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Abstract

CMOS circuits are a category of integrated circuits broadly used in a number of
devices. A key factor in this is their low power consumption. A cause of elevated
power consumption, or more accurately, dissipation, is a phenomenon known as a
glitch. The power dissipated during glitches serves no functional purpose in the
circuit, while the levels of this dissipation are high enough that a number of
techniques for glitch elimination have been proposed. These techniques, however,
may lead to unreasonably complicated circuits. For this reason, sometimes an
attempt at predicting the level of power that is dissipated during a glitch is
preferable, in order to account for it. The purpose of this thesis is to examine the
use of machine learning techniques for the prediction of the output voltage and
power supply current of a circuit during a glitch. To this end, a number of glitch
SPICE simulations were used for the training of two machine learning models
based on random forest regression. These models were then used to predict the
values of the output voltage and the power supply current for similar glitch
simulations. Experimental results on a two-input NAND gate implemented at 45
nm show that our prediction technique achieves an average mean error of 0.01
mV (0.001%) for the output voltage and 0.69 pA (15.64%) for the power supply
current, compared to the respective values of the SPICE simulations. Therefore,
there is a promising basis for further research on machine learning algorithms for

the prediction of glitch behavior.



NepiAnyn

Ta kukAwpata CMOS egival pia Katnyopia OAOKANPWHEVWY KUKAWUATWY EUpEiag
Xpnong o€ mAnbwpa cuokeuwyv. ‘Evag onuavtikdg TTapdyovTag o€ autd gival n
XauNAR katavdAwon 1oxuog Ttous. Mia aitia auénuévng karavaAwong, f o
OUYKEKPIPEVA ATTWAEIAG, I0XUOG gival éva @aIivOPEVO YyVwoTd ws oTTivonpiouog. Ol
OTTIVONPIoPOI KATAVAAWVOUV I0XU XWPEIG KATTOI0 OPEAOG yIa TO KUKAWHA, VW N
TT00OTNTA 1I0XU0G TTOU XAVETAl KOTA TOUG OTTIVONPIOUOUG €ival TETOIO WOTE va €XEI
0odNnNyNoE€l O€ APKETEG TEXVIKEG TTOU QTTOOKOTTIOUV O0TnV £EAAEIWR TOug. Ouws auTég
Ol TEXVIKEG TTOAAEG POPEG 0BNYOUV O€ adIKAIOAOYNTA augnuévn TTOAUTTAOKOTNTA TOU
KUKAWMOTOG. INa Tov AOYyo auTd, eVOEXETAI KATA TTEPITITWON VA Eival TTPOTIMOTEPN N
TTPOBAEYN TNG aKPIBAS KaTavaAwong IoXU0G, JE OKOTTO va AngBei uttown Katd Tov
OXeOI00UO TOU KUKAWMPATOG. AUTH N SITTAWMATIKA Epyacia ATTOOKOTTEI TNV £¢£TA0N
TNG TTPOOTITIKAG TTPOPRAEWYNGS KATTOIWV TIMWV TAONG KAl PEUPOTOG TOU KUKAWMPOTOG
KAtd Tov OTveOnpIouo, he Tn Xpnon pnxavikng udénong. MNpog auté 1o oKOoTIo,
TTPOCONOIWOEIG CTTIVONPICUWY XPNoIuoTroinenkav wg dedopéva ektraideuong dUo
MOVTEAWV pnxavikng paénong, Ta otroia BacioTnkav oe £vav aAyoplOuo yvwoTto
w¢ omoBodpdéunon Tuxaiou ©Odooug. Metd Tnv eKkTTaiIdEuon, Ta MHOVTEAQ
Xpnoigotroinénkav yia va TTPoRAEYoUV TIG AvTIOTOIXEG TIMEG TAoNG €¢OdoU Kal
PEUPATOG TTAPOXAG TOU OOKIJAOTIKOU KUKAWHATOG KATA TN DIGPKEIQ OTTIVONPICHWV.
Ta atmoteAéopaTa TTOU  TTApouCialovTal otV TTapouca OITTAWMATIKA gpyaaoia
TTNyacouv amo trpooouolwoelg e Xprion TTUANG NAND 2 €106dwv o€ TexvoAoyia
45 nm Kkal dgixvouv Katd péoo 6po, péoo o@dAua 0.01mV (0.001%) yia Tnv Tdon
e€odou kai 0.69uA (15.64%) vyia TO pelpa TTAPOXAG. ZUVETTWG, Otixvouv
UTTOOXOMEVA VIO TTEPAITEPW £PEUVA OTO BEUA TNG XPNONG aAyopiOuwyY Pnxavikng

MAONoNG pe oKOTTO TNV TTPORAEWN TNG CUUTTEPIPOPAS TWV CTTIVONPICHUWV.
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Chapter 1

INTRODUCTION

1.1 Motivation

This thesis is concerned with two different subjects and fields of study, namely
glitch analysis and machine learning, and the use of the latter for progress in the
former. Glitch analysis is a subject matter concerning unexpected circuit power
consumption, while machine learning consists of self taught and self improving

computer algorithms.

The goal of glitch analysis is the detection and reduction of occurrences of
glitches, due to the high power dissipation they cause [1]. A number of different
approaches have been proposed in the literature (four such approaches can be
seen in [2, Ch. 2]), but none of them results in complete elimination of the
phenomenon in conjunction with limited additional circuit complexity. Therefore, if
glitches cannot be consistently avoided, an attempt should be made to predict
their existence and the amount of power they are going to consume. This is where

machine learning comes in.

1.2 Contribution

The aim of this thesis is to use machine learning, specifically an algorithm known
as random forest regression, in order to gauge its effectiveness in accurate glitch
predictions. The machine learning models use glitch simulations for training and
their output was compared to the output of the SPICE simulation. The models
were trained to predict the output voltage and the power supply current,
respectively, during glitches in a simple two-input 45 nm NAND gate. The
prediction of the output voltage had an average mean error of 0.01mV (0.001%),
while the prediction of the power supply current had an average mean error of

0.69pA (15.64%), against the respective SPICE simulation values.



1.3 Outline

The second chapter is concerned with glitches and glitch power dissipation, while

also providing some information on circuit simulation program SPICE.

The third chapter delves into machine learning, the algorithm used to create the

models and the general theory of implementing a machine learning model.

The fourth chapter details the specific steps of the experiments that lead to this

thesis’ results.

The fifth chapter presents those results.

The sixth and final chapter comments on the results and proposes steps that build

on them for future work.



Chapter 2

GLITCH ANALYSIS

2.1 Glitches and Power Consumption

CMOS stands for Complementary Metal-Oxide-Semiconductor. CMOS is the
semiconductor technology used in the manufacturing of the transistors for most
modern computer microchips. Therefore, digital logic circuits are also created with
CMOS technology. Two remarkable characteristics of CMOS are its high noise

immunity and low static power consumption [3].

There are two ways power is consumed or dissipated in CMOS: statically and
dynamically. Static power consumption includes leakage currents and power
required for the device to remain on standby, while dynamic power consumption is
the power consumed while the circuit is active, including power dissipated during
glitches. Dynamic power constitutes about 80% of the total power consumed by
the circuit and glitch power dissipation can be between 20 and 70% of the total
power [2, Ch. 1]. Consequently, there is a need to understand and limit the effects
of glitches.

Glitches are unwanted transitions of a logic gate’s output that have no
functionality. They are momentary switches of the gate’s output voltage, while it
has no operational reason to change value. If the output of a logic gate is 1, a
glitch would be the occurrence of an instantaneous spike to a value of 0 followed
by a return to 1 [4]. This behavior could then, if the circuit designer had not taken
relevant precautions, be propagated throughout the circuit, adding successively to

the initial redundant power dissipation.



The problem is that glitch power dissipation can vary wildly and there is no reliable
way to get an accurate prediction, since, in practice, each glitch can vary. This
thesis proposes a way of predicting elements of glitch power dissipation, using as
an example a simple NAND gate and applying a machine learning algorithm that
attempts to predict the output voltage and the power supply current during the

abnormality caused by the glitch.

2.2 Glitch Example

A two-input NAND logic gate (NAND2) is taken as an example to demonstrate how

a glitch can be created. This gate has the following truth table:

0 1 1
1 0 1
1 1 0

figure 1: NANDZ2 truth table

If A and B have different values and both need to switch, say from 01 to 10, the
output should remain 1 throughout. However, in practice there could be a brief
moment where both A and B have a value of 1, therefore changing the output from
1 to 0 then back to 1. That would be a glitch, as seen by the plot of the output
voltage in figure 2. The plots of course show that the values in actual circuits do
not instantly change, but rather have a transition time, i.e. time to transition from

low-to-high or high-to-low.
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figure 2: NAND2 voltage values during a glitch



Chapter 3

MACHINE LEARNING AND RANDOM FOREST
REGRESSION

Tom M. Mitchell, a renowned scientist on the field, defines machine learning as:

“the study of computer algorithms that improve automatically through experience”

[5].

What is meant by that, as elaborated further by Mitchell, is: "A computer program
is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E."

3.1 Brief History

The idea of machines self improving through experience in their attempt to solve
problems, can be seen as early as 1943. In that year, neurophysiologist Warren
McCulloch and mathematician Walter Pitts published a paper where they modeled

a brain and its neurons as a network of electrical circuits [6].

Seven years later the famous Turing Test was created but its namesake, pioneer
mathematician Alan Turing [7]. Two years after that, in 1952, Arthur Samuel, who
popularized the term “machine learning” [8], created a self educating computer

program that played checkers [7].

The following decades saw a number of new algorithms being developed, as well
as achievements like a machine playing tic-tac-toe [9], but the field was restrained

by the technology of its time.



A watershed event occured in 1997, when Deep Blue, a chess-playing computer
developed by IBM, beat the reigning world champion of chess, Garry Kasparov [7].
The decade after that saw renewed interest in the field, aided by the rapid
improvement of computer capabilities, which culminated in a number of large
businesses investing into major machine learning research teams and projects.

Some of these include:

o AlexNet (2012): The winner of the ImageNet competition. ImageNet is a

visual database and AlexNet is the name of the neural network that had the
highest accuracy of correctly recognizing its pictures and videos. AlexNet

cemented the value of GPUs in machine learning computations [10].

e Google Brain_(2012): A Google research team that focuses on detecting

visual patterns in images and videos.

e DeepMind (2014): A neural network that learns to play board games and

simple video games, owned by Google.

e DeepFace (2014): A facial recognition neural network developed by

Facebook.

e AlphaGo (2016): Created by the developers of DeepMind, AlphaGo is a

program that in 2016 became the first machine to beat a professional Go
player in a regular match and in 2017 beat the world number 1 Go player,

Ke Jie. Go is seen as a much more complex board game than chess [11].


https://research.google/teams/brain/
https://www.deepmind.com/

3.2 Random Forest Regression

The machine learning algorithm used for the creation of this thesis’ models is
known as random forest regression. The reason this algorithm was chosen will be
explained in chapter 3.3. In order to better understand this algorithm, some basic

concepts will now be explained, demonstrating its type, use and methodology.

e Supervised and unsupervised learning: A supervised algorithm learns by

using a data set® that helps it understand the expected output values,

whereas an unsupervised algorithm creates structure out of the input
without any prior knowledge as to what the output should look like [12, p. 3].

Random forest regression is a supervised learning algorithm.

e Classification and regression: Supervised learning algorithms are

categorized into classification and regression algorithms based on the
desired output. If the aim is the assignment (classification) of data into a
discrete number of categories, then it is a classification algorithm. If on the
other hand, the output consists of continuous values, then it is a regression
algorithm [12, p. 3]. As the name suggests, random forest regression falls

into the regression category.

e Decision tree learning: A random forest algorithm utilizes decision trees.

Decision trees reach answers to a problem by answering sequential
questions. A simple case of a classification decision tree is shown below
(figure 3), as discrete answers are better in demonstrating the basic
concept. Using single decision trees is not advised, as they are
computationally expensive to train and their results are heavily variable

dependent.

* each entry of the data set or dataset (the two terms are used interchangeably)
consists of two things: a number of input variables and their corresponding output
variables, the values of which are dependent on the input.
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figure 3: Decision tree example. Source [13]

To sum up, random forest regression is a supervised regression algorithm that
combines the predictions of multiple decision trees and accepts their mean as the
more accurate prediction. This combination is why this algorithm is also
categorized as an ensemble learning algorithm and also why it eliminates the

weaknesses of single decision trees.

In a random forest algorithm, the trees run parallel to one another, with no

interaction between them. The actual formula of the predictions is:

N

y:

T M=

m
| P -
— > Wj (x;, x") Jy, . with ¥ being the prediction for a new
J=1

point X', N the size of the dataset, M the number of trees and WJ- (xl- R x’) the

weight of X' in relation to all of X; which are all the other input variables. This is

equal to % for Xx; on the same leaf but on the other trees, and 0 otherwise. [14]



3.3 Implementing Machine Learning Algorithms

The methodology followed for the creation of a model is based on Bishop’s book
[12]. This methodology can be followed for the implementation of machine learning

algorithms in general. The steps after the dataset is created are the following:

1. Standardization: The first step is simplifying the dataset’s input. This is done

by normalizing it, that is, scaling the data to values between 0 and 1. This is

done as follows:

X — min

Yy = with x being the original value, y the new and min/max

indicating the spectre of values. This is done for the entire input. The

reason is to avoid variables with greater value span unduly affecting the
importance of others. [12, p. 425]

2. Principal Component Analysis:

The Principal Component Analysis (PCA) is used to detect variables that
could be removed with minimal loss of information. PCA needs the data to
be standardized. The first step is the computation of the covariance matrix
of the input data, in order to determine the correlation between the
variables. The covariance of two values X, Y is given by:
cov(X,Y) = E[(X-E[X])(Y —E[Y])], where E the mean value. The

covariance matrix of 3 variables for example, is:
cov(X,X) cov(X,Y) cov(X,Z)
cov(Y, X) cov(Y,Y) cov(Y,Z)
cov(Z,X) cov(Z)Y) cov(Z,7)

The important aspect of the covariances is not their value but their sign; a
positive sign means that the two variables are correlated and a negative

sign means they are inversely correlated.

Next, the eigenvectors and eigenvalues of the covariance matrix are used

to obtain the principal components of the original variables.

10
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30

20

0

Percentage of explained variances

Principal Components

figure 4. Information stored in each successive
principal component

Principal components are new variables created through combinations of
the initial, in ways that create uncorrelated variables, with most of the
information stored in the first one, as shown in figure 4, and less information

in every subsequent variable.

The order of significance of the principal components is determined by
sorting eigenvectors in order of their related eigenvalues, from highest to
lowest. To ascertain the percentage of information each primary component
carries, the relevant eigenvalue is divided by the sum of eigenvalues. A
decision can then be made to remove primary components that carry a
miniscule percentage, for the sake of lower complexity and speed. For a
more detailed analysis of PCA, see [12, pp. 561-570].

11



3.

5.

Hyperparameter Optimization: model parameters like, for this specific

algorithm, the number of decision trees in the forest or the depth of each

tree, are known as hyperparameters.

A method of hyperparameter optimization is the use of grid search. Grid
search is an exhaustive search, wherein the model is trained on the dataset
using different combinations of hyperparameters each time. Every
combination is tested through cross validation; that is, the dataset is each
time split into a number of subsets and the performance of each
combination is the average of successful predictions across the subsets.
The optimal hyperparameter combination is the one with the highest
accuracy of predictions and that is the one chosen to be further analysed.
[12, pp. 280-281]

Train-Test split: The entire dataset, both input and output, are then split into

a “train” subset and a “test” subset. The “train” is the larger one, usually
making up 80 or 90 per cent of the entire dataset. This is used, as the name
suggests, for the model to train on, whereas the “test” part is used to test its
accuracy. Usually repeated splits are needed to reach a more conclusive
result. The train-test split method is preferred because it splits the dataset

randomly, in an attempt to maintain its variety in values [12, p. 2].

Fit: By “fitting” the model, it is meant that the model trains on the “train” part
of the dataset. With no further input from the programmer, the model trains
by comparing predictions to real values and adjusting its inner weights

assigned to every subsequent result. [12, p. 2]
Prediction: Predictions are then attempted when the model receives the

new, “test” subset and uses its input values to predict the corresponding

output.

12



7. Mean Squared Error (MSE): The mean squared error of the prediction of

the “test” subset output measured against the actual “test” subset output, is

used to gage the accuracy of the model. MSE is given by:

N
MSE =1 Y. -Y. )2, where n the number of values, Y. the
n P 1 1 1

actual output and Y, the predicted output. Comparing the MSE of models

that use different algorithms, a decision can be made as to the most

effective algorithm [12, pp. 46-47].

Repeating steps 4 to 7 yields a more definitive result.

13



Chapter 4

PROPOSED APPROACH

4.1 Creating the Dataset

In order to create the dataset a number of simulations had to be run. These were
done in HSPICE. HSPICE is one of the most accurate commercial continuations of

the original SPICE [15], the established program of circuit simulations.

The circuit that was simulated was that of figure 5 and included a two-input, 45
nanometer NAND gate, two voltage sources for the input signals (V1, V2), a power

supply source (Vdd) and a capacitor connected to the gate’s output (C).

figure 5: Simplified schematic of the NANDZ2 circuit simulated

14



The method for creating the dataset of the size required in order to train the
models, was built on the work done by A. O. Troumpoulou [16]. With the help of a
C program, a number of transient analysis simulations with different variable

values were run in an attempt to replicate numerous glitch cases.

The following four parameters were taken into account for the creation of glitches:

The first parameter was the capacitance value of the output capacitor.

Each simulation had two signals as input of the NAND2 gate. These two voltage
sources were simulated as Piecewise Linear sources (PWL). This was done to set
the actual points in time when the sources would start and end transitioning from 0
volts (V) to 1.10 V and from 1.10 V to 0 V respectively. The interval between the
start and the end of this transition is known as transition time. The two transition
times were two more of the aforementioned parameters. The actual points of time
that the transitions begun and ended were variables set by the C program for each
simulation. In every case however, one signal was at 0 V and 15 picoseconds (ps)
later had a value of 1.10 V while the other started at 1.10 V and 15 ps later had a

value of O V.

The fourth and final parameter was the distance between the transitions of the
two signals. For this, the time interval between the points that each of the two

signals was at 50% of the input voltage was measured.
To summarize, the four parameters were the capacitance value of the output

capacitor (C), the two transition times (T1 and T2) and the distance between the
two signals (HDIST).

15



There were 7 signal transition time values given by the C program and 22
capacitance values for the output capacitor. An example of input values during a

conducted HSPICE transient analysis can be seen below.

Vvl 1 0 PWL OPS 0V, 0.2481€9ps 0V, 0.456337P5 1.10V, 15PS 1]
Vv2 2 0 PWL 0OPS 1.10v, 0.446704Ps 1.10v, 0.694872
€l 3 0 59.35&700F

x NAND2 7 5 2 3 1 NAND2 X1

.TEAN 1PS Z00ES

figure 6: Example of HSPICE simulation input

As indicated by the underlined values in figure 6, in this example the first signal
(V1) started transitioning at 0.248169 ps and finished at 0.496337 ps, while the
second signal (V2) started at 0.446704 ps and completed its transition at 0.694872
ps. The difference between each set of underlined values is the corresponding
transition time. It is also illustrated above that the output capacitor (C1) had a
capacitance of 59.3567 fF. Finally, the initial transient analysis was performed for
200 ps with a timestep of 1 ps. This simulation time was selected in order to gage

the time it would take for the output voltage to revert to its initial value of 1.10 V.

Every simulation produced a .LIS file with the results, whence the C program
retrieved them one by one and saved them in two .TXT files, one for the current
values, including the power supply current, and one for the output voltage values.

An example of these .TXT files for one simulation can be seen below, with figures
7 and 8 having the values of its current variables and figures 11 and 12 of its

voltage output variable.

16



TOT: 2768
C: 5.5646899999999997 T1: 0.078059600000000007 T2: 0.9171859 DIS: 0.811995687500000095 HDIS: ©.34457874999999988

Vb cl ve
a. 2.7139n a. 5.8998n 50.00008p 2.6814u  2.8006u 532.4417n
1. aeeedp 4.2818u -83.1182u 62.185% 51.00000p 2.6440y  1.976lu 522.6T63n
2.0000@p 25.5611u -B7.B67Bu  96.BBBS5u 52.00000p 2.6866u  1.9515u 512.9188n
j.00000p -B.BB66u  -7.4935u -11.8628u 53.00008p  2.5692u  1.9278u 583.14%4n
4.00000p 35.3169n -11.4564u 4.9650u 54.00088p 2 2.5317w  1.9%925u 493.3799n
5.00800p 22.0262u -40.8684u 58.4829%u 55.00008p 2.4943u  1.8779%u 4B3.6145n
G.00000p 14.8925u -22.6582u 33.7482u 56.00000p  2.456%  1.8534u 473.849%n
7.0000@p -7.0893u  16.654Bu -25.4797u 57.00000p  2.41%4y  1.82B8u 454.8836n
B.00000p -10.6083u  24.6089%u -36.3201u 53.00000p  2.3828u  1.B843u 454.31BIn
9. gaggap 6.5888u -4.2171u 9.567Mu 59.0000dp 2.34dBe 1.7797u  444.552Tn
16.00000p 23.7683u -33.8352v  55.4543u 60.00000p  2.30T5u  1.7551u 435.8342n
11.08008p 18.5871u -23.4959:« 48.B8988u 61.00000p  2.2740u  1.729% 428.4016n
12.0000ap 5.6429u -965.8668n 5.8726u 62.08000p 2.2410u  1.703% 421.769%n
13.00000p -7.2214u  21.564Ju -29.1535u 63.00008p 2.2877¢  1.6783u 415.1364n
14.08088p -15.2378u  35.6895u -51.8348u 6d.00000p 217450  1.6527u 488.5838n
15.00000p 27.7978u -3B.6762u  65.4938u 65.00000p 2.141u  1.62T1u 481.8T1In
16.00000p 14.288Ju -15.2511u 28.8751u 66.00000p  2.1080u  1.6@16u 395.2386n
17.00000p  4.2927u 2.8748u  1.7938u 67.00000p  2.8747v  1.576Gu 3B8.586Bn
18.00000p  4.2365u 2.1511u  1.6868u 68.00000p  2.8415u  1.550du  3B1.973n
19.00000p  4.1883u 2.2273u 1.57%% 69.00000p 2.008lu  1.5248y 375.3488n
20.00008p  4.1241u 2.3@35u 1.4738u 70.00000p  1.9754y  1.499%u 368.7937n
21.00000p  4.0686u 2.37@5u 1.373% 71.00000p  1.9476u  1.479%u 383.2451n
22.00000p  4.0171u 2.38240 1.321% 72.00000p 1.9197u  1.4596u 357.69B8dn
23, 0a0eap 3.9656u 2.3944y 1.2788u 73.00000p 1.8919  1.4395u 352.1588n
24.06008p 3.9142u 2.4863u 1.2188u 74.00000p  1.B641u  1.4195¢ 345.683In
25.0800ap 3.8627u 2.4183u 1.1668u 75.00000p  1.8362u  1.3995u 341.8556n
26. 0800ap 3.8113u 2.4302u 1.1148u 76.00008p 1.5884u  1.3795 335.5079n
27.0a00ap 3.7598u 2.4423u 1.8621u 77.00000p  1.78050  1.3504u  329.96@83n
28 . dopdep 3.7083u 2.4541u 1.8181u TE.00000p  1.7527v  1.3394u 324.4127n
29.0e00ap 3.6569u 2.4661u  958.1336n 19.00000p 1.72%  1.315%4y 318.8651n
J@. eaveap 3.6@856u 2.4755u 9088.3652n 80.00000p 1.6973u  1.2993u 313.4486n
31.00000p 3.5565u 2.4557u BB84.3243n Bl.00808p 1.6726u  1.278% 389.5652n
32.00008p 3.5874u 2.4359u B60.2834n 82.00008p 1.6479u  1.2586u 385.6818n
33.0e008p 3.4582u 2.4161u  B26.2424n 83.00000p 1.623v  1.2380u 301.7984n
34, 0000ep 3.4891u 2.3963u  B812.2015n 84.90000p 1.5986u  1.2178u 297.9149n
35. @a0eap 3. 3680u 2.3765u 788.1686n 85.00008p 1.573%  1.1974u 294.0315n
36 .0a008p 3.3188u 2.3567u 764.1197n B6.00808p 1.5493u  1.1778u  299.1481n
37.0a88dp 3.261%u 2.3369u 748.8788n 87.00008p  1.5245u  1.1566u 286.2647n
38.eee0ep 3.2126u 2.3171u  716.8379n 83.00000p 1.499%u  1.1360u 282.3813n
39. eadap 3.1635u 2.2973u  691.9978n 89.00800p 1.475  1.1158u 278.4979n
49.00000p  3.1148u 2.276%9u 668.7748n 99.00000p  1.4508u  1.8959% 7274.533n
4].8a80dp 3.8714u 2.2492u  655.11@1n Ol.00008p 1.4%36u  1.8810u 278.9907n
42 . geeedp 3.8288u 2.2216u 641.4461n 92.00008 1.4183u  1.8661u 267.3488n
43.06008p 2.9846u 2.193% 627.7822n 93.90000p 1.3908u  1.0513u 263.7853n
44 geedep  2.9413uy 2.1663u 614.1182n 94.00808p 1.3697¢  1.8364u 268.8625n
45.@0000p  2.897% 2.1386u 65088.4542n 95.00008p 1.34%u  1.8215u 256.4198n
45.080eap 2.8545u 2.1118u  586.7983n 96.00008p 1.390u  1.8@67u 252.7771n
47 . daegadp 2.8111u 2.8833u 573.1263n 97.00000p  1.3088u 991.7978n 249.1344n
48.00000p  2.7677u 2.8557u  559.4823n 98.00000p  1.2885 976.93087n 245.4917n
49, B8888p 27244y 2.8280u 545.7984n 99.00008p  1.2632u 962.8636n 241.849%8n

figure 7: Simulation 2760
Current results, part 1
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figure 8: Simulation 2760

Current results, part 2
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378.4453n
373.6544n
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At the top of figure 7, the input values for this specific simulation can be seen. In

addition to the variables already mentioned, those of C (capacitance value of

output capacitor), T1 and T2 (signal transition times) and HDIST (time interval
between the moments when each of the two signals was at 50% of the input
voltage), there is an additional DIS variable. This is the elapsed time between the
moment that V2 started transitioning and the moment V1 finished transitioning.
This variable was dropped during PCA, because its influence on the output was

trivial.

Below those, there are four columns on the left that continue on the right and then
continue similarly in figure 8. The leftmost column in each, with values from 0 to
200p, is the simulation time in ps. The other three columns are the corresponding
current values for every picosecond, the output of the simulation: v6 indicates the
power supply current, the one examined in this thesis, c1 the output capacitor

current and vO the ground current. In these three columns, ‘U’ indicates

microampere, ‘n’ is nanoampere and ‘p’ is picoampere.
Upon further experimentation, it was decided to halve the step from 1 ps to 0.5 ps,

so as to limit the chance of missing an upward or downward current spike, as seen

in figure 9.
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Comparing different time steps
60

—— 1ps
50 - —— 0.5ps
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Current {ua)
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0 1 2 3 4 5 3] 7 8 9
Time (ps)

figure 9: Comparison of 0.5 ps and 1 ps time steps

Here the purple plot indicating a step of 0.5 ps, picked up on spikes that were
missed with the blue plot of 1 ps step. It was also decided to set a cutoff point at
20 ps, as the current values were fairly stabilized from that point forward (see

figure 10).
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Power Supply Current I(V6)

125
100 -

I3

50

microampere

picoseconds

figure 10: Power supply currents of the entire dataset

Figures 11 and 12 continue the example of the .TXT values of simulation 2760,
presenting its output voltage in two columns, the first being the time and the
second the corresponding voltage values. Like before, the two columns start on
the left of figure 11, continue on the right and then go on to figure 12 until the

200th picosecond.
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TOT: 2760
C: 5.5646899999999997 T1: 0.878859000000000007 T2: 0.017185% DIS: 2.011985687500000695 HDIST: @,34457874999999988

3
Q. 1.1000 50.00000p 1.8763
1.02000p  1.0945 51.00000p 1.8766
2.e2000p  1.8815 52.00000p 1.877@
3.00008p 1.8732 . 1.8773
4.0080ep 1.8686 . 1.e777
5.08008p  1.8651 . 1.8780
6.90000p  1.8633 . 1.8783
7.08008p  1.0622 . 1.8787
8.90000p  1.8615 . 1.87%
9.90000p  1.8613 . 1.8793
10.02808p  1.8611 s 1.8797
11.@e@eeep  1.8611 . 1.8800

12.0ecaap 1.8613 . .ege3
13.0e088p 1.0614 . .B806
14 . pedap 1.0616 . .08es
15. 6eeoap 1.0619 . .8811
16. peeoap 1.0623 . .0814
17.0eeoep 1.8627 . .8817
18.00e0ep 1.8631 . .e82e

19.peeeep 1.8835
20 . boeeep 1.8639
21.e0808p 1.8643
12 .08008p 1.8647
23, peedap 1.08651
24 . peeoep 1.0656
25 . peeoep 1.0660
26 . peeoep 1.0664
27 . 0eeoep 1.0669
28 . peeeep 1.0673

.

-

]

-

BEEEEEEEES
CeaBR2BRU

T

(b e e b b e e e ek ek ek e e e e b b b b b b b b b b b e e e e e e e b b ek b
'

29.00000p  1.0677 . .9849
30.00000p  1.0682 . .e851
31.00000p  1.0686 . 0853
32.00000p  1.0690 . .0855
33.00000p  1.0695 . .e858
34.00000p  1.0699 . .9860
35.00000p  1.0703 . .0862
36.00000p  1.0707 . .0864
37.00000p  1.0712 . .0866
38.00000p  1.0716 . .0868
39.0888ep 1.8728 . .B871
40.00000p  1.0725 . .e873
41.00000p  1.0728 . .8875
42.00000p  1.0732 . .0876
43.00000p  1.0736 . .0878
44.00000p  1.0740 . .0880
45.00000p  1.0744 . .0882
46.00000p  1.8748 . .0884
47 . eseaap 1.8751 . .B886
43.00000p  1.8755 . .e887
49.p0000p  1.8759 . .9889

figure 11: Simulation 2760
Voltage results, part 1
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100, eeaodp
101. 00000
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154. 00000p
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157.00000p
158. 00000p
159.00000p
160. 00000
161. 00000
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163.80000p
164.00000p
165. 00000
166. 00000
167.00000p
168. 00000p
169. @0000p
170.00000p
171.00000p
172.00000p
173.00000p
174. e000dp
175.00000p
176.00000p
177.00000p
178.00000p
179.00000p
180.00000p
181.00000p
182.00000p
183.00000p
184, 00000p
185.00000p
186.00000p
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200. 00008y

figure 12: Simulation 2760
Voltage results, part 2
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In summary, the data utilized for this experiment consisted of 10780 simulations
of different combinations of the 4 variables (or machine learning features)
mentioned above. Lastly, as can be seen in figures 7, 8, 11 and 12, each
simulation produced 200 instances of values. Only 40 of those (0.5 step to 20ps)

were used for the current, for the reason mentioned previously.

4.2 Creating the Models

In order to apply the relevant machine learning techniques elaborated upon in

chapter 3, a number of tools had to be used. Firstly, version 2019.3.3 x64 of
PyCharm, which is a Python language integrated development environment. The

version of Python was Python 3.

Regarding libraries, pandas [17], Scikit-learn [18], Matplotlib [19] and Pickle [20]
were employed. pandas enabled the reading and formatting of the data, whereas
Scikit-learn provided all the machine learning tools and algorithms. Matplotlib was
used as an efficient way to get a visual representation of the results. Pickle
allowed the encoding of the models and their data standardization scalers into

binary files and can also be used to load them from the binary files for use.

In order to be accessible to the methods presented by pandas, the data had to be
transformed into .CSV format. A small Python program was created to that effect.
Both initial .TXT files were split into two .CSV files each, one file containing the
machine learning input and the other containing the output. Only the values for the
current of the power supply were kept in the relevant .CSV file, as this was the
current that was examined in this thesis. Figures 13 and 14 show a part of both

.CSV voltage files, input and output.
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figure 13: Some voltage input values in CSV

format

24743513749999993
24772858249999993

V3-1,V3-2,V3-3,V3-4,V3-5,V3-6,V3-7,V3-8,V3-9,V3-18,V3-11,V3-12,V3-13,V3-14,V3-15,

HEEEREREERRERBERERERE

.8712,1.0208,0.
.8712,1.0204,0
.8712,1.0202,0
.8712,1.0200,0.
.8712,1.0200,80.

.8712,1.0200,0.
.8711,1.0181,0.
.8711,1.0181,0.
.0711,1.0178,0.
.9712,1.0171,0.

9%@4482,80.

.9988982,0.
.99114e3,0.

9912777,80.
9913126,0.
9912592,0.
9892419,0.

9745831,8.
.96B2758,0.
9737543,8.
9735541,60.
9734724,0.
9735176,0.
9757521,8.
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9683532,0.
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9675263,0.

9674427,8.

9e6732812,8

9671658,0.
9670964,0.
9670672,0.
9670854,0.
9677629,8.
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.9692811,8.
.9735645,8.97886
9693444,8.
9693516,0.
.973552,08.978876
.9734098 ,0.97852
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9693488,
9696531,@

9735976,0.97883
9735951,0.9786

973559,8.978B688
9735528B,0.97808

989321,0.9757162,0.9675734,0.9677537,0.9696675,0.9733991,08.978523
9897555,0.9754938,0.9678944,0.9676415,0.9697418,0.9733265,0.9785€

9985877 ,0.

9749687

figure 14: Some voltage output values in CSV

format

e.9684588,08.9674193,8.969885,686.9732184,8.978485

To conform to the .CSV format, each simulation’s variables in the input file and
results in the output file, were written in one line and separated by commas. For
both the voltage and the current, the initial value was dropped from the .CSV,
given that it was a constant value of 1.10 V and 2.7139 nA respectively; as

constants they were immaterial for predictions.
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Scikit-learn provided both the machine learning algorithms and the tools required

in order to train and test the models that were created:

e Standardization: The sklearn.preprocessing.StandardScaler class

was used to standardize the data.

e Principal Component Analysis: sklearn.decomposition.PCA was a

class imported to test the standardized weights calculated using the
previous class. By testing the weights, it was concluded that the DIS
variable had minimal effect on the outcome, therefore it was

eliminated from the dataset.

e Train-Test split: sklearn.model_selection.train_test_split was used in

order to split the dataset into two unequal portions in a 90-10
division. The larger was used to train the model, whereas the smaller

was used to test the effects of the training.

e Random Forest Regression:

sklearn.ensemble.RandomForestRegressor was the machine
learning algorithm that was chosen, after a number of algorithms,
including k-nearest neighbours, were tried. Details about random

forest regression were outlined in section 3.2.

e Grid Search: sklearn.model_selection.GridSearchCV was used to
determine some of the hyperparameters which are the parameters of
the RandomForestRegressor class. Specifically it was determined

that the best number of trees in the forest was 150.
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e Mean Squared Error (MSE): sklearn.metrics.mean_squared_error

provided the MSE of the model predicting the output of the train and
of the test subsets. The requirements are a small difference between
the two values and a small MSE on the test subset. The smaller this
value is, the more accurate the predictions during the testing were.
This step decided the use of random forest regression, since its MSE
was consistently lower than that of k-nearest neighbours, the

algorithm with the second lowest MSE.

e Mean Absolute Error (MAE): sklearn.metrics.mean_absolute error

gave an easier to understand metric, with mean absolute error being
the prediction’s deviation from the real values given in the actual

units; V and pA respectively.

e Multi-output Regression: Finally, since the subject of this thesis is a

problem of multi-output nature and regular machine learning
algorithms tend to be single output oriented, a wrapper class had to
be used in conjunction with
sklearn.ensemble.RandomForestRegressor. This wrapper was

sklearn.multioutput.MultiOutputRegressor.

After the algorithm was decided on and the models created, the dataset was
repeatedly split into “train” and “test” and the input each time was standardized.
Then, the models trained on the appropriate subdataset and attempted to predict
the output of the “test” input, comparing the MSE of the two. Finally, the actual
output and the predicted output were plotted on the same graph, utilizing the

pyplot module of Matplotlib.
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4.3 Model Application

The Pickle library was used in order to save the two models and also the two
scalers responsible for standardizing the input into binary form. Pickle can be used
to access them after the creation and use them to predict output voltage and
power current supply during a glitch, given 4 values that represent: the
capacitance of the output capacitor in femtofarads, the two transition times of the
signals in picoseconds and the time interval between the moments each of the two

was at 50% of the input voltage value, also in picoseconds.

Therefore, after the creation of the models and the respective scalers, the product
of this thesis can be used with the help of a single python library: Pickle. The
program that interfaces with the user simply loads the four binary files with the
help of this library, uses the scalers and the models on the input provided by the
suer and produces two vectors. The one is the output voltage values every

picosecond and the other the values of the power supply current every half

picosecond.
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Chapter 5

RESULTS

5.1 Output Voltage

The prediction of the behavior exhibited by the gate’s output voltage of the specific
dataset was fairly accurate. Firstly, the MSE of the “test” subset predictions,
compared to the actual “test” output has an average value of 0.00000003, out of
10 train-test splits. It is easily deductible therefore that the predictions made tend
to be of high accuracy. The average MAE, the average actual deviation from the

real values, was 0.00011 V (average mean relative error of 0.001%).

Figures 15 to 18 illustrate comparisons between predicted and real output voltage

values.
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figure 15: A simulation with minimal voltage

fluctuation

This example showcases a simulation where, while a glitch did occur, the output
voltage did not decrease significantly from its original value. The red prediction plot

and the blue plot of simulation values are identical in this scale.
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figure 16: A simulation with substantial voltage

fluctuation

Same situation of identical values, but in this case the output voltage dropped
substantially. A zoomed in view of the above graph follows, that demonstrates the

existence of a slight deviation.
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figure 17: A zoomed in view of the above

example

Indeed here the slight deviation between actual and predicted values becomes
apparent. Since the values in question are examined in V (as opposed to mV for

example), this deviation is not a significant problem.
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figure 18: A zoomed in view of another
example

As this is a machine learning algorithm, complete and consistent accuracy is not
the expected outcome; the goal is an approximation of the real values. Even with
the possible deviations that may occur between predicted and real values as
demonstrated in figure 18, an average MAE of 0.00011 V was deemed sufficient

for the purposes of this thesis.

33



5.2 Power Supply Current

The results of the model predicting the power supply current present a wider
range in accuracy. But due to the erratic behavior exhibited by the power supply
current during a glitch, as was demonstrated in figure 10, such results are not
unexpected. Even so, the model that was implemented achieved fairly accurate

predictions.

Ten train-test splits of the dataset led to an average MSE of 5.17 and a best case
MSE of 3.33. The specific test subset had 1078 simulations in it, 10% of the entire
dataset. The average MAE of the predictions against these 1078 simulations was
0.69 pA (average mean relative error of 15.64%). Using the model with the best
MSE, 92.39% of the predictions had a MAE of less than 2 pA, 5.47% had a MAE
of between 2 and 5 yA and only 2.13% had a MAE above 5 pA.

Examples follow (figures 19-23):
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figure 19: An example of great accuracy
(exhibited in 92.39% of cases)

The accuracy presented here is high. There were cases that the MAE was as

small as 0.07 pA, as can be seen in the following page.
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figure 20: Another similar, even more accurate,
example

The difference between actual and predicted values here is almost non existent.

The red plot seems like a carbon copy of the blue.
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figure 21: A different case of similar accuracy

Not all cases have a similar kind of plot however, as was shown in figure 10. The

model created, as evident here, is able to predict the power supply current to

reasonable accuracy in a number of different cases.
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figure 22: An example of slight deviation
(5.47% of cases)

Here there is a slight drop in accuracy, particularly apparent in peaks, where the
predicted values are consistently closer to 0 than the actual, which have a wider
range. An interesting point is at the start, where, unlike the rest of the graph, the

predicted and the actual values are almost opposite.
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figure 23: An example of greater deviation

(2.13% of cases)

In this case the accuracy is even lower. A saving grace however is that the pattern
of peaks is more or less the same in both actual and predicted values. At 2.13% of

cases, this is an expected and acceptable result of a machine learning approach.
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Chapter 6

CONCLUSION AND FUTURE WORK

The purpose of this thesis was to examine whether machine learning could be
used in glitch analysis, in order to approximate some circuit values during the

unpredictable power dissipation caused by a glitch.

To this effect, using an HSPICE simulation of a simple two-input 45 nm NAND
gate circuit, a dataset of multiple glitch cases was created. This dataset was then
analyzed by two machine learning models based on random forest regression, one

model predicting the output voltage and the other the power supply current.

The results show a reasonable accuracy of predictions, with average mean
squared error of 0.00000003 for the output voltage and 5.17 for the power supply
current. The average mean error was 0.1mV (0.001%) for the output voltage and

0.69 pA (15.64%) for the power supply current.

Even though the outcome seems promising, the scope was limited, so further work
is needed to consolidate the efficiency of this preliminary research. Based on this
thesis, some proposed next steps are the creation of models for predicting the
behaviour exhibited by the output capacitor and grounding currents, as well as
experimentation using different algorithms, datasets, logic gates, and advanced

technology nodes (below 22nm).
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