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A B S T R A C T

One of the challenges in drone-based systems is to support automated
landing without the intervention of a human operator. Most drones
are already equipped with Global Position System (GPS) sensors, and
therefore can navigate back to their home position. Nevertheless, this
does not guarantee that they will land exactly at the desired position
because standard commercial GPS receivers only have an accuracy of
approximately 1− 2 meters.

Addressing this limitation, various efforts have been made to support
precise landing on a given target, in the order of just few centimeters.
More specifically, infrared-based mechanisms as well as RGB camera-
based mechanisms have been developed for this purpose. In most cases,
drones are equipped with only one of these mechanisms. There are also
some cases where these mechanisms are used interchangeably, depending
on weather conditions or the specific phase of the landing approach.

In this thesis, we develop an RGB camera-based sensor mechanism,
which infers the position of the drone based on the detection of a special
visual marker. Moreover, we combine the marker-based sensor with an
infrared-based sensor concurrently using a fusion-based approach. This
makes it possible to tolerate failures of any individual sensor subsystem
that might occur due to occlusions or mere malfunctions. Furthermore,
we strengthen the robustness of the precision landing operation by
forcing the control logic to perform repeated landing attempts in case
the landing target is lost during descent.

The implementation is done for the popular open-source ArduPilot
software suite, through appropriate extensions in order to incorporate
the marker-based sensor subsystem and allow its concurrent usage
with the already supported infrared precision landing mechanism. We
evaluate the developed mechanisms via simulation and by conducting
a wide range of field experiments, using a flexible configuration which
allows us to activate faults in the individual precision landing subsystem
in a controlled way. Our results show that the proposed precision landing
system increases robustness while maintaining satisfactory accuracy.
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ΠΕΡ ΙΛΗΨΗ

Μία από τις προκλήσεις στα συστήματα που βασίζονται σε αυτόνομα ενα-

έρια οχήματα (drones) είναι η υποστήριξη αυτόματης προσγείωσης χωρίς

την παρέμβαση ενός ανθρώπου χειριστή. Τα περισσότερα drones είναι

ήδη εξοπλισμένα με αισθητήρες Global Position System (GPS), κι επο-
μένως έχουν τη δυνατότητα να μπορούν να επιστρέψουν στη θέση από

την οποία απογειώθηκαν. Ωστόσο, αυτό δεν εγγυάται ότι θα προσγειω-

θούν ακριβώς στην επιθυμητή τους θέση, καθώς οι τυπικοί εμπορικοί

δέκτες-αισθητήρες GPS έχουν ακρίβεια περίπου 1 – 2 μέτρα.

Για να αντιμετωπιστεί αυτή η αδυναμία, έχουν καταβληθεί διάφορες

προσπάθειες για την υποστήριξη προσγείωσης ακριβείας πάνω από έναν

συγκεκριμένο στόχο, με ακρίβεια της τάξης μόλις λίγων εκατοστών. Πιο

συγκεκριμένα, έχουν αναπτυχθεί μηχανισμοί που βασίζονται σε αισθη-

τήρες υπέρυθρης ακτινοβολίας, καθώς και μηχανισμοί που βασίζονται σε

RGB κάμερα. Στις περισσότερες περιπτώσεις, τα drones διαθέτουν μόνο

έναν από αυτούς τους μηχανισμούς. Υπάρχουν, επίσης, ορισμένες περι-

πτώσεις όπου αυτοί οι μηχανισμοί χρησιμοποιούνται εναλλάξ, ανάλογα με

τις καιρικές συνθήκες ή τη φάση της προσγείωσης του drone.
Σε αυτή τη διατριβή, αναπτύξαμε έναν μηχανισμό βασισμένο σε μια

RGB κάμερα, ο οποίος εξάγει τη θέση του drone με βάση την ανίχνευση

ενός ειδικού οπτικού σημαδιού. Επιπλέον, συνδυάσαμε τον συγκεκριμένο

αισθητήρα με έναν επιπλέον υπέρυθρο αισθητήρα χρησιμοποιώντας μια

προσέγγιση βασισμένη στη σύντηξη της πληροφορίας τους. Αυτό καθι-

στά δυνατή την ανοχή σφαλμάτων οποιουδήποτε μεμονωμένου αισθητήρα,

που μπορεί να συμβεί λόγω αδυναμίας ανίχνευσης των επιμέρους στόχων

προσγείωσης (οπτικό σημάδι ή πομπός υπέρυθρης ακτινοβολίας) ή απλών

δυσλειτουργιών. Επιπλέον, ενισχύσαμε την αξιοπιστία της προσγείωσης

ακριβείας, αναγκάζοντας τον αυτόματο πιλότο να εκτελεί επαναλαμβα-

νόμενες προσπάθειες προσγείωσης σε περίπτωση απώλειας του στόχου

προσγείωσης κατά την κατάβαση.

Η υλοποίηση έγινε για την πλατφόρμα λογισμικού ανοιχτού κώδικα

ArduPilot, μέσω κατάλληλων επεκτάσεων προκειμένου να ενσωματωθεί

το υποσύστημα που βασίζεται στην RGB κάμερα για την ανίχνευση ο-

πτικών σημαδιών και να επιτραπεί η ταυτόχρονη χρήση του με τον ήδη

υποστηριζόμενο μηχανισμό προσγείωσης ακρίβειας με χρήση υπέρυθρου

αισθητήρα. Οι μηχανισμοί που αναπτύχθηκαν αξιολογήθηκαν μέσω προ-

σομοίωσης καθώς και πραγματοποιώντας ένα ευρύ φάσμα δοκιμών στο

πεδίο, έχοντας τη δυνατότητα να ενεργοποιούμε, μέσω κατάλληλου λογι-

σμικού, σφάλματα με πλήρως ελεγχόμενο τρόπο σε οποιοδήποτε μεμονω-

μένο υποσύστημα προσγείωσης ακριβείας. Τα αποτελέσματά δείχνουν ότι

το προτεινόμενο σύστημα προσγείωσης ακριβείας πετυχαίνει την επιθυμη-
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τή ανοχή σε μεμονωμένες βλάβες διατηρώντας ταυτόχρονα ικανοποιητική

ακρίβεια.
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1
I N T R O D U C T I O N

Multi-rotor Unmanned Aerial Vehicles (UAVs), frequently called drones,
are rapidly growing in popularity. Besides casual usage by individuals,
drones play an increasingly important role in several application domains,
such as cinematography and advertising [1], coverage of social and
sport events [2], courier and delivery services [3, 4], agriculture [5],
structural health monitoring [6], search and rescue operations [7, 8] and
surveillance [9].

What drives this widespread use of drones is the fact that they can
pilot themselves in a highly autonomous manner, thanks to an embedded
autopilot subsystem, which continuously gathers data from various on-
board sensors, processes them and takes all the steering decisions so
that the drone performs the desired movement. This, in turn, makes
it possible even for inexperienced persons to “fly” a drone, simply by
issuing high-level commands, like take-off, move upwards, goto waypoint,
hover and return to home. All that is needed is a device that sends
these commands to the drone’s autopilot over the air. This device can
be practically anything. It can be a dedicated remote control console,
or an ordinary smartphone/tablet running a suitable user interface that
translates gestures, clicks and taps into navigation commands.

In the same spirit, a drone can also be flown by a computer program.
Like the average drone user, the computer program does not need to
know how to actually fly the drone; all it needs to do is to issue naviga-
tion commands in a meaningful sequence, based on the current attitude
and position of the drone. This opens the way to a new class of drone-
based applications, where entire missions are automated using suitably
designed mission programs, with little or no human involvement. Indeed,
several efforts are underway to provide suitable programming abstrac-
tions that simplify the development of computer-based missions [10–12].
While it is not possible to automate every imaginable mission, this is
quite feasible in cases where the drone routinely needs to perform the
same tasks over an area that is well-known, as this is typically the case
in several agriculture and monitoring/surveillance scenarios.

1.1 the need for precision landing

Simplifying the development and execution of mission programs is
necessary but not sufficient to achieve the vision of full automation.

1
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1.2 aim and contribution of this thesis 2

Namely, in order to close the loop of automated operation, the drone
must be able to take-off and land autonomously.

In most cases, take-off is relatively simple. The drone simply needs
to perform a vertical upwards movement to a pre-specified altitude,
from where it can start the mission. Landing, however, can be more
tricky. Even though the drone knows its home position (typically the
location from where it took-off) and can autonomously navigate back
to it based on its on-board GPS receiver, this does not guarantee that
it will land exactly at the desired position since the standard GPS
accuracy is typically within a 1-2 meters [13].

Such inaccuracy is not acceptable if the objective is to support fully
automated operation, without any human involvement. For instance,
the drone may need to land on a plate through which it can re-charge
its batteries [14] so that it can resume operation. This may need
to be repeated a number of times in order to complete the mission.
Furthermore, when the mission is completed, the drone may have to land
into a hangar [15] that will protect it from rain or theft during periods
of inactivity (of course, the charging plate can be part of the hangar
infrastructure). In these cases, the drone must be able to land with
very high accuracy, even in the order of a just few tens of centimeters.

A popular way to achieve high-precision landing is to use infra-red
beacons [16]. More specifically, one or more infrared transmitters are
placed in the landing zone at predefined locations. In turn, the vehicle
is equipped with an infrared sensor that detects the emitted signals
and reports the horizontal offset of the drone from the beacon. This
information is combined with the ground distance, typically obtained
via a barometer or range-finder, to guide the drone so that it smoothly
lands on top of the beacon. This mechanism works quite robustly in a
wide range of environmental conditions, in particular when there is poor
or no ambient light (at night). The disadvantage is that the drone needs
to carry extra sensor equipment just for this purpose. Also, the infrared
transmitters in the landing zone have to be powered in a reliable way.

Another approach is to use an RGB camera in conjunction with image
processing algorithms to detect a special landmark/object in the landing
zone. Based on the offset of drone with respect to the landmark, it is
possible to guide the drone so that it lands at the desired position in
the landing zone. The advantage compared to the previous method is
that most drones already carry such a camera as part of the application
payload, and there is no need to equip the landing zone with active
beacons. The most important disadvantage is that landmark detection
is not robust in situations of low visibility.

1.2 aim and contribution of this thesis

The aim of the thesis is to increase the robustness of precision landing
capability in order to be able to tolerate failures of individual sensor
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1.3 thesis structure 3

subsystems, which may occur due to the limitations or mere malfunctions
of the respective sensors and corresponding subsystems. This work is
done for the open-source ArduPilot software suite [17], which is very
popular in the community and is widely used in real drones.

To this end, the main contributions are as follows:

• Marker-based precision landing. A new precision landing
sensor is developed, using an on-board RGB camera in order to
detect a special visual marker that is placed on the landing zone.

• Fused precision landing. The marker-based precision landing
sensor is combined with the available infrared precision landing
sensor (IRLock), using a fusion-based approach. The fused sensor
can tolerate a single independent failure of any one of the two
sensor subsystems hence works robustly as long as at least one of
these sensors remains operational and delivers positioning infor-
mation that can be used to guide a more accurate landing of the
vehicle.

• Refined precision landing approach. To further increase
the robustness of precision landing, the default precision landing
operation of ArduPilot is extended so as to be able to tolerate
(transient) target detection failures. More specifically, the control
logic is modified so that the landing approach can be repeated a
number of times in case the landing target is lost during descent.

• Extensive evaluation. The new precision landing capabilities
are evaluated in an extensive way, using both simulations and tests
with a real drone, for a range of indicative scenarios. To allow for
flexible experimentation, we have added fault-injection support,
which makes it possible to activate/set the type of faults to be
applied to specific precision landing subsystems in a controlled
way. Our results show that the marker-based sensor can achieve
comparable accuracy to the infrared-based sensor. They also
verify the increased robustness of the fused sensor and the more
refined precision landing approach.

1.3 thesis structure

The rest of this thesis is structured as follows. Chapter 2 gives an
overview of indicative related work. Chapter 3 briefly describes the
structure of ArduPilot [17] software framework and the IRLock sensor
subsystem that is currently used to support precision landing. Chapter 4
gives an overview of the technology behind the detection of special visual
markers, and discusses the implementation of an independent sensor
subsystem that can be used to support precision landing based on
this technology. Chapter 5 describes the fusion-based approach, which
combines the IRLock sensor subsystem and the marker sensor subsystem

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:55:13 EEST - 18.222.167.58



1.3 thesis structure 4

to provide a more robust sensor for precision landing, in a transparent
way for the core autopilot framework. Chapter 6 presents the extension
made to the ArduPilot control logic in order to support a more refined
precision landing approach. Chapter 7 presents support that was added
in order to enable the controlled injection of artificial faults into the
individual sensor subsystems used for precision landing. Chapter 8
describes how the newly added functionality was tested and evaluated,
using simulations as well as experiments in the real world. Finally,
Chapter 9 concludes the thesis and points to directions for future work.
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2
R E L AT E D W O R K

The problem of precision landing for vehicles with vertical landing
capability has attracted a lot of attention especially in the last years
with the rapid adoption of multi-rotor drones. In the following, we
provide an indicate overview and identify the differences with our work.

A large body of work has investigated methods that detect pre-defined
shapes using a downward-looking camera at the bottom of the UAV.
In [18], the autonomous landing of an UAV on a ship is achieved using
a visual-based line segment processing technique to detect a standard H
mark on the landing deck. The same mark is used in [19] and [20] with
an additional circle around it to enable the detection of the landing
area from larger distances/heights. [21] proposes a shape consisting
of two rings and two upside-down triangles that can be detected from
different altitudes, to provide a full 3D pose estimation, roll, pitch and
yaw. In [22], two disks of different color adjacent to the landing position
are used in combination with a range finder to achieve pose estimation,
while [23] explores beacon placement along two nested squares. A
custom stripped pattern is tracked in [24] and [25] using an optical flow
sensor together with an IMU and an altimeter, to support precision
landing on stationary and moving landing pads, respectively.

Another popular approach is to use special visual markers. In [26], the
on-board camera is used to determine the 3D position and orientation
between the UAV and an apriltag, guiding the drone accordingly. A
marker is also used in [27] to land a drone on a moving platform, using
a control process that involves three modes for the initial search of the
landing platform, the tracking of the platform and the final landing
approach, respectively. [28] proposes a custom aruco marker, which
consists of a small marker nested inside a bigger one, and validates
the approach through real flight tests for a landing pad on a moving
vehicle. [29] employs two apriltags placed at a known distance from each
other to detect the landing target from different altitudes. A somewhat
different design is presented in [30], featuring multiple aruco markers
in different sizes surrounded by a circle with another nested marker at
the center, leading to improved detection from both high altitudes and
very low heights.

Another technology that has been successfully used for precision
landing are infrared (IR) LEDs with corresponding receptors / camera
filters on the drone. The work in [31] tracks four IR beacons arranged in

5
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related work 6

a T pattern to extract the 3D position and yaw of the UAV. A similar
approach is followed in [32] and [33], using four beacons with a different
placement. [14] and [16] employ the MarkOne Beacon System (an IR
beacon at the landing position and the IR-LOCK sensor on the drone)
together with a rangefinder in order to detect the vertical distance to
the landing position.

There is also work that combines different technologies. For instance,
[34] combines a visual H landing mark with 4 IR LEDs at its corners.
The latter are used to detect the landing position from large distances
using the front-view camera of the UAV, while the former is used in
the final phase of the landing process once the image appears in the
field-of-view of another camera at the bottom of the vehicle. Another
combination of visual and IR-based detection is presented in [35], using
a landing pad with an aruco marker with a translucent white acrylic
surface backlit by an array of 264 IR LEDs, making the marker visible
when using a standard RGB camera (without an IR filter) even at poor
light conditions and at night.

The vast majority of the approaches support precision landing of
UAVs rely on a single type of sensor, typically a camera for detecting a
visual shape or marker, or IR receptors / camera with an IR filter to
detect IR-beacons. Also, work that combines different sensors typically
uses them interchangeably, depending on weather conditions or the
phase of the landing process. In our work, we use different sensor
subsystems concurrently and combine their information using a fusion-
based approach, in order to tolerate failures/inaccuracies of any single
subsystem, which may occur due to the limitations or mere malfunctions
of the respective sensors.
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3

T H E A R D U P I L O T F R A M E W O R K

This thesis makes use of the well-known open-source ArduPilot [17]
framework (APM), an autopilot system that is used in multi-copters,
helicopters, rovers and other autonomous vehicles. ArduPilot supports
an autonomous precision landing flight mode based on the IRLock sensor
subsystem, which feeds the autopilot’s horizontal position controller
with body frame vectors in direction of an IR beacon. In the following,
we briefly present the structure of the ArduPilot software stack and the
support for precision landing based on the IRLock sensor.

3.1 structure

Figure 1: ArduPilot autopilot structure.

The architecture of the ArduPilot software suite is shown in Figure 1.
The core libraries include attitude and position estimation provided by
an Extended Kalman Filter (EKF), precision landing control, motor
control and more. In addition, there are libraries that implement
a variety of drivers, for the Inertial Measurement Unit (IMU), the
barometer, the GPS, the IRLock subsystem and the motors of the vehicle.
For example, the IMU sensor library reads gyro and accelerometer data,
performs calibration and provides data to the main-vehicle code and
other libraries. These libraries are used to support the autonomous
operation of different vehicle types, such as Copter (multi-copter aerial
vehicles), Plane (winged aerial vehicles) and Rover (ground vehicles).

7
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3.2 sensor access 8

Thanks to its hardware abstraction layer (HAL), ArduPilot is portable
to a large number of different platforms. More specifically, the HAL
library defines the generic interface for the rest of the framework, which
is implemented for concrete platforms and board types using a cor-
responding sub-library. For example, the HAL-Linux library is used
to support Linux based boards as well as software-in-the-loop (SITL)
operation, while the Pixhawk library is used to support the NuttX
real-time operating system on Pixhawk boards.

3.2 sensor access

The ArduPilot framework supports access to a wide range of sensors.
Each type of sensor is integrated into the rest of the software frame-
work using a generic pattern, which is illustrated in Figure 2. Each
sensor is accessed through a so-called front-end driver, which can be
associated to one or more so-called back-end drivers. The number of
back-ends depends on the number of individual physical sensors that
are available on the vehicle. These are determined at initialization time,
through automated discovery/detection mechanisms (e.g., polling a bus
or serial connection using a suitable protocol) or based on pre-specified
configuration information.

Figure 2: ArduPilot sensor driver architecture.

The main vehicle control code acquires sensor data by invoking the
front-end, through an interface that consists of several function calls. In
turn, the front-end is responsible for invoking the back-end(s) in order to
retrieve the data that was produced by the respective physical sensor(s).
Note that each sensor type may provide measurements at its own rate,
which may also be (very) different from the frequency with which the
front-end is being invoked from the main control code. For this reason,
the front-end includes a method for checking the availability/freshness
of sensor data. This method is typically invoked before invoking the
method that returns the (most recent) sensor data.

3.3 precision landing

The main control flow of ArduPilot when precision landing is enabled
is illustrated in Figure 3, showing how the different sensors are used at
different stages of the processing. More specifically, the IMU, GPS and
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3.3 precision landing 9

barometer sensors are used to calculate the vehicle’s current position/-
pose (using an Extended Kalman Filter). The IRLock, barometer and
range-finder sensors are used to calculate the vehicle’s position relative
to the landing target, which, in turn, is used to drive the precision
landing of the vehicle. This control loop runs periodically, typically at
a frequency of 400 Hz.

Figure 3: APM control flow with support for precision landing.

ArduPilot supports a variety of landing modes. Besides some special
modes that can be used only in SITL operation, the landing modes that
can be actually used during real operation are:

• None. As the name suggests, no sensor is used to guide the
vehicle in order to perform a more precise landing. In this case,
the ground target position has the same horizontal coordinates
as the vehicle at the time when the autopilot was instructed to
commence the landing procedure.

• IRLock. This mode employs the IRLock sensor subsystem (dis-
cussed in more detail below). IRLock provides to the main control
logic the horizontal offset of the drone with respect to an IR
beacon. The ground distance of the drone has to be provided
by an additional sensor, which can be the barometer or a more
accurate ranger-finder (such as a sonar or a LiDAR).

• Companion. The vehicle’s displacement with respect to the
landing position is provided by an external so-called companion
system. This can be an on-board SoC device or a remote station.
In this case, the positioning information typically includes both
horizontal and vertical displacement information and is commu-
nicated to the autopilot system through the Micro Air Vehicle
link (MAVLink) protocol using a special message. These messages
are decoded and made accessible to the main control code of the
autopilot through a corresponding front-end, in the same spirit as
this is done for other on-board sensors.

Note that IRLock only provides horizontal displacement information
with respect to the landing target. The same may also hold for an

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:55:13 EEST - 18.222.167.58



3.4 the irlock mechanism 10

external system that is used in the Companion mode. In these cases, the
ground distance of the vehicle has to be provided using an additional
sensor. This can be the vehicle’s barometer or a more accurate range-
finder sensor (such as a sonar or LiDAR).

In each iteration of the control loop, the autopilot retrieves the
vehicle’s displacement vector with respect to the landing target (the
latter is obtained depending on the land mode, as discussed above).
Based on this vector, the autopilot control logic issues commands to
the motors/actuators of the vehicle in order to adjust the vehicle’s
horizontal and vertical position as needed to (gradually) approach the
desired landing position.

3.4 the irlock mechanism

Infra-red technology is widely used in order to support precision landing
in UAVs. The standard approach is to place infra-red transmitters on
the landing zone, and a receiver on the vehicle. The transmitter emits
infra-red beacons while the sensor detects these signals and guides the
vehicle accordingly.

One of the most popular solutions is the IRLock target tracking
mechanism [36], which is already supported in the ArduPilot autopilot
framework (as discussed above). IRLock is based on the Pixy vision
sensor [37] with a custom IRLock filter and a 3.6 mm lens (Figure 4a).
It runs the IRLock specialized firmware, which reports the position of
the LEDs at 50 Hz.

(a) Pixy vision sensor with IRLock
filter and specialized firmware.

(b) The MarkOne beacon system.

Figure 4: IRLock target tracking mechanism [38].

The IRLock filter used by the Pixy firmware blocks the visible light
while allowing specific wavelengths of infra-red light to get through.
The tracking range depends upon the infra-red receiver and transmitter.
More specifically, to increase the detecting range, one may cluster
multiple LEDs to increase the size of the infra-red point, employ a lens
with a narrower field of view (FoV) in order to increase the tracking
range, and/or use high-power LEDs.

Given that sunlight also emits infra-red light, the Pixy sensor may
falsely detect shiny objects or may be confused by surfaces (such as
water) that reflect sunlight. To avoid such false detections, the IRLock
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3.4 the irlock mechanism 11

target tracking mechanism is typically used in combination with the
MarkOne Beacon system (Figure 4b), which provides robust and reliable
target detection in practically all lighting conditions and operation
environments. Notably, when using the MarkOne beacon, the detection
range can be over 15 meters.
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M A R K E R S E N S O R S U B S Y S T E M

This chapter presents the implementation of the marker sensor mech-
anism. We start by briefly presenting the basic technology used to
detect visual/fractal markers. The material is based on the following
sources: [39, 40]. Then, we discuss how we have used this technology
to implement the corresponding sensor subsystem and integrate it into
the ArduPilot framework.

4.1 marker detection

Special visual markers are used in several scientific and commercial
applications. In particular, markers are often used in robotics as special
landmarks, which can be easily identified by a robot in order to properly
navigate itself within the environment.

Markers typically have an external black border and an inner region
that encodes a binary pattern (Figure 5b). The binary pattern is unique
and identifies each marker. Depending on the dictionary (which is a set
of visual markers with equal bits), there are markers with more or less
bits. The more bits, the more words in the dictionary, and the smaller
chance of miss-detection. However, a larger number of bits and more
complex internal structure also requires a higher resolution to correctly
detect the marker.

(a) Coordinate system: X-right, Y-up and
Z-forward.

(b) Border and inner part.

Figure 5: Visual marker composition and reference system [41].

In our work, marker detection is achieved using the ArUco library [39],
which, in turn, relies on OpenCV [42]. The ArUco library detects
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4.1 marker detection 13

rectangle markers and extract their binary code through a stepwise
process, briefly described below.

Figure 6: Steps of the marker detection process [39, 41].

• Image Segmentation. Image segmentation is typically used
to locate objects and boundaries, such as lines and curves, in
images. Since a marker is designed to have an external black
border surrounded by a white space, its borders can be found by
segmentation (Figure 6b). The library achieves this using adaptive
thresholding.

• Contour Extraction and Filtering. Subsequently, a contour
extraction and filtering step is applied to identify the boundaries
of the marker(s) in the image. Firstly, using the Suzuki and Abe
algorithm [43], a set of contours is obtained from the thresholded
image. However, it is possible to have irrelevant background
elements in the output image (Figure 6c), so an additional filtering
step is applied in order to remove them. For this purpose, a
polygonal approximation is performed using the Douglas-Peucker
algorithm [44]. Since markers are squares, the detection process
only focuses on contours that can be approximated as four-corner
polygons, discarding any other elements. Finally, contours that
are too small are discarded, leaving only the external ones. The
resulting polygons identified via this process are the contours of
the marker(s) (Figure 6d).

• Code Extraction. In order to determine which of the remaining
contours are valid markers, the perspective projection is removed
to obtain a frontal view of each of the rectangles, using the
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4.1 marker detection 14

homography technique. Then, a thresholding of the image is
performed using the Otsu method [45], to provide the optimal
image threshold value (Figure 6e). The resulting thresholded
image is divided into a regular grid, and each element is assigned
the value 0 or 1 depending on the values of the majority of the
surrounding pixels, producing a binarized image (Figure 6f).

• Matching. For each marker candidate in the image, the library
determines whether it belongs to the set of predefined valid mark-
ers or if it is a uninterested background element. For example,
if we divide the binarized image into a 6x6 grid, the 5x5 cells
contains the identifier information, while the remaining ones cor-
respond to the external black border. For this purpose, a check is
made to confirm the presence of the external black border, and
then the internal cells are read to see if they provide a valid code.
There are four possible identifiers that can be obtained for each
candidate, which correspond to the four possible rotations of the
canonical image. If any of the these identifiers belong to the set
of valid markers, then the markers are accepted and the detection
is completed.

• Corner Refinement. The last step of the ArUco process consists
in estimating the location of the corners with subpixel accuracy,
in case some corners lie “between” pixels. The technique that is
used computes all the intersections of the lines of the marker sides
that employing all the contour pixels.

Figure 7: Configuration of a fractal marker [46].

The ArUco library also supports the detection of so-called fractal
markers [46], built by embedding smaller markers within larger ones in
a recursive manner (Figure 7). This makes it possible to tolerate errors
due to partial or total occlusions of individual markers, as well as to
support detection of a wider range of distances.
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4.2 marker sensor subsystem 15

4.2 marker sensor subsystem

The Marker sensor subsystem is integrated into the ArduPilot frame-
work following the usual front-end driver and back-end scheme (see
Section 3.2). Figure 8 illustrates the implementation approach.

Figure 8: Marker sensor subsystem design.

The Marker sensor subsystem uses an on-board System-on-Chip
(SoC), based on Raspberry Pi model B with a low-cost camera module
v2 configured at a resolution of 640x480 (480p) with a rate of 30 fps.
The Pi runs the ArUco library [39] in order to detect the marker in
the frames that are captured by the camera. Each time the marker
is detected in a new frame, the estimated camera position relative to
the center of the marker are calculated and are sent to the rest of the
system. The frame processing, marker detection and offset calculation
takes on average about 50 milliseconds.

The marker detection SoC sends the position estimation information
to the back-end of the marker sensor subsystem over a serial connec-
tion via the MAVLink protocol (for this purpose we introduce a new
MAVLink message). Each time the back-end receives such a message,
it calculates the vehicle’s relative position and distance to the center of
the marker and updates the timestamp of the most recently received
measurement. Finally, this information is retrieved from the correspond-
ing front-end, each time it is invoked from the main control logic of the
autopilot. The front-end interface of the marker sensor subsystem is
practically identical to that of IRLock. One important difference is that
the marker sensor subsystem also offers a method for retrieving the
distance of the vehicle to the center of the marker. As a consequence,
when using the marker sensor there is no need to have an extra sensor
that provides altitude information (e.g., a Range-finder). Furthermore,
one can use the altitude information obtained via the marker sensor
subsystem in combination with the horizontal position information
provided by the IRLock sensor subsystem.
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F U S E D S E N S O R S U B S Y S T E M

This chapter presents the implementation of the fused precision landing
sensor mechanism. The objective of this mechanism is to increase the
robustness of the autopilot’s precision landing operation, by combining
the IRLock and marker sensor subsystems in a way that is transparent
for the rest of the autopilot software.

5.1 software design

The fused sensor mechanism is integrated into the ArduPilot framework
following the usual approach, via a corresponding front-end library that
hides all the back-end details. In this particular case, the front-end does
not have its own back-end but instead connects to the back-ends of the
IRLock and marker sensors. Figure 9 illustrates the approach.

Figure 9: Approach for supporting a fused precision landing sensor.

The main control logic of the autopilot uses the fused sensor front-end
in the same way as it would use any other precision landing sensor front-
end (such as the IRLock and marker sensors). In turn, the front-end
invokes the IRLock and marker back-ends to obtain the corresponding
position information, which is then fused to provide the information
towards the main control logic of the vehicle.

The fusion sensor front-end component is created and initialized by
the precision landing controller of the ArduPilot framework on start-
up. In turn, the front-end initializes the IRLock and marker sensor
back-ends. Throughout the landing operation, the ArduPilot code
periodically polls the fusion sensor front-end to check whether new
positioning information is available, and if so to retrieve it. Each such
invocation is internally converted to invocations towards the IRLock
and marker back-ends in order to retrieve the position information that
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5.2 fusion logic 17

is produced by each sensor and to combine this information into a fused
value. The fusion logic is discussed in more detail in the sequel.

5.2 fusion logic

As already mentioned, the autopilot periodically invokes the front-end
during the precision landing procedure. In turn, the front-end utilizes
the information it retrieves from the IRLock and marker back-ends in
order to produce the position information that will be returned to the
autopilot. Each time a new value/measurement is retrieved from the
IRLock and/or marker sensor back-end, the front-end updates the value
to be returned and stores it internally together with a timestamp. This
timestamps is used to determine (in subsequent iterations) the freshness
of the stored value.

Figure 10: Flow diagram of the fusion logic.

The internal operation of the fused sensor is illustrated in Figure 10.
More concretely, each time the front-end attempts to retrieve new values
from the IRLock and marker sensor back-ends, there are four possible
cases: (i) both the IRLock sensor and the marker sensor produce a new
value; (ii) only the IRLock sensor produces a new value; (iii) only the
marker sensor produces a new value; (iv) neither the IRLock sensor nor
the marker sensor produce a new value.

If both sensors produce a new value, the two values are fused in
order to produce the value that will be returned to the autopilot. We
implement a simple fusion approach where the final value is calculated
as the weighted average of the two individual sensor values. For more
flexibility, the weights are configurable (via a corresponding MAVLink
message/command). Note that this only applies to the horizontal
position information as the IRLock sensor does not report any ground
distance information.
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5.2 fusion logic 18

If only one of the sensors produces a new value, the front-end keeps
and returns this value to the autopilot. In this case, no attempt is made
to fuse the newly acquired value with an older value coming from the
other sensor, as this would merely distort the freshly acquired sensor
value.

Finally, if no sensor produces a new value, the front-end returns the
most recently stored value, provided this is considered to be sufficiently
fresh – in our current prototype, the freshness threshold is set to 1
second, as this is the case in the IRLock and marker sensor subsystems.
Else, if the stored value is not fresh, the front-end reports that it cannot
provide a valid value.

Of course, the autopilot is able to handle the case where the employed
precision landing sensor does not produce a sufficiently fresh value – this
can also happen when using the IRLock sensor or the marker sensor,
individually. In fact, the precision landing control logic of ArduPilot
ignores old (stored) sensor values that were already retrieved in a
previous iteration, and only takes into account newly acquired sensor
values. As a consequence, the freshness setting has no real effect on
the control of the precision landing process. Nevertheless, as done in
all other sensor subsystems, we adopt the notion of freshness and the
standard freshness threshold in the fused sensor front-end too.
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6
R E F I N E D P R E C I S I O N L A N D I N G

The default operation of ArduPilot during precision landing is to con-
tinue the descend towards the ground even if the landing target is lost,
i.e., despite the precision landing sensor failing to provide new/valid
measurements. However, this behavior is not always desirable. For
instance, the vehicle may need to land on a battery recharging/switching
platform or inside a hangar, in which case it is important to accurately
guide the vehicle during the entire landing procedure.

With this motivation, we have introduced a new mode of operation
for precision landing, where the vehicle can repeat the landing attempt
multiple times, before taking the decision to perform an un-guided
(blind) vertical descent. The main difference is in the logic that controls
the vertical movement of the vehicle during precision landing.

6.1 default operation

In each iteration of the precision landing control loop, the autopilot
checks the distance to the ground as well as the horizontal displacement
with respect to the landing target, and adjusts the descent accordingly.
In a nutshell, if the ground distance is above a high threshold or below
a low threshold, the desired rate of descent is set to a pre-specified
maximum and minimum value, respectively. Else, it is calculated as a
function of a pre-specified landing speed and the horizontal displacement
from the target landing position (larger deviations lead to a reduction
of the desired rate of descent). Finally, the desired rate of descent is
fed into the vertical position controller, which converts it to the desired
acceleration and throttle value, which, in turn, is sent to the attitude
control library that controlling the motors/actuators of the vehicle.

If the landing target is lost during the precision landing procedure, the
autopilot will not have any input regarding the horizontal displacement
of the vehicle with respect to the target landing position. In this
case, the autopilot simply continues the descent, at the default landing
speed. In other words, once the autopilot is placed in the land mode, it
performs a steady descent towards the ground, irrespective of whether
the precision landing sensor can track the landing target.
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6.2 repeated landing attempts 20

6.2 repeated landing attempts

There are several reasons why the landing target can be lost during
descent. For instance, it might be temporarily occluded, or fall outside
of the field of view of the sensor, or the sensor may have malfunctioned.
Note that such incidents can be transient rather than permanent. In
such cases, it can be meaningful to repeat the landing attempt instead
of continuing the descent in a blind way as in the default operation.

To this end, we introduce a so-called cautious precision landing
operation, where the landing attempt is repeated if the landing target
is lost during descent. Figure 11 illustrates the control flow.

Figure 11: Cautious precision landing control flow.

Each time the target landing position is lost (the precision landing
sensor used does not report new displacement values), the autopilot
is instructed to pause the descent and keep the vehicle steady for a
short amount of time. During this pause period, the sensor is polled to
check if the landing target is detected. If this is the case, the landing
procedure continues as usual, taking into account the displacement
information produced by the sensor. Else, the autopilot is instructed to
go back to the position where the target was last detected successfully
during the current attempt, or (if this fails too) to a default height from
where it starts another landing attempt from scratch.

Obviously, it is not desirable to perform attempts ad infinitum –
besides introducing a large delay, at some point the vehicle will run
out of energy. For this reason, we set a limit on the number of landing
attempts that can be performed. When this limit is reached, the
autopilot performs a blind descent as usual.

Note that the pause period, the default height from where repeated
landing attempts are started and the pause period during which the au-
topilot waits to detect the landing target, are all configurable parameters
which can be set before starting a mission.
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FA U LT I N J E C T I O N

Testing the precision landing support that was described in the previous
chapters is non-trivial. The reason is that failures are rare during
real operation Also, they are hardly reproducible. In order to enable
testing in a simple and flexible way, a simple but practical mechanism
was developed, which makes it possible to inject artificial faults to the
individual precision landing sensor subsystems.

7.1 fault-injection (drop) modes

The currently supported fault-injection results in sensor values being
dropped (there is no distortion of sensor values). This way it is possible
to model sporadic or temporary malfunctions of a given sensor subsys-
tem. This includes the case where a given sensor functions properly but
still fails to detect the target, e.g., because of external interference.

Two different drop modes are supported:

• Random drop. In this mode, a newly acquired value is dropped
with some probability.

• Periodic drop. In this mode, a number of newly acquired values
are periodically dropped. Thus, there is a phase where all newly
acquired sensor values are kept as usual, followed by another phase
where all new sensor values are systematically dropped.

The implementation approach is discussed below.

7.2 implementation

The fault injection functionality is introduced by modifying the front-
ends of the precision landing sensor subsystems (IRLock sensor, marker
sensor and fused sensor) so that they drop the values produced by the
respective back-ends, according to the current mode. The mode can be
set, at runtime, via a command issued to the autopilot. Table 1 shows
the main structure of the respective MAVLink message.

The target field indicates the sensor subsystem where fault-injection
should be applied. The r drop field is used in the random drop mode. It
takes values between 0 and 1 that indicate the probability for dropping
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7.2 implementation 22

Field Type Description
target uint8 t Target sensor subsystem (IRLock:

1, marker: 2, both: 3)
r drop float Probability for dropping a new sen-

sor value (random mode)
p keep uint16 t Number of consecutive new sensor

values to keep (periodic mode)
p drop uint16 t Number of consecutive new sensor

values to drop (periodic mode)

Table 1: Main part of the fault-injection MAVLink message.

a new sensor value that is acquired from the respective back-end. If
r drop > 0.0 the other fields of the message are ignored. If r drop = 0.0,
the rest of the fields are used to specify the behavior of the periodic drop
mode. More specifically, p keep specifies the number of consecutive new
sensor values that should be kept before starting the drop phase, and,
similarly, p drop is the number of new values that should be dropped
in sequence before reverting to the keep phase. Note that r drop = 1.0
is equivalent to r drop = 0.0 ∧ p keep = 0 ∧ p drop > 0 yielding a
permanent failure of the respective sensor subsystem. Also, a message
with all fields set to zero (r drop = 0.0∧ p keep = 0∧ p drop = 0) will
de-activate fault-injection for the respective target sensor subsystem.

Each time the ArduPilot command/message handler receives this
message, it simply forwards it to the active front-end of the sensor
subsystem that is used to guide precision landing (only one front-end
can be active: for the IRLock, marker or fused sensor). The active front-
end driver, in turn, decodes the message and applies the corresponding
fault injection to the values that are acquired from the corresponding
back-end driver(s).

Note that the IRLock and marker front-ends can only apply fault-
injection to the values received from their own back-ends, and thus will
ignore any commands that target another subsystem. Of course, the
fused sensor front-end can handle fault-injection commands targeting
any of the two sensor subsystems.
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8
E VA L U AT I O N

This chapter presents the evaluation of the newly developed precision
landing mechanisms. Initially, several tests were performed using a
simulated setup in order to debug the system in a fast and safe way. Once
sufficient confidence was gained in the robustness of the implementation,
additional experiments were performed using a real drone to confirm
the additional precision landing functionality.

8.1 simulation experiments

Simulation-based experiments are a typical step in the development of
autonomous vehicles, before attempting to perform tests in the field.
A good simulated setup makes it possible to debug critical pieces of
code, especially different corner cases that may occur rarely in reality,
without having safety concerns or risking to damage the equipment.
This is crucially important for unmanned aerial vehicles where even a
simple bug can lead to severe crashes and accidents.

8.1.1 Gazebo

In our work, we use the open-source Gazebo [47] simulator, a 3D dynamic
simulator with the capability of accurately and efficiently simulating
robots in complex indoor and outdoor environments. Gazebo offers
physics simulation at a high degree of fidelity, a variety of different
sensors as well as interfaces for both users and external programs.

Notably, Gazebo allows the user to define robot kinematics and dy-
namic attributes, sensors, joint frictions and many more properties.
These are described in the XML-based Simulation Description Format
(SDF), where the two main elements are: (i) models, which may rep-
resent a wide range of both static and active objects, from simple and
passive 3D shapes to complex and mobile robots, and (ii) a world, which
is a collection of models together with a variety of physics properties,
such as gravity, wind, light, etc.

These elements can be customized through plugins, which are written
in the C++ language and are compiled as shared libraries. Such plugins
can be inserted as attributes of the target element in the SDF file.
Through plugins it is possible to programmatically alter the simulation
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8.1 simulation experiments 24

itself, e.g., generating stronger wind or increasing the ambient light,
move models to points of interest, retrieve sensor data, respond to events,
or to dynamically insert new models under certain preconditions.

8.1.2 Simulation setup

For the APM autopilot, we use a software-in-the-loop (SITL) config-
uration, which is provided by the ArduPilot software suite. This is
illustrated in Figure 12. The configuration is derived from the same
code base that targets the Pixhawk and other boards that are used in
real drones.

Figure 12: SITL configuration setup.

Gazebo acts as an external flight-dynamics simulation engine for the
autopilot, providing it with the vehicle’s position and velocity vectors
in north-east-down (NED) frame, as well as IMU angular velocity, IMU
linear acceleration and IMU quaternion orientation. The autopilot
processes these inputs in practically the same way (running almost the
same code) as when it runs on a real drone (where it receives this data
from real sensors/IMU). As a result of this processing, the autopilot
generates the control outputs for the drone’s motors, which are fed back
into the Gazebo simulation environment (instead of the motors of a real
drone).

The model for the drone, written in SDF format, the linkage between
the standard build-in IMU sensor (provided by the Gazebo software
suite) and the drone as well as the plugin for the vehicle’s logic/behavior
within the simulation environment, are all derived from the officially
recommended code repository [48]. The communication between the
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Gazebo plugins and the ArduPilot autopilot components is done via
the UDP protocol.

8.1.3 IRLock subsystem

The Gazebo environment also provides an IRLock plugin and a camera
attached to the drone model (red camera in Figure 12), which can be
used to perform precision landing using the IRLock subsystem. More
specifically, the camera sensor produces images within Gazebo, and a
plugin that is attached to the camera object receives and processes these
images with the goal to recognize a red object within the simulation
environment (which is a proxy for the IR beacon). Each time the sensor
detects this specific object, it sends position information to the autopilot
system. Note, however, that this is basically a mock-up, rather than a
real simulation of the IRLock mechanism (as described in Section 3.4).

8.1.4 Marker detection subsystem

In order to execute the marker-based precision landing via Gazebo, we
have developed a simple box model with its top side featuring a fractal
marker pattern. Also, we customized the available drone model (SDF
file) by linking it with an additional camera sensor (blue camera in
Figure 12). This sensor grasps raw images from the simulation environ-
ment and sends them to the marker detection software component in
order to detect the fractal marker.

Figure 13: Implementation of marker detection component on top of ROS.

An illustration of the implementation approach is shown in Figure 13.
To achieve a more flexible configuration, the marker detection code was
implemented on top of the ROS middleware [49]. The communication
between the camera sensor and the marker detection component is
achieved via the pub/sub support of ROS – the camera publishes each
image as a separate message to a specific topic, and the marker detection
component subscribes to that topic in order to receive these images.
Using the CvBridge ROS routine function, each raw image is converted
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to the OpenCV image format so that it can be processed by the ArUco
library.

The marker detection component is designed to support two different
configurations, for simulation-based and real-world operation, respec-
tively. The desired configuration is chosen when starting the program,
via configuration parameter. The difference between the two configura-
tions is how the results of market detection (pose estimation vectors) are
sent to the autopilot subsystem. In the simulation-based configuration
this is done via UDP (in accordance to the convention of the Gazebo
environment), whereas in the real-world configuration this information
is communicated to the autopilot via the MAVLink protocol.

8.1.5 Precision landing modes

The ArduPilot software suite already support an IRLock Gazebo mode
in order to allow precision landing experiments using the IRLock mech-
anism (mockup) in the simulations.

In the same spirit, we introduce additional precision landing modes
Marker Gazebo and Fused Gazebo so that the newly introduced precision
landing sensor subsystems can be used in the Gazebo simulator. Also,
corresponding back-ends and front-ends (referring to these back-ends)
were developed. The implementation is essentially identical to the one
used for real-world operation. The main difference is that the back-end
version for the simulation receives data through the UDP protocol
instead of MAVLink.

8.1.6 Validation

The functionality of new precision landing capabilities was validated
in an extensive way using the SITL configuration of the ArduPilot
in the Gazebo simulation environment. Numerous experiments were
performed in order to test: (i) the behaviour of each of the supported
precision landing modes; (ii) the fault-injection logic for each of the
sensor subsystems; (iii) the refined precision landing operation.

After some debugging, we confirmed the successful implementation/in-
tegration into the ArduPilot autopilot software and a robust operation
of the newly developed functionality for a wide range of scenarios. We
then proceeded to perform experiments in the field using a real drone.

8.2 field experiments

Several experiments were performed in the field in order to measure
the actual accuracy of the individual precision landing mechanisms and
verify the robustness of the fused sensor in practice. In the following,
we provide an overview of the drone hardware setup, present indicative
experiments and discuss the obtained results.
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(a) Hexacopter drone. (b) Camera sensors.

(c) Marker with nested MarkOne. (d) Drone on the landing target.

Figure 14: Drone and the landing target.

8.2.1 Hardware Setup

The vehicle used for the field experiments is a custom-built hexacopter,
shown in Figure 14a. The autopilot software runs on CUAV V5 Nano,
a 32-bit flight controller, based on the Pixhawk FMUv5 design standard
hardware platform, designed by CUAV in collaboration with the PX4
team. The platform features the following build-in sensors: (i) a ICM-
20689 6-axis motion tracking device that combines a 3-axis gyroscope
and a 3-axis accelerometer, (ii) a ICM-20602 6-axis motion tracking
device including a 3-axis gyroscope and a 3-axis accelerometer, (iii) a
BMI055 6-axis inertial measurement unit (IMU) consisting of a digital,
3-axis acceleration sensor and a 3-axis gyroscope, (iv) a IST8310 3-axis
digital magnetometer, and (v) a MS5611 barometric pressure sensor.
The drone also features the Neo v2 GPS/Compass sensor and an on-
board Raspberry Pi model B, which communicates with the CUAV
V5 Nano board via the MAVLink protocol on top of a serial UART
interface.

As shown in Figure 14b, a downwards facing IRLock sensor camera
(left red box) and Raspberry Pi camera module v2 (right red box), used
for marker detection, are attached at adjacent positions in the frame’s
center. The IRLock sensor camera features the Pixy vision sensor with
a 3.6 millimeter lens, and runs the IRLock filter that generates data at
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50 Hz which are sent to the autopilot controller via the I2C protocol.
The Raspberry Pi camera is connected to the on-board Raspberry Pi
board and is configured to generate images at a resolution of 640x480
(480p) at a rate of 30 fps.

The landing pad, shown in Figure 14c, consists of a fractal ArUco
marker and a MarkOne IR beacon. The beacon is placed so that it
lies inside the nested marker of the fractal marker. The fractal marker
was designed so that most of its inner part is white. The inner part of
the nested marker is cut out and replaced with the IR beacon. Finally,
the beacon’s surface is covered with a white duct tape (except the IR
LEDs) in order for the inner part of the nested marker to remain white
and be correctly detected by the ArUco library.

8.2.2 Mission planning

In all experiments, the drone follows a standard mission specified through
a script using the DroneKit environment [50]. An illustration of the
mission is given in Figure 15a showing all major positions and waypoints.
The photo shows the site where all tests where performed (flat open
space with no obstacles).

Initially, the drone is placed at a start position, 2 meters away from
the landing pad. It is then armed and instructed to take off at a certain
altitude, which depends on the precision landing mode and sensor used
in each experiment/run. More specifically, in the IRLock and Fusion
mode, the take-off altitude is set to 10 meters, whereas in the Marker
mode it is set to 6 meters because the marker cannot be detected reliably
from higher altitudes.

When the drone reaches the target take-off altitude, it marks its
current GPS position and then follows a horizontal square path, moving
away from the landing target and then returning back to the recorded
GPS position. The path is defined via four waypoints (WP1, WP2,
WP3, WP4) with the last one being the position recorded once take-off
completes. To conserve the drone’s battery and increase the number of
runs that can be performed without recharging, the distance between
two consecutive waypoints is set to 2 meters.

Finally, when the drone reaches the last waypoint, it is put in one
of the supported land modes (Normal, IRLock, Marker or Fused). As
a result, it starts the landing approach and eventually completes the
mission. If a precision landing mode is enabled, the drone will try to
detect and land on the center of landing target, else it will perform a
normal landing approach towards the initial start position.

Figure 15b illustrates the actual path that is followed by the drone
in one of the tests. In this case, a precision landing modes is enabled,
so that the drone lands on the target (rather than on the initial start
position). The green line represents the trajectory followed during
take-off, the blue line marks the square path followed by the drone,
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(a) Planned mission and test site.

(b) Indicative drone trajectory.

Figure 15: Mission and indicative flight path.

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:55:13 EEST - 18.222.167.58



8.2 field experiments 30

and the red line is the trajectory followed during the landing approach
towards the target.

8.2.3 Configuration options

We performed a wide range of experiments using the different precision
landing sensors (via the corresponding land modes) and for various
failure scenarios for the individual sensor subsystems. The different
configuration options are summarized in Table 2.

Landing Sensor
Sensor Failure

None (no drops)
IRLock Random X (drop with probability X)
Marker Permanent (drop during the entire landing approach)
Fused Below X (drop only if <= X meters above target)

Above X (drop only if >= X meters above target)

Table 2: Experiment configuration options.

To keep the number of experiments reasonable, we experiment with
the following sensor failure scenarios: (i) Random, where each value
that is produced by the sensor in question is dropped with a certain
probability; (ii) Permanent, where all sensor values are dropped during
the entire landing approach; (iii) Below X, where all sensor values are
dropped when the drone is below a certain height from the landing
position; (iv) Above X, where all sensor values are dropped when the
drone is above a certain height from the landing position.

In the Random failure scenarios, we set the failure probability to
0.75 for the IRLock sensor, and to 0.50 for the Market sensor (which
has a lower sampling rate). In the height-based sensor failure scenarios
(Below and Above), the height threshold is set to 3 meters, so that
sensor values are dropped systematically as long as the drone is below
or above 3 meters from the landing position, respectively.

Note that the above failure scenarios can be applied to the individual
IRLock and Marker sensor subsystems, interchangeably or at the same
time. The fused sensor simply uses the values that are provided by the
two sensor subsystems, if any.

In each experiment, we record the landing position of the drone and
measure the distance of the drone’s camera(s) from the center of the
landing pad (landing error). In the Normal land mode, where the drone
does not employ any precision landing sensor, the distance (and error)
is measured with respect to the initial take-off position, instead of the
center of the landing pad.
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8.2.4 Results for the individual precision landing sensors

In a first set of experiments, we evaluate the landing accuracy when
using each of the IRLock and Marker sensor subsystems individually.
We perform tests for the case where these sensors function properly
without any (artificial) failure as well as for different scenarios of sensor
failures. As a reference, we use the Normal land mode.

Each scenario was tested 10 times. During these tests, the weather
conditions where practically ideal (no wind, no rain, clear visibility).
Table 3 reports the average and maximum values, while Figure 16
provides a statistical and actual view of the final landing positions
in these trials. The detailed measurements are given in Appendix A,
Appendix B and Appendix C.

Initial Landing Sensor Avg Error Max Error
Height Sensor Failure (cm) (cm)

10m None None 67.15 180.00
10m IRLock None 05.79 13.86
10m IRLock Random 0.75 21.86 70.00
10m IRLock Below 3m 47.10 66.30
6m Marker None 08.51 11.60
6m Marker Random 0.50 11.05 16.50
6m Marker Below 3m 39.32 62.90

Table 3: Results for the Normal, IRLock and Marker land modes.

When using the Normal land mode, as expected, the result is heavily
affected by the the GPS error [13], with a a recorded average deviation
of 67.15 cm and a worst case of 180 cm (almost 2 meters) away from
the initial position. Obviously, this inaccuracy is unacceptable for
applications where the drone must land accurately, e.g., on a platform
or inside a hangar. The landing accuracy improves substantially when
using the IRLock or Marker sensor subsystem, in which cases the drone
lands with just a small error, on average 6.79 and 8.51 cm with a worst
case of just 13.86 and 11.60 cm, respectively.

In the same set of experiments, we also investigate the behavior when
the individual precision landing sensor subsystems fail. We perform
tests for random failures (IRLock Random 0.75, Marker Random 0.5)
and more systematic failures (Below 3 meter failure mode). As expected,
failures have a negative impact on the landing accuracy. Still, most
random failures are tolerated fairly well, leading to an average landing
error of 21.86 cm and 11.50 cm for the IRLock and Marker sensor,
respectively. In contrast, the error increases quite significantly when
the sensors fail systematically below 3 meters, as the drone performs
the last phase of the descent based exclusively on its IMU and dead-
reckoning ability. These results show that it is crucial to tolerate sensor
malfunctions especially during the last phase of the landing approach.
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(a) Distance of the landing position from the center of the landing target. The red
line is the median, the box is the interquartile range, and the whiskers are the
maximum/minimum values.

(b) Landing positions relative to the center of the landing target (units in cm).

Figure 16: Landing accuracy when using the IRLock or Marker sensor subsys-
tem individually, with/without failures.

8.2.5 Results for the fused precision landing sensor

In a second set of experiments, we evaluate the robustness of the
fused precision landing sensor, which combines the IRLock and Marker
sensor subsystems. We also apply suitable failure combinations for the
individual sensor subsystems to verify the robustness of the mechanism.
More specifically, we let the two sensors fail in a complementary way
(IRLock Above 3 m - Marker Below 3 m, and vice versa) as well as in a
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random way (IRLock Random 0.75 - Marker Random 0.5) where both
sensors may occasionally fail at the same time.

As above, each scenario was tested 10 times. The results are sum-
marized in Table 4 and Figure 17. The detailed measurements are
given in Appendix D. It is important to note that, in this case, the
test site was exposed to regular wind gusts during the tests – unlike
the previous experiments, which were conducted under ideal conditions.
For this reason, it is not meaningful to directly compare these results
with the ones that were obtained in the previous set of experiments.
Nevertheless, Figure 17 also shows the results of the Normal land mode
(under ideal conditions) as an optimistic proxy for the best result that
could be achieved under the non-optimal conditions without using any
precision landing sensor or (equivalently) when using a single sensor
that fails systematically during the entire landing approach.

Initial IRLock Marker Avg Error Max Error
Height Failure Failure (cm) (cm)

10m None None 13.62 24.60
10m Below 3m Above 3m 14.66 20.60
6m Above 3m Below 3m 13.74 20.40
10m Random 0.75 Random 0.50 29.40 46.10

Table 4: Results for the Fused land mode.

The robustness of the fused precision landing sensor can be clearly
seen by comparing the case where both the IRLock and Marker sensor
subsystems operate without any failure (IRLock None - Marker None)
with the cases where only one of these subsystems operates normally
while the other fails systematically (IRLock Above 3 m - Marker Below
3 m, and IRLock Below 3 m - Marker Above 3 m). Namely, all cases
yield practically the same average error of 13-15 cm with a worst case
of 20-21 cm. Also note that the worst case remains an entire order of
magnitude lower than what would be expected if the drone had to land
without a (working) precision landing sensor.

The occasional simultaneous failures in both sensor subsystems (IR-
Lock Random 0.75 - Marker Random 0.5) lead to occasional (total)
failures of the fused precision landing sensor. Of course, this has a clear
impact on the landing accuracy. In this case, the average error jumps
to about 30 cm and the worst case to more than 46 cm, a deterioration
of roughly 2x compared to the scenarios where at least one of the
sensor subsystems works properly at any point in time and the fused
sensor is able to provide reliable measurements during the entire landing
approach.

8.2.6 Results for the cautious landing approach

In a final set of experiments, we evaluate the developed support for a
more cautious landing approach, where the landing attempt is repeated
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(a) Distance of the landing position from the center of the landing target. The red
line is the median, the box is the interquartile range, and the whiskers are the
maximum/minimum values.

(b) Landing positions relative to the center of the landing target (units in cm).

Figure 17: Landing accuracy when using the Fused sensor, with/without fail-
ures of the individual IRLock and Marker sensor subsystems.

if the precision landing sensor fails to provide measurements during
descent. We use the Marker sensor and inject a systematic malfunction
once the drone reaches a height less than 3 meters from the landing
target (Below 3 m failure mode). Recall that, in the default approach,
the autopilot continues the landing procedure even if it does not receive
any measurements from the precision landing sensor. In contrast, in the
cautious approach, the drone repeats the attempt, initially by hovering
for a short while and then returning to a higher altitude in order to
re-detect the landing target. In this second attempt, we remove the

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:55:13 EEST - 18.222.167.58



8.2 field experiments 35

artificial failure and the Marker sensor works properly during the entire
landing approach.

Each test is repeated 10 times. The results are summarized in Table 5
and Figure 18. In Table 5, we also report the average time that was
needed for the drone to land. The detailed measurements of the cautious
landing approach are given in Appendix E. During the tests, the weather
conditions were once again non-optimal, comparable to the ones in the
second set of experiments.

Landing Avg Error Max Error Avg Time
Approach (cm) (cm) (sec)

Default 39.32 62.90 17.43
Cautious 14.37 24.10 41.46

Table 5: Results for the cautious landing approach, for the case where the
precision landing sensor (Marker) fails below 3 m during the first
landing attempt.

As can be seen, the cautious landing approach significantly increases
robustness, achieving an average and worst case error of 14.37 cm and
24.10 cm, respectively. Without this precaution, the drone lands with a
much larger error, more than 2x compared to the cautious approach.

Note that the results of the cautious landing approach are very
close to those in the scenarios where at least one of the precision
landing sensors function properly already during the first attempt
(under comparable conditions, in the previous experiments). Of course,
the additional landing attempt performed in the cautious approach
comes at an increased delay, taking more than 2x compared to the
case where the drone continues the landing approach despite the sensor
failure. This extra delay (a few tens of seconds) is typically perfectly
tolerable in order to ensure a more accurate landing.
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(a) Distance of the landing position from the landing target. The red line is the
median, the box is the interquartile range, and the whiskers are the maxi-
mum/minimum values.

(b) Landing positions relative to the center of the landing target (units in cm).

Figure 18: Landing accuracy when using the default and cautious landing
approach, with a temporary sensor malfunction during the first
landing attempt.
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C O N C L U S I O N S

In this thesis, we have developed a precision landing sensor subsystem
based on the detection of visual markers, and we have introduced
support for its combined use together with an existing infrared-based
sensor subsystem through a fused sensor that can tolerate individual
failures and malfunctions of any of the two subsystems as long as these
do not occur at the same time. We have also introduced a more refined
landing approach, whereby the autopilot repeats the landing procedure
in case the landing target is lost during descent.

The new precision landing capabilities are evaluated using the Gazebo
[47] simulator, extending the functionality of the officially recommended
code repository [48] of the SITL ArduPilot platform, as well as by
conducting a wide range of flight tests in the field. In both cases, we
experiment with different scenarios by injecting artificial faults/malfunc-
tions in the individual sensor subsystems at runtime in a controlled way.
Our results show that the proposed approach indeed achieves the desired
tolerance to independent failures of any single sensor subsystem at any
point in time, while maintaining a satisfactory accuracy compared to
the Normal land mode.

Our work opens-up the way for the smooth integration of additional
precision landing sensor mechanisms, which can be based on completely
different technologies, such as magnetic materials or ultrasound signals.
Such technologies could be used individually and/or be combined with
the current sensor subsystems to further improve the landing accuracy
for applications that have even stricter requirements in this respect.
Given the very significant overhead of performing real experiments in
the field, it would also be important to introduce realistic simulation
support for these sensor subsystems in the Gazebo environment.
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A
N O R M A L L A N D M O D E

Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 95 −76.85,−54.48 13.35
2 170 −92.58,−142.57 10.73
3 180 −177.26,−31.25 15.1
4 54 41.36, 34.71 12.37
5 51 −47.92, 17.44 13.11
6 43 37.23,−21.5 9.21
7 18 15.58, 9 14.62
8 16.5 16.43,−1.43 11.23
9 19 3.29,−18.71 12.76
10 25 −22.65, 10.56 13.81

Table 6: Normal land mode.
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B
I R L O C K L A N D M O D E

Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 2.7459 1.5, 2.3 21.15
2 2.1931 −1.6, 1.5 23.1
3 10.6850 9.1,−5.6 23.67
4 12.4390 11.3,−5.2 28.11
5 13.86 13.7, 2.1 22.9
6 1.8027 0.1,−1.8 20.62
7 2.3259 −1,−2.1 24.3
8 5.1478 −2.5,−4.5 21.43
9 4.3416 −2.1,−3.8 21.77
10 2.4083 1.8,−1.6 20.17

Table 7: IRLock land mode, no sensor failure.

Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 70 23.94, 65.77 29.3
2 40 25.71,−30.64 31.89
3 11.729 9.1, 7.4 27.19
4 9.902 9.3, 3.4 32.6
5 14.5165 13.7,−4.8 30.29
6 13.914 4.4,−13.2 30.72
7 7.0214 2.1,−6.7 24.72
8 10.4278 4.3,−9.5 27.21
9 22.3 19.31,−11.15 29.32
10 18.8308 17.4,−7.2 31.17

Table 8: IRLock land mode, random 0.75 sensor failure.
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Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 24.5 −1.28,−24.46 31.23
2 36.6 36.04,−6.35 27.82
3 64.3 45.47, 45.47 27.7
4 49.1 43.75, 22.29 25.32
5 66.3 65.93, 6.93 32.36
6 53.5 52.69, 9.29 33.41
7 41.5 7.21, 40.87 22.8
8 54.6 35.09,−41.82 24.88
9 47.9 5.84, 47.54 23.29
10 32.7 −2.85, 32.58 23.4

Table 9: IRLock land mode, below 3m sensor failure.
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C
M A R K E R L A N D M O D E

Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 11.1 −8.5, 7.13 23.34
2 8.4 −5.93, 5.93 26.01
3 7.9 −4.53, 6.47 24.99
4 9.5 −6.1,−7.28 25.12
5 5.7 −0.99, 5.61 25.29
6 5.5 −1.42, 5.31 25.17
7 7.2 −3.04, 6.52 27.67
8 11.3 −0.98, 11.25 23.67
9 11.6 2.01, 11.42 27.09
10 6.9 5.28,−4.43 21.56

Table 10: Marker land mode, no sensor failure.

Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 13.7 9.68,−9.68 21.91
2 2.5 2.05, 1.43 22.57
3 15.1 14.59,−3.91 24.83
4 9.1 9.06, 0.79 21.42
5 13.9 12.59,−5.87 20.31
6 6.8 1.76,−6.57 32.01
7 16.5 −14.28,−8.25 31.02
8 4.5 −4.48, 0.39 24.96
9 15.1 2.62,−14.87 25.13
10 13.3 −9.4,−9.4 31.5

Table 11: Marker land mode, random 0.50 sensor failure.

42

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:55:13 EEST - 18.222.167.58



marker land mode 43

Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 60.5 −5.28, 60.27 17.13
2 51.5 25.75, 44.6 17.87
3 13.9 1.21, 13.84 16.73
4 17.5 7.39, 15.86 18.67
5 36.4 −27.88, 23.39 17.05
6 39.6 −25.45, 30.33 17.62
7 62.9 −54.47,−31.45 19.17
8 42.9 18.13,−38.88 16.84
9 19.1 15.83, 10.68 15.98
10 48.9 48.71, 4.26 17.26

Table 12: Marker land mode, below 3m sensor failure.
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D
F U S E D L A N D M O D E

Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 16.9 16.83, 1.47 25.31
2 16.2 15.95, 2.81 36.84
3 24.6 17.39, 17.39 34.71
4 12.4 8.76,−8.76 39.33
5 0.5 −0.38, 0.32 36.65
6 0.7 −0.6,−0.35 37.39
7 13.2 −8.48,−10.11 40.24
8 24.1 15.49,−18.46 34.21
9 13.4 5.66,−12.14 32.13
10 14.2 10.87,−9.13 34.47

Table 13: Fused land mode, IRLock no failure – Marker no failure.

Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 13.4 −13.17,−2.32 36.51
2 5.3 −0.46,−5.28 36.85
3 20.6 5.33,−19.89 37.9
4 18.4 18.33, 1.6 31.32
5 9.3 −5.33, 7.61 33.5
6 15.1 14.19, 5.16 34.05
7 17.3 17.23, 1.51 36.18
8 16.3 −10.47,−12.48 38.05
9 13.5 2.34,−13.29 34.61
10 17.4 8.7,−15.07 32.74

Table 14: Fused land mode, IRLock below 3m failure – Marker above 3m
failure.

44

Institutional Repository - Library & Information Centre - University of Thessaly
24/04/2024 16:55:13 EEST - 18.222.167.58
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Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 20.4 14.42,−14.42 36.43
2 16.4 13.43,−9.41 34.2
3 4.3 4.28, 0.37 37.62
4 16.7 16.67, 0.87 26.75
5 19.6 19.3,−3.4 37.2
6 14.2 12.29,−7.1 33.3
7 14.1 8.09,−11.55 25.1
8 5.2 0.9,−5.12 31.3
9 16.9 −4.37,−16.32 38.1
10 9.6 −4.05, 8.7 34.52

Table 15: Fused land mode, IRLock above 3m failure – Marker below 3m
failure.

Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 46.1 11.93,−44.53 32.82
2 28.2 24.42,−14.1 34.26
3 17.2 13.17,−11.05 34.41
4 32.3 31.81,−5.61 34.56
5 20.5 20.19,−3.56 34.52
6 25.1 4.36,−24.72 36.07
7 29.3 21.75,−19.61 39.74
8 23.6 15.17,−18.08 38.72
9 36.6 −29.98, 20.99 33.99
10 35.1 −6.09,−34.57 40.42

Table 16: Fused land mode, IRLock random 0.75 failure – Marker random 0.50
failure.
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Trial Landing Error (cm) x, y (cm) Landing Time (s)
1 6.1 5.28, 3.05 40.5
2 22.1 14.21, 16.92 42.3
3 24.1 23.73,−4.18 39.9
4 15.2 −1.32, 15.14 45.1
5 7.9 −2.04, 7.63 41.31
6 4.7 0.87, 4.62 41.48
7 15.7 13.59, 7.85 38.9
8 19.2 −12.34, 14.71 39.73
9 12.3 11.56,−4.21 43.67
10 16.4 −14.2,−8.2 41.7

Table 17: Cautious landing with a repeated landing approach.
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