
 
 

 

University of Thessaly 

Faculty of Engineering 

Department of Electrical and Computer Engineering 

Volos, Greece 

 

 

 

 

Skin Cancer Detection using Image Processing 

Techniques in Reconfigurable Hardware 

 

 

 

DIPLOMA THESIS 

In partial fulfillment of the requirements for the degree of 

Diploma in Electrical and Computer Engineering  

 

 

 

 

Author:                 Supervisor: 

Christodoulou Dimitrios         Professor Bellas Nikolaos 



 
 

 

University of Thessaly 

Faculty of Engineering 

Department of Electrical and Computer Engineering 

Volos, Greece 

 

 

 

Skin Cancer Detection using Image Processing 

Techniques in Reconfigurable Hardware 

 

 

DIPLOMA THESIS 

 

CHRISTODOULOU DIMITRIOS 

 

Supervising committee 

 

 

 

 

 

Volos, September 2020 

Supervisor 

Bellas Nikolaos 

Professor 

Co-Supervisor 

Lalis Spyros 

Professor 

Co-Supervisor 

Katsaros Dimitrios 

Associate Professor 



 
 

 

Πανεπιστήμιο Θεσσαλίας 

Πολυτεχνική Σχολή 

Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 

Βόλος, Ελλάδα 

 

 

 

Εντοπισμός Καρκίνου του Δέρματος με Τεχνικές 

Επεξεργασίας Εικόνας Χρησιμοποιώντας 

Επαναδιατασσόμενες Αρχιτεκτονικές 

 

 

Διπλωματική Εργασία 

 

Χριστοδούλου Δημήτριος 

 

 

 

 

 

 

Βόλος, Σεπτέμβριος 2020 

Επιβλεπωv Καθηγητής 

Μπέλλας Νικόλαος 

Καθηγητής 

Τρίτο μέλος Επιτροπής 

Λάλης Σπύρος 

Καθηγητής 

Δεύτερο μέλος Επιτροπής 

Κατσαρός Δημήτριος 

Αναπληρώτης Καθηγητής 



 
 

Εγκρίνεται από την Επιτροπή Εξέτασης: 

 

Επιβλέπων  Μπέλλας Νικόλαος 

Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών 

Υπολογιστών, Πανεπιστήμιο Θεσσαλίας 

 

Μέλος   Κατσαρός Δημήτριος 

Αναπληρώτης Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών 

και Μηχανικών Υπολογιστών, Πανεπιστήμιο Θεσσαλίας 

 

Μέλος   Λάλης Σπύρος 

Καθηγητής, Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών 

Υπολογιστών, Πανεπιστήμιο Θεσσαλίας 

 

 

 

Ημερομηνία έγκρισης: 01-10-2020 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2020 by Christodoulou Dimitrios 

“The copyright of this thesis rests with the authors. No quotations from it should be 
published without the authors’ prior written consent and information derived from it 
should be acknowledged” 



 
 

 

 

 

 

 

 

 

Dedicated to 

my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  vii 
 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

 
At the end of this diploma thesis, I would like to thank everyone who have stood by my 

side all these years and contributed to the effort I have made. First of all, I would like 

to deeply thank Prof. Bellas Nikolaos for the supervision of this diploma thesis. His 

support and guidance have been dominant for the completion of this Thesis. Moreover, 

I would like to thank to Prof. Katsaros Dimitrios and Prof. Lalis Spyros for their 

evaluation and contribution on my thesis. 

Furthermore, I would like to express my gratitude to my family for encouraging me to 

pursuit my dream and providing me with the unconditional support to my life.   

Lastly, I would like to thank my friends for assuming this journey during the past five 

years, making wonderful memories that will last a lifetime. 

  

 

 

 

 

 

 



 

  viii 
 

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ ΠΕΡΙ ΑΚΑΔΗΜΑΪΚΗΣ ΔΕΟΝΤΟΛΟΓΙΑΣ ΚΑΙ ΠΝΕΥΜΑΤΙΚΩΝ 
ΔΙΚΑΙΩΜΑΤΩΝ 

 

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, δηλώνω ρητά 

ότι η παρούσα διπλωματική εργασία, καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι κώδικες 

που αναπτύχθηκαν ή τροποποιήθηκαν στα πλαίσια αυτής της εργασίας, αποτελεί αποκλειστικά 

προϊόν προσωπικής μου εργασίας, δεν προσβάλλει κάθε μορφής δικαιώματα διανοητικής 

ιδιοκτησίας, προσωπικότητας και προσωπικών δεδομένων τρίτων, δεν περιέχει έργα/εισφορές 

τρίτων για τα οποία απαιτείται άδεια των δημιουργών/δικαιούχων και δεν είναι προϊόν μερικής 

ή ολικής αντιγραφής, οι πηγές δε που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές 

αναφορές και μόνον και πληρούν τους κανόνες της επιστημονικής παράθεσης. Τα σημεία όπου 

έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή/και πηγές άλλων συγγραφέων, αναφέρονται 

ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και η σχετική αναφορά περιλαμβάνεται 

στο τμήμα των βιβλιογραφικών αναφορών με πλήρη περιγραφή. Αναλαμβάνω πλήρως, 

ατομικά και προσωπικά, όλες τις νομικές και διοικητικές συνέπειες που δύναται να προκύψουν 

στην περίπτωση κατά την οποία αποδειχθεί, διαχρονικά, ότι η εργασία αυτή ή τμήμα της δεν 

μου ανήκει διότι είναι προϊόν λογοκλοπής.  

 

Ο/Η Δηλών/ούσα  
 

 

 

(Υπογραφή) 

Ονοματεπώνυμο Φοιτητή/ήτριας  

Ημερομηνία  
 

 

 

 

 

 

 

 

 

 

 

 

 



 

  ix 
 

 

 

 

ABSTRACT 
 

Nowadays, Skin cancer is one of the most common cancers with low survival rate 

among humans. However, early and fast detection of skin cancer can save the patient’s 

life. In this thesis, an alternative method to detect and classify a lesion by using the 

current technology is developed, to avoid patients the painful and time-consuming 

process of Biopsy Method. The Skin Cancer Detection systems are beneficial for 

humans, since the lesion can be classified within some seconds. The methodology 

consists of basic components and different methods are used in each stage. First of all, 

different filters are applied in order to reduce noise and enhance the image, and to 

extract correctly the necessary features, which are used to train the classifiers. The 

ABCD rule and GLCM texture method provide the necessary features to categorize a 

lesion in benign or malignant. Different classification algorithms are trained with the 

extracted features to fit more appropriate the input data. Furthermore, to increase the 

performance of the system, the image process stage is implemented in hardware.         
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ΠΕΡΙΛΗΨΗ 

 

 Στην εποχή μας, ο καρκίνος του δέρματος είναι ένας από τους πιο 

συνηθισμένους καρκίνους με χαμηλό ποσοστό επιβίωσης μεταξύ των ανθρώπων. 

Ωστόσο, η γρήγορη ανίγχευση του καρκίνου του δέρματος σε πρώιμο στάδιο μπόρει 

να σώσει τη ζωη του ασθενή. Σε αυτήν την διπλωματική εργασία, αναπτύσσεται μια 

εναλλακτική μέθοδος για τον εντοπισμό και την κατηγοροποίηση ενός μώλωπα 

χρησιμοπιώντας την τρέχουσα τεχνολογία, για να αποφύγουν οι ασθενείς την επώδυνη 

και χρονοβόρα διαδικασία της βιοψίας. Οι εφαρμόγες για τον εντοπίσμο του καρκίνου 

του δέρματος είναι χρήσιμες για τον άνθρωπο, καθώς μπορούν να κατηγοροποιήσουν 

τον μώλωπα μέσα σε λίγα λέπτα. Η μέθοδος αποτελείται από καποία βασικά τμήματα, 

για την υλοποίηση των οποίων χρησιμοποιούνται διαφορετικές προσεγγίσεις. Πρώτα 

απ 'όλα, εφαρμόζονται διάφορα φίλτρα για τη μείωση του θορύβου και την 

βελτιστοποίηση της εικόνας, προκειμένου να εξαχθούν σωστά τα απαραίτητα 

χαρακτηριστικά, τα οποία χρησιμοποιούνται για την εκπαίδευση των classifiers. Οι 

μέθοδοι ABCD και GLCM texture παρέχουν τα απαραίτητα χαρακτηριστίκα για την 

κατηγοριοποίηση μιας βλάβης σε καλοήθη ή κακοήθη. Διαφορετικοί αλγόριθμοι 

ταξινόμησης εκπαιδεύονται με τα προηγούμενα χαρακτηριστικά. Επιπλέον, για να 

αυξήσουμε την απόδοση του συστήματος, το στάδιο της επεξεργασίας εικόνας 

υλοποιείται και σε Hardware. 
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Chapter 1 
 

Introduction 
 

1.1 Introduction 

In our diploma thesis, Skin Cancer Detection using Image Processing is 

implemented. Additionally, the Image processing part of our implementation, which is 

the most demanding and time-consuming part, is accelerated in Hardware. In these days 

and age, the advent of technology can facilitate all aspect of our life and improve our 

living conditions. Health is the discipline that the technology can provide the necessary 

equipment in order to detect and overcome diseases. There are many technological 

fields which involved in a large variety of project related with health. One demanding 

and useful project is skin cancer detection, which implemented in this project, since the 

early detection of a malignant lesion it is easier to cure. 

In our project, machine learning algorithms to classify the lesion as malignant or 

benign are used. Different types of algorithms are used in order to compare the result 

and select one with higher accuracy. To reduce the burden and the size of our predicting 

model, specific features from dermoscopic images are extracted. These features used to 

train and classify the lesion instead the use of the whole image. In order to extract this 

features two well-known techniques, the ABCD rule and the GLCM texture extraction, 

are implemented. We investigate which of both had the most precision metrics and 

leading to a model with high accuracy. Also, trying to achieve a model with high 

accuracy the two methods are combined in order to avoid misclassification since a 

minimal error to the values can have serious impact to the result
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Moreover, to improve the correctness of the extracted values it is dominant to 

minimize the noise from the input image. The input images are captured with 

microscope as a result small noise such as hair is enlarged. Furthermore, the lighting 

conditions can affect the image, creating darker parts. To accomplish this task, different 

filters are used, in order to blur, adjust the contrast and remove small objects of the 

initial image. To extract correctly the value of border irregularity, the prevention of the 

lesion edges is required, as a consequence the selections of blur algorithm are critical. 

In bibliography, the median filter is represented as the most suitable filter for blurring 

the image. Applying this filter, the removal of hairs and edges prevention are achieved.  

 

1.2 Motivation 

The detection of cancer, located in different part of human body, is not a new 

problem. From the previous decades, doctors use innovate machines to capture the 

potentially part of body in which can exist abnormality. Doctor examine the 

abnormality and determine if it is cancer using their knowledge and experience.  To 

detect skin cancer, which is one of the most common type of cancer, doctors examine 

the lesion and decide the type (malignant or benign). If the lesion evaluated as 

malignant, the patient follows the biopsy process, which is a painful process. Its trigger 

our mind to think how the current technology and especially machine learning can 

provide humans an easily access application which classify the lesion given an 

affordable second option before follow the infallible biopsy process.     

Skin is the largest organ of the integumentary system and consisted of seven layers 

of tissues. The skin is the outer part of the human body forming a shield which helps to 

cover the different system of human structure such as the muscular, skeletal (bones and 

ligaments) and internal organ system [1]. Skin cancer is one of the most common cancer 

in the world, and the medical record deduce that skin cancer is the most common type 

of cancer in many countries. Sun can easily harm our skin and as a result skin cancer is 

primarily detected on areas of skin which highly exposed to the sun, but it is also formed 

on areas that seldom see the light of day. The functions of skin are very important for 

the survival of human, so the development of abnormal cells on any skin layer can be 

harmful for the organism and might affect other parts of the body since it is detached 

to other organs and tissues and cancer can be spread more easily. 
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Compared to the other two types of skin cancer, melanoma is the deadliest cancer 

although it is the least common type. Melanoma reported as the deadliest form of skin 

cancer since it is responsible for 75% of all skin cancer deaths [6]. The early detection 

of the melanoma is essential, since it can be treated and finally cured in its early stages. 

However, if the diagnosis becomes late, it is difficult to cured and can be hazardous to 

the health, since it grows deeper into the skin and spread to other tissues and organs. 

So, it is important to examine our existing moles, freckles, bumps, and birthmarks to 

detect possible abnormality in early stage. This lead us to invest more time to improve 

skin cancer detection algorithms, which is more advantageous to patients compared to 

the traditional biopsy method. 

The cases of this disease show that skin cancer can affect people of all races, 

including those with darker complexions. Current research in the discipline of skin 

cancer detection using artificial intelligence has a limitation affiliated with the non-

white population. This restriction leads us to expand the current skin cancer 

classification models using dermoscopic images from people with different skin tones 

to train the models. This improvement generates an application which appeal to the 

whole population. 

Skin cancer is a very difficult problem with a lot of challenges since it is associated 

with visual media and medical science. The possible solutions are limited by the current 

technology and the deficit of dermoscopic images. In the future, the new knowledge in 

the field of computer vision and machine learning algorithms, and also the expansion 

of the skin cancer dermoscopic image dataset can help us tackle the problem more 

efficiently and accurately, making right and proper decisions. But the enrich of image 

dataset is the most challenging task since these record are privacy so our model need to 

fulfill this need and does not reveal any information which can be used to identify the 

person.  

In this diploma thesis, we deal with the problem of the Skin Cancer detection by 

examining different approaches related with image preprocessing, feature extractions, 

and classification models. Our approach includes image filters to reduce image noise, 

ABCD rule [5] and GLCM Texture Feature [4] to extract the necessary features for our 

predicted model, Support-Vector-Machine and decision trees to classify the input 

images. 
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1.3 Related Work 

The problem of the skin cancer exists since the last decades, and as result many 

researchers have been working on the Computer Vision approach for skin cancer 

detection. There are different methods to detect and classify skin lesion in recent 

research. Some approaches use dermoscopic images, without any preprocessing stage, 

as input to large model, which comprise Deep Learning or Convolutional Neural 

Network (CNN). Other approaches use image processing to reduce noise and extract 

features to classify lesion using machine learning algorithms. In our project, we use the 

second approach in order to tackle the problem of skin cancer detection. 

It is obvious that, dermoscopic images contain noisy, such as hairs and some darker 

or lighter parts due to the light conditions. In bibliography, there many different 

approaches for image noise reduction, includes different filters to blur image and 

remove small objects. Many of these approaches use Gaussian blur or median filter as 

a typical pre-processing step to remove hairs and smoother the represent lesion. Among 

them, median filter is the most popular since it preserves edges while removing the 

existing noise. The preservation of edges is very important for this approach since the 

regularity of the lesion border has big impact to the final decision. Additionally, many 

approaches use histogram equalize in order to enhance the contrast of the image in order 

to identify easier the location of lesion. The localization of the lesion can be 

accomplished using thresholding techniques or machine learning algorithms. 

The most important part is the extraction of the features. From the literature, it can 

clearly distinguish two different approaches that are used. The first method called 

ABCD rule (Asymmetry, Border, Color, Diameter). With the implemented of this 

approach, researchers try to categorize the lesion using these attributes. The second 

approach called GLCM method (Gray-Level Co-Occurrence Matrix). The GLCM is a 

method of examining texture of the image and extracting statistical measures. These 

statistics provide information about contrast, correlation, energy and homogeneity.  

Extracted data from both method is the input data for classification algorithms. Due 

to the lack of large datasets related with skin cancer, in bibliography simple 

classification models are used. Two different types of models are widely used, SVM 

(Support Vector Machine) and Decision Trees. The expirimental results show that the 

accuracy stays below the 95% [7].
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Chapter 2 
 

Skin Cancer Information 
 

2.1 General 

By skin cancer we mean the three commonest types, basal cell (BCC), 

squamous cell (SCC) carcinomas of the skin and cutaneous malignant melanoma 

(melanoma). Skin cancer [2] [3] occurs when mutations develop in the DNA of skin 

cells. This abnormal most often develops on areas of skin which is highly exposed to 

the sun. However, the sun is not the only factor that contribute to create these common 

types of skin cancer, as a result can develop on areas of human skin which do not expose 

directly to sunlight. Since the exposure to sun is the primary factor to develop cancerous 

cells, the risk of skin cancer can eliminate by avoiding UV radiation. The regular 

checking of our skin for suspicious changes can help to early detection of skin cancer 

and combined with a propel treatment help to successfully overcome this situation. 

 

2.2 Types of Skin Cancer 

• Basal cell (BCC) [10] is the most common type of skin cancer 

(Figure 2-1). BCC normally appear in people with fair skin 

and often develops after years of regular sun exposure. This 

type of cell can form anywhere on the body including head, 

neck, arms, chest, abdomen, and legs. It often looks like a 

flesh-colored round growth, pearl-like bump, or a pinkish 

patch of skin.

FIGURE 2-1: BASAL CELL 

CARCINOMA [10]. 
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• The second most common type of skin cancer is Squamous 

cell carcinoma (SCC) (Figure 2-2) [10]. This type of cancer 

can be formed in all race, irrespective of the skin color. SCC 

tends to form on areas that frequent exposure to the sun such 

as the ear, face, neck, arms, chest, and back which. Squamous 

cells can grow deep into the skin, causing damage to skin 

functionality and spread to other organs and areas of the body. SCC often looks like 

a red firm bump, scaly patch, or a sore that heals and then re-opens. 

• Since melanoma [10] can lead to death, it is the most serious 

skin cancer (Figure 2-3). Melanoma can affect people of any 

skin tone. Melanoma can develop within a mole that you 

already have on your skin or appear suddenly as a dark spot on 

the skin that looks different from the rest. People with darker 

skin, melanoma tends to develop on the palms or soles, or 

under the fingernails, Early diagnosis and treatment are crucial 

for patient health.  

 

2.3 Risk Factors 

 Skin cancer [2] [9] begins in the epidermis which is the outer layer of human 

skin. The epidermis is a thin layer and contains the three main types of cell, which are 

described meticulous above and involved in skin cancer. Nominally Squamous cells, 

Basal cells, and Melanocytes. 

 The evidence from a combination of experimental and epidemiological data 

proves that the main source of skin cancer is the directly exposure of UV the sun since 

only the UV radiation can damage DNA leading to abnormality. The key factor to 

prevent skin cancer is the controlling of sun exposure. 

 Factors that may increase the risk to develop skin cancer described analytically 

below. 

• Fair skin: Anyone can develop skin cancer, regardless of skin color. 

Although, people with fair skin, indicates the fact that having less melanin, 

FIGURE 2-2: SQUAMOUS 

CELL CARCINOMA [10]. 

FIGURE 2-3: MELANOMA 

[10]. 
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can more easily to wounding from UV radiation than a person with darker 

skin. 

• Excessive sun exposure: Spending a vast amount of time under the sun can 

increase the risk to develop skin cancer. 

• A family history of skin cancer. 

• A weakened immune system: People with weakened immune systems are 

more likely to form skin cancer. 

• Exposure to radiation. 

• A history of sunburns. 
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Chapter 3 
 

Project Requirements 
 

3.1 Software 

Programming Language 

Our project is developed using python programming language [11] [12]. Python 

is a clear and powerful object-oriented programming language. By using Python, many 

common programming tasks can easily be developed, since a large standard library is 

supported. These standard libraries facilitate the creation of different programs related 

with image processing manipulations like cropping, image segmentation, classification 

and features extractions, which are predominant tasks for our implementation. An 

additional appealing feature is that, many new and advanced tools, related to image 

processing, are available for free. All these reasons make the python programming 

language an appropriate choice for developing image processing and machine learning 

task. 

Image preprocessing Libraries. 

In order to implement this project, the first goal is the reduction of noise and the 

adjustment of contrast. Many python image preprocessing libraries, like Scikit image, 

Numpy, PIL/Pillow and OpenCV are used. Especially, OpenCV library is used for both 

image processing and feature extraction stage. A briefly overview of the usage and 

functionality of these libraries is made below: 



3 . 1  S o f t w a r e |  9 

 

 

Scikit Image 

Scikit-image [12] [13] consist of many algorithms for image processing. It is an 

open source Python package that primarily works with Numpy arrays.  By using the 

available algorithms of this library, applications used in different fields such as 

research, education and industry can be developed. Scikit-image focuses on being the 

reference library for scientific analysis related with image processing. It is a fairly 

simple and straightforward library. Every function comes with detailed documentation 

and examples that describe how each function is used in an application. This code is of 

high-quality and peer-reviewed. Algorithm’s codes are written by volunteer developers, 

who are members of the active community. This library is of high-quality and peer-

reviewed since all the included algorithms are tested by core developers to ensure 

correctness. A primary mission is to care for users’ data, meaning that the code doesn’t 

modify input arrays unless explicitly directed to do by the user. The package is imported 

as skimage and most functions are found within the submodules. 

 

Numpy 

Numpy [12] [14] is one of the fundamental libraries in Python programming 

and provides support for arrays. It is independent on any other Python packages and it 

only depends on an accelerated linear algebra library. This library uses MATLAB-style 

syntax to perform numerical operations. It is widely used for image processing 

applications, since an image is essentially an array structure, consisting of data points 

that represent pixels. Therefore, by using basic Numpy operations, such as slicing, 

masking and fancy indexing, the pixel values of an image can be easily modified and 

the desire output image can be achieved. Numpy is commonly used to mask an image. 

In order to use this image library, it is mandatory to load the initial image by using 

skimage library and display the preprocessing image with matplotlib library.   

 

 PIL/ Pillow 

PIL (Python Imaging Library) [12] [15] is a free library included in python 

programming language which supports opening, manipulating, and saving many 

different image file formats, with the ability to create new file decoders to expand the 
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library. However, its development has stagnated, with its last release in September 2009 

which supports Python 1.5.2-2.7. The following years, the Pillow project has forked the 

PIL repository and added Python 3 support. As a consequence, the original PIL has 

been replaced and is available for all major operating systems (Windows, Mac OS X, 

and Linux). This library contains basic image processing functionalities, including per-

pixel operations, masking and transparency handling, filtering with a set of built-in 

convolution kernels, and color space conversions. 

 

OpenCV 

OpenCV (Open Source Computer Vision Library) [12] [16] is one of the most 

widely used libraries for computer vision applications. The use of this library requires 

the OpenCV-Python which is the python API for OpenCV. OpenCV-Python can be 

referred as a fast library since the codes are written in C/C++. Additionally, OpenCV-

Python is a highly optimized library, while it uses Numpy, which is an optimized library 

for numerical operations with a MATLAB-style syntax. All the OpenCV array 

structures are converted to and from Numpy arrays. It is an advantageous choice to 

perform computationally intensive computer vision programs, as it a fast and easy 

library to code and deploy. It is available on Linux, MacOS, Windows, iOS and 

Android. 
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Chapter 4 
 

Methodology 
 

4.1 General 

Before starting the analysis of our project, a diagram of the process which is 

followed in order to complete our design, is represented. The following diagram (Figure 

4-1) can help us to describe more clearly the functions that were implemented at each 

stage to reach our goal. 

 

FIGURE 4-1: PROCESS DIAGRAM 
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It is obvious, that the stage of Data Understanding is the most vital. Data 

Understanding combines the subdivided stages of Data Requirements, Data Collection 

and Data Understanding. Before starting the collection of data, we need to clearly 

understand the problem that is needed to tackle, and specify all the requirements for our 

project. These requirements help us to determine the sources and the methods that we 

have to use in order to collect the appropriate data. At this first stage of the process, the 

creation of the database is started, by collecting all data needed, which consist of the 

initial data. Following this, we have to clearly understand the content of the input data 

and identify noise that may be included. For our implementation, it is obvious that 

dermoscopic images are the necessary input that must be obtained in order to move to 

the next stage. It is important that, these images should be labeled and confirmed from 

expert as benign and malignant to ensure the correctness of the project. Furthermore, 

these images needed to be captured with a microscope or a high resolution camera in 

order to depict the lesion in detail. It is an evidence that these images can contain noise. 

The most common type of noise, is hairs, which exist in many part of human skin.  

Data Preparation is the most necessary stage of the process, since the input 

image is transformed to useable data. Once the data has been collected, we need to 

process the data, to reduce the existing noise and extract information, to create the final 

database for modeling stage. The data preparation is a very time-consuming procedure 

since the implementation of different algorithms needed to improve and transform the 

initial database. In this stage some features are extracted, in order to classify the lesion 

and as a consequence, existing noise can corrupt the final decision. It is prerequisite to 

build an efficient image processing stage, stacking many image filters to reduce the 

noise.  

Modeling refers to the purpose of data mining. After the stage of data collection 

and preparation, the data must be handled by an appropriate model. Depending on the 

data mining problem a different appropriate model exists. The selection of the 

appropriate model is a demanding task, while the usage of the final result depends on 

it. The correct models reveal patterns and structures that provide meaningful insights 

and new knowledge. For our project, these patterns and structures can lead to a 

classification of the lesion into two categories: benign and malignant. 
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Evaluation is the last and most important stage. During this stage, the selected 

model is tested by a preselected part of the database. This, allow one to see the 

effectiveness and the accuracy of the model. Results from this stage, are used to 

determine if it is mandatory to return in one of the previous stages in order to follow a 

different approach and alter the requirements of our project. This feedback can lead to 

more appropriate results. The results of this stage lead us to spend more time in data 

preprocessing stage applying additional filter to reduce noise and to improve the 

accuracy of the models. 
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Chapter 5 
 

Data Understanding 
 

5.1 General 

Images related to skin cancer are necessary to complete the implementation of 

the project. The first step, is finding the appropriate dataset, which contains melanoma 

and non-melanoma images with a high percentage of correct classification. In order to 

achieve this, we need to select a database that includes images which are confirmed 

from a specialist. Due to the lack of databases related to the skin cancer problem, and 

some standards for dermatologic images, the quality and usefulness of skin lesion image 

is undermined and the selection of the database is being difficult.  After research, we 

finally choose ISIC-ARCHIVE, which contains over 23.000 dermoscopic images of 

skin lesion. It is worth mentioning, that most of these images have been assayed from 

a dermatologist. Since, the classification of the most dermoscopic images are validated, 

the data specialists have the opportunity to develop a model with a highly correctness. 

Another important factor, which contributes to this selection is that the ISIC 

(International Skin Imaging Collaboration) contains the Melanoma Project, which is an 

academic and industry partnership, designed to facilitate the application of digital skin 

imaging to help reduce melanoma mortality. ISIC is being developed by proposing 

standards to address the technologies, techniques, and terminology used in skin images. 

Additionally, special attention to the issues of privacy and interoperability is given, 

since the issue of privacy is really important, especially for medical record like those 

contained in this database. Besides, ISIC developed and is still expanding an open-

source public access archive of skin images to test and validate the proposed standards 
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and boost the research on the automated diagnosis of dermatoscopic images. This serves 

as a public resource for distinguishing the differences between the two categories, 

referred above. 

Training of neural networks for automated diagnosis of pigmented skin lesions 

is hampered by the small size and lack of diversity of the available datasets. The ISIC 

tackles this problem by collecting dermatoscopic images from different populations. 

The result of this effort, is that the ISIC-ARCHIVE contains over 23.000 images that 

are categorized as benign and malignant. However, some images haven’t classified yet. 

The ISIC has also categorized some of the images using clinical attributes, so as 

facilitate data specialists with a vast amount of information, which can be used to 

extract new knowledge for skin cancer. There are 14 attributes. The most common of 

there are named below: approximate age, clinical size, type of diagnosis, family history 

of melanoma, sex, and melanoma class. 

 

5.2 Input Dataset 

The ISIC-ARCHIVE [8] contains some ready databases with a different number 

of images and proportion of benign and malignant lesions (Figure 5-1). After the 

FIGURE 5-1: DATABASE CATEGORIES TOP-LEFT: MSK-1, TOP-RIGHT: SONIC, DOWN-LEFT: 

MSK-3, DOWN-RIGHT: UDA-2 [8]. 
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examination of these databases, it is concluded, that the grading occurs from the content 

of the image.  

For our project, we use 500 images, selected in random, to make our project 

more general. To be more specific, the database consists of 400 melanomas and 100 

benign images. It is difficult to extract correctly the features of the images, needed for 

our implementation, due to some specific characteristics of the images. Some images 

contain noise related to hair, while some others have a black frame or darker corners 

due to the photography method and lighting conditions. Furthermore, the images have 

a wide range of resolution (444-600,2199x1922) so dataset images cannot be cropped 

in a specific size. When cropping them to specific dimensions, valuable information is 

lost and accuracy decreases, since some images represent only the lesion without 

containing a skin outline. As a result, the appropriate and accurate measures for 

extracted features are not taken. All of these, make it harder to implement a model for 

achieving high accuracy, since a small variation in a feature value can lead to 

misclassification. 

 

5.3 Privacy 

The ISIC-ARCHIVE images have metadata which contains some information 

related to the lesion that is depicted. To be more precise, the metadata contains clinical 

information, such as age, sex, melanocytic, lesion category (benign or malignant), and 

the anatomy site. It also contains some other information, such as dimensions, image 

ID, and the dataset name in which it belongs. The fact that, we only use the lesion 

category from metadata to create the training and testing dataset, special attention to 

privacy from the database creators is given and   The personal information is prevented, 

due to the fact that in our implementation we only use the lesion category from metadata 

to create the training and testing dataset and special attention to privacy is given from 

the database creators. As a result, it is hard to expose any private information to connect 

the lesion and the owner. 
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Chapter 6 
 

Data Preparation 
 

6.1 General 

 Data preparation is the most important stage for our diploma thesis. This stage 

combines both image preprocessing and feature extraction. Image preprocessing is a 

highly demanding procedure, since many filters need to be applied in sequence to the 

whole original image, in order to dissociate the useful content from the noise and 

enhance some important image features for our implementation. This stage involves 

four main parts, grayscale conversion, noise removal, image enhancement and 

thresholding. It is clearly understood that, in the noise removal stage, different types of 

noise are necessary to be removed, before moving to the feature extraction stage. To be 

more precise, two common types of noise are identified, hairs and dark colored 

segments, due to the lighting conditions related with visual media. The implementation 

of our project uses two essential filters, median filter and open morphological filter. 

Open morphological filters have also the ability to facilitate the thresholding process, 

since the use of this filter erases hairs and small dots which occur after thresholding, 

related with dark colored areas. The image enhancement stage is an essential part before 

thresholding, since adjusts the image contrast and distinguish the lesion area. After 

preprocessing, the improved image is used for extracting the necessary features in order 

to generate the final database for the training of our machine learning model. For the 

extraction of features, two popular approaches are used, the ABCD rule and the GLCM 

texture features. In the following diagram the data preparation process is described 

(Figure 6-1).
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FIGURE 6-1: DATA PREPARATION SYSTEM ARCHITECTURE. 

 

6.2 Crop 

 Observing the input images, it can be concluded that there is some noise in the 

corners of the images. This noise occurs from the lighting conditions and the machine 

that is used for capturing the lesion. Cropping a part of the initial image, the removal 

of this noise can be achieved and the quality of the final image increases.  

 

6.3 Grayscale conversion 

 Grayscale image has a continues range from 0 to 255 of gray values for each 

pixel, where 0 is equivalent to black color and 255 is equivalent to white color. These 

values can represent the 256 level of light in image. Grayscale image contains 

brightness information while measuring the light intensity. The final image can differ 

in brightness graduation depending on the different equations existing in order to 

convert a colored image to grayscale. 

From the bibliography occurs that, the two different methods used in the feature 

extraction stage, do not need colored image as input. Especially, the ABCD rule uses a 

binary image as input to extract the features and the GLCM method uses the equalized 

image. Taking this factor under consideration, it can be understood that, the colored 

image can be converted to grayscale without losing valuable information. Colored 

image can be converted to grayscale by using a weighted sum method. One of the most 

commonly used equation is represented below (6.1): 
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Grayscale intensity = 0.299R + 0.587G + 0.114B               

The conversion of the initial image to grayscale can improve the performance of the 

image processing stage. This type of image is easier and faster to edit than colored. So, 

all filters are applied on grayscale image. 

 

6.4 Noise Removal 

 This stage focuses on the removal of noises which arisen in the process of 

capture and the hairs that exist on human body. The detection and removing of 

unwanted noise is a highly demanding process since an algorithm is needed for 

separating the real features of an image and the features which are create the noise. The 

noise can corrupt true information of the image, having serious affect to final result. In 

bibliography, different filters to reduce noises from dermoscopic images are used [20]. 

The first filter called Gaussian blur and smooths an image using a Gaussian function 

[17]. It is a low-pass filter which removes the noise level and insignificant details by 

blurring the image.  This is achieved be applying a Gaussian kernel. The second filter 

is called Median filter which is widely used in projects related with skin cancer since it 

can prevent edges [65]. In these projects, the Median Filter is selected, since edges 

invariant is a key factor to extract correct features from ABCD rule. The median filter 

is a non-linear filter and it is commonly used in image processing [18]. The appealing 

characteristic of this filter is the conservation of the edges and the ability of reducing 

impulse noise. The median filter sorts the pixel’s values and take the median value 

under the kernel area and replace the central pixel with this median value (Figure 6-2). 

 

FIGURE 6-2: MEDIAN FILTER USING 3X3 KERNEL SIZE. 

Different approaches use kernel with different size and shape since the reduction 

of noise depends on these. This is an important disadvantage. If the number of pixels 

(6.1) 
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which is characterize as a noise is greater than N(N+N)/2 and the kernel size is NxN, 

then the noise cannot be deleted, as a result we need to increase the size of the kernel 

[19]. On contrast, if the number of noise pixels is smaller than N(N+N)/2 and the kernel 

size is NxN, then the pixel’s values can corrupt since the algorithm assign irrelevant 

values, as a result we need to decrease the size of the kernel. To clearly understand the 

algorithm, we illustrate below an analytic example of a median filter using a 3x3 kernel. 

 

 
FIGURE 6-3: MEDIAN FILTER EXAMPLE. 

According to the above example (Figure 6-3), it can be easily understood the 

implementation of the median filter algorithm. We simplify our example expanding the 

grayscale image matrix with one-pixel size border to see the analytically the corner 

cases. So the input image has (N+2)x(N+2) dimension and the output has the initial 

NxN dimension. As it can be seen the 3x3 kernel size run through each pixel in order 

to replace the value of the central pixel of the kernel area with the median value of the 

neighborhood. To be more precise, the first pixel that the algorithm calculates, is 

located at the point (1,1) of the input image and saved in the output image at the point 

(0,0) to reconstruct the image to initial dimensions. Applying the median filter kernel 

to this pixel we marked an area of neighborhood pixels and sort these pixel’s values in 

order to take the median value. As a result, the sorted neighborhood values are 0, 0, 0, 

0, 0,8, 9, 10, 12 and the selected median value is 0. 
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6.5 Image Enhancement 

 The purpose of this stage is to increase visibility of the feature of interest, based 

on our project, the adjustment and enhancement of the contrast is needed [23]. Image 

enhancement techniques change the pixels’ intensity of the image so as the output 

images to looks better. It is an important step to prepare the image for threshold stage 

and the GLCM method. The result of this stage is to make more sharpen the image 

border and improve the brightness. After applying this filter, it is easier to separate the 

background and the object of interest which is depicted. Nowadays, there are many 

image enhancement techniques suitable for different tasks with specific requirements. 

The most used methods are classified into Linear and Non-Linear contrast enhancement 

techniques [21]. In our implementation, the histogram equalization method to improve 

the image enhancement is selected. The above images (Figure 6-4) are an example 

where the result of this filter to the histogram of the image can be observed.  

 

FIGURE 6-4: HISTOGRAM EQUALIZATION: (A) INPUT IMAGE, (B) HISTOGRAM OF THE OUTPUT 

IMAGE, (C) OUTPUT IMAGE BY THE HISTOGRAM EQUALIZATION TECHNIQUE, (D) HISTOGRAM 

OF THE OUTPUT IMAGE [25]. 

 The histogram equalization is the most common method for image enhancement 

[22], since its simplicity and better performance with all types of images, compared to 

other existing methods. Histogram equalization replaces the output image with uniform 

distribution of pixel and it flattens and stretches the image [25]. The operations of the 

Histogram Equalization are performed by remapping the gray levels using the 

cumulative distribution of the input gray levels. The step of the implementation of this 

algorithm is simple. The first step is to calculate the histogram of the image. After that 

we use the cumulative distribution function and the normalization of this function gives 

the output image. The general histogram equalization formula is the following (6.2): 
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ℎ(𝑣) = 𝑟𝑜𝑢𝑛𝑑 (
𝑐𝑑𝑓(𝑣) − 𝑐𝑑𝑓(𝑚𝑖𝑛)

𝑀 ∗ 𝑁 − 𝑐𝑑𝑓(𝑚𝑖𝑛)
) ∗ (𝐿 − 1) 

where cdf(min) is the minimum value which occur from the cumulative distribution 

function, M*N is equal to the pixel of image and the L is equal to the number of gray 

levels. In our case the L take the value of the 256 since the initial image converted to 

grayscale and the pixels’ value range is from 0 to 256. The equalization formula scales 

the values of the grayscale pixels from 0 to 255. 

 

6.6 Image Segmentation 

 The purpose of image segmentation stage is to separate the background and the 

lesion by converting the image to binary and depict the area of interest. This stage is 

dominant for our implementation, since the binary image is used for extracting the most 

features from the ABCD rule. There are many approaches to implement this filter. Some 

of them combine machine learning algorithms in order to locate the region of interest, 

separating from the background and other more simply methods, called thresholding 

algorithms, segment the image. There are many thresholding algorithms. Among them, 

the Otsu’s [26] and global thresholding method [27] have been distinguished. The main 

difference between these two approaches, is that the Otsu’s algorithm performs 

automatic image thresholding. It searches for the most efficient thresholding value that 

minimizes the intra-class variance instead of the global algorithm which requires a 

predefined value of the threshold. Finding the global thresholding value could be an 

easy task, if the background and the area of interest have distinguished values of 

brightness in the grayscale image. The global thresholding method is quite easy for 

implementation. In this method the value of each pixel is checked and replaced with a 

white pixel if the intensity is greater than the global thresholding value or with a black 

pixel if the pixel’s value is less.  

 From the thresholding process the output is a white background and a black area 

for the lesion. Another essential step in the stage of segmentation, is the inversion of 

the pixel’s values of the image. The inverted image is necessary for the implementation 

of the morphological filter. In order to extract some of the features of the ABCD rule, 

some functions of the OpenCV library are used. Black background to locate the region 

of interest with white color is required by these functions.   

(6.2) 
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6.7 Morphological Filter 

 The purpose of this stage is to reduce any noise from the segmentation image, 

that have not been removed from the previous image preprocessing step. The 

morphological filters follow the thresholding algorithms to improve the final result. 

Morphological filters typically work with binary images. The filter which is more 

suitable for this task is the open filter. This filter is the combination of two other filters, 

the erosion and dilation. To be more specific, open filter is implemented as the process 

that requires an erosion filter followed by a dilation filter. This sequence can help as to 

erase white small object without losing information for the region of interest. The 

implementation of the open filter requires a kernel, the size of which differs regarding 

the size of the unwanted object. 

 So what happens when applying the erosion filter in a binary image? While the 

boundary of the white object is decreased, small or thickness white object will be 

discarded. It has to be mentioned that, the decrease of the white objects depends on the 

kernel size. The kernel is applied to each pixel and replaces the initial value with 1 

when all the pixels under the kernel area is 1, and with 0 for every other case [29]. On 

the following example (Figure 6-5), the effect of the erosion filter using a 3x3 kernel 

can be noticed.  

                          

FIGURE 6-5: A EXAMPLE IMAGE OF THE EFFECT OF EROSION FILTER. THE KERNEL SIZE IS 3X3 

[29]. 

The dilation filter has the same properties as the erosion filter with the only 

difference that, a pixel has value 1, when at least one pixel with value 1 under the kernel 

size exists. From the figure (Figure 6-6) is obvious that, applying this filter the area of 

white object is increasing. The white area of the lesion has decreased due to the previous 

filter as a consequence this filter can reconstruct the lesion to the initial size which is 



6 . 8  A B C D  R u l e |  24 

 

 

important to calculate the features from the ABCD rule correctly. An example of 

dilation, in order to understand the functionality of the filter is proposed.  

                         

FIGURE 6-6: A EXAMPLE IMAGE OF THE EFFECT OF DILATION FILTER. THE KERNEL SIZE IS 3X3 

[29]. 

 

6.8 ABCD Rule 

 The ABCD rule is one of the methods used in feature extraction stage. The 

ABCD rule (Asymmetry, Border Irregularity, Color and Diameter) of dermoscopy was 

the first algorithm which has been developed for helping scientists separating benign 

from malignant tumors. This algorithm was described by Stolz and created to answer 

the critical question in desmoscopy of whether a skin lesion is benign or malignant [33]. 

This method is quite simply to learn and to apply since it is based on four criteria for 

the classification of the lesion. The ABCD method is widely used in scientific research, 

while the meticulous study of this method can improve the diagnostic performance of 

lesion evaluation. In order to extract the final result, this technique combine four main 

criteria which are asymmetry, border, color and diameter. However, there are some 

variations related with the criteria of this method in order to fit the project requirement, 

since the feature extraction is the main part to categorize the lesion to benign and 

melanoma. 

 Asymmetry (A): From the medical records occur that the melanomas are 

developed in an anarchic way, while benign lesions are symmetrical [31]. In order to 

compute the asymmetry index, we find the difference between the lesion image and its 

horizontal flip and the difference between the lesion image and its vertical flip. After 

that, we calculate the ratio between each difference and the total lesion region and keep 
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their average values. The asymmetry can be representing by the following mathematic 

equation (6.3). 

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =  

(𝑖𝑚𝑎𝑔𝑒𝑎𝑟𝑒𝑎  −  ℎ𝑓𝑙𝑖𝑝𝑎𝑟𝑒𝑎)
𝑖𝑚𝑎𝑔𝑒𝑎𝑟𝑒𝑎

 +  
(𝑖𝑚𝑎𝑔𝑒𝑎𝑟𝑒𝑎 − 𝑣𝑓𝑙𝑖𝑝_𝑎𝑟𝑒𝑎)

𝑖𝑚𝑎𝑔𝑒𝑎𝑟𝑒𝑎

2
 

  

Border Irregularity (B): According to dermatologist, melanomas are 

characterized by much border irregularity, on the other benign tumors are typical 

defined by clear border [33]. The evaluation of the border related with the existence of 

a sharp pigment at the periphery of the lesion. The border irregularity is computed by 

the following equation (6.4).  

𝐵𝑜𝑟𝑑𝑒𝑟 𝐼𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

4 ∗ 𝜋 ∗ 𝑖𝑚𝑎𝑔𝑒𝑎𝑟𝑒𝑎
 

 Color (C): Malignant lesion are represented by several colors. If a lesion is 

represented by five to six color may be characterized as melanoma. The verified colors 

are: Black, Dark Brown, Light Brown, Red, Blue and White [33]. 

 Diameter (D): The diameter is one of the four criteria. A lesion with diameter 

of more than 6-7 mm is typically defined as a melanoma. We calculate the diameter as 

the diameter of a circle with lesion area. Additionally, we convert the diameter in mm 

using the fact that 1 pixel is equal to 0.265 mm. 

 

6.9 GLCM Method 

 The Gray Level Co-Occurrence Matrix is a texture analysis method. The texture 

analysis computes the features from the statistical distribution of observed 

combinations of intensities at standard locations. The number of intensity points in each 

combination, statistics are categorized into 3 subcategories: first-order, second-order 

and higher-order statistics [36]. According to the previous classification, the GLCM 

method is included to the second-order statistical texture features. This approach is 

commonly used in many applications, since the higher-order textures try to identify the 

relationships among three or more pixels which needed more execution time and the 

implementation is difficult.  

(6.3) 

(6.4) 



6 . 9  G L C M  M e t h o d |  26 

 

 

 The GLCM is a popular method for extracting texture features, since it can 

calculate many features and it is easy to be implemented. Using the co-occurrence 

matrix, fourteen characteristic texture features can be extracted from the probability 

matrix. These features are Angular Second Moment (ASD), Entropy, Sum Entropy, 

Difference Entropy, Contrast, Correlation, Information Measures of Correlation, 

Maximal Correlation Coefficient, Sum of Squares, Inverse Difference Moment (IDM), 

Sum Average, Sum Variance, Difference Variance [37]. From these features, only four 

texture features are used in our experiment: Correlation, Homogeneity, Energy and 

Contrast were extracted from the enhancement images. 

 The Correlation describes the relationship between pixels in each row and 

column of the image. This relationship that occurred, measures the joint probability 

occurrence of pairs pixels. The correlation can be computed using the following 

formula (6.5).  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ [
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

√(𝜎𝑖
2)(𝜎𝑗

2)

]

𝑁−1

𝑖,𝑗=0

 

 The Homogeneity measures the closeness of the distribution of the specific pair 

of pixel in the GLCM. To compute the Homogeneity, the following equation is used 

(6.6).  

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ ∑
1

1 + (𝑖 − 𝑗)
∗ 𝑃𝑖,𝑗

𝑗𝑖

 

 The Energy expresses the repetition of pixel pairs in the image and calculated 

as the square root of the sum of squared pixels (6.7) [34].  

𝐸𝑛𝑒𝑟𝑔𝑦 =  √∑ 𝑃𝑖,𝑗
2

𝑖,𝑗

 

 The Contrast measures the local variations present in the image, so higher values 

identify large local variations (6.8).  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑(𝑖 − 𝑗)2 ∗ 𝑃𝑖,𝑗

𝑗𝑖

 

(6.5) 

(6.6) 

(6.7) 

(6.8) 
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 The purpose of the feature extraction using the ABCD rule and the GLCM 

techniques is to compress the original image set to specific features which is used to 

classify the different lesion image.  
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Chapter 7 
 

Modeling 
 

7.1 General 

 Nowadays, the advent technology, especially in the field of the artificial 

intelligent, facilitates the research in all disciplines of science. The use of the AI 

contributes in developing many applications related with every-day tasks. Additionally, 

applying different AI algorithms can detect patterns, in order to extract new knowledge. 

Using these patterns, demanding tasks can be solved, while the extracted knowledge 

can lead us to solve many other new problems. It is an evidence that, the use of the AI 

helps society to overcome many crucial problems. AI algorithms are used in many 

applications related with health. For example, different methods are used in vaccines 

testing to observe and identify potential side effects of different chemical substances. 

AI algorithms are also implemented in order to identify the type of disease by observing 

the symptoms. The most important applications are those which are related with 

different types of cancer, since cancer is a high deadly disease and the early detection 

can help the treatment. Applications related with skin cancer can be used by everyone, 

since medical equipment is not required for capturing the lesion. A camera is the only 

mandatory tool. According to bibliography, depending on the type of the input dataset, 

different models can be used, in order to classify a lesion. When the input is a full 

image, applications with CNN networks are being developed, for classifying a lesion. 

Otherwise, when inputs are some extracted features of the lesion image, simpler 

models, such as Support Vector Machine (SVM) are being applying. In our thesis, these 

kind of inputs have been selected for implementation. SVM decision boundary and 
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some other modified models are used, to investigate the appropriateness of each model 

based on the input type. To be more specific, we select as training models the following: 

Support Vector Machine with RBF kernel, NuSVM, Linear SVM, Multi-layer 

Perceptron Classifier, Decision Tree Classifier and Random Forest Classifier. 

 

7.2 Data Format 

 Before starting analyzing the training models used in our project, the way that 

the extracted features have been saved, is being described. From the stage of feature 

extraction occurs that, the extracted features are ten from both methods ABCD and 

GLCM. In order to evaluate the utility of its method, and finally create the most accurate 

model, which is the combination of the two methods, three different inputs can be 

created. The first, contains only the six values, which are extracted from the ABCD 

rule, while the second one contains the four values from the GLCM texture method. 

The third one contains all the ten values from both methods. The three inputs database 

are formed as tabular database. After the features extraction step, the initial database of 

images is converted into a tabular database consisting of the extracted features. Tabular 

data consist of columns and rows and they are structured into rows. Each row contains 

the values of the features for each lesion. The inputs databases are saved as Comma 

Separated Values (CSV) files. The SCV file is a text file consisting of a list of data, and 

its structure is quite simple, since the data are separated by commas. The first row 

describes the features that are contained in its column, while the other rows contain the 

value of the features which are extracted from each image. Another important thing is 

that, csv files can be supported in spreadsheet programs, which make them easier to 

read and observe the output. 

 

7.3 Support Vector Machine 

 Support Vector Machine (SVM) is a linear model, which is used for regression 

and classification problems. This model is one of the most popular machine learning 

algorithms and was developed in 1990 [39]. It is a supervised algorithm and requires 

large process, in order to extract the final result. As a consequence, it is used with small 
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dataset. The main idea of the SVM is to generate a line which separates the input data 

into two different classes. To be more precise, this line refers to a 2-D classification 

problem. When referring to a 3-D problem a plane is generated and for higher 

dimension, a hyperplane [38]. Using this model, data related with linear and no-linear 

problems can be separated (Figure 7-1). Although there are many potential separating 

lines, the model must predict only one line. After that, the question how the model 

selects the most appropriate line, occurs. To select the most suitable line, the model 

calculates the distance between the separating line and the closest points to the line. The 

closest points are called “support vectors” and the distance is called “margin”. The 

target of this model is to maximize the margin, since the probability to correctly 

separate the points in their target classes or region is higher, when the support vector 

has large distance from the line. The use of the margin indicates that the data is linearly 

separable, but in many cases this is not a feasible hypothesis. As a result, an update of 

this hard approach, which is called soft margin SVM, has been developed, in order to 

skip few outliers to separate the input data. One more important update is that, different 

types of kernel can be used, when using the SVM. These kernels, it can be used to 

classify a little bit more irregular data. We can have linear kernel, polynomial kernel 

and radial basis function kernel. The formula when using kernel type is being described 

below (7.1) and the parameter “K” represents the function of the kernel.  

max
𝑎

∑ 𝑎𝑖 −
1

2
∑ ∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑋𝑖

𝑇 . 𝑋𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

 

The linear and polynomial kernels are less time consuming, since less computations are 

needed and in most cases less accuracy is achieved, in contrast to other kernel types, 

like the RBF. The Radial Basis Function is a very popular kernel in Support Vector 

Classifier. The RBF kernel function is the following equation (7.2):  

𝐾(𝑥, 𝑥′) =  𝑒
(−

||𝑥−𝑥′||2

2𝜎2 )
 

where ||𝑥 − 𝑥′||2 is the Euclidean distance between the two points x and x’. The 

Sigmoid kernel is commonly used in SVM and is being described from equation (7.3): 

𝐾 =  
1

1 + 𝑒−𝑥
 

(7.2) 

(7.3) 

(7.1) 
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 The SVM classifier requires two other parameters: the gamma and C. The gamma 

parameter affects the curve of the decision boundary. Small values of gamma parameter 

mean small curve of the decision boundary. The C parameter is related with the 

tolerance of the misclassified points. Small values of C indicate large tolerance to 

misclassified points [41].  

 

FIGURE 7-1: THE LEFT DIAGRAM DEPICTS A SVM WITH LINEAR KERNEL. THE RIGHT DIAGRAM 

DEPICTS A SVM WITH RBF KERNEL [41]. 

Additionally, the Nu-SVM classifier is a parameterization of the C-SVM 

classifier. The nu parameter is equal to 0.5 by default, and it is a boundary on the 

fraction of margin errors and support vectors, especially an upper bound for margin 

errors and lower for support vectors [42]. This parameter can take values in the range 

of 0 to 1 (interval (0,1]). 

 

7.4 Multi-Layer Perceptron Classifier 

 Multi-Layer Perceptron is a supervised machine learning algorithm and is 

included to feedforward artificial neural network (ANN). The MLP [43] uses the 

training data to generate a function, which converts the Ri to Ro, where i is the 

dimension of the input and o is the dimension of the output. This algorithm uses 

Backpropagation which is a supervised learning method and differs from logistic 

regression. The MLP consists of at least three layers, the input layer, the output layer 

and an intermediate activation layer called hidden layer. Every layer consists of a 

certain number of neuron. It is fully connected (Figure 7.2); each neuron is connected 

to every neuron of the following layer with certain weights. Each neuron in the hidden 

layer performs a weighted linear summation with the values of the previous layer 
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followed by an activation function. The output transforms the values of the previous 

layer into output values.  

 

FIGURE 7-2: ONE HIDDEN LAYER MULTI-LAYER PERCEPTRON [43]. 

In our implementation, the alpha parameter for regularization, is used. This 

parameter helps in avoiding overfitting. Rectified Linear Unit (ReLU) [44], logistic 

sigmoid and hyperbolic tangent, are used as activation Functions. The sigmoid function 

is very popular, but sometimes the tanh function is more preferred. Recently, the ReLU 

is the most used activation function. The range of the output values is zero to infinity 

[0, ∞) (Figure 7-3). The output value is equal to zero, if the input value is less than zero, 

and equal to input, if the input value is above to zero. The disadvantage of this activation 

function is that the negative values turn into zero. As a result, the model can fail to fit 

the data properly. To avoid this limitation, the leaky ReLU helps to increase the range 

of the output values (Figure 7-3). This activation function multiplies the input value 

with a small number α when the input value is less than zero. We can notice the 

functionality of these activations function in the following figure. 
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FIGURE 7-3: IN THE LEFT DIAGRAM IS THE RELU ACTIVATION FUNCTION. IN THE RIGHT 

DIAGRAM IS LEAKY RELU ACTIVATION FUNCTION [44]. 

The logistic sigmoid function is one of the other two kernel types [45]. It is a 

common S-shaped curve (Figure 7-4). The logistic sigmoid is the standard logistic 

function which is described from (7.4): 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

The hyperbolic tan function is a kernel type that has been selected for our 

project. The tanh function is a shifted function of the sigmoid. The sigmoid values range 

from 0 to 1 and the tanh values range from -1 to 1 (Figure 7-4). The tanh is described 

from the (7.5).  

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

FIGURE 7-4: IN THE LEFT DIAGRAM IS THE TANH ACTIVATION FUNCTION. IN THE RIGHT 

DIAGRAM DISPLAY THE SIGMOID ACTIVATION FUNCTION [45]. 

 

(7.4) 

(7.5) 
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7.5 Decision Tree Classifier 

 Decision tree classifier is a non-parametric supervised learning method used for 

classification problems and it is widely used in data mining. Decision trees is a simple 

classifier. Goal of this model is to separate the input data into different classes using 

the classification features. To categorize the given set of data, a combination of 

mathematical and computational methods, as shown in Figure 7.5, is used.  

 

FIGURE 7-5: THE STRUCTURE OF A DECISION TREE CLASSIFIER [47]. 

The decision trees consists of three different parts: the nodes for the value of the 

classification parameters, edges that connect the current node with the next layer node, 

based on the result, and the leaves that represented the target values, which are the final 

output [46]. There are two distinct categories of the decision trees related to 

classification problems or regression problems. The Decision tree classifier procedure 

is to separate the training data into smaller and smaller subset and gradually formed the 

decision tree. The above figure (7-5) represents the structure of a Decision Tree 

Classifier. The complex of the tree is related to the depth. More complex trees can fit 

the training model more appropriate. This model spilt the data on the feature in order 

to achieve the largest information gain. There are different methods to calculate the 

information gain such as Entropy (7.6), Misclassification error (7.7) and Gini index 

(7.8), the equations of them are given below:  
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑖(𝑡) log2 𝑝𝑖(𝑡)

𝑐−1

𝑖=0

 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = 1 − max [𝑝𝑖(𝑡)] 

 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 −  ∑ 𝑝𝑖(𝑡)2

𝑐−1

𝑖=0

 

 

 The decision tree starts from the initial point which is called root node. This 

node contains the whole training dataset. The algorithm uses different metrics for 

measuring the best selection of the classification feature to split the data into smaller 

groups of data. These metrics are applied to each subset and the result indicates the 

quality of the split. This step is being repeated until the data is separated into the target 

categories which is the leaves of the decision tree.   

 

7.6 Random Decision Forest 

 Random Decision Forest [54] is an ensemble method of learning that can be 

used for classification and regression problems. Tim Kam Ho [51] has introduced the 

first algorithm at his paper in 1995 for the random decision forest as an alternative 

classifier, instead of the traditional decision trees classifiers that require a very high 

execution time, but present a limitation related to the complexity of the models. The 

purpose of an ensemble algorithm such as Random Forest algorithm is to combine the 

predictions of several models with different attributes, in order to improve the 

estimator. The ensemble methods can be distinguished into two categories: averaging 

methods which contain the random decision forest and boosting methods [50]. It can 

be assumed that each classifier in random forests is a decision tree classifier and the 

total number of the classifiers form a forest (Figure 7-6). Each decision tree is 

developed by using random selection of parameters at each node; as a consequence, the 

split is unique. Each tree depends on random values of attributes and with the same 

distribution for the whole tree [48]. The decision trees are highly dependent on the 

(7.6) 

(7.7) 

(7.8) 
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training data. As a result, small changes related to the input dataset can modify the tree 

structure. The returned tree is the most voted in our prediction. The basic idea behind 

random forest is the large number of relatively uncorrelated trees and this low 

correlation is the benefit of the model. The final predicted model is more accurate than 

the individual, since every tree protects the other from their errors. Some trees can make 

a wrong prediction, while others can make a correct. So, the trees, as a group, are able 

to follow a path for the correct direction [49]. A key concept to random decision forest 

is to generate strength individual classifiers with very correlation, since the accuracy of 

the RDF depends on the strength of each tree. 

 

FIGURE 7-6: DIFFERENCE BETWEEN A SINGLE DECISION TREE AND A RANDOM FOREST [51]. 

 Additionally, there is a modified random forest which uses random linear 

combinations of the training attributes. The difference between the other random 

forests, is the creation of new features, which occurs from the linear combination of the 

existing attributes, instead of selecting a random attribute at each node to create 

multiply trees. The generated attributes help the algorithm to split the data in a more 

appropriate way, increasing the accuracy of the final model. This form of random forest 

is suitable for training data with a few attributes and the creation of new features can 

maintain the correlation between individual trees in a low range.  
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Chapter 8 
 

Results 
 

8.1 General 

 This chapter presents and analyzes the results of our software implementation. 

First of all, the results of the data preparation stage are presented; the results of image 

processing and features extraction methods are presented and commented. In addition, 

the filters which are used for the image processing stage and their specific 

characteristics are described in detail and the results of the modeling stage are provided. 

The selection of each classifier and the effect of the different model parameters to the 

accuracy are described. Finally, a short discussion to explain the results is provided. 

 

8.2 Data Preparation Results 

 The first step is cropping the input images so as to reduce the noise that is 

displayed at the corners. After some experiments, it is concluded that the correct 

percentage of cropping is 8% for each dimension. To be more precise, 4% of the initial 

pixels are cropped of each side. After cropping the image, it is necessary to convert the 

RGB image to Grayscale image, Figure 8.1-B. For this conversion the equation (6.1), 

which is described in data preparation chapter, is used. To reduce the noise, the Median 

Filter with a 3x3 kernel size is selected. This selection is based on the ability of Median 

filter to prevent the edges. Observing the Figure 8.1-C, it is noticed that the hairs are 

reduced.  
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 The input image for the GLCM method is the results of the histogram 

equalization filter. The histogram equalization filter increases the adjustment of the 

image. The goal of this filter is to scale the pixels’ values in the range [0,255]. After 

this step the area of lesion is emphasized. The results image is the D image that is 

displayed in Figure 8.1. The next step is to segment the image, using thresholding 

techniques. The Otsu’s method is firstly selected, but after some experiments is 

concluded that, the global thresholding method achieves the same results, since the 

selection of thresholding value is an easy process, due to the fact that, the pixel values 

of the lesion are distinct from the background. To be more specific, the thresholding 

value is 100.  As a result, the ability of the Otsu’s method to find the propel thresholding 

value is unnecessary. The binary image is shown on the Figure 8.1-E. It can be seen 

that, the background is white and the lesion area is black. Some functions of the 

OpenCV, which are used to extract some features values, in order to work properly, 

require a black background and a white lesion area. One of the most important function 

is the cv2.findContours which is used to locate the lesion area. So, the inverted image 

is necessary for our implementation. The result image after this stage is represent at 

Figure 8.1-F. 

 From the inverted image, it is noticed that some noise is still existing, so a 

further image process is required. To improve the thresholding stage and reduce the 

existed noise, the open morphological filter is added to the process. The selected kernel 

size for open filter is 5x5. As already described in Chapter 6, the open filter uses an 

erode filter to reduce the size of the white objects included the lesion. To reconstruct 

the lesion to the initial size, the dilation filter is applied.  Figure 8.1-G depicts that the 

noise of the previous picture is almost removed. 

The ISIC_0000022 is the input image for the image preparation process. This 

image is the initial RGB image which is displayed in the Figure 8.1-A. This image is 

classified as malignant. 
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One of the most important steps in our project is the values of the extracted 

features. With this features the initial database of images is converted to the final tabular 

database, which is used to train the classifications models. The values of the extracted 

features of the two different images are represented below. One of these images is 

classified as a malignant, while the other image classified as benign. By using the 

ABCD rule and the GLCM method, six and four features are extracted correspondingly. 

To extract the ABCD rule, the OpenCV library is mainly used. The cv2.findcontours 

function returns the boundary of the lesion. Using this contour, we can calculate the 

centroids and the perimeter of the lesion. Also, with contours we can calculate the area 

of the lesion and the diameter. The border irregularity is calculated by using the 

perimeter and the area. To calculate the asymmetric, functions from the numpy library 

are used. Color variegation values are calculated by using the initial RGB image, 

instead of other extracted features that use either grayscale enhancement image or 

binary image. To extract the GLCM features we use the greycomatrix function which 

is provided by the skimage library. Furthermore, to extract each features from the result 

of the previous function we use the greycoprops which is also provided by the skimage 

library. 

A B C 

D E F 

G 

FIGURE 8-1: IMAGE PROCESS ISIC_0000022 [8]. 
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 The extracted features values for both ABCD rule and GLCM method are 

represented below. The extracted feature values for malignant lesion is extracted from 

the ISIC_0000013 and for the benign lesion using the ISIC_0000000 image. From the 

extracted features, it can be concluded that the malignant lesion diameter is significant 

higher than the benign lesion diameter. Also, the color variegations of the benign lesion 

have almost the same values, instead of the malignant color variegation. In addition, 

the border irregularity of the malignant lesion must be higher, since the borders are not 

clear. Furthermore, the malignant lesions are formed in anarchic way and the 

asymmetric feature take small values. From the extracted features of the GLCM 

method, the correlation, homogeneity, and energy values are greater for malignant than 

benign lesions. The contrast extracted value is significant small for the malignant 

lesions.  

The ABCD rule results: 

Malignant Lesion:     Benign Lesion: 

Asymmetric: 0.11     Asymmetric: 0.435 

Border Irregularity: 11.462    Border Irregularity: 4.88 

Color Variegation Red: 0.075    Color Variegation Red: 0.12 

Color Variegation Green: 0.158   Color Variegation Green: 0.135 

Color Variegation Blue: 0.23    Color Variegation Blue: 0.132 

Diameter mm: 568.13     Diameter mm: 149.68 

 

The GLCM Texture Method results: 

Malignant Lesion:     Benign Lesion: 

Correlation: 0.998     Correlation: 0.981 

Homogeneity: 0.961     Homogeneity: 0.824 

Energy: 0.233      Energy: 0.181 

Contrast: 0.078     Contrast: 0.783 

 

8.3 Modeling Results 

 In our project, six different Classification Models are built, to compare the 

accuracy of each model before selecting the model with the higher correctness. Before 
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starting improving the models, the selection the appropriate size of database is needed. 

From the images that are provided by the ISIC Archive, four different datasets 

consisting of different number of benign and malignant images are formed. The first 

database was developed with 200 images, more detailed this database contains 100 

benign images and 100 malignant images (Database A). In order to improve the 

accuracy of the models, the number of the database is increased to 800 images, 400 

benign images and 400 malignant images (Database B). Since the accuracy of the 

models, is maintained in low level, an unbalanced dataset, to notice the behavior of the 

models, is used. When training the models with an unbalanced dataset, it can be noticed 

that the accuracy of the most models is increased. These databases contain 500 images. 

In the first case, the database contains 100 malignant images and 400 benign images 

(Database C) and in the second case the dataset consists of 400 malignant images and 

100 benign images (Database D). In the following table the accuracy on each case is 

represented. From these table (Table 8-1, 8-2, 8-3), the most suitable input database is 

the last form which contains 400 malignant and 100 benign images. 

TABLE 8-1: ABCD THE ACCURACY OF EACH CLASSIFIER RELATED WITH THE FORMATION OF 

THE DATABASE. 

Training Model M:100/B:100 M:400/B:400 M:100/B:400 M:400/B:100 

Accuracy Accuracy Accuracy Accuracy 

Support Vector Machine  0.73 0.74 0.8 0.86 

Nu-SVM 0.65 0.7 0.72 0.81 

Linear SVM 0.51 0.52 0.8 0.74 

Multi-layer Perceptron Classifier 0.5 0.47 0.8 0.25 

Decision Tree Classifier 0.68 0.68 0.68 0.86 

Random Forest Classifier 0.73 0.74 0.78 0.87 

 

TABLE 8-2: GLCM THE ACCURACY OF EACH CLASSIFIER RELATED WITH THE FORMATION OF 

THE DATABASE. 

Training Model M:100/B:100 M:400/B:400 M:100/B:400 M:400/B:100 

Accuracy Accuracy Accuracy Accuracy 

Support Vector Machine  0.6 0.6 0.8 0.74 

Nu-SVM 0.56 0.44 0.58 0.22 

Linear SVM 0.61 0.57 0.8 0.73 

Multi-layer Perceptron Classifier 0.56 0.55 0.78 0.82 

Decision Tree Classifier 0.46 0.57 0.66 0.7 

Random Forest Classifier 0.6 0.59 0.77 0.8 
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TABLE 8-3: THE ACCURACY OF EACH CLASSIFIER USING ABCD AND GLCM METHOD 

RELATED WITH THE FORMATION OF THE DATABASE. 

Training Model M:100/B:100 M:400/B:400 M:100/B:400 M:400/B:100 

Accuracy Accuracy Accuracy Accuracy 

Support Vector Machine  0.79 0.77 0.81 0.86 

Nu-SVM 0.79 0.75 0.76 0.82 

Linear SVM 0.63 0.55 0.8 0.72 

Multi-layer Perceptron Classifier 0.54 0.4 0.78 0.75 

Decision Tree Classifier 0.69 0.7 0.71 0.82 

Random Forest Classifier 0.8 0.75 0.81 0.91 

  

The three previous tables display the result of the two different extracted 

methods and the combination of them. Observing Table 8-1 and Table 8-2, it can be 

noticed that, these training models achieve lower accuracy with symmetric dataset than 

asymmetric.  Using database D, which is the most suitable, it is obvious that the models 

can fit more appropriate in the training examples, leading to a more accurate classifier. 

When input database consists of the features that have been extracted from both 

methods, we can conclude that the accuracy is not be affected in great degree from the 

input dataset. However, the Database D can generate a more accurate model. In 

addition, the training examples of the Database C, are linear separated, since the linear 

SVM generates a classifier with higher accuracy.  

After the previous analysis, it is concluded that the combination of the ABCD 

rule and the GLCM method lead to a more accurate model. Also, it is easily understood 

that the most appropriate dataset for our project, is the database that contains 100 benign 

and 400 malignant images. All models are parameterized, as a consequence, to improve 

the accuracy, the parameters of the models are modified. From the previous discussion 

about the classification algorithms, it can be easily understood that there are different 

approaches that can be used to fit more appropriate each model to the training data. In 

order to describe the effect of these modifications to the parameter of each model, the 

last database is used, since the other databases have lower accuracy. 

First of all, the three types of the Support Vector Machine algorithms are being 

analyzed. The three parameters that can seriously affect the model are changed. The 

first parameter, is the kernel type that can be used in the method. Another important 
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parameter is called gamma, which affects the curve of the decision boundary, and the 

final parameter is the C regularization parameter.  

TABLE 8-4: THE ACCURACY OF SVM RELATED WITH THE MODEL PARAMETERS. 

SVM Parameters Accuracy 

Kernel type: RBF, C: 1, gamma: auto 0.81 

Kernel type: Sigmoid, C: 1, gamma: auto 0.75 

Kernel type: RBF, C: 1, gamma: scale 0.85 

Kernel type: RBF, C: 1000, gamma: auto 0.82 

Kernel type: RBF, C: 1000, gamma: scale 0.86 

 

 From the above Table 8-4, it can be observed that the most appropriate kernel 

for the SVM, is the RBF, instead of Sigmoid. When the parameter gamma takes the 

scale value (1/n_features*X.var()), it leads to a higher accuracy than auto, which is used 

the type: 1/n_features. Also, the increase of the C value leads to the decrease of 

tolerance of the errors. As a result, the accuracy of the mode increases. 

 In the other two types of SVM, only one parameter can be modified. In the Nu-

SVM, only the kernel type can be changed. The RBF kernel leads to a better model. On 

the other hand, in the Linear SVM, only the regularization parameter C, can be changed. 

Same as the SVM, the increase of the C parameter, generates a model with higher 

accuracy. The following table shows the accuracy of each model (Table 8-5): 

TABLE 8-5: THE ACCURACY OF NU-SVM AND LINEAR SVM RELATED WITH THE MODEL 

PARAMETERS. 

Nu-SVM Accuracy Linear SVM Accuracy 

Kernel type: Sigmoid 0.74 C: 1 0.66 

Kernel type: RBF 0.82 C: 1000 0.72 

 

From the results of the three previous models, it can be noticed that the most appropriate 

kernel type is RBF instead of sigmoid and linear type. The use of different kernel, 

provides different accuracy, since the selection of kernel plays a dominant role to the 

correctness of the model.  Also it is obvious that, large values of the C parameter, lead 

to more accurate models, since the models have less tolerance to the errors. From the 

results, it can be observed that, the higher accuracy that can bed achieve is 0.86. 
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Although it is a good accuracy, is not the appropriate for a medical application. The 

SVM is effective in cases where the features are more than training examples. In 

bibliography, the training examples are small and as a result SVM achieves higher 

accuracy. In our case, the dataset is quite large and as a result accuracy is smaller than 

this in bibliography. It is obvious that, we need to implement some other classification 

models to examine the appropriateness of these in our dataset. Another important 

information which can be extracted from this result is that, the linear model has the 

lowest accuracy. This can verify the fact that the linear models are rarely used in 

practice since linear SVM needs to have a well separated point to work efficiently. 

TABLE 8-6: THE ACCURACY OF MLPC RELATED WITH THE MODEL PARAMETERS. 

MLPC Parameters Accuracy 

Kernel type: ReLU, solver: lbfgs, hidden layer: 100 0,25 

Kernel type: tanh, solver: lbfgs, hidden layer: 100 0.76 

Kernel type: logistic, solver: lbfgs, hidden layer: 100 0.86 

Kernel type: logistic, solver: lbfgs, hidden layer: 200 0,82 

Kernel type: logistic, solver: adam, hidden layer: 100 0,75 

Kernel type: tanh, solver: adam, hidden layer: 100 0,753 

Kernel type: ReLU, solver: adam, hidden layer: 100 0,73 

 

 From the previous Table 8-6, we observe that the logistic kernel type is the most 

suitable from the training data. Also, using different number of layer in hidden layer, it 

is concluded that the most appropriate number of hidden layers is 100. The 0.86 

accuracy is good but not satisfactory so it is necessary to use another model to fit the 

training data. 

TABLE 8-7: THE ACCURACY OF DTC REGARDING THE DIFFERENT INFORMATION GAIN 

METHODS. 

DTC Parameters Accuracy 

Gini 0,82 

Entropy 0,92 

 

 According to the result of the classification methods, it can be concluded that 

one of the most appropriate model for our project is the decision tree classifier. We can 

see that changing the information gain method, from gini to entropy, generates a model 

that can classify our training example more accurate (Table 8-7). Our training examples 
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contain information related to 10 features; as a consequence, a decision tree can 

separate in a more appropriate way the training examples. Each node of the decision 

tree selects the most appropriate feature to split the data so as to generate the tree.  

TABLE 8-8 THE ACCURACY OF RFC REGARDING THE DIFFERENT INFORMATION GAIN 

METHODS. 

RFC Parameters Accuracy 

Gini 0,91 

Entropy 0,943 

 

 Comparing the accuracy of the decision tree classifier with the random forest 

classifier, can be noticed that the second model achieves higher accuracy (Table 8-8). 

The fact that the RFC method achieves higher accuracy than DTC, was expected, since 

random forest implements additional functions to generate the most appropriate tree. 

 Finally, from the whole previous analysis, it is concluded that the higher 

accuracy that can be achieved is 94.3%. It can be understood that, the input dataset 

plays a dominant factor for generating a model to fit with high accuracy. The selected 

database consists of the features values that are extracted from both methods. Also, the 

most appropriate dataset regarding the size is database D which contains 400 malignant 

and 100 benign images. The classification method that was used to achieve this 

accuracy, is the random forest classifier. To split the data at each node the classification 

uses the entropy method. Entropy is used at each node to calculate the information gain 

for each features. Using the entropy, the algorithm selects the most appropriate feature 

to split the data into subtrees.   
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Chapter 9 
 

Hardware Implementation 
 

9.1 General 

 The implementation of our project in hardware provide us the opportunity to 

accelerate some part, that contains intensive computations to reduce the execution time. 

To achieve this, FPGA board is used, in which some parts are executed directly to the 

hardware through the generated IPs and the other parts run at the ARM processor. By 

creating IPs, we can easily increase the hardware resources, that used in our project, so 

as to reduce the execution time. In addition, we can parallelize the calculation of the 

computations to decrease the execution time. In our project, the hardware resources are 

used to accelerate the image processing stage, which is a demanding task, due to many 

computations and a vast amount of time to be completed are required. Using hardware, 

the operations are usually computationally faster since logic block is used.  

 

9.2 FPGA 

 A field-programmable gate array (FPGA) (Figure 9-1), is an integrated circuit 

designed to be re-configurable by the consumer, after its manufacturing stage [53]. It’s 

ability of being reconfigurable, differs FPGA from the Application-Specific Integrated 

Circuit (ASIC) chips. The functionality of the ASIC chips is limited to specific 

applications, which is pre-defined by the manufacturer. This restriction, makes the 

FPGA to be widely used in research, related with many problems. The FPGA can be 
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reconfigured by using a hardware description language (HDL). It consists of an array 

of programmable logic blocks, and a hierarchy interconnects of blocks that can be wired 

together. Logic blocks can be reconfigured in order to execute complex combinational 

functions, or simple logic gates such as AND and XOR. In addition, logic blocks 

contain memory elements like Flip-Flop (FF) or more complex memory structures like 

BRAMs and ROMs. All the above, make FPGAs a suitable choice for many 

applications, especially those that are related with embedded systems, since software 

and hardware can be concurrently executed.   

 

FIGURE 9-1: ZEDBOARD [54]. 

 

9.2.1 Xilinx Zedboard Zynq-7000 

 Zedboard is a low-cost development board for the Xilinx Zynq-7000 SoC. The 

Zedboard [55] is an evaluation and development board, based on reconfigurable 
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devices. The Zynq device combines two parts, a Processing System (PS) and a 

Programmable Logic (PL). To be more precise, the chip contains a dual Corex-A9, a 

core processor and a Xilinx 7-series FPGA. The use of the Zynq-7000 provides 

developers the ability to calculate intensive computations on FPGA, and to control parts 

on the processor. The intercommunication between the PS and PL (Figure 9-2) is 

known as Programmable Logic [56]. The Processing System mainly consists of the 

ARM Cortex-A9, DDR3 controller for external memory, and UART for serial 

communication. On the other hand, the Programmable Logic is formed by standard 

FPGA structures, and AXI interface is used for connection between PS and PL. 

 

FIGURE 9-2: COMMUNICATION BETWEEN PS AND PL THROUGH AXI4-LITE INTERFACE [57]. 

 

9.3 Application Design Tools 

9.3.1 Vivado HLS 

 Vivado High-Level Synthesis (HLS) tool [58] is a successor to the Xilinx ISE 

Design Tool Suite. HLS tool is included in all Vivado HLx Editions and facilitates the 

process of IP creations. The HLS is used for the design and the execution of IPs by 

using C/C++/System C programming language, and provides tools that optimize the 

hardware, since the programming language is converted to RTL without the necessity 

of knowing or using Hardware Design Languages (HDL). To optimize the hardware 

for achieving the timing, area and hardware resources requirement, we can develop 

program or use directives. Also, HLS contains tools that are able to run Synthesis and 

Simulation so as to check the functionality of our IP (Figure 9-3).  Using the Synthesis 

and Simulation results, the programmer’s possible mistakes can be checked and the 

function of the program at each clock period can be observed by using the waveforms. 
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FIGURE 9-3: VIVADO HLS DESIGN FLOW [59]. 

 

9.3.2 Vivado Design Tool 

 The Vivado [60] [61] provides a powerful intuitive graphical user interface and 

place and route tools that accelerate the design implementation.  Vivado [56] allows us 

to develop very easy and quick base embedded processor systems and applications, 

since creating a design does not require HDL codes. Vivado provides a large library 

with standard IP blocks. Each IP block is a box with pins for inputs and outputs. It is a 

very useful tool, since the user can have an overview of the design and the pins are 

connected with buses instead of writing any code. Also, a double click in the IP block 

generates a GUI panel which is mandatory for the user to modify the functionality of 

the IP.  When the system is validating, we can generate the bitstream to export hardware 

for SDK which is executed from Vivado. Additionally, if parts of software codes are 

not included in the program, we can download the hardware directly to the board in 

order to verify the operation. On the other hand, the Software development take place 

in SDK. By using the SDK, the board and the processor can be programmed.    

 Since Vivado is used to create embedded applications, it requires many IPs that 

communicate with the Processing System Units. This communication is achieved 

through a bus interface, which is called AXI. AXI interface can be separated in three 

different types. The AXI4-Lite bus, which is used for writing and reading small data 
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such as status register. The AXI4 bus interface is used for sending and receiving large 

data, like images, so as to achieve better performance. The AXI4-Stream is the third 

and final interface, which is used for continuous data like the frame preprocessing of a 

video. To achieve the communication between the Processing System and 

Programmable Logic, the standard AXI4 bus is used. The memory address for each 

communication needs to specified. The address editor which is contained in Vivado, 

can automatically assign the memory address. 

 

9.4 Image Format 

 Before developing the code that have to be executed on ARM and the SDK, the 

format of the image has to be defined. As a consequence, the image format is important 

to correctly read and write the image. The selected image format is the BMP file [62]. 

The BMP file format is able to save two-dimensional digital images, either black and 

white or colored image, in various color depths. The BMP file format is formed with 

fixed-size and variable-size structures in a specified order. Many of these structures 

required in the file while others are optional. The need of these structures occur that the 

BMP file is typically a long size file.  The Bitmap File Header and the DIB header, 

which follow the Bitmap File Header, have fixed-sized and are not optional. The other 

required structure is the pixel array, which has fixed size depending on the size of the 

image. The BMP File Header stores general information so as to validate the 

correctness of the file. The size of this structure is only 14 bits and contains the size of 

the BMP File in bytes, the starting address of the pixel array and other information 

related with the creation way. The DIB header consists of information about the image 

and there are 7 different versions of this structure. To be more precise, the DIB header 

contains information about the size of this header, the width, the height, the resolution, 

and the number of bits per pixels. The fact that, the number of bits per pixel can be 

various, better performance by using the hardware can be achieved. The number of bits 

per pixel are typically 1, 4, 8, 16, 24, and 32.  



9 . 5  H a r d w a r e  O p t i m i z a t i o n  O v e r v i e w |  51 

 

 
 

 

FIGURE 9-4: MECHANISM FOR A 32-BIT PIXEL [62]. 

 Analyzing the above figure (Figure 9-4), it can be observed that the number of 

bits that represent the color are not fixed and can be modified by using the BITFIELDS 

mechanism. Using the color mask, someone can easily change the number of bits which 

represent each color. Also, the order of the color is specified by the BITFIELDS. The 

most common color order is Blue, Green, Red. 

 

9.5 Hardware Optimization Overview  

  Improving the performance of an application, is an easy process when the 

application is developed in hardware using Vivado. The ability of using the fully 

potentiality of the existing hardware resources can reduce the execution time. The 

Vivado HLS tool provides the user the ability to optimize its code by using some 

predetermined optimizations. These optimizations, called pragma, are inserted in the 

code and explicitly determine the way of Synthesis. Using these HLS Pragmas, user 

can improve the memory access, the way of data transfer, and the reduction of the 

execution time of a function or loop. 

 

9.5.1 HLS ARRAY PARTITION 

 Array partition [63] is a common technique for separating an array into smaller 

arrays or even into individual elements. This technique segments the memory. As a 

result, the number of available ports which are used to read and write the data to storage, 

is increasing. This means that, the program can read and write to memory multiple data 

at each clock period by using the available different ports. The array partition technique 

increases the number of memory instances and registers and enhance the throughput of 
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the design. The Vivado HLS tool provide the pragma array partition, which can be 

inserted to the source code in the function where the array is defined. 

 

The above definition contains the required arguments for the HLS partition. The first 

argument specifies the variable which is needed for partition. The argument type 

specifies the partition type which is one of the following: cyclic, block, and the default 

complete type. The complete partition type separates the original array variable into 

individual elements. The block partition type separates the initial array into smaller 

continuously block. The cyclic partition type separates cyclically the element of the 

original array into the smaller arrays. The cyclic and block type require the definition 

of the factor argument. The factor indicates the number of the smaller arrays. The last 

dimension argument specifies the dimension in which the partition takes place. The 

following example (Figure 9-5) displays an array of 9 elements and how the previous 

types affect the formation of the smaller arrays and the content. 

 

FIGURE 9-5: AN EXAMPLE OF ARRAY PARTITION TYPES. 

 

9.5.2 HLS Data Pack 

 Data pack pragma [63] is used to pack the data fields of a struct into a single 

scalar with more extensive word width. The use of this pragma permits reading and 

writing all the information of the struct at the memory, concurrently. Also, the packing 

of the struct into a single scalar reduces the size of the memory for the struct. One of 
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the most common implementation of this pragma is struct of pixels, which contains 

information for the values of the RGB colors. In addition, this pragma adjusts the 

member of the struct to 8-bit boundaries, although bit accurate data leads to smaller and 

faster operations. If the connection between the PS and PL is achieved by using an 

AXI4 interface, the protocol requires to align the data to 8-bit boundaries. It can be 

concluded that, this pragma improves the memory performance and as a result, reduces 

the number of cycles, required for transferring the data. 

 

9.5.3 HLS Loop Merge 

 Loop Merge pragma [63] is used for joining consecutive loops into a single 

loop. Merging the loops, a parallel execution is occurred, when it is feasible. The 

parallel execution of the loops decreases the number of clock cycles needed for the loop 

body. The pragma merges all the sub-loop into the loop that is defined.  There are some 

rules that need to be satisfied before using the loop_merge pragma. If the loop limits 

are variables, then the iterations must be the same. Otherwise, if the loop bounds are 

both variables and constants, the loop_merge pragma cannot be applied. Moreover, the 

code should compute the same output and not contain FIFO reads, since this pragma 

can spoil the order of the reads. 

 

9.5.4 HLS PIPELINE 

 The PIPELINE pragma [63] is based on the simultaneous execution of 

operations to decrease the initiation interval within the boundary of a function or a loop 

in which is placed. This pragma gives the ability on a function or a loop to execute new 

data every N clock period, where N is equal to the initiation interval (II). The best 

performance is achieved when the initiation interval is equal to 1. The default value of 

the initiation interval is 1, which means that the function or loop starts a new iteration 

every clock cycle. The following figure (Figure 9-6), shows the sequential execution of 

the loop and the affection that the pipeline pragma has, when the initiation interval 

equals to 1. The pipelined loop starts the following iteration on the next clock cycle.    
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FIGURE 9-6: LOOP PIPELINE [63]. 

 

9.5.5 HLS UNROLL 

 The Unroll pragma [63] generates multiple independent copies of the loop.  

These copies can be executed in parallel. We can discrete two different categories, the 

partial and the fully unrolled. The type of unroll is specified by the factor argument 

which is equal to number of iterations, by default. The unroll pragma generates a copy 

for each iteration by default, and as a result, the whole loop can be executed 

simultaneously. When defining a value N for the factor argument, the unroll pragma 

generates N copies in order to reduce the execution time and the number of the loop 

iterations.  

 

9.6 ARM Implementation 

 In order to execute our code in the ARM preprocessor of the Zedboard, the SDK 

tool, which is provided by the Vivado Design Suite, is used. Using the SDK, the code 

is written in C language in order to implement the filters from the image preprocessing 

stage. To implement the image processing, is necessary to write code for the filters: 

RGB to GRAYSCALE, Median Filter, Histogram Equalization, Thresholding, Invert 

Binary Image, and the Open Morphological Filter which consists of Erosion and 

Dilation Filters. To compute the value of each pixel, double nested for loops is needed, 

to access the whole image.  
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9.6.1 Code Analysis  

 In this part of our thesis, the code analysis of each filter is discussed. The 

functionality of each filter is being descried more analytical in Chapter 6. The 

development of these codes are based on this information. In the below section we 

describe the algorithm for each filter in detail. 
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 It can be noticed that the above algorithms have different boundaries, related to 

the filter that is implemented. The range of the loop is changed, in order to avoid 

multiply “if statement”, for the corner cases. By doing this, we can achieve better 

performance, since the evaluation of expressions in if statements require much more 

time. Since the lesion is located in the center of the image, the two-pixels border, which 

are not processing, cannot corrupt the final result. To achieve the desirable output, we 

need to initialize the two-pixels border with white pixels. After inverting the binary 

stage, these pixels are colored with black, which is the color of the background at the 

final image. The inversion image algorithm, edits the whole image, in order to convert 

the border, instead of the other filters. The other filters do not process the two-pixel 

border, since loop boundaries skip the two first and the two last pixels from both width 

and height. 

 

9.6.2 Experimental Results 

After the code analysis for the filters that used in our implementation, it is 

important to measure the execution time and to observe the performance. In the 

following chart (Figure 9-7), each filter’s run time is displayed for the initial and the 

optimization stage. 



9 . 6  A R M  I m p l e m e n t a t i o n |  58 

 

 
 

 

FIGURE 9-7: ARM EXECUTION TIME OF EACH FILTER.  

From the above chart, we conclude that when inverting the order of loops for 

each image filter, the execution time remains almost the same. Changing the order of 

loops, the result is computed row by row, instead of column by column. This way, better 

memory performance is achieved, since the values are saved and read in rows. Also, 

when we use the –O3 optimization, the execution time rapidly decreases. In addition, it 

can be noticed that, the most timing consuming filter, is the median filter. This is 

obvious, since the implementation of the median requires sorting the data in the kernel 

neighborhood, by using a sorting algorithm. The sorting algorithm requires time to 

execute due to complexity. The erosion and dilation filters, which consist the open 

filter, is the second more demanding process of our project. The implementation of 

these filters demand to compare the values of the neighborhood pixels in order to 

calculate the final value of the binary. The conversion of RGB image to Grayscale 

image has intensive computations and as a result, this process needs some time to 

calculate the final value.  
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FIGURE 9-8: INITIAL EXECUTION TIME (PERCENTAGE). 

To be more precise, from Figure 9-8, it can be noticed that, at the initial 

execution time the median filter has the 57,9% of the total execution time. The open 

morphological filter has the 26,6%, the color conversion process has the 7.2%, the 

histogram equalized filter has the 4,6%, and the thresholding and inverting of the binary 

image stages, which are the least demanding tasks, have the 3,7% of the total execution 

time. After the –O3 optimization we can extract the following percentage for each filter: 

The Median filter has 40,7%, the color conversion has 22,8%, the open morphological 

filter has 22,8%, the histogram equalized filter has 8,2%, and the other two filters have 

5,5% of the total execution time. We can observe that the percentage of the median 

filter execution time is reduced at the optimized stage. 

 

FIGURE 9-9: ARM TOTAL EXECUTION TIME. 
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 The execution time for the initial image processing is 5,44 seconds (Figure 9-

9). Inverting the computation from column-column to row-row the execution time 

decreases to 5,309 seconds. A minimal decrease in the run time is noticed, since the 

speedup of this optimization is equal to x1,02. The use of the –O3 optimization reduces 

the time to 0,614 seconds. We observe that this optimization leads to a significant 

speedup, which is equal to x8,86. 

 

9.7 Hardware Implementation 

The hardware implementation requires the generation of the HDL for the filters. 

The HLS tool facilitates this process, since the C/C++ code can easily be converted to 

HDL code. The HLS generates an IP block, which can be used from the Vivado and is 

executed in Hardware.  The histogram equalization filter processes the whole image in 

order to create the enhancement image. Also, the dilation filter follows the erosion 

filter, starts only if the erosion filter is completed. As a result, the implementation of 

the image preprocessing requires the development of four different kernels. Before 

starting analyzing the optimizations that are used to increase the performance of each 

kernel, it is needed to describe and understand the functions that are implemented in 

each kernel. 

 

FIGURE 9-10: KERNELS.  

 From the above diagram (Figure 9-10), we can easily understand that the image 

processing stage needs four kernels. To be more precise, the implementation of image 
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conversion from RGB to GRAYSCALE, the median filter, and the first part of the 

histogram equalization filter, which is the computation of image histogram, are 

included in Kernel A. The completion of Histogram Equalization filter, the update of 

pixel’s values with the new histogram equalization values, the stage of thresholding, 

which generates the binary image, and the process of inversion of binary image, which 

is necessary for the following stage, are included in Kernel B. The erode filter consists 

in Kernel C and the dilate filter is contained in Kernel D, which is the final Kernel. 

 

9.7.1 Kernels Input and Output 

Since each kernel implements a different functionality, the input and output size 

differs, based on the selected kernel size of each filter. The initial goal of each kernel 

is to compute one line of the image at each time. Kernel A contains the Median Filter, 

the implementation of which requires a 3x3 kernel. As a consequence, the kernel has 3 

rows as input, in order to calculate one row (Figure 9-11). The kernel B has one row as 

input and one row as output, since the calculation of each pixel is independent of the 

other. Kernel C and D require 5 rows as input to compute the required one row (Figure 

9-12).  

 

FIGURE 9-11: KERNEL A INPUT. 

 

FIGURE 9-12: KERNEL C AND KERNEL D INPUT. 
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9.7.2 Implementation of Kernel A 

One of the Kernel’s A filter is the median filter, which is the most time 

consuming process. This is validated by the metrics of the execution time in ARM 

processor. Also, the conversion of the RGB to grayscale image is implemented in 

Kernel A. It is not as demanding as the median and the two morphological filters, but 

the contribution to the total execution time cannot be omitted. In addition, Kernel A 

implements the histogram calculation, which is part of the histogram equalization filter. 

From the functions that are implemented by Kernel A, as shown in fig.9-10, is 

concluded that this kernel is the most time consuming. So, the implementation of Kernel 

A in hardware can increase the performance.  

Initial Stage – Interface: At the initial stage of the kernel development process, 

the interface that is used to communicate the accelerator with the processor unit is 

defined. The kernel’s interface is specified by the m_axi HLS pragma and the s_axilite 

HLS pragma. Applying these pragmas, the port uses the AXI4-Lite interface. This 

makes the commination easier, since the Zynq processor system uses the AXI4-Lite in 

order to control everything. 

Local Variable: The first optimization aims to reduce the access to the external 

memory. To achieve this, the grayscale pixels are not saved into the host DDR memory, 

but into local variable. The percentage of BRAM used memory resources, increases 

from 1% to 4%, since BRAM_18K memory is used to save the local variable (Table 9-

1). The grayscale pixels are used from the median filter, so transferred data from the 

external memory is avoided. The median filter uses each pixel nine times, since the 

kernel size is 3x3, as a result the number of multiply transfer from memory of the same 

data is reduced significantly. Doing this, the execution time of the kernel decreases 

from 11,4 secs to 8,54 secs, by accelerating the kernel x 1,33. 

 Unroll Sorting Algorithm: The next optimization is related with the sorting 

function, which is used from the median filter. The sorting algorithm is the bubble sort 

algorithm. Bubble sort is selected since the HLS restricts the use of recursive functions. 

The bubble sort is a demanding function since the average complexity is Ο(n2) and it is 

implemented with a double nested loop. To improve the performance of this part of 

code the Unroll HLS pragma, which is previously described, is used. The result is the 

concurrent execution of each iteration of loops for reducing the execution time. The 

speed up after this step is x 1,05 and the execution time is equal to 8,11 secs. 
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Pipeline: To increase the performance of kernel, the parallelism of the filters is 

necessary. The pipeline HLS pragma is used to achieve this goal. This pragma is used 

in the three loops that implement histogram, median filter and gray conversion. Since 

the gray conversion is implemented with a double nested for loop, iterating in the three 

input row pixel by pixel, the HLS pipeline pragma is defined in the inner loop. The 

initiation interval differs for each loop, for gray conversion II=3, for median filter II=5, 

and for histogram II=15. From the diagram (Figure9-13), this optimization leads to x 

7,11 speedup, which is the bigger value that can be observed. The execution time falls 

to 1,14 secs. 

Struct – Datapack: Since each pixel is represented by three values (Red, 

Green, Blue), packing these values into a struct type, which contains the value of each 

color, is dominant. More data are transferred at every clock cycle using struct, 

improving the use of axi bus. The ability to read simultaneously the values of the struct 

member and transfer the data more efficient, is provided by the Datapack Pragma. 

Changing the input and output data type, the initiation interval of the inner gray 

conversion loop decreases to II=1. The speed up of this step is x 1,52 and the run time 

is 0,75 secs. Also, the required BRAM memory is reduced after this optimization, using 

only the 2% of the BRAM_18, instead of the 5% in the previous stage. 

Combine Loops: The initiation interval of the median filter and histogram 

remain the same. In order to increase the performance, these loops are combined into 

one. The achieved initiation interval for the new loop is II=15. The speed up of this 

optimization is x 1,27 and the execution time is reduced to 0,59 secs. 

Local Variable: From the synthesis analysis is extracted that the transfer of the 

histogram vector from host DDR requires time, since the same positions of the vector 

are read and written multiply times. To reduce the amount of transferred data, the 

histogram vector is saved in a local variable. After this step, the pipeline initiation 

interval decreases to II=5 from II=15 and the execution time falls to 0,2 which means a 

x 2,95 speed up.  

Pipeline: To write the histogram vector back to external memory, a new for 

loop to send data to host DDR is required. To optimize this loop, we use pipeline 

pragma specified the initiation interval equal to 1. This optimization little improves the 

performance, since the run time decreases only 0,01 secs and is equal to 0,19 secs.  

Separate the Input: In order to have more reading ports, the initial input is 

separated to three inputs. Each input contains information for one row only. After this 
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step, the double nested for loop for grayscale conversion is replaced by a single for 

loop. This can be achieved since the three row input can be converted in parallel. The 

execution time after this optimization is 0,1. 

Fabric clock frequency: The final optimization is to increase the frequency. 

The goal is to increase the performance of the design. The clock period of the IP that is 

extracted from HLS is specified at 10ns. Increasing the frequency from 100MHz to 

175MHz in our design, the achieved speed up is 1,44 and the execution time is 0,069 

secs. The 175MHz is the largest value in which our design can work correctly. 

 

FIGURE 9-13: KERNEL A IMPLEMENTATION. 

0

2

4

6

8

10

12 11.4

8.54

8.11

1.14
0.75

0.…

0.2 0.… 0.1 0.069

EX
EC

U
TI

O
N

 T
IM

E 
IN

 S
EC

O
N

D
S 

(s
)

KERNEL A EXECUTION TIME

x 1,33 x 1,05 x 7,11 x 1,52 x 1,27 x 2,95 x 1,05 x 1,9 x 1,44

Overall Speed Up:  x 165



9 . 7  H a r d w a r e  I m p l e m e n t a t i o n |  65 

 

 
 

 

From the above diagram (Figure 9-13), it is noticed that the kernel initial time 

is 11,4 secs and after the applied optimizations is 0,069 secs. The overall speed up is 

equal to x 165. Additionally, the Table 9-1 describes the Utilization. From this table is 

concluded that the kernel’s final design requires 3% of the available BRAM_18K, 12% 

of the available flip-flops (FF), and the 42% of the available Look Up Table (LUT). 

Almost the half available LUT of the used board are used by the implementation of 

Kernel A.  

TABLE 9-1: ZEDBOARD KERNEL A – UTILIZATION AND LATENCY(CLOCK CYCLES). 

 

 

9.7.3 Implementation of Kernel B 

The filters with the least requirement regarding the execution time are 

implemented by Kernel B. From the previous analysis related with the kernels 

functionality, this kernel is used to calculate the cumulative distribution, assign the new 

gray level for each pixel that generated after the completion of the histogram 

equalization filter, thresholding and finally invert the binary image. The implemented 

optimizations are quite same with these from the previous kernel. The development of 

this kernel in hardware can reduce the execution time. 

Initial Stage – Interface: At this stage, the interface that used to communicate 

the PS and PL is defined. Similar to Kernel A, the interface is specified by the m_axi 

HLS pragma and the s_axilite HLS pragma, which facilitate the communication 

through the AXI4_Lite interface. 
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Pipeline: The first optimization that used to increase the performance is the 

pipeline HLS pragma. This pragma is defined in the three main for loops. To be more 

accurate, the loop that assign the new gray level, the thresholding loop, and the loop 

that inverts the binary image are pipelined. The synthesis report shows that the two first 

loops achieve initiation interval II=2, and the loop that inverts the binary image 

achieves initiation interval II=4. The speed up of the pipeline pragma is equal to x 3,83 

and the execution time falls from 1,15 to 0,3. 

Struct – Datapack: Converting the input data type to struct and using the 

Datapack HLS pragma, the necessary information that is needed in BMP file, are 

packed into a single scalar.  Each packed data can be read and written concurrently with 

this optimization. As a consequence, the initiation interval of the thresholding loop and 

loop that invert image decreases to 1. After this optimization, the run time is 0,064 secs 

which defines a 4,68 speed up.  

Local Struct: Since the new gray values are used from the thresholding 

function, saving these values to a local variable can improve the performance. The 

execution time fall from 0,064 to 0,053 due to the number of reading from memory are 

reduced.  

Pipeline: Since the new gray levels are calculated at each kernel the first 

thought is to be executed one time on ARM. Moving this computation to software the 

execution time increases. Since the calculation of the new gray levels is more efficient 

in hardware, applying the pipeline pragma can increase the performance. The speed up 

is x 1,76 and the execution time is equal to 0,03. 

Calculate 2 Rows: The new gray level is computed for every row. To reduce 

the number that this computation is performed, 2 rows are calculated at each kernel. As 

a consequence, the number of new gray level computation is reduced to half. The 

execution time decreases to 0,021 with a x 1,43 speed up. 

Fabric clock frequency: The final optimization is to increase the frequency. 

Increasing the frequency from 100MHz to 175MHz, the achieved speed up is x 2,1 and 

the optimized execution time is 0,01.    
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FIGURE 9-14: KERNEL B IMPLEMENTATION. 

 

From the above diagram (Figure 9-14), it is noticed that the kernel initial time 

is 1,15 secs and the final time is 0,01 secs and the overall speed up is equal to x 115. 

Moreover, the Table 9-2 describes the Utilization of the board. From the table is 

extracted that the kernel’s final design requires 6% of the available BRAM_18K, 3% 

of the available flip-flops (FF), and the 9% of the available Look Up Table (LUT). 
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TABLE 10: ZEDBOARD KERNEL B – UTILIZATION AND LATENCY( CLOCK CYCLES). 

 

 

9.7.4 Implementation of Kernel C and Kernel D 

The Kernel C implements the erosion filter and the Kernel D implements the 

dilation filter. These filters are also time consuming, as occurred from the software 

analysis. The implementation of these Kernels in hardware can increase the 

performance. The only difference between these filters is the condition in if statement, 

so the implementation is almost the same. Same optimizations are applied in these 

kernels. 

Initial Stage – Interface: At this stage, the definition of the interface, that used 

to communicate the PS and PL, is necessary.  Similar to Kernel A implementation, the 

interface is specified by using the m_axi HLS pragma and the s_axilite HLS pragma, 

which facilitates the communication through the AXI4_Lite interface. 

Memcpy: Since this kernel requires to use multiply times the value of each 

pixel, the memory requirements are quite high. To increase the performance, it is 

needed to save input data to local variables in the BRAMs. The Memcpy is used to store 

the data to local memory from the host DDR memory. From the kernel’s Utilization 

table, it is noticed that the BRAM_18K resources increase to 7%. Using the BRAMs 

instead of host DDR a x 3,52 speed up is occurred, reducing the execution time to 0,46 

secs. 

Pipeline: The previous step provides the opportunity to parallelize the kernel’s 

function to increase the performance. Using the pipeline pragma, the achieved initiation 

interval is II=4. Moreover, the number of clock cycles, related to the computation, is 

reduced, since a new iteration starts every 4 clock cycles. This optimization decreases 

the execution time from 0,46 secs to 0,28 secs, a x 1,64 speed up. 
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Calculate 2 Rows: Four additional rows are required to calculate the one output 

row since the kernel size is 5x5. It is clearly understood that, two sequential rows use 4 

same rows as shown in the figure below (Figure 9-15). This conclusion leads us to 

modify the kernel, in order to calculate 2 output rows every time. By doing this, the 

number of computation operation and the amount of transferred data for each row 

between PS and PL is reduced. To extract the final result for each row, the 4 

intermediate rows are compared with the upper input row to generate the first output 

row and with the last input row to generate the second output row. The execution time 

at this stage falls to 0,23 secs and the corresponding speed up is x 1,21. 

 

FIGURE 9-15: KERNEL NEIGHBORHOOD FOR THE EACH PIXEL.  

Merge Loop: The merge loop HLS pragma is used to reduce the number of 

clock cycles which is required to copy the data from the host DDR to the BRAM. Since 

the memcpy functions have the same size, this pragma can execute these function 

simultaneously. The input contains information for 6 rows, and the use of two different 

bundles (gmem0 and gmem1) leads to the reading of 2 rows simultaneously. Since in 

this stage only two different ports are used, the execution time is reduced slightly. The 

run time after this stage is 0,19 secs.  

Struct – Datapack: Converting the input data type to struct and using the 

Datapack HLS pragma, the 3 required values for each pixel are packed into a single 

scalar that can be read simultaneously. After this optimization, the run time is 0,083 

secs which defines a x 2,29 speed up. 

Unroll: The Unroll HLS pragma is used in kernel function to further improve 

the performance of the kernel. The unroll factor is equal to 10 and as a consequence the 

execution of N=10 iterations of loops concurrently reduces the execution time. The 

speed up after this optimization is x 1,31 and the execution time is equal to 0,063 secs. 
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Separate Input: In order to have more reading ports, the input data is divided 

to six inputs. Each input contains data for only one row. After the division of the input, 

the data can be saved in local variable simultaneously. To achieve this, HLS merge loop 

is used to execute the six memcpy in parallel. Also, the initiation interval of the kernel 

is II = 5. The execution time after this optimization is 0,047. 

Fabric clock frequency: The final optimization is to increase the frequency of 

the design using Vivado. Increasing the frequency from 100MHz to 175MHz, the 

achieved speed up is x 2,13 and the optimized execution time is 0,022. 

 

FIGURE 9-16: KERNEL C-D  IMPLEMENTATION. 

From the above diagram (Figure 9-16), it is observed that the kernel initial time 

is 1,62 secs and the final time is 0,022 secs. The overall speed up is equal to x 73,6. 

Additionally, the below Table 9-3 describes the Utilization of the board. The kernel’s 

final design requires 6% of the available BRAM_18K, 5% of the available flip-flops 

(FF), and the 14% of the available Look Up Table (LUT). 
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TABLE 11: ZEDBOARD KERNEL C-D – UTILIZATION AND LATENCY( CLOCK CYCLES). 

 

 

9.7.5 Final Design Overview 

 

FIGURE 9-17: INITIAL AND OPTIMIZED HARDWARE EXECUTION TIME. 
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(Figure 9-17). The execution time without any optimization is 15,79 seconds and the 

optimized execution time is equal to 0,123 seconds. The speed up that is achieved is 

equal to x 128. This speedup increases of the hardware resources to decrease the run 

time is significantly reduced due to the increment of hardware resources. 

 

 The Figure 9-18 displays the block design, which is implemented at Vivado in 

order to extract the hardware. This extracted hardware is used from SDK tool to develop 

and execute our project. The block design consists of the four IP that are generated by 

HLS and correspond to each kernel. The connection between the kernels ports and Zynq 

process are achieved by using axi interconnector. The connection of axi interface and 

Zynq processor are implemented through the axi high performance slave. Also, in the 

Figure 9-19 is displayed the resources of the board that are used. It is clearly understood 

that the design requires almost the whole resources of the board. Due to the lack of 

available resources, the design cannot be expanded using multiply IP of each kernel to 

segment the image and assign to them specific part of the image. 

FIGURE 9-18: SYSTEM BLOCK DESIGN 
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FIGURE 9-19: SYSTEM HARDWARE RESOURCES. 

 

9.7.6 Software vs Hardware Implementation 

 

FIGURE 9-20: SOFTWARE AND HARDWARE OPTIMIZED EXECUTION TIME. 
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9-20), the software and hardware run time after the implementation of the optimizations 

are displayed. The final software execution time is 0,614 seconds and the final hardware 

execution time is 0,123 seconds. The achieved speed up is equal to 5, which means that 

the hardware implementation is 5 times faster than the software.   

 

9.8 Second Hardware Implementation 

9.8.1 HLS OpenCV Library 

 The second hardware implementation is based on the pre-built OpenCV 

libraries that are supported by Vivado HLS on different boards. HLS Video Library 

[64] is a library which is developed in C/C++. It is used for computer vision and image 

processing problems, which are implemented with Vivado HLS and are accelerated on 

FPGA. To facilitate the process of creating a new application, based on the HLS Video 

Library, two header files are provided. The first one is hls_video.h, which is included 

in top design file and provides the necessary data structures and functions needed to 

build the application. Also, the content of this library is synthesizable. On the other 

hand, the hls_opencv.h is included in testbench file in order to use the pre-built OpenCV 

libraries in HLS and most of these functions cannot be synthesized.  

 Some basic data structures are provided by HLS Video library to represent 

images and pixels. These basic data structures types are Matrix, Scalar, Window, and 

LineBuffer. The most used type for images is the Matrix. In the FPGA, only the parts 

of the algorithms that need to be accelerated are implemented, since the other algorithm 

is executed on the processor. Also, the OpenCV interface ensures the transfer of data 

from the PS to PL and backwards. The communication between the processor and the 

hardware is achieved by using the AXI4 Steaming protocol. Furthermore, the Video 

Library contains functions which convert the AXI4-Stream data type to the basic data 

structures of HLS Video library.  

 The HLS Video Library contains many accelerated OpenCV functions. These 

functions are mainly used for video images. They can implement simple operations, 

such as the min and max functions, which calculate the minimum or the maximum of 

the two inputs images pixel by pixel. Also, by using these libraries, other more 

complicated filters such as Sobel, Gaussian Blur, and Harris Corner, can be 

implemented. 
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 To implement the image process stage, seven function are used. The first 

function is the CvtColor for converting the RGB image to grayscale. Since the Median 

Filter is not contained, the Gaussian Blur is used. The Gaussian Blur is also used in the 

bibliography, so the change is valid. The next filter is EqualizeHist to enhance the 

image before the Thresholding stage, in order to extract the binary image and invert it. 

The last filters are the Erode and Dilate which consists the open morphological filter. 

Before the first filter, it is needed to convert the stream data type to matrix since the 

filter requires matrix as input and output. After the image process is completed, the 

output matrix is converted to stream data so as to be sent back to the processor. 

9.8.2 Experimental Results. 

 To implement the whole image process, Vivado HLS tool is used. The initial 

specification is the board that is used and the target clock period. After experimentation, 

the target clock period is 14,5 ns and the estimated clock period is 14,028 ns. 

 One important parameter is the latency. From the synthesis report the latency is 

1708958 clock cycles (Figure 9-21). The most demanding filter is the Gaussian Blur 

with 1708943 clock cycles latency. The overall latency is almost the same, since the 

dataflow is used. When a pixel is completed, it is moved to the next filter without 

waiting the end of the process of the other pixels. 

 

FIGURE 9-21: LATENCY IN CLOCK CYCLES. 

 The extracted information for the Utilizations of the process is displayed in the 

Table 9.4. It is noticed that, the implementation has low percentage of hardware 

resources. From the BRAM_18K only the 4% is used. The used flip-flop is 4% and the 

used look up table is 19%. 
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TABLE 12: ZEDBOARD OPENCV – UTILIZATION. 

 
 It can be concluded that the first approach is better than the second which is just 

analyzed. It is an evidence that the implementation of the filters in first approach are 

adjusted in the project requirements. To be more precise, in the first approach the corner 

cases are not checked and as result, the use of if statements are significantly reduced, 

instead of the second approach. Also, the first implementation uses almost the whole 

hardware resource. The two previous factors make the first implementation the more 

suitable selection. 
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Chapter 10 

 

Conclusion 
 

The advent of technology can facilitate the developmental process of different 

applications, which can help to overcome many challenging problems related with 

different scopes of the human life. Our diploma thesis is based on this direction, since 

we try to tackle the problem of the skin cancer detection, which is a serious problem 

with high mortality rate. Our implementation focuses on creation of a useful tool, that 

can be used by everyone, so as to examine their lesions and to detect the existence of 

melanoma in early stage without visiting a dermatologist.  

Our implementation is based on image processing techniques, features 

extraction methods, and data mining techniques to classify the input lesion image. In 

our thesis, we try to tackle to different problems that are engaging in current research. 

The first is based on the existing gap in the research, related with the human color skin. 

To be more specific, most of the researches based on white color skin population, 

neglecting the other colored human population, due to the lack of database in these 

populations. However, the ISIC contains some classified lesion of colored human, that 

gives the ability to expand the utility of our project.  The second problem is based on 

the requirement to improve the performance of the existing methods. In our project, to 

accomplish this requirement, the image process stage is accelerated by implementing 

in hardware.  

 In the process that is implemented in bibliography, some additional features are 

used to improve the results of our implementation. Since the image process, which is 
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used in other implementations, does not remove the whole existing noise, we add the 

open morphological filter as last step of the process to clear the input image. 

Furthermore, the thought to combine the results of the ABCD rule and GLCM method 

generates a classifier with higher accuracy. Also, an additional classifier is used instead 

of the support vector machine and decision tree classifier, which are commonly used in 

research. This classifier is called random forest classifier, which is an improvement of 

DTC and achieves a 94.3% accuracy. The other classifiers have less accuracy as 

occurred from the analysis of the experimental results in Chapter 8. So, the final 

implementation uses the ABCD rule and GLCM method to extract the features values 

of the inputs image. These features generate a new tabular database which is used to 

train the random forest classifier. The random forest tree is selected since this classifier 

makes a more correctly prediction. The final implementation has a 5.7% error, due to 

the fact that the classify of the lesion is only based on ten features.  As a consequence, 

a small error to the value of one of these features can mislabel the input image. Finally, 

regarding the hardware implementation of the image preparation, it is observed that the 

performance of this stage is improved by a x 5 speedup. 

 

10.1 Future Work 

 Some ideas for further investigation are provided in this section. These ideas 

refer to both software and hardware. First of all, since the size of the database currently 

expands, the use of more complex structures to generate accurate classifiers may be 

required. The convolutional neural network (CNN) or recurrent neural network (RNN) 

may be a suitable solution.  

 Obviously, the implementation of the feature extraction and modeling stage in 

hardware may help to increase the performance, although these stages do not require 

heavily computations, as the image processing stage. Also, an approach based on 

internet of things may be useful, since the lesion can be transferred through the internet 

to classify the lesion.  

Since the first hardware implementation of the image preparation requires 

almost the whole resources of the Zedboard Board, the use of a larger board may give 

the opportunity to increase the parallelism and the performance. Boards, such as Zynq 

UltraScale, provide more hardware resources and may increase the performance by 
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using multiply IPs to process the image parallel, assign a segment of the input image to 

each IP. Also, the m-axi and s-axilite interfaces are used to transfer the data between 

PS and PL. The combination of the AXI-streaming protocol and AXI Direct Memory 

Access may increase the performance.   
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