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 Abstract 
 

CMOS circuits are a category of integrated circuits broadly used in a number of              

devices. A key factor in this is their low power consumption. A cause of elevated               

power consumption, or more accurately, dissipation, is a phenomenon known as a            

glitch. The power dissipated during glitches serves no functional purpose in the            

circuit, while the levels of this dissipation are high enough that a number of              

techniques for glitch elimination have been proposed. These techniques, however,          

may lead to unreasonably complicated circuits. For this reason, sometimes an           

attempt at predicting the level of power that is dissipated during a glitch is              

preferable, in order to account for it. The purpose of this thesis is to examine the                

use of machine learning techniques for the prediction of the output voltage and             

power supply current of a circuit during a glitch. To this end, a number of glitch                

SPICE simulations were used for the training of two machine learning models            

based on random forest regression. These models were then used to predict the             

values of the output voltage and the power supply current for similar glitch             

simulations. Experimental results on a two-input NAND gate implemented at 45           

nm show that our prediction technique achieves an average mean error of 0.01             

mV (0.001%) for the output voltage and 0.69 μA (15.64%) for the power supply              

current, compared to the respective values of the SPICE simulations. Therefore,           

there is a promising basis for further research on machine learning algorithms for             

the prediction of glitch behavior. 
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Περίληψη 
 

Τα κυκλώματα CMOS είναι μια κατηγορία ολοκληρωμένων κυκλωμάτων ευρείας         

χρήσης σε πληθώρα συσκευών. Ένας σημαντικός παράγοντας σε αυτό είναι η           

χαμηλή κατανάλωση ισχύος τους. Μια αιτία αυξημένης κατανάλωσης, ή πιο          

συγκεκριμένα απώλειας, ισχύος είναι ένα φαινόμενο γνωστό ως σπινθηρισμός. Οι          

σπινθηρισμοί καταναλώνουν ισχύ χωρίς κάποιο όφελος για το κύκλωμα, ενώ η           

ποσότητα ισχύος που χάνεται κατά τους σπινθηρισμούς είναι τέτοια ώστε να έχει            

οδηγήσει σε αρκετές τεχνικές που αποσκοπούν στην εξάλειψή τους. Όμως αυτές           

οι τεχνικές πολλές φορές οδηγούν σε αδικαιολόγητα αυξημένη πολυπλοκότητα του          

κυκλώματος. Για τον λόγο αυτό, ενδέχεται κατά περίπτωση να είναι προτιμότερη η            

πρόβλεψη της ακριβής κατανάλωσης ισχύος, με σκοπό να ληφθεί υπόψη κατά τον            

σχεδιασμό του κυκλώματος. Αυτή η διπλωματική εργασία αποσκοπεί στην εξέταση          

της προοπτικής πρόβλεψης κάποιων τιμών τάσης και ρεύματος του κυκλώματος          

κατά τον σπινθηρισμό, με τη χρήση μηχανικής μάθησης. Προς αυτό το σκοπό,            

προσομοιώσεις σπινθηρισμών χρησιμοποιήθηκαν ως δεδομένα εκπαίδευσης δύο       

μοντέλων μηχανικής μάθησης, τα οποία βασίστηκαν σε έναν αλγόριθμο γνωστό          

ως οπισθοδρόμηση τυχαίου δάσους. Μετά την εκπαίδευση, τα μοντέλα         

χρησιμοποιήθηκαν για να προβλέψουν τις αντίστοιχες τιμές τάσης εξόδου και          

ρεύματος παροχής του δοκιμαστικού κυκλώματος κατά τη διάρκεια σπινθηρισμών.         

Τα αποτελέσματα που παρουσιάζονται στην παρούσα διπλωματική εργασία        

πηγάζουν από προσομοιώσεις με χρήση πύλης NAND 2 εισόδων σε τεχνολογία           

45 nm και δείχνουν κατά μέσο όρο, μέσο σφάλμα 0.01mV (0.001%) για την τάση              

εξόδου και 0.69μA (15.64%) για το ρεύμα παροχής. Συνεπώς, δείχνουν          

υποσχόμενα για περαιτέρω έρευνα στο θέμα της χρήσης αλγορίθμων μηχανικής          

μάθησης με σκοπό την πρόβλεψη της συμπεριφοράς των σπινθηρισμών. 
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Chapter 1 
 

INTRODUCTION 
 

1.1 Motivation 

This thesis is concerned with two different subjects and fields of study, namely             

glitch analysis and machine learning, and the use of the latter for progress in the               

former. Glitch analysis is a subject matter concerning unexpected circuit power           

consumption, while machine learning consists of self taught and self improving           

computer algorithms. 

 

The goal of glitch analysis is the detection and reduction of occurrences of             

glitches, due to the high power dissipation they cause [1]. A number of different              

approaches have been proposed in the literature (four such approaches can be            

seen in [2, Ch. 2]), but none of them results in complete elimination of the               

phenomenon in conjunction with limited additional circuit complexity. Therefore, if          

glitches cannot be consistently avoided, an attempt should be made to predict            

their existence and the amount of power they are going to consume. This is where               

machine learning comes in. 

 

1.2 Contribution 

The aim of this thesis is to use machine learning, specifically an algorithm known              

as random forest regression, in order to gauge its effectiveness in accurate glitch             

predictions. The machine learning models use glitch simulations for training and           

their output was compared to the output of the SPICE simulation. The models             

were trained to predict the output voltage and the power supply current,            

respectively, during glitches in a simple two-input 45 nm NAND gate. The            

prediction of the output voltage had an average mean error of 0.01mV (0.001%),             

while the prediction of the power supply current had an average mean error of              

0.69μA (15.64%), against the respective SPICE simulation values. 
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1.3 Outline 

The second chapter is concerned with glitches and glitch power dissipation, while            

also providing some information on circuit simulation program SPICE. 

 

The third chapter delves into machine learning, the algorithm used to create the             

models and the general theory of implementing a machine learning model. 

 

The fourth chapter details the specific steps of the experiments that lead to this              

thesis’ results. 

 

The fifth chapter presents those results. 

 

The sixth and final chapter comments on the results and proposes steps that build              

on them for future work.   
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Chapter 2  
 

GLITCH ANALYSIS 
 

2.1 Glitches and Power Consumption 

CMOS stands for Complementary Metal-Oxide-Semiconductor. CMOS is the        

semiconductor technology used in the manufacturing of the transistors for most           

modern computer microchips. Therefore, digital logic circuits are also created with           

CMOS technology. Two remarkable characteristics of CMOS are its high noise           

immunity and low static power consumption [3]. 

 

There are two ways power is consumed or dissipated in CMOS: statically and             

dynamically. Static power consumption includes leakage currents and power         

required for the device to remain on standby, while dynamic power consumption is             

the power consumed while the circuit is active, including power dissipated during            

glitches. Dynamic power constitutes about 80% of the total power consumed by            

the circuit and glitch power dissipation can be between 20 and 70% of the total               

power [2, Ch. 1]. Consequently, there is a need to understand and limit the effects               

of glitches. 

 

Glitches are unwanted transitions of a logic gate’s output that have no            

functionality. They are momentary switches of the gate’s output voltage, while it            

has no operational reason to change value. If the output of a logic gate is 1, a                 

glitch would be the occurrence of an instantaneous spike to a value of 0 followed               

by a return to 1 [4]. This behavior could then, if the circuit designer had not taken                 

relevant precautions, be propagated throughout the circuit, adding successively to          

the initial redundant power dissipation. 
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The problem is that glitch power dissipation can vary wildly and there is no reliable               

way to get an accurate prediction, since, in practice, each glitch can vary. This              

thesis proposes a way of predicting elements of glitch power dissipation, using as             

an example a simple NAND gate and applying a machine learning algorithm that             

attempts to predict the output voltage and the power supply current during the             

abnormality caused by the glitch.  

 

2.2 Glitch Example 
A two-input NAND logic gate (NAND2) is taken as an example to demonstrate how              

a glitch can be created. This gate has the following truth table: 

 

INPUT OUTPUT 

A B A NAND B 

0 0 1 

0 1 1 

1 0 1 

1 1 0 
figure 1:  NAND2  truth table 

 
If A and B have different values and both need to switch, say from 01 to 10, the                  

output should remain 1 throughout. However, in practice there could be a brief             

moment where both A and B have a value of 1, therefore changing the output from                

1 to 0 then back to 1. That would be a glitch, as seen by the plot of the output                    

voltage in figure 2. The plots of course show that the values in actual circuits do                

not instantly change, but rather have a transition time, i.e. time to transition from              

low-to-high or high-to-low. 
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Chapter 3 
 

MACHINE LEARNING AND RANDOM FOREST 

REGRESSION 

 
Tom M. Mitchell, a renowned scientist on the field, defines machine learning as:             

“the study of computer algorithms that improve automatically through experience”          

[5]. 

 

What is meant by that, as elaborated further by Mitchell, is: "A computer program              

is said to learn from experience E with respect to some class of tasks T and                

performance measure P, if its performance at tasks in T, as measured by P,              

improves with experience E." 

 

3.1 Brief History  

The idea of machines self improving through experience in their attempt to solve             

problems, can be seen as early as 1943. In that year, neurophysiologist Warren             

McCulloch and mathematician Walter Pitts published a paper where they modeled           

a brain and its neurons as a network of electrical circuits [6].  

 

Seven years later the famous Turing Test was created but its namesake, pioneer             

mathematician Alan Turing [7]. Two years after that, in 1952, Arthur Samuel, who             

popularized the term “machine learning” [8], created a self educating computer           

program that played checkers [7]. 

 

The following decades saw a number of new algorithms being developed, as well             

as achievements like a machine playing tic-tac-toe [9], but the field was restrained             

by the technology of its time. 

 

6 



 

 

A watershed event occured in 1997, when Deep Blue, a chess-playing computer            

developed by IBM, beat the reigning world champion of chess, Garry Kasparov [7].             

The decade after that saw renewed interest in the field, aided by the rapid              

improvement of computer capabilities, which culminated in a number of large           

businesses investing into major machine learning research teams and projects.          

Some of these include: 

 

● AlexNet (2012): The winner of the ImageNet competition. ImageNet is a           

visual database and AlexNet is the name of the neural network that had the              

highest accuracy of correctly recognizing its pictures and videos. AlexNet          

cemented the value of GPUs in machine learning computations [10]. 

 

● Google Brain (2012): A Google research team that focuses on detecting           

visual patterns in images and videos. 

 

● DeepMind (2014): A neural network that learns to play board games and            

simple video games, owned by Google. 

 

● DeepFace (2014): A facial recognition neural network developed by         

Facebook. 

 

● AlphaGo (2016): Created by the developers of DeepMind, AlphaGo is a           

program that in 2016 became the first machine to beat a professional Go             

player in a regular match and in 2017 beat the world number 1 Go player,               

Ke Jie. Go is seen as a much more complex board game than chess [11]. 
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3.2 Random Forest Regression 
The machine learning algorithm used for the creation of this thesis’ models is             

known as random forest regression. The reason this algorithm was chosen will be             

explained in chapter 3.3. In order to better understand this algorithm, some basic             

concepts will now be explained, demonstrating its type, use and methodology. 

 

● Supervised and unsupervised learning: A supervised algorithm learns by         

using a data set* that helps it understand the expected output values,            

whereas an unsupervised algorithm creates structure out of the input          

without any prior knowledge as to what the output should look like [12, p. 3].               

Random forest regression is a supervised learning algorithm.  

 

● Classification and regression: Supervised learning algorithms are       

categorized into classification and regression algorithms based on the         

desired output. If the aim is the assignment (classification) of data into a             

discrete number of categories, then it is a classification algorithm. If on the             

other hand, the output consists of continuous values, then it is a regression             

algorithm [12, p. 3]. As the name suggests, random forest regression falls            

into the regression category. 

 

● Decision tree learning: A random forest algorithm utilizes decision trees.          

Decision trees reach answers to a problem by answering sequential          

questions. A simple case of a classification decision tree is shown below            

(figure 3), as discrete answers are better in demonstrating the basic           

concept. Using single decision trees is not advised, as they are           

computationally expensive to train and their results are heavily variable          

dependent. 

 
 
* each entry of the data set or dataset (the two terms are used interchangeably)               
consists of two things: a number of input variables and their corresponding output             
variables, the values of which are dependent on the input. 

8 



 

 

  
figure 3: Decision tree example. Source [13] 

 
To sum up, random forest regression is a supervised regression algorithm that            

combines the predictions of multiple decision trees and accepts their mean as the             

more accurate prediction. This combination is why this algorithm is also           

categorized as an ensemble learning algorithm and also why it eliminates the            

weaknesses of single decision trees. 

 

In a random forest algorithm, the trees run parallel to one another, with no              

interaction between them. The actual formula of the predictions is: 

, with being the prediction for a new y︿ = ∑
n

i=1( 1
m ∑

m

j=1
W j (x  , x )i  ′ ) yi    y︿        

point x’, n the size of the dataset, m the number of trees and the              W j (x  , x )i  ′   

weight of x’ in relation to all of which are all the other input variables. This is        xi          

equal to   for on the same leaf but on the other trees, and 0 otherwise. [14]k
1 xi   
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3.3 Implementing Machine Learning Algorithms 

The methodology followed for the creation of a model is based on Bishop’s book              

[12]. This methodology can be followed for the implementation of machine learning            

algorithms in general. The steps after the dataset is created are the following: 

 

1. Standardization: The first step is simplifying the dataset’s input. This is done            

by normalizing it, that is, scaling the data to values between 0 and 1. This is                

done as follows: 

, with x being the original value, y the new and min/max  y =  x − min
max − min             

indicating the spectre of values. This is done for the entire input. The             

reason is to avoid variables with greater value span unduly affecting the            

importance of others. [12, p. 425] 

 

2. Principal Component Analysis:  

The Principal Component Analysis (PCA) is used to detect variables that           

could be removed with minimal loss of information. PCA needs the data to             

be standardized. The first step is the computation of the covariance matrix            

of the input data, in order to determine the correlation between the            

variables. The covariance of two values X, Y is given by:           

, where E the mean value. Theov(X , ) E[(X [X])(Y [Y ])]  c Y =  − E − E        

covariance matrix of 3 variables for example, is:  

 

The important aspect of the covariances is not their value but their sign; a              

positive sign means that the two variables are correlated and a negative            

sign means they are inversely correlated. 

 

Next, the eigenvectors and eigenvalues of the covariance matrix are used           

to obtain the principal components of the original variables.  

10 
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Principal components are new variables created through combinations of         

the initial, in ways that create uncorrelated variables, with most of the            

information stored in the first one, as shown in figure 4, and less information              

in every subsequent variable. 

 

The order of significance of the principal components is determined by           

sorting eigenvectors in order of their related eigenvalues, from highest to           

lowest. To ascertain the percentage of information each primary component          

carries, the relevant eigenvalue is divided by the sum of eigenvalues. A            

decision can then be made to remove primary components that carry a            

miniscule percentage, for the sake of lower complexity and speed. For a            

more detailed analysis of PCA, see [12, pp. 561-570]. 
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3. Hyperparameter Optimization: model parameters like, for this specific        

algorithm, the number of decision trees in the forest or the depth of each              

tree, are known as hyperparameters. 

  

A method of hyperparameter optimization is the use of grid search. Grid            

search is an exhaustive search, wherein the model is trained on the dataset             

using different combinations of hyperparameters each time. Every        

combination is tested through cross validation; that is, the dataset is each            

time split into a number of subsets and the performance of each            

combination is the average of successful predictions across the subsets.          

The optimal hyperparameter combination is the one with the highest          

accuracy of predictions and that is the one chosen to be further analysed.             

[12, pp. 280-281]  

  

4. Train-Test split: The entire dataset, both input and output, are then split into             

a “train” subset and a “test” subset. The “train” is the larger one, usually              

making up 80 or 90 per cent of the entire dataset. This is used, as the name                 

suggests, for the model to train on, whereas the “test” part is used to test its                

accuracy. Usually repeated splits are needed to reach a more conclusive           

result. The train-test split method is preferred because it splits the dataset            

randomly, in an attempt to maintain its variety in values [12, p. 2]. 

 

5. Fit: By “fitting” the model, it is meant that the model trains on the “train” part                

of the dataset. With no further input from the programmer, the model trains             

by comparing predictions to real values and adjusting its inner weights           

assigned to every subsequent result. [12, p. 2] 

 

6. Prediction: Predictions are then attempted when the model receives the          

new, “test” subset and uses its input values to predict the corresponding            

output.  
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7. Mean Squared Error (MSE): The mean squared error of the prediction of            

the “test” subset output measured against the actual “test” subset output, is            

used to gage the accuracy of the model. MSE is given by: 

, where n the number of values, theSE  (Y  )  M =  n
1 ∑

n

i=1
i − Y  i  
︿ 2         Y i   

actual output and the predicted output. Comparing the MSE of models    Y i
︿

         

that use different algorithms, a decision can be made as to the most             

effective algorithm [12, pp. 46-47]. 

 

Repeating steps 4 to 7 yields a more definitive result. 
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Chapter 4 

 

PROPOSED APPROACH 
 

4.1 Creating the Dataset 

In order to create the dataset a number of simulations had to be run. These were                

done in HSPICE. HSPICE is one of the most accurate commercial continuations of             

the original SPICE [15], the established program of circuit simulations. 

 

The circuit that was simulated was that of figure 5 and included a two-input, 45               

nanometer NAND gate, two voltage sources for the input signals (V1, V2), a power              

supply source (Vdd) and a capacitor connected to the gate’s output (C).  
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The method for creating the dataset of the size required in order to train the               

models, was built on the work done by A. O. Troumpoulou [16]. With the help of a                 

C program, a number of transient analysis simulations with different variable           

values were run in an attempt to replicate numerous glitch cases. 

 

The following four parameters were taken into account for the creation of glitches: 

 

The first parameter was the capacitance value of the output capacitor. 

 

Each simulation had two signals as input of the NAND2 gate. These two voltage              

sources were simulated as Piecewise Linear sources (PWL). This was done to set             

the actual points in time when the sources would start and end transitioning from 0               

volts (V) to 1.10 V and from 1.10 V to 0 V respectively. The interval between the                 

start and the end of this transition is known as transition time. The two transition               

times were two more of the aforementioned parameters. The actual points of time             

that the transitions begun and ended were variables set by the C program for each               

simulation. In every case however, one signal was at 0 V and 15 picoseconds (ps)               

later had a value of 1.10 V while the other started at 1.10 V and 15 ps later had a                    

value of 0 V.  

 

The fourth and final parameter was the distance between the transitions of the             

two signals. For this, the time interval between the points that each of the two               

signals was at 50% of the input voltage was measured. 

 

To summarize, the four parameters were the capacitance value of the output            

capacitor (C), the two transition times (T1 and T2) and the distance between the              

two signals (HDIST). 
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There were 7 signal transition time values given by the C program and 22              

capacitance values for the output capacitor. An example of input values during a             

conducted HSPICE transient analysis can be seen below. 

 

 

 
As indicated by the underlined values in figure 6, in this example the first signal               

(V1) started transitioning at 0.248169 ps and finished at 0.496337 ps, while the             

second signal (V2) started at 0.446704 ps and completed its transition at 0.694872             

ps. The difference between each set of underlined values is the corresponding            

transition time. It is also illustrated above that the output capacitor (C1) had a              

capacitance of 59.3567 fF. Finally, the initial transient analysis was performed for            

200 ps with a timestep of 1 ps. This simulation time was selected in order to gage                 

the time it would take for the output voltage to revert to its initial value of 1.10 V. 

 

Every simulation produced a .LIS file with the results, whence the C program             

retrieved them one by one and saved them in two .TXT files, one for the current                

values, including the power supply current, and one for the output voltage values.  

An example of these .TXT files for one simulation can be seen below, with figures               

7 and 8 having the values of its current variables and figures 11 and 12 of its                 

voltage output variable. 
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figure 7: Simulation  2760 

Current results, part 1 
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figure 8: Simulation  2760 

Current results, part 2 
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At the top of figure 7, the input values for this specific simulation can be seen. In                 

addition to the variables already mentioned, those of C (capacitance value of            

output capacitor), T1 and T2 (signal transition times) and HDIST (time interval            

between the moments when each of the two signals was at 50% of the input               

voltage), there is an additional DIS variable. This is the elapsed time between the              

moment that V2 started transitioning and the moment V1 finished transitioning.           

This variable was dropped during PCA, because its influence on the output was             

trivial. 

 

Below those, there are four columns on the left that continue on the right and then                

continue similarly in figure 8. The leftmost column in each, with values from 0 to               

200p, is the simulation time in ps. The other three columns are the corresponding              

current values for every picosecond, the output of the simulation: v6 indicates the             

power supply current, the one examined in this thesis, c1 the output capacitor             

current and v0 the ground current. In these three columns, ‘u’ indicates            

microampere, ‘n’ is nanoampere and ‘p’ is picoampere.  

 

Upon further experimentation, it was decided to halve the step from 1 ps to 0.5 ps,                

so as to limit the chance of missing an upward or downward current spike, as seen                

in figure 9.  
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figure 9: Comparison of 0.5 ps and 1 ps time steps 

 

 

Here the purple plot indicating a step of 0.5 ps, picked up on spikes that were                

missed with the blue plot of 1 ps step. It was also decided to set a cutoff point at                   

20 ps, as the current values were fairly stabilized from that point forward (see              

figure 10). 
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figure 10: Power supply currents of the entire dataset 

 

 

Figures 11 and 12 continue the example of the .TXT values of simulation 2760,              

presenting its output voltage in two columns, the first being the time and the              

second the corresponding voltage values. Like before, the two columns start on            

the left of figure 11, continue on the right and then go on to figure 12 until the                  

200th picosecond. 
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figure 11: Simulation 2760 
Voltage results, part 1 
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figure 12: Simulation 2760 

Voltage results, part 2 
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In summary, the data utilized for this experiment consisted of 10780 simulations            

of different combinations of the 4 variables (or machine learning features)           

mentioned above. Lastly, as can be seen in figures 7, 8, 11 and 12, each               

simulation produced 200 instances of values. Only 40 of those (0.5 step to 20ps)              

were used for the current, for the reason mentioned previously. 

 

4.2 Creating the Models 

In order to apply the relevant machine learning techniques elaborated upon in            

chapter 3, a number of tools had to be used. Firstly, version 2019.3.3 x64 of               

PyCharm, which is a Python language integrated development environment. The          

version of Python was Python 3. 

 

Regarding libraries, pandas [17], Scikit-learn [18], Matplotlib [19] and Pickle [20]           

were employed. pandas enabled the reading and formatting of the data, whereas            

Scikit-learn provided all the machine learning tools and algorithms. Matplotlib was           

used as an efficient way to get a visual representation of the results. Pickle              

allowed the encoding of the models and their data standardization scalers into            

binary files and can also be used to load them from the binary files for use. 

 

In order to be accessible to the methods presented by pandas, the data had to be                

transformed into .CSV format. A small Python program was created to that effect.             

Both initial .TXT files were split into two .CSV files each, one file containing the               

machine learning input and the other containing the output. Only the values for the              

current of the power supply were kept in the relevant .CSV file, as this was the                

current that was examined in this thesis. Figures 13 and 14 show a part of both                

.CSV voltage files, input and output. 
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To conform to the .CSV format, each simulation’s variables in the input file and              

results in the output file, were written in one line and separated by commas. For               

both the voltage and the current, the initial value was dropped from the .CSV,              

given that it was a constant value of 1.10 V and 2.7139 nA respectively; as               

constants they were immaterial for predictions. 
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Scikit-learn provided both the machine learning algorithms and the tools required           

in order to train and test the models that were created:  

 

● Standardization: The sklearn.preprocessing.StandardScaler class    

was used to standardize the data. 

 

● Principal Component Analysis: sklearn.decomposition.PCA was a      

class imported to test the standardized weights calculated using the          

previous class. By testing the weights, it was concluded that the DIS            

variable had minimal effect on the outcome, therefore it was          

eliminated from the dataset. 

 

● Train-Test split: sklearn.model_selection.train_test_split was used in      

order to split the dataset into two unequal portions in a 90-10            

division. The larger was used to train the model, whereas the smaller            

was used to test the effects of the training.  

 

● Random Forest Regression: 

sklearn.ensemble.RandomForestRegressor was the machine 

learning algorithm that was chosen, after a number of algorithms, 

including k-nearest neighbours, were tried. Details about random 

forest regression were outlined in section 3.2. 

 

● Grid Search: sklearn.model_selection.GridSearchCV was used to      

determine some of the hyperparameters which are the parameters of          

the RandomForestRegressor class. Specifically it was determined       

that the best number of trees in the forest was 150. 
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● Mean Squared Error (MSE): sklearn.metrics.mean_squared_error     

provided the MSE of the model predicting the output of the train and             

of the test subsets. The requirements are a small difference between           

the two values and a small MSE on the test subset. The smaller this              

value is, the more accurate the predictions during the testing were.           

This step decided the use of random forest regression, since its MSE            

was consistently lower than that of k-nearest neighbours, the         

algorithm with the second lowest MSE. 

 

● Mean Absolute Error (MAE): sklearn.metrics.mean_absolute_error     

gave an easier to understand metric, with mean absolute error being           

the prediction’s deviation from the real values given in the actual           

units; V and μA respectively.  

 

● Multi-output Regression: Finally, since the subject of this thesis is a           

problem of multi-output nature and regular machine learning        

algorithms tend to be single output oriented, a wrapper class had to            

be used in conjunction with     

sklearn.ensemble.RandomForestRegressor. This wrapper was    

sklearn.multioutput.MultiOutputRegressor. 

 

 
After the algorithm was decided on and the models created, the dataset was             

repeatedly split into “train” and “test” and the input each time was standardized.             

Then, the models trained on the appropriate subdataset and attempted to predict            

the output of the “test” input, comparing the MSE of the two. Finally, the actual               

output and the predicted output were plotted on the same graph, utilizing the             

pyplot module of Matplotlib. 
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4.3 Model Application 
The Pickle library was used in order to save the two models and also the two                

scalers responsible for standardizing the input into binary form. Pickle can be used             

to access them after the creation and use them to predict output voltage and              

power current supply during a glitch, given 4 values that represent: the            

capacitance of the output capacitor in femtofarads, the two transition times of the             

signals in picoseconds and the time interval between the moments each of the two              

was at 50% of the input voltage value, also in picoseconds. 

 

Therefore, after the creation of the models and the respective scalers, the product             

of this thesis can be used with the help of a single python library: Pickle. The                

program that interfaces with the user simply loads the four binary files with the              

help of this library, uses the scalers and the models on the input provided by the                

suer and produces two vectors. The one is the output voltage values every             

picosecond and the other the values of the power supply current every half             

picosecond.    
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Chapter 5 

 

RESULTS 

 

5.1 Output Voltage 

The prediction of the behavior exhibited by the gate’s output voltage of the specific 

dataset was fairly accurate. Firstly, the MSE of the “test” subset predictions, 

compared to the actual “test” output has an average value of 0.00000003, out of 

10 train-test splits. It is easily deductible therefore that the predictions made tend 

to be of high accuracy. The average MAE, the average actual deviation from the 

real values, was 0.00011 V (average mean relative error of 0.001%). 

 

Figures 15 to 18 illustrate comparisons between predicted and real output voltage 

values. 

 
 

29 



 
 
 
This example showcases a simulation where, while a glitch did occur, the output             

voltage did not decrease significantly from its original value. The red prediction plot             

and the blue plot of simulation values are identical in this scale. 
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Same situation of identical values, but in this case the output voltage dropped             

substantially. A zoomed in view of the above graph follows, that demonstrates the             

existence of a slight deviation. 
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Indeed here the slight deviation between actual and predicted values becomes           

apparent. Since the values in question are examined in V (as opposed to mV for               

example), this deviation is not a significant problem. 
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As this is a machine learning algorithm, complete and consistent accuracy is not             

the expected outcome; the goal is an approximation of the real values. Even with              

the possible deviations that may occur between predicted and real values as            

demonstrated in figure 18, an average MAE of 0.00011 V was deemed sufficient             

for the purposes of this thesis.  
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5.2 Power Supply Current 

The results of the model predicting the power supply current  present a wider 

range in accuracy. But due to the erratic behavior exhibited by the power supply 

current during a glitch, as was demonstrated in figure 10, such results are not 

unexpected. Even so, the model that was implemented achieved fairly accurate 

predictions. 

 

Ten train-test splits of the dataset led to an average MSE of 5.17 and a best case 

MSE of 3.33. The specific test subset had 1078 simulations in it, 10% of the entire 

dataset. The average MAE of the predictions against these 1078 simulations was 

0.69 μA (average mean relative error of 15.64%). Using the model with the best 

MSE, 92.39% of the predictions had a MAE of less than 2 μA, 5.47% had a MAE 

of between 2 and 5 μA and only 2.13% had a MAE above 5 μA. 

 

Εxamples follow (figures 19-23): 
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The accuracy presented here is high. There were cases that the MAE was as              

small as 0.07 μA, as can be seen in the following page. 

35 



 
 
 
The difference between actual and predicted values here is almost non existent.            

The red plot seems like a carbon copy of the blue.   
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Not all cases have a similar kind of plot however, as was shown in figure 10. The                 

model created, as evident here, is able to predict the power supply current to              

reasonable accuracy in a number of different cases.  
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Here there is a slight drop in accuracy, particularly apparent in peaks, where the              

predicted values are consistently closer to 0 than the actual, which have a wider              

range. An interesting point is at the start, where, unlike the rest of the graph, the                

predicted and the actual values are almost opposite. 
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In this case the accuracy is even lower. A saving grace however is that the pattern                

of peaks is more or less the same in both actual and predicted values. At 2.13% of                 

cases, this is an expected and acceptable result of a machine learning approach. 
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Chapter 6 

 
CONCLUSION AND FUTURE WORK 

 
The purpose of this thesis was to examine whether machine learning could be             

used in glitch analysis, in order to approximate some circuit values during the             

unpredictable power dissipation caused by a glitch. 

 

To this effect, using an HSPICE simulation of a simple two-input 45 nm NAND              

gate circuit, a dataset of multiple glitch cases was created. This dataset was then              

analyzed by two machine learning models based on random forest regression, one            

model predicting the output voltage and the other the power supply current. 

 

The results show a reasonable accuracy of predictions, with average mean           

squared error of 0.00000003 for the output voltage and 5.17 for the power supply              

current. The average mean error was 0.1mV (0.001%) for the output voltage and             

0.69 μA (15.64%) for the power supply current. 

 

Even though the outcome seems promising, the scope was limited, so further work             

is needed to consolidate the efficiency of this preliminary research. Based on this             

thesis, some proposed next steps are the creation of models for predicting the             

behaviour exhibited by the output capacitor and grounding currents, as well as            

experimentation using different algorithms, datasets, logic gates, and advanced         

technology nodes (below 22nm). 
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