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Abstract 

This thesis investigates the problem of optimizing the location of pressure and/or flow rate sensors in 

water distribution networks (WDN) in order to maximize the information obtained from the data for 

identifying leakage in the network. Leakage detection is treated as a Bayesian system identification 

problem, integrating hydraulic models of steady-state flow in WDN with measurements. The 

formulation of the hydraulic model is presented and the Bayesian methodology for inferring the 

location and magnitude of leakage using measurements from pressure and flow rate sensors is 

developed. Each possible leakage scenario is considered as a distinct model of the system and by 

comparing the evidence and the posterior PDFs of the models, the most probable one is chosen. The 

proposed methodology is expanded to also include uncertainties in model parameters to be able to 

make robust predictions. To maximize the information provided by the measurements for inferring 

the leakage parameters, optimal sensor configurations are found by solving an optimization problem 

with the sensor configurations as design variables and the posterior information entropy of the 

parameters as the objective function. To calculate the multidimensional integrals arising in the 

objective function an asymptotic and a sampling approximation method is applied. Two 

computationally efficient heuristic sequential sensor placing algorithms are used to solve the 

optimization problem. The effectiveness of the resulting optimal sensor configurations is illustrated 

by using them to simulate measurements which are then passed to the leakage detection 

methodology and the accuracy of the predictions is compared to that of suboptimal sensor 

configurations. 
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Nomenclature 

𝐴 : Cross-sectional area of a pipe 

𝑎 :  Variable used in the Cheng friction factor formula 

𝑎1 : Constant used in the friction factor equation 

𝐵 : Sign matrix for the loop equations 

𝑏 : Variable used in the Cheng friction factor formula. 

𝑏 : Selection vector for the loop equation 

𝑏1 : Constant used in the friction factor equation 

𝐶 : Hazen-Williams coefficient, selection matrix for the continuity equations 

𝑐𝑖 : Selection vector for the continuity equation in node 𝑖 

𝑐1 : Constant which depends on the prior and evidence 

𝑐2 : Constant which depends on the prior and evidence 

𝐷 : Set of measurements 

𝑑 : Diameter of a pipe 

𝑑̃ : Vector with all the nodal demands 

𝑑̃𝑖  : Demand at node 𝑖 

𝐷𝑃𝑓 : Variable that contains all non-flow dependent variables in the frictional loss equation due to 

components 

𝐷𝑃𝑙  : Variable that contains all non-flow dependent variables in the frictional loss equation due to 

shear stress from pipe walls 

𝐷𝑃𝑝 : Variable that contains all non-flow dependent variables in the frictional loss equation due to the 

presence of a pump 

𝐸 : Selection matrix for the energy balance equations 

𝑒 : Prediction error 

𝑒𝑗 : Selection vector for the energy balance in pipe 𝑗 

𝐹 : Number of fixed grade nodes. 

𝐹𝐴, 𝐹𝐵 : Variables used in the cubic interpolation from the Moody diagram. 

𝑓 : Friction factor 

𝑓1, 𝑓2, 𝑓3 : Variables used in the Cheng friction factor formula 

𝑔 : Gravitational acceleration 

𝑔 : Model predictions that correspond to the measured degrees of freedom 

𝑔̃ : Model predictions 

𝐻 : Hessian matrix 

ℎ : Vector with all the hydraulic heads 

ℎ1,  ℎ2 : Coefficients in the pump three-point curve equation 

ℎ𝑓 : Head loss due to components in a pipe 

ℎ𝑓 : Vector with the head losses due to components in all the pipes 

ℎ𝑓,𝑗 : Head loss due to components in pipe 𝑗 

ℎ𝑙 : Head loss due to wall shear in a pipe 

ℎ𝑙 : Vector with the head losses due to wall shear in all the pipes 

ℎ𝑙,𝑗 : Head loss due to wall shear in pipe 𝑗 

ℎ𝑚 : Shutoff head of a pump 
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ℎ𝑝 : Head loss due to pump in a pipe 

ℎ𝑝 : Vector of head losses due to pump in all the pipes  

ℎ𝑝,𝑗 : Head loss due to a pump in pipe 𝑗 

ℎ𝜃 : Information entropy of parameters 𝜃 

𝐼 : Identity matrix 

𝐽 : Number of junctions, Jacobian matrix, Deviation between model predictions and measurements 

𝐽1, 𝐽2, 𝐽3 : Partitions of the Jacobian matrix 

𝐾 : Loss coefficient due to components 

𝐾1 : Loss coefficient of the Hazen-Williams formula 

𝐾2 : Coefficient of the Chezy-Manning formula 

𝑘∗ : Selection vector for the known hydraulic heads 

𝐿 : Number of loops, Minus logarithm of the posterior 

𝐿̃ : Minus logarithm of the likelihood 

𝑙 : Length of a pipe 

𝑀 : Selection matrix that corresponds model predictions to measured Degrees of Freedom 

𝑀𝑖 : Model which has leakage at pipe 𝑖 

𝑚 : Exponent in the Hazen-Williams equation 

𝑁 : Number of nodes 

𝑁𝑠 : Number of sensors 

𝑁𝜃  : Number of parameters to be updated 

𝑁̃ : Number of samples 

𝑛 : Manning roughness coefficient 

𝑃 : Number of pipes 

𝑝 : Power of a pump 

𝑄 : Fisher information matrix 

𝑄 : Vector with the sign of flow rates 

𝑄𝜋 : Matrix related to the prior 

𝑞 : Flow rate in a pipe 

𝑞 : Vector with flow rates of all pipes 

𝑞𝑗 : Flow rate in pipe 𝑗 

𝑅 : Resistance coefficient in the frictional loss equation 

𝑅̂ : Fraction of the Reynolds number used the cubic interpolation from Moody diagram 

𝑅𝑒 : Reynolds number 

𝑆 : Number of pseudoloops 

𝑈 : Information entropy based objective function 

𝑈′ : Information entropy based objective function conditioned also on nuisance parameters 

𝑢 : Average velocity of fluid in a pipe 

𝑢∗ : Selection vector for the unknown hydraulic heads 

𝑤 : Vector with the total head loss of all the pipes 

𝑤𝑖 : Sparse grid or Monte Carlo point weights 

𝑥 : Flow exponent in the frictional loss equation 

𝑋1, 𝑋2, 𝑋3, 𝑋4 : Coefficients of the cubic interpolation from Moody diagram. 

𝑦 : Vector of measurements 

𝑦𝑖  : Measurement 𝑖 
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𝑌2, 𝑌3 : Variables used in the cubic interpolation from the Moody diagram. 

𝑍 : Selection matrix for all the pseudoloop equations 

𝑧 : Selection vector for a pseudoloop equation 

 

𝛾 : Specific gravity of the fluid 

𝛥𝐻 : Difference between the posterior and the prior information entropy 

𝛥ℎ𝑗 : Total head loss in pipe j 

𝛥𝑟 : Head difference between endpoints in a pseudoloop equation 

𝛥𝑟 : Vector with head differences for all pseudoloop equations 

𝛥𝜑 : Perturbation of the model nuisance parameters 

𝛿 : Coordinates of sensors 

𝛿𝑖  : Kronecker delta vector 

𝛿𝑜𝑝𝑡  : Optimal sensor configuration 

𝜀 : Roughness of a pipe 

𝜂 : Efficiency of a pump 

𝜃 : Model parameters to be updated 

𝜃 : Most probable values of model parameters 

𝜃𝑙 : Amount of leakage 

𝜅  : Variable used in the friction factor equation 

𝜆𝑞 : Variable used in the friction factor equation 

𝜇 : Viscosity of fluid 

𝜌 : Density of fluid 

𝛴 : Prediction error covariance matrix 

𝜎 : Parameters of prediction error covariance matrix 

𝜎̂ : Most probable values of prediction error covariance matrix parameters 

𝜑 : Model nuisance parameters 
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1. Introduction 

Pipe networks such as water distribution networks are an important asset encountered in the 

industrialized society. The size of the networks can vary from small ones, such as in heating systems 

to massive ones, such as in large cities, consisted of thousands of pipes. One of the most common 

problems of these networks is leakage and when the size of the network is taken into consideration 

locating one can be difficult. Given enough time leaks can accumulate in the network resulting in 

significant portion of the water supply being wasted. To prevent this, a leakage detection methodology 

needs to be implemented to identify leaks early and provide crucial information that will guide the 

decision making of the operation. 

Some leakage detection methodologies that have been proposed are acoustic logging [1], ground 

penetrating radar [2], transient-based methods [3], and model-based methods [4]. The model-based 

methods use experimental measurements to update the model parameters by minimizing the 

discrepancy between the model predictions and the measurements, resulting in a model which 

represents the condition of the actual system. The method that is presented here also relies on a 

model of the system and uses a Bayesian system identification methodology, such as [5], [6], to infer 

the location and the magnitude of leakage. The Bayesian framework also enables the opportunity to 

account for and quantify the unavoidable uncertainties presented in the model parameters and model 

predictions due to modeling and measurement error respectively. A set of measurements gathered 

from sensors placed within the network are used to update the parameters from a set of hydraulic 

models which represent leakage on different pipes. According to the Bayesian model selection 

methodology, the most probable leakage scenario corresponds to the model which maximizes the 

evidence of the data. 

Herein, the hydraulic model of the system is also developed. It uses a system of equations comprised 

of the continuity and energy balance equations, [7], [8], to be solved to calculate the pressures and 

flow rates in the network. To make the model more efficient, by reducing the number of non-linear 

equations to be solved, the energy balance equations are combined accordingly to formulate new 

independent equations, resulting in a system of linear and a system of non-linear equations that can 

be solved independently. To verify the accuracy of the developed model, the commercial software 

EPANET [9] was used to compare the model outputs. 

The quantity and quality of information provided by the measurement data depends on the number 

and type of sensors, as well as the location that they will be placed. It is of interest then, to develop a 

methodology that can find the optimal sensor configurations that maximize the information the 
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measurements provide about the parameters of interest. In this work Optimal Sensor Placement (OSP) 

methodologies are used that are based on optimizing some index of the information provided by the 

data. A norm of the Fisher information matrix (FIM) [10] is one such index that has been used in the 

past. It expresses the sensitivity of the measurements with respect to the parameters to be inferred. 

Maximization of the FIM can yield the optimal sensor configuration. Equivalently minimization of the 

Information Entropy (IE) [11] of the model parameters, indicative of leakage in the network, can yield 

the optimal sensor configuration. The IE quantifies the posterior uncertainty of the parameters of 

interest and is related to the determinant of the FIM. In order to account for the uncertainty in the 

measurements and the model parameters, the Bayesian framework is applied to the IE to formulate 

an expression that results in sensor configurations which are robust to uncertainties [12]. 

In this thesis the robust IE is used as the measure of uncertainty [12]. This chosen objective function 

contains a multidimensional integral over the model parameter space. To evaluate this, two 

approximations are provided. The first one is an asymptotic approximation which gives more accurate 

estimates as the amount of data is increased [11] and the second one is a Monte Carlo sampling 

approximation. The accuracy of the sampling approximation depends on the number of samples that 

will be drawn from the prior of the model parameters and the prediction error parameters, at the cost 

of more computational time. Since an exhaustive evaluation over all possible sensor configurations is 

computationally prohibitive, two heuristic sequential sensor placing algorithms are used [11] to 

estimate the optimal sensor configuration. To verify the results of the OSP methodology the resulting 

optimal sensor configurations are applied to detect simulated leaks. The effectiveness of the optimal 

configuration is measured by comparing the accuracy of locating correctly the leaking pipe and the 

posterior uncertainty of the leakage parameters to the accuracy achieved by suboptimal sensor 

configurations. 

The organization of the thesis is as follows. The formulation of the hydraulic model is presented in 

Chapter 2. The Bayesian inference and model selection methodology used to infer the amount of 

leakage and locate the leaking pipe is presented in Chapter 3. In Chapter 4 the information entropy 

based objective function and the methodology for optimal sensor placement will be introduced. The 

optimal sensor placement methodology is then applied in an artificial water distribution network, 

which is outlined in Chapter 5, and the results are presented and discussed in Chapter 6. The 

effectiveness of the resulting optimal sensor configurations is evaluated and discussed in Chapter 7. 

Finally, conclusions are drawn in Chapter 8. 
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2.  Hydraulic model formulation 

In this chapter the steady-state equations related to the hydraulic system are formulated. These 

equations constitute the model of a water distribution network that will be used to calculate the flow 

rate in pipes and pressure in nodes, which are the model outputs. The Bayesian inference and the 

optimal sensor placement methodology developed in the following chapters require also the 

derivatives of the model outputs (flow rates and pressures) with respect to the model parameters. 

Thus, all the necessary equations and systems of equations for the derivates of the flow rates and 

pressures with respect to the model parameters are analytically formulated as well. Since the 

hydraulic model will be used to simulate the presence of a leaking pipe, some changes are required to 

be done to the original model of the network in order to model the leakage. The method that is used 

to incorporate the leakage is to split the pipe into two pipes and add an extra node between with 

nodal demand to represent the amount of leakage. This will give the model the capability to simulate 

the hydraulic changes that will happen in the network and by monitoring these changes, the leaking 

pipe will be able to be located. The hydraulic equations are based on the following fluid mechanics 

book [7], which are extended in this chapter to provide the equations for the derivatives of the flow 

rate and pressure with respect to the model parameters. 

2.1 Frictional losses in developed pipe flow 

When a liquid flows in pipes it is subjected to frictional losses. These losses gradually reduce the energy 

of the liquid or equivalently the hydraulic head of the liquid. The hydraulic head is what makes the 

liquid able to flow spontaneously from regions of the network with higher hydraulic head to regions 

with lower hydraulic head. If the altitude difference between the sources of water and the places 

where the water is consumed is not adequate to overcome the frictional loses and still have enough 

pressure where the water is consumed, then pumps are required to increase the hydraulic head of 

the liquid. In the following sections the types of frictional losses are discussed with greater detail. 

2.1.1 Losses due to wall shear 

Losses due to wall shear is a type of loss that acts along the length of pipes due to friction that arises 

between the internal pipe walls and the water that flows within. The head loss in a pipe that results 

from the wall shear in a developed flow is given by an equation of the following form 

 ℎ𝑙 = 𝑅𝑞
𝑥 (1) 

where ℎ𝑙 is the head loss due to wall shear, q is the flow rate and 𝑅, 𝑥 are the resistance coefficient 

and the flow exponent respectively that depend on the exact friction formula that will be used.  Some 
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of the formulas that can be used in equation (1) and are also used in the EPANET software [9] are the 

following: 

• Hazen-Williams formula 

• Darcy-Weisbach formula 

• Chezy-Manning formula 

 

i. Hazen-Williams 

The only liquid that Hazen-Williams formula can be applied to is water. 

x=1.85 

 𝑅 =
𝐾1𝑙

𝐶𝑥𝑑𝑚
        𝐾1 = {

10.59       SI units
4.72          English units

 (2) 

 

where 𝐶 is the Hazen-Williams coefficient, 𝑑 is the pipe diameter, 𝑙 is the length of the pipe and 

𝑚=4.87 

ii. Darcy-Weisbach 

The Darcy-Weisbach formula is the formula that is used throughout this thesis and is the most 

accurate of the three. It can be applied to all kinds of liquids and flow regimes. 

x=2 

 𝑅 =
𝑓𝑙

2𝑔𝑑𝐴2
 (3) 

 

where 𝑓 is the friction factor, g is the gravitational acceleration and 𝐴 is the cross sectional area 

of the pipe 

In the cases where the pipe is circular (4) can be applied to (3) resulting to the equation (5) 

 𝐴 =
𝜋𝑑2

4
 (4) 

 𝑅 =
8𝑓𝑙

𝑔𝜋2𝑑5
 (5) 
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The friction factor 𝑓 is a dimensionless shear and depends on various flow related quantities. A 

dimensional analysis shows that 𝑓 is a function of the Reynolds number and the pipe relative 

roughness. 

 𝑓 = 𝑓 (𝑅𝑒,
𝜀

𝑑
) (6) 

where 𝑅𝑒 is the Reynolds number defined in (7), 𝜀 is the roughness of the pipe measured in units 

of length and 𝜀/𝑑 is the relative pipe roughness 

 𝑅𝑒 =
|𝑢|𝜌𝑑

𝜇
 (7) 

 

where 𝑢 is the average velocity of the liquid, ρ is the density of the liquid and 𝜇 is the viscosity of 

the liquid. The absolute value is used for the average velocity because in the software the sign of 

the flow rate (𝑞 ∝ 𝑢) corresponds to the relative direction in which the liquid is flowing in a pipe. 

The Reynolds number can be written as a function of the flow rate in a circular pipe using (4) and 

(8) to get equation (9). 

 𝑞 = 𝑢𝐴 (8) 

 𝑅𝑒 =
4𝜌|𝑞|

𝜋𝑑𝜇
 (9) 

Values of 𝑓 as a function to the Reynolds number and relative pipe roughness can be found on the 

Moody diagram. However, in this case the friction factor will be calculated by the software, so an 

analytical expression needs to be used. A significant number of empirical equations have been 

developed overtime to represent the different regimes of the Moody diagram with varying 

degrees of accuracy. The different regimes of the Moody diagram are comprised of laminar flow, 

transitional flow and turbulent flow, which can be either smooth or rough turbulent flow. EPANET 

[9] in order to have accuracy over all these regimes uses three different functions of 𝑓, one for 

each flow regime. The equations are the following.  

• Hagen-Poiseuille formula for 𝑅𝑒 < 2000 

 𝑓 =
64

𝑅𝑒
 (10) 

• Swamee and Jain approximation to the Colebrook-White equation for 𝑅𝑒 > 4000 

 𝑓 =
1.325

[ln (
𝜀

3.7𝑑
+
5.74
𝑅𝑒0.9

)]
2 (11) 
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Note: Equation (11) in the EPANET manual has 0.25 in the numerator which is the value that 

will arise if the natural logarithm in the denominator is changed to base 10 logarithm. 

• Cubic interpolation from the Moody diagram for 2000 < 𝑅𝑒 < 4000 

 𝑓 = (𝑋1 + 𝑅̂ (𝑋2 + 𝑅̂(𝑋3 + 𝑋4))) (12) 

 𝑅̂ =
𝑅𝑒

2000
 (13) 

 𝑋1 = 7𝐹𝐴 − 𝐹𝐵 (14) 

 𝑋2 = 0.128 − 17𝐹𝐴 + 2.5𝐹𝐵 (15) 

 𝑋3 = −0.128 + 13𝐹𝐴 − 2𝐹𝐵 (16) 

 𝑋4 = 𝑅̂(0.032 − 3𝐹𝐴 + 0.5𝐹𝐵) (17) 

 𝐹𝐴 = (𝑌3)−2 (18) 

 𝐹𝐵 = 𝐹𝐴 (2 −
0.00514215

(𝑌2)(𝑌3)
) (19) 

 𝑌2 =
𝜀

3.7𝑑
+
5.74

𝑅𝑒0.9
 (20) 

 𝑌3 = −0.86859 ln (
𝜀

3.7𝑑
+

5.74

40000.9
) (21) 

The problem that was encountered with this set of equations is that the second derivative 
with respect to flow rate was not continuous at the intersection points and caused problems 
when it was used by the numerical scheme to solve the system of non-linear hydraulic 
equations. 

Instead, a single more complex equation was used that combined expressions for all flow 
regimes and pipe roughness. 

• Cheng formula [13] 

 𝑓 = (
64

𝑅𝑒
)
𝑎

(1.8 log
𝑅𝑒

6.8
)
2(𝑎−1)𝑏

(2 log
3.7𝑑

𝜀
)
2(𝑎−1)(1−𝑏)

 (22) 

 𝑎 =
1

1 + (
𝑅𝑒
2720)

9 (23) 

 

𝑏 =
1

1 + (
𝑅𝑒

160
𝑑
𝜀

)

2 

(24) 

iii. Chezy-Manning 

The Chezy-Manning formula is mostly used for open channel flows. 

x=2 
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 𝑅 =
10.29𝑛2𝑙

𝐾2𝑑
5.33

     𝐾2 = {
1               SI units
2.22          English units

 (25) 

where 𝑛 is the Manning roughness coefficient 

2.1.2 Minor losses 

Minor losses are a type of loss that occurs due to the presence of different components in the pipes. 

These components cause discrete reductions in the hydraulic head of the liquid and are caused by 

secondary flows or flow separation. Some of the components that pipes have and can cause minor 

losses are bends, elbows, valves, changes in pipe diameter and other fittings. The minor losses are 

given by the equation 

 ℎ𝑓 =
8𝐾

𝑔𝜋2𝑑4
𝑞2 (26) 

where ℎ𝑓 is the head loss due to the presence of a component and  𝐾 is the loss coefficient of the 

component, which is calculated experimentally and can be found in tables [14] 

2.1.3 Pumps 

Pumps are devices which are added to water distribution networks to increase the hydraulic head of 

the liquid. This is done to overcome energy losses due to friction, increase the pressure of water at 

the consumption points or make the water go to higher altitudes than the altitude of the source. For 

large networks where the total length of the pipes that the water must travel is significant, multiple 

pumps are usually required to overcome the losses.  Pumps, for the purpose of this thesis, will be 

considered as negative losses and added to the total energy loss of the pipe. If the exact characteristics 

of the pump are known, then the pump curve is also available. When this is the case the head loss of 

the pump (negative term) can be calculated using a three-point curve with 3 parameters that can be 

calculating by fitting 3 points from the pump curve. 

 ℎ𝑝 = −( ℎ𝑚 − ℎ1𝑞
ℎ2 ) (27) 

where ℎ𝑝 is the head loss due to the pump,  ℎ𝑚 is the shutoff head of the pump and ℎ1, ℎ2 are 

parameters that are determined by fitting the equation to the pump curve. 

If the pump curve is not available, which is usually the case in the preliminary design of the network, 

then the following equation can be used instead which assumes a constant power pump. 

 ℎ𝑝 = −
𝑝𝜂

𝑞𝛾
 (28) 

where 𝑝 is the power of the pump, 𝜂 is the efficiency of the pump and 𝛾 is the specific gravity of the 

fluid 
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 𝛾 = 𝜌𝑔 (29) 

2.2 System of hydraulic equations 

The unknown variables of the hydraulic model that must be calculated are the flow rate in each pipe 

and the pressure in each interior node or junction. Junction is every node that is not a reservoir. 

Reservoirs are fixed grade nodes and their hydraulic head is known. In order to calculate these 

quantities, a system of equations has to be formulated. The equations that will be used are the 

continuity equation in junctions and the energy balance in pipes. 

Let 𝑃 be the number of pipes, 𝐽 be the number of interior nodes or junctions and 𝑁 the number of all 

the nodes. The number of unknown variables is equal to 𝑃 + 𝐽 for the flow rate in 𝑃 pipes and the 

pressure in 𝐽 junctions. The continuity and energy balance equations are formulated below. 

2.2.1 Continuity balance 

The continuity balance specifies that the total inflow of water in a junction has to be equal to the sum 

of total outflow plus the consumption at the junction. The mathematical notation of this description 

is the following 

 𝑐𝑖
𝑇𝑞 = 𝑑̃𝑖  (30) 

where 𝑞 ∈ ℝ𝑃 is a vector with the flow rates of every pipe, 𝑑̃𝑖  is the demand of the junction 𝑖 and       

𝑐𝑖 ∈ ℝ
𝑃 , 𝑖 = 1,… , 𝐽 is a selection vector that corresponds the junction 𝑖 to all the pipes that are 

directly connected to it and has values -1, 0, 1.  The value -1 is used when the pipe that corresponds 

to the specific element of the vector has junction 𝑖 as start node and thus removes water from this 

junction, the definition of pipes with start and end nodes is addressed in the next paragraph. The value 

1 is used when the respective pipe has junction 𝑖 as end node and thus adds water to this node. If a 

pipe is not connected directly to junction 𝑖 then the respective element of the vector has the value 0. 

An example of this is illustrated in Figure 1, the arrows showcase the positive flow direction in the 

pipes. 

Figure 1 Example of equation (30) applied to 
junction 3 of the illustrated network 

[1, 1, −1, 0] [

𝑞1
𝑞2
𝑞3
𝑞4

] = 𝑑̃3 ⇒ 

𝑞1 + 𝑞2 − 𝑞3 = 𝑑̃3  
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Each pipe is defined with a start node and an end node. When the water flows from the start to the 

end node the flow is considered positive in that pipe. When the water flows in the opposite direction 

the flow is considered negative. If a pipe contains a pump, then the start and end nodes are defined 

accordingly so that the outflow of the pump is in the positive direction. 

Applying equation (30) to every junction results to the following form 

 𝐶𝑞 = 𝑑̃ (31) 

where 𝐶 is a matrix defined as 𝐶 = [c1, … , c𝐽]
𝑇

 and 𝑑̃ is a vector containing all the demands                   

𝑑̃ = [𝑑̃1, … , 𝑑̃𝐽]
𝑇

 

2.2.2 Energy balance 

The total energy loss in a pipe, or equivalently the head loss, is equal to the sum of the three loss terms 

formulated in the previous section. 

 𝛥ℎ𝑗 = 𝑠𝑖𝑔𝑛(𝑞𝑗)[ℎ𝑙,𝑗 + ℎ𝑓,𝑗 + ℎ𝑝,𝑗] (32) 

where 𝛥ℎ𝑗 is the head loss in pipe 𝑗 and is defined as: 

 𝛥ℎ𝑗 = 𝑒𝑗
𝑇ℎ (33) 

where ℎ ∈ ℝ𝑁 is a vector that contains the hydraulic head of all the nodes, reservoirs included and 

𝑒𝑗 ∈ ℝ
𝑁 𝑗 = 1,…𝑃 is a selection vector that corresponds pipe 𝑗 to its start and end nodes and has 

values -1,0,1.  The value -1 is used when the node that corresponds to the specific element of the 

vector is the end node of pipe 𝑗. The value 1 is used when the respective node is the start node of pipe 

𝑗 and 0 is used if the node is not connected directly to pipe 𝑗. 

The head loss in a pipe is defined as the head in the start node minus the head in the end node. In a 

pipe with the water flowing in the positive direction the hydraulic head in the start node is higher than 

the head in the end node and the head loss has to be a positive quantity for a positive water flow. If 

the flow turns out to be negative, water goes from the end node towards the start node and the head 

loss is negative. The loss terms as are formulated are always positive quantities, so the 𝑠𝑖𝑔𝑛(… ) 

function is used to correct this. If a pump does not exist in the pipe j the term ℎ𝑝,𝑗 is 0. 

The 𝑠𝑖𝑔𝑛(𝑞) function is defined as 

 𝑠𝑖𝑔𝑛(𝑞) = {

−1, 𝑞 < 0
1, 𝑞 > 0    
   0,         𝑞 = 0

 (34) 
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Applying equation (32) to every pipe results to the following form 

 𝐸ℎ = 𝑄.∗ (ℎ𝑙 + ℎ𝑓 + ℎ𝑝) (35) 

where 𝐸 is a matrix defined as 𝐸 = [e1, … , e𝑃]
𝑇

, ℎ𝑙, ℎ𝑓, ℎ𝑝 are vectors which contain the loss term for 

every pipe and 𝑄 =  𝑠𝑖𝑔𝑛 (𝑞) 

The period character (.) in the equation (35), which is also used throughout this thesis, is equivalent 

to the period (.) used in MATLAB to distinguish between array operations and matrix operations. When 

the period is used before an operator, it means that the operator that follows will execute an element 

by element operation on the corresponding elements of vectors or matrices. 

The way the equation (35) is formulated however, is not the usual 𝐴𝑥 = 𝑏 linear system form. The 

problem is that some of the values of the vector ℎ are already known, since it contains the head of the 

fixed grade nodes as well, which have known hydraulic head. In order to fix this the following equation 

is used instead to calculate the hydraulic head. 

 𝐸(: , 𝑢∗)ℎ(𝑢∗) = 𝑄.∗ (ℎ𝑙 + ℎ𝑓 + ℎ𝑝) − 𝐸(: , 𝑘
∗)ℎ(𝑘∗) (36) 

 

where the 𝐸(… ,… )ℎ(… ) notation is the notation used in MATLAB where specific elements of the 

matrix can be selected using a selection vector in each coordinate.  𝑢∗ is a selection vector that selects 

all the unknown hydraulic heads, 𝑘∗ is a vector that selects all the known hydraulic heads and the ( : ) 

notation denotes all rows of the matrix. 

The equations (31) and (36), for all junctions and all pipes respectively constitute a system of 𝑃 + 𝐽 

non-linear equations that can be solved to calculate the flow rates and the hydraulic heads in the 

network. In order to calculate the static pressure of each junction the altitude of each junction has to 

be subtracted from its hydraulic head. The hydraulic head is a sum of the static pressure of the water, 

in units of length, and the height from a plane of reference (sea level) which corresponds to the 

potential energy of the liquid. 

2.2.3 Formulating a more efficient system of equations 

By solving the system of equations formulated above it is possible to get the hydraulic quantities of 

interest. However, this is inefficient since the system contains only non-linear equations. It is possible 

to alter the equations in such a way that the number of non-linear equations that must be solved will 

be reduced. The number of non-linear equations that will be removed will be replaced by the same 

number of linear equations that can be solved independently of the non-linear ones. If attention is 
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paid to the equation (36) it can be noticed that it is a linear system of equations with respect to the 

hydraulic head and if the flow rates were known the hydraulic head could be calculated by solving this 

linear system. In order to calculate the flow rates, the network will be split into loops (closed paths) 

and pseudoloops (paths between fixed grade nodes) and use the fact that loops have zero head gain 

at the end points (an arbitrarily chosen node of the loop) and pseudoloops have known head at the 

end points. In this way the unknown head terms can be canceled out from equation (36) and make 

the system of equations for calculating flow rates independent of calculating the pressure head. 

i. Energy balance in loops 

Loops are closed paths in the network. In other words, by following a loop the starting node 

(arbitrarily chosen) can be reached without crossing any pipe more than once. In order to find 

the loops in the network the DFS algorithm is utilized [15], [16]. 

Let 𝐿 be the number of independent loops in the network (resulting in linearly independent 

equations) which is given by 

 𝐿 = 𝑃 − 𝑁 + 1 (37) 

 

and 𝑤 ∈ ℝ𝑃 be a vector containing the total head loss of every pipe defined as follows 

 𝑤 = 𝑄.∗ (ℎ𝑙 + ℎ𝑓 + ℎ𝑝) (38) 

The energy balance around a single loop can be written as 

 𝑏𝑇𝑤 = 0 (39) 

where 𝑏  ∈ ℝ𝑃 is a selection vector with values -1,0,1. The value -1 is used when the pipe that 

corresponds to the specific element of the vector has alignment opposite to the alignment of 

the loop. The value 1 is used when the respective pipe has the same alignment as the loop 

and 0 is used when the respective pipe is not part of the loop. An example is illustrated in 

Figure 2. The alignment of the loop is arbitrarily defined. The same equation written for all the 

loops is the following. 

 𝐵𝑤 = 0  (40) 

where 𝐵 is a matrix defined as 𝐵 = [b1, … , b𝐿]
𝑇
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Figure 2 Loop consisted of three pipes illustrating the vector values 

 

ii. Energy balance in pseudoloops 

Pseudoloops are paths between fixed grade nodes (reservoirs). The hydraulic head of the 

fixed grade nodes is known so the head difference between the start fixed grade node of the 

pseudoloop and the end fixed grade node is known as well. This is needed in order to avoid 

the yet unknown head terms. The pseudoloops that are used in the software have a specific 

arbitrarily chosen fixed grade node as the start node and the rest of the fixed grade nodes 

become the end node of the pseudoloop one at a time, resulting to number of pseudoloops 

equal to the number of fixed grade nodes minus one. This selection of pairs of fixed grade 

nodes for the start and end nodes is not unique, other pairs can be chosen as long as the 

resulting pseudoloop equations are linearly independent [15]. The path between the start 

node and the end node of the pseudoloops is found using the MATLAB shortestpath function. 

Let 𝑆 be the number of pseudoloops in the network and 𝐹 the number of fixed grade nodes.  

Note that 

 𝑁 = 𝐹 + 𝐽 (41) 

 

The number of independent pseudoloops in a network (resulting in linearly independent  

equations) is 

Arbitrarily chosen positive direction 

+1 

+1 

-1 
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 𝑆 = 𝐹 − 1 (42) 

The energy balance in a single pseudoloop can be written as 

 𝑧𝑇𝑤 + 𝛥𝑟 = 0 (43) 

where 𝑧 ∈ ℝ𝑃 is a selection vector with values -1,0,1. The value -1 is used when the pipe that 

corresponds to the specific element of the vector has alignment opposite to the alignment of 

the pseudoloop. The value 1 is used when the respective pipe has the same alignment as the 

pseudoloop and 0 is used when the respective pipe is not part of the pseudoloop. An example 

is illustrated in Figure 3. 𝛥𝑟 is the difference between the head of the start fixed grade node 

of the pseudoloop and the head of the end fixed grade node. 

The same equation written for all the pseudoloops is the following. 

 𝑍𝑤 + 𝛥𝑟 = 0 (44) 

where 𝑍 is a matrix defined as 𝑍 = [𝑧1, … , z𝑆]
𝑇

and 𝛥𝑟 is a vector containing the head 

differences of the endpoints of the pseudoloops being used. 

 

Figure 3 Pseudoloop consisted of four pipes illustrating the vector values 

To sum up, in order to calculate the 𝑃 unknown flow rates in the pipes the system of non-linear 

equations (31), (40) and (44) with 𝐽, 𝐿 and 𝑆 equations respectively has to be solved simultaneously 

using a numerical scheme. It can be shown using equations (37), (41) and (42) that 𝑃 = 𝐽 + 𝐿 + 𝑆. In 

the developed software the numerical method that is used is the trust-region-dogleg algorithm which 

can be found in the fsolve function in MATLAB. Now that the flow rates are known, the linear equation 

(36) can be used to calculate the hydraulic head of each junction. In order to calculate the pressure of 

the junctions as well, as mentioned before the altitude must be subtracted from the total hydraulic 

head resulting in the junction pressure given in the same units as the hydraulic head. 

Arbitrarily chosen positive direction 

+1 +1 +1 -1 
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2.3 Introducing a leaking pipe into the network 

In order to perform leakage detection, a leaking pipe has to be introduced to the model. The method 

that is used to introduce the leakage is the following. First, a pipe that the leakage will be introduced 

is selected. The pipe then is split into two similar pipes with each one of them having the same 

roughness and diameter and half the length of the original pipe. If the chosen pipe has a pump or 

components that cause minor losses, then these are only added to one of the two resulting pipes. 

Then, at the intersection of the two new pipes a new node is introduced. This new node has a demand 

assigned into it that is equal to the amount of leakage that needs to be introduced. An example of this 

is illustrated in Figure 4. This results into a model that has one more pipe and one more node than the 

original network. The numbering of the new node is one more than the previous highest node number 

and the numbering of the new pipe is one more than the previous highest pipe number. When a 

leakage is added using this method, the vectors and matrices used to model the network have to be 

altered accordingly. These new augmented vectors and matrices, if used in solving the hydraulic 

equations formulated above, will result in model outputs that will consider the presence of a leaking 

pipe. The matrices used in the following chapters are assumed to be augmented with the extra pipe 

and node resulting from adding the leakage. For simplicity the same symbols will be used to describe 

them.   

 

2.4 Sensitivities of hydraulic equations 

In the following chapters, the Bayesian parameter inference framework is applied for leakage 

detection and the information theory is used to find the locations where if sensors are placed, will 

result in very informative measurements. The application of these methodologies requires the use of 

derivatives of system outputs (flow rates and pressures) with respect to the model parameters. Also, 

derivatives are required in the trust-region-dogleg algorithm used for solving the system of hydraulic 

equations. This part of the chapter will therefore present the necessary equations that will be used to 

calculate these derivatives. It is noted that the following derivatives can also be calculated numerically, 

however this will increase the required running time of the software significantly, since the hydraulic 

system will be solved a considerable amount of times and is therefore discouraged.  

Figure 4 Splitting a pipe in two and adding a node 
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2.4.1 Sensitivities of friction factor 

Firstly, the derivatives of the Cheng friction factor with respect to flow rate will be formulated. 

2.4.1.1 Cheng friction factor 

i. 1st derivative of the Cheng friction factor with respect to flow rate q 

The Cheng friction factor was introduced in equation (22) 

For simplicity the equation is split into three terms. 

 𝑓 = 𝑓1𝑓2𝑓3 (45) 

where 

 𝑓1 = (
64

𝑅𝑒
)
𝑎

 (46) 

 𝑓2 = (1.8 log
𝑅𝑒

6.8
)
2(𝑎−1)𝑏

 (47) 

 𝑓3 = (2 log
3.7𝑑

𝜀
)
2(𝑎−1)(1−𝑏)

 (48) 

Formulating the 1st derivatives 

 
𝜕𝑓

𝜕𝑞
=
𝜕𝑓1
𝜕𝑞

𝑓2𝑓3 + 𝑓1
𝜕𝑓2
𝜕𝑞

𝑓3 + 𝑓1𝑓2
𝜕𝑓3
𝜕𝑞

 (49) 

 where  

 
𝜕𝑓1
𝜕𝑞

= 𝑓1 (
𝜕𝑎

𝜕𝑞
ln
64

𝑅𝑒
− 𝑎𝑅𝑒−1

𝜕𝑅𝑒

𝜕𝑞
) (50) 

 
𝜕𝑓2
𝜕𝑞

= 2𝑓2 [(
𝜕𝑎

𝜕𝑞
𝑏 + (𝑎 − 1)

𝜕𝑏

𝜕𝑞
) ln (1.8 log

𝑅𝑒

6.8
) +

(𝑎 − 1)𝑏

𝑅𝑒 ln 10 log
𝑅𝑒
6.8 

𝜕𝑅𝑒

𝜕𝑞
] (51) 

 
𝜕𝑓3
𝜕𝑞

= 2𝑓3 (
𝜕𝑎

𝜕𝑞
(1 − 𝑏) − (𝑎 − 1)

𝜕𝑏

𝜕𝑞
) ln (2 log

3.7𝑑

𝜀
) (52) 

 
𝜕𝑎

𝜕𝑞
= −

9

27209
𝑎2𝑅𝑒8

𝜕𝑅𝑒

𝜕𝑞
 (53) 

 

𝜕𝑏

𝜕𝑞
= −

2

(160
𝑑
𝜀)

2 𝑏
2𝑅𝑒

𝜕𝑅𝑒

𝜕𝑞
 (54) 

 
𝜕𝑅𝑒

𝜕𝑞
=
4𝜌 𝑠𝑖𝑔𝑛(𝑞)

𝜋𝑑𝜇
 (55) 

 

A problem that was encountered with the first derivative of the Cheng friction factor is that 

in equation (51) if 𝑅𝑒 < 6.8 the quantity log(𝑅𝑒/6.8) is negative which is then used as input 
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in a logarithm resulting in complex values. This problem is resolved if the term on the left of 

the logarithm is 0, since the product will be 0 eliminating the complex values. The way the 

Cheng friction factor is formulated uses the 𝑎 and 𝑏 parameters as weights to choose which 

terms should be used depending on the flow regime and smooth or rough turbulent flow 

respectively. Parameter 𝑎 approaches 1 for laminar flow and for 𝑅𝑒 < 6.8 can be considered 

as exactly 1 thus making the (𝑎 − 1) term to be 0.   In this case the term 𝜕𝑎/𝜕𝑞 should also 

be 0 since the rate of change is insignificant. However, this is not the case. If 𝑅𝑒 = 6.8 is used 

to calculate the 𝜕𝑎/𝜕𝑞 derivative, the result is of the order 10−18 thus not eliminating the 

complex term. The solution applied to this is that if 𝑅𝑒 < 6.8 the 𝜕𝑎/𝜕𝑞 term is forced to be 

0. 

 

ii. 2nd derivative of the Cheng friction factor with respect to flow rate q 

Formulating the 2nd derivatives 

 

𝜕2𝑓

𝜕𝑞2
=
𝜕2𝑓1
𝜕𝑞2

𝑓2𝑓3 + 𝑓1
𝜕2𝑓2
𝜕𝑞2

𝑓3 + 𝑓1𝑓2
𝜕2𝑓3
𝜕𝑞2

+ 2
𝜕𝑓1
𝜕𝑞

𝜕𝑓2
𝜕𝑞

𝑓3 + 2
𝜕𝑓1
𝜕𝑞

𝑓2
𝜕𝑓3
𝜕𝑞

+ 2𝑓1
𝜕𝑓2
𝜕𝑞

𝜕𝑓3
𝜕𝑞
   

(56) 

 

𝜕2𝑓1
𝜕𝑞2

=
𝜕𝑓1
𝜕𝑞

(
𝜕𝑎

𝜕𝑞
ln
64

𝑅𝑒
−
𝑎

𝑅𝑒

𝜕𝑅𝑒

𝜕𝑞
)

+ 𝑓1 (
𝜕2𝑎

𝜕𝑞2
ln
64

𝑅𝑒
− 2

𝜕𝑎

𝜕𝑞
𝑅𝑒−1

𝜕𝑅𝑒

𝜕𝑞
+ 𝑎 𝑅𝑒−2 (

𝜕𝑅𝑒

𝜕𝑞
)
2

) 

(57) 

 

𝜕2𝑓2
𝜕𝑞2

= 2
𝜕𝑓2
𝜕𝑞

[(
𝜕𝑎

𝜕𝑞
𝑏 + (𝑎 − 1)

𝜕𝑏

𝜕𝑞
) ln (1.8 log

𝑅𝑒

6.8
) +

(𝑎 − 1)𝑏

𝑅𝑒 ln 10 log
𝑅𝑒
6.8

𝜕𝑅𝑒

𝜕𝑞
]
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𝑅𝑒

6.8
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𝜕2𝑎

𝜕𝑞2
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𝜕𝑎

𝜕𝑞
 
𝜕𝑏

𝜕𝑞
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𝜕2𝑏

𝜕𝑞2
)
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𝜕𝑎

𝜕𝑞
𝑏 + (𝑎 − 1)

𝜕𝑏

𝜕𝑞
) (1.8 log

𝑅𝑒

6.8
)
−1 1.8
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𝜕𝑅𝑒
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(58) 
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𝜕2𝑓3
𝜕𝑞2

= 2
𝜕𝑓3
𝜕𝑞

(
𝜕𝑎

𝜕𝑞
(1 − 𝑏) − (𝑎 − 1)

𝜕𝑏

𝜕𝑞
) ln (2 log

3.7𝑑

𝜀
)

+ 2𝑓3 (
𝜕2𝑎

𝜕𝑞2
(1 − 𝑏) − 2

𝜕𝑎

𝜕𝑞

𝜕𝑏

𝜕𝑞
− (𝑎 − 1)

𝜕2𝑏

𝜕𝑞2
) ln (2 log

3.7𝑑

𝜀
)    

 

(59) 

 
𝜕2𝑎

𝜕𝑞2
=

−9

27209
(2𝑎𝑅𝑒8

𝜕𝑎

𝜕𝑞

𝜕𝑅𝑒

𝜕𝑞
+ 8𝑎2𝑅𝑒7 (

𝜕𝑅𝑒

𝜕𝑞
)
2

) (60) 

 
𝜕2𝑏

𝜕𝑞2
= −

2

(160
𝑑
𝜀
)
2 (2𝑏𝑅𝑒

𝜕𝑏

𝜕𝑞

𝜕𝑅𝑒

𝜕𝑞
+ (𝑏

𝜕𝑅𝑒

𝜕𝑞
)
2

) (61) 

 

A problem with complex numbers was encountered in the second derivative as well. The 

quantity 𝜕2𝑎/𝜕𝑞2 was also forced to be 0 to resolve the complex numbers from 𝜕2𝑓2/𝜕𝑞
2. 

The maximum value that 𝜕2𝑎/𝜕𝑞2 can get is for 𝑅𝑒 = 6.8 and is of the order of magnitude 

10−12. 

2.4.1.2 EPANET friction factors 

i. 1st derivative of the EPANET friction factors with respect to flow rate q 

For simplicity, let 𝜅 and 𝜆𝑞 be variables defined as follows 

 𝜅 =
𝜋𝑑𝜇

4𝜌
   (62) 

 𝜆𝑞 =
𝜀

3.7𝑑
+ 5.74 (

𝜅

|𝑞|
)
0.9

  (63) 

The first derivatives of the three equations used for calculating the friction factor by EPANET for 

each flow regime are the following  

 
𝜕𝑓

𝜕𝑞
= −

64𝜅

𝑠𝑖𝑔𝑛(𝑞)𝑞2
,      𝑅𝑒 < 2000     (64) 

 
𝜕𝑓

𝜕𝑞
= 13.6899(ln 𝜆𝑞)

−3
𝜆𝑞
−1𝜅0.9|𝑞|−1.9𝑠𝑖𝑔𝑛(𝑞),    𝑅𝑒 > 4000   (65) 

For the transitional regime the following constants are introduced 

𝑎1 = 0.00514215, 𝑏1 = 0.86859 

 

𝜕𝑓

𝜕𝑞
=
𝜕𝑋1

𝜕𝑞
+
𝜕𝑅̂

𝜕𝑞
(𝑋2 + 𝑅̂(𝑋3 + 𝑋4))

+ 𝑅̂ [
𝜕𝑋2

𝜕𝑞
+
𝜕𝑅̂

𝜕𝑞
(𝑋3 + 𝑋4) + 𝑅̂ (

𝜕𝑋3

𝜕𝑞
+
𝜕𝑋4

𝜕𝑞
)] ,          2000 < 𝑅𝑒 < 4000    

(66) 
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where 

 
𝜕𝑋1

𝜕𝑞
= −

𝜕𝐹𝐵

𝜕𝑞
  (67) 

 
𝜕𝑋2

𝜕𝑞
= 2.5

𝜕𝐹𝐵

𝜕𝑞
   (68) 

 
𝜕𝑋3

𝜕𝑞
= −2

𝜕𝐹𝐵

𝜕𝑞
   (69) 

 
𝜕𝑋4

𝜕𝑞
=
𝜕𝑅̂

𝜕𝑞
(0.032 − 3𝐹𝐴 + 0.5𝐹𝐵) + 0.5𝑅̂

𝜕𝐹𝐵

𝜕𝑞
      (70) 

 
𝜕𝑅̂

𝜕𝑞
=
𝑠𝑖𝑔𝑛(𝑞)

2000𝜅
 (71) 

 
𝜕𝑅𝑒

𝜕𝑞
=
𝑠𝑖𝑔𝑛(𝑞)

𝜅
    (72) 

 
𝜕𝐹𝐵

𝜕𝑞
= 𝐹𝐴 (

𝑎1
(𝑌2)

2𝑌3

𝜕𝑌2
𝜕𝑞
)    (73) 

 
𝜕𝑌2
𝜕𝑞

= −5.166𝑅𝑒−1.9
𝜕𝑅𝑒

𝜕𝑞
     (74) 

 

ii. 2nd derivative of the EPANET friction factors with respect to flow rate q 

The second derivatives of the three equations used for calculating the friction factor by 

EPANET for each flow regime are the following  

 
𝜕2𝑓

𝜕𝑞2
=
128𝜅

|𝑞|3
,   𝑅𝑒 < 2000    (75) 

 

𝜕2𝑓

𝜕𝑞2
= 13.6899𝜅0.9(ln(𝜆𝑞))

−3
[15.498(ln(𝜆𝑞))

−1
(𝜆𝑞)

−2
|𝑞|−3,8𝜅0.9

+ 5.166(𝜆𝑞)
−2
|𝑞|−3.8𝜅0.9 − 1.9(𝜆𝑞)

−1
|𝑞|−2.9] ,    𝑅𝑒 > 4000      

 

(76) 

 

𝜕2𝑓

𝜕𝑞2
= 
𝜕2𝑋1

𝜕𝑞2
+ 2

𝜕𝑅̂

𝜕𝑞
[
𝜕𝑋2

𝜕𝑞
+
𝜕𝑅̂

𝜕𝑞
(𝑋3 + 𝑋4) + 𝑅̂ (

𝜕𝑋3

𝜕𝑞
+
𝜕𝑋4

𝜕𝑞
)]

+ 𝑅̂ [
𝜕2𝑋2

𝜕𝑞2
+ 2

𝜕𝑅̂

𝜕𝑞
(
𝜕𝑋3

𝜕𝑞
+
𝜕𝑋4

𝜕𝑞
) + 𝑅̂ (

𝜕2𝑋3

𝜕𝑞2
+
𝜕2𝑋4

𝜕𝑞2
)] ,

2000 < 𝑅𝑒 < 4000   

(77) 

 

where 
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𝜕2𝑋1

𝜕𝑞2
= −

𝜕2𝐹𝐵

𝜕𝑞2
     (78) 

 
𝜕2𝑋2

𝜕𝑞2
= 2.5

𝜕2𝐹𝐵

𝜕𝑞2
     (79) 

 
𝜕2𝑋3

𝜕𝑞2
= −2

𝜕2𝐹𝐵

𝜕𝑞2
    (80) 

 
𝜕2𝑋4

𝜕𝑞2
=
𝜕𝑅̂

𝜕𝑞

𝜕𝐹𝐵

𝜕𝑞
+ 0.5𝑅̂

𝜕2𝐹𝐵

𝜕𝑞2
     (81) 

 
𝜕2𝐹𝐵

𝜕𝑞2
= 𝐹𝐴

𝑎1
𝑌3
(
1

𝑌22
𝜕2𝑌2

𝜕𝑞2
−

2

𝑌23
(
𝜕𝑌2

𝜕𝑞
)
2

)    (82) 

 
𝜕2𝑌2

𝜕𝑞2
= 9.8154Re−2.9

𝜕𝑅𝑒

𝜕𝑞
     (83) 

2.4.2 Sensitivities of the model outputs with respect to the amount of leakage 

In this part, the system of equations required to calculate the derivatives of the model outputs 

(flow rate and pressure) with respect to the amount of leakage is formulated. These derivatives 

are required in order to quantify the uncertainty of the parameter that is inferred through the 

Bayesian framework for uncertainty quantification. The parameter that is inferred in this case is 

the amount of leakage that escapes through a damaged pipe in the network. The calculated 

uncertainty, along with other quantities that will be introduced later, will be used to find which 

pipe is the most probable to be damaged. Moreover, these derivatives are required in calculating 

the Fisher information matrix. This is a quantity that is used in Chapter 4 to evaluate the 

effectiveness of each sensor configuration, thus making it possible to find which sensor 

configurations are optimal. 

2.4.2.1 First derivatives of the model outputs with respect to the amount of leakage 

i. Continuity equation 

The first derivative of the continuity equation (31) with respect to the amount of leakage is 

 𝐶
𝜕𝑞

𝜕𝜃𝑙
= 𝛿𝑖  (84) 

where 𝜃𝑙 is the amount of leakage introduced at the new node 𝑖 and 𝛿𝑖  is a Kronecker delta 

vector with all elements being 0 except the 𝑖𝑡ℎ element which has value 1 and is illustrated in 

(85) 
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 𝛿𝑖 =

{
  
 

  
 

 

0
⋮
0
1
0
⋮
0

 

}
  
 

  
 

 ← 𝑖𝑡ℎ𝑟𝑜𝑤 (85) 

The 𝑖𝑡ℎ row is the row which corresponds to the new node that was added in order to 

introduce the leakage.  

ii. Energy balance in loops 

For simplicity the following three terms are introduced. 

 𝐷𝑃𝑙 =
8𝑙

𝑔𝜋2𝑑5
 (86) 

 𝐷𝑃𝑓 =
8𝐾

𝑔𝜋2𝑑4
 (87) 

 𝐷𝑃𝑝 =
𝑝𝜂

𝛾
 (88) 

These variables contain all non-flow-rate related variables from the three loss terms 

formulated in chapter 2.1 and are known before the system is solved. When they are used as 

vectors, they denote the term on the right hand side for all pipes. 

The first derivative of the energy balance in loops, equation (40), with respect to the amount 

of leakage is 

 [𝐵.∗ (𝜕𝑤. 𝜕𝑞⁄ )
𝑇
]
𝜕𝑞

𝜕𝜃𝑙
= 0 (89) 

where   

 𝜕𝑤. 𝜕𝑞⁄ = 𝑄.∗ (𝐷𝑃𝑙 .∗ (𝑞.
2 .∗ (𝜕𝑓. 𝜕𝑞⁄ ) + 2𝑓.∗ 𝑞) + 2𝐷𝑃𝑓 .∗ 𝑞 + 𝐷𝑃𝑝.∗ 𝑞.

−2 ) (90) 

 

All operators preceded by the period character (.) are element by element operators. The 

operator (.*) in equation (89) denotes that matrix 𝐵 has each row multiplied element by 

element by the row vector (𝜕𝑤. 𝜕𝑞⁄ )
𝑇

. It is noted that the matrix in the square brackets in 

(89) is known since the flow rate has already been solved for. 

iii. Energy balance in pseudoloops 

The first derivative of the energy balance in pseudoloops, equation (44), with respect to the 

amount of leakage is 



35 
 

 [𝑍.∗ (𝜕𝑤. 𝜕𝑞⁄ )
𝑇
]
𝜕𝑞

𝜕𝜃𝑙
= 0 (91) 

where 𝜕𝑤. 𝜕𝑞⁄  is defined in equation (90) 

Now that the necessary equations are formulated the derivatives of the flow rate with respect 

to the amount of leakage can be calculated. The system of equations that has to be solved 

simultaneously is comprised of the equations (84), (89) and (91). It is noted that this system 

of equations is linear since all the quantities used to calculate the matrix on the left side are 

known, with the only unknown quantity being the derivatives which are linearly related. 

In order to calculate the first derivative of the pressure (same result as the hydraulic head 

derivative) at junctions with respect to the amount of leakage, the equation (36) will be used 

to get the following  

 𝐸(: , 𝑢∗)
𝜕ℎ(𝑢∗)

𝜕𝜃𝑖
=
𝜕𝑤

𝜕𝜃𝑙
 (92) 

 

using the chain rule 

 
𝜕𝑤

𝜕𝜃𝑙
= (𝜕𝑤. 𝜕𝑞⁄ ) .∗

𝜕𝑞

𝜕𝜃𝑙
 (93) 

All the terms on the right-hand side of equation (93) are known. The set of equations (92) 

constitute a linear system of algebraic equations for the unknown derivatives. 

 

2.4.2.2 Second derivatives of the model outputs with respect to the amount of leakage 

i. Continuity equation 

The second derivative of the continuity equation (31) with respect to the amount of 

leakage is 

 𝐶
𝜕2𝑞

𝜕𝜃𝑙
2 = 0 (94) 

ii. Energy balance in loops 

The second derivative of the energy balance in loops, equation (40), with respect to the 

amount of leakage is 
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 [𝐵.∗ (𝜕𝑤. 𝜕𝑞⁄ )
𝑇
]
𝜕2𝑞

𝜕𝜃𝑙
2 = −[𝐵.∗ (𝜕

2𝑤. 𝜕𝑞2⁄ )
𝑇
] (
𝜕𝑞

𝜕𝜃𝑙
) .2 (95) 

where   

 

𝜕2𝑤. 𝜕𝑞2⁄ = 𝑄.∗ (𝐷𝑃𝑙 .∗ (2 (𝜕𝑓. 𝜕𝑞⁄ ) .∗ 𝑞

+ 𝑞.2 .∗ (𝜕2𝑓. 𝜕𝑞2⁄ ) + 2𝑞.∗ (𝜕𝑓. 𝜕𝑞⁄ ) + 2𝑓) + 2𝐷𝑃𝑓 + 𝐷𝑃𝑝.

∗ (−2𝑞.−3 )) 

(96) 

 

iii. Energy balance in pseudoloops 

The second derivative of the energy balance in pseudoloops, equation (44), with respect to 

the amount of leakage is 

 [𝑍.∗ (𝜕𝑤. 𝜕𝑞⁄ )
𝑇
]
𝜕2𝑞

𝜕𝜃𝑖
2 = −[𝑍.∗ (𝜕

2𝑤. 𝜕𝑞2⁄ )
𝑇
] (
𝜕𝑞

𝜕𝜃𝑙
) .2 (97) 

  

The equations (94), (95) and (97) constitute the system of linear equations that result to the second 

derivatives of the flow rate with respect to the amount of leakage. 

In order to calculate the second derivative of the pressure at junctions with respect to the amount of 

leakage, the equation (36) will be used to get the following  

 𝐸(: , 𝑢∗)
𝜕ℎ2(𝑢∗)

𝜕𝜃𝑙
2 =

𝜕2𝑤

𝜕𝜃𝑙
2  (98) 

 

using the chain rule 

 
𝜕2𝑤

𝜕𝜃𝑙
2 = (𝜕

2𝑤. 𝜕𝑞2⁄ ) .∗ (
𝜕𝑞

𝜕𝜃𝑙
) .2+ (𝜕𝑤. 𝜕𝑞⁄ ) .∗

𝜕2𝑞

𝜕𝜃𝑙
2 (99) 

All terms on the right-hand side of equation (99) are known. 

2.4.3 Jacobian matrix for the non-linear system solver 

The computational time needed to calculate the flow rates of the network through the non-linear 

system of equations (31), (40) and (44) can be reduced if the Jacobian matrix is provided to the solver. 

This matrix contains the derivatives of every equation in the system with every variable that is to be 
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determined. The three parts of the matrix, corresponding to the three sets of equations that the 

system is comprised of, are formulated. 

 𝐽 = [ 
𝐽1
𝐽2
𝐽3

 ] (100) 

where 𝐽1, 𝐽2, 𝐽3 are partitions of the Jacobian matrix and represent the continuity, the loop and the 

pseudoloop equations respectively 

i. Jacobian of the continuity equations 

The Jacobian of the continuity equations (31) results to be the matrix 𝐶. The reason for this 

is that the demand 𝜃𝑙 is a constant, so it is canceled by the derivatives and the matrix 𝐶 is 

independent of the variables, so the derivatives affect only the vector 𝑞. When the Jacobian 

of the vector 𝑞 is calculated, the result is the identity matrix 𝐼 which when multiplied with any 

other matrix will result to the other matrix. 

 𝐽1 = [𝐶
𝜕𝑞

𝜕𝑞1
, … , 𝐶

𝜕𝑞

𝜕𝑞𝑃
] =

[
 
 
 
 

𝐶

{
 
 

 
 
1
0
⋮
0
0}
 
 

 
 

,… , 𝐶

{
 
 

 
 
0
0
⋮
0
1}
 
 

 
 

]
 
 
 
 

= 𝐶𝐼 = 𝐶 (101) 

 

ii. Jacobian of the loop equations 

The Jacobian of the loop equations (40) is  

 𝐽2 = [𝐵
𝜕𝑤

𝜕𝑞1
, … , 𝐵

𝜕𝑤

𝜕𝑞𝑃
] = 𝐵 [

𝜕𝑤

𝜕𝑞1
, … ,

𝜕𝑤

𝜕𝑞𝑃
] (102) 

iii. Jacobian of the pseudoloop equations 

The Jacobian of the pseudoloop equations (44) is similar to the loop equations since the 

head difference of the fixed grade nodes is independent of the flow rates and is thus 

canceled. 

 𝐽3 = [𝑍
𝜕𝑤

𝜕𝑞1
, … , 𝑍

𝜕𝑤

𝜕𝑞𝑃
] = 𝑍 [

𝜕𝑤

𝜕𝑞1
, … ,

𝜕𝑤

𝜕𝑞𝑃
] (103) 
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3. Bayesian inference framework for leakage 

detection 

In this chapter, the leakage detection methodology and the related formulation will be developed. 

The leakage detection will be accomplished using a Bayesian inference framework for parameter 

estimation and model selection. The objective is to identify the location and magnitude of leakage in 

a network using data acquired through hydraulic sensors. For this, a family of parameterized hydraulic 

models are introduced which share the same nominal hydraulic model and differ from each other 

from the set of parameters specified for each model. Each model is introduced to monitor leakage at 

a particular location of the network so that it corresponds to a leakage scenario. For example, a model 

can have a single parameter that accounts for the magnitude of leakage at a single pipe. The 

identification of the magnitude of leakage is accomplished by using Bayesian model selection 

methodology to estimate the most probable model given the data, as well as rank the rest of the 

models. The most probable model gives the leakage location(s) due to its association with a leakage 

scenario. Bayesian inference which is used to estimate the values of the parameters of each model, 

indicates the amount of leakage when applied to the most probable model. The posterior distribution 

of the model parameters developed for each model is used to formulate the optimal sensor placement 

methodology in Chapter 4. Since there are no measurements from an actual water distribution 

network (WDN) to demonstrate the effectiveness of the leakage detection technique, the 

measurements are created artificially from a perturbed model of the system. Results for leakage 

detection are presented in Chapter 7. 

3.1 Bayesian parameter estimation framework 

Let 𝑔̃ (𝜃, 𝜑) ∈ ℝ𝑃+𝐽 be the predictions of flow rates at all pipes and pressures at all junctions obtained 

from a model of steady-state flow in a WDN, with 𝜃 ∈ ℝ𝑁𝜃 being a vector of the model parameters 

that we are interested to update and 𝜑 being the rest of the model parameters that are not updated 

using the data. A set of measurements 𝐷 ≡ 𝑦(𝛿) ∈ ℝ𝑁𝑠  obtained from 𝑁𝑠 number of sensors (flow 

rate and/or pressure sensors) placed at locations 𝛿 is going to be used to update the parameters. To 

account for measurement and model error in the formulation, the following prediction error 

expression is used to relate the measurements to the model predictions. 

 𝑦(𝛿) = 𝑔 (𝜃, 𝜑) + 𝑒 (104) 
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where 𝑒 is the prediction error term which can be assumed to follow a Gaussian distribution with zero 

mean and covariance matrix 𝛴(𝜎) ∈ ℝ𝑁𝑠×𝑁𝑠 parameterized by the vector 𝜎  

In order to correspond the model predictions with the degrees of freedom being measured the vector 

𝑔 (𝜃,𝜑) is defined as follows 

 𝑔 (𝜃,𝜑) = 𝑀𝑔̃ (𝜃, 𝜑) (105) 

where 𝑀 is a selection matrix that keeps only the model predictions that correspond to the degrees 

of freedom that are being measured 

The covariance matrix that is going to be used for the prediction error is the following 

 𝛴(𝜎) = 𝜎2 𝑑𝑖𝑎𝑔{𝑦𝑖
2} (106) 

where 𝑦𝑖  is the measurement of the  𝑖𝑡ℎ degree of freedom 

This covariance matrix is diagonal and thus the error between different degrees of freedom is not 

correlated. For more information on correlated prediction error the following papers can be consulted 

[17], [18]. Moreover, the standard deviation of each degree of freedom is assumed to be proportional 

to its measurement. Since the parameter set 𝜎 is consisted of only one parameter, then 𝛴(𝜎) ≡ 𝛴(𝜎). 

The parameter 𝜎 is not known initially and is left to be inferred though the Bayesian methodology. If 

the value of 𝜎 is not of interest, then it can be marginalized out of the equations formulated below 

which can help in avoiding unidentifiability problems due to lack of sufficient information.  

Introducing Bayes’ rule 

 

 𝑝(𝜃, 𝜎|𝐷) =
𝑝(𝐷|𝜃, 𝜎) 𝑝(𝜃, 𝜎)

𝑝(𝐷)
 (107) 

 

 

The objective is to calculate the posterior PDF of the parameters of interest 𝜃, 𝜎, which quantifies the 

uncertainty in their values. This is done using data, which are included in the likelihood term in Bayes’ 

rule, and by using prior knowledge about the parameter values quantified by the prior PDF. The 

evidence term, in the context of parameter inference, is only a normalizing constant, which is used so 

the posterior can integrate to 1. The evidence, however, will be crucial in comparing the distinct 

hydraulic models to find the most probable one. 

Posterior PDF 

Evidence 

Prior PDF Likelihood 
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3.1.1 Formulating the posterior PDF 

Based on equation (104) the measurements 𝑦(𝛿) follow a Gaussian distribution 

𝐷~𝑁(𝑔 (𝜃, 𝜑) , 𝛴(𝜎)), since the model predictions are deterministic and the prediction error follows 

a Gaussian distribution. Thus, the analytical expression of the likelihood is 

 
𝑝(𝐷|𝜃, 𝜎) =

1

(2𝜋)𝛮𝑠√det(𝛴(𝜎))

exp(−
1

2
𝐽(𝜃, 𝜎)) 

(108) 

where 𝐽(𝜃, 𝜎) is a measure of deviation between the model predictions and the measurements and 

is defined as 

 𝐽(𝜃, 𝜎) = [𝑦  − 𝑔 (𝜃,𝜑)]
𝛵
Σ−1(𝜎) [𝑦 − 𝑔 (𝜃,𝜑)] (109) 

Assuming the prior to be uniform, the posterior PDF can be written as 

 𝑝(𝜃, 𝜎|𝐷) ∝ 𝑝(𝐷|𝜃, 𝜎) (110) 

It can be shown that for large number of data the posterior asymptotically follows a Gaussian PDF. In 

this case, the posterior PDF is completely defined by the most probable values of the model parameter 

set and the covariance matrix.  

The most probable values of 𝜃, 𝜎 are the values that maximize the posterior PDF or equivalently 

minimize the function 

 𝐿(𝜃, 𝜎) = − ln (𝑝(𝜃, 𝜎|𝐷)) (111) 

This function is chosen because it varies much more slowly than the original posterior, making the 

quadratic approximation used more accurate. After some manipulation of equation (111) the result is 

 𝐿(𝜃, 𝜎) =
𝑁𝑠
2
ln(2𝜋) + 𝛮𝑠 ln 𝜎 +

1

2
∑ln𝑦𝑖

2

𝑁𝑠

𝑖=1

+
1

2𝜎2
∑

(𝑦𝑖 − 𝑔𝑖 (𝜃,𝜑))
2

𝑦𝑖
2

𝑁𝑠

𝑖=1

+ 𝑐1 (112) 

where 𝑐1 is a constant which depends on the prior, which is assumed constant, and evidence, which 

is constant, and doesn’t affect the optimal values of the parameters 

To determine the most probable values 𝜃𝑙 , 𝜎̂ a minimization scheme is applied on equation (112). The 

optimization algorithm that is used is the interior-point algorithm of the fmincon function in MATLAB. 

In order to speed up the process, the derivatives of the equation (112) with respect to the parameters 

of interest are provided analytically to the algorithm and are the following 
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𝜕𝐿(𝜃, 𝜎)

𝜕𝜃𝑙
= −

1

𝜎2
∑

𝑦𝑖 − 𝑔𝑖 (𝜃,𝜑)

𝑦𝑖
2  

𝜕𝑔𝑖 (𝜃,𝜑)

𝜕𝜃𝑙

𝑁𝑠

𝑖=1

 (113) 

 
𝜕𝐿(𝜃, 𝜎)

𝜕𝜎
=
𝑁𝑠
𝜎
−
1

𝜎3
∑

(𝑦𝑖 − 𝑔𝑖 (𝜃, 𝜑))
2

𝑦𝑖
2

𝑁𝑠

𝑖=1

 (114) 

 

where the equations for computing the derivatives of the flow rates and pressures with respect to the 

model parameters have already been formulated analytically in Chapter 2. 

If the assumption of large number of data cannot be used to approximate the posterior PDF by a 

Gaussian PDF, then the Transitional-Markov-Chain-Monte-Carlo (TMCMC) methodology [19] can be 

applied to sample from the posterior PDF as well as estimate the evidence of a model. Details of the 

use of the TMCMC are given in references [19], [20]. 

3.1.2 Selecting the most probable leakage model 

Let 𝑀𝑖 be a model that monitors leakage at pipe 𝑖 and let 𝜃𝑖, 𝜎𝑖  be the corresponding model 

parameters. Bayes’ rule is applied again in order to select the most probable leakage model within a 

family of leakage models, as follows 

 𝑝(𝑀𝑖|𝐷) =
𝑝(𝐷|𝑀𝑖)𝑝(𝑀𝑖)

𝑝(𝐷)
 (115) 

Again, assuming constant prior the posterior PDF can be written as 

 𝑝(𝑀𝑖|𝐷) ∝ 𝑝(𝐷|𝑀𝑖) (116) 

The quantity on the right hand side of equation (116) is the evidence term of the Bayes’ rule in 

equation (107). After some manipulation of (116) the result is 

 𝑝(𝑀𝑖|𝐷) ∝ ∫𝑝(𝜃𝑖, 𝜎𝑖|𝛭𝑖) exp (−𝐿̃(𝜃𝑖, 𝜎𝑖)) 𝑑𝜃𝑖𝑑𝜎𝑖 (117) 

where 𝐿̃(𝜃, 𝜎) = 𝐿(𝜃, 𝜎) − 𝑐1 in order to ignore the constant term 

The integral in (117) is a Laplace type integral and when the Laplace asymptotic approximation is 

applied the result is 

 𝑝(𝑀𝑖|𝐷) ∝ 𝑝(𝜃𝑖, 𝜎̂𝑖|𝛭𝑖) exp (−𝐿̃(𝜃𝑖, 𝜎̂𝑖 ))
(√2𝜋)

𝑁𝜃

√det (𝐻(𝜃𝑖, 𝜎̂𝑖))

 (118) 

where 𝜃, 𝜎̂ are the most probable values found by minimizing equation (112) and 𝐻(𝜃, 𝜎) is the 

Hessian matrix defined as follows 
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 𝛨(𝜃, 𝜎) =

[
 
 
 
 
𝜕2𝐿(𝜃, 𝜎)

𝜕𝜃𝑙
2

𝜕2𝐿(𝜃, 𝜎)

𝜕𝜃𝑙𝜕𝜎

𝜕2𝐿(𝜃, 𝜎)

𝜕𝜃𝑙𝜕𝜎

𝜕2𝐿(𝜃, 𝜎)

𝜕𝜎2 ]
 
 
 
 

 (119) 

where 

 
𝜕2𝐿(𝜃, 𝜎)

𝜕𝜃𝑙
2 = −

1

𝜎2
∑

[
 
 
 𝑌̂𝑖 − 𝑔𝑖 (𝜃, 𝜑)

𝑦𝑖
2

𝜕2𝑔𝑖 (𝜃,𝜑)

𝜕𝜃𝑙
2 −

1

𝑦𝑖
2(

𝜕𝑔𝑖 (𝜃, 𝜑)

𝜕𝜃𝑙
)

2

]
 
 
 𝑁𝑠

𝑖=1

 (120) 

 
𝜕2𝐿(𝜃, 𝜎)

𝜕𝜃𝑙𝜕𝜎
=
2

𝜎3
∑

𝑌̂𝑖 − 𝑔𝑖 (𝜃, 𝜑)

𝑦𝑖
2

𝜕𝑔𝑖 (𝜃,𝜑)

𝜕𝜃𝑙

𝑁𝑠

𝑖=1

 (121) 

 
𝜕2𝐿(𝜃, 𝜎)

𝜕𝜎2
= −

𝑁𝑠
𝜎2
+
3

𝜎4
∑

(𝑌̂𝑖 − 𝑔𝑖(𝜃))
2

𝑦𝑖
2

𝑁𝑠

𝑖=1

 

(122) 

It is noted that the covariance matrix of the posterior PDF is the inverse of the Hessian matrix 

evaluated at the most probable values 𝛴(𝜎) = 𝐻−1(𝜃, 𝜎̂). The formulation for computing the first 

and second derivatives of the model prediction quantities with respect to the parameters set 𝜃 has 

been presented in Chapter 2. 

In order to simplify the equation (118) a logarithm is used which results in  

 ln 𝑝(𝑀𝑖|𝐷) = −𝐿̃(𝜃𝑖, 𝜎̂𝑖) +
𝑛

2
ln(2𝜋) −

1

2
ln det (𝐻(𝜃𝑖, 𝜎̂𝑖)) + ln 𝑝(𝜃𝑖, 𝜎̂𝑖|𝑀𝑖) + 𝑐2 (123) 

where 𝑐2 is a constant resulting from the prior and evidence terms of equation (115) and can be 

ignored since it does not affect the optimization 

Equation (123) is evaluated for each distinct model and the model which gives the highest value is the 

most probable model to represent the actual system. The parameterization of the most probable 

model 𝑀𝑖 indicates the location of leakage while the value of the parameter 𝜃𝑙 indicates the amount 

of leakage. 
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4. Bayesian optimal sensor placement 

formulation 

In this chapter, the formulation of the equations for the optimal sensor placement (OSP) are derived. 

The purpose of OSP is to find sensor configurations (type, number and location of sensors) that will 

provide measurements which are the most informative for estimating the parameters of interest 

presented in chapter 3. Since this methodology is implemented in the design phase, there are no 

available data to use yet and as a result, both the model parameters and measurements are uncertain. 

In order to overcome this problem, the prediction error equation (104) will be used again to simulate 

the measurements. The uncertainty will be dealt with by sampling the prior PDF of the parameters of 

interest, along with the prediction error term and calculate the expected value of the objective 

function with respect to these quantities. The objective function that will be used to quantify the 

amount of information a specific sensor configuration provides, is the information entropy (IE) [21]. 

IE provides a scalar measure of uncertainty and will measure the posterior uncertainty of the model 

parameters. The objective function is consisted of a multi-dimensional integral which can be 

calculated either with sampling or asymptotic approximations [22], both of which are formulated in 

this thesis. Since the objective is to maximize the amount of information a sensor configuration 

provides, the objective function will be conditioned on the sensor configurations 𝛿 and optimized with 

respect to 𝛿. Furthermore, a robust objective function will be derived by including in the formulation 

uncertainties in parameters that are not updated though the Bayesian methodology [18]. 

4.1 Objective function formulation 

The objective in OSP is to find sensor configurations whose measurements provide maximum 

information about the model parameters to be inferred. This translates into minimizing the 

uncertainty of the parameters of interest after the measurements have been taken into consideration. 

One quantity that can be used to quantify the information provided is the information entropy. The 

information entropy provides a scalar measure of the uncertainty in a set of model parameters. Since 

the design variable is the sensor configuration 𝛿, the IE is conditioned on 𝛿 and then minimized with 

respect to 𝛿. The IE applied to the posterior PDF of the model parameters is defined as follows and 

depends only on the provided data 𝐷, which implicitly depend on the sensors 𝛿 (type, number, 

location) and the prediction error parameter 𝜎. 

 ℎ𝜃 (𝑝(𝜃|𝜎, 𝐷, 𝛿)) = 𝔼𝜃[− ln 𝑝(𝜃|𝜎, 𝐷, 𝛿)] = −∫ 𝑝(𝜃|𝜎, 𝐷, 𝛿) ln 𝑝(𝜃|𝜎, 𝐷, 𝛿)
𝛩

𝑑𝜃  (124) 
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The prediction error parameter 𝜎 in the OSP context is not among the parameters of interest and is 

not updated. 

4.1.1 Asymptotic approximation of information entropy 

The integral in equation (124) is a Laplace type integral over the model parameters which can be 

asymptotically approximated for large number of data and small prediction error by the expression 

[18], [22] 

 ℎ𝜃 (𝑝(𝜃|𝜎, 𝐷, 𝛿))~
𝑁𝜃
2
(ln(2𝜋) + 1) −

1

2
ln(det[𝑄(𝛿; 𝜃, 𝜎̂) + 𝑄𝜋(𝜃)]) (125) 

where 𝜃, 𝜎̂ are the most probable values of the parameters to be updated, 𝑁𝜃  is the number of 

parameters to be updated, 𝑄(𝛿; 𝜃, 𝜎) is the Fisher information matrix (FIM) and 𝑄𝜋(𝜃) is matrix 

related to the prior PDF of the model parameter set 𝜃 and is defined as 

 𝑄𝜋(𝜃) = −∇𝜃
𝑇∇𝜃 ln 𝑝(𝜃) (126) 

 

The FIM can be asymptotically approximated by [11] 

 𝑄(𝛿; 𝜃, 𝜎) = ∇𝜃𝑔(𝜃; 𝛿)
𝑇
𝛴−1(𝜎)∇𝜃𝑔(𝜃; 𝛿) (127) 

where ∇𝜃= [𝜕 𝜕𝜃1⁄ ,… , 𝜕 𝜕𝜃𝑁𝜃⁄ ] 

The covariance matrix 𝛴(𝜎) which is used assumes uncorrelated prediction errors. The standard 

deviations of the prediction errors are assumed to be proportional to the model predictions and thus 

the covariance matrix is given by 

 𝛴(𝜎) = 𝜎2 𝑑𝑖𝑎𝑔{𝑔𝑖
2} (128) 

 

where 𝑔𝑖 is the model prediction of the 𝑖𝑡ℎ measured degree of freedom 

It can be seen from equation (125) that the value of IE depends on the FIM and the prior. If the prior 

is chosen to be uniform, which provides no information and for that case can be shown that 𝑄𝜋(𝜃) =

0, then IE depends only on the FIM. The FIM depends on the derivatives of the model predictions with 

respect to the parameters to be inferred. Higher derivative values indicate model predictions that are 

sensitive to changes to the parameters, resulting to higher values of the determinant of FIM. Since 

this is a minimization problem it translates to a maximization problem with respect to FIM, rewarding 

sensor locations measuring responses which are sensitive to parameter changes. A special case that 
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can arise is that for relatively few sensors, regardless of the locations placed, the information provided 

can be inadequate to identify the parameters. This presents itself as a close to zero determinant of 

the Fisher information matrix. A possible solution to this problem is to use an informative prior, such 

as a Gaussian prior or any other distribution that results to different than zero determinant due to the 

existence of the non-singular matrix 𝑄𝜋(𝜃) in equation (125) [18]. 

The dependence on data on equation (125) comes through the optimal values 𝜃, 𝜎̂. Determining the 

optimal values of the parameters requires information through data, which usually are not available, 

since the OSP methodology is applied in the design phase of an experiment in order to maximize the 

information gain through the experiment. A possible solution to this problem is to use nominal 

parameter values chosen by the designer. Alternatively, the robust IE formulation developed below 

can be used to account for the uncertainty in the model parameters. 

4.1.1.1 Robust formulation 

The IE expression formulated above relies on the designer choosing nominal values for the parameters 

𝜃, 𝜎̂. In order to avoid this, the Bayesian framework will be applied to formulate the robust IE, which 

relies on the uncertainty of the optimal parameters 𝜃, 𝜎̂ quantified by their prior PDF. An equivalent 

form of expressing the amount of information a sensor configuration provides, is to calculate the 

difference between the IE of the prior and the IE of the posterior. The IE of the prior is independent 

of the measurements and, as a result, is a constant which doesn’t affect the optimization solution. 

This measure is equivalent to the Mutual Information by information theory or the expected KL-

Divergence. This reduction in the posterior IE will quantify the quality and the amount of information 

provided by the data. In order to keep it as a minimization problem the negative of the Mutual 

Information is used, as follows 

 

𝑈(𝛿) ≡ 𝛥𝐻(𝛿) = 𝐸𝜃̂,𝜎̂ [𝐸𝜃[− ln 𝑝(𝜃, 𝜃, 𝜎̂|𝛿)]] − 𝐸𝜃̂,𝜎̂[− ln 𝑝(𝜃, 𝜎̂)] 

≈ −𝐸𝜃̂,𝜎̂[− ln 𝑝(𝜃, 𝜎̂)] +
1

2
𝑁𝜃(ln(2𝜋) + 1)

−
1

2
 ∫ ln det[𝑄(𝛿; 𝜃, 𝜎̂) + 𝑄𝜋(𝜃, 𝜎̂)] 𝑝(𝜃, 𝜎̂)𝑑𝜃𝑑𝜎̂ (129) 

It is noted that the IE formulation in equation (129) enables the opportunity to also introduce 

uncertainty on model parameters that are not updated. This can be done by augmenting the set of 

parameters {𝜃̂, 𝜎̂} to also include the model parameters 𝜑.  

The multidimensional integral in (129) can be calculated numerically using Monte Carlo or sparse grid 

sampling techniques as follows 
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∫lndet[𝑄(𝛿; 𝜃, 𝜎̂) + 𝑄𝜋(𝜃, 𝜎̂)] 𝑝(𝜃, 𝜎̂)𝑑𝜃𝑑𝜎̂

=∑𝑤𝑗 ln det[𝑄(𝛿; 𝜃
(𝑗), 𝜎̂(𝑗)) + 𝑄𝜋(𝜃

(𝑗), 𝜎̂(𝑗))]

𝑁̃

𝑗=1

 

(130) 

 where 𝑁̃ is the number of samples or sparse grid points, 𝜃(𝑗), 𝜎̂(𝑗) is the 𝑗𝑡ℎ sample or sparse grid 

point in the parameter space and 𝑤𝑗 is the weighting factor whose value depends on the numerical 

technique that is used. 

For the robust optimization to calculate the covariance matrix in the FIM two approaches are used. 

The first one is to use a covariance matrix which depends on the model predictions of each sample, 

resulting in a different covariance matrix for each sample. This approach better simulates the 

modeling error which is proportional to the model predictions. The mathematical expression for this 

is 

 𝛴𝑗(𝜎) = 𝜎
2 𝑑𝑖𝑎𝑔{𝑔𝑖

2(𝜃𝑗)} (131) 

 

The second approach is to use a constant covariance matrix. This approach better simulates the 

measurement error which depends on the accuracy of the measuring equipment. The mathematical 

expression that is used is the following 

 𝛴(𝜎) = 𝜎2 𝑑𝑖𝑎𝑔 {(
1

𝑁̃
∑𝑔𝑖(𝜃𝑗)

𝑁̃

𝑗=1

)

2

} (132) 

For a more accurate representation of reality a combination of the two approaches for the covariance 

matrix would be preferable, since both kinds of error are present at the same time. This case, however, 

won’t be explored here. 

4.1.2 Sampling approximation of the mutual information 

Another approach that can be used to formulate the objective function and avoid the asymptotic 

approximation, which assumes Gaussian posterior and small prediction error, is to use sampling 

methods straight away [22]. The objective function will be again the negative of the Mutual 

Information used in the robust formulation in the previous section. An alternative way to express the 

negative of the Mutual Information conditioned on 𝛿 is 

 𝑈(𝛿) = −∫ ∫ 𝑝(𝜃, 𝑦|𝛿) ln
𝑝 (𝜃, 𝑦|𝛿)

𝑝(𝜃|𝛿)𝑝 (𝑦|𝛿)
𝑑𝜃𝑑𝑦

𝐷𝛩

 (133) 
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In order to also include the uncertainty of the nuisance parameters 𝜎, 𝜑 in the formulation, 

parameters whose uncertainty is not updated, the expectation of (133) with respect to them can be 

used. 

 𝑈(𝛿) = 𝐸𝜎,𝜑 [𝑈
′ (𝛿, 𝜎, 𝜑)] (134) 

where 𝑈′ is 𝑈 conditioned also on the nuisance parameters 

In the following equations the nuisance parameters are omitted for simplicity. 

By doing some manipulation on equation (133) the following form can be derived [22] 

 𝑈(𝛿) = −∫ ∫ 𝑝 (𝜃, 𝑦|𝛿) [ln 𝑝 (𝑦|𝜃, 𝛿) − ln 𝑝 (𝑦|𝛿)] 𝑑𝜃

𝛩

𝑑𝑦

𝐷

 (135) 

This form can readily be evaluated with the Monte Carlo sampling method to get the following 

estimator [23] 

 𝑈(𝛿) = −
1

𝑁̃
∑{ln𝑝 (𝑦𝑖|𝜃𝑖, 𝛿) − ln{

1

𝑁̃
∑𝑝(𝑦𝑖|𝜃𝑗, 𝛿)

𝑁̃

𝑗=1

}}

𝑁̃

𝑖=1

 (136) 

where 𝑁̃ is the number of samples, 𝜃𝑖 is the 𝑖𝑡ℎ sample from the prior and 𝑦𝑖  is the measurement 

created from the prediction error equation (104) using 𝜃𝑖 model parameters and a random sample 

from the prediction error term. 

In order to reduce the noise of the sampling estimate it is possible to evaluate the objective function 

multiple times with same model samples but different error samples and take the mean of the results. 

This is not computationally expensive since the model does not have to be evaluated again, only the 

likelihood evaluations are increased to account for the new error samples.  

4.1.3 Monitoring an area of the network 

In order to be able to monitor an area of the network for leakage or in other words to find sensor 

configurations which are optimal for locating leakage on a set of pipes, the following methodology is 

used. The objective function is calculated for every pipe in the set of pipes 𝑆𝑃 ∈ ℝ
𝑁𝑃  conditioned on 

the sensor configurations 𝛿. Then, the average of the results is calculated and it is used as the new 

objective function to find the optimal sensor configurations to monitor an area of the network, which 

can be written as 

 𝑈(𝛿;𝑁𝑃) =
1

𝑁𝑃
∑ 𝑈(𝛿,𝑀𝑖)

𝑖 ∈ 𝑁𝑃

 (137) 
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where 𝑀𝑖 is the model of the system which has a leakage on pipe 𝑖 and the objective function is 

evaluated for that model 

4.2 Optimal sensor placement methodology 

Now that the objective functions that can be used are formulated the methodology to find the optimal 

sensor configurations will be developed. The optimal sensor configuration involves selecting the type 

of sensors, the number of sensors and the locations to be placed. In the context of WDN presented 

here the sensors that will be used are flow rate sensors in pipes and pressure sensors in nodes. This 

OSP problem is an optimization problem with design variables being the sensor configurations 𝛿, 

which take discrete values. The objective is to find configurations that result to the most informative 

measurements to identify the parameters of interest or equivalently to minimize the posterior 

uncertainty of the parameters. The formulated objective functions quantify the posterior uncertainty 

and the optimization problem is formulated as the following minimization problem.  

 𝛿𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛿𝑈(𝛿) (138) 

It is noted that the worst sensor locations can also be found by solving for sensor configurations which 

maximize the objective function instead. This will be done in the next chapters in order to show the 

effectiveness of the resulting optimal sensor configurations compared to the worst sensor 

configurations. Since this is a discreate optimization problem, for relatively small and large number of 

sensors it is possible to solve exhaustively by evaluating the objective function for all possible 

combinations of sensors. However, for big networks this is computationally prohibitive due to the 

sheer number of combinations that must be evaluated. To account for this problem two heuristic 

sequential placing algorithms are used. 

4.2.1 FSSP-BSSP Heuristic algorithms 

The heuristic algorithms employed to solve the OSP problem are the FSSP (Forward Sequential Sensor 

Placement) and BSSP (Backward Sequential Sensor Placement) [11]. The way the FSSP algorithm 

works, is to find exhaustively the location of the first sensor and then given the location of the first 

sensor an exhaustive search is employed to find the location of the second sensor, then given the 

location of the first two sensors an exhaustive search is used to find the location of the third sensor, 

and the methodology is repeated until all sensor numbers are covered. The resulting sensor 

configurations are approximate but can be achieved in a very small fraction of the time compared to 

when an exhaustive search approach is used. It has been demonstrated in a number of applications 

that the approximate solution provided by the FSSP is very close to the exact one [11]. 
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The BSSP is a similar algorithm but instead of starting with the first sensor, one starts with the last 

sensor. Given that sensors are placed everywhere, an exhaustive search is conducted to find which 

sensor, if removed, results to the smallest increase in the posterior uncertainty of the parameters. 

Given that one sensor is removed an exhaustive search is conducted to find the next sensor that can 

be removed with the smallest increase in the uncertainty. This methodology is repeated until the 

desired number of sensors is left. 

After these algorithms are applied, the optimal sensor configuration for a given number of sensors is 

known. In order to choose what is the optimal number of sensors, the value of the objective function 

is going to be compared for each number of sensors. If a significant reduction in the value of the 

objective function can be accomplished with the addition of one more sensor, then the additional 

sensor should be considered. If the addition of a sensor does not reduce significantly the value of the 

objective function, then the current number of sensors is the optimal number to be used. 
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5. Presentation of network 

The WDN that is used to evaluate the aforementioned methodologies is shown in Figure 5. It is an 

artificial network consisted of 2 reservoirs, 52 pipes and 31 junctions, all of which are active (have 

positive demand). 

The reservoirs are in nodes 1 and 33 with the water level being in an altitude of 50m. All the pipes 

have a length (𝑙) of 200m,  diameter (𝑑) of 250mm and roughness (𝜀) of 0.26mm with the addition 

of 100kW constant power (𝑝) pumps with 0.75 efficiency (𝜂) in pipes 1 and 52. All the junctions have 

an altitude of 0m and nominal demand of 10L/s. No minor losses (𝐾) were introduced in the pipes. 

The properties of water used are density 𝜌 = 998.19 𝑘𝑔/𝑚3 and viscosity 𝜇 = 10−3 𝑃𝑎 ∙ 𝑠 

Figure 5 Water Distribution Network 

Figure 6 Monitored area of the network shown in blue 



51 
 

The area of the network that is monitored for leakage is the area on the bottom left of the network 

consisted of pipes 2, 3, 8, 9, 10, 11, 12, 17, 18, 19, 20 and 21 as shown in Figure 6 in blue. 

Figure 7 Flow rate Figure 8 Pressure head 

The solution of the model (flow-rate at pipes and pressure at nodes) for the nominal parameter 

values and without the presence of a leakage can be seen on Figure 7 and Figure 8. 
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6. Optimal sensor placement results 

The methodology for OSP developed in chapter 4 will now be applied to the presented WDN. In total 

10 cases are explored and each one of the cases is tested with pressure and flow rate sensors 

individually. These cases will explore the results of the two approximations of the objective function, 

the two different covariance matrices with two values for the prediction error parameter and the 

effect on the objective function of introducing uncertainty on the amount of leakage and on the nodal 

demands. For each case three diagrams are presented. The first one shows the value of the objective 

function as a function of the number of sensors placed in the best and in the worst locations. The 

second shows the best locations to place the sensors, for example if 5 sensors are to be placed in the 

optimal locations, they will be placed on locations 1 to 5. The third diagram is similar to the second 

but instead shows the worst sensor locations. All the following cases will use a Gaussian prior for the 

amount of leakage with mean 10L/s and variance 4, i.e. the prior is a normal distribution 𝑁(10,4). The 

cases are the following. 

Case 1 

Objective function: Asymptotic approximation (129) with the amount of leakage set to the nominal 

value of 10L/s. This is achieved by using a Dirac delta function for the prior distribution of the model 

parameters in equation (129) in order to correspond to equation (125). 

Nodal demands: Deterministic with values set to their nominal values. 

Covariance matrix: Since it is calculated only once for the nominal parameter values both matrix 

formulations yield the same result (131), (132). The prediction error parameter 𝜎 is set to value 0.01 

as nominal value. 

Figure 9 Objective function for pressure sensors Figure 10 Objective function for flow-rate 
sensors 
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Case 2 

Objective function: Asymptotic approximation (129) with uncertain prior selected to be Gaussian 

with mean equal to the nominal amount of leakage 10L/s and standard deviation equal to 20% of 

the nominal amount of leakage. The integration is done using the Monte Carlo method with 1000 

samples drawn from the Gaussian prior for the amount of leakage. 

Nodal demands: Deterministic with values set to their nominal values. 

Covariance matrix: Independent model predictions errors (Equation (132)) with prediction error 

parameter σ set to 0.01 as nominal value. 

 

 

 

 

Figure 11 Best pressure sensor locations Figure 12 Best flow-rate sensor locations 

Figure 13 Worst pressure sensor locations Figure 14 Worst flow-rate sensor locations 



54 
 

 

Case 3 

Objective function: Sampling approximation (136), with uncertain prior selected to be Gaussian with 

mean equal to the nominal amount of leakage 10L/s and standard deviation equal to 20% of the 

nominal amount of leakage. The integration is done using the Monte Carlo method with 1000 

Figure 15 Objective function for pressure sensors Figure 16 Objective function for flow-rate sensors 

Figure 17 Best pressure sensor locations Figure 18 Best flow-rate sensor locations 

Figure 19 Worst pressure sensor locations Figure 20 Worst flow-rate sensor locations 
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samples drawn from the Gaussian prior for the amount of leakage for flow-rate sensors and 5000 

samples for pressure sensors. 

Nodal demands: Deterministic with values set to their nominal values. 

Covariance matrix: Independent of the model predictions errors (Equation (132)). The prediction 

error parameter 𝜎 is set to 0.01 as nominal value. 

Figure 21 Objective function for pressure sensors Figure 22 Objective function for flow-rate sensors 

Figure 23 Best pressure sensor locations Figure 24 Best flow-rate sensor locations 

Figure 25 Worst pressure sensor locations Figure 26 Worst flow-rate sensor locations 
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Case 4 

Objective function: Asymptotic approximation (129), with uncertain prior selected to be Gaussian 

with mean equal to the nominal amount of leakage 10L/s and standard deviation equal to 20% of 

the nominal amount of leakage. The integration is done using the Monte Carlo method with 1000 

samples drawn from the Gaussian prior for the amount of leakage. 

Nodal demands: Deterministic with values set to their nominal values. 

Covariance matrix: Proportional model predictions errors (Equation (131)). The prediction error 

parameter 𝜎 is set to 0.01 as nominal value. 

 

 

 

 

Figure 27 Objective function for pressure sensors Figure 28 Objective function for flow-rate sensors 

Figure 29 Best pressure sensor locations Figure 30 Best flow-rate sensor locations 
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Case 5a 

Objective function: Asymptotic approximation (129) with the amount of leakage set to the nominal 

value of 10L/s. This is achieved by using a Dirac delta function for the prior distribution of the model 

parameters in equation (129) in order to correspond to equation (125). 

Nodal demands: Uncertain with all junctions constituting one group with the demand of the 

junctions in the group following a Gaussian distribution with mean equal to the nominal values of 

the nodal demands (equal to 10L/s) and standard deviation equal to 20% of the nominal value of the 

nodal demands, i.e. a Gaussian PDF ~𝑁(10,4). The numerical integration is performed using the 

Monte Carlo method with 1000 samples drawn from the Gaussian prior. 

Covariance matrix: Independent of the model predictions errors (Equation (132)). The prediction 

error parameter 𝜎 is set to 0.01 as nominal value. 

Figure 31 Worst pressure sensor locations Figure 32 Worst flow-rate sensor locations 

Figure 33  Objective function for pressure sensors Figure 34 Objective function for flow-rate sensors 
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Case 5b 

Similar to Case 5a apart from the objective function being an asymptotic approximation (129), with 

uncertain prior selected to be Gaussian with mean equal to the nominal amount of leakage 10L/s 

and standard deviation equal to 20% of the nominal amount of leakage. The integration is done 

using the Monte Carlo method with 1000 samples drawn from the Gaussian prior for the amount of 

leakage. 

Figure 37 Best pressure sensor locations Figure 38 Best flow-rate sensor locations 

Figure 39 Worst pressure sensor locations Figure 40 Worst flow-rate sensor locations 

Figure 35 Objective function for pressure sensors Figure 36 Objective function for flow-rate sensors 
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Case 6a 

Objective function: Asymptotic approximation (129) with the amount of leakage set to the nominal 

value of 10L/s. This is achieved by using a Dirac delta function for the prior distribution of the model 

parameters in equation (129) in order to correspond to equation (125). 

Nodal demands: Uncertain with all junctions constituting one group with the demand of the 

junctions in the group following a Gaussian distribution with mean equal to the nominal values of 

the nodal demands (equal to 10L/s) and standard deviation equal to 20% of the nominal value of the 

nodal demands, i.e. a Gaussian PDF ~𝑁(10,4). The numerical integration is performed using the 

Monte Carlo method with 1000 samples drawn from the Gaussian prior. 

Covariance matrix: Proportional model predictions errors (Equation (131)). The prediction error 

parameter 𝜎 is set to 0.01 as nominal value. 

 

 

Figure 44 Best pressure sensor locations Figure 43 Best flow-rate sensor locations 

Figure 41 Worst pressure sensor locations Figure 42 Worst flow-rate sensor locations 
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Case 6b 

Similar to Case 6a apart from the objective function being an asymptotic approximation (129), with 

uncertain prior selected to be Gaussian with mean equal to the nominal amount of leakage 10L/s 

and standard deviation equal to 20% of the nominal amount of leakage. The integration is done 

Figure 45 Objective function for pressure sensors Figure 46 Objective function for flow-rate sensors 

Figure 47 Best pressure sensor locations Figure 48 Best flow-rate sensor locations 

Figure 49 Worst pressure sensor locations Figure 50 Worst flow-rate sensor locations 
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using the Monte Carlo method with 1000 samples drawn from the Gaussian prior for the amount of 

leakage. 

 

 

Figure 51 Objective function for pressure sensors Figure 52 Objective function for flow-rate sensors 

Figure 53 Best pressure sensor locations Figure 54 Best flow-rate sensor locations 

Figure 55 Worst pressure sensor locations Figure 56 Worst flow-rate sensor locations 
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Case 7a 

Objective function: Asymptotic approximation (129) with the amount of leakage set to the nominal 

value of 10L/s. This is achieved by using a Dirac delta function for the prior distribution of the model 

parameters in equation (129) in order to correspond to equation (125). 

Nodal demands: Uncertain with all junctions divided into 4 groups with the demand of the junctions 

in each group following a Gaussian distribution with mean equal to the nominal values of the nodal 

demands (equal to 10L/s) and standard deviation equal to 20% of the nominal value of the nodal 

demands, i.e. a Gaussian PDF ~N(10,4). The numerical integration is performed using the Monte 

Carlo method with 1000 samples drawn from the Gaussian prior. The groups are the following and 

are also illustrated in the following figures with different colors. 

Group 1 comprised of nodes 2, 3, 4, 10, 11, 14, 15 and 16. 

Group 2 comprised of nodes 5, 6, 7, 8, 9, 12 and 13. 

Group 3 comprised of nodes 20, 21, 24, 25, 26, 28, 29 and 32. 

Group 4 comprised of nodes 17, 18, 19, 22, 23, 27, 30 and 31. 

Covariance matrix: Independent of the model predictions errors (Equation (132)). The prediction 

error parameter 𝜎 is set to 0.01 as nominal value. 

Figure 57 Objective function for pressure sensors Figure 58 Objective function for flow-rate sensors 

Figure 59 Best pressure sensor locations Figure 60 Best flow-rate sensor locations 
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Case 7b 

Similar to Case 7a apart from the objective function being an asymptotic approximation (129), with 

uncertain prior selected to be Gaussian with mean equal to the nominal amount of leakage 10L/s 

and standard deviation equal to 20% of the nominal amount of leakage. The integration is done 

using the Monte Carlo method with 1000 samples drawn from the Gaussian prior for the amount of 

leakage. 

Figure 62 Worst pressure sensor locations Figure 61 Worst flow-rate sensor locations 

Figure 63 Objective function for pressure sensors Figure 64 Objective function for flow-rate sensors 

Figure 65 Best pressure sensor locations Figure 66 Best flow-rate sensor locations 
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Case 7c 

Similar to Case 7b apart from the covariance matrix prediction error parameter 𝜎 which is set to 0.05 

as nominal value. 

 

Figure 67 Worst pressure sensor locations Figure 68 Worst flow-rate sensor locations 

Figure 69 Objective function for pressure sensors Figure 70 Objective function for flow-rate sensors 

Figure 71 Best pressure sensor locations Figure 72 Best flow-rate sensor locations 
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Case 8a 

Objective function: Asymptotic approximation (129) with the amount of leakage set to the nominal 

value of 10L/s. This is achieved by using a Dirac delta function for the prior distribution of the model 

parameters in equation (129) in order to correspond to equation (125). 

Nodal demands: Uncertain with all junctions divided into 4 groups with the demand of the junctions 

in each group following a Gaussian distribution with mean equal to the nominal values of the nodal 

demands (equal to 10L/s) and standard deviation equal to 20% of the nominal value of the nodal 

demands, i.e. a Gaussian PDF ~N(10,4). The numerical integration is performed using the Monte 

Carlo method with 1000 samples drawn from the Gaussian prior. The groups are the following and 

are also illustrated in the following figures with different colors. 

Group 1 comprised of nodes 2, 3, 4, 10, 11, 14, 15 and 16. 

Group 2 comprised of nodes 5, 6, 7, 8, 9, 12 and 13. 

Group 3 comprised of nodes 20, 21, 24, 25, 26, 28, 29 and 32. 

Group 4 comprised of nodes 17, 18, 19, 22, 23, 27, 30 and 31. 

Covariance matrix: Proportional model predictions errors (Equation (131)). The prediction error 

parameter 𝜎 is set to 0.01 as nominal value. 

 

 

 

 

 

Figure 73 Worst pressure sensor locations Figure 74 Worst flow-rate sensor locations 
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Case 8b 

Similar to Case 8a apart from the objective function being an asymptotic approximation (129), with 

uncertain prior selected to be Gaussian with mean equal to the nominal amount of leakage 10L/s 

and standard deviation equal to 20% of the nominal amount of leakage. The integration is done 

Figure 75 Objective function for pressure sensors Figure 76 Objective function for flow-rate sensors 

Figure 77 Best pressure sensor locations Figure 78 Best flow-rate sensor locations 

Figure 79 Worst pressure sensor locations Figure 80 Worst flow-rate sensor locations 
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using the Monte Carlo method with 1000 samples drawn from the Gaussian prior for the amount of 

leakage. 

 

Figure 81 Objective function for pressure sensors Figure 82 Objective function for flow-rate sensors 

Figure 83 Best pressure sensor locations Figure 84 Best flow-rate sensor locations 

Figure 85 Worst pressure sensor locations Figure 86 Worst flow-rate sensor locations 
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Case 8c 

Similar to Case 8b apart from the covariance matrix prediction error parameter 𝜎 which is set to 0.05 

as nominal value. 

 

 

Figure 87 Objective function for pressure sensors Figure 88 Objective function for flow-rate sensors 

Figure 89 Best pressure sensor locations Figure 90 Best flow-rate sensor locations 

Figure 91 Worst pressure sensor locations Figure 92 Worst flow-rate sensor locations 



69 
 

Case 9 

Objective function: Asymptotic approximation (129) with uncertain prior selected to be Gaussian 

with mean equal to the nominal amount of leakage 10L/s and standard deviation equal to 20% of 

the nominal amount of leakage. The integration is done using the Monte Carlo method with 10000 

samples drawn from the Gaussian prior for the amount of leakage. 

Nodal demands: Uncertain with the demand of all junctions being independent and identically 

distributed (i.i.d) following a Gaussian distribution with mean equal to the nominal values of the 

nodal demands (equal to 10L/s) and standard deviation equal to 20% of the nominal value of the 

nodal demands, i.e. a Gaussian PDF ~N(10,4). The numerical integration is performed using the 

Monte Carlo method with 10000 samples drawn from the Gaussian prior.  

Covariance matrix: Independent of the model predictions errors (Equation (132)). The prediction 

error parameter 𝜎 is set to 0.01 as nominal value. 

 

 

Figure 93 Objective function for pressure sensors Figure 94 Objective function for flow-rate sensors 

Figure 95 Best pressure sensor locations Figure 96 Best flow-rate sensor locations 
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Case 10 

Objective function: Asymptotic approximation (129) with uncertain prior selected to be Gaussian 

with mean equal to the nominal amount of leakage 10L/s and standard deviation equal to 20% of 

the nominal amount of leakage. The integration is done using the Monte Carlo method with 10000 

samples drawn from the Gaussian prior for the amount of leakage. 

Nodal demands: Uncertain with the demand of all junctions being independent and identically 

distributed (i.i.d) following a Gaussian distribution with mean equal to the nominal values of the 

nodal demands (equal to 10L/s) and standard deviation equal to 20% of the nominal value of the 

nodal demands, i.e. a Gaussian PDF ~N(10,4). The numerical integration is performed using the 

Monte Carlo method with 10000 samples drawn from the Gaussian prior.  

Covariance matrix: Proportional model predictions errors (Equation (131)). The prediction error 

parameter 𝜎 is set to 0.01 as nominal value. 

 

Figure 97 Worst pressure sensor locations Figure 98 Worst flow-rate sensor locations 

Figure 99 Objective function for pressure sensors Figure 100 Objective function for flow-rate 
sensors 
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6.1 Discussion of OSP results 

The general behaviour that can be observed in the objective function plots of all the cases presented 

in the optimal sensor placement results is that, for pressure sensors, placing an additional sensor will 

always lead to a reduction in the objective function, or in other words more information.  Moreover, 

the difference in the objective function for a given number of sensors placed in the optimal and in the 

worst positions is very small compared to the difference observed with the flow-rate sensors. What 

this means is that the flow-rate sensors are expected to provide more informative measurements for 

inferring the location and magnitude of leakage. For the flow-rate sensors it seems that the maximum 

amount of information can be obtained by using only 5-15 sensors optimally placed, depending on the 

uncertainty that is introduced in the formulation. The difference in the optimal and worst locations is 

also significant so as in order to get the same amount of information as 5 optimally placed flow-rate 

sensors, by placing flow-rate sensors in the worst locations, more than 45 sensors must be used. 

Regarding the FSSP and BSSP heuristic algorithms used to solve the optimization problem, it seems 

Figure 101 Best pressure sensor locations Figure 102 Best flow-rate sensor locations 

Figure 103 Worst pressure sensor locations Figure 104 Worst flow-rate sensor locations 
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that both tend to produce the same results for all the cases and number of sensors strengthening the 

assumption that the solution that is provided is either the optimal or very close to the optimal solution. 

Comparing the results of case 1, which uses nominal parameter values to calculate the objective 

function, and case 2, which is robust by integrating over the prior of the nominal parameters, it can 

be seen that the objective function results are very similar with exactly the same optimal 

configurations for pressure sensors and same solution for the first few more informative locations for 

flow-rate sensors. It seems that the nominal amount of leakage that will be chosen does not 

significantly affect the optimization results. This can be utilized by avoiding the integration over the 

prior of the nominal parameters and saving computational time without compromising the accuracy 

of the results. However, more testing should be conducted to verify this claim.   

Comparing case 2 with case 3, with case 2 using the asymptotic approximation and case 3 the sampling 

approximation, the objective function results are very similar, as are the first 4 more informative 

optimal locations for the flow-rate sensors. The optimal locations for pressure sensors, however, are 

different with the asymptotic approximation choosing to place the first few sensors close to the 

monitored area, while the sampling choosing to spread the sensors more. Verifying which one is more 

accurate is difficult in this case since the pressure sensors seem to not be able to infer correctly the 

leaking pipe regardless of the number of sensors. This will become apparent in the next chapter. 

Comparing case 2 with case 4, with the difference being that case 2 uses a fixed prediction error 

covariance matrix and case 4 uses a covariance matrix that is proportional to the model predictions, 

it can be seen that the objective function results are very similar with the exception being a small 

increase in the objective function in the first more informative locations for the flow-rate sensors for 

the case 4. In other words, using a proportional to model predictions covariance matrix introduces 

some uncertainty to the system and in the case presented requires 1 or 2 more sensors to be placed 

to compensate for this. The optimal locations are the same for the pressure sensors and same for the 

first few more informative sensor locations for flow-rate sensors with small differences in the rest less 

informative sensor locations. 

Comparing case 1 with case 5, with the difference being that case 5 has uncertainty introduced in the 

nodal demands with all the nodes in the same group, the objective function is very similar for both 

with the same optimal locations for the pressure sensors and same first few more informative flow-

rate sensor locations with small differences in the next less informative locations. It seems that 

introducing uncertainty in the nodal demands while using a fixed prediction error covariance matrix 

does not significantly affect the results. Cases 5a and 5b are very similar supporting the claim that 
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using nominal parameter values for the amount of leakage provide the same results as using the 

robust formulation. 

Comparing case 5 with case 6, with the difference being that case 5 uses an independent prediction 

error covariance matrix and case 6 uses a proportional to model predictions covariance matrix, the 

objective functions are similar with a small difference in the first few flow-rate sensors where 1 or 2 

more optimally placed sensors are needed to get the maximum information in case 6. The optimal 

locations for pressure sensors are very similar while the flow-rate sensors have some differences. 

Cases 6a and 6b have very similar results. 

Comparing case 5 with case 7a, with the difference being that case 5 has all the junctions in one group 

with uncertain demand while case 7a splits the junctions into 4 groups, as was also the case 1 – case 

5 comparison the objective function and optimal locations are very similar strengthening the 

assumption that the additional uncertainty in the demands with an independent prediction error  

covariance matrix does not significantly affect the results. Cases 7a and 7b have very similar results. 

Comparing case 7a with case 7c, with the difference being that case 7a has prediction error parameter 

𝜎 = 0.01 and case 7c has 𝜎 = 0.05, it can be seen that the total information that can be obtained 

from case 7c is less that the 7a since the objective function has higher value when all sensors are 

placed in 7c. This is intuitive since adding more noise to the measurements reduces the amount of 

usable information that can be extracted from the data. Using flow-rate sensors 5-10 sensors 

optimally placed in both cases can provide almost the maximum amount of information. However, 

the sensors placed in the worst locations are less informative when more noise is added in the 

measurements. The optimal locations are the same for the first few more informative sensor 

locations. 

Comparing cases 7a,b and 8a,b, with the difference being that case 8 uses a prediction error 

covariance matrix that is proportional to the model predictions, the objective function and optimal 

locations for pressure sensors are very similar. However, for the flow-rate sensors the difference in 

the objective function is more prominent with case 8 needing around 15 optimally placed sensors to 

gain the maximum amount of information, while case 7 needs only 5 sensors. The uncertainty in case 

8 is more significant requiring more sensors in order to gain the same amount of information. Cases 

8a and 8b are very similar. 

Comparing case 8a to case 8c, with the difference being that case 8a has prediction error parameter 

𝜎 = 0.01 and case 8c has 𝜎 = 0.05, as was also the case 7a – case 7c comparison, adding more noise 

to the measurements reduces the amount of usable information that can be extracted from the data. 
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It can also be seen that for case 8c the sensors placed in the worst locations provide less information 

with the added noise. 

Comparing cases 7a,b to case 9, with the difference being that case 7 has the nodes split into 4 groups 

with the nodal demands being independent for each group and case 9 has all nodal demands being 

independent, the objective functions are very similar requiring the same number of sensors. For the 

optimal sensor locations there are minor differences for the pressure sensors and for the flow-rate 

sensors the first few more informative locations are the same with minor differences on the rest of 

the sensors. Cases 7a and 7b are very similar. 

Lastly, comparing cases 8a,b to case 10, with the difference being that case 8 has the nodes split into 

4 groups with the nodal demands being independent for each group and case 10 has all nodal 

demands being independent, case 8 requires about 2 more sensors than case 10 to achieve the same 

fraction of the total information i.e. when all flow-rate sensors are placed. This is counterintuitive 

since case 10 has more uncertainty presented as each nodal demand is independent of the rest. A 

possible explanation to this is that one of the groups used in case 8 contains completely the monitored 

area. This makes the total demand of the area to vary much more with each sample that case 10 where 

the independent demands of the nodes average out for the total demand of the area. The optimal 

locations for pressure sensors are the same for the two cases but the flow-rate locations have 

differences even in the first few more informative sensors locations. Cases 8a and 8b are very similar. 
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7. Evaluation of optimal sensor configurations 

In this chapter the optimal sensor configurations presented in chapter 6 will be evaluated by using 

these sensor configurations to locate simulated leaks. A single leakage will be added to a pipe in the 

monitored area and then a small number of sensors placed in optimal locations will be used to infer 

the location and magnitude of the leakage. The procedure for identifying leakage will be repeated 

assuming leakage at different pipes, specifically pipe 3, or pipe 12, or pipe 17, or pipe 19 in the 

monitored area. For each leaking pipe, results will be repeated 20 times assuming different noise in 

the measurements. Specifically, the measurements will be simulated from the nominal WDN model 

and noise will be added to the predictions at the sensor locations. Different error samples will be 

added each time to the model predictions to account for the measurement and model error in the 

Bayesian inference framework. Two values of the prediction error covariance matrix parameter 𝜎 will 

be used, 𝜎 = 0.01 and 𝜎 = 0.05. The effectiveness of the sensor configurations will be evaluated by 

counting the number of times the correct pipe was inferred and if this is not the case, it will be checked 

if the inferred pipe is one pipe away or two pipes away from the actual leaking pipe. Also, the accuracy 

of inferring the amount of leakage on the actual leaking pipe, regardless if it was correctly inferred or 

not, will be evaluated by calculating the mean and the standard deviation of the values inferred. Lastly, 

another measure that will be used is, in the cases where the leaking pipe is correctly inferred, the 

average difference in the objective function (123) between the most probable pipe and the second 

most probable pipe. If this difference has a high value, it will indicate that the measurements show 

that the correct pipe is much more probable to be the leaking pipe than the rest of the pipes. 

In order to check the effectiveness of the optimal sensor configuration in identifying the location and 

the magnitude of leakage, the leakage identification results will also be obtained from sub-optimal 

sensor configurations, which will be compared to the leakage identification results obtained from the 

optimal sensor configuration. The suboptimal sensor configurations consist of one that involves the 

same number of sensors placed in the worst sensor locations and also with a second sensor 

configuration with even more sensors placed in the worst locations, as long as this configuration has 

higher information entropy that the optimal configuration which is used. 

The amount of leakage used to simulate the measurements in order to perform leakage detection in 

all the following cases is 10L/s. The covariance matrix that is used is equation (106), which is 

proportional to the measurements. In order to infer the amount of leakage the equation (112) is used 

and in order to choose the most probable of the models the equation (123) is used. 
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Case A 

The first case that is explored corresponds to the cases 1 to 4 presented in the previous chapter with 

nominal values used for the nodal demands, using flow-rate sensors. It can be seen from the objective 

function diagrams (Figure 10, 16, 22 and 28) that by using 5 flow-rate sensors optimally placed almost 

the maximum amount of information can be obtained. The best sensor locations in these cases are 

the same for the first 4 flow-rate sensors with small differences in the 5𝑡ℎ sensor, however the 

objective function reduction resulting from adding the 5𝑡ℎ sensor is very small so the difference 

shouldn’t be significant. The 5 optimal locations that will be used are pipes 32, 30, 28, 22 and 20 which 

can be seen in Figure 5 or equivalently the first 5 locations in Figure 12. Then, for the first suboptimal 

sensor configuration 25 sensors are placed in the worst locations which are pipes 39, 14, 41, 52, 47, 

4, 5 ,51, 49, 42, 43, 1, 8, 45, 7, 44, 48, 16, 2, 36, 17, 6, 15, 13 and 37 and last the second suboptimal 

sensor configuration with 5 sensors in the worst locations in pipes 39, 14, 41, 52 and 47. 

The following tables contain all the information that will be used to evaluate the optimal sensor 

configurations by assuming leakage in pipes 3, 12, 17 and 19 respectively. For each leaking pipe the 

first table corresponds to prediction error parameter 𝜎 = 0.01 and the second table corresponds to  

𝜎 = 0.05. 

Table 1 Results of flow-rate sensors for leaking pipe 3 and 𝜎 = 0.01 

Leaking pipe: 3 
5 sensors at optimal 

location 

25 sensors at worst 

location 

5 sensors at worst 

location 

Correct pipe inferred 20 17 2 

1 pipe away inferred - 2 11 

2 pipes away inferred - 1 7 

Wrong pipe inferred - - - 

Mean of leak (L/s) 9.999 9.974 10.276 

Standard deviation of 

leak 
5.65E-03 5.71E-01 2.09E+00 

Average diff. in the 

objective function 
4.18E+00 2.84E+00 1.37E-01 
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Table 2 Results of flow-rate sensors for leaking pipe 3 and 𝜎 = 0.05 

Leaking pipe: 3 
5 sensors at optimal 

location 

25 sensors at worst 

location 

5 sensors at worst 

location 

Correct pipe inferred 15 7 1 

1 pipe away inferred - 5 2 

2 pipes away inferred 5 5 9 

Wrong pipe inferred - 3 8 

Mean of leak (L/s) 10.011 9.949 13.297 

Standard deviation of 

leak 
4.87E-02 1.94E+00 8.40E+00 

Average diff. in the 

objective function 
1.21E+00 2.70E-01 1.93E-01 

 

Table 3 Results of flow-rate sensors for leaking pipe 12 and 𝜎 = 0.01 

Leaking pipe: 12 
5 sensors at optimal 

location 

25 sensors at worst 

location 

5 sensors at worst 

location 

Correct pipe inferred 20 20 15 

1 pipe away inferred - - 5 

2 pipes away inferred - - - 

Wrong pipe inferred - - - 

Mean of leak (L/s) 9.991 9.882 9.826 

Standard deviation of 

leak 
5.88E-02 4.48E-01 1.23E+00 

Average diff. in the 

objective function 
8.90E+00 2.18E+01 1.06E+00 

 

Table 4 Results of flow-rate sensors for leaking pipe 12 and 𝜎 = 0.05 

Leaking pipe: 12 
5 sensors at optimal 

location 

25 sensors at worst 

location 

5 sensors at worst 

location 

Correct pipe inferred 20 16 4 

1 pipe away inferred - 4 8 

2 pipes away inferred - - 4 
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Wrong pipe inferred - - 4 

Mean of leak (L/s) 10.082 9.518 10.781 

Standard deviation of 

leak 
3.09E-01 1.94E+00 8.55E+00 

Average diff. in the 

objective function 
3.94E+00 1.89E+00 2.50E-01 

 

Table 5 Results of flow-rate sensors for leaking pipe 17 and 𝜎 = 0.01 

Leaking pipe: 17 
5 sensors at optimal 

location 

25 sensors at worst 

location 

5 sensors at worst 

location 

Correct pipe inferred 20 20 5 

1 pipe away inferred - - 2 

2 pipes away inferred - - 12 

Wrong pipe inferred - - 1 

Mean of leak (L/s) 10.000 9.936 9.540 

Standard deviation of 

leak 
1.00E-03 3.84E-01 1.54E+00 

Average diff. in the 

objective function 
1.26E+01 3.11E+01 6.80E-01 

 

Table 6 Results of flow-rate sensors for leaking pipe 17 and 𝜎 = 0.05 

Leaking pipe: 17 
5 sensors at optimal 

location 

25 sensors at worst 

location 

5 sensors at worst 

location 

Correct pipe inferred 20 20 2 

1 pipe away inferred - - 4 

2 pipes away inferred - - 7 

Wrong pipe inferred - - 7 

Mean of leak (L/s) 9.998 8.882 12.501 

Standard deviation of 

leak 
6.04E-03 1.25E+00 5.34E+00 

Average diff. in the 

objective function 
7.93E+00 4.29E+00 2.81E-01 
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Table 7 Results of flow-rate sensors for leaking pipe 19 and 𝜎 = 0.01 

Leaking pipe: 19 
5 sensors at optimal 

location 

25 sensors at worst 

location 

5 sensors at worst 

location 

Correct pipe inferred 20 16 8 

1 pipe away inferred - 3 8 

2 pipes away inferred - 1 2 

Wrong pipe inferred - - 2 

Mean of leak (L/s) 9.993 9.847 9.473 

Standard deviation of 

leak 
2.27E-02 4.73E-01 2.07E+00 

Average diff. in the 

objective function 
9.40E+00 2.65E+00 4.24E-01 

 

Table 8 Results of flow-rate sensors for leaking pipe 19 and 𝜎 = 0.05 

Leaking pipe: 19 
5 sensors at optimal 

location 

25 sensors at worst 

location 

5 sensors at worst 

location 

Correct pipe inferred 20 1 1 

1 pipe away inferred - 4 3 

2 pipes away inferred - 6 7 

Wrong pipe inferred - 9 9 

Mean of leak (L/s) 10.026 8.683 7.833 

Standard deviation of 

leak 
1.27E-01 2.84E+00 7.93E+00 

Average diff. in the 

objective function 
4.19E+00 4.91E-02 9.31E-02 

 

Case B 

This case is the same as case A but will use pressure sensors instead of flow-rate sensors. As can be 

seen from the objective function diagrams (Figure 9, 15, 21 and 27) adding one more sensor will always 

result in more information gained. Also, the difference between sensors placed in optimal and in worst 

locations is not significant so only sensors in optimal locations will be considered. In this case the 

sensor configurations that will be used are 10, 20 and 31 sensors (maximum number of sensors) at 
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optimal locations which can be seen in Figure 11. The prediction error parameter that is used is 𝜎 =

0.01. 

Table 9 Results of pressure sensors for leaking pipe 3 

Leaking pipe: 3 
10 sensors at optimal 

location 

20 sensors at optimal 

location 

31 sensors at optimal 

location 

Correct pipe inferred - - - 

1 pipe away inferred - - - 

2 pipes away inferred - - 10 

Wrong pipe inferred 20 20 10 

Mean of leak (L/s) 10.224 10.041 10.228 

Standard deviation of 

leak 
1.12E+00 9.60E-01 5.85E-01 

Average diff. in the 

objective function 
- - - 

 

Table 10 Results of pressure sensors for leaking pipe 12 

Leaking pipe: 12 
10 sensors at optimal 

location 

20 sensors at optimal 

location 

31 sensors at optimal 

location 

Correct pipe inferred - - - 

1 pipe away inferred - - - 

2 pipes away inferred - - 11 

Wrong pipe inferred 20 20 9 

Mean of leak (L/s) 10.199 9.978 10.080 

Standard deviation of 

leak 
1.76E+00 9.04E-01 6.21E-01 

Average diff. in the 

objective function 
- - - 

 

Table 11 Results of pressure sensors for leaking pipe 17 

Leaking pipe: 17 
10 sensors at optimal 

location 

20 sensors at optimal 

location 

31 sensors at optimal 

location 

Correct pipe inferred - - - 
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1 pipe away inferred - - - 

2 pipes away inferred - - 9 

Wrong pipe inferred 20 20 11 

Mean of leak (L/s) 10.239 10.029 10.029 

Standard deviation of 

leak 
9.90E-01 1.21E+00 8.93E-01 

Average diff. in the 

objective function 
- - - 

 

Table 12 Results of pressure sensors for leaking pipe 19 

Leaking pipe: 19 
10 sensors at optimal 

location 

20 sensors at optimal 

location 

31 sensors at optimal 

location 

Correct pipe inferred - - - 

1 pipe away inferred - - - 

2 pipes away inferred - - - 

Wrong pipe inferred 20 20 20 

Mean of leak (L/s) 10.416 10.190 10.399 

Standard deviation of 

leak 
1.04E+00 1.02E+00 6.15E-01 

Average diff. in the 

objective function 
- - - 

 

Case C 

In this case the model used to simulate the measurements will use perturbed nodal demands. All the 

junctions will be split into 4 groups, as was also the case on cases 7 and 8 on the optimal sensor 

placement results. The groups will be the same as before and can also be seen below this paragraph. 

The demands of junctions in the same group will be the same and the demand of each group will 

follow a Gaussian distribution with 10L/s mean and standard deviation 20% the mean value, i.e. the 

Gaussian PDF is ~𝑁(10 , 4). The pipes that the leakage will be introduced will again be pipes 3, 12, 17 

and 19. The sensors that will be used here are, 10 flow-rate sensors at optimal locations, 25 flow-rate 

sensors at worst locations and 10 flow-rate sensors at worst locations. The sensor configurations that 

will be used are the results of case 8 and can be seen in Figure 78 and Figure 80 and are also mentioned 
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below this paragraph. The uncertainty in nodal demands will not be tested with pressure sensors since 

they struggled to locate correctly the leaking pipe in case B even without the extra uncertainty. 

Group 1 comprised of nodes 2, 3, 4, 10, 11, 14, 15 and 16. 
Group 2 comprised of nodes 5, 6, 7, 8, 9, 12 and 13. 
Group 3 comprised of nodes 20, 21, 24, 25, 26, 28, 29 and 32. 
Group 4 comprised of nodes 17, 18, 19, 22, 23, 27, 30 and 31. 

10 sensors at optimal locations placed in pipes: 32, 21, 22, 30, 20, 28, 33, 27, 19 and 23 
25 sensors at worst locations placed in pipes: 41, 39, 14, 52, 5, 4, 51, 47, 49, 42, 43, 1, 8, 45, 7, 16, 
48, 44, 2, 36, 6, 17, 37, 34 and 3 
10 sensors at worst locations placed in pipes: 41, 39, 14, 52, 5, 4, 51, 47, 49 and 42 

 

Table 13 Results of flow-rate sensors for leaking pipe 3 and 𝜎 = 0.01 

Leaking pipe: 3 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 20 9 

1 pipe away inferred - - 6 

2 pipes away inferred - - 4 

Wrong pipe inferred - - 1 

Mean of leak (L/s) 10.004 9.791 9.704 

Standard deviation of 

leak 
4.98E-02 3.07E-01 1.15E+00 

Average diff. in the 

objective function 
1.02E+01 2.12E+01 4.75E-01 

 

Table 14 Results of flow-rate sensors for leaking pipe 3 and 𝜎 = 0.05 

Leaking pipe: 3 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 18 18 3 

1 pipe away inferred 1 2 4 

2 pipes away inferred 1 - 8 

Wrong pipe inferred - - 5 

Mean of leak (L/s) 9.989 9.841 10.240 

Standard deviation of 

leak 
2.71E-01 1.75E+00 6.11E+00 
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Average diff. in the 

objective function 
3.06E+00 2.83E+00 1.28E-01 

 

Table 15 Results of flow-rate sensors for leaking pipe 12 and 𝜎 = 0.01 

Leaking pipe: 12 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 20 17 

1 pipe away inferred - - 2 

2 pipes away inferred - - 1 

Wrong pipe inferred - - - 

Mean of leak (L/s) 10.013 9.835 9.760 

Standard deviation of 

leak 
8.50E-02 6.66E-01 9.79E-01 

Average diff. in the 

objective function 
1.98E+01 1.78E+01 2.43E+00 

 

Table 16 Results of flow-rate sensors for leaking pipe 12 and 𝜎 = 0.05 

Leaking pipe: 12 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 12 6 

1 pipe away inferred - 8 4 

2 pipes away inferred - - 8 

Wrong pipe inferred - - 2 

Mean of leak (L/s) 10.049 9.519 8.549 

Standard deviation of 

leak 
3.57E-01 1.72E+00 4.03E+00 

Average diff. in the 

objective function 
7.97E+00 1.29E+00 5.20E-01 

 

Table 17 Results of flow-rate sensors for leaking pipe 17 and 𝜎 = 0.01 

Leaking pipe: 17 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 
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Correct pipe inferred 20 20 13 

1 pipe away inferred - - 3 

2 pipes away inferred - - 3 

Wrong pipe inferred - - 1 

Mean of leak (L/s) 9.988 10.159 10.271 

Standard deviation of 

leak 
5.22E-02 3.74E-01 1.17E+00 

Average diff. in the 

objective function 
2.81E+01 2.71E+01 2.91E+00 

 

Table 18 Results of flow-rate sensors for leaking pipe 17 and 𝜎 = 0.05 

Leaking pipe: 17 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 19 1 

1 pipe away inferred - - 5 

2 pipes away inferred - 1 9 

Wrong pipe inferred - - 5 

Mean of leak (L/s) 9.984 9.247 10.444 

Standard deviation of 

leak 
2.02E-01 1.46E+00 4.22E+00 

Average diff. in the 

objective function 
1.63E+01 3.09E+00 4.69E-02 

 

Table 19 Results of flow-rate sensors for leaking pipe 19 and 𝜎 = 0.01 

Leaking pipe: 19 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 18 7 

1 pipe away inferred - 2 6 

2 pipes away inferred - - 7 

Wrong pipe inferred - - - 

Mean of leak (L/s) 9.995 9.922 9.933 
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Standard deviation of 

leak 
4.44E-02 5.17E-01 1.26E+00 

Average diff. in the 

objective function 
2.67E+01 4.24E+00 6.66E-01 

 

Table 20 Results of flow-rate sensors for leaking pipe 19 and 𝜎 = 0.05 

Leaking pipe: 19 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 2 1 

1 pipe away inferred - 9 1 

2 pipes away inferred - 8 5 

Wrong pipe inferred - 1 13 

Mean of leak (L/s) 9.911 8.958 7.832 

Standard deviation of 

leak 
2.61E-01 2.36E+00 6.65E+00 

Average diff. in the 

objective function 
1.38E+01 1.22E-01 4.33E-02 

 

Case D 

In this case the model used to simulate the measurements will use perturbed nodal demands. The 

demand of each junction will be uncertain and independent of the rest, as was the case on cases 9 

and 10 of the optimal sensor placement results. The demands of the junctions follow a Gaussian 

distribution with 10L/s mean and standard deviation 20% the mean value, i.e. the Gaussian PDF is 

~𝑁(10 , 4). The pipes that the leakage is introduced are pipes 3, 12, 17 and 19. The sensors that are 

used here are, 10 flow-rate sensors at optimal locations, 25 flow-rate sensors at worst locations and 

10 flow-rate sensors at worst locations. The sensor configurations that will be used are the results of 

case 10 and can be seen in Figure 102 and are also mentioned below this paragraph. 

10 sensors at optimal locations placed in pipes: 32, 30, 22, 28, 27, 21, 20, 26, 24 and 19 
25 sensors at worst locations placed in pipes: 39, 41, 14, 52, 4, 5, 51, 47, 49, 42, 43, 1, 8, 45, 7 ,44, 
48, 16, 2, 36, 17, 6, 15, 37 and 13 
10 sensors at worst locations placed in pipes: 39, 41, 14, 52, 4, 5, 51, 47, 49 and 42 
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Table 21 Results of flow-rate sensors for leaking pipe 3 and 𝜎 = 0.01 

Leaking pipe: 3 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 15 11 

1 pipe away inferred - 1 3 

2 pipes away inferred - 4 3 

Wrong pipe inferred - - 3 

Mean of leak (L/s) 10.001 10.083 9.801 

Standard deviation of 

leak 
2.64E-02 4.01E-01 1.22E+00 

Average diff. in the 

objective function 
1.33E+01 2.00E+00 3.14E-01 

 

Table 22 Results of flow-rate sensors for leaking pipe 3 and 𝜎 = 0.05 

Leaking pipe: 3 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 7 3 

1 pipe away inferred - 5 2 

2 pipes away inferred - 5 5 

Wrong pipe inferred - 3 10 

Mean of leak (L/s) 9.978 9.439 10.611 

Standard deviation of 

leak 
1.07E-01 1.91E+00 6.22E+00 

Average diff. in the 

objective function 
3.33E+00 2.84E-01 6.82E-02 

 

Table 23 Results of flow-rate sensors for leaking pipe 12 and 𝜎 = 0.01 

Leaking pipe: 12 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 20 19 

1 pipe away inferred - - 1 

2 pipes away inferred - - - 
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Wrong pipe inferred - - - 

Mean of leak (L/s) 10.003 10.043 10.461 

Standard deviation of 

leak 
3.71E-02 4.66E-01 1.09E+00 

Average diff. in the 

objective function 
2.36E+01 2.03E+01 2.84E+00 

 

Table 24 Results of flow-rate sensors for leaking pipe 12 and 𝜎 = 0.05 

Leaking pipe: 12 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 16 3 

1 pipe away inferred - 3 2 

2 pipes away inferred - 1 9 

Wrong pipe inferred - - 6 

Mean of leak (L/s) 9.986 9.016 9.222 

Standard deviation of 

leak 
1.92E-01 2.23E+00 5.51E+00 

Average diff. in the 

objective function 
9.78E+00 1.20E+00 5.02E-01 

 

Table 25 Results of flow-rate sensors for leaking pipe 17 and 𝜎 = 0.01 

Leaking pipe: 17 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 20 16 

1 pipe away inferred - - 1 

2 pipes away inferred - - 2 

Wrong pipe inferred - - 1 

Mean of leak (L/s) 10.001 9.954 10.068 

Standard deviation of 

leak 
7.49E-03 3.02E-01 8.79E-01 

Average diff. in the 

objective function 
3.35E+01 3.28E+01 1.57E+00 



88 
 

 

Table 26 Results of flow-rate sensors for leaking pipe 17 and 𝜎 = 0.05 

Leaking pipe: 17 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 20 1 

1 pipe away inferred - - 8 

2 pipes away inferred - - 7 

Wrong pipe inferred - - 4 

Mean of leak (L/s) 9.974 9.333 9.568 

Standard deviation of 

leak 
1.39E-01 1.35E+00 4.64E+00 

Average diff. in the 

objective function 
2.17E+01 5.29E+00 1.22E-02 

 

Table 27 Results of flow-rate sensors for leaking pipe 19 and 𝜎 = 0.01 

Leaking pipe: 19 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 14 6 

1 pipe away inferred - 4 6 

2 pipes away inferred - 2 7 

Wrong pipe inferred - - 1 

Mean of leak (L/s) 10.004 9.936 9.672 

Standard deviation of 

leak 
2.80E-02 4.48E-01 1.01E+00 

Average diff. in the 

objective function 
2.87E+01 2.58E+00 3.69E-01 

 

Table 28 Results of flow-rate sensors for leaking pipe 19 and 𝜎 = 0.05 

Leaking pipe: 19 
10 sensors at optimal 

location 

25 sensors at worst 

location 

10 sensors at worst 

location 

Correct pipe inferred 20 - - 
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1 pipe away inferred - 4 - 

2 pipes away inferred - 6 10 

Wrong pipe inferred - 10 10 

Mean of leak (L/s) 10.017 8.475 8.753 

Standard deviation of 

leak 
1.22E-01 2.74E+00 4.46E+00 

Average diff. in the 

objective function 
1.54E+01 - - 

 

7.1 Discussion of leakage detection results 

In this chapter the optimal sensor placement results are applied to detect simulated leaks in order to 

verify the effectiveness of the optimal sensor configurations. In case A where flow-rate sensors are 

used on a model with nominal value deterministic demands, it seems that by using 5 optimally placed 

sensors the leaking pipe is consistently inferred correctly for 𝜎 = 0.01 and almost all of the times for 

𝜎 = 0.05. Furthermore, the mean value of the magnitude of leakage is very close to the actual amount 

of leakage, 10L/s, with very small variance, so the magnitude of leakage is also consistently inferred 

accurately. Using now 5 sensors on the worst locations, most of the times the pipe that is inferred is 

not the actual leaking pipe. However, the inferred pipe is most of the times close to the leaking pipe 

with a few exceptions where the inferred pipe is further away. The mean of the magnitude of leakage 

is less accurate and the standard deviation of it is 2 to 3 orders of magnitude larger. The results for 25 

sensors placed at the worst locations are, as expected, between the 5 sensors best and worst 

configurations. With this configuration most of the times the correct pipe is inferred, while the rest of 

the times the pipe that is inferred is very close to the leaking pipe. The mean of the magnitude of 

leakage is less accurate than the 5 sensors best configuration and more accurate that then 5 sensor 

worst configuration, with the standard deviation of it being 1 to 2 orders of magnitude larger than the 

5 sensor best configuration.  

The average difference of the objective function between the leaking pipe and the second most 

probable pipe usually is larger for the 5 optimally placed sensors compared to the 2 worst 

configurations, however, this measure does not seem to be very consistent, especially when the 

number of times that the correct pipe is inferred is very small. Comparing the results of the two values 

for the prediction error parameter 𝜎, as expected, increasing the noise in the measurements reduces 

the accuracy of inferring the magnitude of leakage and reduces the number of times that the leaking 

pipe is inferred correctly. The optimal sensor configuration, even with the increased noise, can still 
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reliably locate the leaking pipe and has high accuracy on inferring the magnitude of leakage. The two 

suboptimal sensor configurations are affected more by the increased noise as the number of times 

that the correct pipe is inferred is reduced. 

In case B where pressure sensors are used, even when every junction has a pressure sensor, 31 

junctions with 31 pressure sensors, the inferred pipe is consistently wrong. The best result that was 

obtained is when 31 sensors were used and the inferred pipe was 2 pipes away from the leaking pipe. 

It is noted that adding more sensors increases the accuracy of inferring the magnitude of leakage and 

leads to smaller variance. The results indicate that flow-rate sensors are much more informative that 

pressure sensors which corroborates with the objective function results that were presented in 

chapter 6. A possible explanation to this is that the pressure of the system is not very sensitive to the 

location of the leakage. When a leak is introduced into the network the pressure of the whole system 

drops instead of only to an area close to the leaking pipe. This can be seen in the pressure head results 

of the network without leakage in Figure 8. The pressure of all the junctions is roughly the same, and 

when a leakage is introduced the pressure head of every junction reduces by approximately the same 

amount. 

In case C where flow-rate sensors are used with uncertain demands in junctions, which are split into 

4 groups, the results are very similar to the results of case A. Using 10 flow-rate sensors optimally 

placed is enough to consistently find the location of the leaking pipe and accurately infer the 

magnitude of leakage with small variance for both 𝜎 values. Using 10 sensors at the worst locations 

the leaking pipe cannot be located consistently and when the noise is increased the leaking pipe is 

rarely located correctly. The standard deviation of the inferred magnitude of leakage is 1 to 2 orders 

of magnitude larger than when using 10 optimally placed sensors. The results for 25 sensors in the 

worst locations are also not as reliable as 10 optimally placed sensors with the difference being more 

significant when more noise is added to the measurements. The variance of the magnitude of leakage 

is also larger. Case C uses 10 flow-rate sensors optimally placed instead of 5 to compensate for the 

additional uncertainty introduced to the nodal demands and it should be noted that the standard 

deviation in the inferred magnitude of leakage in case C is higher than case A which has less sensors. 

This corroborates with the objective function results for these cases since the 5 sensors configuration 

with deterministic demands has lower value in the objective function than the 10 sensors 

configuration with uncertain nodal demands. 

In case D the nodal demand of each junction is uncertain and independent of the rest of the nodal 

demands.  As is the trend with the previous cases the optimal sensor configuration locates correctly 

the leaking pipe even when the prediction error parameter has the highest of the two values that are 
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used. The magnitude of leakage is accurately inferred with small variance and it should be noted here 

that the variance for the optimal sensor configuration in case D is smaller than the variance of the 

optimal sensor configuration in case C which corroborates with the objective function values of the 

respective OSP results. The suboptimal configuration with 10 sensors is the least accurate of the three 

configurations and seems to struggle to locate the correct pipe when more noise is added to the 

measurements. The standard deviation of this configuration is 1 to 2 orders of magnitude larger than 

the optimal configuration. The suboptimal configuration with 25 sensors gives results which are worse 

than the optimal configuration and better than the 10 sensor suboptimal configuration. 
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8. Conclusions 

An entropy based optimal experimental design methodology for locating leaks in water distribution 

networks using pressure and flow-rate sensors is developed. The hydraulic model of the system is 

formulated to aid in providing the necessary hydraulic quantities of interest, as is the Bayesian system 

identification technique used to locate leaks. The proposed OSP methodology is augmented to also 

take into consideration the unavoidable uncertainties present in model parameters to be able to give 

robust optimal sensor configurations. The effectiveness of the resulting optimal sensor configurations 

is demonstrated by using these sensor configurations to provide simulated measurements to the 

system identification technique and measure the accuracy of the inferred results. 

Several conclusions were drawn through this study which are the following. First, pressure sensors are 

not sensitive enough to be able to locate the leaking pipe consistently and the difference in the 

information provided by optimally placed pressure sensors and sensors placed in the worst locations 

is not significant. Second, using a relatively small number of optimally placed flow-rate sensors is 

enough to be able to locate consistently and accurately the location and magnitude of leakage. This 

king of sensor also exhibited significant difference in the information gained through optimally placed 

sensors and sensors placed in the worst locations, requiring significantly more sensors placed in the 

worst locations to obtain the same amount of information, giving more incentive in investing into 

finding the optimal sensor locations in the first place. Third, by introducing more uncertainties into 

the system the minimum number of required sensors increases with the modelling error being mainly 

responsible for this. 

The proposed OSP methodology can be implemented into a smart water distribution network capable 

of online monitoring the health of the system. Finding the optimal locations to place the sensors can 

potentially reduce the cost of the monitoring system by using a smaller number of sensors, while 

simultaneously being a strong asset in the decision making of the operation by providing very 

informative measurements capable of locating leaks early. 

Potential future developments in this study are first, to test the methodology in a more complex 

realistic network. Second to introduce uncertainty to more model parameters and study the effects 

of these uncertainties, as well as, explore the effect of using different magnitudes of uncertainty. 

Third, explore the effects of introducing more than 1 leakage simultaneously into the network and 

lastly, use a hydraulic model of the system that is dynamic and can adapt into the more realistic time 

varying model parameters. 
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