
UNIVERSITY OF THESSALY

DIPLOMA THESIS

Intrusion Detection using Neural
Networks

Author:
Ioannis KOSTIKAS

Supervisors:
Christos D. ANTONOPOULOS

Spyros LALIS
Nikolaos BELLAS

A thesis submitted in fulfillment of the requirements
for the degree of Diploma

in the

Department of Electrical and Computer Engineering

https://www.uth.gr/en
https://www.e-ce.uth.gr/?lang=en

ii

Volos, 2020

i

UNIVERSITY OF THESSALY

Abstract
Department of Electrical and Computer Engineering

Diploma

Intrusion Detection using Neural Networks

by Ioannis KOSTIKAS

As the use of computer systems and smart devices continues to increase, so does
their appeal as attack targets, and in turn the importance of defending against such
attacks. Intrusion Detection Systems are an essential part of a good defensive strat-
egy and this Thesis explores the effectiveness of neural networks for that purpose,
with a focus on how “Long Short-Term Memory” (LSTM) Neural Networks perform
in this task compared against Feed-Forward Neural Networks.

We carefully prepared and processed three network intrusion detection datasets
based on the same packet captures, two of which we created for this Thesis. We used
them to train Feed-Forward and LSTM neural network binary and multi-class clas-
sifiers and autoencoders. We also trained additional classifiers on reduced versions
of the datasets which we produced using the autonencoders. In total, in this Thesis,
we describe fifteen models.

Ultimately, the LSTMs we trained on a sequence dataset we created for this
Thesis from packet headers, are shown to outperform Feed-Forward Neural Net-
works trained on flow-based datasets. Futhermore, binary classifiers perform better
than multi-class classifiers, while both outperform autoenoders. The best model, an
LSTM binary classifier, reaches an “Area Under the Curve” (AUC) of 99.9996%, an
F1 Score of 99.847% and a “False Positive Rate” (FPR) of 0.04%.

HTTPS://WWW.UTH.GR/EN
https://www.e-ce.uth.gr/?lang=en

ii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Περίληψη

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διπλωματική Εργασία

Ανίχνευση εισβολών με νευρωνικά δίκτυα

Ιωάννης Κωστίκας

΄Οσο η χρήση συστημάτων υπολογιστών και έξυπνων συσκευών συνεχίζει να αυξάνε-

ται, τόσο αυξάνεται η ελκυστικότητά τους σαν στόχων επίθεσης και σαν αποτέλεσμα η

σημασία άμυνας εναντίον τέτοιων επιθέσεων. Τα Συστήματα Ανίχνευσης Εισβολής α-

ποτελούν ένα σημαντικό μέρος μιας καλής αμυντικής στρατηγικής. Η παρούσα εργασία

ερευνά την αποτελεσματικότητά των νευρωνικών δικτύων για αυτό το σκοπό, με την

έμφαση να δίνεται στην επίδοση των “Long Short-Term Memory” (LSTM) δικτύων σε
σχέση με αυτή των Feed-Forward δικτύων.
Με μεγάλη προσοχή επεξεργαστήκαμε τρία dataset βασισμενα στα ίδια packet cap-

tures, δυο εκ των οποίων δημιουργήσαμε για αυτή την εργασία. Πάνω σε αυτά εκπαιδε-
ύσαμε “Feed-Forward” και “Long Short-Term Memory” (LSTM) δίκτυα για binary και
multi-class classification καθώς και autoencoders. Επιπλέον εκπαιδεύσαμε και μοντέλα
πάνω σε datasets που δημιουργήσαμε χρησιμοποιώντας τους autoencoders. Συνολικά
σε αυτή την εργασία περιγράφουμε 15 μοντέλα.

Τελικά τα LSTMs που εκπαιδεύσαμε σε features που δημιουργήσαμε για αυτή την
εργασία από headers πακέτων, αποδεικνύονται καλύτερα σε σχέση με Feed-Forward
δίκτυα που εκπαιδεύσαμε σε flow-based dataset. Επίσης, οι binary classifiers αποδει-
κνύονται καλύτεροι των multi-class, ενώ οι autoencoders έχουν χειρότερη απόδοση και
από τα δυο. Το καλύτερο μοντέλο λοιπόν είναι ένα LSTM binary classifier με “Area
Under the Curve” (AUC) 99.9996%, F1 Score 99.847% και “False Positive Rate” (FPR)
0.04%.

https://www.e-ce.uth.gr/
https://www.e-ce.uth.gr/

iii

Acknowledgements
First and foremost I wish to thank my supervisor, Prof. Christos D. Antonopoulos,
for his guidance and for giving me the opportunity to work on such an interesting
project.

I would also like to thank my family for their love and support.

iv

Contents

Abstract i

Περίληψη ii

Acknowledgements iii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contributions . 1
1.3 Software . 2
1.4 Thesis outline . 2

2 Background & Literature Review 4
2.1 Intrusion Detection Systems . 4
2.2 Machine Learning . 4

2.2.1 Machine Learning Dataset . 5
2.2.2 Types of Algorithms by learning method 5

Supervised Learning . 5
Unsupervised Learning . 6

2.2.3 Anomaly detection . 6
2.2.4 Training, Validation and Test set 6
2.2.5 Underfitting, Overfitting & Model capacity 7
2.2.6 Regularization . 7

Dropout . 8
Early stopping . 8

2.2.7 Optimization Algorithms . 8
Gradient Descent . 9

2.2.8 Loss/Cost Functions . 10
Mean Squared Error Loss . 10
Mean Absolute Error Loss . 10
Cross-Entropy Loss . 10
Focal Loss . 10

2.2.9 Evaluation Metrics . 11
ROC curve & AUC . 13

2.2.10 Generalizing Metrics to Multi-Class Classifiers 13
2.2.11 Pearson product-moment correlation coefficient (PPMCC) . . . 14

Correlation Matrix . 15
2.3 Deep Learning . 15

2.3.1 Fully Connected Neural Networks 15
2.3.2 Activation Functions . 17

Sigmoid . 17
Tanh . 18
ReLU . 18

v

2.3.3 Backpropagation . 19
2.3.4 Recurrent Neural Networks . 19
2.3.5 Long Short-Term Memory Networks 20
2.3.6 Autoencoders . 21

2.4 Networking Concepts . 22
2.4.1 Internet Protocol (IP) . 22

IPv4 Header . 22
2.4.2 Transmission Control Protocol (TCP) 24

TCP Header . 24
2.4.3 User Datagram Protocol (UDP) 26

UDP Header . 26
2.4.4 Port Number Ranges . 26

2.5 Literature Review . 27

3 Dataset Selection & Analysis 30
3.1 Selecting the right Dataset . 30

3.1.1 Network datasets . 30
3.1.2 KDD’99 Dataset . 31
3.1.3 CICIDS2017 Dataset . 31

Benign Traffic . 31
Attack Traffic . 31

3.2 CICIDS2017 Flow Dataset . 32
3.2.1 Data Cleaning . 34
3.2.2 Training/Test Split . 35
3.2.3 Correlation Matrix . 35

3.3 Creating a Sequence & Flow dataset . 37
3.3.1 Processing Raw Packet Capture Data 37
3.3.2 Sequence Dataset . 39

Training/Test Split . 39
Data Exploration . 39
Correlation Matrix . 41

3.3.3 Producing a new Flow dataset 41
Training/Test Split . 43
Correlation Matrix . 43

4 Experimental Neural Network Model Evaluation for Intrusion Detection 45
4.1 Data Preprocessing . 45
4.2 Prerocessing Steps . 47

4.2.1 Sequence Dataset Specific . 47
Feature Selection & Construction 47

4.2.2 Original Flow Dataset Specific 48
4.2.3 General Preprocessing Steps . 48

Transforming Port Features . 48
De-duplicating Instances . 49
Feature Scaling/Standardization 49
Further Scaling & Clipping . 49

4.3 Experiments: Typical Parameters . 49
4.4 Experiments: Classification . 50

4.4.1 Original Flow Dataset . 50
Binary Classification . 50
Multi-Class Classification . 51

vi

4.4.2 New Flow Dataset . 51
Binary Classification . 51
Multi-Class Classification . 51

4.4.3 Sequence Dataset . 52
Binary Classification . 53
Multi-Class Classification . 54

4.5 Experiments: Anomaly detection . 54
4.5.1 Original Flow Dataset . 54
4.5.2 New Flow Dataset . 55
4.5.3 Sequence Dataset . 56

4.6 Experiments: Training Classifiers on Autoencoder codes 56
4.6.1 Original Flow Dataset . 56

Binary Classification . 57
Multi-Class Classification . 58

4.6.2 New Flow Dataset . 58
Binary Classification . 58
Multi-Class Classification . 58

4.6.3 Sequence Dataset . 59
Binary Classification . 60
Multi-Class Classification . 60

4.7 Experiments: Comparisons . 60

5 Conclusions & Future Work 62
5.1 Conclusions . 62
5.2 Future Work . 62

Bibliography 63

vii

List of Figures

2.1 An illustration of splitting data into training, validation and test sets . 6
2.2 An example demonstrating the differences between underfitting, a

good fit and overfitting. 7
2.3 A simple neural network with and without dropout applied [26] 8
2.4 An example of early stopping. Training stops after p (patience) epochs

have passed since the dotted line which marks the lowest validation
loss. 9

2.5 An example of a ROC curve, including the AUC 13
2.6 Scatterplots of variables with different PCC values 14
2.7 A neural network neuron . 15
2.8 A Fully Connected Neural Network with 3 hidden layers 16
2.9 Sigmoid activation function . 17
2.10 Tanh activation function . 18
2.11 ReLU activation function . 18
2.12 An unrolled RNN . 19
2.13 Example of an undercomplete AE . 21
2.14 IPv4 Header [30] . 22
2.15 TCP header [34] . 24
2.16 UDP header [36] . 26

3.1 Heatmap of the correlation matrix for the Orginal Flow Dataset 36
3.2 Number of Flows vs. Percentage of Packets for the “BENIGN” class . . 39
3.3 Port number histograms for attack traffic, for attackers and victims . . 41
3.4 Heatmap of the correlation matrix for the Sequence Dataset 42
3.5 Heatmap of the correlation matrix for the New Flow Dataset 44

viii

List of Tables

2.1 Confusion Matrix . 11
2.2 A 3× 3 Confusion Matrix . 13

3.1 CICIDS2017 Flow Dataset Files . 33
3.2 Breakdown of Class distribution for Flow Dataset 33
3.3 CICIDS2017 raw PCAP data information 37
3.4 Fields extracted from TCP/UDP packets using tshark 38
3.6 Percentage of packets that had the corresponding TCP flag set by

Class and source (attacker, if “Attacker” column set to 1, victim oth-
erwise) . 40

4.2 For the “Original Flow Dataset”, the Recall (TPR) of the Binary Clas-
sifier for each Class, along with the Precision, Recall and F1 Score for
the Multi-Class Classifier for each class. 50

4.4 For the “New Flow Dataset”, the Recall (TPR) of the Binary Classifier
for each Class, along with the Precision, Recall and F1 Score for the
Multi-Class Classifier for each class. 52

4.6 For the “Sequence Dataset”, the Recall (TPR) of the Binary Classifier
for each Class, along with the Precision, Recall and F1 Score for the
Multi-Class Classifier for each class. 53

4.11 For the “Original Flow Dataset” and Classifiers trained on the AE
“codes”, the Recall (TPR) of the Binary Classifier for each Class, along
with the Precision, Recall and F1 Score for the Multi-Class Classifier
for each class. 57

4.13 For the “New Flow Dataset” and Classifiers trained on the AE “codes”,
the Recall (TPR) of the Binary Classifier for each Class, along with the
Precision, Recall and F1 Score for the Multi-Class Classifier for each
class. 58

4.15 For the “Sequence Dataset” and Classifiers trained on the AE “codes”,
the Recall (TPR) of the Binary Classifier for each Class, along with the
Precision, Recall and F1 Score for the Multi-Class Classifier for each
class. 59

4.17 Comparing Performance by neural network architecture1 60

ix

List of Abbreviations

AE Auto Encoder
AI Artificial Intelligence
AUC Area Under the ROC Curve
BCE Binary Cross Entropy
CE Cross Entropy
DDoS Distributed Denial Of Service
DL Deep Learning
DNS Domain Name System
DoS Denial of Service
FDR False Discovery Rate
FL Focal Loss
FN False Negative
FP False Positive
FPR False Positive Rate
IDS Intrusion Detection System(s)
IP Internet Protocol
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MSE Mean Squared Error
NN Neural Network
OSI Open Systems Interconnection
PCAP Packet Capture
PCC Pearson Correlation Coefficient
PPMCC Pearson Product-Moment Correlation Coefficient
PPV Positive Predictive Value
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
TCP Transmission Control Protocol
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
UDP User Datagram Protocol

1

Chapter 1

Introduction

1.1 Problem Statement

In the present day and age computer systems have become a permanent fixture as
they are indispensable in their use in business and everyday life. However, this
ubiquitousness makes them attractive targets for malicious actors.

Indeed, in the past couple of years there have been major security breaches, such
as:

• In 2016, DNS provider Dyn was subjected to a distributed denial of service
attack (DDoS) by a botnet, which impacted service of major websites [1].

• In 2017, credit reporting agency Equifax suffered a breach in which the data of
approximately 148 million Americans was stolen, costing them a reported 1.4
billion dollars [2, 3].

• Also in 2017, the WannaCry ransomware attack, using stolen exploits devel-
oped by the NSA, infected more than 200,000 computers in 150 countries with
costs estimated from hundreds of millions to billions of dollars [4].

• In 2018 popular online Q&A platform Quora was compromised by a mali-
cious third party getting access to the information of approximately 100 million
users [5].

• Over a period of 4 years, from 2014 to 2018, hackers accessed the information
of 327 million reservations of hotel megachain Marriott [6].

It should be clear that improving defenses to such attacks is more important than
ever, especially with the tendency for an increasing number of devices to be “smart”
and networked (Internet of Things), providing even more attack targets.

Intrusion Detection Systems (IDSs) are an essential part of a good defense strat-
egy against cyberattacks and an interesting area of research. They work by moni-
toring the network and hosts and use various methods, including signature-based
methods and stateful protocol analysis, to detect threats. Due to the major successes
of machine learning and neural networks in particular, in a variety of domains such
as image classification [7], text generation [8], machine translation and game play-
ing [9] to name a few, there has been interest in applying those techniques to improve
IDSs.

1.2 Contributions

This Thesis focuses on exploring how different neural network architectures perform
in the task of network intrusion detection, when applied to a modern dataset.

Chapter 1. Introduction 2

We select a flow-based network intrusion detection dataset, which is also accom-
panied by the packet captures it was created from. From those, we extract the packet
headers and use them to derive features for a sequence dataset avoiding the need to
inspect the potentially encrypted packet payloads. We also process those features
into another flow-based dataset for fairer comparisons.

Then, we train and evaluate feed-forward neural networks on the flow-based
datasets and LSTM neural networks on the sequence dataset and we experiment
with different configurations.

Finally, we compare the performance of the LSTM and feed-forward neural net-
works and find that LSTMs perform better and do so consistently across all tasks.

1.3 Software

We made use of many pieces open-source of software during the completion this
Thesis. For drawing neural networks we used “graph visualization software”
Graphviz [10] and the Python package Daft [11], which “uses matplotlib to render
probabilistic graphical models”. For the heatmaps of the correlation matrices we
used Seaborn [12], a “Python data visualization library”, also based on maplotlib,
and last but not least, we used Matplotlib [13] itself, which is “a comprehensive
library for creating static, animated, and interactive visualizations in Python”, for
everything else.

Pandas [14, 15], a Python “data analysis and manipulation tool” proved invalu-
able for data manipulation, exploration and (pre)processing, as did Numpy [16, 17],
“the fundamental package needed for scientific computing with Python”. We also
used scikit-learn [18], which is “a Python module for machine learning built on top
of SciPy”, for data preprocessing and calculating all the metrics for our results.

Finally, when it came to creating and training all the neural network models,
we used Keras [19], “a deep learning API written in Python, running on top of the
machine learning platform TensorFlow [20]” and TensorFlow itself, which is “an
end-to-end open source platform for machine learning”.

1.4 Thesis outline

The Thesis is structured as follows,

• Chapter 2, Background & Literature Review, is focused on providing necessary
background information for this Thesis, starting from an overview of IDS types,
continuing to describe relevant machine and deep learning concepts, as well as
networking concepts, with an emphasis on the protocols’ packet header struc-
tures. Finally, it finishes with a review of the relevant literature.

• Chapter 3, Dataset Selection & Analysis, first describes the process of selecting
a dataset, followed by an in-depth description of the one selected. Addition-
ally, the process of creating a sequence dataset and another flow-based one is
described. Finally, the sequence dataset is thoroughly explored, the original
flow-based one is cleaned, and the initial split to training and test sets of the
datasets is done.

• Chapter 4, Experimental Neural Network Model Evaluation for Intrusion Detection,
starts with an outline of data preprocessing and continues with how it was ap-
plied to the datasets used in this Thesis. Finally, it explores the best-performing

Chapter 1. Introduction 3

models that were trained for multi-class and binary classification and anomaly
detection and compares them.

• Chapter 5, Conclusions & Future Work, concludes the Thesis with a summary of
the findings and the process that was followed to discover them, and sugges-
tions for future work.

4

Chapter 2

Background & Literature Review

2.1 Intrusion Detection Systems

The purpose of Intrusion Detection Systems (IDSs) is to identify potential intrusions
or attacks, be they internal or external, against computer systems or networks. They
achieve that goal by monitoring said networks and/or systems and analyzing the
information they obtain for indicators of possible security incidents.

IDSs are broadly classified into two categories based on where they run,

• Host Intrusion Detection Systems (HIDS) that run on the hosts themselves
and monitor them and their behaviour (e.g. system logs, running daemons
and services, processes that are being executed, modified and created files etc.)

• Network Intrusion Detection Systems (NIDS) that are placed at strategic net-
work points, such as network boundaries [21], and monitor ingress and egress
network traffic or even traffic that doesn’t cross network boundaries.

They can additionally be classified as signature-/misuse- based or anomaly-based
by examining their analysis strategy.

• Signature-based or Misuse-based detection works by inspecting the informa-
tion available to the IDS for matches against known threat signatures stored in
a signature database. A signature in this context is an identifying pattern e.g.
strings known to be present in a malicious binary.

An issue inherent to this approach is that it lacks protection against new and
unknown threats, as no signatures exist for them yet, as well as requiring the
signature database be kept up-to-date.

• Anomaly-based detection assumes anomalous behaviour is likely malicious,
so available information is monitored for abnormalities. This requires profiles
of known good behaviour to be compared against, which are developed and
updated by monitoring behaviour during normal activity.

This strategy, contrary to signature based methods, is capable of detecting new
and unknown threats, but can also have a high false alarm rate (i.e. frequently
misidentify normal activity as malicious).

2.2 Machine Learning

Broadly, Machine Learning (ML) is a sub-branch of Artificial Intelligence (AI), that
focuses on computer algorithms that learn to perform tasks without the need to be
explicitly programmed; instead, they are trained on data from which they learn to

Chapter 2. Background & Literature Review 5

extrapolate. Furthermore, by being supplied with more data their performance usu-
ally improves.

For example, suppose one is trying to write an algorithm to identify pets from
pictures, one solution would be trying to develop rules and heuristics for that task
and write a program using them, however this, after taking into account all the
variables, such as different animals and breeds, various fur colours, obstructions
by other objects and different positions in the frame to name but a few, is a very
difficult problem.

Instead, a machine learning algorithm/model can be trained on a dataset con-
taining many pictures of pets, each labeled with the name of the animal present in
it, and automatically learn to identify them.

Following are some useful concepts related to machine learning.

2.2.1 Machine Learning Dataset

A dataset tends to be a collection of observations ~x ∈ <n, also known as samples,
examples or instances, with a number features xi, also sometimes called variables,
or attributes. Each observation is potentially associated with a label y.

For example, the well known “Iris Data Set” [22, 23] contains 150 observations
about three species of iris flowers, each with 4 features, Sepal Length in cm, Sepal Width
in cm, Petal Length in cm, Petal Width in cm, plus the class label y, which identifies the
species of plant described by each observation.

In other words, for this dataset, ~x ∈ <4, with x1 = “Sepal Length in cm”, x2 =
“Sepal Width in cm” etc. Every instance has values for each of the features e.g. for the
first instance, ~x1 = [5.1, 3.5, 1.4, 0.2], though some may be missing and marked as
such.

2.2.2 Types of Algorithms by learning method

Machine Learning algorithms learn from data and can be split into different cate-
gories based on how they learn, such as supervised, unsupervised and reinforce-
ment learning. This Thesis concerns itself with the former two which are described
below.

Supervised Learning

Supervised learning algorithms learn by training on labeled examples, that is to say,
a given dataset includes both features X i.e. the input data, and the labels Y i.e. the
desired outputs for said input data, and the algorithm, by training on input-output
pairs {(~x, y)|~x ∈ X, y ∈ Y} tries to infer a function f such that Y ≈ f (X), which can
then be used to make predictions about previously unseen data.

Based on whether the label takes discrete or continuous values, supervised learn-
ing problems can be further grouped into classification and regression problems re-
spectively. For example, the problem of identifying the kind of pet described in
Section 2.2 would be a multi-class classification problem, whereas trying to predict
the value of a car in euros given some characteristics would be a regression problem.
Finally, classification can be further divided into binary and multi-class classification
if the number of values the label may take is two or more respectively.

Chapter 2. Background & Literature Review 6

Unsupervised Learning

In contrast to supervised learning algorithms, unsupervised ones are trained on
datasests that are not labeled and usually try to uncover hidden patterns in the data.
Since labeling data is often time intensive and expensive, requiring human labour,
the ability to do without can be a big advantage. An example of unsupervised learn-
ing is clustering, where instances are grouped into clusters based on some measure
of similarity.

2.2.3 Anomaly detection

Anomaly detection is the identification of observations, commonly referred to as
anomalies, or outliers, that diverge from expected behaviour. Such anomalies may
require special attention as they could be indicative of problems, such as atypical
network traffic due to a security breach, or unusual transactions due to credit card
fraud. It usually differs from supervised learning, and is characterized by, having
a very small number of positive examples i.e. anomalies available to train on, e.g.
a corporate network may have never been breached before, legitimate transactions
are much more prevalent than fraudulent ones etc.

If the available data is labeled, anomaly detection can be treated as a binary clas-
sification problem with severe class imbalance. On the other hand, if it is unlabeled,
the algorithm is trained under the assumption that the majority of observations be-
long to the “normal” class, therefore, observations that are significantly different
from said majority are identified as anomalous, for example, using the distance of a
point (observation) from its kth nearest neighbor as its outlier score [24].

2.2.4 Training, Validation and Test set

0 20 40 60 80 100
Data %

Training Set
Validation

Set
Test
Set

FIGURE 2.1: An illustration of splitting data into training, validation
and test sets

The goal of training a machine learning algorithm is to use the trained model to
make predictions about previously unseen data, called generalization, i.e. the algo-
rithm should learn from the data it was presented with during the training phase and
be capable of generalizing to unseen data and making accurate predictions about it.

In order to be able to reason about a model’s performance, before training it on a
dataset, the dataset should be split into a training, a validation and a test set.

The training set, as the name suggests, is used to train the model and fit its pa-
rameters, e.g. the weights and biases of the neurons in a neural network, whereas

Chapter 2. Background & Literature Review 7

the validation set is used for model selection, i.e. it is used to select the optimal hy-
perparameters for the model, for example, the number of hidden layers and neurons
for a neural network, or the learning rate for gradient descent.

Finally, the test set is used as a proxy for new, unseen data i.e. data the model did
not see during training, to allow for an unbiased evaluation of the model’s perfor-
mance, and should only be used with the final model.

If, instead, the test set is used many times to select the “best” model, the test set
error of the chosen model will likely underestimate the true test error, sometimes
significantly [25].

2.2.5 Underfitting, Overfitting & Model capacity

Underfitting Good fit Overfitting

FIGURE 2.2: An example demonstrating the differences between un-
derfitting, a good fit and overfitting.

A model’s capacity is a way to think of how complicated a relationship a model
can learn, that is, a higher capacity model is able to fit more complex data compared
to a lower capacity one, for example, a model of the form y = αx + b, versus y = αx.

A model is said to be underfitting when the error on the training data, the train-
ing error, is too high, usually meaning the model is not powerful enough, in other
words does not have enough capacity, to fit the training data well. This can usually
be fixed by increasing the model’s capacity by, in the case of neural networks for
example, adding more layers, or increasing the number of neurons.

On the over hand, overfitting happens when a model performs so well on the
training data that it starts to fit the noise, or peculiarities, specific to the particular
training dataset to the detriment of its generalization performance. In other words,
it has so much capacity that it can start memorizing the training set, including fluc-
tuations present by chance; this can be seen clearly in Figure 2.2.

2.2.6 Regularization

Regularization is the general term used to describe a variety of techniques that help
prevent overfitting. They usually do that by reducing the model’s effective capacity
by, for example, adding a term to the loss function that penalizes large weights, this
keeps the model from being too flexible and can prevent it from fitting the noise.

Some popular methods used in this Thesis are described bellow.

Chapter 2. Background & Literature Review 8

Dropout

FIGURE 2.3: A simple neural network with and without dropout ap-
plied [26]

Dropout, proposed by Srivastava et al. [26] is a regularization technique for neu-
ral networks which works by randomly dropping some of the network’s units/neurons,
meaning their outputs are set to zero, with some probability p, usually p ∈ [0.2, 0.5],
during the training phase (see Figure 2.3). This forces neurons to learn more robust
features, since they cannot depend on specific other neurons always being present.

Another way to view dropout is that not one big network, but multiple smaller
networks that share weights, called “thin” networks in the paper, are trained at train-
ing time and at test time, when dropout is no longer applied, the output of the
network is an approximation of the average of the predictions of the many “thin”
networks (assuming neuron outputs are scaled appropriately).

Early stopping

A neural network with enough capacity will see its training error keep decreasing
as training continues. However, that does not necessarily translate to a decrease in
validation error, indeed, at the point where the model starts overfitting the valida-
tion error will stop improving and in fact will start increasing as the model overfits
more.

Early stopping is a technique that aims to stop that problem (Figure 2.4). It works
by monitoring the validation loss, logging the best value so far as it occurs and stop-
ping training once the validation loss has not shown improvement for some time
exceeding a “patience” parameter p. When the best value at the time is logged, so
are the parameters that produced it, so once training stops they can be used for the
final model.

2.2.7 Optimization Algorithms

Optimization algorithms are algorithms that can be used to minimize (or maximize)
functions. In the case of machine learning and neural networks they are usually
used to minimize the model’s cost function (see Section 2.2.8).

Chapter 2. Background & Literature Review 9

Epochs

E
rr

or
Validation Error

Training Error

Early Stopping

FIGURE 2.4: An example of early stopping. Training stops after p
(patience) epochs have passed since the dotted line which marks the

lowest validation loss.

Gradient Descent

Gradient Descent is an iterative optimization algorithm that can be used to minimize
(i.e. find local minima of) differentiable functions. Intuitively, it works by taking
small steps towards the direction of steepest descent, which can be shown to be that
of the negative of the gradient, until it reaches a minimum.

In other words, given a diffirentiable function f (x) parameterized by θ i.e. f (x; θ)
and a learning rate λ, using gradient descent the next update for θ is given by

θn+1 = θn − λ∇θ f

The algorithm converges once the gradient is zero, or, in practice, when its value
is sufficiently small.

The learning rate λ is a hyperparameter which controls how big the step taken
is. If it is too big the algorithm may overshoot the minimum and possibly keep
overshooting it and not converge, or the gradient’s value may explode and overflow.
On the other hand, if λ is too small, the algoritm will be taking very small steps,
meaning it will take a very long time to converge, or get stuck in a suboptimal local
minimum.

In practice, when training neural networks, mini-batch gradient descent, or one
of its variants (e.g. Adam), is used, which calculates the parameter update on a small
batch of the dataset at a time, or “mini-batch”, instead of using the whole dataset at
once.

Chapter 2. Background & Literature Review 10

2.2.8 Loss/Cost Functions

A loss function assigns values or “costs” to the predictions a model makes, with
wrong ones being assigned high costs and correct ones low. When training a model
it is this loss function that is attempted to be minimized, which consequently means
the model is making fewer and/or smaller mistakes. Depending on the type of prob-
lem e.g. regression or classification, there exist numerous loss functions, of which the
ones used in this Thesis are described bellow, where yi is the true label for the ith ob-
servation, ŷi is the model’s prediction for that observation and n is the total number
of observations.

Mean Squared Error Loss

The Mean Squared Error (MSE) loss is the average of the squared errors, defined as,

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

and is often the loss function of choice for regression problems. Since the dif-
ference of the real and predicted labels is squared, larger errors are penalized more
heavily.

Mean Absolute Error Loss

The Mean Absolute Error (MAE) loss is the average of the absolute errors, defined
as,

MAE =
1
n

n

∑
i=1
|yi − ŷi|

Cross-Entropy Loss

The Cross-Entropy (CE) loss, averaged over all examples n, is defined as,

CE = − 1
n

n

∑
i=1

∑
c∈C

I{yi = c} log ŷi,c

where

I{P} =
{

1, if P is true
0, otherwise

is the indicator function, C are the class labels, and ŷi,c ∈ [0, 1] is the probability the
model assigns to observation i belonging to class c. It is often the loss function of
choice for classification problems, be they binary or multi-class.

Specifically for the binary case, assuming yi ∈ {0, 1}, the binary CE loss, aver-
aged over all examples n, can be defined as,

BCE = − 1
n

n

∑
i=1

(yi log ŷi + (1− yi) log (1− ŷi))

Focal Loss

The Focal Loss (FL) which was introduced by Lin et al. [27] aims at improving the
performance of classifiers in the presence of extreme class imbalance by adjusting

Chapter 2. Background & Literature Review 11

the CE loss (see Section 2.2.8 above) so that the cost incurred by easy to classify
examples is reduced. For binary classification and a single instance it is defined as,

FL(pt) = −αt(1− pt)
γ log(pt)

where γ ≥ 0 is the “focusing parameter”,

pt =

{
p, if y = 1
1− p, otherwise

and αt is a balancing parameter defined similarly to pt. The more confident the
model is for an example, the more the term (1− pt)γ downweights that example’s
contribution to the total loss.

2.2.9 Evaluation Metrics

True Class
Positive Negative

Positive
True Positive False Positive

Predicted TP FP
Class

Negative
False Negative True Negative

FN TN

TABLE 2.1: Confusion Matrix

In this section the definitions of some well-known evaluation metrics are given,
which can be used to measure a classifier’s performance.

An easy way to summarize the performance of a binary classifier which makes
predictions between two classes, for example, without loss of generality, “positive”
and “negative”, is through the use of a confusion matrix.

A confusion matrix is shown in Table 2.1, where a “True Positive” (TP) is a pos-
itive observation correctly identified as positive and similarly for “True Negative”
(TN), whereas a “False Positive” (FP) is a negative observation misclassified as pos-
itive, and vice versa for “False Negative” (FN). Finally, P, N are the total number of
positive and negative samples respectively.

The following metrics are defined with respect to those concepts:

• Accuracy is defined as the fraction of the number of correctly classified ob-
servations over the total number of observations i.e. what percentage of the
model’s predictions were correct,

Accuracy =
TP + TN

TP + FP + TN + FN

and is perhaps the most well-known and easy to understand evaluation met-
ric. However, it is not well-suited for use in the case of imbalanced datasets
as it may misrepresent a classifier’s performance, e.g. given a dataset with 10
positive and 990 negative samples, a classifier that always predicts the nega-
tive class would have an accuracy of 99% which seems very good, despite the
classifier completely failing at correctly predicting the positive class.

Chapter 2. Background & Literature Review 12

• Recall, or Sensitivity, or True Positive Rate (TPR) is the ratio of correct pos-
itive predictions to total positive samples, or more simply, the percentage of
positive samples correctly identified, and is defined as,

Recall =
TP
P

=
TP

TP + FN

• Specificity, or True Negative Rate (TNR) is defined analogously to Recall, but
for negative samples, as,

Specificity =
TN
N

=
TN

TN + FP

• Precision or Positive Predictive Value (PPV) is the ratio of the number of ob-
servations correctly predicted positive, over the total number of positive pre-
dictions,

Precision =
TP

TP + FP

• F1score is the harmonic mean of recall and precision, given by,

F1 = 2
Recall · Precision

Recall + Precision

and is a special case of the Fβ score where precision and recall are assumed to
be of equal importance.

• Balanced Accuracy is obtained by calculating the recall for each class and tak-
ing the average e.g. in the case of binary classification, the average of the TPR
and TNR, i.e.

Balanced Accuracy =
TPR + TNR

2
Balanced Accuracy is much more appropriate to use for imbalanced datasets
than accuracy when the minority class is of interest, for instance, using the
same numbers as in the example for accuracy above, BA = 1/2 · (0/10 + 990/990)
= 0.5 better reflecting the classifier’s inability to correctly predict positive ex-
amples.

• False Discovery Rate (FDR) is the ratio of samples incorrectly identified as
positive to all samples predicted positive, given by

FDR =
FP

TP + FP
= 1− PPV

and is of particular interest to the problem of intrusion detection, as a high FDR
could mean disgruntled users start paying less attention to the IDS’ alarms
since a large proportion of them would be false positives.

• False Positive Rate (FPR) is the ratio of samples incorrectly identified as posi-
tive to those that are negative, given by

FPR =
FP
N

=
FP

TN + FP
= 1− TNR

It is also important for IDS for similar reasons to the FDR.

Chapter 2. Background & Literature Review 13

ROC curve & AUC

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

s R
at

e

Optimal (AUC=1.00)
AUC=0.76
Random Chance (AUC=0.5)

FIGURE 2.5: An example of a ROC curve, including the AUC

The ROC (Receiver Operating Characteristic) curve (depicted in Figure 2.5), which
is a plot of the TPR versus the FPR, shows the performance of a binary classifier for
all thresholds.

A threshold in this context is the value which separates which of the two classes
the classifier predicts i.e. given a threshold τ, classifier output ρ and classes A, B, if
ρ ≤ τ the classifier is said to predict class A, otherwise it predicts class B, usually
A = Negative, B = Positive.

The best thresholds are those which maximize the TPR and minimize the FPR i.e.
those in the upper left corner of the plot.

The AUC (Area Under the ROC Curve) is a value which summarizes the ROC
curve i.e. a classifiers performance for all thresholds, with higher value AUCs being
generally better. The AUC is exactly what its name says it is, the area under the ROC
curve.

2.2.10 Generalizing Metrics to Multi-Class Classifiers

True Class
A B C

Predicted A True A False A False A
Class B False B True B False B

C False C False C True C

TABLE 2.2: A 3× 3 Confusion Matrix

The metrics defined above can be generalized to the multi-class classification
case, where for a problem with n classes the confusion matrix becomes n × n, for
example, for a problem with 3 classes, the confusion matrix becomes a 3× 3 matrix
shown in Table 2.2. They can further be summarized by taking the micro- or macro-
average.

Chapter 2. Background & Literature Review 14

X

Y
Correlation

1.00
0.70

X

Correlation
-1.00
-0.66

X

Correlation
0.00

FIGURE 2.6: Scatterplots of variables with different PCC values

To calculate the micro-average means considering the TPs, FPs and FNs for all
classes together, i.e. TP is the sum of the diagonal elements in the n × n confusion
matrix, whereas the FP and FN are both equal to the sum of the off-diagonal elements
and therefore to each other. As a result, in the micro-average case, the Precision,
Recall, F1 score and Accuracy are all equal.

Whereas, to calculate the macro-average means simply calculating the metric for
each class and taking the arithmetic mean. For example, the Recall for class A in
Table 2.2 above, is

RecallA =
TP

TP + FN
=

True A
True A + (False B + False C)

where False B, False C are those in the first column i.e. the ones where the true class
is A but the classifier incorrectly predicts classes B and C respectively. RecallB and
RecallC can be calculated in the same manner, and finally,

Macro-Average Recall =
1
3
(RecallA + RecallB + RecallC)

2.2.11 Pearson product-moment correlation coefficient (PPMCC)

The PPMCC or PCC (Pearson correlation coefficient) for short, measures the strength
of the linear relationship between two variables X and Y and is defined for a sample,
as,

rxy =

n
∑

i=1
(xi − x)(yi − y)

√
n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

where n is the sample size, xi, yi, i = 1, . . . , n are sample points and x, y are the
sample means.

Its value is in the range [−1, 1] where a value of 1 indicates the data are per-
fectly described by a line where as X increases so does Y and conversely, a value of
−1 indicates the same, only as one variable increases the other decreases. A value
of 0, on the other hand, implies the variables have no linear relationship, though
this does not preclude a non-linear relationship. Finally, the PCC is symmetric i.e.

Chapter 2. Background & Literature Review 15

corr(X, Y) = corr(Y, X), which in turn means the correlation matrix is also symmet-
ric.

It should also be noted that two variables being correlated, even highly, does not
necessarily mean a causal relationship exists.

Correlation Matrix

The correlation matrix of m variables is a symmetric m×m matrix whose element at
position (i, j) is equal to the correlation between the ith and jth variables.

2.3 Deep Learning

Deep Learning (DL) is a subset of machine learning that encompasses a class of
models inspired by how the brain works, called (artificial) neural networks (NNs).
The “Deep” part of the name refers to the use multiple layers of neurons by those
the networks.

2.3.1 Fully Connected Neural Networks

w1

w2

wn−1

wn

w0 = b

y = f(o)

x1

x2

xn−1

xn

x0 = 1

o =
∑n
i=0 wi · xi

y

FIGURE 2.7: A neural network neuron

Much like the neuron is the basic unit of biological neural networks, the artificial
neuron is the basic unit of artificial neural networks, although it is far simpler in
comparison. An artificial neuron (Figure 2.7), or neuron, with input x = {x1, x2, . . . ,
xn−1, xn}, weight w = {w1, w2, . . . , wn−1, wn}, activation function, or non-linearity
f , and output y, is defined as follows,

y = f

(
n

∑
i=1

wi · xi + b

)
= f (wᵀx)

Chapter 2. Background & Literature Review 16

where b is the bias vector, which can be folded into the inner product wᵀx by adding
an element w0 = b to the weight vector and x0 = 1 to the input vector.

Input

Hidden

Output
x1

x2

x3

x4

FIGURE 2.8: A Fully Connected Neural Network with 3 hidden layers

Neurons are further organized into layers where, in the fully connected case, the
neurons of each layer i are connected to every neuron in the previous i− 1 and next
i + 1 layers, hence the name.

Assuming all k j neurons of a layer j share the same activation function f , which
is not strictly necessary, and the input to the network has batch size batch, then the
output of the jth layer aj ∈ <k j×batch is given by

aj = f
(

Wjaj−1

)

where aj−1 ∈ <k j−1×batch is the input to jth layer/output of the (j − 1)th layer and
Wj ∈ <k j×k j−1 is a matrix containing the jth’s layers weights, i.e.

Wj =
[
wj

1, wj
2, . . . , wj

kj−1, wj
kj

]ᵀ

where wj
n ∈ <k j−1 is the vector containing the weights for the jth layer’s nth neuron.

The first layer, also called the input layer, takes the inputs, i.e. the feature values
for an observation or for batches of observations, transforms them and then “sends”

Chapter 2. Background & Literature Review 17

them as input to the next layer, where once again, the inputs are transformed and
forwarded to the next layer and so on and so forth until the last layer.

The last layer i.e. the one that produces the final output(s) of the model is called
the output layer and the layers in-between the first and last layers are known as
hidden layers.

2.3.2 Activation Functions

The activation function is a non-linear function that determines the output of a neu-
ron and can be thought of as deciding whether a neuron should “fire”. A multi-layer
neural network without activation functions, or with linear activations would be as
if the input x was simply multiplied by a single matrix W = WnWn−1 . . . W2W1,
where Wi is the weight matrix for the ith layer, and the neural network would be
much less powerful, essentially equivalent to a simple linear model.

Some of the most popular activation functions are presented bellow.

Sigmoid

−10 −5 0 5 10
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
σ (x) = (1 + e−x)−1

−10 −5 0 5 10
−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
σ′(x) = σ (x)(1− σ (x))

FIGURE 2.9: Sigmoid activation function

The sigmoid function takes a real valued input and maps it to the range [0, 1].
There has been a decline in its use as it suffers from a couple of problems, namely
a) the vanishing gradient problem whereupon for more extreme inputs its gradient
tends to become zero, thus making it difficult for backpropagation to update the
network’s weights, b) its output is not centered and c) it is expensive to calculate.

It is defined as
σ(x) =

1
e−x + 1

and its derivative is
σ′(x) = σ(x)(1− σ(x))

Chapter 2. Background & Literature Review 18

−10 −5 0 5 10
−2

−1

0

1

2
tanh(x) = 2σ(2x)− 1

−10 −5 0 5 10
−0.5

0.0

0.5

1.0

1.5

2.0
tanh′(x) = 1− tanh2(x)

FIGURE 2.10: Tanh activation function

Tanh

The hyperbolic tangent function is essentially a scaled sigmoid with a range in [−1, 1]
and has the same issues it does, except it is 0 centered. It is defined as

tanh(x) = 2σ(2x)− 1

and its derivative is
tanh′(x) = 1− tanh2(x)

ReLU

−10 −5 0 5 10

0

2

4

6

8

10
f (x) = max(0, x)

−10 −5 0 5 10
−0.5

0.0

0.5

1.0

1.5

2.0

f ′(x) =

{
1, if x > 0

0, otherwise

FIGURE 2.11: ReLU activation function

Chapter 2. Background & Literature Review 19

The rectified linear unit function is equal to the identity function for positive
inputs and maps all other inputs to 0. Compared to the sigmoid and hyperbolic tan-
gent it is less expensive to calculate and does not suffer from the vanishing gradient
problem, however it can cause neurons to “die” meaning they stop activating.. It is
given by,

f (x) = max(x, 0)

While its derivative is not actually defined at 0, by convention it is set to 0, and so it
is

f ′(x) =

{
1, if x > 0
0, otherwise

2.3.3 Backpropagation

Backpropagation is an algorithm for efficiently calculating the gradient of the loss
function with respect to the weights (and biases) of a neural network. It is named
so because the gradients “flow” backwards, starting from the output layer and fin-
ishing at the input layer as opposed to the normal flow of information from input
layer to ouput layer. Its efficiency stems from the fact that it re-uses previously done
computation, instead of naively calculating each layer’s gradient individually.

It is used in conjunction with optimization algorithms (Section 2.2.7), such as
mini-batch gradient descent or Adam which use the information it provides to up-
date the network’s weights.

2.3.4 Recurrent Neural Networks

W ho W ho W ho

W hh W hh W hh

W xh W xh W xh

ht−1

ot−1

ht

ot

ht+1

ot+1

· · ·

xt−1 xt xt+1

FIGURE 2.12: An unrolled RNN

Chapter 2. Background & Literature Review 20

A Recurrent Neural Network (RNN) is a neural network which tackles the prob-
lem of learning from sequences, as instead of treating each observation indepen-
dently as is the case with feed-forward neural networks, it can be thought to contain
a kind of “memory” (hidden state) which stores information about previous obser-
vations seen in a sequence. As a result, an RNN when making a prediction, considers
not only the current input xt, but important information about all previous inputs
x1, x2, . . . , xt−2, xt−1 so far.

Given an input xt ∈ <d of sequence x1, x2, . . . , xn−1, xn and the previous hidden
state ht−1 ∈ <h, the next hidden state ht is given by the following recurrence relation:

ht = f (Whxxt + Whhht−1 + b)

where f is an activation function, Whx ∈ <h×d, Whh ∈ <h×h are the weights and
b ∈ <h is the bias. The initial hidden state h0 is usually set to the zero vector. The
output

ot = f
(

Whoht

)

depends on the task e.g. f is the identity function for regression, or the softmax for
multi-class classification.

Unfortunately, RNNs suffer from the exploding and vanishing gradient prob-
lems, and they struggle when it comes to learning long-term dependencies.

2.3.5 Long Short-Term Memory Networks

LSTMs, first introduced by Hochreiter and Schmidhuber [28] in 1997, seek to over-
come the problem of RNNs with learning long-term dependencies. They introduce
the concept of “gates” which control what information is stored in the memory, or
cell state.

Each gate involves a point-wise multiplication between the output of a sigmoid,
which is between 0 and 1 and the cell state, thus controlling how much of a compo-
nent to let through [29].

An LSTM has 3 kinds of gates, the input gate i, the forget gate f and the output
gate o which control what information is added to and removed from the memory,
and the output from the LSTM cell respectively.

Given input xt ∈ <d, hidden state ht ∈ <h and cell state ct ∈ <h, an LSTM’s
operation is described by the following equations:

ft = σ(W f xt + U f ht−1 + b f) (2.1)

it = σ(Wixt + Uiht−1 + bi) (2.2)

ot = σ(Woxt + Uoht−1 + bo) (2.3)

gt = tanh(Wgxt + Ught−1 + bg) (2.4)

ct = ft � ct−1 + it � gt (2.5)

ht = ot � tanh(ct) (2.6)

where � is element-wise multiplication (Hadamard product), ft, it, ot ∈ <h are
the outputs of the forget, input and output gates respectively, gt ∈ <h is the cell
input activation and W∗ ∈ <h×d, U∗ ∈ <h×h are the weights and b∗ ∈ <h are the
biases.

Or, to put it into words, each of the 3 gates (eqs. 2.1 to 2.3) involve the input at
timestep t, xt, and the hidden state of the previous step ht−1 being multiplied by

Chapter 2. Background & Literature Review 21

weight matrices W∗ and U∗ and then summed with the bias b∗, and the result is then
passed through a sigmoid and squashed to the range [0, 1]. The same happens with
the input activation, only the non-linearity is a tanh which maps its input to [−1, 1].

To update the cell state (eq. 2.5), the old cell state ct−1 is multiplied element-wise
with the output of the forget gate, which controls how much of the old information
should be forgotten, and the input activation g is multiplied element-wise with the
input gate i which decides what new information should be added and the two
results are summed to produce the new cell state ct.

Finally, to get the new hidden vector (eq. 2.6) a tanh activation is applied to the
new, updated cell state ct and the result is multiplied elementwise with the output
gate.

2.3.6 Autoencoders

Encoder

Input

Code

Decoder

Output

FIGURE 2.13: Example of an undercomplete AE

An autoencoder (AE) is a neural network that attempts to learn a “compressed”
representation of its inputs, or “code” c. Generally AEs can be thought of as having
two parts, an encoder which maps the input x to a lower dimensional feature space

c = encoder(x)

and a decoder which takes that compressed representation and tries to map it back
to the original input

x̂ = decoder(c)

The network is trained to minimize the reconstruction error between its inputs
and outputs, in other words, it tries to learn weights such that x̂ ≈ x.

Chapter 2. Background & Literature Review 22

To prevent the network from simply memorizing the data and instead force it
to learn useful features several regularization methods may be applied, such as in-
troducing a “bottleneck” by having lower dimensional hidden layers as shown in
Figure 2.13 (undercomplete AEs), adding a sparsity constraint which penalizes neu-
ron activations encouraging fewer neurons to fire at a time (Sparse AEs), or adding
noise to the inputs while the AE tries to predict the unperturbed inputs (Denoising
AEs).

2.4 Networking Concepts

In order to create a sequence dataset from raw packet captures, some fields of the
headers of the Internet, Transmission Control and User Datagram protocols were
selected as features. A brief description of the protocols and their headers follows.

2.4.1 Internet Protocol (IP)

The Internet Protocol exists at layer 3, also known as the network layer, of the OSI
model and in effect underpins the Internet. It is a best-effort, connectionless protocol
which governs how nodes in different networks communicate. It performs the rout-
ing of packets from a source to a destination address and also has the ability to split
packets that are too large to be transmitted into fragments and reassemble them at
another node.

IPv4 Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL DSCP ECN Total Length

Identification 0 D
F

M
F Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Options
hhh

hhh

Padding (Optional)

FIGURE 2.14: IPv4 Header [30]

The fields of the IPv4 header are as follows, as specified in RFC 791 [30] unless
indicated otherwise.

Chapter 2. Background & Literature Review 23

• Version (4 bits): Contains the IP version which for IPv4, as the name suggests,
is always 4.

• IHL (Internet Header Length) (4 bits): The length of the internet protocol
header varies due to the Options field whose length also varies, so the IHL
is the length of the header in 32 bit words i.e. it points to the start of the data.

• DSCP (Differentiated Services Codepoint) (6 bits) [31]: This field, along with
the one bellow, supersede the old IPv4 ToS (type of service) field. It offers an
improvement to the Internet Protocol by allowing for a scalable way to dis-
criminate between types of network packets, for instance packets that require
low latency may be marked as such.

• ECN (Explicit Congestion Notification) (2 bits) [32]: ECN provides another
way for routers to indicate imminent network congestion, in addition to drop-
ping packets. It is interesting to note that ECN cannot function without sup-
port from the transport layer protocol.

• Total Length (16 bits): Total packet length (header and data) in 8 bit bytes. It
is 16 bits long meaning the maximum packet size is 65,535 bytes. It is also
required that every host be capable of handling packets at least as large as 576
bytes.

• Identification (16 bits) [33]: It is used to uniquely identify the fragments of a
non-atomic datagram i.e. one that still may be fragmented, or one that already
has been.

• Flags (3 bits): Control flags, each one 1 bit long, are described bellow in the
order they appear in the header,

– Reserved: must be zero

– DF (Don’t Fragment): If it is set, the datagram must not be fragmented,
even if that means it cannot reach its destination, in which case it must be
discarded.

– MF (More Fragments): If it is set, the datagram is not the final fragment.
If it is the final one, or the packet is not fragmented, it is cleared i.e. zero.

• Fragment Offset (13 bits): It represents the position of the fragment in the orig-
inal unfragmented datagram, in 64 bit chunks, with the first fragment having
offset 0.

• TTL (Time to Live) (8 bits): It is there to ensure that packets cannot persist
indefinitely in the internet by, for example, going in loops. It is supposed rep-
resent the number of seconds that a packet may persist, but it is decremented
by at least one by every node that processes the packet. When it reaches zero
the packet is discarded.

• Protocol (8 bits): It specifies the protocol used in the data portion of the data-
gram, such as TCP or UDP.

• Header Checksum (16 bits): A checksum of the header used to check for errors.
It needs to be recomputed whenever fields in the header change, such as the
TTL at every hop.

• Source Address (32 bits): The source IP address.

Chapter 2. Background & Literature Review 24

• Destination Address (32 bits): The destination IP address.

• Options (length varies): A field that is not necessarily present in datagrams
and may include a variable number of options.

• Padding (length varies): It is added as needed to ensure the packet header is
an integer number of 32 bit words in length. It is set to zero.

2.4.2 Transmission Control Protocol (TCP)

TCP resides at layer 4, also known as the transport layer, of the OSI model. It is a
connection based protocol that provides reliable in-order communication between
hosts. A connection is established through a 3-way handshake which is involves a 3
packet exchange hence the name. TCP achieves reliability by having error-checking
to identify errors, acknowledgment numbers to indicate which segments have been
received, and being capable of retransmiting segments that were damaged or lost.
To ensure segments can be ordered at the destination, TCP associates each one with
a sequence number.

TCP Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data
Offset

Reser-
ved N

S
C

W
R

EC
E

U
R

G
A

C
K

PS
H

R
ST

SY
N

FI
N Window

Checksum Urgent Pointer

Options
hhh

hhh

Padding (Optional)

FIGURE 2.15: TCP header [34]

The fields are as follows, as specified in RFC 793 [34] unless indicated otherwise.

• Source Port (16 bits): The source port number.

• Destination Port (16 bits): The destination port number.

• Sequence Number (32 bits): If SYN is set, this is the initial sequence number,
otherwise it is that of the first data byte in this segment.

Chapter 2. Background & Literature Review 25

• Acknowledgment Number (32 bits): If ACK is set, this is the value of the next
sequence number expected by the sender of this segment.

• Data Offset (4 bits): Similar to the IHL for IP, this is the length of the TCP
header measured in 32 bit words, which varies due to the Options field of the
TCP header, which may or may not be present.

• Reserved (3 bits): A field reserved for future use. It must be set to zero.

• Control Bits (9 bits): Each flag is 1 bit long, and they are described bellow in
the order they appear in the header,

– NS [35]: An experimental field that prevents the concealment of “marked”
i.e. with ECN set to 11, Congestion Experienced (CE), packets.

– CWR (Congestion Window Reduced) [32]: Set to signify to the receiver
that a segment with the ECE flag set was received by the sender of this
one and handled appropriately, so the receiver can stop setting it.

– ECE (ECN echo) [32]: ECE being set indicates that the sender of this seg-
ment received a packet with the IP ECN flag set to 11 (CE), meaning con-
gestion experienced. This is done in order for the receiver of this segment
to be notified of said congestion and act accordingly. On the other hand,
if SYN is also set, this only indicates that the sender is ECN capable.

– URG: If set, the Urgent Pointer field is significant.

– ACK: If set, the Acknowledgment Number field is significant.

– PSH: Push function. Since received data may be buffered, this flag exists
to indicate that all data received so far should be immediately pushed to
the receiver, if it is set.

– RST: Reset the connection.

– SYN: Synchronize sequence numbers. Used during the 3-way handshake.

– FIN: Sender has no more data to send.

• Window Size (16 bits): This field specifies the number of, by default bytes,
though that may be changed with an option, the sender is willing to receive.

• Checksum (16 bits): A checksum of the TCP header, data and a pseudo header
comprised of the Source Address, Destination Address and Protocol fields of
the IP header, as well as the TCP length, which is the header plus the data
length. It is used for error checking.

• Urgent Pointer (16 bits): If the URG flag is set, it points to the byte after the
urgent data as a positive offset from this segment’s sequence number.

• Options (length varies): A field that is not necessarily present in segments and
may include one or more options.

• Padding (length varies): It is added as needed to ensure that the TCP header
is a multiple of 32 bit words in length. It is set to zero.

Chapter 2. Background & Literature Review 26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Length Checksum

FIGURE 2.16: UDP header [36]

2.4.3 User Datagram Protocol (UDP)

UDP is also a layer 4, i.e. transport layer, protocol. It is a simple, connectionless
protocol, that unlike TCP makes no attempt to ensure reliability, meaning any such
logic is pushed to the user application. This also makes it fast, since it requires less
processing and there are no retransmissions.

UDP Header

The fields are as follows, as specified in RFC 768 [36].

• Source Port (16 bits): The source port number if it is meaningful, otherwise it
is set to zero.

• Destination Port (16 bits): The destination port number.

• Length (16 bits): Length in 8 bit bytes of the UDP header and data.

• Checksum (16 bits): A checksum of the UDP header, data and a pseudo header
comprised of the Source Address, Destination Address and Protocol fields of
the IP header, as well as the UDP length field. It is used for error checking and
if it is set to zero it means that no checksum was generated.

2.4.4 Port Number Ranges

Ports can be split into three categories based on the port number:

• “System/Well-Known Ports” whose port numbers are from 0 to 1024 and are
controlled and assigned by IANA (Internet Assigned Numbers Authority).
Generally, they require extra privileges to use i.e. bind a socket to, e.g., for
Linux, a user needs to be root or have the “CAP_NET_BIND_SERVICE” capa-
bility.

• “User/Registered Ports” are those with port numbers from 1024 to 49151, which
can generally be used by all users without a need for extra privileges, and for
which a list of the services that use them is maintained by IANA.

• “Dynamic/Private/Ephemeral Ports” which are those that are left i.e. port
numbers from 49152 to 65535 and which cannot be registered by IANA.

It is worth noting that some systems may choose alternative ranges for the ephemeral
ports.

Chapter 2. Background & Literature Review 27

2.5 Literature Review

This section aims to present relevant literature in the field of network intrusion de-
tection, that is, research about the application of machine learning and neural net-
works in this domain.

In 2013, Revathi and Malathi [37] trained a variety of algorithms for multi-class
classification on the NSL-KDD dataset [38]. The algorithms were trained both on the
full number of features and later an optimally selected subset, using the “Correlation-
based Feature Selection” technique. A random forest classifier trained on the re-
duced dataset performed the best, with an average accuracy score of 98.88%, out-
performing J48, SVMs, CART and Naive Bayes.

In 2015, Ingre and Yadav [39] investigated the performance of multi-layer neu-
ral networks on the NSL-KDD dataset, testing various architectures with different
numbers of hidden layers and training algorithms, reaching an accuracy of 81.2% at
binary classification with an artificial neural network with 21 layers, trained on 29 of
41 features with the Levenberg-Marquardt algorithm, and a best accuracy of 79.9%
at multi-class classification, with a 23 layer network trained on all the features with
BFGS Quasi-Newton backpropagation.

In 2017, Dias et al. [40] proposed an artificial neural network architecture with
one hidden layer trained on the KDDCUP’99 dataset [41] with the goal of multi-class
classification. They varied the number of neurons in the hidden layer, attaining an
average detection rate of 99.9%. However, the network failed at detecting one type
of attack consistently, with a detection rate of 51.9% and the authors citing the low
number of samples for that class as the culprit.

In 2017 Bontemps et al. [42] proposed the use of LSTM RNNs on a time series
version of the KDDCUP’99 dataset, specifically focusing on detecting DoS Neptune
attacks. Each prediction of the LSTM is compared to the future real value and the
relative error is recorded; if it is over a threshold, a point is considered anomalous.

At each timestep, if the density of anomalous points exceeds a threshold α and
the average relative error a threshold β a sequence is flagged as a collective anomaly.

In 2016, Javaid et al. [43] used self-taught learning (STL), a two-step approach
wherein unlabeled data -not necessarily from the same distribution as the labeled
data, but at least a relevant one- are used to train an algorithm that attempts to learn
a good feature representation of the data, followed by expressing the labeled data in
that representation and using the result for, in this case, classification.

They applied this technique on the NSL-KDD dataset, using a sparse autoen-
coder for the feature learning and soft-max regression for the classification and com-
pared its performance to using soft-max regression directly on the dataset instead of
the learned features.

STL generally performed better, especially in the binary classification case, where
it achieved an accuracy of 88.39% and an f-measure of 90.4% whereas for the 5-class
classification it achieved an accuracy of 79.1% and a weighted f-measure of 75.76%.

In 2018, Shone et al. [44] proposed a feature representation learning neural net-
work architecture, named stacked non-symmetric deep auto-encoder (NDAE), which
functions similarly to deep autoencoders (DAE) but without the decoder stage.

The encoded representations learned by the model were used to train a random
forest (RF) classifier which reached an average accuracy of 97.85% for the 5 class
KDD99 dataset, and 85.42% and 89.22% for the 5 and 13 class NSL-KDD respec-
tively, although it consistently struggled with classes that had few examples. When

Chapter 2. Background & Literature Review 28

compared to Deep Belief Networks (DBNs), stacked NDAEs performed better ex-
cept for the classes with few examples, and also proved faster to train compared
against DBNs with the same number of layers.

In 2017, Agarap [45] combined a gated recurrent unit network (GRU), which
is a variant of an LSTM, with a support vector machine (SVM) which was used
as the final layer of the network, and compared it against the conventional GRU-
Softmax model. The 2013 Kyoto University honeypot dataset [46] was used and the
GRU-SVM model outperformed the GRU-Softmax model, achieving an accuracy of
84.15% versus 70.75% in binary classification. It also proved faster to train and do
inference with.

In 2017, Yin et al. [47] chose to try an RNN architecture on the NSL-KDD dataset
and explored how the learning rate and number of nodes affected the classifier’s per-
formance, ultimately getting an accuracy score of 83.28% on the binary classification
problem and 81.29% on the 5 class classification problem.

Radford et al. [48] proposed an unsupervised method inspired by natural lan-
guage processing (NLP) using LSTMs. They used the ISCX IDS dataset [49] which is
a dataset of network flows and produced ordered sequences by grouping flows that
occur between IP pairs within the same hour, called dyad-hours, reaching an AUC
score of 0.84 with their best performing model, based on protocol byte sequences
e.g., from their paper, IPaIPb : TCP : 10|TCP : 12|UDP : 04 where each token is in the
form Protocol : floor(log2(bytes)).

Ahmim et al. [50] proposed a hierarchical model for intrusion detection and eval-
uated it on the CICIDS2017 dataset [51], where two classifiers were trained on the
dataset, with the first making a binary “Attack”/“Benign” prediction and the sec-
ond a multi-class classification between “Benign” and the types of attacks present in
the dataset. Finally, these outputs in addition to all the dataset features were used
to train a third classifier which also made the final decision between “Benign” or an
attack type.

The authors tried various combinations of classifiers and accomplished their best
result with REP Tree, Jrip and Forest PA as the first, second and third classifiers
respectively, which was an overall detection rate of 94.475%, an accuracy of 96.665%
and a false alarm rate of 1.145%.

Zhang et al. [52] chose a hierarchical deep learning model, using a convolutional
neural network (CNN) to extract features from the first 160 bytes of packets from
packet captures which were then fed into an LSTM. The hybrid model’s performance
was compared against only using a CNN or an LSTM.

The hierarchical model had a better F1 score of 99.88% compared to the others
on the binary classification task on the CICIDS2017 dataset, but, for multi-class clas-
sification, the plain CNN achieved a better F1 score of 99.94% versus 99.91% for the
hybrid model.

The models were also trained on the CTU dataset, where the hierarchical model
had the best scores for the F1 score metric, 99.87% and 99.82% for binary and multi-
class classification respectively.

In 2019, Ferrag et al. [53] applied seven deep learning models on the CSE-CIC-
IDS2018 dataset, such as deep, recurrent and convolutional neural networks, deep
auto encoders and others, comparing their performances over different hyperpa-
rameter values with CNNs having the best accuracy score of 97.376%.

Abdulhammed et al. [54] applied two dimensionality reduction techniques, SAEs
and Principal Component Analysis (PCA) on the CICIDS2017 flow dataset, reducing

Chapter 2. Background & Literature Review 29

the original 81 features to as few as 59 and 10 respectively and training various ma-
chine learning algorithms on these learned representations, achieving satisfactory
results.

The best results for binary classification were achieved by Random Forests (RFs)
with an f-measure of 0.997 when applied to either the results of PCA or SAE, al-
though PCA produced far fewer features for those results (10 vs. 70).

For multi-class classification the best f-measure, 99.7% was also achieved by RFs
applied to the result of PCA though this time using 30 PCA features. The authors
conclude that, based on their experiments, PCA is superior to SAE.

30

Chapter 3

Dataset Selection & Analysis

3.1 Selecting the right Dataset

Selecting a good dataset for one’s task is of vital importance, as a model is only as
good as the data it is trained on. This section deals with exactly that issue, i.e. the
process of selecting the right dataset for this Thesis.

3.1.1 Network datasets

Network traffic datasets typically consist of either packets, or flows. Packet-based
datasets are usually in the libpcap [55] format (or the “next generation” pcap format,
pcapng [56]), which contains a record for each captured packet. Flow-based datasets
contain aggregated information about packet flows e.g. the number of transmitted
packets or the average bytes per packet for the flow.

When deciding which dataset to select, the following properties, which closely
match those outlined by Ring et al. [57], were considered,

• Dataset age: As time passes the character of network traffic (i.e. traffic patterns
and contents) changes, and so do attack types as new attacks are developed,
therefore more recently created datasets are more likely to be representative of
current real world network traffic and attacks.

• Attack Traffic Variety: It is preferred various attacks be present in the dataset,
in the hopes that, by being exposed to a variety of attacks, the models better
learn what constitutes one versus what constitutes normal behaviour, and are
therefore more likely to detect new and unknown attacks.

• Normal User Behaviour: The dataset should also include traffic of normal be-
haviour, preferably not simulated, in order for the model to be competent at
recognizing it, thereby keeping false alarms as low as possible to avoid dis-
turbing normal operation.

• Data Volume: Deep learning is “data-hungry” and generally requires large
numbers of examples to train on, so the dataset has to be reasonably large.

• Labeled: Most the models trained for this Thesis fall under the aegis of super-
vised learning, which requires a labeled dataset.

Finally, the dataset should also be packet-based and include the network traffic
in the pcap(ng) format since this Thesis concerns itself with how models trained on
sequence data perform against models trained on flow data.

In the following sections, one of, if not the most popular network intrusion de-
tection dataset and why it was rejected is described, followed by a description of
that which was finally selected.

Chapter 3. Dataset Selection & Analysis 31

3.1.2 KDD’99 Dataset

Likely the most well-known dataset for the task of intrusion detection is the KDD
Cup 1999 dataset [41], which was used for the International Knowledge Discovery
and Data Mining Tools Competition in 1999 and was generated by the extracting
appropriate features from the raw tcpdump data of the DARPA 98 [58] dataset.

However, despite still being used for research today, the dataset it was derived
from came into criticism, concerning how well the generated data approximated
real newtwork traffic [59], as did itself [60], though efforts have been made to rectify
some of its deficiencies [38].

Even so, the dataset is currently more than 20 years old, so it seems unlikely to
closely match modern network traffic.

3.1.3 CICIDS2017 Dataset

The CICIDS2017 dataset [61] is a publicly available dataset [51] which includes more
than 50 gigabytes of raw network traffic data in the pcap format, as well as a flow-
based dataset comprised of 79 features generated from said pcap data by CICFlowMe-
ter [62], a network traffic flow generator. The dataset aims to fulfill eleven crite-
ria suggested by Gharib et al. [63] as vital for a comprehensive benchmark dataset,
namely 1) Complete Network, 2) Complete Traffic, 3) Labelled Dataset, 4) Complete
Interaction, 5) Complete Capture, 6) Available Protocols, 7) Attack Diversity, 8) Het-
erogeneity, 9) Feature Set and 10) MetaData

This dataset possesses all the properties described above in Section 3.1.1 except
for the normal user traffic not being synthetic: it is recent, big, labeled and contains
data about a variety or attacks. It was therefore selected for use.

The following sections describe how the normal traffic was generated as well as
the attacks that were used.

Benign Traffic

The benign traffic was artificially generated through the use of B-profiles [64], a tech-
nique which seeks to extract the abstract behaviour of a group of human users.

The process works by building individual user profiles and clustering them. The
cluster centroids are then regarded as the abstract behaviour of each cluster’s users,
“B-profiles”, and can then be used to generate realistic benign traffic.

Attack Traffic

Traffic from various different attacks is present in the dataset, more specifically,

• Brute-Force: A brute-force attack consists of an attacker making multiple at-
tempts trying to guess hidden and/or sensitive information, for example, pass-
words, DNS subdomains or website directories and files.

While simple brute force attacks involve trying all possible combinations (e.g.
of valid password characters) that is often practically impossible, so more so-
phisticated methods are used, such as dictionary attacks.

In dictionary attacks all words in a “dictionary”, possibly an actual dictionary,
or lists containing relevant words (e.g. passwords that have been previously
leaked, collections of common subdomain names or website directory and file
names etc.), are tried.

Chapter 3. Dataset Selection & Analysis 32

Additionally, some tools offer the capability of enhancing those dictionaries by
using rules to generate more guesses, for instance, replacing letters with com-
mon substitutes e.g. “i” with “1”, or appending file extensions to file names.

This dataset includes SSH and FTP password brute-forcing.

• Heartbleed [65, 66]: Heartbleed was a security vulnerability in the popular
OpenSSL software library disclosed in 2014. It could be exploited by sending
a malformed SSL heartbeat packet to a vulnerable client or server and allowed
attackers to read up to 64KB of memory they should not have access to at a
time. It was found by researchers that it was possible to use the vulnerability
to steal secrets, such as private keys, usernames and passwords [66].

• DoS (Denial of Service): In a DoS attack an attacker attempts to render the
victim machine (e.g. a web server) inaccessible to its intended users, usually
by either exhausting its available resources (e.g. network bandwidth, memory,
threads etc.), or sending requests crafted to trigger crashes.

• DDoS (Distributed Denial of Service): A DDoS attack is a type of DoS attack
in which multiple (usually) compromised systems attack the same target most
often by overwhelming it with great volumes of traffic. DDoS attacks can be
difficult to block since the traffic originates from multiple sources.

• Port Scan: Port scanning is “a technique that sends client requests to a range
of service port addresses on a host” [67]. It is performed to discover ports
which have services listening, so they may be further explored, or targeted
with exploits.

• Botnet: A botnet refers to a number of, usually infected, machines, which can
be sent instructions from the attacker to perform various tasks, such as initiate
attacks e.g. DDoS attacks, steal data e.g. keylogging, send spam etc.

• Web: Web attack is a moniker given to a variety of attacks targeting vulnerable
web applications, such as SQL injections, XSS (Cross-site-scripting) and others.

The dataset includes SQLIs, XSS and brute-forcing a web application pass-
word.

• Infiltration: According to the paper accompanying the dataset, an “infiltration
attack” refers to attacking the network from the inside, from a machine that has
already been compromised and can continue to perform various other attacks
against other hosts in the network.

3.2 CICIDS2017 Flow Dataset

As already mentioned, the pcap data is accompanied a flow dataset. It is spread over
8 files as seen in Table 3.1, where in each file each row contains information about a
“packet flow", or “flow" and a class label.

Looking at the CICFlowMeter source code [62], a flow is identified by the five-
tuple (IP source address, source port, IP destination address, destination port, pro-
tocol), where the duration of the flow i.e. the difference in timestamps of the last and
first packets in the flow must be less than a variable named “flowTimeOut”, whose
default value is 120 seconds. If the duration of a flow exceeds “flowTimeOut”, it is
split into multiple.

Chapter 3. Dataset Selection & Analysis 33

File Name Traffic
Friday-WorkingHours-Afternoon-
DDos.pcap_ISCX.csv

Benign, DDoS

Friday-WorkingHours-Afternoon-
PortScan.pcap_ISCX.csv

Benign, PortScan

Friday-WorkingHours-Morning.pcap_ISCX.csv Benign, Bot
Monday-WorkingHours.pcap_ISCX.csv Benign
Thursday-WorkingHours-Afternoon-
Infilteration.pcap_ISCX.csv

Benign, Infiltration

Thursday-WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv

Benign, Brute Force, Sql Injection,
XSS

Tuesday-WorkingHours.pcap_ISCX.csv Benign, FTP-Patator, SSH-Patator
Wednesday-workingHours.pcap_ISCX.csv Benign, DoS GoldenEye, DoS

Hulk, DoS Slowhttptest, DoS
slowloris, Heartbleed

TABLE 3.1: CICIDS2017 Flow Dataset Files

After merging the files, there is a total of 2,830,743 observations, with 78 features
plus the class label. The dataset includes 15 different classes, and is heavily imbal-
anced (Table 3.2a), with over 80% of all observations belonging to the “BENIGN", i.e.
“non-malicious", class and the rest being dominated, unsurprisingly, by the types of
attacks that involve making large numbers of connections and therefore produce
many flows, such as DoS attacks (Table 3.2b).

After inspecting the CICFlowmeter source code in order to better understand
what each feature represents, there was reason to suspect some were duplicates, so
before any extensive analysis the data requires “cleaning”.

Class Total Percentage

BENIGN 2273097 80.300366
DoS Hulk 231073 8.162981
PortScan 158930 5.614427
DDoS 128027 4.522735
DoS GoldenEye 10293 0.363615
FTP-Patator 7938 0.280421
SSH-Patator 5897 0.208320
DoS slowloris 5796 0.204752
DoS Slowhttptest 5499 0.194260
Bot 1966 0.069452
Brute Force (Web) 1507 0.053237
XSS 652 0.023033
Infiltration 36 0.001272
Sql Injection 21 0.000742
Heartbleed 11 0.000389

(A) Class distribution for all Classes

Malicious Class Percentage

— —
DoS Hulk 41.437220
PortScan 28.500160
DDoS 22.958472
DoS GoldenEye 1.845795
FTP-Patator 1.423484
SSH-Patator 1.057481
DoS slowloris 1.039369
DoS Slowhttptest 0.986109
Bot 0.352553
Brute Force (Web) 0.270243
XSS 0.116920
Infiltration 0.006456
Sql Injection 0.003766
Heartbleed 0.001973

(B) Class distribution for Malicious Classes

TABLE 3.2: Breakdown of Class distribution for Flow Dataset

Chapter 3. Dataset Selection & Analysis 34

3.2.1 Data Cleaning

Firstly, a minor issue, was that the class labels in “Thursday-WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv" contain a strange, non-printable byte sequence, likely
in place of a hyphen, which was replaced with such.

Out of the 78 features, some do not change value at all in any of the files i.e. they
are always have the same value, in this case zero, so they are dropped as they con-
tain no information. Specifically they are “Bwd PSH Flags”, “Bwd URG Flags”, “Fwd
Avg Bytes/Bulk”, “Fwd Avg Packets/Bulk”, “Fwd Avg Bulk Rate”, “Bwd Avg Bytes/Bulk”,
“Bwd Avg Packets/Bulk” and “Bwd Avg Bulk Rate”.

Furthermore, feature “Fwd Header Length” is duplicated, so one instance was
dropped; inspecting the code it appears there was an error and it was calculated
twice, instead of “Bwd Header Length”.

Other features that are duplicates are “Total Fwd Packets” and “Subflow Fwd Pack-
ets” as well as “Total Backward Packets” and “Subflow Bwd Packets”, since their values
are equal for all rows, so the latter of each pair is dropped.

Additionally, the pairs of features “Avg Fwd Segment Size”, “Fwd Packet Length
Mean” and “Avg Bwd Segment Size”, “Bwd Packet Length Mean” also appear to be
duplicates. Specifically, only 1 out of 2,830,743 rows for the first pair and 62 out of
2,830,743 for the second are not equal, while the maximum relative difference, taking
the latter of each pair as the reference, is approximately 1.39e−13 and 9.94e−10 re-
spectively, which can almost certainly be attributed to rounding errors, so the former
of each pair was dropped.

Another peculiarity of the flow dataset is that, despite being named X Flag Count,
where X is a TCP flag, the values of those features is either zero or one, making it
unlikely that they are actually counts, considering, for example, that a TCP hand-
shake includes two packets with the SYN flag set, so the count would be expected to
be two for at least some flows.

The final list of features after removing all duplicates and constant features fol-
lows,

• For the Flow:

Duration in microseconds

Min, Max, Mean, Std & Var Packet Length

Packets/s

Bytes/s

Down/Up Packet Ratio

Min, Max, Mean & Std IAT

Min, Max, Mean & Std Idle Time

Min, Max, Mean & Std Active Time

TCP flag set for: FIN, SYN, RST, PSH, ACK, URG, CWR & ECE

Average Packet size

Destination Port

• For both Forward and Backward directions:

Total Number of Packets

Total, Min, Max, Mean & Std Packet Length

Chapter 3. Dataset Selection & Analysis 35

Total, Min, Max, Mean & Std IAT

Initial TCP Window Size

Average Bytes per Subflow

Packets/s

Total TCP Header Length (i.e. sum of length of all TCP headers)

• In the Forward direction only:

Total number of PSH, URG Flags

Min TCP Header Size

Total number of Active data packets (i.e. with non-zero packet length)

• Label

LIST 3.1: Original Flow Dataset Final Features

Where, packet length refers to the number of data bytes in a TCP segment, idle time
refers to the time before a flow became active and vice versa.

Finally, the dataset contains (relatively few) missing values (NaNs) and infinite
values, as well as numerous negative values where they are nonsensical, except as
indicators of missing values, so they and the infinite values are treated as such.

For feature “Init_Win_bytes_backward” a number of missing values occur when
“Total Backward Packets” is equal to zero and are therefore easy to fill in with zeroes
as, with no packets sent in the backward direction, the initial TCP window would
never be set, hence zero.

3.2.2 Training/Test Split

As explained in Section 2.2.4 the dataset should be split into training, validation and
test sets. Usually this is done by shuffling the dataset and splitting it in the desired
ratio e.g. 80% of the observations assigned to the training set and the remaining 20%
to the test set.

In this case however, as the dataset is heavily imbalanced, special care must be
taken to ensure all classes are present in both splits. Consideration must also be
taken so that no duplicate observations exist between the sets to avoid “training on
the test set” and potentially overestimating the classifier’s performance.

To achieve that, first a training/test set ratio is chosen, in this case 85/15, and
the split is done in a stratified fashion with respect to the class label, which ensures
the distribution of classes in both sets are similar to that of the original dataset, and
finally any duplicate observations between the training set and test set are removed
from the former.

The final numbers are 2,222,522 datapoints for the training set and 424,612 for
the test set.

3.2.3 Correlation Matrix

The heatmap in Figure 3.1 shows there is a considerable number of pairs of features
with high degrees of correlation,

Chapter 3. Dataset Selection & Analysis 36

De
st

in
at

io
n

Po
rt

Fl
ow

 D
ur

at
io

n
To

t F
wd

 P
ac

k
To

t B
wd

 P
ac

k
To

t L
en

 o
f F

wd
 P

ac
k

To
t L

en
 o

f B
wd

 P
ac

k
Fw

d
Pa

ck
 L

en
 M

ax
Fw

d
Pa

ck
 L

en
 M

in
Fw

d
Pa

ck
 L

en
 M

ea
n

Fw
d

Pa
ck

 L
en

 S
td

Bw
d

Pa
ck

 L
en

 M
ax

Bw
d

Pa
ck

 L
en

 M
in

Bw
d

Pa
ck

 L
en

 M
ea

n
Bw

d
Pa

ck
 L

en
 S

td
Fl

ow
 B

/s
Fl

ow
 P

ac
k/

s
Fl

ow
 IA

T
M

ea
n

Fl
ow

 IA
T

St
d

Fl
ow

 IA
T

M
ax

Fl
ow

 IA
T

M
in

Fw
d

IA
T

To
t

Fw
d

IA
T

M
ea

n
Fw

d
IA

T
St

d
Fw

d
IA

T
M

ax
Fw

d
IA

T
M

in
Bw

d
IA

T
To

t
Bw

d
IA

T
M

ea
n

Bw
d

IA
T

St
d

Bw
d

IA
T

M
ax

Bw
d

IA
T

M
in

Fw
d

PS
H

Fl
ag

s
Fw

d
UR

G
Fl

ag
s

Fw
d

He
ad

er
 L

en
Bw

d
He

ad
er

 L
en

Fw
d

Pa
ck

/s
Bw

d
Pa

ck
/s

M
in

 P
ac

k
Le

n
M

ax
 P

ac
k

Le
n

Pa
ck

 L
en

 M
ea

n
Pa

ck
 L

en
 S

td
Pa

ck
 L

en
 V

ar
ia

nc
e

FI
N

Fl
ag

 C
ou

nt
SY

N
Fl

ag
 C

ou
nt

RS
T

Fl
ag

 C
ou

nt
PS

H
Fl

ag
 C

ou
nt

AC
K

Fl
ag

 C
ou

nt
UR

G
Fl

ag
 C

ou
nt

CW
E

Fl
ag

 C
ou

nt
EC

E
Fl

ag
 C

ou
nt

Do
wn

/U
p

Ra
tio

Av
er

ag
e

Pa
ck

 S
ize

Su
bf

 F
wd

 B
yt

es
Su

bf
 B

wd
 B

yt
es

In
it_

W
in

_b
yt

es
_F

wd
In

it_
W

in
_b

yt
es

_B
wd

ac
t_

da
ta

_p
kt

_f
wd

m
in

_s
eg

_s
ize

_F
wd

Ac
t.

M
ea

n
Ac

t.
St

d
Ac

t.
M

ax
Ac

t.
M

in
Id

le
 M

ea
n

Id
le

 S
td

Id
le

 M
ax

Id
le

 M
in

Destination Port
Flow Duration
Tot Fwd Pack
Tot Bwd Pack

Tot Len of Fwd Pack
Tot Len of Bwd Pack

Fwd Pack Len Max
Fwd Pack Len Min

Fwd Pack Len Mean
Fwd Pack Len Std

Bwd Pack Len Max
Bwd Pack Len Min

Bwd Pack Len Mean
Bwd Pack Len Std

Flow B/s
Flow Pack/s

Flow IAT Mean
Flow IAT Std

Flow IAT Max
Flow IAT Min
Fwd IAT Tot

Fwd IAT Mean
Fwd IAT Std

Fwd IAT Max
Fwd IAT Min
Bwd IAT Tot

Bwd IAT Mean
Bwd IAT Std

Bwd IAT Max
Bwd IAT Min

Fwd PSH Flags
Fwd URG Flags

Fwd Header Len
Bwd Header Len

Fwd Pack/s
Bwd Pack/s

Min Pack Len
Max Pack Len

Pack Len Mean
Pack Len Std

Pack Len Variance
FIN Flag Count

SYN Flag Count
RST Flag Count
PSH Flag Count
ACK Flag Count
URG Flag Count
CWE Flag Count
ECE Flag Count
Down/Up Ratio

Average Pack Size
Subf Fwd Bytes
Subf Bwd Bytes

Init_Win_bytes_Fwd
Init_Win_bytes_Bwd

act_data_pkt_fwd
min_seg_size_Fwd

Act. Mean
Act. Std

Act. Max
Act. Min

Idle Mean
Idle Std

Idle Max
Idle Min

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 3.1: Heatmap of the correlation matrix for the Orginal Flow
Dataset

0.50 < abs(corr) ≤ 0.80 : 104 pairs
0.80 < abs(corr) ≤ 0.90 : 28 pairs
0.90 < abs(corr) ≤ 1.00 : 62 pairs

with the highest being (absolute correlation over 0.999),

1. “Fwd URG Flags”, “CWE Flag Count”: 1.000

2. “Fwd PSH Flags”, “SYN Flag Count”: 1.000

3. “Total Length of Bwd Packets”, “Subflow Bwd Bytes”: 1.000

4. “Total Length of Fwd Packets”, “Subflow Fwd Bytes”: 0.9999

5. “Total Backward Packets”, “Bwd Header Length”: 0.9994

6. “Total Fwd Packets”, “Fwd Header Length”: 0.9994

Chapter 3. Dataset Selection & Analysis 37

3.3 Creating a Sequence & Flow dataset

Since a goal of this Thesis is comparing packet and flow classifiers, the pcap data
needs to be processed accordingly, as described in the following section. Further-
more, to make it a fairer comparison and overcome some of the issues of the original
dataset, the processed data was used to derive a new flow dataset.

3.3.1 Processing Raw Packet Capture Data

File Name Approx. Size Contains

Monday-WorkingHours.pcap 11Gb Normal Activity
Tuesday-WorkingHours.pcap 11Gb Normal Activity, FTP Bruteforce,

SSH Bruteforce
Wednesday-WorkingHours.pcap 13Gb Normal Activity, DoS/DDoS,

Heartbleed
Thursday-WorkingHours.pcap 7.8Gb Normal Activity, Web Attacks, In-

filtration
Friday-WorkingHours.pcap 8.3Gb Normal Activity, Botnet, Port

Scan, DDoS

TABLE 3.3: CICIDS2017 raw PCAP data information

The pcap data is in 5 separate files (Table 3.3), each containing non-malicious/benign
traffic, denoted as “normal activity” and attack/malicious traffic, except for Mon-
day’s file which contains only the former. Based on the information provided on the
dataset website [51] and manual inspection using wireshark [68], the packets from
each class were extracted into separate files and further split based on the transport
layer protocol, i.e. UDP or TCP.

In order to transform the pcap data into an appropriate format for the algorithms,
since they cannot work with pcaps, tshark [69] was used, which is a network proto-
col analyzer. The packet fields that were extracted are shown in Table 3.4. Originally,
the field ip.hdr_len was also extracted, but was later dropped due to being constant.

It should be noted that a field being marked with “*” in the table, means the
feature is not present in the packet itself, but is either recorded in the packet capture,
in the case of frame.time_epoch, or, in the case of tcp.stream and udp.stream, generated
by tshark. Finally, an additional feature, label, was manually added to each file,
containing the appropriate class for each packet.

The first row in the resultant tab-separated value (TSV) file contains a header, in-
dicating what each field is, and each following row represents information extracted
from a single packet. The appropriate “stream” feature for each packet can be used
to group them into flows, meaning that, essentially, each file contains multiple se-
quences each identifiable by a unique stream in said file, which can be used to train
algorithms that require sequence data, and are also suitable to recalculate the fea-
tures of the flow dataset accompanying the pcaps.

At this stage, the data was split into 25 files and needed to be merged which first
required adjusting the stream values, so they remain unique per class.

The last issue remaining was merging the files with different protocols as each
contained different features, which was achieved by adding any missing fields for
UDP packets and having them set to zero, except for tcp.hdr_len which was set to 8,

Chapter 3. Dataset Selection & Analysis 38

Field Value

frame.time_epoch* Arrival time of the captured frame as
seconds from the unix epoch

ip.len IP Total Length
ip.src IP source address
ip.dst IP destination address
tcp.stream/udp.stream* The TCP/UDP stream index as dis-

sected by tshark
tcp.srcport/udp.srcport TCP/UDP source port
tcp.dstport/udp.dstport TCP/UDP destination port
tcp.hdr_len TCP header length
tcp.flags.cwr TCP CWR flag
tcp.flags.ece TCP ECE flag
tcp.flags.urg TCP URG flag
tcp.flags.ack TCP ACK flag
tcp.flags.push TCP PUSH flag
tcp.flags.reset TCP RESET flag
tcp.flags.syn TCP SYN flag
tcp.flags.fin TCP FIN flag
tcp.window_size_value TCP Window size

TABLE 3.4: Fields extracted from TCP/UDP packets using tshark

as that is always the length of the UDP header, and renaming the features udp.stream,
udp.srcport and udp.dstport into their corresponding TCP “equivalents” as the over-
whelming majority of packets/streams were TCP.

Class # Flows % of Total

BENIGN 1112569 71.694000
PORTSCAN 160369 10.334186
DOS-HULK 158977 10.244486
DDOS 95683 6.165817
DOS-GOLDENEYE 7647 0.492773
DOS-SLOWHTTPTEST 4217 0.271744
FTP-PATATOR 3992 0.257245
DOS-SLOWLORIS 3894 0.250930
SSH-PATATOR 2979 0.191967
BOTNET 737 0.047492
XSS 636 0.040984
BRUTEFORCE 113 0.007282
SQLI 13 0.000838
INFILTRATION 3 0.000193
HEARTBLEED 1 0.000064

(A) Flows per Class in sequence dataset

Class # Packets % of Total

BENIGN 51450213 92.078555
DOS-HULK 2247118 4.021584
DDOS 1280602 2.291846
PORTSCAN 323736 0.579378
SSH-PATATOR 163320 0.292288
FTP-PATATOR 111611 0.199746
DOS-GOLDENEYE 106177 0.190021
HEARTBLEED 49296 0.088223
DOS-SLOWLORIS 47591 0.085172
DOS-SLOWHTTPTEST 39662 0.070982
BRUTEFORCE 22546 0.040350
INFILTRATION 15592 0.027904
BOTNET 9872 0.017668
XSS 8958 0.016032
SQLI 140 0.000251

(B) Packets per Class in sequence dataset

Chapter 3. Dataset Selection & Analysis 39

3.3.2 Sequence Dataset

This dataset which was derived as described in the previous section (Section 3.3.1),
is 55,876,434 rows long, meaning it contains information about an equal number
of packets, split over 1,551,830 streams and contains 15 classes and 18 features (Ta-
ble 3.4), including the label. It is imbalanced with respect to the class label, with over
70% of flows (Table 3.5a) and 92% of packets (Table 3.5b) belonging to the “BENIGN”
class.

Training/Test Split

Due to the class imbalance present in the dataset, the same procedure outlined in
Section 3.2.2 was followed, with each flow being considered a single datapoint. Ad-
ditionally, within the “BENIGN” class the (ip.src, ip.dst) pair per flow were also taken
into account.

However, an issue exists with the “HEARTBLEED” class, namely, that it consists
of only one flow, which is temporarily fully assigned to the training set. This issue
is dealt with in Section 4.2.1.

An 85/15 split is chosen, with the final numbers being 1,319,048 flows totaling
49,521,821 packets for the training set, and 232,781 flows totaling 6,305,317 packets
for the test set.

Data Exploration

Exploring the data visually or using statistical methods can help with gaining new
insights.

20% 40% 60% 80% 100%
% of packets

100

101

102

103

104

105

106

of

 fl
ow

s

Benign Class

FIGURE 3.2: Number of Flows vs. Percentage of Packets for the “BE-
NIGN” class

This section explores the training set of the sequence dataset, which contains,
approximately, 49.5 million observations/packets and 1.32 million flows.

Chapter 3. Dataset Selection & Analysis 40

As already mentioned in Section 3.3.2, the “BENIGN” class has an order of mag-
nitude more packets than those of all the others combined, however further exami-
nation reveals that a small number of flows, the top nine by number of packets, con-
tain a disproportionate number of packets, 39.14% of the total “BENIGN” packets, as
can be seen in Figure 3.2. Considering they are between two Windows 10 machines
and the same IP which is allocated to Microsoft, and their sizes, they could likely be
attributed to Windows Update.

Actually, the majority of flows consist of few packets, with a mean of 37.58 (23.99
if the top nine flows are excluded) and a median of 10 packets per flow.

Class Attacker CWR ECE URG ACK PUSH RESET SYN FIN

BENIGN
0 0.0018 0.0029 0.0011 91.3142 10.9226 0.6053 2.2666 1.9354
1 – – – – – – – –

BOTNET
0 0.0000 0.0000 0.0000 84.7614 15.2142 0.0000 15.2386 15.2142
1 0.0000 0.0000 0.0000 100.0000 15.3516 0.0000 14.1307 14.1307

BRUTEFORCE
0 0.0000 0.0000 0.0000 100.0000 94.2899 0.0000 1.4128 1.4128
1 0.0000 0.0000 0.0000 99.2565 49.1071 0.0077 0.7358 0.7358

DDOS
0 0.0000 0.0000 0.0000 100.0000 19.3747 0.0000 18.5186 23.5595
1 0.0000 0.0000 0.0000 87.4647 12.5291 12.5353 12.5290 0.0000

DOS-GOLDENEYE
0 0.0000 0.0000 0.0000 99.0658 19.4007 0.9342 19.2634 18.9798
1 0.0000 0.0000 0.0000 86.8075 15.7445 3.9992 13.1925 0.0000

DOS-HULK
0 0.0000 0.0000 0.0000 99.9985 16.0583 0.0015 15.8963 16.3954
1 0.0000 0.0000 0.0000 70.4781 15.1361 23.2368 14.2702 4.7251

DOS-SLOWHTTPTEST
0 0.0000 0.0000 0.0000 96.7612 14.8347 3.2388 25.8433 14.5830
1 0.0000 0.0000 0.0000 28.7597 20.3039 3.1223 68.1180 5.6612

DOS-SLOWLORIS
0 0.0000 0.0000 0.0000 82.7610 4.7652 17.2390 39.9089 4.6718
1 0.0000 0.0000 0.0000 75.4147 63.2950 1.2497 23.3356 1.7318

FTP-PATATOR
0 0.0000 0.0000 0.0000 88.2601 41.1877 11.7399 5.8916 5.8916
1 0.0000 0.0000 0.0000 90.9023 63.5393 0.0000 9.0977 9.0897

HEARTBLEED
0 0.0000 0.0000 0.0000 100.0000 7.8529 0.0000 0.0048 0.0000
1 0.0000 0.0000 0.0000 99.9930 4.3010 0.0035 0.0035 0.0035

INFILTRATION
0 0.0000 0.0000 0.0000 99.9801 8.0310 0.0000 0.0199 0.0099
1 0.0000 0.0000 0.0000 99.9816 7.1020 0.0184 0.0369 0.0369

PORTSCAN
0 0.0000 0.0000 0.0000 99.9027 0.1149 98.7600 0.7096 0.1149
1 0.0000 0.0000 0.0000 1.2167 0.0874 0.6221 98.3216 0.0788

SQLI
0 0.0000 0.0000 0.0000 100.0000 22.2222 0.0000 20.3704 20.3704
1 0.0000 0.0000 0.0000 82.2581 19.3548 0.0000 17.7419 17.7419

SSH-PATATOR
0 0.0000 0.0000 0.0000 99.9638 45.3980 0.0386 3.0535 3.0909
1 0.0000 0.0000 0.0000 95.4593 71.9961 0.0036 4.5371 4.5085

XSS
0 0.0000 0.0000 0.0000 100.0000 55.3425 0.0000 21.0176 21.1350
1 0.0000 0.0000 0.0000 89.2277 28.3651 0.0000 10.7723 10.8325

TABLE 3.6: Percentage of packets that had the corresponding TCP
flag set by Class and source (attacker, if “Attacker” column set to 1,

victim otherwise)

Looking at which flags were set (Table 3.6), it can be seen that the CWR, ECE and
URG flags appear to almost never be set, indeed they are only set for the “BENIGN”
class, and only for 0.0018%, 0.0029% and 0.0011% of “BENIGN” class packets respec-
tively. Furthermore, they are only set in 0.133%, 0.12% and 0.017% of “BENIGN”

Chapter 3. Dataset Selection & Analysis 41

class TCP flows respectively, or approximately half if UDP flows are included.
Another interesting observation is that class “PORTSCAN” appears to almost

always have the SYN flag set for the attacker and RESET for the victim, which in-
tuitively matches the behaviour of a portscan where the attacker makes many short
connections to the victim to scan the state of the ports and the victim replies with a
packet with the RESET flag set to indicate that the port is not listening.

0 10000 20000 30000 40000 50000 60000
Port Number

0

5000

10000

15000

20000

25000

F
re

qu
en

cy

Attacker Ports

Well Known

Registered

Ephemeral

0 10000 20000 30000 40000 50000 60000
Port Number

0

20000

40000

60000

80000

100000

F
re

qu
en

cy

Victim Ports

Well Known

Registered

Ephemeral

FIGURE 3.3: Port number histograms for attack traffic, for attackers and victims

The histograms in Figure 3.3, where ports are categorized based on the port num-
ber, as described in Section 2.4.4, show that victim ports tend to be in the “well-
known” range which is usually where various services commonly run (port 22: SSH,
port 80: HTTP, port 443: HTTPS etc.), whereas attacker ports tend to belong to the
“registered” and “ephemeral” ranges which tend to be used by default.

Correlation Matrix

Looking at the heatmap/correlation matrix in Figure 3.4, the strongest correlation
is between tcp.srcport and tcp.dstport and is −0.887604, which is reasonable consid-
ering services tend to listen at low-numbered ports while clients’ connections usu-
ally originate from high-numbered ports. Other features with absolute correlations
coefficients greater than 0.5 are tcp.flags.ece and tcp.flags.cwr, corr = 0.62, not sur-
prising since they, in a sense, work together as explained in Section 2.4.2, and fi-
nally tcp.srcport and tcp.dstport with ip.len, with values of−0.58 and 0.59 respectively.
Given what was already mentioned about which ports services and clients are more
likely to use, this makes sense since services are likely to send bigger packets e.g. a
client sends an HTTP GET request and the server replies with a whole webpage.

3.3.3 Producing a new Flow dataset

For the reasons laid out in Section 3.3, a new flow dataset with the same features as
the original was produced by running the sequence data described in Section 3.3.2
through a custom program. Specifically, due to splitting packets into flows by tshark’s
tcp.stream and udp.stream fields, they will in all likelihood be different to those iden-
tified in the original dataset, and using the same flows for both the packet and flow
classifiers should make for a fairer comparison.

Chapter 3. Dataset Selection & Analysis 42

Frame Time
Epoch

IP Len Src Port Dst Port Flag CWR Flag ECE Flag URG Flag ACK Flag PUSH Flag RST Flag SYN Flag FIN Window Size

Frame Time
Epoch

IP Len

Src Port

Dst Port

Flag CWR

Flag ECE

Flag URG

Flag ACK

Flag PUSH

Flag RST

Flag SYN

Flag FIN

Window Size

1 -0.038 -0.0064 -0.038 0.0014 0.0016 0.003 -0.046 0.024 0.069 0.07 0.021 0.017

-0.038 1 -0.58 0.59 -0.0025 -0.0035 -0.0022 0.21 -0.049 -0.086 -0.13 -0.072 -0.14

-0.0064 -0.58 1 -0.89 0.005 0.00096 0.0033 -0.11 -0.025 0.056 0.04 -0.011 0.16

-0.038 0.59 -0.89 1 -0.0039 0.00042 -0.0019 0.11 0.0073 -0.047 -0.037 0.0062 -0.16

0.0014 -0.0025 0.005 -0.0039 1 0.62 -1.3e-05 -0.0097 0.00034 0.0011 0.017 -0.00063 0.0081

0.0016 -0.0035 0.00096 0.00042 0.62 1 -1.7e-05 -0.007 -0.0018 -0.00064 0.027 -0.00081 0.0084

0.003 -0.0022 0.0033 -0.0019 -1.3e-05 -1.7e-05 1 -0.01 0.009 -0.0004 0.0086 0.02 0.0079

-0.046 0.21 -0.11 0.11 -0.0097 -0.007 -0.01 1 0.11 -0.14 -0.32 0.05 -0.0087

0.024 -0.049 -0.025 0.0073 0.00034 -0.0018 0.009 0.11 1 -0.045 -0.067 0.022 0.045

0.069 -0.086 0.056 -0.047 0.0011 -0.00064 -0.0004 -0.14 -0.045 1 -0.023 -0.02 -0.041

0.07 -0.13 0.04 -0.037 0.017 0.027 0.0086 -0.32 -0.067 -0.023 1 -0.029 0.32

0.021 -0.072 -0.011 0.0062 -0.00063 -0.00081 0.02 0.05 0.022 -0.02 -0.029 1 0.03

0.017 -0.14 0.16 -0.16 0.0081 0.0084 0.0079 -0.0087 0.045 -0.041 0.32 0.03 1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE 3.4: Heatmap of the correlation matrix for the Sequence
Dataset

Additionally, some peculiarities of the original dataset (Section 3.2.1) were also
addressed, such as the missing Bwd Header Length feature, X Flag Counts not being
counts and the missing values for various features.

To be consistent with the original dataset, streams/flows with durations exceed-
ing 120 seconds were split into multiple, each with a max duration of 120 seconds.
Moreover, flows consisting of a sole packet were removed.

The final features of the new flow dataset were,

• For the Flow:

Duration in seconds

Min, Max, Mean, Std & Var Packet Length

Packets/s

Bytes/s

Down/Up Packet Ratio

Min, Max, Mean & Std IAT

Min, Max, Mean & Std Idle

Min, Max, Mean & Std Active

Total number of CWR, ECE, ACK, RST, SYN, URG & FIN TCP flags

Destination and Source Port

• For both Forward and Backward directions:

Chapter 3. Dataset Selection & Analysis 43

Total Number of Packets

Total, Min, Max, Mean & Std Packet Length

Total, Min, Max, Mean & Std IAT

Initial TCP Window Size

Mean Packet number per Subflow

Mean Bytes (Packet Length) per Subflow

Packets/s

Total TCP Header Length (i.e. sum of length of all TCP headers)

Total number of PUSH Flags

• In the Forward direction only:

Min Header Size

Total number of Active data packets (i.e. with non-zero packet length)

• Label

LIST 3.2: New Flow Dataset Final Features

Where,

• Packet Length refers to the number of “useful” bytes, i.e. data bytes, in a TCP
segment, calculated by subtracting the IP and TCP header lengths from the IP
“Total Length” field.

• IAT: ’Inter-Arrival Time’ refers to the time elapsed between two successive
packets in a flow, sent in either, or a specific direction.

• Idle phases are phases in a flow where no packets have been sent for time ex-
ceeding a threshold τ, in this case, one second.

• Active phases are the complements of idle phases, i.e. phases during which
there are no lulls in the flow for time exceeding the threshold τ.

• Subflow: When a flow has been idle, each non-idle period is defined to be a
subflow.

Training/Test Split

The same procedure outlined in Section 3.2.2 was followed, with the same split ra-
tio i.e. 85% of the data assigned to the training set and 15% to the test set, which
translates to 1,767,299 flows/datapoints for the training set and 312,674 for the test
set.

Correlation Matrix

The heatmap in Figure 3.5 shows there is a considerable number of pairs of features
with high degrees of correlation for the new flow dataset as well,

Chapter 3. Dataset Selection & Analysis 44

Du
ra

tio
n

M
ax

 P
ac

k
Le

n
M

in
 P

ac
k

Le
n

M
ea

n
Pa

ck
 L

en
St

d
Pa

ck
 L

en
Va

r P
ac

k
Le

n
B/

s
Pa

ck
/s

M
ax

 IA
T

M
in

 IA
T

M
ea

n
IA

T
St

d
IA

T
Id

le
 M

in
Id

le
 M

ax
Id

le
 M

ea
n

Id
le

 S
td

Ac
t.

M
in

Ac
t.

M
ax

Ac
t.

M
ea

n
Ac

t.
St

d
To

t C
W

R
Fl

ag
s

To
t E

CN
 F

la
gs

To
t A

CK
 F

la
gs

To
t R

ES
ET

 F
la

gs
To

t S
YN

 F
la

gs
To

t U
RG

 F
la

gs
To

t F
IN

 F
la

gs
FW

D
PO

RT
BK

W
 P

OR
T

Ac
t.

da
ta

 P
ac

k
fw

d
m

in
 h

ea
de

r s
ize

 fw
d

FW
D

To
t P

ac
k

BK
W

 T
ot

 P
ac

k
Do

wn
/U

p
Pa

ck
 R

at
io

FW
D

St
d

Pa
ck

 L
en

BK
W

 S
td

 P
ac

k
Le

n
FW

D
M

ax
 P

ac
k

Le
n

BK
W

 M
ax

 P
ac

k
Le

n
FW

D
M

ea
n

Pa
ck

 L
en

BK
W

 M
ea

n
Pa

ck
 L

en
FW

D
M

in
 P

ac
k

Le
n

BK
W

 M
in

 P
ac

k
Le

n
FW

D
To

t P
ac

k
Le

n
BK

W
 T

ot
 P

ac
k

Le
n

FW
D

M
ax

 IA
T

BK
W

 M
ax

 IA
T

FW
D

M
ea

n
IA

T
BK

W
 M

ea
n

IA
T

FW
D

M
in

 IA
T

BK
W

 M
in

 IA
T

FW
D

St
d

IA
T

BK
W

 S
td

 IA
T

FW
D

Su
m

 IA
T

BK
W

 S
um

 IA
T

FW
D

In
it

Tc
p

W
in

BK
W

 In
it

Tc
p

W
in

FW
D

Pa
ck

 p
er

 S
ub

f
FW

D
By

te
s p

er
 S

ub
f

BK
W

 P
ac

k
pe

r S
ub

f
BK

W
 B

yt
es

 p
er

 S
ub

f
FW

D
Pa

ck
/s

BK
W

 P
ac

k/
s

FW
D

To
t H

ea
de

r L
en

BK
W

 T
ot

 H
ea

de
r L

en
FW

D
To

t P
US

H
Fl

ag
s

BK
W

 T
ot

 P
US

H
Fl

ag
s

Duration
Max Pack Len
Min Pack Len

Mean Pack Len
Std Pack Len
Var Pack Len

B/s
Pack/s

Max IAT
Min IAT

Mean IAT
Std IAT

Idle Min
Idle Max

Idle Mean
Idle Std
Act. Min
Act. Max

Act. Mean
Act. Std

Tot CWR Flags
Tot ECN Flags
Tot ACK Flags

Tot RESET Flags
Tot SYN Flags
Tot URG Flags
Tot FIN Flags

FWD PORT
BKW PORT

Act. data Pack fwd
min header size fwd

FWD Tot Pack
BKW Tot Pack

Down/Up Pack Ratio
FWD Std Pack Len
BKW Std Pack Len

FWD Max Pack Len
BKW Max Pack Len

FWD Mean Pack Len
BKW Mean Pack Len

FWD Min Pack Len
BKW Min Pack Len
FWD Tot Pack Len
BKW Tot Pack Len

FWD Max IAT
BKW Max IAT

FWD Mean IAT
BKW Mean IAT

FWD Min IAT
BKW Min IAT
FWD Std IAT
BKW Std IAT

FWD Sum IAT
BKW Sum IAT

FWD Init Tcp Win
BKW Init Tcp Win

FWD Pack per Subf
FWD Bytes per Subf
BKW Pack per Subf

BKW Bytes per Subf
FWD Pack/s
BKW Pack/s

FWD Tot Header Len
BKW Tot Header Len
FWD Tot PUSH Flags
BKW Tot PUSH Flags

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 3.5: Heatmap of the correlation matrix for the New Flow
Dataset

0.50 < abs(corr) ≤ 0.80 : 164 pairs
0.80 < abs(corr) ≤ 0.90 : 27 pairs
0.90 < abs(corr) ≤ 1.00 : 56 pairs

with the highest being (absolute correlation over 0.999),

1. “Max IAT”, “Idle Max”: 0.9999

2. “active data packets fwd”, “FWD Total Packet Length”: 0.9998

3. “FWD Total Packets”, “FWD Total Header Length”: 0.9994

4. “BKW Total Packets”, “BKW Total Header Length”: 0.9991

45

Chapter 4

Experimental Neural Network
Model Evaluation for Intrusion
Detection

4.1 Data Preprocessing

Certain processing steps need to be performed before the data is ready to be used
to train models, a process known as “Data Preprocessing/Preparation”. They are as
follows,

• Data Cleaning - where problems in the dataset, such as inaccuracies or errors
are corrected. Performed in Section 3.2.1.

• Dealing with Missing Values - it is the first step to transforming the data as all
the following techniques assume there is no missing data in the dataset. Usu-
ally when handling missing values, either the observations containing them
are removed from the dataset, or even the features, usually when the percent-
age of missing values is very high e.g. 90% of a feature’s values are NaNs, or,
alternatively, the missing values are imputed, meaning that they are substi-
tuted with a computed value e.g. the mean, median or mode of the feature, or
by training a model to do the substitution.

• Encoding Categorical Variables - Generally, models expect numeric inputs, so
categorical variables need to be transformed to such. Two popular methods
are,

Ordinal Encoding - where each of the n categories is mapped to an integer
value from 0 to n− 1. However, doing this implies some order exists between
the categories, so it is not always appropriate, for example, if the variable is
“colour” with values “red”, “green” and “blue”, applying ordinal encoding
could imply to the model “red” < “green” < “blue” which is false and un-
wanted.

One-Hot Encoding - where each category is mapped to a new feature,
with the values of 0 and 1 indicating its absence or not respectively. It should
be noted that n categories should generally be mapped to n− 1 new features,
with the remaining category being present when all the others are absent i.e.
all n− 1 new features are equal to 0. Using the “colour” example from above,
two new features would be added, e.g. colour_ red (R) and colour_ green (G), so
observations with colours “red”, “green” and “blue” would have (R = 1, G =
0), (R = 0, G = 1), (R = 0, G = 0) set respectively. This method fixes the issue
of ordinal encoding at the expense of introducing more features.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

46

• Feature Selection - which involves selecting a subset of features for training
by discarding irrelevant, low-information or redundant features.

• Feature Construction - where new features are created by combining existing
ones, e.g. using a feature timestamp to create a new feature Duration by sub-
tracting the start timestamp from the end timestamp for an event.

• Removing Duplicates - where, as the name suggests, duplicate observations
are removed.

• Feature Scaling & Normalization - which scales the data to a new range,
which can help make training faster. Some popular methods are,

Standardization - which is calculated feature-wise as

x′ =
x− x

s

where x is the sample mean and s is the sample standard deviation of a feature.
The scaled data has zero mean and unit variance.

Min-max scaling - which is also calculated feature-wise as follows,

x′ =
x− xmin

xmax − xmin

where xmax, xmin are the maximum and minimum values of the feature respec-
tively, and maps the data to the range [0, 1].

• Handling Imbalanced Data - In classification, when the number of observa-
tions per class is significantly different between classes e.g. in binary classifi-
cation, 80% of examples belonging to class A, while only 20% to class B, the
data is considered “imbalanced”. Training on imbalanced data can cause the
model to focus less on the minority class. Furthermore, using improper eval-
uation metrics can overestimate the classifier’s performance, as explained in
Section 2.2.9.

Some of the most popular techniques to ameliorate class imbalance are:

Undersampling the majority class(es), meaning only using a fraction of
the available examples.

Oversampling the minority class(es), essentially increasing the number of
samples in the minority class(es) with copies of existing observations.

Generating synthetic observations from the minority class(es), which in-
creases their cardinality like oversampling does, only instead of repeating sam-
ples, new but similar to existing ones are created with algorithms such as
SMOTE and ADASYN.

Cost-sensitive training An alternative to resampling methods is increas-
ing the cost of misclassifying the minority class(es), giving them more “impor-
tance” during model training.

These techniques can also be combined e.g. undersampling the majority class
and generating synthetic examples for the minority class. However, it should
be noted that using them is not always necessary if a classifier performs well
enough without them, nor are they guaranteed to improve performance.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

47

• Transforming Labels - The final step before the data is ready, is to trans-
form the labels to the format required by the cost function of the given frame-
work/library.

4.2 Prerocessing Steps

This section describes the preprocessing that was applied to the three datasets, first
focusing procedures specific to each dataset and finishing with general steps that
were applied to all.

Firstly, at this point for the flow datasets, 15% of each training set is set aside,
in a stratified manner with respect to the class as described in Section 3.2.2, to form
validation sets.

4.2.1 Sequence Dataset Specific

While the average number of packets per flow is 37.58 (48.42 when the “BENIGN”
class is considered alone), there exist extremely long flows, as described in Sec-
tion 3.3.2, some with as many as (approximately) 2.5 million packets. In order to
avoid said extremely long flows dominating within their class, flows are capped to
a length of 50,000 packets.

In order to train models more efficiently, the number of packets a model is ex-
pected to receive, window, should be fixed. Window can not be very wide in order to
avoid having to split most flows into multiple windows: by setting it to a number as
low as 20 packets, which the value we chose for this Thesis, over 70% of flows are
included in one piece (a single window).

Flows with numbers of packets exceeding window are handled by being split into
window sized flows. Finally, flows with only 1 packet are discarded and those left are
padded to window size.

It is at this point that 15% of the training set is set aside as a validation set. Fur-
thermore, the “HEARTBLEED” class due to only having one flow could not be split
before this point. After being divided into new, window sized flows, it is split in the
same manner as the others i.e. 15% for testing, 85% for training and 15% of that for
validation.

Feature Selection & Construction

From the source and destination IP addresses, ip.src and ip.dst, a new categorical
feature named attacker_src is created, after which they are removed from the dataset.
That feature takes values zero and one, with the former indicating a packet sent from
a potential victim i.e. a host the IDS would be protecting and the latter indicating a
packet sent from an external host to the protected network (or the gateway/firewall),
meaning attacker_src also implicitly indicates the packet direction. In the case where
the communication is between two protected hosts, it only indicates the direction,
with the packets of the host that initiated communication having attacker_src set to
zero.

Another recorded feature is frame.time_epoch, however the absolute capture time
of the packet is not relevant, so it is used to derive two new, more meaningful, fea-
tures, frame.inter_arrival_time and frame.direc_inter_arrival_time, and then dropped.
The former refers to the inter-arrival time between successive packets in the flow
regardless of direction, and the latter to the inter-arrival times between successive
packets in the same direction e.g. given the following for packets (0, 0), (1, 0.5), (0, 0.6),

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

48

(1, 1.2) in the format (direction, timestamp) the former would be equal to (0, 0.5, 0.1,
0.6) while the latter would be equal to (0, 0, 0.6, 0.7)

Finally, the features tcp.flags.cwr, tcp.flags.ece and tcp.flags.urg are removed, as are
only set for the “BENIGN” class and even then very rarely (for 0.133%, 0.12% and
0.017% of TCP flows respectively, and even less if UDP flows are included).

4.2.2 Original Flow Dataset Specific

Class # Missing % Missing

BENIGN 688785 44.250576
DoS Hulk 110 0.087618
PortScan 97 0.108585
DDoS 14 0.015136
Bot 9 0.634249
FTP-Patator 5 0.109409
DoS GoldenEye 5 0.067268
Heartbleed 3 37.500000
Infiltration 1 3.846154
Brute Force (Web) 0 0.000000
Sql Injection 0 0.000000
XSS 0 0.000000
SSH-Patator 0 0.000000
DoS slowloris 0 0.000000
DoS Slowhttptest 0 0.000000

(A) Observations having at least one missing
value per class

Feature # Missing % Missing

Init_Win_bytes_forward 685750 36.299528
Init_Win_bytes_backward 680434 36.018131
Flow IAT Min 2096 0.110950
Flow Packets/s 1290 0.068285
Flow Bytes/s 1268 0.067120
Flow IAT Max 85 0.004499
Flow Duration 85 0.004499
Flow IAT Mean 85 0.004499
min_seg_size_forward 27 0.001429
Fwd Header Length 27 0.001429
Bwd Header Length 17 0.000900
Fwd IAT Min 13 0.000688

(B) Missing values per feature

The original flow dataset has missing values, displayed for the training set per
class in Table 4.1a. Out of 1,889,143 instances in the training set, 689,029 or 36.47%
have missing values distributed over the features as seen in Table 4.1b, which are
imputed using an iterative method, “IterativeImputer” from scikit-learn [18], where
each feature is estimated from the others. The missing values in the validation and
test sets are then imputed using the model trained on the training set.

4.2.3 General Preprocessing Steps

Transforming Port Features

In all experiments, for every dataset, their features that had to do with port numbers
(Destination Port for the original flow dataset, FWD Port and BKW Port for the new
flow dataset and tcp.srcport and tcp.dstport for the sequence dataset) were processed
in the following way: those features happen to take specific values based on the
service configurations of the network the data was gathered from and the random
high-numbered ports the OS happened to use when making connection to those
services, but this is not something the model should learn to rely on. Therefore,
the port numbers are binned into three categories ‘Well-Known”, “Registered” and
“Ephemeral” further described in Section 2.4.4, which are then one-hot encoded.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

49

De-duplicating Instances

There existed some duplicate examples in the datasets, though not across training,
validation or test sets due to careful splitting. Encoding the port numbers to only
three categories further increased that number, so in this step all duplicate instances
are removed.

Feature Scaling/Standardization

The features of each dataset that are boolean/dichotomous are left as is. The others
are standardized i.e. transformed to have unit variance and zero mean. It should be
noted that the validation and test sets are standardized using the mean and standard
deviation computed from the corresponding training sets to avoid data dredging.
For the sequence dataset, the padding appended to flows shorter than window is not
taken into account when calculating the mean and standard deviation, that is to say,
it is removed before each feature is standardized and is then reinserted.

Further Scaling & Clipping

For some experiments on the flow datasets, additional scaling was applied before
and/or after standardizing as described above. Specifically, features with ranges
exceeding some number, e.g. 1,000,000, had either the square root function, or the
common logarithm function applied to them to reduce said range before standard-
izing.

Another transformation that was tried in some experiments was clipping the
data after it had been standardized. Given an interval [min, max], clipping means
that values in the data d outside the interval are clipped to the values of the end-
points i.e.

clip(min, max, d) =

min, if d < min
max, if d > max
d, otherwise

4.3 Experiments: Typical Parameters

The data was preprocessed as described above, with further scaling (Section 4.2.3)
not applied unless indicated otherwise.

Early stopping, described in Section 2.2.6, was used for all models. Furthermore,
the learning rate was decreased when the monitored metric, either validation loss
or validation AUC stopped improving for a number of epochs n, using Keras’ [19]
“ReduceLROnPlateau” callback.

Generally, relatively large batch sizes were selected, as testing showed no signif-
icant difference in model performance, and they drastically decreased training time,
allowing for more model configurations to be tested. Additionally, for the classifi-
cation experiments, having larger batch sizes increases the likelihood that instances
from minority classes are present in each batch.

The Adam optimizer [70] was selected as the optimizer for all models, with all
its hyperparameters set to the default values of the Keras’ implementation save for
the learning rate, which was chosen through trial and error.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

50

Finally, for the binary classifiers, considering the imbalanced nature of the datasets,
the decision thresholds were selected such that the F1 Scores on the respective val-
idation sets were maximized. The same process was adjusted for the autoencoder
models for selecting the best reconstruction error thresholds.

4.4 Experiments: Classification

For classification, both binary and multi-class classification models were trained for
each dataset.

4.4.1 Original Flow Dataset

Class
Test Set Binary Multi-Class

Obs. Recall Precision Recall F1 Score

BENIGN 309,727 99.909 99.464 99.790 99.627
Web Attack - Brute Force 224 98.661 87.500 6.250 11.667
Web Attack - Sql Injection 3 66.667 0.000 0.000 0.000
Web Attack - XSS 98 94.898 0.000 0.000 0.000
DoS Hulk 26,349 97.909 98.052 97.818 97.935
Infiltration 5 0.000 100.000 20.000 33.333
SSH-Patator 558 97.491 100.000 77.957 87.613
FTP-Patator 982 97.352 95.779 97.047 96.409
DoS slowloris 847 99.410 97.995 92.326 95.076
DoS Slowhttptest 799 99.374 90.185 97.747 93.814
Heartbleed 2 0.000 66.667 100.000 80.000
PortScan 967 99.690 98.814 60.290 74.888
DDoS 19,204 99.948 99.844 99.885 99.865
Bot 255 40.000 96.078 38.431 54.902
DoS GoldenEye 1,543 99.417 99.208 97.472 98.333

TABLE 4.2: For the “Original Flow Dataset”, the Recall (TPR) of the
Binary Classifier for each Class, along with the Precision, Recall and

F1 Score for the Multi-Class Classifier for each class.

Binary Classification

For this model, additional scaling was applied to the data, where features with
ranges exceeding 100,000 had the square root function applied to them to reduce
it, and the data was clipped to the range [−5, 5] after being standardized.

The best model had 3 layers, with 110 neurons each. The focal loss function
(Section 2.2.8) was used, with the balancing parameter set to the class frequency of
the majority class. The learning rate was set to 0.0007, dropout to 0.5 and the batch
size to 512.

Table 4.3a indicates a powerful model, with a high F1 Score of 98.95% and AUC
of 99.989%, with low False Positive (0.091%) and False Discovery (0.551%) Rates. Ta-
ble 4.2 reveals, unsurprisingly, that the model faces issues correctly predicting those
classes with few examples in the dataset. It also struggles with the “BOT” class,
possibly due to its behaviour being less obviously malicious given the information

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

51

Binary Classifier
Metrics %

Accuracy 99.703
Balanced Accuracy 99.190
AUC 99.988
Precision 99.449
Recall 98.472
F1 Score 98.958
Specificity 99.909
FDR 0.551
FPR 0.091

(A) Original Flow Dataset: Binary Classi-
fier Metrics

Multi-Class Classifier
Metric %

Accuracy
— 99.34

Balanced 65.67

AUC
OVO 98.64
OVR 99.87

Macro Avg.
Precision 81.97
Recall 65.67
F1 Score 68.23

Weighted
Avg.

Precision 99.31
Recall 99.34
F1 Score 99.28

(B) Original Flow Dataset: Multi-class
Classifier Metrics

available to the model than e.g., a “PORTSCAN” attack, combined with a still rela-
tively low number of examples.

Multi-Class Classification

A 2 layer model with 128 neurons in each layer, trained by minimizing the crossen-
tropy loss performed best. The learning rate was set to 0.001, dropout to 0.5 and
the batch size to 128. This model doesn’t perform very well, struggling with many
classes, as Tables 4.2 and 4.3b show.

4.4.2 New Flow Dataset

Binary Classification

For this model, the same additional scaling was applied to the data as was to the bi-
nary classifier for the original flow dataset, that is to say, the square root was applied
to features having ranges over 100,000 and the data was clipped to the range [−5, 5]
after being standardized.

The model had 3 layers each with 96 neurons, the learning rate was set to 0.001,
dropout to 0.5 and the batch size to 512, with the binary crossentropy loss being
minimized.

According to Table 4.4, the model was generally successfull at detecting a variety
of attacks, only having major trouble with classes “INFILTRATION” and “SQLI”,
both of which had exceedingly few examples, 4 and 2 respectively.

Even so, its overall ability to detect attacks was high (Recall = 99.958%), even
while keeping both FDR and FPR very low, at 0.311% and 0.084% respectively.

Multi-Class Classification

The model had 2 layers of 128 neurons each, with the learning rate set to 0.001,
dropout to 0.5, the batch size to 128 and the crossentropy loss being chosen as the
loss function.

While this model detected most attacks adequately (Table 4.4), it really struggled
with all those with very low cardinality i.e. the same as the binary classifier, with

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

52

Class
Test Set Binary Multi-Class

Obs. Recall Precision Recall F1 Score

BENIGN 246,196 99.916 99.962 99.912 99.937
BOTNET 110 99.091 99.091 99.091 99.091
DDOS 14,390 100.000 99.965 99.951 99.958
DOS-GOLDENEYE 1,147 100.000 99.912 98.518 99.210
DOS-HULK 24,021 99.992 99.913 99.979 99.946
DOS-SLOWHTTPTEST 767 99.739 93.325 98.435 95.812
DOS-SLOWLORIS 856 99.416 98.465 97.430 97.945
SSH-PATATOR 448 99.107 99.773 98.214 98.988
FTP-PATATOR 600 99.833 99.833 99.667 99.750
HEARTBLEED 2 100.000 25.000 50.000 33.333
INFILTRATION 4 0.000 0.000 0.000 0.000
PORTSCAN 24,019 99.983 99.399 99.850 99.624
SQLI 2 0.000 0.000 0.000 0.000
BRUTEFORCE (WEB) 17 100.000 87.500 82.353 84.848
XSS 95 96.842 93.407 89.474 91.398

TABLE 4.4: For the “New Flow Dataset”, the Recall (TPR) of the Bi-
nary Classifier for each Class, along with the Precision, Recall and

F1 Score for the Multi-Class Classifier for each class.

Binary Classifier
Metrics %

Accuracy 99.925
Balanced Accuracy 99.937
AUC 99.996
Precision 99.690
Recall 99.958
F1 Score 99.824
Specificity 99.916
FDR 0.311
FPR 0.084

(A) New Flow Dataset: Binary Classifier
Metrics

Multi-Class Classifier
Metric %

Accuracy
— 99.89

Balanced 80.86

AUC
OVO 99.90
OVR 99.97

Macro Avg.
Precision 79.70
Recall 80.86
F1 Score 79.99

Weighted
Avg.

Precision 99.89
Recall 99.89
F1 Score 99.89

(B) New Flow Dataset: Multi-class Clas-
sifier Metrics

the addition of the “HEARTBLEED”, and less prominently, “BRUTEFORCE (WEB)”
and “XSS” classes.

4.4.3 Sequence Dataset

Various LSTM network configurations were tried, and although all of them per-
formed very well, that is, having AUCs exceeding 0.9999 and F1 scores over 0.9979,
the simpler models described bellow performed marginally better.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

53

Class
Test Set Binary Multi-Class

Obs. Recall Precision Recall F1 Score

BENIGN 327,797 99.960 99.994 99.961 99.977
BOTNET 125 100.000 99.206 100.000 99.602
DDOS 14,398 99.979 100.000 99.986 99.993
DOS-GOLDENEYE 1,168 100.000 99.742 99.229 99.485
DOS-HULK 23,905 99.996 99.908 99.900 99.904
DOS-SLOWHTTPTEST 645 100.000 99.688 99.225 99.456
DOS-SLOWLORIS 638 100.000 96.078 99.843 97.925
SSH-PATATOR 1,341 99.776 100.000 99.702 99.851
FTP-PATATOR 1,194 100.000 100.000 100.000 100.000
HEARTBLEED 369 100.000 100.000 100.000 100.000
INFILTRATION 6 0.000 0.000 0.000 0.000
PORTSCAN 3,252 100.000 96.248 99.385 97.791
SQLI 2 100.000 100.000 50.000 66.667
BRUTEFORCE (WEB) 144 100.000 100.000 98.611 99.301
XSS 137 100.000 99.275 100.000 99.636

TABLE 4.6: For the “Sequence Dataset”, the Recall (TPR) of the Binary
Classifier for each Class, along with the Precision, Recall and F1 Score

for the Multi-Class Classifier for each class.

Binary Classifier
Metrics %

Accuracy 99.961
Balanced Accuracy 99.966
AUC 99.9996
Precision 99.722
Recall 99.973
F1 Score 99.847
Specificity 99.960
FDR 0.278
FPR 0.040

(A) Sequence Dataset: Binary Classifier
Metrics

Multi-Class Classifier
Metric %

Accuracy
— 99.95

Balanced 89.72

AUC
OVO 99.51
OVR 99.37

Macro Avg.
Precision 92.68
Recall 89.72
F1 Score 90.64

Weighted
Avg.

Precision 99.95
Recall 99.95
F1 Score 99.95

(B) Sequence Dataset: Multi-class Classi-
fier Metrics

Binary Classification

The LSTM network had 128 units, the learning rate was set to 0.003 and dropout to
0.4. The crossentropy loss was selected with a batch size of 256.

As shown in Table 4.7a the model performs very well, having a very high AUC
(> 99.99%) and relatively high F1 Score (99.84%). It appears to only struggle signif-
icantly with the “INFILTRATION” class (Table 4.6), possibly due to it having very
few examples. Surprisingly, despite having even fewer examples available, class
“SQLI” is recognised as an attack without fail.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

54

Multi-Class Classification

The multi-class classification model had 50 units, the learning rate was set to 0.002,
dropout to 0.3, with the crossentropy loss being minimized and a batch size of 256.

This model also performs quite well, except for misclassifing “INFLITRATION”
attacks as “BENIGN” activity, just like the binary classifier. That, in addition to
getting one of the two “SQLI” instances wrong, hurts its performance.

4.5 Experiments: Anomaly detection

For anomaly detection autoencoders were trained on the flow datasets, and LSTM-
autoencoders on the sequence dataset.

Autoencoders, which were described in Section 2.3.6, can be used to detect anoma-
lous examples in the following manner: they are only trained on “normal” data and
since they try to minimize the reconstruction error and “abnormal” datapoints are
assumed to be dissimilar to “normal” ones in some manner, it is reasonable to expect
that when presented with “abnormal” datapoints, they will struggle to accurately
reconstruct them. In other words, the reconstruction error for “abnormal“ samples
will be higher than that for “normal“ ones.

So, after training them, a reconstruction error threshold, different for each model,
is chosen and instances whose reconstruction error surpasses that threshold are clas-
sified as anomalies. LSTM-autoencoders work much in the same way as autoen-
coders, only they are capable of efficiently dealing with sequence data as the encoder
and decoder parts are fully-fledged LSTMs.

The steps outlined in Section 4.1 are followed for data preparation, only, before
the standardization happens, all “abnormal” instances are removed from the train-
ing (and validation) sets, since the models should only be trained on the “normal”
instances. The removed “abnormal” instances are used instead for model and opti-
mal threshold selection.

All the best models had an additional constraint placed on them which penalized
model layer outputs, specifically, a Keras’ L1 activity regularizer.

Another thing to note is that all the models were symmetric i.e. the decoder is
a mirrored encoder e.g. given n features, encoder layer sizes of [64, 32] and a code
dimension of 16, the layer sizes of the full model would be [64, 32, 16, 32, 64, n]. The
final n-sized layer is there to match the input and output shapes.

Finally, the MSE loss (Section 2.2.8) function was selected to be minimized dur-
ing training, and for predictions, the MSE and MAE were calculated as potential
reconstruction errors for every model.

4.5.1 Original Flow Dataset

The best model had layer sizes of [100, 60] for the encoder and a code dimension of
33. The learning rate was set to 0.003, L1 regularizer strength to 5e−5 and batch size
to 256. The MAE reconstruction error performed better when classifying anomalies.

It performed poorly, as shown in Table 4.8b. While its Recall is 90.2%, its Preci-
sion is very low (50.25%) and FPR quite high, at almost 15%.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

55

Class
Test Set

Obs. TPR

BENIGN 309,727 85.0559
Web Attack - Brute Force 224 9.3750
Web Attack - Sql Injection 3 33.3333
Web Attack - XSS 98 2.0408
DoS Hulk 26,349 88.5499
Infiltration 5 100.0000
SSH-Patator 558 78.8530
FTP-Patator 982 62.1181
DoS slowloris 847 99.6458
DoS Slowhttptest 799 99.7497
Heartbleed 2 100.0000
PortScan 967 59.4623
DDoS 19,204 96.4174
Bot 255 40.3922
DoS GoldenEye 1,543 97.8613

(A) Original Flow Dataset: Per class TPR

Metrics %

Accuracy 85.7939
Balanced Accuracy 87.6298
AUC 94.3070
Precision 50.2536
Recall 90.2037
F1 Score 64.5472
Specificity 85.0559
FDR 49.7464
FPR 14.9441

(B) Original Flow Dataset: Anomaly Detec-
tion Metrics

Class
Test Set

Obs. TPR

BENIGN 246,196 92.6888
BOTNET 110 4.5455
DDOS 14,390 99.8332
DOS-GOLDENEYE 1,147 93.4612
DOS-HULK 24,021 99.5712
DOS-SLOWHTTPTEST 767 99.8696
DOS-SLOWLORIS 856 92.0561
SSH-PATATOR 448 95.7589
FTP-PATATOR 600 99.3333
HEARTBLEED 2 100.0000
INFILTRATION 4 50.0000
PORTSCAN 24,019 50.9014
SQLI 2 0.0000
BRUTEFORCE (WEB) 17 82.3529
XSS 95 2.1053

(A) New Flow Dataset: Per class TPR

Metrics %

Accuracy 90.3120
Balanced Accuracy 87.0992
AUC 94.0108
Precision 75.0644
Recall 81.5097
F1 Score 78.1544
Specificity 92.6888
FDR 24.9356
FPR 7.3112

(B) New Flow Dataset: Anomaly Detection
Metrics

4.5.2 New Flow Dataset

The best model had layer sizes of [128, 64] for the encoder and a code dimension of
17. The learning rate was set to 0.007, L1 regularizer strength to 0.001 and batch size
to 128. The MSE reconstruction error performed better when classifying anomalies.

This model also does not perform very well, it has a F1 Score of 78%, and its FPR
is high with a value of 7.3%.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

56

Class
Test Set

Obs. TPR

BENIGN 327,797 98.1281
BOTNET 125 40.8000
DDOS 14,398 99.9722
DOS-GOLDENEYE 1,168 97.5171
DOS-HULK 23,905 99.9414
DOS-SLOWHTTPTEST 645 98.1395
DOS-SLOWLORIS 638 99.0596
SSH-PATATOR 1,341 99.4780
FTP-PATATOR 1,194 99.8325
HEARTBLEED 369 100.0000
INFILTRATION 6 33.3333
PORTSCAN 3,252 37.0234
SQLI 2 100.0000
BRUTEFORCE (WEB) 144 97.9167
XSS 137 100.0000

(A) Seq. Dataset: Per class TPR

Metrics %

Accuracy 97.7770
Balanced Accuracy 96.7365
AUC 99.0093
Precision 88.0290
Recall 95.3449
F1 Score 91.5410
Specificity 98.1281
FDR 11.9710
FPR 1.8719

(B) Seq. Dataset: Anomaly Detection Met-
rics

4.5.3 Sequence Dataset

The best model had encoder layer sizes of [64, 32] and a code dimension of 16. The
learning rate was set to 0.003, L1 regularizer strength to 1e−4 and batch size to 256.

Once the code for an input sequence had been calculated, the decoding worked
as follows: the code vector was repeated timestep times, and given as input to the
decoder, which produced one sequence point per step.

To get a scalar reconstruction error, the average of the timestep-dimensional vec-
tor containing the reconstruction errors for each packet/timestep of each sequence
was taken. The MSE reconstruction error performed better for classifying anomalies.

This model outperformed those trained on the flow-based datasets as can be seen
in Table 4.10b.

4.6 Experiments: Training Classifiers on Autoencoder codes

While autoencoders were shown in Section 4.5 to fare poorly when used to directly
classify examples based on the reconstruction error, they could instead be used as a
dimensionality reduction technique. This was done by removing the decoder part of
the networks selected in Section 4.5, giving them their respective datasets’ training,
validation and test sets as input and getting the reduced dimensionality “codes” as
output. That output was then used to train new binary and multi-class classifiers.
For all those models the crossentropy loss was used.

4.6.1 Original Flow Dataset

The number of features of this dataset was reduced to 33, however examining the
new features revealed that 3 of them had a constant value of zero and were therefore
removed, further dropping the number of features to 30.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

57

Class
Test Set Binary Multi-Class

Obs. Recall Precision Recall F1 Score

BENIGN 309,727 99.90 99.51 99.88 99.69
Web Attack - Brute Force 224 19.64 33.59 19.20 24.43
Web Attack - Sql Injection 3 66.67 0.00 0.00 0.00
Web Attack - XSS 98 3.06 100.00 2.04 4.00
DoS Hulk 26,349 97.30 99.26 97.31 98.27
Infiltration 5 0.00 100.00 40.00 57.14
SSH-Patator 558 96.24 99.55 78.85 88.00
FTP-Patator 982 97.25 98.16 97.96 98.06
DoS slowloris 847 99.29 98.67 96.58 97.61
DoS Slowhttptest 799 97.25 89.50 98.12 93.61
Heartbleed 2 100.00 100.00 100.00 100.00
PortScan 967 71.15 97.32 71.35 82.34
DDoS 19,204 99.79 99.71 99.88 99.80
Bot 255 40.00 98.10 40.39 57.22
DoS GoldenEye 1,543 97.47 98.69 97.73 98.21

TABLE 4.11: For the “Original Flow Dataset” and Classifiers trained
on the AE “codes”, the Recall (TPR) of the Binary Classifier for each
Class, along with the Precision, Recall and F1 Score for the Multi-

Class Classifier for each class.

Binary Classifier
Metrics %

Accuracy 99.4795
Balanced Accuracy 98.4272
AUC 99.9571
Precision 99.4027
Recall 96.9519
F1 Score 98.1620
Specificity 99.9025
FDR 0.5973
FPR 0.0975

(A) Original Flow Dataset (AE codes): Bi-
nary Classifier Metrics

Multi-Class Classifier
Metric %

Accuracy
— 99.44

Balanced 69.29

AUC
OVO 98.52
OVR 99.82

Macro Avg.
Precision 87.47
Recall 69.29
F1 Score 73.23

Weighted
Avg.

Precision 99.42
Recall 99.44
F1 Score 99.40

(B) Original Flow Dataset (AE codes):
Multi-class Classifier Metrics

Binary Classification

The best model had 2 layers, with 256 neurons each. The learning rate was set to
0.003, dropout to 0.4 and the batch size to 256.

The model does not perform badly, with an AUC of 99.95% and a F1 Score of
98.16%, especially compared to its reconstruction error counterpart, though Table 4.11
shows it struggling detecting many kinds of attacks.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

58

Multi-Class Classification

A 2 layer model with 128 neurons in each layer performed best. The learning rate
was set to 0.001, dropout to 0.35 and the batch size to 256.

Notably, this model scores comparably (e.g. AUC OVR 99.82% vs. 88.87%) or
better (e.g. Balanced Acc. 69.29% vs 65.67) in all metrics compared against the multi-
class model trained on the full (i.e. with the full number of features) dataset (see
Tables 4.12b, 4.3b).

4.6.2 New Flow Dataset

Class
Test Set Binary Multi-Class

Obs. Recall Precision Recall F1 Score

BENIGN 246,196 98.82 97.12 99.65 98.37
BOTNET 110 3.64 88.60 91.82 90.18
DDOS 14,390 98.36 95.86 97.77 96.81
DOS-GOLDENEYE 1,147 82.04 87.05 66.78 75.58
DOS-HULK 24,021 98.98 98.61 97.53 98.07
DOS-SLOWHTTPTEST 767 77.44 88.43 80.70 84.39
DOS-SLOWLORIS 856 87.38 91.21 80.02 85.25
SSH-PATATOR 448 87.95 98.17 95.76 96.95
FTP-PATATOR 600 97.67 97.53 98.67 98.09
HEARTBLEED 2 100.00 0.00 0.00 0.00
INFILTRATION 4 0.00 0.00 0.00 0.00
PORTSCAN 24,019 74.52 97.34 73.50 83.75
SQLI 2 0.00 0.00 0.00 0.00
BRUTEFORCE (WEB) 17 82.35 63.64 82.35 71.79
XSS 95 0.00 0.00 0.00 0.00

TABLE 4.13: For the “New Flow Dataset” and Classifiers trained on
the AE “codes”, the Recall (TPR) of the Binary Classifier for each
Class, along with the Precision, Recall and F1 Score for the Multi-

Class Classifier for each class.

The number of features of this dataset was reduced to 17.

Binary Classification

The first layer of the best model had 128 neurons and the second 96, the learning rate
was set to 0.007, dropout to 0.4 and the batch size to 256.

This model struggles at detecting many kinds of attacks (Table 4.13) and has a
high FPR of 1.1%.

Multi-Class Classification

The model had 3 layers of 128 neurons each, with the learning rate set to 0.0003,
dropout to 0.4 and the batch size to 256.

As shown in Tables 4.13 and 4.14b it does not perform very well and certainly
worse than its counterpart trained on the full dataset (compare against Tables 4.4
and 4.5b).

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

59

Binary Classifier
Metrics %

Accuracy 96.7180
Balanced Accuracy 93.8722
AUC 99.5920
Precision 95.3282
Recall 88.9211
F1 Score 92.0133
Specificity 98.8233
FDR 4.6718
FPR 1.1767

(A) New Flow Dataset (AE codes): Binary
Classifier Metrics

Multi-Class Classifier
Metric %

Accuracy
— 97.12

Balanced 64.30

AUC
OVO 99.40
OVR 99.78

Macro Avg.
Precision 66.90
Recall 64.30
F1 Score 65.28

Weighted
Avg.

Precision 97.09
Recall 97.12
F1 Score 96.96

(B) New Flow Dataset (AE codes): Multi-
class Classifier Metrics

4.6.3 Sequence Dataset

Class
Test Set Binary Multi-Class

Obs. Recall Precision Recall F1 Score

BENIGN 327,797 99.96 99.99 99.96 99.97
BOTNET 125 95.20 99.20 99.20 99.20
DDOS 14,398 99.91 99.97 99.98 99.98
DOS-GOLDENEYE 1,168 99.83 98.46 98.63 98.55
DOS-HULK 23,905 99.93 99.87 99.84 99.85
DOS-SLOWHTTPTEST 645 99.69 99.06 98.45 98.76
DOS-SLOWLORIS 638 99.37 95.77 99.37 97.54
SSH-PATATOR 1,341 99.33 99.92 99.11 99.51
FTP-PATATOR 1,194 100.00 99.92 100.00 99.96
HEARTBLEED 369 99.73 99.73 100.00 99.86
INFILTRATION 6 0.00 0.00 0.00 0.00
PORTSCAN 3,252 99.02 96.25 99.42 97.81
SQLI 2 100.00 0.00 0.00 0.00
BRUTEFORCE (WEB) 144 99.31 100.00 97.92 98.95
XSS 137 100.00 99.28 100.00 99.64

TABLE 4.15: For the “Sequence Dataset” and Classifiers trained on
the AE “codes”, the Recall (TPR) of the Binary Classifier for each
Class, along with the Precision, Recall and F1 Score for the Multi-

Class Classifier for each class.

As explained in Section 4.5.3, for the LSTM-Autoencoder model, a “code” was
computed for each sequence and then repeated timestep times as input to the de-
coder. It is that code that the new classifiers were trained on, meaning instead of
sequences, their inputs are single 16-dimensional vectors. In other words, these
models are not LSTMs, but simple neural networks.

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

60

Binary Classifier
Metrics %

Accuracy 99.9403
Balanced Accuracy 99.8827
AUC 99.9970
Precision 99.7213
Recall 99.8056
F1 Score 99.7634
Specificity 99.9597
FDR 0.2787
FPR 0.0403

(A) Sequence Dataset (AE codes): Binary
Classifier Metrics

Multi-Class Classifier
Metric %

Accuracy
— 99.93

Balanced 86.12

AUC
OVO 98.76
OVR 99.29

Macro Avg.
Precision 85.83
Recall 86.12
F1 Score 85.97

Weighted
Avg.

Precision 99.93
Recall 99.93
F1 Score 99.93

(B) Sequence Dataset (AE codes): Multi-
class Classifier Metrics

Binary Classification

The best network had 256 neurons in the first layer and 64 in the second. The learn-
ing rate was set to 0.007, dropout to 0.35 and the batch size to 256.

The model performed generally well (AUC > 99.99%, F1 Score of 99.76%), only
having significant problems with the “INFILTRATION” class and to a much lesser
degree with the “BOTNET” class.

Multi-Class Classification

The model had 256 neurons in the first layer and 128 in the second. The learning rate
was set to 0.0007, dropout to 0.35 and the batch size to 256. It had problems with the
“INFILTRATION” and “SQLI” classes, but did not perform too badly (Table 4.16b).

4.7 Experiments: Comparisons

Metric (%)
Binary Classifiers Multi-Class Classifiers Autoencoders

LSTM New NN Orig NN LSTM New NN Orig NN LSTM New NN Orig NN

Balanced Acc. 99.966 99.937 99.190 89.72 80.86 65.67 96.74 87.10 87.63
AUC (OVO) 99.999 99.996 99.988 99.51 99.90 98.64 99.01 94.01 94.31
F1 Score (Macro) 99.847 99.824 98.958 90.64 79.99 68.32 91.54 78.15 64.55

Metric (%)
Binary Classifiers (AE) Multi-Class Classifiers (AE)

LSTM New NN Orig NN LSTM New NN Orig NN

Balanced Acc. 99.883 93.872 98.427 86.12 64.30 69.29
AUC (OVO) 99.997 99.592 99.957 98.76 99.40 98.52
F1 Score (Macro) 99.763 92.013 98.162 85.97 65.28 73.23

TABLE 4.17: Comparing Performance by neural network architec-
ture1

Chapter 4. Experimental Neural Network Model Evaluation for Intrusion
Detection

61

As shown in Table 4.17, it is clear that the LSTMs consistently outperformed
the Feed-Forward neural networks, even in the anomaly detection section where
performances were generally poor.

Overall, binary classifiers performed the best, followed by the multi-class classi-
fiers, with the autoencoders being a distant third. When the autoencoders were only
used for dimensionality reduction, the classifiers trained on those datasets achieved
far better results than the autoencoders did directly, however still not as good as the
models trained directly on the datasets.

1New/Old NN indicate neural networks trained on the new and original flow datasets respectively,
(AE) indicates the classifiers were trained on datasets after dimensionality reduction

62

Chapter 5

Conclusions & Future Work

5.1 Conclusions

In this Thesis, we trained and evaluated a variety of neural network models for net-
work intrusion detection. First, we explored the available datasets and selected an
appropriate flow-based one. From the packet captures accompanying it we extracted
the IP, TCP and UDP headers from each packet and used them to create features for
a sequence dataset. We also created an additional flow-based dataset by aggregating
information from those features.

We then proceeded to analyze, clean and preprocess all the datasets and using
them we trained many models and experimented with various model configura-
tions e.g. different numbers of layers, learning rates, dropouts etc. Specifically, we
first trained feed-forward neural networks and LSTMs for binary and multi-class
classification. Then, we tried a different approach using autoencoders, initially for
anomaly detection and then for dimensionality reduction. We also reported the con-
figurations that gave the best results.

We discovered that using autoencoders directly for classification has poor results,
but models trained on the reduced datasets they can produce perform much better.
Finally, our experiments clearly showed that LSTMs perform better and do so con-
sistently over all tasks, with the best LSTM model achieving an AUC over 99.999%
and a FPR of 0.04%.

5.2 Future Work

One disadvantage of LSTM neural networks are the long training times, so it would
be interesting to evaluate whether replacing them with temporal convolutional net-
works (TCNs) speeds up training times while achieving comparable results.

Another exciting avenue of research would be to try to improve performance by
combining data coming from the network with additional data from the host and
training models on that.

63

Bibliography

[1] Nicky Woolf. “DDoS attack that disrupted internet was largest of its kind in
history, experts say”. In: The Guardian (Oct. 26, 2016). URL: https : / / www .
theguardian.com/technology/2016/oct/26/ddos- attack- dyn- mirai-
botnet.

[2] Lee Mathews. “Equifax Data Breach Impacts 143 Million Americans”. In: Forbes
(Nov. 7, 2017). URL: https://www.forbes.com/sites/leemathews/2017/09/
07/equifax-data-breach-impacts-143-million-americans/.

[3] Mathew J. Schwartz. “Equifax’s Data Breach Costs Hit $1.4 Billion”. In: Bank-
InfoSecurity (May 13, 2019). URL: https : / / www . bankinfosecurity . com /
equifaxs-data-breach-costs-hit-14-billion-a-12473.

[4] Elizabeth Piper. “Cyber attack hits 200,000 in at least 150 countries: Europol”.
In: Reuters (May 14, 2017). URL: https://www.reuters.com/article/us-
cyber-attack-europol/cyber-attack-hits-200000-in-at-least-150-
countries-europol-idUSKCN18A0FX.

[5] Adam D’Angelo. “Quora Security Update”. In: (Dec. 4, 2018). URL: https:
//blog.quora.com/Quora-Security-Update.

[6] Shaun Nichols. “Marriott: Good news. Hackers only took 383 million booking
records ... and 5.3m unencrypted passport numbers”. In: The Register (Jan. 4,
2019). URL: https : / / www . theregister . co . uk / 2019 / 01 / 04 / marriott _
stolen_passport_numbers/.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: Advances in Neural In-
formation Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc.,
2012, pp. 1097–1105. URL: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

[8] Alec Radford et al. “Language models are unsupervised multitask learners”.
In: OpenAI Blog 1.8 (2019), p. 9.

[9] David Silver et al. “Mastering chess and shogi by self-play with a general re-
inforcement learning algorithm”. In: arXiv preprint arXiv:1712.01815 (2017).

[10] John Ellson et al. “Graphviz—open source graph drawing tools”. In: Interna-
tional Symposium on Graph Drawing. Springer. 2001, pp. 483–484.

[11] Dan Foreman-Mackey et al. daft-dev/daft: Minor bugfix. Version v0.1.1. Apr.
2020. DOI: 10.5281/zenodo.3747801. URL: https://doi.org/10.5281/
zenodo.3747801.

[12] Michael Waskom et al. mwaskom/seaborn: v0.10.1 (April 2020). Version v0.10.1.
Apr. 2020. DOI: 10.5281/zenodo.3767070. URL: https://doi.org/10.5281/
zenodo.3767070.

[13] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Sci-
ence & Engineering 9.3 (2007), pp. 90–95. DOI: 10.1109/MCSE.2007.55.

https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-143-million-americans/
https://www.forbes.com/sites/leemathews/2017/09/07/equifax-data-breach-impacts-143-million-americans/
https://www.bankinfosecurity.com/equifaxs-data-breach-costs-hit-14-billion-a-12473
https://www.bankinfosecurity.com/equifaxs-data-breach-costs-hit-14-billion-a-12473
https://www.reuters.com/article/us-cyber-attack-europol/cyber-attack-hits-200000-in-at-least-150-countries-europol-idUSKCN18A0FX
https://www.reuters.com/article/us-cyber-attack-europol/cyber-attack-hits-200000-in-at-least-150-countries-europol-idUSKCN18A0FX
https://www.reuters.com/article/us-cyber-attack-europol/cyber-attack-hits-200000-in-at-least-150-countries-europol-idUSKCN18A0FX
https://blog.quora.com/Quora-Security-Update
https://blog.quora.com/Quora-Security-Update
https://www.theregister.co.uk/2019/01/04/marriott_stolen_passport_numbers/
https://www.theregister.co.uk/2019/01/04/marriott_stolen_passport_numbers/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.5281/zenodo.3747801
https://doi.org/10.5281/zenodo.3747801
https://doi.org/10.5281/zenodo.3747801
https://doi.org/10.5281/zenodo.3767070
https://doi.org/10.5281/zenodo.3767070
https://doi.org/10.5281/zenodo.3767070
https://doi.org/10.1109/MCSE.2007.55

Bibliography 64

[14] The pandas development team. pandas-dev/pandas: Pandas 1.1.0. Version v1.1.0.
July 2020. DOI: 10.5281/zenodo.3964380. URL: https://doi.org/10.5281/
zenodo.3964380.

[15] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-
ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and
Jarrod Millman. 2010, pp. 56 –61. DOI: 10.25080/Majora-92bf1922-00a.

[16] Travis E Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006.

[17] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. “The NumPy array:
a structure for efficient numerical computation”. In: Computing in Science &
Engineering 13.2 (2011), p. 22.

[18] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[19] François Chollet et al. Keras. https://keras.io. 2015.

[20] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[21] Karen Scarfone and Peter Mell. Guide to Intrusion Detection and Prevention Sys-
tems (IDPS). Tech. rep. NIST CSRC, 2012. URL: https://csrc.nist.gov/
publications/detail/sp/800-94/rev-1/draft.

[22] Ronald A Fisher. “The use of multiple measurements in taxonomic problems”.
In: Annals of eugenics 7.2 (1936), pp. 179–188.

[23] Edgar Anderson. “The Species Problem in Iris”. In: Annals of the Missouri Botan-
ical Garden 23 (), pp. 457–509. ISSN: 0026-6493. DOI: 10.2307/2394164. URL:
https://biostor.org/reference/11559.

[24] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. “Efficient algorithms
for mining outliers from large data sets”. In: Proceedings of the 2000 ACM SIG-
MOD international conference on Management of data. 2000, pp. 427–438.

[25] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statis-
tical learning: data mining, inference, and prediction. Springer Science & Business
Media, 2009.

[26] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–
1958.

[27] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection. 2017. arXiv: 1708.02002
[cs.CV].

[28] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[29] Christopher Olah. “Understanding lstm networks”. In: (2015).

[30] INTERNET PROTOCOL. RFC 791. Sept. 1981. URL: https://tools.ietf.org/
rfc/rfc791.txt.

[31] Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Head-
ers. RFC 2474. Dec. 1998. URL: https://tools.ietf.org/rfc/rfc2474.txt.

[32] The Addition of Explicit Congestion Notification (ECN) to IP. RFC 3168. Sept. 2001.
URL: https://tools.ietf.org/rfc/rfc3168.txt.

https://doi.org/10.5281/zenodo.3964380
https://doi.org/10.5281/zenodo.3964380
https://doi.org/10.5281/zenodo.3964380
https://doi.org/10.25080/Majora-92bf1922-00a
https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/
https://csrc.nist.gov/publications/detail/sp/800-94/rev-1/draft
https://csrc.nist.gov/publications/detail/sp/800-94/rev-1/draft
https://doi.org/10.2307/2394164
https://biostor.org/reference/11559
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://tools.ietf.org/rfc/rfc791.txt
https://tools.ietf.org/rfc/rfc791.txt
https://tools.ietf.org/rfc/rfc2474.txt
https://tools.ietf.org/rfc/rfc3168.txt

Bibliography 65

[33] Updated Specification of the IPv4 ID Field. RFC 6864. Feb. 2013. URL: https://
tools.ietf.org/rfc/rfc6864.txt.

[34] Transmission Control Protocol. RFC 793. Sept. 1981. URL: https://tools.ietf.
org/rfc/rfc793.txt.

[35] Robust Explicit Congestion Notification (ECN) Signaling with Nonces. RFC 3540.
June 2003. URL: https://tools.ietf.org/rfc/rfc3540.txt.

[36] User Datagram Protocol. RFC 768. Aug. 1980. URL: https://tools.ietf.org/
rfc/rfc768.txt.

[37] S Revathi and A Malathi. “A detailed analysis on NSL-KDD dataset using
various machine learning techniques for intrusion detection”. In: International
Journal of Engineering Research & Technology (IJERT) 2.12 (2013), pp. 1848–1853.

[38] NSL-KDD dataset. URL: https://www.unb.ca/cic/datasets/nsl.html.

[39] Bhupendra Ingre and Anamika Yadav. “Performance analysis of NSL-KDD
dataset using ANN”. In: Jan. 2015, pp. 92–96. DOI: 10.1109/SPACES.2015.
7058223.

[40] L. Dias et al. “Using artificial neural network in intrusion detection systems to
computer networks”. In: Sept. 2017, pp. 145–150. DOI: 10.1109/CEEC.2017.
8101615.

[41] KDD Cup 1999 dataset. 1999. URL: http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html.

[42] Loic Bontemps et al. Collective Anomaly Detection based on Long Short Term Mem-
ory Recurrent Neural Network. 2017. arXiv: 1703.09752 [cs.LG].

[43] Ahmad Javaid et al. “A deep learning approach for network intrusion de-
tection system”. In: Proceedings of the 9th EAI International Conference on Bio-
inspired Information and Communications Technologies (formerly BIONETICS). 2016,
pp. 21–26.

[44] Nathan Shone et al. “A deep learning approach to network intrusion detec-
tion”. In: IEEE Transactions on Emerging Topics in Computational Intelligence 2.1
(2018), pp. 41–50.

[45] Abien Fred Agarap. A Neural Network Architecture Combining Gated Recurrent
Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network
Traffic Data. 2017. arXiv: 1709.03082 [cs.NE].

[46] Jungsuk Song, Hiroki Takakura, and Yasuo Okabe. “Description of kyoto uni-
versity benchmark data”. In: Available at link: http://www. takakura. com/Kyoto_data/BenchmarkData-
Description-v5. pdf [Accessed on 15 March 2016] (2006).

[47] Chuanlong Yin et al. “A deep learning approach for intrusion detection using
recurrent neural networks”. In: Ieee Access 5 (2017), pp. 21954–21961.

[48] Benjamin J. Radford et al. Network Traffic Anomaly Detection Using Recurrent
Neural Networks. 2018. arXiv: 1803.10769 [cs.CY].

[49] Ali Shiravi et al. “Toward developing a systematic approach to generate bench-
mark datasets for intrusion detection”. In: computers & security 31.3 (2012),
pp. 357–374.

[50] Ahmed Ahmim et al. A Novel Hierarchical Intrusion Detection System based on
Decision Tree and Rules-based Models. 2018. arXiv: 1812.09059 [cs.CR].

[51] CICIDS2017 dataset. URL: https://www.unb.ca/cic/datasets/ids-2017.
html.

https://tools.ietf.org/rfc/rfc6864.txt
https://tools.ietf.org/rfc/rfc6864.txt
https://tools.ietf.org/rfc/rfc793.txt
https://tools.ietf.org/rfc/rfc793.txt
https://tools.ietf.org/rfc/rfc3540.txt
https://tools.ietf.org/rfc/rfc768.txt
https://tools.ietf.org/rfc/rfc768.txt
https://www.unb.ca/cic/datasets/nsl.html
https://doi.org/10.1109/SPACES.2015.7058223
https://doi.org/10.1109/SPACES.2015.7058223
https://doi.org/10.1109/CEEC.2017.8101615
https://doi.org/10.1109/CEEC.2017.8101615
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://arxiv.org/abs/1703.09752
http://arxiv.org/abs/1709.03082
http://arxiv.org/abs/1803.10769
http://arxiv.org/abs/1812.09059
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html

Bibliography 66

[52] Yong Zhang et al. “Network intrusion detection: Based on deep hierarchical
network and original flow data”. In: IEEE Access 7 (2019), pp. 37004–37016.

[53] Mohamed Amine Ferrag et al. “Deep Learning Techniques for Cyber Security
Intrusion Detection: A Detailed Analysis”. In: 6th International Symposium for
ICS & SCADA Cyber Security Research 2019 6. 2019, pp. 126–136.

[54] Razan Abdulhammed et al. “Features dimensionality reduction approaches
for machine learning based network intrusion detection”. In: Electronics 8.3
(2019), p. 322.

[55] Libpcap File Format. URL: https://wiki.wireshark.org/Development/Libpca
pFileFormat.

[56] PCAP Next Generation (pcapng) Capture File Format. URL: https://github.com/
pcapng/pcapng.

[57] Markus Ring et al. A Survey of Network-based Intrusion Detection Data Sets. 2019.
arXiv: 1903.02460 [cs.CR].

[58] 1998 DARPA Intrusion Detection Evaluation Dataset. 1998. URL: https://www.
ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-
dataset.

[59] John McHugh. “Testing intrusion detection systems: a critique of the 1998 and
1999 darpa intrusion detection system evaluations as performed by lincoln
laboratory”. In: ACM Transactions on Information and System Security (TISSEC)
3.4 (2000), pp. 262–294.

[60] Mahbod Tavallaee et al. “A detailed analysis of the KDD CUP 99 data set”. In:
2009 IEEE symposium on computational intelligence for security and defense appli-
cations. IEEE. 2009, pp. 1–6.

[61] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. “Toward Gen-
erating a New Intrusion Detection Dataset and Intrusion Traffic Characteriza-
tion.” In: ICISSP. 2018, pp. 108–116.

[62] CICFlowMeter. URL: https://github.com/ahlashkari/CICFlowMeter.

[63] Amirhossein Gharib et al. “An evaluation framework for intrusion detection
dataset”. In: 2016 International Conference on Information Science and Security
(ICISS). IEEE. 2016, pp. 1–6.

[64] Iman Sharafaldin et al. “Towards a reliable intrusion detection benchmark
dataset”. In: Software Networking 2018.1 (2018), pp. 177–200.

[65] The Heartbleed Bug, CVE-2014-0160. URL: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-0160.

[66] The Heartbleed Bug. URL: https://heartbleed.com/.

[67] Internet Security Glossary, Version 2. RFC 4949. Aug. 2007. URL: https://tools.
ietf.org/rfc/rfc4949.txt.

[68] Wireshark Network Protocol Analyzer. URL: https://www.wireshark.org/docs/
man-pages/tshark.html.

[69] Tshark Network Protocol Analyzer. URL: https://www.wireshark.org/docs/
man-pages/wireshark.html.

[70] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. arXiv: 1412.6980 [cs.LG].

https://wiki.wireshark.org/Development/LibpcapFileFormat
https://wiki.wireshark.org/Development/LibpcapFileFormat
https://github.com/pcapng/pcapng
https://github.com/pcapng/pcapng
http://arxiv.org/abs/1903.02460
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://github.com/ahlashkari/CICFlowMeter
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://heartbleed.com/
https://tools.ietf.org/rfc/rfc4949.txt
https://tools.ietf.org/rfc/rfc4949.txt
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/wireshark.html
https://www.wireshark.org/docs/man-pages/wireshark.html
http://arxiv.org/abs/1412.6980

	Abstract
	Περιληψη
	Acknowledgements
	Introduction
	Problem Statement
	Contributions
	Software
	Thesis outline

	Background & Literature Review
	Intrusion Detection Systems
	Machine Learning
	Machine Learning Dataset
	Types of Algorithms by learning method
	Supervised Learning
	Unsupervised Learning

	Anomaly detection
	Training, Validation and Test set
	Underfitting, Overfitting & Model capacity
	Regularization
	Dropout
	Early stopping

	Optimization Algorithms
	Gradient Descent

	Loss/Cost Functions
	Mean Squared Error Loss
	Mean Absolute Error Loss
	Cross-Entropy Loss
	Focal Loss

	Evaluation Metrics
	ROC curve & AUC

	Generalizing Metrics to Multi-Class Classifiers
	Pearson product-moment correlation coefficient (PPMCC)
	Correlation Matrix

	Deep Learning
	Fully Connected Neural Networks
	Activation Functions
	Sigmoid
	Tanh
	ReLU

	Backpropagation
	Recurrent Neural Networks
	Long Short-Term Memory Networks
	Autoencoders

	Networking Concepts
	Internet Protocol (IP)
	IPv4 Header

	Transmission Control Protocol (TCP)
	TCP Header

	User Datagram Protocol (UDP)
	UDP Header

	Port Number Ranges

	Literature Review

	Dataset Selection & Analysis
	Selecting the right Dataset
	Network datasets
	KDD'99 Dataset
	CICIDS2017 Dataset
	Benign Traffic
	Attack Traffic

	CICIDS2017 Flow Dataset
	Data Cleaning
	Training/Test Split
	Correlation Matrix

	Creating a Sequence & Flow dataset
	Processing Raw Packet Capture Data
	Sequence Dataset
	Training/Test Split
	Data Exploration
	Correlation Matrix

	Producing a new Flow dataset
	Training/Test Split
	Correlation Matrix

	Experimental Neural Network Model Evaluation for Intrusion Detection
	Data Preprocessing
	Prerocessing Steps
	Sequence Dataset Specific
	Feature Selection & Construction

	Original Flow Dataset Specific
	General Preprocessing Steps
	Transforming Port Features
	De-duplicating Instances
	Feature Scaling/Standardization
	Further Scaling & Clipping

	Experiments: Typical Parameters
	Experiments: Classification
	Original Flow Dataset
	Binary Classification
	Multi-Class Classification

	New Flow Dataset
	Binary Classification
	Multi-Class Classification

	Sequence Dataset
	Binary Classification
	Multi-Class Classification

	Experiments: Anomaly detection
	Original Flow Dataset
	New Flow Dataset
	Sequence Dataset

	Experiments: Training Classifiers on Autoencoder codes
	Original Flow Dataset
	Binary Classification
	Multi-Class Classification

	New Flow Dataset
	Binary Classification
	Multi-Class Classification

	Sequence Dataset
	Binary Classification
	Multi-Class Classification

	Experiments: Comparisons

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

