6 API . 7

2.7 Representational State Transfer . 7

2.7.1 Separation of client and server . 8

2.7.2 Statelessness . 8

xv

xvi Table of contents

2.7.3 Client and Server communication 8

2.8 MVC . 9

2.9 Python Virtual Environment . 10

3 Application Analysis 11

3.1 Functional requirements . 11

3.1.1 Authorization . 11

3.1.2 Rides . 12

3.1.3 Cars . 12

3.1.4 Notifications . 12

3.2 Non-functional requirements . 12

3.2.1 Back-end API . 13

3.2.2 Front-end . 13

3.2.3 Models Schema . 13

3.2.4 Use cases . 15

4 Application architecture 17

4.1 Introduction . 17

4.1.1 Product perspective . 17

4.1.2 Operating Environment . 17

4.1.3 Constraints . 17

4.1.4 Assumptions and considerations 18

4.2 System structure . 18

4.2.1 General System overview . 18

4.2.2 Authentication . 21

5 Application Design 23

5.1 Back-End . 23

5.1.1 Chosen Technologies . 23

5.1.2 Used Libraries and Add-Ons . 24

5.2 Front-End . 25

5.2.1 Chosen Technologies . 25

5.2.2 Used Libraries and Add-Ons . 27

5.3 Used tools . 29

Table of contents xvii

5.3.1 GIT Version Control . 29

5.3.2 PyCharm IDE . 29

5.3.3 WebStorm IDE . 29

5.3.4 PostMan . 29

5.3.5 React Developer Tools . 30

5.3.6 Redux DevTools . 30

6 Back-End Development 31

6.1 Django Fundamentals . 31

6.1.1 Django General Structure . 31

6.1.2 Django App Structure . 33

6.1.3 Django request cycle . 33

6.2 Setting up prerequires . 35

6.2.1 Setting up MySQL and Redis . 35

6.2.2 Setting up Django . 35

6.3 Implementation . 36

6.3.1 Django Apps . 36

6.3.2 Django Models . 37

6.3.3 Django Views . 38

6.3.4 Django URLs . 40

6.3.5 Django Serializers . 40

6.3.6 Custom Middleware . 41

6.3.7 Django webSocket Routing . 42

6.3.8 Django Settings . 44

6.3.9 Authorization and authentication 45

6.4 Deployment . 46

6.4.1 System general configuration . 46

6.4.2 NGINX configuration . 47

6.4.3 Server Hardening . 50

7 Front-End Development 53

7.1 React Fundamentals . 53

7.1.1 JSX . 53

xviii Table of contents

7.1.2 State . 54

7.1.3 Virtual Document Object Model 55

7.1.4 React Lifecycle Methods . 56

7.1.5 Redux . 57

7.2 Web Application Development . 59

7.2.1 Setup . 59

7.2.2 Application Structure . 60

7.2.3 Implementation . 62

7.2.4 Deployment . 68

7.3 Mobile Application Development . 69

7.3.1 Mobile Development approach . 69

7.3.2 React Native . 70

7.3.3 Expo . 71

7.4 Mobile application Implementation . 72

7.4.1 Setup . 72

7.4.2 Mobile Application Structure . 72

7.4.3 App.js . 73

7.4.4 MainNavigation.js . 75

7.5 Deployment . 81

8 Application Preview 83

8.1 Back-End . 83

8.1.1 Landing Page . 83

8.1.2 Django Admin Page . 83

8.1.3 REST API endpoints . 86

8.2 Front-End . 87

8.2.1 Web Application . 87

8.2.2 Mobile Application . 97

9 Production sites and code 111

10 Future development 113

List of figures

2.1 Client Server Model [6] . 6

2.2 N-tier [5] . 7

2.3 MVC architecture [61] . 10

3.1 Application models . 14

3.2 Use Cases . 15

4.1 System Structure . 20

6.1 Django Structure general overview [13] 32

6.2 Django Life Cycle [11] . 34

7.1 React example [41] . 54

7.2 State example [62] . 55

7.3 Virtual DOM and Browser DOM Comparison [68] 56

7.4 React lifecycle methods [47] . 57

7.5 Redux data flow [1] . 58

7.6 Default React Structure [46] . 60

7.7 My React Structure . 61

7.8 Heroku carsharing1312 App dashboard 68

7.9 Mobile Application Structure . 73

8.1 Back-End Landing Page [62] . 83

8.2 Django admin login page . 84

8.3 Django admin interface . 85

8.4 Home Page . 88

8.5 Rides . 88

xix

xx List of figures

8.6 Ride . 89

8.7 FAQ . 89

8.8 Terms and Conditions . 90

8.9 Privacy Policy . 90

8.10 Login form . 91

8.11 Register form . 92

8.12 After Login/Registration . 93

8.13 Add Ride . 94

8.14 Add Ride . 95

8.15 Edit Ride . 95

8.16 Settings . 95

8.17 My rides . 96

8.18 Requests . 96

8.19 Settings . 96

8.20 Home Screen . 97

8.21 Rides Screen . 98

8.22 Ride Filters . 99

8.23 FAQ Screen . 100

8.24 Login Screen . 101

8.25 Sign up Screen . 102

8.26 Join Ride . 103

8.27 My profile . 104

8.28 Notifications . 104

8.29 Cars . 105

8.30 Add Car . 106

8.31 Delete Car . 106

8.32 Edit Car . 107

8.33 Cars . 108

8.34 Edit Profile . 109

8.35 My Rides . 109

8.36 user’s Requests . 110

8.37 Add Ride . 110

List of Abbreviations

The next list describes several symbols that will be later used within the body of the

document.

API Application Programming Interface

ASGI Asynchronous Server Gateway Interface

CA Certificate Authority

CORS Cross-Origin Resource Sharing

CRUD Create, Read, Update,Delete

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

DBMS Database Management System

DOM Document Object Model

DRF Django Rest Framework

DV CS Distributed Version Control System

EFF Electronic Frontier Foundation

FAQ Frequently asked Questions

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

xxi

xxii List of Abbreviations

IDE Integrated development environment

IoT Internet of Things

IP Internet Protocol

JS JavaScript

JSON JavaScript Object Notation

JWT JSON Web Token

MVC Model, View, Controller

OS Operating System

PK Primary Key

QR Quick Response

RDBMS Relational Database Management System

REDIS Remote Dictionary Server

REST Representational state transfer

SQL Structured Query Language

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UFW Uncomplicated Firewall

URL Uniform Resource Locator

V CS Version Control System

WS Web Socket

WSGI Web Server Gateway Interface

Chapter 1

Introduction

1.1 Idea Description

Transportation plays a key role in society’s structure and development. It refers to the

movement of goods and people from place to place and the networks by which such move-

ment is achieved. Transportation enables trade and cultural dialog between people, which are

essential for the development of civilizations. Relocation of travelers and cargo are the most

common uses of transportation.

Passenger transportation is divided into public or private. The first refers to scheduled

services on fixed routes defined by private of public companies, meanwhile the second refers

to privately owned vehicles that provide travel services at the riders’ desire.

As big is the role of transportation to society, that big are also its costs. Technology and

mankind progress have diminished travel time between places however travels costs have not

seen a similar drop down. Although vehicles became more efficient in terms of consumption,

transportation infrastructure costs have risen and so has the petrol and gas prices. Most high-

ways have been privatized and have introduced high priced tolls to profit from their use by

vehicles. The need of a cost-efficient and sustainable way of travel has aroused.

Carpooling allows travelers to share a ride to a common destination. Carpooling has sev-

eral social and environmental impacts. From the reduce of energy consumption and gas emis-

sions to the congestion mitigation and the reduced parking demand. Furthermore, people who

use carpooling as a way to travel share their travel costs so their individual travel cost is lower.

It is a environmentally friendly and sustainable way to travel. It depicts of how a collaborative

way to travel can be beneficial for individuals and also the whole society in extend.

1

2 Chapter 1. Introduction

The idea of implementing a carpooling platform draws its origins from the most know

carpooling platform, BlaBlaCar. It has a trusted community of 90 million drivers and pas-

sengers and it is used in 22 countries worldwide. Greece is not one of these countries and

due to the fact that the need of a platform that provides a sustainable way to travel in Greece

exists, an implementation of such platform would help Greek people and Greek society in

many aspects.

1.2 Main Objective

This thesis focuses on implementing a web and mobile application that serves as a car-

pooling platform in which users will be able to offer rides. More specifically, this platform

will connect people looking to travel long distances with drivers heading the same way, so

they can travel together and share the cost. the main technical goals are to learn and extend

the knowledge of two web frameworks, their programming languages and their tools, the

client-server architecture, the creation of REST ful APIs and user-friendly interfaces and

lastly the configuration of web servers that host the two web frameworks.

1.3 Thesis Structure

In Chapter 1 introduction is developed, in which the idea and purpose of the this diploma

thesis is analyzed.

In Chapter 2 the technological and theoretical background that one must have to under-

stand the structure and development of a modern internet application is analyzed.

In Chapter 3 the application analysis takes place, which includes analyzing the idea, the

details and the scope of the application and defining the application requirements.

In Chapter 5 the technological overview of the application is analyzed including the pro-

gramming language used, the back-end and front-end frames and the database.

In Chapter 6 the back-end development from development to production state is de-

scribed.

In Chapter 7 the front-end development is described, including the development of both

web and mobile applications.

In Chapter 8 the functions that are available to the user are shown as well as the user

1.3 Thesis Structure 3

interface and the services provided.

In Chapter 9 the production sites and code repositories are listed.

In Chapter 10 some future extensions are reported.

Chapter 2

Knowledge base

This chapter provides elucidation for all unfamiliar concepts and technologies used in

this master thesis.

2.1 Software Stack

A software stack is a collection of independent components/functions that work together

to deliver specified services to the user. The components, which may be operating systems,

architectural layers, protocols, run-time environments, databases and function calls, are in a

hierarchical order. Most common web stacks are: LAMP (Linux, Apache, MySQL, PHP) and

MEAN(MongoDB, Express, Angular and Node).

2.2 Back-end

It is the server side of an application orwebsite that focuses on how the application orweb-

site functions above the hood. Back-end implements all the logic and functions of a website

and is responsible for managing the database. The most common back-end frameworks are

Express(JavaScript), Django(Python), Rails(Ruby), Laravel(PHP) and Spring(Java) [65].

2.3 Front-End

It refers to the visible part of website or web application from which the user interacts

with the application or website. The front-end portion is mainly built by using HTML, CSS

5

6 Chapter 2. Knowledge base

and in some cases also JavaScript. The most common frameworks and libraries are Bootstrap,

React, AngularJS and VueJS.

2.4 Full Stack Development

It refers to the development of both front end(client side) and back end(server side) por-

tions of web application.

2.5 Client - server model

Client-server model is an application architecture that partitions tasks and workload be-

tween a server that provides resources and the client that requests that resources. Clients and

servers interact through network connections using predefined protocols(HTTP ,SMTP ,

etc). The communication is unidirectional: The client requests a resource/service from the

server, and the latter after processing the request, returns a response. There could be mul-

tiple client components issuing requests to a server that is passively waiting for them. The

client-server model is a centralized networking model, unlike P2P which is decentralized. [6]

Figure 2.1: Client Server Model [6]

With the use of this architecture, the client side(Front-end) is free from interacting with

the database. The server side handles business logic and database queries. The traditional

client-server architecture involves two levels, a client level and a server level. But nowadays

the common design of client-server systems uses three or more levels called tiers. The N-

tier architecture is an industry-proven software architecture model. It is suitable to support

enterprise level client-server applications by providing solutions to scalability, security, fault

2.6 API 7

tolerance, reusability, and maintainability. It helps developers to create flexible and reusable

applications. These tiers are:

• The presentation tier: the front-end which deals with the interaction with the user.

• The application tier: The server, or the back-end that processes the requests of all

clients.

• The database tier: A resource manager that stores data.

Figure 2.2: N-tier [5]

2.6 API

An Application Programming Interface is a set of functions and protocols for building

an application software. APIs provide communication between services without the need

of knowing how these services are implemented. APIs allow access to the application’s

resources without exposing how these resources are implemented, while maintaining security

and control.

2.7 Representational State Transfer

REST, or Representational State Transfer, is an architecture for providing standards be-

tween computer systems on the internet, in order for the communication between them to be

easier and guided. REST-compliant systems, are called RESTful systems and are character-

ized by how they are stateless and separate the concerns and aspects of client and server.

8 Chapter 2. Knowledge base

2.7.1 Separation of client and server

In the REST architecture, the implementations of both the client and the server are done

independently. This means that the codes on either the client or the server side can be changed

at any time. By using a REST, different clients may request resources from the same REST

endpoints and receive the same responses.

2.7.2 Statelessness

Systems that follow the REST paradigm are stateless. This means that both the server

and the client doesn’t know about the state of the other. These constraints help RESTful

applications achieve quick performance and scalability, as their components can be managed,

updated, and reused without affecting the system as a whole.

2.7.3 Client and Server communication

In the REST architecture, clients send requests to retrieve ormodify resources, and servers

send responses to these requests.

The 4 most common HTTP request methods are[32]:

HTTP request Meaning

GET retrieve a specific resource

POST create a new resource

PUT/PATCH update a specific resource

DELETE remove a specific resource

The most common HTTP response/status codes[33]:

2.8 MVC 9

Status Code Meaning

200 (OK) Successful HTTP request

201 (CREATED) Successful HTTP request that resulted in a resource creation

204 (NO CONTENT) Successful HTTP request where nothing is being returned

400 (BAD REQUEST) Bad request syntax, excessive size or other client error

401 (UNAUTHORIZED) Lacks of authentication credentials

403 (FORBIDDEN) The client does not have permission to access the resource requested

404 (404) The resource cannot be found on the server

500 (INTERNAL SERVER ERROR) The generic response for a server error

2.8 MVC

MVC is short for Model, View, and Controller. MVC is a popular way of organizing your

code. [21]

• Model: It is our data representation. It serves as an intermediate between the data stored

in the database and the functions available. It allows to interact with your data without

having to write complex database queries.

• View: I represents what a user see on its browser/mobile application.

• Controller: It provides the logic to either handle presentation flow in the view or update

the model’s data. It implements the logic to alter the model and in extend the database,

or alter the visual contents the end user sees.

10 Chapter 2. Knowledge base

Figure 2.3: MVC architecture [61]

2.9 Python Virtual Environment

Since this application uses a set of dependencies that don’t come as a part of the Python

standard library they must be installed for all instances of the application, namely the devel-

opment and testing on the local machines of developers and the production server. Python

Virtual Environment was used for these purposes.

A Virtual Environment is a tool to keep the dependencies required by different projects

in separate places, by creating virtual Python environments for them. It solves the “Project

X depends on version 1.x but, Project Y needs4.x” dilemma, and keeps global site-packages

directory clean and manageable. [37]

A list of all the dependencies that are installed in the virtual environment can be found in

the requirements.txt file in the project’s root directory. The guide for installing and configur-

ing the virtual environment is described in chapter 6.

Chapter 3

Application Analysis

This chapter will focus on the analysis of the project as a part of a software development

that connects customer’s requirements to the system and its subsequent design and devel-

opment. Analysis of software project is intended to define the detailed description of the

application, break it down into requirements to the system, their systematization, detection

of dependencies, and documentation.

3.1 Functional requirements

Functional requirements specify the behaviors the product will exhibit under specific con-

ditions. They describe what the developers must implement to enable users their require-

ments.

3.1.1 Authorization

F1. Sign up / Login. User shall be able to sign up, providing username, password, email,

avatar, phone etc, and will also be able to log in with those credentials.

F2. Sign up / Log in via Facebook. User shall be able to sign up to the application with

his Facebook account. The application shall load user’s data such as name, surname,

email, date of birth, etc.

F3. Logout: Authorized user shall be able to log out. In this case, he/she shall also stop

receiving any notifications from the application.

F4. View profile: Only authenticated users have permission to see other users profiles.

11

12 Chapter 3. Application Analysis

3.1.2 Rides

F5. Browse rides: All users, including not authenticated ones will be able to browse the

rides offered.

F6. View ride details: All users, including not authenticated ones will be able to view the

details(origin, destination, etc.) of the ride offered.

F7. Create / Edit / Delete Ride: Authenticated users will be able to create new rides or edit

or delete theirs. The creation of a ride, requires the ownership of at least one car to host

the ride.

F8. Join ride: Authenticated users will be able to join a ride offered by another authenticated

user.

F9. Accept / Deny ride request: Users that offer a ride, can accept or deny others requests

to join their ride.

F10. Unjoin from ride: Users that already joined a ride, can unjoin.

3.1.3 Cars

F11. Add / Edit / Delete car: Authenticated users will be able to add/edit/remove a car they

own.

3.1.4 Notifications

F12. View user notifications. User shall receive information about their requests to join

rides.

F13. Mark notifications as read. User shall be able to mark the notifications received as

read.

3.2 Non-functional requirements

Non-functional requirements are requirements that describe not what the software will

do, but how the software will do it and in extend what how will the developer implement

3.2 Non-functional requirements 13

them.

3.2.1 Back-end API

NF1. RESTful. Back-end API shall follow architectural constraints of REST architectural

style.

NF2. HTTPS. The server shall communicate with the client via HTTPS.

NF3. mySQL database. mySQL shall be used as the primary DBMS.

NF4. Server configuration and deployment. The virtual Machine that the back-end server is

running on, must be properly configured and deployed in order to maintain the security,

the integrity and the load balance of the application.

3.2.2 Front-end

NF5. User friendly. The user interfaces (both the web and mobile clients) must have simple,

easy-to-understand and friendly components.

NF6. Performance optimized code. Every component, function and service implemented

must be performance optimized, as not to consume many resources.

NF7. HTTPS. The front-end shall communicate with the users via HTTPS.

3.2.3 Models Schema

After analyzing the functional requirements we define three (3) models that have self-

explanatory fields that help describe its model instance.

• User model, with the fields: username, password, email, avatar, date of birth, gender,

country, phone number, has viber, has whatsup.

• Ride model, with the following fields: origin, destination, date, time, vacant seats, car,

create

• Car model, with the following fields: plate, brand, model, year, color.

14 Chapter 3. Application Analysis

To bemore specific about the model relations between each other, the user and car models

are connected via one to many relationship. The user and ride models are connected via many

to many relationship. The ride and car models are connected via one to one relationship. The

ride request and ride models are connected via many to one relationship. Finally, the ride

request and the user models are connected via one to one relationship. Explanatory, each user

can create many rides, with a car linked to each ride. If no car exists, then the user cannot

create a ride. When a user joins a ride, a ride request model instance is created to link the

requested user and the offered ride.

For simplification of understanding of the primarymodel classes and their behavior, it was

decided to define so-called Domain model. The Domain model is the visual representation

of conceptual classes. Domain model is visualization of things in real-world, not of software

components such as C++ or Python class.

To better describe the models and their relations, the following schema/domain model

was produced:

Figure 3.1: Application models

3.2 Non-functional requirements 15

3.2.4 Use cases

Use cases were defined after analyzing both functional and non-functional requirements.

Use cases documentation serves for better understandings of functionality required from the

system.

Figure 3.2: Use Cases

Chapter 4

Application architecture

This section provides an overall description of the project functions and requirements.

4.1 Introduction

4.1.1 Product perspective

The back-end will serve as a REST ful API that the web and mobile clients will con-

sume. As stated before, by following this development path the complexity of back-end will

be hidden from the user interface. It handles all logic computations and queries the database.

On the other hand, the front-end handles all user actions and fetches resources from the back-

end.

4.1.2 Operating Environment

The platform will be written in Python and JavaScript and therefore could be run on both

Windows or Unix systems. It is also recommended to host the back-end service behind a web

server like Apache or Nginx for load-balancing. Nginx has inbuilt wSGI support so it is the

web server chosen. Although the platform could have any RDMS as database, MySQL is

preferred. .

4.1.3 Constraints

This platform requires an active internet connection due to the fact that it is an online

service. It enables the communication between users.

17

18 Chapter 4. Application architecture

4.1.4 Assumptions and considerations

Although basic security measures and permissions checks will be implemented in order

to secure both client and server from security threats, the initial version of this project will

not be extremely focused on security. CSRF attack counter measures will be implemented

and user input preprocessing will take place. The back-end server will be implemented using

most known security measures and patterns. All data transmitted will be encrypted using

SSL/TLS. Data storage on the back-end server and its database will not be encrypted, except

for passwords storage. Front-end storage will use HTML5 localStorage system in the web

application and AsyncStorage system in the mobile application. In both of these systems, no

data will be encrypted. Other possible security problems may arise in the future, but are out

of the scope of the initial idea.

4.2 System structure

4.2.1 General System overview

The whole application system is divided into components. Principal components are

1. The Server,

2. The Web client,

3. the Android and iOS client

The detailed structure of the server and its connection with external interfaces are pre-

sented at figure 4.1. As seen in the diagram, the inside of the server is divided into components

that are responsible for storing and processing data of application entities. This components

are called apps in Django. Apps communicate with the database via Djangomodels.Models in

Django is an interface designed to simplify querying to the database. As seen in the diagram,

the server provides interface for the client applications to communicate via Representational

State Transfer (REST) API.

Django framework provides a web server for development only. So before stepping to

production environment we have to configure a production ready web server. But traditional

web servers do not understand or have any way to run Python applications. So Gunicorn and

4.2 System structure 19

Daphne application web servers are used to handle HTTP and Web-Socket requests respec-

tively.

Further explanation of the chosen technologies and their components will be discussed

on chapters 5, 6 and 7.

20 Chapter 4. Application architecture

Figure 4.1: System Structure

4.2 System structure 21

4.2.2 Authentication

Although a non authenticated user can browse the rides users offer he/she cannot use

the application in full extend. The user has to be authenticated in order to join or add rides.

The carpooling application provides in-app registration as well as registration via the user’s

Facebook account. Authentication will be implemented with JWT [25]. When a user logs

in/sign ups, the server will respond with a JWT token that the user will store. With this

token, the user will be authenticated every time he makes a call to the back-end API .

Traditional authentication

The traditional authentication is conducted by registering the user’s credentials to the

server. The registration is served by django framework itself with the use of some 3rd-party

add-ons which will be described later on 5. Passwords are hashed, but other data is stored

plain-texted.

Facebook authentication

With the use of Facebook’s Graph API , a user logs in to the application and the server

receives all necessary information about the user.

Chapter 5

Application Design

5.1 Back-End

5.1.1 Chosen Technologies

Python

Python is the base of the server. It was chosen as a primary programming language

because it was designed to be simple and highly readable, which is crucial for large-scale

projects. Its syntax and standard library simplify and speed up development. [36]

Django

Django is an open source web framework for Python. It provides a high-level abstraction

of common web development patterns. Django framework follows Model-View-Controller

(MVC) design pattern. It usesMVC to separate model as a data and a business logic of the

application, view as a representation of the information for the user, in this case, the client

side of the application and controller as an interface of the application, in this case, set of

URLs to communicate with front-end. [12]

Django REST

Django REST framework is an open source project built on Django framework. It con-

tains needed tools for implementation of the REST ful API such as serializers, pagination,

permissions and more. [14]

23

24 Chapter 5. Application Design

MySQL

MySQL is powerful, open source relational DBMS that provides tons of features and

flexibility. It is used for small but also large scale applications. Django framework provides

great API for working with MySQL databases. [27]

Nginx

Nginx[engine-x] is anHTTP and reverse proxy server, a mail proxy server, and a generic

TCP1/UDP2 proxy server [30]. According to Netcraft, nginx served or proxied 25.58% bus-

iest sites in July 2020 [31].

Gunicorn

Gunicorn [22] is a stand-aloneWSGI web application server which offers a lot of func-

tionality. It natively supports various frameworks with its adapters, making it an extremely

easy to use drop-in replacement for many development servers that are used during develop-

ment.

Redis

Redis(Remote Dictionary Server) is an in-memory data structure project implementing a

distributed, in-memory key–value database with optional durability. Redis is often the most

popular key-value database because it is considered at the same time a store and a cache.

Redis provides a data model that is very unusual compared to a RDBMS which makes the

retrieval of documents really fast.[57]

Daphne

As Gunicorn application server cannot handle webSocket requests, Daphne, a HTTP ,

HTTP2 and webSocket protocol server for ASGI and ASGI-HTTP , is used. [8]

5.1.2 Used Libraries and Add-Ons

Mysqlclient

Mysqlclient adds Python 3 support to MySQLdb which is an interface to the popular

MySQL database server that provides the Python database API . [28]

5.2 Front-End 25

Django-cors-headers

A Django App that adds CORS[17] headers to responses. This allows in-browser re-

quests to your Django application from other origins. Adding CORS headers allows your

resources to be accessed on other domains. More on CORS headers on [7].

Django-allauth

Django-allauth is a python library developed for Django that supports multiple authen-

tication schemes (e.g. login by user name, or by e-mail), as well as multiple strategies for

account verification (ranging from none to e-mail verification). [16]

Django-rest-auth

django-rest-auth is a package that provides a set of REST API endpoints to handle User

Registration and Authentication tasks, such as User Registration with activation, Login/Lo-

gout, Retrieve/Update the Django User model, Password change, Social Media authentica-

tion. [19]

Django-notifications

django-notifications is a GitHub notification alike app for Django. It is used to implement

notifications into the application. [18]

Django Channels

Channels is a project that takes Django and extends its abilities beyond HTTP - to handle

webSockets, chat protocols, IoT protocols and more. It’s built on a Python specification

called ASGI . It is used to implement webSocket connection and handling. [9]

5.2 Front-End

5.2.1 Chosen Technologies

JavaScript

JavaScript is a high-level, multi-paradigm languagewith a dynamic type system. JavaScript

is considered to be a core technology of web development, present on more that 94% of all

26 Chapter 5. Application Design

websites. As a multi-paradigm language, JavaScript supports several programming styles,

and even combines them; be it event-driven, functional, or an imperative paradigm. Although

initially only aimed to be a client-side language for web browsers, JavaScript is currently also

being used on web servers. Given that JavaScript is generally processed(using a JavaScript

engine), the resulting interpreted (or compiled) code is typically platform agnostic. Further-

more it is easily debugged due to the existence of many implemented in-browser tools. [24]

React

React (also known as React.js or ReactJS) is an open-source JavaScript library for build-

ing user dynamic interfaces or UI components. It is maintained by Facebook, Instagram and

a community of individual developers and companies. React utilizes so-called components

as a main building block. Each component is either a JavaScript function (a stateless compo-

nent), or a JavaScript class (a stateful component). A stateless component returns the HTML

markup directly, whereas a stateful component extends the React.Component class and im-

plements the render() method, which returns either another component, or HTML markup.

[38]

React-Native

React Native is an addition to React universe. It is a framework developed for native

application development for both iOS and Android. It uses the same design patterns and

architecture principles as React and extends them, allowing us to build rich and friendly

mobile user interfaces. While extending React, it also extends the native system (iOS or

Android) giving access to native mobile components. [49]

Expo

Expo is a set of tools and services built around React Native and native platforms that

help you develop, build, deploy, and quickly iterate on iOS, Android, and web apps from

the same JavaScript/TypeScript codebase. React Native does not give you all the JavaScript

APIs you need out of the box, but only most primitive features. Expo aims to enhance React

Native and provide all the JavaScript API you need for the most common needs. [20]

5.2 Front-End 27

5.2.2 Used Libraries and Add-Ons

Ant-design

Ant Design is a React UI library that has a set of components that are useful for building

elegant user interfaces. It is created and maintained by Chinese Alibaba. [2]

Redux

Redux is a predictable state container for JavaScript apps. It helps you write applications

that behave consistently, run in different environments (client, server, and native), and are

easy to test. Its React binding is React-Redux. It lets your React components read data from

a Redux store, and dispatch actions to the store to update data. [58]

Redux-Thunk

Redux Thunk is a middleware that lets you call action creators that return a function in-

stead of an action object. That function receives the store’s dispatch method, which is then

used to dispatch regular synchronous actions inside the body of the function once the asyn-

chronous operations have completed. [60]

React Router

React Router is the standard routing library for React. From the docs: ”React Router keeps

your UI in sync with the URL”. It has a simple API with powerful features like lazy code

loading, dynamic route matching, and location transition handling built right in. [55]

Axios

HTTP client for the browser and node.js. [4]

MomentJS

MomentJS is a JavaScript library which provides an easy way of parsing, validating,

manipulating and displaying date/time objects in JavaScript. [26]

React-facebook-login

A React component for Facebook Login. [42]

28 Chapter 5. Application Design

React-faq-component

A React package to render FAQ section. [43]

React-google-maps

A React Google Maps integration component. [45]

React Places Autocomplete

A React component to build a customized UI for Google Maps Places Autocomplete.

[54]

React-awesome-button

React-awesome-button is a performant, extendable, highly customisable, production ready

React Component that renders an animated set of 3D UI buttons. [39]

React Native Async Storage

An asynchronous, un-encrypted, persistent, key-value storage system for React Native.

[3]

React Navigation

React Navigation provides routing and navigation for your React Native apps. [53]

NativeBase

Essential cross-platform and open-sourceUI components for React Native&VueNative.

[29]

React Native Elements

React Native Elements is a useful set of reusable components for your React Native ap-

plication. [50]

React-native-maps

React Native Map components for iOS + Android. [51]

5.3 Used tools 29

React-native-maps-directions

Directions component for react-native-maps. Helps draw a route between two coordi-

nates, powered by the Google Maps Directions API . [52]

5.3 Used tools

5.3.1 GIT Version Control

Version control is a system that monitors changes in a file or a set of files and allows users

backtrack to a previous state if needed.

Git is a distributed version control system for monitoring changes to source code during

software and application development. It is designed to coordinate work between developers,

but can also be used to monitor changes to any file set. Its goals include speed, data integrity,

and support for distributed, non-linear workflows.

5.3.2 PyCharm IDE

PyCharm is an IDE used in computer programming, specifically for the Python lan-

guage. It provides code analysis, a graphical debugger, an integrated unit tester, integration

with version control systems (V CSes), and supports web development with Django. It is

maintained by JetBrains and it provides educational licences for students. [35]

5.3.3 WebStorm IDE

WebStorm is a powerful IDE for modern JavaScript development. WebStorm provides

full support for JavaScript, TypeScript, HTML, CSS as well as for frameworks such as

React, Angular, and Vue. js right out of the box, no additional plugins are required. It is also

maintained by JetBrains and it provides educational licences for students. [67]

5.3.4 PostMan

Postman is a software development tool. It enables people to test calls to APIs. It offers

a sleek user interface with which to make HTTP requests, without the hassle of writing a

bunch of code just to test an API’s functionality. [34]

30 Chapter 5. Application Design

5.3.5 React Developer Tools

React Developer Tools is a tool that allows you to inspect a React tree, including the

component hierarchy, props, state, and more. It is used for debugging a React application.

[40]

5.3.6 Redux DevTools

Redux Developer Tools to power-up Redux development workflow or any other archi-

tecture which handles the state change. It can be used as a browser extension (for Chrome,

Edge and Firefox), as a standalone app or as a React component integrated in the client app.

It is also used for debugging a React application combined with Redux. [59]

Chapter 6

Back-End Development

This chapter contains a description of the implementation of the project’s server side.

The first part will describe the structure of the project and the fundamentals of a Django

project and the next parts will describe the implementation of the carpooling application. It is

intended to familiarize the reader with the implementation of this application and to simplify

the understanding of the structure of the project for future developers.

6.1 Django Fundamentals

6.1.1 Django General Structure

Django as a framework determines the structure of the whole system. Django project is

divided into logical parts, apps. Apps contain a set of modules with classes, which implement

interfaces and extend classes, which are provided by Django. A Django project composes of

one or more Django apps.

31

32 Chapter 6. Back-End Development

Figure 6.1: Django Structure general overview [13]

As shown in 6.1 we can define the following key modules:

• django_project root folder. This is the root folder of your Django application.

• django_project. The main Django application. It is the automatically generated. It is

the entry point of all requests made to Django.

• apps. Our defined apps.

• templates/static/media. The folder that holds all static content that django application

uses.

• manage.py. A command line utility for executing django commands.

• virtual_env. The folder in which virtual environment files(installed packages, python

variables etc) are stored.

The main automatically generated app (django_project in the above figure), contains the

following:

• __init.py__. The file that defines that the folder is a Python/Django package.

6.1 Django Fundamentals 33

• urls.py. It contains URL configurations/paths.

• settings.py. Contains the global settings for the Django application.

• wsgi.py & asgi.py. Although not included in the above figure, they enable WSGI and

ASGI compatibility.

Django doesn’t require certain structure of files and folders, however the proposed way

presented in Django Documentation has an underlying logic.

6.1.2 Django App Structure

To create a functional Django website, Django applications must be created. They add

functionality, simplicity and re usability to the whole application because they divide the

global application into several reusable parts.

Inside every app, Django creates the following files/folders:

• migrations. This folder stores migrations and changes to the database.

• admin.py. Where django models are registered to to the admin interface.

• apps.py is a configuration file for the app.

• models.py. Contains the models of the app.

• tests.py. Contains test procedures for testing the app.

• views.py. Contains the logic and the rendering process of the app.

• __init__ The file that defines that this folder (your Django app) is a Python package.

6.1.3 Django request cycle

The flow shown in 6.2 depicts the request-response cycle of a Django application. Django

architecture is divided in several layers that handle gradually a request made to Django.

In a general Django application, a client issues a request to the server following the

HTTP protocol. The first layer to handle that request are Request Middleware. They pro-

vide functions like authentication, authorization and session management. Afterwards, the

request is passed to the URL Router where the path of the specific request will be match

34 Chapter 6. Back-End Development

with the application’s implemented URL paths. When a request is match it will be handled

to the View to be processed. The logic business of the Django application takes place in the

View layer. From there, access and processing of the database is made. The View is respon-

sible of rendering the Response(HTML/XML/JSON /etc.) with the data that’s retrieved

from the database. [66]

In this project, Django REST framework is used to extend Django. In short, Django is

transformed in a REST API. In depth, DRF extends the Django Middleware layer, adding

parsers, functions and other services/modules. More on [10]

One of these modules are Serializers:

This component transforms Django data. They allow complex data as query sets to be con-

verted to Python data types, that can me easily rendered into JSON , XML and other for-

mats. They also provide deserialization, allowing parsed data to be transformed into complex

model types.

Figure 6.2: Django Life Cycle [11]

6.2 Setting up prerequires 35

6.2 Setting up prerequires

6.2.1 Setting up MySQL and Redis

In this section, we will briefly discuss, the database set up.

First of all, we have to setup our database and our cache server. We first install MySQL and

Redis servers.

sudo apt install mysql-server && redis-server # installing mysql

and redis

sudo apt install python3-dev libmysqlclient-dev

default-libmysqlclient-dev # install dependencies for mysql

Secondly, we set up our MySQL database, We Login via the MySQL root user, create a

database, create a new User and link the newly created database to the newly created user.

Lastly, we must ensure that MySQL and Redis servers are up and running.

6.2.2 Setting up Django

In this section we explain briefly some configurations a developer must do, in order for

Django to communicate successfully withMySQL andRedis, as well as some other minimum

configurations to get a project started.

Firstly we create our new virtual environment in which django would run.

python3 -m venv env # last parameter is the name of the new

virtual environment

. env/bin/activate # we activate our virtual env

pip install django # we install django

django-admin startproject djangoproject # we start a project

named ’djangoproject’

Secondly we edit, settings.py and we make the following configurations:

TIME_ZONE. We set our time zone.

LANGUAGE_CODE. We set our language.

STATIC_ROOT = os.path.join(BASE_DIR, ’static’)$

ALLOWED_HOSTS = [’your server IP address’]$

DATABASES = {

36 Chapter 6. Back-End Development

’default’: {

’ENGINE’: ’django.db.backends.mysql’,

’NAME’: OUR DATABASE NAME,

’USER’: THE USER WE SET UP,

’PASSWORD’: THE PASSWORD OF THE USER,

’HOST’: ’127.0.0.1’,

’PORT’: ’3306’,

}

}

REDIS_URL = os.getenv(’REDIS_URL’, ’redis://localhost:6379’)

CHANNEL_LAYERS = {

’default’: {

’BACKEND’: ’channels_redis.core.RedisChannelLayer’,

’CONFIG’: {

’hosts’: [REDIS_URL],

},

},

}

6.3 Implementation

6.3.1 Django Apps

The project was divided into the following apps:

• user. This app includes modules for storing and processing information about the user.

• cars. This app includes modules for storing and processing users’ cars.

• rides. This app includes modules for storing and processing users’ rides.

• notifier. This app, in addition with ”django-notifications” is responsible for processing

users’ notifications.

• rideRequests. This app includes modules for storing and processing users’ requests to

offered rides.

6.3 Implementation 37

6.3.2 Django Models

Django models is an interface for simplified querying to the database. Thus, each app,

contains a module models. In this module, there are models that completely describe the

database. Despite what kind of DBMS is used (PostgreSQL or SQLite or MySQL), managing

it and configuring in is a complex process. Especially in SQL databases making queries for

creating, deleting or updating can be complicated. Django models simplify every database-

related task and provide an easy and simple environment for development, testing and de-

ployment.

Model that represent a User in the database:

class User(AbstractUser):

GENDER = Choices(

(’M’, ’Male’),

(’F’, ’Female’),

(’O’, ’Other’)

)

dob = models.DateField(max_length=8,

default=datetime.date(1999, 12, 31))

phone_number = models.TextField(max_length=12, blank=True,

null=True, verbose_name=’Τηλέφωνο’)

avatar = models.ImageField(upload_to=’avatar/’,

default=’avatar/default-avatar.jpg’, blank=True)

gender = models.CharField(blank=True, null=True, max_length=1,

default=GENDER.O, choices=GENDER, verbose_name=’Φύλο’)

country = models.CharField(max_length=3, blank=True,

verbose_name=’Χώρα’, null=True)

has_whatsup = models.BooleanField(blank=True, null=True,

verbose_name=’Whats up messenger platform’)

has_viber = models.BooleanField(blank=True, null=True,

verbose_name=’Viber messenger platform’)

is_confirmed = models.BooleanField(default=True,

verbose_name=’Επιβεβαιωμένος χρήστης’)

38 Chapter 6. Back-End Development

for future confirmation by admins of user ID or PASSPORT

6.3.3 Django Views

Django view is a method that is called during request on certainURL. This function takes

a HTTP request and returns a web response. In the case of Django REST framework, a

JSON response is returned. The main logic of processing requests is in the views. Django

REST framework simplify the implementation of such functions and the corresponding aux-

iliary classes (serializers, pagination, etc.)

Here’s a view that returns the current date and time, as an HTML document:

from django.http import HttpResponse

import datetime

def current_datetime(request):

now = datetime.datetime.now()

html = ”<html><body>It is now %s.</body></html>” % now

return HttpResponse(html)

Django provides a more generic way to implement views as Python objects instead of

defined functions.

In a class-based view, the previous example would become:

from django.http import HttpResponse

from django.views import View

import datetime

class MyView(View):

def get(self, request):

now = datetime.datetime.now()

html = ”<html><body>It is now %s.</body></html>” % now

return HttpResponse(html)

Django focuses on code reusability and has implemented generic views for that purpose.

They take common patterns found in web development(for example CRUD operations) and

abstract them so that a developer can quickly write common views without much complexity.

6.3 Implementation 39

Using generic views can speed up development substantially. Django comes with a handful

of built-in generic views to help implement list and detail views of objects, but also views

that create or edit objects.

Say we have a model called Book. The example below shows the simplicity of returning

a list of instances of Book model, to the front-end.

from django.views.generic import ListView

from .models import Book

class PublisherList(ListView):

model = Book

The view of getting the list of offered rides looks like:

class RideListView(ListAPIView):

queryset = Ride.objects.all()

serializer_class = RideListSerializer

permission_classes = [AllowAny,]

def get_queryset(self):

queryset = Ride.objects.all().order_by(’created’)

origin = self.request.query_params.get(’origin’, None)

print(origin)

if origin is not None:

queryset = queryset.filter(origin__contains=origin)

destination = self.request.query_params.get(’destination’,

None)

if destination is not None:

queryset =

queryset.filter(destination__contains=destination)

date = self.request.query_params.get(’date’, None)

if date is not None:

print(date)

queryset = queryset.filter(date=date)

40 Chapter 6. Back-End Development

vacant_seats = self.request.query_params.get(’passengers’,

None)

if vacant_seats is not None:

print(vacant_seats)

queryset = queryset.filter(vacant_seats__gte=vacant_seats)

return queryset

6.3.4 Django URLs

The urls module in Django is responsible for linking the URL endpoints to their corre-

sponding views. It contains a list of path objects. In rides app it looks like this:

urlpatterns = [

path(’’, RideListView.as_view(), name=’list_rides’),

path(’myrides/’, MyRidesListView.as_view(), name=’myrides’),

path(’create/’, RideCreateView.as_view(), name=’create_ride’),

path(’<int:pk>/’, RideDetailView.as_view(), name=’detail_ride’),

path(’<int:pk>/edit/’, RideEditView.as_view(),

name=’edit_ride’),

path(’’, include(’rideRequests.urls’)),

]

6.3.5 Django Serializers

Django REST serializers is an interface that provides the Django REST framework for

simplifying the serialization and deserialization of instances of Django models. Serializers

allow the two-way transformation of complex Django data to JSON format. One simple se-

rializer in ride app looks like this:

class RideListSerializer(serializers.ModelSerializer):

uploader = SimpleUserSerializer(read_only=True)

time = serializers.TimeField(required=False)

6.3 Implementation 41

class Meta:

model = Ride

fields = (’pk’, ’origin’, ’destination’, ’type’,

’date’, ’time’, ’periodic’, ’vacant_seats’,

’uploader’,

)

depth = 1

6.3.6 Custom Middleware

As stated earlier, authentication is achieved with JWT tokens. After the client logs in, the

server responds with a JWT token to be stored in the client for futureCRUD operations. As

the user requests a secured resource from the server with an HTTP request, it is necessary

to identify who this user is and if he/she has permission to access that resource. So the client

sends the JWT token with the requests headers and the server captures it into a custom

middleware, decode it, and authenticates the user.

The custom middleware used in capturing JWT token and authenticating the user in

HTTP requests is:

class AuthenticationMiddlewareJWT(object):

def __init__(self, get_response):

self.get_response = get_response

print(’middlewareSTART’, flush=True)

def __call__(self, request):

print(’middleware’)

request.user = self.__class__.get_jwt_user(request)

print(request.user)

return self.get_response(request)

@staticmethod

def get_jwt_user(request):

42 Chapter 6. Back-End Development

print(request.headers)

user = get_user(request)

print(user, flush=True)

if user.is_authenticated:

return user

try:

user_jwt =

JSONWebTokenAuthentication().authenticate(Request(request))

print(user_jwt, flush=True)

if user_jwt is not None:

return user_jwt

except:

pass

return user # AnonymousUser

Similar toHTTP requests, webSocket requests must be authenticated. So, the client due

to the fact that the browsers do not support passing JWT authentication headers on web-

Socket upgrade, sends the JWT as parameters in the URL. This is totally insecure without

usingHTTPS. I have also written another custom middleware for webSocket connections.

6.3.7 Django webSocket Routing

Normally, a client communicates with the Django application with HTTP protocol.

1. The client sends an HTTP request to the server.

2. Django parses the request, extracts a URL, and then matches it to a view.

3. The view processes the request and returns an HTTP response to the client.

Using HTTP protocol, for a server to send a response, firstly it has to receive a request

from a client. By using webSockets protocol a server can send data to the client without the

latter requesting it. They allow bi-directional communication. WebSocket messages are sent

using the ws(s):// prefix, as opposed to http(s):// which is the prefix for HTTP /HTTPS

requests.

The routing.py:

6.3 Implementation 43

websocket_urlpatterns = [

path(r’ws/’, consumers.MyConsumer),

]

Consumersmodule, handle the connections between the clients and the server. Consumers

are similar to Django views. If a client connects to the application, he/she will be added to

the ”users” group and will be able to receive messages on certain events. When this client

disconnects from the application, the channel is removed from the group, thus the user will

stop receiving messages.

My consumer:

class MyConsumer(WebsocketConsumer):

def connect(self):

Checking if the User is logged in

if self.scope[”user”].is_anonymous:

Reject the connection

self.close()

else:

self.group_name = str(self.scope[”user”].pk) # Setting

the group name as the pk of the user #

primary key as it is unique to each user. The group

name is used to communicate with the user.

async_to_sync(self.channel_layer.group_add)(self.group_name,

self.channel_name)

self.accept()

Function to disconnect the Socket

def disconnect(self, close_code):

self.close()

pass

Custom Notify Function which can be called from Views or api

to send message to the frontend

def notify(self, event):

44 Chapter 6. Back-End Development

self.send(text_data=json.dumps(event[”text”]))

def addRequests(self, event):

self.send(text_data=json.dumps(event))

def removeRequests(self, event):

self.send(text_data=json.dumps(event))

def removeMYRequests(self, event):

self.send(text_data=json.dumps(event))

def updateRequests(self, event):

self.send(text_data=json.dumps(event))

def sendNotification(self, event):

self.send(text_data=json.dumps(event))

By that process we achieve bidirectional and asyncronous communication between the

client and the server.

6.3.8 Django Settings

Django settings is a module that contains all the configuration of the Django project. The

main configurations to notice are:

• INSTALLED_APPS. A list of all apps in the project.

• ALLOWED_HOSTS. A list of the host/domain names that this Django site can serve.

• REST_FRAMEWORK.PAGE_SIZE. The page size in terms of objects, in the JSON

response of Django REST framework.

• DEBUG. Turn on/off debug mode.

• DATABASES. The settings for all databases to be used with Django.

A complete list of settings available in Django can be found in the official documentation

[15].

6.3 Implementation 45

6.3.9 Authorization and authentication

Due to the fact that the front-end is a single page application, JSON Web Tokens(JWT)

were chosen as the best practice. On the back-end side Django Rest Framework provides

many plugins that allow authentication through the use of JWT tokens. The use of JWT

allows the storing of any kind of information in the ”payload” part of the token. In our im-

plementation we will be storing user information as the user identifier (User Primary Key),

his/her token, and other vital information for the front-end.

In order to use JWT authentication effectively, we must configure again settings.py. We

set the following:

JWT_AUTH = {

’JWT_EXPIRATION_DELTA’: timedelta(hours=100),

’JWT_ALLOW_REFRESH’: True,

’JWT_SECRET_KEY’: SECRET_KEY,

’JWT_AUTH_HEADER_PREFIX’: ’JWT’,

}

REST_USE_JWT = True

REST_SESSION_LOGIN = False

In addition, because a user should be able to login/signup via Facebook, we configure

django-all-auth as:

SOCIALACCOUNT_PROVIDERS = {

’facebook’: {

’METHOD’: ’js_sdk’,

’SDK_URL’: ’//connect.facebook.net/{locale}/sdk.js’,

’SCOPE’: [’email’, ’public_profile’, ’picture’, ’id’],

’AUTH_PARAMS’: {’auth_type’: ’reauthenticate’},

’INIT_PARAMS’: {’cookie’: True},

’FIELDS’: [

’id’,

’email’,

’name’,

’first_name’,

’last_name’,

46 Chapter 6. Back-End Development

’verified’,

’locale’,

’timezone’,

’link’,

’gender’,

’updated_time’,

],

’EXCHANGE_TOKEN’: True,

’LOCALE_FUNC’: lambda request: ’en_US’,

’VERIFIED_EMAIL’: False,

’VERSION’: ’v2.12’,

}

}

6.4 Deployment

The back-end is deployed on Okeanos. Okeanos is GRNET’s cloud service, for the Greek

Research andAcademicCommunity. TheVirtualMachine that Okeanos provides runsUbuntu

18.04 OS. After finishing implementing the application and connecting it with the database, it

is essential to configure Gunicorn and Daphne application servers. Daphne can serveHTTP

requests as well as WebSocket requests. For stability and performance, we will use Gunicorn

to serve HTTP requests and Daphne to serve webSocket requests. We will also set up Ng-

inx in front of Gunicorn/Daphne to take advantage of its load-balancing mechanisms and its

security features.

6.4.1 System general configuration

We will use supervisor as our process management system. Supervisor is a client/server

system that allows its users to monitor and control a number of processes on UNIX-like op-

erating systems[63]. Supervisor will be responsible of starting, restarting, and stopping Gu-

nicorn and Daphne services. The use of supervisor simplifies the control of services because

it provides a web interface, served on port 9001.

sudo apt-get install supervisor

https://okeanos.grnet.gr/home/
https://grnet.gr/en/

6.4 Deployment 47

nano /etc/supervisor/conf.d/gunicorn.conf # creation of Gunicorn

configuration file

We enter the following configuration. We have to ensure that the path to gunicorn exe-

cutable is correct.

[fcgi-program:gunicorn]

TCP socket used by Nginx backend upstream

socket=tcp://localhost:8001

Directory where your site’s project files are located

directory=/home/user/api/carsharing_backend

Each process needs to have a separate socket file, so we use

process_num

Make sure to enter the correct path to gunicorn!

command=/home/user/api/venv/bin/gunicorn

django_backend.wsgi:application --name ”gunicorn” --workers=4

--capture-output --log-level=debug --bind

unix:/run/gunicorn/gunicorn.sock

Automatically start and recover processes

autostart=true

autorestart=true

Choose where you want your log to go

stdout_logfile=/var/log/supervisor/gunicorn.log

redirect_stderr=true

6.4.2 NGINX configuration

Gunicorn andDaphne application servers are designed to sit behind a reverse proxy server

that handles load balancing, caching, and preventing direct access to internal resources.

Django and Gunicorn/Daphne in extent, are not designed to serve static files. So NGINX

has to be configured to serve them separately.

48 Chapter 6. Back-End Development

In order for our production server to be secure, the use of HTTPS is mandatory.HTTPS

is HTTP with TLS() encryption. HTTPS uses TLS (SSL) to encrypt normal HTTP

requests and responses, making it safer and more secure. HTTPS provides critical security

and data integrity for both the server and the users’ personal information. It prevents intruders

from being able to passively listen to communications between the server and the clients.

To set up HTTPS and its dependant certificates we make use of the global non-profit

Certificate Authority (CA) Let’s Encrypt, which is sponsored by Electronic Frontier Foun-

dation (EFF), the Mozilla Foundation, Google and other organizations and companies. The

Certbot tool is used to add HTTPS certificate to the back-end website. Certbot is a free,

open source software tool for automatically using Let’s Encrypt certificates and is developed

by EFF , a 501(c)3 nonprofit based in San Francisco, CA, that defends digital privacy, free

speech, and innovation. It provides an easy transition from HTTP to HTTPS technology

without much hustle.

Below is the NGINX configuration file we have used for our deployment that combines

both the configuration for Django and the Let’s Encrypt certificates:

upstream channels-backend {

server localhost:8000;

}

server {

server_name snf-876572.vm.okeanos.grnet.gr;

charset utf-8;

max upload size

client_max_body_size 75M; # adjust to taste

Favicon

location = /favicon.ico { access_log off; log_not_found off; }

Django static

location /static {

alias /home/user/api/carsharing_backend/static;

}

6.4 Deployment 49

Django media

location /media {

alias /home/user/api/carsharing_backend/media;

}

send all other http(s) requests to gunicorn

location / {

include proxy_params;

proxy_pass http://unix:/run/gunicorn/gunicorn.sock;

}

send all ws requests to daphne

location /ws/ {

try_files $uri @proxy_to_app;

}

location @proxy_to_app {

proxy_pass http://channels-backend;

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection ”upgrade”;

proxy_redirect off;

proxy_set_header Host $host;

proxy_set_header Authorization $http_authorization;

proxy_pass_header Authorization;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header X-Forwarded-Host $server_name;

50 Chapter 6. Back-End Development

proxy_set_header X-Forwarded-Proto $scheme;

}

lets encrypt auto

listen 443 ssl; # managed by Certbot

ssl_certificate

/etc/letsencrypt/live/snf-876572.vm.okeanos.grnet.gr/fullchain.pem;

managed by Certbot

ssl_certificate_key

/etc/letsencrypt/live/snf-876572.vm.okeanos.grnet.gr/privkey.pem;

managed by Certbot

include /etc/letsencrypt/options-ssl-nginx.conf; # managed by

Certbot

ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem; # managed by

Certbot

}

server {

if ($host = snf-876572.vm.okeanos.grnet.gr) {

return 301 https://$host$request_uri;

} # managed by Certbot

listen 80;

server_name snf-876572.vm.okeanos.grnet.gr;

return 404; # managed by Certbot

}

6.4.3 Server Hardening

Firewall

Although that Okeanos Virtual Machines are under a firewall, the use of a local one is

beneficial. There are a few options available when it comes to Linux firewalling, includ-

6.4 Deployment 51

ing UFW (Uncomplicated FireWall) and iptables. We use UFW , because it is more user-

friendly, easier to understand and will take care of generating the required rules for iptables.

SSH

SSH is the protocol that is used to connect to our server. We have implemented SSH

passwordless authentication with the use of public-private keys. Also, our server does not

accept ssh login to root user and there is a limit for password attempts.

Intrusion-Prevention System

Intrusion-Prevention systems monitor log files and search for particular patterns that cor-

respond to a failed login attempt. Fail2ban is such a system. If a certain number of failed

logins are detected from a specific IP address (within a specified amount of time), fail2ban

blocks access from that IP address.

Chapter 7

Front-End Development

7.1 React Fundamentals

7.1.1 JSX

JavaScript XML (JSX) is a syntax extension to JavaScript. In short, it is JavaScript and

HTML combined. It converts HTML tags into react elements. While JSX looks like

HTML, it is actually just a neater and cleaner way to write a React.createElement() dec-

laration.

With JSX:

const myelement = <h1>I Love JSX!</h1>;

ReactDOM.render(myelement, document.getElementById(’root’));

Without JSX:

const myelement = React.createElement(’h1’, {}, ’I do not use

JSX!’);

ReactDOM.render(myelement, document.getElementById(’root’));

53

54 Chapter 7. Front-End Development

Figure 7.1: React example [41]

7.1.2 State

React Class Components provide an instance of properties can control their behavior. In

other words, the State of a component is an object that holds some information that may

change over the lifetime of the component. [56]

7.1 React Fundamentals 55

Figure 7.2: State example [62]

As shown in the example an array of 3 elements is set as State and is rendered as an

ordered list in the DOM . If the user implements an onChange function that changes the

State(the list array), the Component shall be re-rendered.

7.1.3 Virtual Document Object Model

The HTML DOM was designed to serve static content. When it updates, every node

rebuilds and the page is repainted with the new data. Single Page Applications contain many

dynamically generated nodes, that tend to change with every user reaction. So in order not to

update the HTML DOM at a regular interval, the Virtual DOM was introduced.

The Virtual DOM is just a virtual/abstract representation of the HTML DOM . Each

time the application state changes, the Virtual DOM is updated instead of the real DOM .

When updates occur in V DOM , React makes these changes to the real DOM in the most

efficient way. The image below shows the virtual DOM tree and the diffing process. More

56 Chapter 7. Front-End Development

on [64].

Figure 7.3: Virtual DOM and Browser DOM Comparison [68]

Every node represent a UI element. The nodes coloured green had their state updated.

The difference between the previous version of the virtualDOM tree and the current virtual

DOM tree is then calculated. The whole parent subtree then gets re-rendered to give the

updated UI . This updated tree is then updated to the real DOM .

7.1.4 React Lifecycle Methods

React components go through a lifecycle, whether our code knows about it or not. You

can think of React lifecycle methods as the series of events that happen from the birth of a

React component to its death.[48]

7.1 React Fundamentals 57

Figure 7.4: React lifecycle methods [47]

7.1.5 Redux

As we have seen, a typical JavaScript application is full of state. As the requirements for

JavaScript single-page applications have become increasingly complicated, our code must

manage more state than ever before. Managing this ever-changing state is hard and compli-

cated. Big applications have big application states and managing them gets more and more

inconvenient as applications grows. Redux is a popular JavaScript library for managing that

state that our application holds. It uses a global state that is stored in a tree called store. Redux

has 3 main parts:

1. Actions

2. Reducers

3. Store

58 Chapter 7. Front-End Development

Figure 7.5: Redux data flow [1]

Actions

To put it simply, actions are events. They send data from the application (user interactions,

API calls, form submissions etc) to the store. The store gets information only from actions.

Internal actions are simple JavaScript objects that have a type property, describing the type

of action and payload of information being sent to the store.

{

type: LOGIN_FORM_SUBMIT,

payload: {username: ‘’nick, password: ‘’123456}

}

Actions are created with action creators:

function authUser(form) {

return {

type: LOGIN_FORM_SUBMIT,

payload: form

}

7.2 Web Application Development 59

}

To call an action anywhere in the app the use of dispatch method is mandatory:

dispatch(authUser(form));

Reducers

In Redux, reducers are functions (pure) that take the current state of the application and

an action and then return a new state.

function handleAuth(state, action) {

return _.assign({}, state, {

auth: action.payload

});

}

Store

Store is the object that holds the application state and provides a few helper methods to

access the state, dispatch actions and register listeners. The entire state is represented by a

single store. Any action returns a new state via reducers.

import { createStore } from ‘’redux;

let store = createStore(rootReducer);

let authInfo = {username: ‘’alex, password: ‘’123456};

store.dispatch(authUser(authInfo));

7.2 Web Application Development

7.2.1 Setup

We start by setting up the React project. According to its documentation, there are several

options available, depending on the application’s purpose. Create React App is an officially

60 Chapter 7. Front-End Development

supported way to create single-page React applications. It offers a modern build setup with

no configuration. Following its documentation[44] we execute:

npx create-react-app my-app

cd my-app

npm start

npx comes with npm 5.2+ and higher The above commands will create a React app with name

”my-app” and, will run the app in development mode. In order to view it, we have to access

http://localhost:3000. The default react structure is show in 7.6.

Figure 7.6: Default React Structure [46]

7.2.2 Application Structure

We have broke down our application in folders and separate files for our development to

be more easy to understand and configure.

7.2 Web Application Development 61

Figure 7.7: My React Structure

We can stand out the following modules:

• pubic. Contains public files, such as favicons, manifest.json and the entry file in-

dex.html.

• scripts. It contains the scripts required to run, build and test the React app.

• package.json. This file is kind of a manifest for your project. It contains our project

dependencies, its description, name, version etc.

• src. This is the root source folder.

• assets. The assets(px images) used by React app.

• containers. Modules that contain state, statefull components.

• components. Modules that our free of state, stateless components.

• hoc. High Order Component. It contains the components defining the Layout of the

application.

62 Chapter 7. Front-End Development

• middleware. Contains the middleware files for our app.

• Routes. Defines the routing endpoints of our React app.

• store. Defines the Redux Store. Contains actions and reducers.

• App.js. The second accessed file of our app. Here we add the previously defined rout-

ing in our app.

• config.js. Configuration variables are stored here like Facebook ID, GOOGLE MAPS

API key etc.

• index.js. The main JavaScript file of our app. Defines the store and its depedencies.

• serviceWorker.js. Default script that your browser runs in the background, separate

from a web page, opening the door to features that don’t need a web page or user

interaction.We make not use of serviceWorkers.

7.2.3 Implementation

In this chapter some major components implementations of the React app are shown.

index.js

// enhance a store with applyMiddleware and a few developer tools

from the redux-devtools package.

const composeEnhancers =

window.__REDUX_DEVTOOLS_EXTENSION_COMPOSE__ || compose;

const rootReducer = combineReducers({

auth: authReducer, // reducer for authentication

rides: ridesReducer, // reducer for listing rides

myrides: myRidesReducer, // reducer for listing my rides

ride: rideReducer, // reducer for showing selected ride

webSocket: webSocketReducer // reducer that store webSocket

connection

});

// redux middleware

7.2 Web Application Development 63

// thunk: Allows to execute async code in Redux

// webSocketsMiddleware: custom middleware that provides webSocket

connections.

const middleware = [thunk, webSocketsMiddleware];

// defining one store!

export const store = createStore(rootReducer, composeEnhancers(

applyMiddleware(...middleware)

));

const app = (

<Provider store={store}>

<App/>

</Provider>

);

ReactDOM.render(app, document.getElementById(”root”));

serviceWorker.unregister();

webSocketsMiddleware

This custom implemented middleware provides websocket support for our React applica-

tion. It opens/closes a webSocket connection and handles received messages via webSockets

from the server.

const webSocketsMiddleware = (function () {

let socket = null;

/**

* Handler for when the WebSocket opens

*/

const onOpen = (ws, store, host) => event => {

// Authenticate with Backend... somehow...

// console.log(event, host);

store.dispatch(webSocketActions.webSocketConnectSuccess(event.target.url))

};

/**

64 Chapter 7. Front-End Development

* Handler for when the WebSocket closes

*/

const onClose = (ws, store, host) => event => {

store.dispatch(webSocketActions.webSocketDisconnect(host));

console.log(’Socket is closed’, event.reason);

// setTimeout(() => {

//

store.dispatch(webSocketsActions.webSocketConnect(host));

// }, 5000);

};

/**

* Handler for when a message has been received from the server.

*/

const onMessage = (ws, store) => event => {

const payload = JSON.parse(event.data);

// console.log(payload);

switch (payload.type) {

case actionTypes.WS_MESSAGE:

store.dispatch(webSocketActions.webSocketMessage(event.host,

payload));

break;

case ”addRequests”:

// console.log(’add’);

store.dispatch(requestsActions.addRequestsOfMyRides(payload.text));

break;

case ”removeRequests”:

// console.log(’remove’);

store.dispatch(requestsActions.removeRequestsOfMyRides(payload.text));

break;

case ”removeMYRequests”:

// console.log(’removeMY’);

store.dispatch(requestsActions.removeRequest(payload.text));

break;

7.2 Web Application Development 65

case ”updateRequests”:

// console.log(’updateRequests’);

store.dispatch(requestsActions.updateRequests(payload.text));

break;

case ”sendNotification”:

// console.log(’sendNotification’);

console.log(JSON.parse(payload.text));

store.dispatch(notifActions.receiveNotification(JSON.parse(payload.text)));

break;

default: console.log(’default’); break;

}

};

/**

* Middleware

*/

return store => next => action => {

// console.log(action.type);

switch (action.type) {

case actionTypes.AUTH_SUCCESS:

if (socket !== null) {

socket.close()

}

// Pass action along

next(action);

// // Tell the store that we’re busy connecting...

store.dispatch(webSocketActions.webSocketConnectStart(API_WS));

let user = JSON.parse(localStorage.getItem(’user’));

// console.log(user);

// Attempt to connect to the remote host...

socket = new WebSocket(API_WS +‘?token=${user.token}‘);

// Set up WebSocket handlers

socket.onmessage = onMessage(socket, store);

66 Chapter 7. Front-End Development

socket.onclose = onClose(socket, store, action.host);

socket.onopen = onOpen(socket, store, action.host);

break;

case ’NEW_MESSAGE’:

// console.log(’sending a message’, action.msg);

socket.send(JSON.stringify({ command: ’NEW_MESSAGE’,

message: action.msg }));

break;

case actionTypes.AUTH_LOGOUT:

if (socket !== null) {

socket.close()

}

socket = null;

// Tell the store that we’ve been disconnected...

store.dispatch(webSocketActions.webSocketDisconnect(action.host));

break;

default:

return next(action);

}

};

})();

export default webSocketsMiddleware;

Routes

This is the routing configuration used for implementing this React app.

const Routes = (props) => {

let isMobile = props.isMobile;

let [myrides, setMyRides] = useState();

let location = useLocation();

const pk = location.pathname.split(’/’)[2];

useEffect(()=> {

if(!myrides){

7.2 Web Application Development 67

setMyRides(props.myrides);

}

},[myrides, props.myrides]);

return (

<Switch>

<Route exact path=’/’ component={Home}/>

{props.isAuthenticated ? <Route exact path=’/user/:id’

component={User}/> : null}

{props.isAuthenticated ? <Route exact path=’/myaccount’

render={(props) => <MyAccount {...props}

isMobile={isMobile}/>}/>: null}

{props.isAuthenticated ? <Route exact path=’/mysettings’

render={(props) => <MySettings {...props}

isMobile={isMobile}/>}/>: null}

{props.isAuthenticated ? <Route exact

path=’/mynotifications’ render={(props) =>

<Notifications {...props}/>}/>: null}

{props.isAuthenticated ? <Route exact path=’/myrides’

render={(props) => <MyRides {...props}/>}/>: null}

{props.isAuthenticated && checkIfOwner(pk, myrides) ?

<Route exact path=’/rides/:ridePK/edit’

render={(props) => <EditRide {...props}/>}/>: null}

<Route exact path=’/rides’ component={Rides}/>

<Route exact path=’/rides/:ridePK’ component={Ride}/>

<Route exact path=’/faq’ component={MyFaq}/>

<Route exact path=’/terms’ component={TermsConditions}/>

<Route exact path=’/privacypolicy’

component={PrivacyPolicy}/>

{props.isAuthenticated ? <Route exact path=’/ridesadd’

component={addRide}/> : null}

68 Chapter 7. Front-End Development

{props.isAuthenticated ? <Route exact path=’/requests’

component={Requests}/> : null}

<Route path=’/’ component={error404}/>

</Switch>

);

};

7.2.4 Deployment

The deployment of our React web application is based on Heroku. Heroku provides its

users a free trier to host web applications, including React-based ones. No complex config-

uration is needed to deploy this React Application to Heroku. It only needs an active heroku

account and a valid git repository that hosts our React code. [23]

Figure 7.8: Heroku carsharing1312 App dashboard

https://www.heroku.com/

7.3 Mobile Application Development 69

7.3 Mobile Application Development

7.3.1 Mobile Development approach

Mobile development is a branch of application development that focuses on applications

created solely for mobile devices. Although many web applications are mobile-friendly they

are web sites, so they use a web browser in order for their content to be viewed. Over the

last years different techniques and frameworks have risen in order to provide a mobile only

development approach, that focuses and uses the mobiles’ operation systems(Android, iOS)

and their capabilities.

We can distinct twomain approaches concerning the development onmobile applications.

Native approach

Native mobile development refers to the traditional way of developing mobile applica-

tions, using the mobile operation system architecture and programming language. For An-

droid, the native programming languages used are Java orC++ andKotlin. For iOSObjective-

C was the main developing language until 2014, until Apple introduced their programming

language Swift.

Because native application development uses the mobile architecture and its language,

it forces developers to learn and use the native languages and also the platforms and their

architecture in their extend.

The biggest disadvantage with native mobile development is the separate codebases.

When developing an application both in Android and iOS, a developer must have knowledge

of their architecture and their programming languages. This increases the cost and complexity

of development.

Cross-Platform approach

Cross-platform mobile development refers to the development of a mobile application

which runs in different mobile platforms/multiple devices regardless of the system that it is

run on. Cross-platform mobile applications can be divided in four major categories:

• Hybrid Development:

What makes hybrid applications different is that while a web application is viewed

70 Chapter 7. Front-End Development

via a web browser, the hybrid one is produced by a framework and is installed on the

mobile device. They are developed with common web technologies (HTML, CSS

and JavaScript) but they are wrapped into a container that acts like an installable

mobile application. The most common hybrid development frameworks are Phone-

Gap, Apache Cordova and Ionic. Their main disadvantage is that they lack on the User

Interface.

• Cross-Compiled Native Development:

As the name implies, cross-compiled applications are written in common programming

languages and then compiled to native binaries of each operation system (Android or

iOS). They can be very close to a fully native applications but they have their disad-

vantages. Most common frameworks are Flutter and Xamarin.

• Native Scripting Development:

Applications that were developed with native scripting utilize an interpreter to execute

code during run time. They use a scripting language (mostly JavaScript) but utilize

the native platform in its extend, so the result is really close to a native developed

application.

7.3.2 React Native

React Native is a Native Scripting framework. React Native is very similar to ReactJS,

but there are differences that distinct those two frameworks. They share the main ideas and

conceptions. A main difference is that React-Native doesn’t use pure HTML to render the

app, but provides alternative components that work in a similar way. Those React-Native

components map the actual real native iOS or Android UI components that get rendered on

the app.

Most components provided can be translated to something similar inHTML, where for

example a View component is similar to a div tag, and a Text component is similar to a p tag.

import React, { Component } from ’react’;

import { View, Text } from ’react-native’;

export default class App extends Component {

render() {

7.3 Mobile Application Development 71

return (

<View style={styles.container}>

<Text style={styles.intro}>Hello world!</Text>

</View>

);

}

}

Because your code doesn’t get rendered in anHTML page, this also means you won’t be

able to reuse any libraries you previously used with React that renders any kind of HTML.

const styles = StyleSheet.create({

container: {

flex: 1,

},

content: {

backgroundColor: ’#fff’,

padding: 30,

},

button: {

alignSelf: ’center’,

marginTop: 20,

width: 100,

},

});

7.3.3 Expo

Expo is a framework built around React Native that provides a set of tools that simplify

the development of a React Native application.

Through the development of the React-Native application, Expo is used because it pro-

vides:

• Fast and simple project installation.

• A command utility Expo CLI that opens in a browser and provides a graphical interface

72 Chapter 7. Front-End Development

of tools to configure and run the application.

• Expo client is a mobile app both for iOS and Android. It allows opening projects on

the smartphone during development of the application without firstly building it via

XCode or Android Studio.

• You can develop apps for ios without macOS with ios device and test them with Expo

client.

7.4 Mobile application Implementation

7.4.1 Setup

Firstly we have to setup expo and its pre-requisites.

sudo apt install nodejs

npm install -g expo-cli

expo init PROJECTNAME # replace PROJECTNAME with your desired

project name

npm start

7.4.2 Mobile Application Structure

The main structure of the mobile application is:

7.4 Mobile application Implementation 73

Figure 7.9: Mobile Application Structure

The most notable folders are:

• screens: This folder contains all components-screens that hold state, that the user nav-

igates to.

• components: This folder contains all components that the user interacts through the

screens.

• assets: Contains all static assets of the application. Favicon, images etc.

7.4.3 App.js

The main component of the mobile application. It initializes the application and checks

if the API is online.

class App extends Component{

state = {

isReady: false,

loading: true,

online: false,

error: null

74 Chapter 7. Front-End Development

};

render() {

if (!this.state.isReady) {

return <AppLoading

startAsync={this._cacheResourcesAsync}

onFinish={()=>this.setState({isReady: true})}

onError={console.warn}

/>;

}

return(

<Provider store={store}>

<StatusBar hidden/>

<MainNavigation/>

</Provider>

)

}

async _cacheResourcesAsync() {

await Font.loadAsync({

Roboto: require(’native-base/Fonts/Roboto.ttf’),

Roboto_medium:

require(’native-base/Fonts/Roboto_medium.ttf’),

...Ionicons.font,

});

await axios.get(’https://snf-876572.vm.okeanos.grnet.gr/’)

.then(() => {

// console.log(res.status);

}).catch(error => {

console.log(error);

});

7.4 Mobile application Implementation 75

// return new Promise;

}

}

export default (App);

7.4.4 MainNavigation.js

This component is the second most important JavaScript file. It handles navigation, noti-

fications and authenticates the user!

const RideStack = (props) => {

return (

<RideStackNav.Navigator

initialRouteName=”Rides”

screenOptions={

{

headerRight: () => (<MyHeader

navigation={props.navigation}/>),

}

}

>

<RideStackNav.Screen name=”Rides” component={Rides}

options={{

}}/>

<RideStackNav.Screen name=”Ride” component={Ride}

options={{

headerTitle: ’’,

headerLeft: (props) => (

<HeaderBackButton

{...props}

/>

)

76 Chapter 7. Front-End Development

}}/>

</RideStackNav.Navigator>

)

};

const AuthStack = (props) => {

return (

<AuthStackNav.Navigator

screenOptions={

{headerRight: () => (<MyHeader

navigation={props.navigation}/>)}

}

>

<>

{props.route.params.isAuthenticated ?

<>

<AuthStackNav.Screen name=”MyProfile”

component={MyProfile}/>

<AuthStackNav.Screen name=”Profile”

component={Profile}/>

<AuthStackNav.Screen name=”Settings”

component={Settings} />

<AuthStackNav.Screen name=”MyRides”

component={MyRides}

options={{headerTitle: ’My

Rides’}}

/>

<AuthStackNav.Screen name=”AddRide”

component={AddRide}

options={{headerTitle: ’Add a

ride’}}

/>

7.4 Mobile application Implementation 77

<AuthStackNav.Screen name=”EditRide”

component={EditRide}

options={{headerTitle: ’Edit

Ride’}}

/>

<AuthStackNav.Screen name=”MyRequests”

component={MyRequests}

options={{headerTitle: ’My Requests’}}

/>

<AuthStackNav.Screen name=”RequestsOfMyRides”

component={RequestsOfMyRides}

options={{headerTitle: ’Requests

of my rides’}}

/>

<AuthStackNav.Screen name=”Cars”

component={Cars} />

<AuthStackNav.Screen name=”AddCar”

component={AddCar} options={{

headerTitle: ’Add Car’

}}/>

</>

:

<>

<AuthStackNav.Screen name=”SignIn”

component={Login}

options={{

title: ’Sign in’,

// When logging out, a pop

animation feels intuitive

// You can remove this if you

want the default ’push’

animation

animationTypeForReplace:

!props.route.params.isAuthenticated

78 Chapter 7. Front-End Development

? ’pop’ : ’push’,

}}/>

<AuthStackNav.Screen name=”SignUp”

component={Signup} />

{/*<AuthStackNav.Screen name=”ResetPassword”

component={ResetPassword} />*/}

</>

}

</>

</AuthStackNav.Navigator>

);

};

class MainNavigation extends Component{

constructor(props) {

super(props);

}

state={

notifications: [],

unreadNotificationsCount: 0

};

componentDidMount() {

this.props.onTryAutoSignup(); // auto-signin

const newArray = this.props.notifications.filter(notif => {

// console.log(notif);

return notif.unread===true

});

this.setState({ unreadNotificationsCount: newArray.length});

}

7.4 Mobile application Implementation 79

componentDidUpdate(prevProps, prevState, snapshot) {

// when user logs in update notifications!

if(prevProps.notifications!==this.props.notifications){

console.log(’edw edw edw’);

const newArray = this.props.notifications.filter(notif

=> {

// console.log(notif);

return notif.unread===true

});

this.setState({ unreadNotificationsCount:

newArray.length});

}

}

render() {

return (

<Root>

<NavigationContainer>

<Tab.Navigator

screenOptions={({ route }) => ({

tabBarIcon: ({ focused, color, size }) => {

let iconName;

if (route.name === ’FAQ’) {

iconName = focused

? ’ios-information-circle’

: ’ios-information-circle-outline’;

} else if (route.name === ’Rides’) {

iconName = focused ? ’ios-list-box’ :

’ios-list’;

}else if (route.name === ’Home’){

iconName = focused ? ’ios-home’ :

’md-home’;

80 Chapter 7. Front-End Development

}else if (route.name === ’Login’){

if(this.props.isAuthenticated){

iconName=”ios-person”

}else{

iconName=”ios-log-in”

}

}else if(route.name === ’MyProfile’){

iconName=”ios-person”

}

// You can return any component that you

like here!

return <Ionicons name={iconName}

size={size} color={color} />;

},

})}

tabBarOptions={{

activeTintColor: ’tomato’,

inactiveTintColor: ’gray’,

}}

>

<Tab.Screen name=”Home” component={Home}/>

<Tab.Screen name=”Rides” component={RideStack}/>

<Tab.Screen name=”FAQ” component={FAQ}/>

<Tab.Screen name={!this.props.isAuthenticated ?

”Login” : ”MyProfile”} component={AuthStack}

initialParams={{isAuthenticated:

this.props.isAuthenticated}}

options={this.state.unreadNotificationsCount

?

{ tabBarBadge:

this.state.unreadNotificationsCount

}

: { tabBarBadge: null }

7.5 Deployment 81

}

/>

</Tab.Navigator>

</NavigationContainer>

</Root>

)

}

}

const mapStateToProps = state => {

return {

isAuthenticated: state.auth.user !== null,

user: state.auth.user,

notifications: state.auth.notifications

};

};

const mapDispatchToProps = dispatch => {

return {

logout: () => dispatch(authActions.logout()),

onTryAutoSignup: () => dispatch(authActions.authCheckState())

}

};

// connect(mapStateToProps, mapDispatchToProps)(AuthStack);

export default connect(mapStateToProps,

mapDispatchToProps)(MainNavigation);

7.5 Deployment

The mobile application is deployed through Expo framework. Registered users in expo

framework have the ability to deploy their application in Expo cloud. It can be downloaded

from Expo and later uploaded to Google Play or iOS store.

Chapter 8

Application Preview

8.1 Back-End

8.1.1 Landing Page

The back-end server due to the fact that works as a REST API that serves requests from

the front-end clients, has no response methods that return user-friendly data, formatted as

HTML. It only returns JSON formatted data.

For testing purposes, the ’/’ path returns a landing HTML page that welcomes the user.

Figure 8.1: Back-End Landing Page [62]

8.1.2 Django Admin Page

Django framework provides a powerful admin interface. It lists all models and their in-

stances and provide an easy management system of them. Only admin users have access to

this interface.

The login page:

83

84 Chapter 8. Application Preview

Figure 8.2: Django admin login page

The admin interface:

8.1 Back-End 85

Figure 8.3: Django admin interface

86 Chapter 8. Application Preview

8.1.3 REST API endpoints

Endpoints are divided to categories, in accordance with their functionality:

1. Auth. Endpoints used for users’ authentication/authorization patterns.

i. API_URL/rest-auth/registration/. Register a new user.

ii. API_URL/rest-auth/logout/. Logout a user.

iii. API_URL/rest-auth/login/. Login a user.

iv. API_URL/rest-auth/facebook/. Login/Register a user via Facebook.

v. API_URL/refresh-token/. Refresh token.

vi. API_URL/rest-auth/registration/verify-email/. Verify email endpoint. Used only

if email verification is on.

2. Users. Endpoints for getting users’ data.

i. API_URL/rest-auth/user/. Retrieve/Update user information.

ii. API_URL/rest-auth/logout/. Logout a user.

iii. API_URL/user/USER_PK. Retrieve user information based on User’s Primary

Key(ID).

3. Rides. Endpoints used for rides patterns.

i. API_URL/api/. Get a list of rides offered.

ii. API_URL/api/RIDE_PK. Get details of a ride, based on its Primary Key.

iii. API_URL/api/create/. Create a ride.

iv. API_URL/api/RIDE_PK/edit/. Edit/Delete a ride.

v. API_URL/api/myrides. Get a list of my rides.

4. Requests. Endpoints for joining/unjoining a ride etc.

i. API_URL/api/RIDE_PK/join. Join a ride based on its Primary Key.

ii. API_URL/api/RIDE_PK/getrequests. Get join requests of a ride.

iii. API_URL/api/getallrequests. Get all join requests for a user rides.

iv. API_URL/api/getmyrequests. Get all join requests that a user has made.

8.2 Front-End 87

v. API_URL/api/RIDE_PK/declinejoin/USER_PK/. Decline a user’s request to

join a ride.

vi. API_URL/api/RIDE_PK/acceptjoin/USER_PK/. Accept a user’s request to join

a ride.

vii. API_URL/api/RIDE_PK/unjoin. Unjoin a ride in which the user has already

joined.

5. Notifications. Endpoints for users’ notifications.

i. API_URL/notifier/getall/. Get user’s notifications.

ii. API_URL/notifier/mark-as-read/NOTIFICATION_PK. Set notification as read,

based on its Primary Key.

iii. API_URL/notifier/mark-all-as-read/. Mark all user’s notifications as read.

6. Cars. Endpoints for users’ cars.

i. API_URL/cars/car/. Get user’s list of cars, Add/Delete car.

ii. API_URL/cars/car/CAR_PK. Edit user car, based in its Primary Key.

Further explanation of the endpoints provided, their methods, their arguments needed and

their description, will be available in the API documentation.

8.2 Front-End

8.2.1 Web Application

The home page is the first page a user sees when fires up CarSharing App. As stated in

the project description users can browse rides, see their details, login/signup via Facebook or

via their provided credentials, add or join existing offered rides.

A non-authenticated user can browse the following pages:

• Home Page.

https://carsharing1312.herokuapp.com/

88 Chapter 8. Application Preview

Figure 8.4: Home Page

• Rides.

Figure 8.5: Rides

• Ride.

8.2 Front-End 89

Figure 8.6: Ride

• F.A.Q.

Figure 8.7: FAQ

• Terms and Conditions.

90 Chapter 8. Application Preview

Figure 8.8: Terms and Conditions

• Privacy Policy.

Figure 8.9: Privacy Policy

A user can login or register via the below forms:

8.2 Front-End 91

Figure 8.10: Login form

92 Chapter 8. Application Preview

Figure 8.11: Register form

After Log In or Registration the header and the drawer menu change and they provide

links to other site functions and services.

8.2 Front-End 93

Figure 8.12: After Login/Registration

The authenticated user can perform the following tasks:

• Add a Ride.

94 Chapter 8. Application Preview

Figure 8.13: Add Ride

• Add a Ride.

8.2 Front-End 95

Figure 8.14: Add Ride

• Edit a Ride.

Figure 8.15: Edit Ride

• Edit his information through Settings.

Figure 8.16: Settings

• List his Rides.

96 Chapter 8. Application Preview

Figure 8.17: My rides

• See the requests his has made or the requests made to his rides.

Figure 8.18: Requests

• Edit his information through Settings.

Figure 8.19: Settings

8.2 Front-End 97

8.2.2 Mobile Application

A non-authenticated user can browse the following screens:

• Home Screen

Figure 8.20: Home Screen

• Rides Screen

98 Chapter 8. Application Preview

Figure 8.21: Rides Screen

• Ride Filters

8.2 Front-End 99

Figure 8.22: Ride Filters

• FAQ Screen

100 Chapter 8. Application Preview

Figure 8.23: FAQ Screen

• Login Screen

8.2 Front-End 101

Figure 8.24: Login Screen

• Sing up Screen

102 Chapter 8. Application Preview

Figure 8.25: Sign up Screen

After login/sign-up, a user can navigate through multiple screens that allow authenticated

actions (add/join rides, edit profile etc) :

• Join Ride

8.2 Front-End 103

Figure 8.26: Join Ride

• MyProfile

104 Chapter 8. Application Preview

Figure 8.27: My profile

• Notifications

Figure 8.28: Notifications

• Cars

8.2 Front-End 105

Figure 8.29: Cars

• Add Car

106 Chapter 8. Application Preview

Figure 8.30: Add Car

• Delete Car

Figure 8.31: Delete Car

• Edit Car

8.2 Front-End 107

Figure 8.32: Edit Car

• Cars

108 Chapter 8. Application Preview

Figure 8.33: Cars

• Edit profile

8.2 Front-End 109

Figure 8.34: Edit Profile

• My Rides

Figure 8.35: My Rides

• User’s requests

110 Chapter 8. Application Preview

Figure 8.36: user’s Requests

• Add Ride

Figure 8.37: Add Ride

Chapter 9

Production sites and code

Carpooling application is fully deployed and is in production state.

• The Web Application is hosted on heroku at: https://carsharing1312.herokuapp.com.

• TheAndroid app is hosted onmy personal Expo space: https://expo.io/@npappas/carsharing.

• The back-end is hosted on: https://snf-876572.vm.okeanos.grnet.gr/.

The full code of all front-end and Back-end is hosted on repositories on my github ac-

count.

Specifically:

• Back-End

• Web Application

• Mobile Application

111

https://carsharing1312.herokuapp.com
https://expo.io/@npappas/carsharing
https://snf-876572.vm.okeanos.grnet.gr/
https://github.com/libpoet1312/
https://github.com/libpoet1312/
https://github.com/libpoet1312/carsharing_backend
https://github.com/libpoet1312/carsharing_gui
https://github.com/libpoet1312/carsharing_reactNative

Chapter 10

Future development

Many services in the platform can be extended and others can be added to expand and

improve its functionality.

Some are:

• A Chat service. A mechanism that allows users to exchange messages for their rides.

• Way-points. A ride, except for its origin and destination can contain also some way-

points. With that extension, people can join rides and be dropped off in places between

the origin or the destination.

• Other ride properties. A ride offerer could be able to define if a ride allows pets, chatting

amongst the riders, smoking in the car etc.

• Ride ratings. A ride, after being shared, could be rated, thus the community could

choose to ride or not with the rider based on its rates.

• Price. When implementing such platforms, their development has costs.

Both the web and mobile applications could be more User Friendly. More styling could

be implemented to both the clients for them to be more attractive to the user.

113

Bibliography

[1] An Introduction to Redux. https://www.smashingmagazine.com/2016/

06/an-introduction-to-redux/.

[2] Ant Design. https://ant.design/.

[3] AsyncStorage. https : / / github . com / react - native - community /

async-storage.

[4] Axios. https://github.com/axios/axios.

[5] Wikimedia Commons contributors.Client-Server N-tier architecture - en.png.https:

//commons.wikimedia.org/w/index.php?title=File:Client-

Server_N-tier_architecture_-_en.png&oldid=403628289.

[6] Wikipedia contributors. Client-server model. https://en.wikipedia.org/

w/index.php?title=Client%E2%80%93server_model&oldid=

969629934.

[7] CORS. https://developer.mozilla.org/en-US/docs/Web/HTTP/

CORS.

[8] Daphne server. https://github.com/django/daphne/.

[9] Django Channels. https://channels.readthedocs.io/en/latest/.

[10] Django Life Cycle. https://medium.com/@ksarthak4ever/django-

request-response-cycle-2626e9e8606e.

[11] Django Life Cycle Diagram. https://learnbatta.com/assets/images/

django/request_response_lifecycle_Django.png.

[12] Django project. https://www.djangoproject.com/.

115

https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/
https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/
https://ant.design/
https://github.com/react-native-community/async-storage
https://github.com/react-native-community/async-storage
https://github.com/axios/axios
https://commons.wikimedia.org/w/index.php?title=File:Client-Server_N-tier_architecture_-_en.png&oldid=403628289
https://commons.wikimedia.org/w/index.php?title=File:Client-Server_N-tier_architecture_-_en.png&oldid=403628289
https://commons.wikimedia.org/w/index.php?title=File:Client-Server_N-tier_architecture_-_en.png&oldid=403628289
https://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model&oldid=969629934
https://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model&oldid=969629934
https://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model&oldid=969629934
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://github.com/django/daphne/
https://channels.readthedocs.io/en/latest/
https://medium.com/@ksarthak4ever/django-request-response-cycle-2626e9e8606e
https://medium.com/@ksarthak4ever/django-request-response-cycle-2626e9e8606e
https://learnbatta.com/assets/images/django/request_response_lifecycle_Django.png
https://learnbatta.com/assets/images/django/request_response_lifecycle_Django.png
https://www.djangoproject.com/

116 Bibliography

[13] Django Project Structure. https : / / studygyaan . com / django / best -

practice- to- structure- django- project- directories- and-

files.

[14] Django REST framework. https://www.django-rest-framework.org/.

[15] Django Settings. https://docs.djangoproject.com/en/3.1/topics/

settings/.

[16] django-allauth.https://django-allauth.readthedocs.io/en/latest/

index.html.

[17] Django-cors-headers. https : / / pypi . org / project / django - cors -

headers/.

[18] django-notifications-hq.https://pypi.org/project/django-notifications-

hq/.

[19] django-rest-auth. https://django-rest-auth.readthedocs.io/en/

latest/.

[20] Expo. https://expo.io.

[21] geeksforgeeks.org. MVC architecture. https://www.geeksforgeeks.org/

mvc-design-pattern/.

[22] Gunicorn. https://gunicorn.org/.

[23] How to deploy a React + Node app to Heroku in 3 minutes without the command line.

https://www.freecodecamp.org/news/deploy-a-react-node-

app-to/.

[24] JavaScript. https://django-allauth.readthedocs.io/en/latest/

index.html.

[25] JSON Web Tokens. https://jwt.io/introduction/.

[26] MomentJS. https://momentjs.com/.

[27] mySQL. https://www.mysql.com/.

[28] Mysqlclient. https://pypi.org/project/mysqlclient/.

[29] NativeBase. https://nativebase.io/.

[30] NGINX. https://nginx.org/en/.

https://studygyaan.com/django/best-practice-to-structure-django-project-directories-and-files
https://studygyaan.com/django/best-practice-to-structure-django-project-directories-and-files
https://studygyaan.com/django/best-practice-to-structure-django-project-directories-and-files
https://www.django-rest-framework.org/
https://docs.djangoproject.com/en/3.1/topics/settings/
https://docs.djangoproject.com/en/3.1/topics/settings/
https://django-allauth.readthedocs.io/en/latest/index.html
https://django-allauth.readthedocs.io/en/latest/index.html
https://pypi.org/project/django-cors-headers/
https://pypi.org/project/django-cors-headers/
https://pypi.org/project/django-notifications-hq/
https://pypi.org/project/django-notifications-hq/
https://django-rest-auth.readthedocs.io/en/latest/
https://django-rest-auth.readthedocs.io/en/latest/
https://expo.io
https://www.geeksforgeeks.org/mvc-design-pattern/
https://www.geeksforgeeks.org/mvc-design-pattern/
https://gunicorn.org/
https://www.freecodecamp.org/news/deploy-a-react-node-app-to/
https://www.freecodecamp.org/news/deploy-a-react-node-app-to/
https://django-allauth.readthedocs.io/en/latest/index.html
https://django-allauth.readthedocs.io/en/latest/index.html
https://jwt.io/introduction/
https://momentjs.com/
https://www.mysql.com/
https://pypi.org/project/mysqlclient/
https://nativebase.io/
https://nginx.org/en/

Bibliography 117

[31] NGINXPercentage of busiest sites.https://news.netcraft.com/archives/

2020/07/27/july-2020-web-server-survey.html.

[32] Tutorials Point. HTTP Methods. https : / / www . tutorialspoint . com /

http/http_methods.htm.

[33] Tutorials Point. HTTP status codes. https://www.tutorialspoint.com/

http/http_status_codes.htm.

[34] PostMan. https://www.postman.com/.

[35] Pycharm IDE. https://www.jetbrains.com/pycharm/.

[36] Python. https://www.python.org/.

[37] TheHitchhiker’s Guide to Python.Python Virtual Environment.https://python-

guide-kr.readthedocs.io/ko/latest/dev/virtualenvs.html.

[38] React. https://reactjs.org/.

[39] React <AwesomeButton />UIComponent.https://github.com/rcaferati/

react-awesome-buttons.

[40] React Dev tools. https://www.npmjs.com/package/react-devtools.

[41] React Example. https://www.codecademy.com/articles/how-to-

create-a-react-app.

[42] React Facebook Login.https://github.com/keppelen/react-facebook-

login.

[43] React Faq Component. https://binodswain.github.io/react-faq-

component/.

[44] React Getting Started. https://reactjs.org/docs/getting-started.

html.

[45] React Google Maps. https://github.com/tomchentw/react-google-

maps.

[46] React JS tutorial. https://www.dotnetcurry.com/reactjs/1353/

react-js-tutorial.

[47] React Life Cycle Methods - Diagram. https://projects.wojtekmaj.pl/

react-lifecycle-methods-diagram/.

https://news.netcraft.com/archives/2020/07/27/july-2020-web-server-survey.html
https://news.netcraft.com/archives/2020/07/27/july-2020-web-server-survey.html
https://www.tutorialspoint.com/http/http_methods.htm
https://www.tutorialspoint.com/http/http_methods.htm
https://www.tutorialspoint.com/http/http_status_codes.htm
https://www.tutorialspoint.com/http/http_status_codes.htm
https://www.postman.com/
https://www.jetbrains.com/pycharm/
https://www.python.org/
https://python-guide-kr.readthedocs.io/ko/latest/dev/virtualenvs.html
https://python-guide-kr.readthedocs.io/ko/latest/dev/virtualenvs.html
https://reactjs.org/
https://github.com/rcaferati/react-awesome-buttons
https://github.com/rcaferati/react-awesome-buttons
https://www.npmjs.com/package/react-devtools
https://www.codecademy.com/articles/how-to-create-a-react-app
https://www.codecademy.com/articles/how-to-create-a-react-app
https://github.com/keppelen/react-facebook-login
https://github.com/keppelen/react-facebook-login
https://binodswain.github.io/react-faq-component/
https://binodswain.github.io/react-faq-component/
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://github.com/tomchentw/react-google-maps
https://github.com/tomchentw/react-google-maps
https://www.dotnetcurry.com/reactjs/1353/react-js-tutorial
https://www.dotnetcurry.com/reactjs/1353/react-js-tutorial
https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

118 Bibliography

[48] React Lifecycle Methods - A Deep Dive. https://programmingwithmosh.

com/javascript/react-lifecycle-methods/.

[49] React Native. https://reactnative.dev/.

[50] React Native Elements. https://react-native-elements.github.io/

react-native-elements/.

[51] React Native Maps. https://github.com/react-native-community/

react-native-maps.

[52] React Native Maps Directions. https://github.com/bramus/react-

native-maps-directions.

[53] React Navigation. https://reactnavigation.org/.

[54] React Places Autocomplete.https://github.com/hibiken/react-places-

autocomplete.

[55] React Router. https://reactrouter.com/.

[56] ReactJS | State in React. https://www.geeksforgeeks.org/reactjs-

state-react/.

[57] Redis. https://redis.io/.

[58] Redux. https://redux.js.org/.

[59] Redux DevTools. https://github.com/reduxjs/redux-devtools.

[60] Redux Thunk. https://github.com/reduxjs/redux-thunk.

[61] Sap.com. MVC architecture figure. https://blogs.sap.com/2017/04/06/

ui5-architectural-pattern-mvc-mvvm-or-mvwhatever/.

[62] State Example.https://medium.com/hootsuite-engineering/everything-

you-need-to-know-about-setstate-8233a7042677.

[63] SuperVisor. http://supervisord.org/.

[64] The difference between Virtual DOM and DOM. https://reactkungfu.com/

2015/10/the-difference-between-virtual-dom-and-dom/.

[65] Top 8 Best Backend Frameworks. https://www.keycdn.com/blog/best-

backend-frameworks.

https://programmingwithmosh.com/javascript/react-lifecycle-methods/
https://programmingwithmosh.com/javascript/react-lifecycle-methods/
https://reactnative.dev/
https://react-native-elements.github.io/react-native-elements/
https://react-native-elements.github.io/react-native-elements/
https://github.com/react-native-community/react-native-maps
https://github.com/react-native-community/react-native-maps
https://github.com/bramus/react-native-maps-directions
https://github.com/bramus/react-native-maps-directions
https://reactnavigation.org/
https://github.com/hibiken/react-places-autocomplete
https://github.com/hibiken/react-places-autocomplete
https://reactrouter.com/
https://www.geeksforgeeks.org/reactjs-state-react/
https://www.geeksforgeeks.org/reactjs-state-react/
https://redis.io/
https://redux.js.org/
https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-thunk
https://blogs.sap.com/2017/04/06/ui5-architectural-pattern-mvc-mvvm-or-mvwhatever/
https://blogs.sap.com/2017/04/06/ui5-architectural-pattern-mvc-mvvm-or-mvwhatever/
https://medium.com/hootsuite-engineering/everything-you-need-to-know-about-setstate-8233a7042677
https://medium.com/hootsuite-engineering/everything-you-need-to-know-about-setstate-8233a7042677
http://supervisord.org/
https://reactkungfu.com/2015/10/the-difference-between-virtual-dom-and-dom/
https://reactkungfu.com/2015/10/the-difference-between-virtual-dom-and-dom/
https://www.keycdn.com/blog/best-backend-frameworks
https://www.keycdn.com/blog/best-backend-frameworks

Bibliography 119

[66] Understanding The Request-Response Lifecycle InDjango. https://learnbatta.com/blog/understanding-

request-response-lifecycle-in-django-29/.

[67] WebStorm. https://www.jetbrains.com/webstorm/.

[68] Whatis the Virtual DOM.https://mfrachet.github.io/create-frontend-

framework/vdom/intro.html.

https://www.jetbrains.com/webstorm/
https://mfrachet.github.io/create-frontend-framework/vdom/intro.html
https://mfrachet.github.io/create-frontend-framework/vdom/intro.html

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of Abbreviations
	Introduction
	Idea Description
	Main Objective
	Thesis Structure

	Knowledge base
	Software Stack
	Back-end
	Front-End
	Full Stack Development
	Client - server model
	API
	Representational State Transfer
	Separation of client and server
	Statelessness
	Client and Server communication

	MVC
	Python Virtual Environment

	Application Analysis
	Functional requirements
	Authorization
	Rides
	Cars
	Notifications

	Non-functional requirements
	Back-end API
	Front-end
	Models Schema
	Use cases

	Application architecture
	Introduction
	Product perspective
	Operating Environment
	Constraints
	Assumptions and considerations

	System structure
	General System overview
	Authentication

	Application Design
	Back-End
	Chosen Technologies
	Used Libraries and Add-Ons

	Front-End
	Chosen Technologies
	Used Libraries and Add-Ons

	Used tools
	GIT Version Control
	PyCharm IDE
	WebStorm IDE
	PostMan
	React Developer Tools
	Redux DevTools

	Back-End Development
	Django Fundamentals
	Django General Structure
	Django App Structure
	Django request cycle

	Setting up prerequires
	Setting up MySQL and Redis
	Setting up Django

	Implementation
	Django Apps
	Django Models
	Django Views
	Django URLs
	Django Serializers
	Custom Middleware
	Django webSocket Routing
	Django Settings
	Authorization and authentication

	Deployment
	System general configuration
	NGINX configuration
	Server Hardening

	Front-End Development
	React Fundamentals
	JSX
	State
	Virtual Document Object Model
	React Lifecycle Methods
	Redux

	Web Application Development
	Setup
	Application Structure
	Implementation
	Deployment

	Mobile Application Development
	Mobile Development approach
	React Native
	Expo

	Mobile application Implementation
	Setup
	Mobile Application Structure
	App.js
	MainNavigation.js

	Deployment

	Application Preview
	Back-End
	Landing Page
	Django Admin Page
	REST API endpoints

	Front-End
	Web Application
	Mobile Application

	Production sites and code
	Future development

