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Υλοποίηση του αλγορίθμου SLAM σε

επαναπρογραμματιζόμενη πλατφόρμα ολοκληρωμένων

κυκλωμάτων

Περίληψη

Ο ταυτόχρονος εντοπισμός και η χαρτογράφηση χώρου (SLAM) αφορά την κατασκευή

και συνεχή ενημέρωση ενός χάρτη (χρησιμοποιώντας τις πληροφορίες που συλλέγο-

νται από αισθητήρες) ενός άγνωστου περιβάλλοντος, ενώ ταυτόχρονα ορίζει τη θέση

ενός ρομπότ μέσα σε αυτό. Ο SLAM είναι ένα πολύ ενεργός ερευνητικός τομέας ,

καθώς είναι ένας βασικός αλγόριθμος για πολλές τρέχουσες εφαρμογές όπως αυτονο-

μία αυτοκινήτων και πλοήγηση drone. SLAM αλγόριθμοι έχουν χρησιμοποιηθεί πάντα

σε ισχυρά υπολογιστικά συστήματα προκειμένου να επιτευχθεί απόδοση πραγματικού

χρόνου.Οι διαστάσεις μίας κινητής πλατφόρμας δεν μπορεί να φιλοξενήσει τέτοιους υπο-

λογιστές, επομένως οι ενσωματωμένες πλατφόρμες είναι ίσως η λύση. Παρουσιάζουμε

την εφαρμογή του αλγόριθμου KinectFusion σε επαναπρογραμματιζόμενες πλατφόρ-

μες ή πιο συγκεκριμένα, τη Soc Xilinx Zynq-7000 και τη Xilinx Zynq Ultrascale +

MpSoc ZCU102. Αυτές οι πλατφόρμες μας δίνουν την ευκαιρία να τρέχουμε διαφορε-

τικά μέρη του αλγορίθμου ταυτόχρονα τόσο στον επεξεργαστή όσο και στην FPGA.

Αυτή η έρευνα εξετάζει την απόδοση του αλγορίθμου όταν εκτελείται σε ενσωματω-

μένα συστήματα και ελέγχει τις δυνατότητες του σε μια επαναρυθμισμένη πλατφόρμα.

Η ενσωμάτωση του KinectFusion σε FPGA στην έρευνα αυτή επιτυγχάνει χρόνο

εκτέλεσης 0,3816 δευτερολέπτων (2,63 FPS).



Implementation of the SLAM algorithm on a

reconfigurable platform

Abstract

Simultaneous localization and mapping (SLAM) concerns the construction and

continuous update of a map (by using the information gathered with sensors) of

an unknown environment while simultaneously keeping track of a robot’s location

within it. SLAM is a very active research topic as it is a basic algorithm for many

current applications in self-driving cars and in drone navigation.SLAM algorithms

have always been used on powerful computing systems in order to achieve real-

time performance.The dimensions of mobile platforms cannot host such computers

,consequently embedded platforms are probably the solution.We present an imple-

mentation of the KinectFusion algorithm on a re-configurable platform, or to be

more exact, the Xilinx Zynq-7000 programmable Soc and the Xilinx Zynq Ultra-

scale+ MpSoc ZCU102. These platforms give us the opportunity to run different

parts of the algorithm simultaneously both on the CPU and the FPGA. This the-

sis examines the performance of the algorithm when it is executed on these above

mentioned boards and checks the potential of it on a re-configurable platform. The

FPGA implementation of the KinectFusion in this thesis achieves execution time of

0.3816 seconds (2.63 FPS).
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Chapter 1

Introduction

1.1 Background

SLAM is a basic problem for higher-level tasks [1], for example path planning, nav-

igation etc and is widely used in applications like self-driving cars and robotics see

Fig.1.1 . SLAM is a key algorithm in localization tasks and an active research field

but many challenges lie ahead and one of them is the choice of the platform. Indoor

mobile platforms don’t have access to powerful batteries considering the limitations

they inherently have, so traditional CPUs and GPUs are not an option due to

their high power consumption. FPGAs have the benefits of simultaneous comput-

ing, power efficiency and the adjust-ability with re-configurable logic, consequently

becoming a very promising solution to our problem.

Figure 1.1: Visual SLAM
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In recent years, SLAM algorithms have been used on high-performance comput-

ers because of their high complexity in order to ensure real-time performance as

well as meticulous mapping. The dimensions of the robots do not allow using such

powerful computers to run the algorithms. Hence, embedded algorithms are a re-

search topic as they allow efficient implementations and meet real time constraints

[2]. There have been many attempts to implement SLAM algorithms on embedded

platforms but each implementation heavily depends on which SLAM algorithm you

are executing and on which target platform. Although FPGAs look good on paper

and seem highly applicable to execute SLAM algorithms, few FPGAs are actually

used in commercial products to perform such tasks.

1.2 FPGA

A field programmable gate array [3] is an integrated circuit designed to be re-

configurable by the user which separates them from Application Specific Integrated

Circuits (ASIC). They are based around a matrix of configurable logic blocks (CLBs)

connected via programmable interconnects, example in Fig.1.2 , which can be config-

ured by using a hardware description language (HDL). They contain huge resources

of logic blocks, and a hierarchy of which can be configured to do combinational logic

gates or simple logic gates like NOR and AND. FPGAs can also provide look up

tables (LUT), flip flops (FF), Digital Signal processors (DSP), extremely fast I/O

rates on buses as well as RAM blocks in order to do digital computations.

It is needed to compare FPGAs, CPUs and ASICs [4] to get a better under-

standing of the platform. FPGAs and ASICs are different and deep evaluation of

the project at hand is needed before choosing one of them. FPGAs can be repro-

grammed to do anything we want but ASICs are custom manufactured to do a

specific process. On the one hand, we have FPGAs which are more flexible but less

efficient and on the other hand, we hold a fixed circuit that performs at a low latency

as well as at a low power consumption. Furthermore, when we burn logic right into

silicon beforehand, the specific design has better area utilization and performance

than the one in the FPGA because of the precision. CPUs and FPGAs handle and
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Figure 1.2: FPGA Altera

process data very differently, CPUs execute many processes in parallel and have

seen so many architectural changes that give them the edge in so many processes

like branch prediction or multi-threading. However, FPGAs with the opportunity

to have a more direct approach to hardware give us the chance to achieve better

processing performance than a CPU for a fixed algorithm.

1.3 System-on-chic(SoC)

SoC is an integrated circuit [5] that incorporates all the parts of a computer or other

electronics. It combines a Processing System (PS) which means a CPU and Pro-

grammable Logic (PL) that is the re-configurable logic of a FPGA. SoCs are very

common in mobile markets as they consume less power and have excellent perfor-

mance, as a result of these factors there has been a rising in embedded computing

and hardware acceleration .Socs are designed to boost computation load and com-

munication throughput as well as reduce latency for the majority of functions. This

is done by offering the user procedures like task scheduling which can improve greatly

performance or pipelining that is another fundamental principle for optimizing any

process in computer architecture.
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1.4 Kinect

Kinect [6] is a motion sensing input device produced by Microsoft. It consists of an

RGB camera sensor, a structured light depth sensor that provides the depth of the

scene, and a multi-array microphone (not used in our work) as shown in Fig. 1.3 .

Figure 1.3: Kinect v1

1.5 Contributions

In this thesis, we try to investigate the performance and accuracy of a dense RGB-

D SLAM system [7]. SLAMBench [8] provides a KinectFusion [9] implementation

in C++ [10], and harnesses the ICL-NUIM dataset of synthetic RGB-D sequences

with trajectory and scene ground truth for reliable accuracy comparison of different

implementation and algorithms. We investigate the execution time and the accuracy

of the KinectFusion executed in the ARM processor of both the ZedBoard [11] and

the Xilinx Zynq Ultrascale+ MpSoc [12] [13] which can be seen in Fig. 1.4 and Fig.

1.5 .Furthermore, a high level synthesis approach is examined in order to increase

the time execution of the algorithm using the platform’s re-configurable hardware.
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Figure 1.4: Zedboard
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Figure 1.5: ZCU 102



Chapter 2

Simultaneous Localization and

Mapping (SLAM)

2.1 SLAM Types

Simultaneous Localization and Mapping is a computer vision and navigation algo-

rithm. A robot must be aware of its position and at the same time construct the

environment , which it’s what we are trying to achieve. The state of the model can

be represented with features or with a volumetric description of the environment.

SLAM uses various approaches and is shown through different research papers. For

example, maps can store the surroundings as 2D or 3D, and with differing degrees

of memory magnitude as well as coarseness. SLAM has not been solved yet as it

is stated that more research is needed to achieve realistic results. Implementations

of SLAM vary as we have sparse SLAM [14] that it’s mostly featured based mak-

ing it mobile friendly due to its lower complexity but the quality of the output is

low. Dense SLAM [15] algorithms produce better results but the computations are

costly, so semi dense [16] algorithms have appeared in order to close the gap but

they are into an incomplete state. The former describes the quantity of regions used

in each received image frame. SLAM algorithms differ also in how the image data

are used. Sparse SLAM approaches use a subset of the image frame,while dense

ones use almost all the frame. As they handle different amount of pixels their maps

vary. On the one hand,the maps from sparse algorithms are point clouds. On the

8
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other hand, the maps from dense approaches give us a detailed view of the scene.

Furthermore, from the way SLAM algorithms handle information from an image

they can be classified as direct or indirect [2]. Indirect SLAM algorithms are the

feature-based ones and direct are the the ones that handle the pixels information

directly. As the feature extraction is time consuming, direct methods potentially

give us the chance to do more computations while being on the same page with

indirect ones. However, indirect methods have good tolerance against noisy pixels

as they don’t handle them directly. There are many well-known SLAM algorithms

these days, and by the different ways they handle data we can select the appropriate

one for each application or platform.

2.2 Brief Overview of KinectFusion

Kinectfusion [9] is one of the most well-known dense SLAM algorithms. It enables

a person to use the Kinect in order to create a 3D reconstruction of an indoor space

and performs some steps for each frame:

a) Acquisition: An input frame either read from a camera or from a file, in our

implementation we use a data-set with a trajectory.

b) Preprocessing: Depth values are changed in order to be normalized and

then a bilateral filter is used to reduce the noise.

c) Tracking: A new pose is build using the Iterative Closest Point algorithm.

KinectFusion concludes the difference in the alignment of the current preprocessed

depth frame with the depth frame produced from the previous camera pose.

d) Integration: The 3D image we have already constructed is changed in order

to fuse the aligned data for the frame we have, using the new estimate of the position

and orientation which are determined by the tracking phase.

e) Raycasting: We ray-trace the 3D map we have constructed and as a result

we produce a depth frame from the new pose of the camera.

f) Rendering: This phase has no computation value and it is only there for

visualizing the 3D surface that we have constructed through all these processes.
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Figure 2.1: General SLAM flow graph

2.3 Brief Overview of SLAMBench

The open-source SLAMBench [8] is a more convenient version of KinectFusion for

analysis and bench-marking. The framework [10] is publicly available for a start-

ing point for experimental research in order to check time execution, accuracy and

power standards by providing a KinectFusion implementation in C/C++, OpenMP,

OpenCL and CUDA as well as an ICL-NUIM data-set of synthetic RGB-D se-

quences. An overview of the GUI of the algorithm and the second trajectory in the

ICL-NUIM data-set running is given in Fig. 2.2.

Figure 2.2: SLAMbench GUI running
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2.3.1 Parameters of SLAMBench

SLAMBench offers adjust-ability to certain values like:

a) Compute-size-ratio: We decide the resolution of the depth frame that we

use as input to the algorithm.

b) ICP-threshold: Threshold for the ICP algorithm used in the localization

phase.

c) Integration-rate: The rate at which the frames that we get are integrated

to the indoor scene.

d) Volume-resolution: The resolution of the image that we are trying to create.

e) Tracking-rate: The rate that we are trying to get a new pose.

f) Pyramid-levels: The ICP algorithm does iterations on different levels of the

image pyramid, so with this parameter we determine maximum number of them.

These parameters can be changed in order to optimize either execution time or

the power consumption but the accuracy of the output should always be acceptable.

The instantaneous trajectory error (ITE) is the difference between the actual frame

and the computed one. Average trajectory error (ATE) is the average of ITE’s of

all the frames which are not known until the last frame ends which is the end of the

trajectory.

2.3.2 ICL-NUIM DATASET

ICL-NUIM is a data-set which consists of 4 camera trajectories in order to provide

us with RGB-D frames. ICL-NUIM can support us with sequences that are of

excellent value. They are free of noise, but instead they have noise added to RGB-

D frames based on a model that is extracted from Kinect equipment. This noise

model is applied to every frame so as to feed the algorithm with realistic frames.

This benchmark gives us the chance to produce a lot of pragmatic sequences and

provide us with open source code, which we can use to produce our own test data-set.
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2.4 SLAMBench Kernels

We hereby present a simple graph of SLAMBench in order to understand the flow

of the algorithm as shown in Fig. 2.3. We are going into detail later on and analyze

all kernels individually. L stands here for the number of pyramid levels and K is a

threshold value. Further down, these values will be explained extensively.

Figure 2.3: SLAMBench Kinectfusion kernels flow graph

SLAMBench has also two kernels but they are only used once at the start, they

are part of the initialization process and have no computational cost. To be more

specific, one is called generateGaussian that produces a Gaussian bell curve which

stores in an array and initVolume that generates the 3D volume. The algorithm

also contains many kernels and processes that we need to breakdown in order to

understand the flow of the algorithm better.

a) acquisition: A new RGB-D frame is acquired. This phase is included in
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order to measure I/O costs if the frame is acquired from the data-set or from an

actual sensor.

b) mm2meterskernel re-assembles the output from the sensor and converts it

from millimeters to meters. This needs to be done because the frames are given to

us in an unsigned short integer format. We need to convert them to floats and resize

them so the other kernels can express their values in meters.

c) bilateralfilterkernel: The depth map is noisy from the Kinect so we use an

edge-preserving filter. This kernel is a filter that changes the values by a weighted

average of nearby values so as to reduce the noise or any invalid depth values. This

smooths our map and increases its quality at later stages.

d) halfSamplekernel creates a three-level image pyramid by taking a sub-

sample from the above mentioned filtered depth image. This kernel re-samples

the filtered depth map by a factor of two in each level . That means four inputs are

mapped to one output.

e) depth2vertexkernel transforms the pixel of the new depth image into a 3D

point in order to create a point cloud. It multiplies each depth value with a specific

matrix as a result an array is generated where the elements give us a 3D Euclidean

point.

f) vertex2normalkernel produces the normal vectors from the vertex of each

point cloud earlier which are then used in the ICP algorithm[17]. The ICP algorithm

calculates the distances between two corresponding vertices of the synthetic point

cloud and the new point cloud

g) trackkernel performs part of the ICP algorithm. It settles a correlation

between the synthetic and the new cloud.

h) reducekernel calculates the error of the track kernel, it sums up the distances

between correlating points in the input and the predicted cloud.

i) updateposekernel generates a new pose from the reduced kernel output.

j) checkposekernel verifies the output of the reduction process and resets the

pose to an old stable one if needed.

k) integratekernel integrates the new depth map into the current constructing

3D map, it iterates over the volume to make updates to every element.The volume is
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made of Truncated Signed Distance Function (TSDF) [18] values. Every element has

a weight which represents the certainty of the surface measurement at that specific

position on the map.Integration iterates over the whole 3D reference weight map in

order to update every element. Updating means computing an average of the TSDF

value we already have and the new TSDF value. Values are positive in front of the

surface and negative behind. Numbers between 0 and 1 are at the surface of the

object.

l) raycastkernel produces a vertex and a map by making a ray from each pixel

into the 3D Volume from the current pose estimate. It makes a prediction of the

how the input arrays should look like if the view point of the camera made the

observation from this specific position see Fig 2.4 and algorithm 1.

Figure 2.4: Raycasting
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Algorithm 1 Raycasting pseudocode

1: Procedure Raycasting

2: for each each pixel u ∈ pose do

3: raystart ← project(nearP lane) //Initiate ray

4: rayend ← project(farplane)

5: raydir ← raystart − rayend

6: raylen ← 0

7: while raylen within volume bounds do //Execute raycast

8: raylen ← raylen + 1

9: g ← first voxel among raydir

10: if Ftrilinear(gx, gy, gz) == 0 then // If g interpolates a polygon

11: p← extract trilinear interpolated grid position

12: vertex(u)← convert p from grid to 3D position

13: normal(u)← extract surface from gradient as O p

m) renderDepthkernel visualizes the depth map via color coding.

n) renderTrackkernel visualizes the tracking by picking different colors for

each pixel.

o) renderVolumekernel visualizes the 3D volume we have reconstructed.



Chapter 3

SLAM Implementation and

Experimental Evaluation

The trajectory used in the timing profile is provided by the SLAMBench [10] plat-

form. The ICL-NUIM data-set has 4 trajectories and we pick the second one which

contains 882 frames with all the information needed. With the use of the data-set

we can easily check the accuracy of our algorithm because we have a ground truth

trajectory file. We check the accuracy of the tracking compared to the ground truth

trajectory via the above mentioned file. The parameters used to run SLAMBench

are the following:

-s 4.8: volume size

-p 0.34, 0.5, 0.24: init-pose

-z 4: rendering rate

-c 2: compute size ratio

-r 1: integration rate

-k 481.2, 480,320,240: camera

They are plenty of parameters to change but the other ones are set to default,

for example volume resolution is 256,256,256.

16
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3.1 CPU x86-64 timing results

With the above mentioned parameters the implementation of the Kinectfusion on a

laptop with a CPU (i7-6500U @ 2.50 GHz) is shown in Fig. 3.1 and based on the

time execution on each process of the algorithm we can see where load is.

Figure 3.1: SLAM CPU x86 software implementations

3.2 FPGA System-on-Chip (MPSoC)

The implementation time and the computation load on the Arm processor of Zynq

Ultrascale+Mpsoc ) are in Fig. 3.2 and it seems the load is divided similarly to the

x86-64 processor.
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Figure 3.2: SLAM ZCU 102 software implementations

3.3 Implementation of the Mm2 to Meters con-

version on HLS

Based on the information given by the graph in Fig. 3.14 we need to use the FPGA

to speed up [19] the preprocessing functions. The preprocessing consists of two

processes one is the mm2meterskernel. It passes through an amount of pixels and

divides them by 1000.

a) Code: The mm2meterskernel function was copied straight from the current

implementation. Some changes to the pointers were made in order for the code to

be synthesizable and we removed the omp pragma.

b) Interface: We use the s-axilite mode [20] which specifies an AXI4-Lite slave

I/O protocol and the m-axi mode that specifies an AXI4 master I/O protocol. The

return is specified as an AXI4-Lite interface and all the types of argument except

arrays. All arguments are grouped them to the same AXI4-Lite interface. With the

AXI4 master interface we specify arrays and pointers. Also, Vivado HLS produces

an-associated set of C driver files during the Export RTL process. We make use of
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the memcpy [21] function to transfer data to or from a top-level function argument

specified with an AXI4 master interface.

c) Pipelining: The body of the loop achieved initiation interval of II=1 [22].

Pipelining is used to improve throughput. Pipelining offers us simultaneous opera-

tions: each execution step does not have to complete all operations before it begins

the next operation Fig. 3.3. The iteration latency stays the same but we should

expect a speed-up compared to the original implementation. We make use of the

burst mode using the memcpy[21] function. The mm2meterskernel contains two

loops, in the current implementation, based on the parameters we gave the outer

one is of size 240 and the other 320. We tried per iteration of the outer loop to read

a burst of 640 shorts and write 320 floats, as the inner loop to complete all iterations

requires as input these values and produces the 320 floats. It turns out this is not

the best approach. The optimal choice is to read one value and write back one per

iteration of the loop.

Figure 3.3: Loop pipelining
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Latency Iteration Latency

Mm2metersKernel(1 read 1 write option) 318036 1325

Mm2metersKernel(640 reads 320 writes option) 76838 40

Table 3.1: Mmm2meterskernel read/write options

As we can see from Table 3.1 generated from the Vivado HLS [20] we can choose

the optimal implementation.

3.4 Implementation of the Bilateral Filter on HLS

The other function that is part of the preprocessing is the bilateralfilterkernel, which

is an application of a certain filter.

a) Padding: To achieve the bilateralfilterkernel its purpose it uses a certain edge-

preserving filter. In the current implementation of the kernel makes use of clamp

[23]. Unfortunately, the FPGA unlike the CPU is not good at branch prediction so

another approach need to be considered. The initial approach uses a 5x5 window

for its computations and clamp handles the edges so that we don’t have a problem

with bounds. So instead of this, we introduce padding as a solution.

The bilateral filter consists of two filters, one is a space filter which aims to

reduce noise and blur out everything without preserving the edges. The other one

is a range filter which depends on the context image by smoothing differences in

intensities. As a result, pixels with intensity values similar to that of central pixel

are considered for blurring, while others that differ are maintained Fig. 3.4.

Hereby we present a mathematical description of the bilateralfiterkernel Fig. 3.5:
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Figure 3.4: Bilateral filter flow graph

Figure 3.5: A mathematical description of the bilateralfiterkernel

The depth array which is the input is padded as shown in Fig. 3.6 . The padding

of the input is executed on the Arm processor.
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Figure 3.6: Input padding

We can demonstrate the bilaterafilerkernel processes in pseudo code together

with the padding as to make it easier to understand. The algorithm 2 demonstrates

the bilateralfilterkernel function combined with Fig. 3.7 which shows the processing

of the 5x5 window and in algorithm 3 the computations for the pixels are done.
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Algorithm 2 Bilateralfilterkernel pseudocode

1: Procedure bilateralfilterkernel (pad-depth,out)

2: for each row k from pad-depth do

3: Copy 5 rows from pad-depth to 5 different arrays

4: Copy 2 rows above the row k (k-1,k-2)

5: Copy 2 rows below the row k (k+1,k+2)

6: Copy the row k

7: for each Pixel(Pk) on row k do

8: Initiate WindowPixels

9: bilateral(Pk, WindowPixels [5][5],BFP k)

10: end for

11: end for=0

Figure 3.7: Bilateral made up function pseudocode

Algorithm 3 Window processing of bilateral

1: Procedure computeFactor (t,Wp,PixelCenter,CurPos,i,j)

2: factor = Gspace(i, j) ∗Grange(||CurPos− PixelCenter||)

3: t+ = factor ∗ CurPos

4: Wp+ = Wp
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b) Interface: We added a combination of an AXI4-Lite slave I/O protocol and

an AXI4 master I/O protocol. Set max-read-burst-length=256 for input and max-

write-burst=256 for output.This burst mode performs data transfers, the interface

indicates the base address and the size of the transfer. The data samples are then

transferred in consecutive cycles.

c) Pipelining: The bilateralfilterkernel consists of four nested loops. The first

as well as the second iterate over the whole computation size of the image (240*320

based on our parameters) and the two following loops are the window size of the

filter. Pipelining directive was used at the second one. The initial implementation

achieved iteration interval (II) equal to 25 because of the clamp function and the

double nested loop inside. After getting rid of clamp and rewriting the process with

a better approach we managed to drop it down to II=13.

The problem is now that in the “window” loops we are unable to schedule all

the loads and get the values we want because a memory core has limited ports. We

cannot read from the same array all the values we want at the same time so we

have to wait 13 cycles because of the few ports. As a result, we manually unroll

the five iterations of the last loop and split the information to five different arrays

so we can access more information simultaneously now that we have more reading

ports to work with. With this implementation we achieve II=3. Unfortunately, to

achieve II=1 we need to do complete portioning to all 5 arrays but we sacrifice a lot

of resources to do that and it’s not worth the trade.

The other option was to do complete partitioning to the original array before the

manual unrolling but the Vivado HLS cannot partition such a big buffer. Conse-

quently, the only option is to partition the 5 little ones but we do not get extremely

better results compared to the amount of area that will be provided. In addition,

the bilateralfilterkernel does not take so much time to execute compared to other

processes in the algorithm, e.g. integratekernel, in order to be logical to provide

such resources, so the implementation with II=3 is the optimal choice.

d) Memcpy: Memcpy as we discussed previously is used to transfer data to or

from a top-level function argument specified with an AXI4 master interface. Initially,

we read one value from each array, as we have placed the memcpy inside the double
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nested loop and because of it we also write back only one. Per iteration of the

double nested loop we had one load and one store with exception to the Gaussian

array. The Gaussian array accesses exist in the last loop, so we read values at each

iteration of the final nested loop which means the loads are considerably more. In

the final approach, we use the memcpy function to load the Gaussian array before

the loops execution as the values remain constant. The size of the array is extremely

small (5 floats) and we can afford to read it all at the beginning. Additionally, at

the start of the second nested loop, each time we load the 5 arrays we need with

new values and at the finish of it we write them back the at output buffer.

e) Expf function: Two implementations of expf were used exp1 and exp2 [24] in

order to reduce the cycles of the expf. The approximate approach of these functions

will reduce the computation load of the process compared to expf. Unfortunately,

none of them gave better execution time so they were not implemented. We have

to note also that these functions did not cause the accuracy to drop.

f) Fabric clock frequency: The final implementation of the bilateralfilterkernel

was tested at 100,250 and 300 MHz .

We can see the resources we have to give for the mm2meterskernel and the

bilateralfilterkernel in Table 3.2 and in Table 3.3

The first implementation was done with both kernels not optimized. Afterwards,

we checked the time execution with mm2meterskernel on FPGA and bilateralfilterk-

ernel on CPU, as well as vice versa. This test procedure was done later on with

these kernels fully optimized. At first we saw that mm2meterskernel had relatively

the same execution time on the FPGA and on the CPU when completely devel-

oped. We discovered that mm2meterskernel does not affect the time execution of

the preprocessing and it will be a better choice to leave it to the CPU. It’s not worth

providing resources to it.

As we can see in Fig. 3.8 when all the processes are running on ARM the

mm2meterskernel does not affect the preprocessing and we should focus implement-

ing only the bilateralfilterkernel.
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Figure 3.8: Initial computation load of preprocessing functions

As a result the final implementation reached a time execution of 0.0084s, see

Fig.3.10 and Fig. 3.17, and the load has seen a dramatic change Fig. 3.9

Figure 3.9: Final computation load of preprocessing functions

So we have reached a point where computation time of the preprocessing is 2x

faster than the x86-64 CPU and all of its functions are on equal footing Fig. 3.9.

Consequently, in order to lower the implementation time even more, mm2metereskernels

needs to be revised and find a new approach. Furthermore, bilateralfilterkernel sup-

ports parallelism which means we can implement 2 IPs in our design to increase

performance even more. However, as preprocessing takes up only 10 percent,which
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means is the third most time consuming kernel , of the whole algorithm it’s not

advised to give up more resources of the FPGA. This is a good point to draw the

line, considering the time execution, and start implementing other kernels.

Figure 3.10: Preprocessing HW implementations
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3.5 Implementation of the Integration step on HLS

The integrate step does volumetric integration and goes through all the 3D volume,

as a result such a heavy computational function Fig.3.14 should be implemented in

hardware.

a) Interface: A combination of an AXI4-Lite slave I/O protocol and an AXI4

master I/O protocol makes up the interface . Max-read-burst=256 and max-write-

burst=256 were set for the input/output 3D volume bus.

b) Loop interchange: To make the code able to be pipelined we had to change

the loops from (y,x,z) to (z,x,y). We need to loop over every element in the 3D

volume in a specific way. With (y,x,z) for the complete iteration of the z loop we had

to load via memcpy almost all the 3D Volume which is not possible. Consequently,

we changed it to (z,x,y) as it goes through the 3D volume the way we need. For

each completion of the y loop we only need 256 elements, as is the default value of

the volume size of the dimension, compared to the previous implementation

c) Memcpy: Firstly, we read two values from two arrays per iteration of the

triple nested loop (3D Volume and depth image), as we have placed the memcpy

inside the loops. Consequently, we wrote back only one at the 3D volume. However,

by interchanging the loop we decided to change that. We load 256 values before the

start of the third loop and we write back 256 once it has finished. We also moved

the load of the depth value from inside the triple nested loop to the start of the

integration step. The FPGA is big enough that gives us this privilege of reading the

whole array at the start, in our case a size of [320*240], before the iterations begin.

d) Pipelining: After the loop interchange the code was not ready to be pipelined

. We had also to change the memcpy as we mentioned above. The body of the loop

achieved initiation interval of II=2 when the memcpy of the depth array was inside

the loops, afterwards the initiation interval achieved II=1.

e) Loop unrolling: Unroll the inside loop by a factor of 2 [22]. Pragma HLS

unroll, generates multiple copies of the loop , so that we can exploit the parallel

architecture Fig. 3.11.
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Figure 3.11: Loop unrolling

f) Array partition: Cyclic Partitioning of the input volume array by a factor

of 2 to make use of the loop unrolling[22]. Vivado HLS provides pragmas to increase

local memory bandwidth. By partitioning arrays as in Fig. 3.12 we increase the

number of load/stores ports.

Vivado HLS provides three types of array partitioning:

• block:The original array is split into equally sized blocks of consecutive ele-

ments of the original array.

• cyclic:The original array is split into equally sized blocks interleaving the

elements of the original array.

• complete:The default operation is to split the array into its individual ele-

ments. This corresponds to implementing an array as a collection of registers rather

than as a memory.
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Figure 3.12: Array partitioning

g) Fixed point arithmetic: Floating point operations are expensive on a

FPGA and an option is to use fixed-point numbers [25], where the decimal point

is placed at a fixed position within the bit representation. The selection between

these data type depends on operations of each kernel, usually fixed point numbers

results in a more efficient design. However, we accelerate only portions of the al-

gorithm, conversions from floating point numbers to fixed point numbers will have

to be taken into consideration .This is because KinectFusion will run on an ARM,

where floating point operations will be used. Another issue is the accuracy that the

fixed point operations offer. Floating point numbers are extremely accurate at both

small and large values, while fixed-point figures are only usable within a small range

because of a fixed step size and a low maximum value. After implementing Xilinx’s

[26] fixed point arithmetic the results were disappointing. The limitation of the fixed

point precision led to controversial results regarding the accuracy of the algorithm.

Furthermore, the time execution of the integration step increased possibly due to

many data type conversions. In consequence, we decided to keep the floating point

operations.

h) Bipartite tables [27]: In the integratekernel the square root (sqrt) function

has a heavy computation load. So instead we use symmetric bipartite tables for

accurate approximation of the function. Unfortunately, our implementation didn’t

give promising results as the performance of the integratekernel dropped and this

approach was dropped also.

i) Parallelism: Due to the nature of the integratekernel we can use multiple
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accelerators to increase the performance of this section of the algorithm. In this

implementation they are used 4 IP’s (integratekernel) to speed up the process.

j) Fabric clock frequency: The final implementation of the integratekernel

was tested at 100, 250 and 300 MHz.

We can see the demand in resources in Table 3.2 and in Table 3.3 .

Finally, we have reached a computation time of the integration step equal to

0.064144 seconds see Fig. 3.13 and Fig. 3.17 .

Figure 3.13: Integration HW implementations

3.6 Implementation of the Raycasting step on HLS

The raysasting step is the second most time consuming process Fig. 3.14, after the

integratekernel. Therefore, the function should be implemented in hardware.
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Figure 3.14: SLAM processes

Initially, the whole raycastkernel process was implemented with a hope to in-

crease its performance.

a) Interface: An AXI4-Lite slave I/O protocol is combined with an AXI4 mas-

ter I/O protocol to make an interface for the accelerator in order to be able to

communicate.

b) Memcpy: The raycastkernel consists of three nested loops. Except that the

third one initiates later on in the code. So in the third loop we need to load all the

values for the interp operation. After the third loop ends and before the second one

ends, we perform the grad function so we need to read them first. Once this and

some other computations end, we generate the output and via memcpy two arrays

are written back.

c) Pipeline: Due to the nature of algorithm and the code there are a lot of

dependencies, as a result pipelining was not performed.

As we reached a stalemate with the previous implementation we decided to map

to hardware only the raycast function of the code and not the whole raycastkernel.

The Fig. 3.17 shows the stalemate as the initital and final implementation is the

same.The raycast function possesses the heavy computational load of the raycasting

step.

a) Interface: An AXI4-Lite slave I/O protocol together with an AXI4 master
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I/O protocol will suffice as interface.

b) Memcpy: The raycast function consists of one loop. Before that we load 8

values for the interp operation and there is another one inside the loop where we

need to load these 8 values per iteration. Furthermore, before returning from the

accelerator we write back the output.

c) Pipeline: Firstly, we could not perform the pipeline pragma due to the

nature of the original code. We had to rewrite a portion of the it, remove certain

dependencies and make it able to be pipelined. The loop achieved II=8 due to the

interp function that needs 8 loads.

Raycasting computes the implicit interface that corresponds to the current cam-

era position estimation. For each surface pixel, the algorithm walks a single ray.The

raycast function accesses the 3D space(256*256*256) by rays. The 3D space is 2563

*4 bytes=64 MB.Each ray’s direction, width and starting point are unique and de-

pend on the frame view. Unfortunately, there is no spatial locality see Fig. 3.15,

successive memory accesses have at least a 2D layer of the 3D space between them.

One approach is to prefetch the data we need before entering the accelerator. For

each ray the Arm processor computes the needed data for raycasting and saves them

to a buffer which we give later to the raycast IP. This resulted in the raycasting step

achieving 3.3285 seconds.This implementation underwent the same HLS optimiza-

tions as the previous one. However, this one achieved II=4. Instead of prefetching

only data for one ray we decided to do a tiled implementation of the raycasting step.

That means we prefetch a tile of 160*4 so as to increase the implementation’s per-

formance. Furthermore, by changing a little bit the interp function of the raycasting

step of the algorithm we managed to achieve II=1. The HLS pragma pipeline was

integrated in the raycasting step at the while loop in row 7 in algorithm 1. Unfortu-

nately, the raycast step of the algorithm, even with the final implementation at 100

MHz, achieved a time execution of 1.9258s see Fig.3.16 and Fig. 3.17 .The design

was not promising so it was not tested at higher frequencies.
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Figure 3.15: Access pattern of rays

Figure 3.16: Raycasting HW implementations

We can see the area needed for both raycasting implementations in Table 3.2

and in Table 3.3 .
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BRAM 18K DSP FF LUT URAM

Mm2metersKernel 32(1%) 3(∼ 0%) 2935(∼ 0%) 3796(1%) 0

BilateralfilterKernel 34(1%) 17(∼ 0%) 4701(∼ 0%) 6537(1%) 0

IntegrateKernel 4(∼ 0%) 45(1%) 11660(2%) 14137(5%) 0

RaycastKernel 24(1%) 115(4%) 19114(3%) 31299(11%) 0

Raycast 18(∼ 0%) 69(2%) 16029(2%) 17743(6%) 0

Availabe Resources 1824 2520 548160 274080 0

Table 3.2: Ultrascale: Initial Kernels - Utilization

BRAM 18K DSP FF LUT URAM

Mm2metersKernel 32(1%) 9(0%) 4476(0%) 4937(1%) 0

BilateralfilterKernel 45(2%) 216(8%) 166387(30%) 44873(16%) 0

IntegrateKernel 159(8%) 272(10%) 74097(13%) 51868(15%) 0

RaycastKernel 24(1%) 115(4%) 19114(3%) 31299(11%) 0

Raycast 496(27%) 160(6%) 29719(5%) 32888(11%) 0

Availabe Resources 1824 2520 548160 274080 0

Table 3.3: Ultrascale: Final Kernels - Utilization
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Figure 3.17: Initial and Final implementation of accelerators on Zynq Ultra-

scale+Mpsoc

3.7 Final Design overview

In our final design we implement only the bilateralfilterkernel and the integrateker-

nel as the accelerator of the raycastkernel did not achieve better performance than

the Arm of the Zynq R© UltraScale+TM MPSoC. The final design consists of four

integratekernel accelerators and one bilaterfileterkernel accelerator with the opti-

mizations we presented in sections earlier.After the generated RTL is exported from

the Vivado HLS the accelerators are instantiated into the Vivado Design suite [28].

From Vivado HLS we can see the resource utilization for the bilateralfilterlkernel and

integratekernel, as a result we can estimate the area of the whole project.However,

the Post-Implementation report from the Vivado Design suite can give us a better

picture of the utilization of the final design as shown in Fig. 3.18.
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Figure 3.18: Post-Implementation utilization

We have to note that we decided not to implement another integratekernel or

bilateralfilterkernel as accelerator in the design. We need some area available as

potentially the raycastkernel could be implemented as an accelerator. With the

help of the Petalinux tools [29] we accomplished to run the design on the ZCU102

kit.The Figure 3.19 shows the performance of the final design.

Figure 3.19: Final design performance and comparison
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It is concluded that the Arm processor can give us a better performance than

our initial implementation. However, with the optimization techniques we were able

to achieve a better execution time of 0.38167s (2.63 FPS). Unfortunately, we were

not able to match the performance of the x86.

3.8 Zedboard experimental results

The initial development of the KinectFusion implementation on a re-configurable

platform was done on the Zedboard , but it turns out this FPGA is too small to

accommodate such a large project. However, we have performance numbers for the

Arm processor of the board in Fig. 3.20.

Figure 3.20: Execution time (s) - Implementations

3.8.1 Implementation of the Mm2 to Meters kernel on HLS

The development was the same as in the Section 3.3. However, the performance see

Fig. 3.22 changes as well as the utilization, see Table 3.4 and Table 3.5, because of

the different boards.
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3.8.2 Implementation of the Bilateral Filter on HLS

The Zedboard does not offer us the area of Zynq Ultrascale+Mpsoc, as a result

the improvement of the accelerator at an earlier stage compared to the Section 3.4.

To be precise, the final implementation of the bilateralfiltekernel only gets to stage

where II=13. Furthermore, the max clock frequency that is valid for the kernel is

125 MHz.

The final implementation of the preprocessing is with the same mindset as we

discussed earlier Section 3.4.

The area demanded is in Table 3.4 and in Table 3.5 and computation time is

show in Fig. 3.22 .

3.8.3 Implementation of the Integration step on HLS

Many of the approaches we discussed in Section 3.5 were initially tested on this

FPGA. This section will provide also execution numbers for these implementations

and justify our decision for not integrating them in Fig. 3.21.

Figure 3.21: Integratekernel aborted Implementations

Unfortunately, on the Zedboard we were stuck on an earlier development stage
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due to area limitations. After the loop interchange the body of the loop achieved

II=2. Furthermore, the loop was unrolled by a factor of two and the input volume

array was partitioned by a factor of two. The max valid fabric clock frequency that

the design was executed is 125 MHz.

The resources given are in Table 3.4 and in Table 3.5 and the performance is

shown in Fig. 3.22.

3.8.4 Implementation of the Raycasting step on HLS

On the Zedboard the whole raycastkernel process was implemented as in Section

3.6. We reached a stalemate with this implementation ,as we discussed earlier, and

we decided to map to hardware only the raycast function. Unfortunately,most of the

raycasting step was developed on the ZCU102 kit.The only implementation tested

was the one where we pipelined the raycast function to the point of II=8.As a result,

no other execution numbers are available, the only ones are in Fig. 3.22. The area

is shown in Table 3.4 and in Table 3.5.

BRAM 18K DSP FF LUT

Mm2metersKernel 32(11%) 3(1%) 3556(3%) 4260(8%)

BilateralfilterKernel 34(12%) 17(7%) 5282(4%) 7618(14%)

IntegrateKernel 22(7%) 48(21%) 13214(12%) 19364(36%)

RaycastKernel 32(11%) 143(65%) 24870(23%) 39714(74%)

Available resources 280 220 106400 53200

Table 3.4: Zedboard: Initial Kernels - Utilization

BRAM 18K DSP FF LUT

Mm2metersKernel 32(11%) 9(4%) 5242(4%) 5491(10%)

BilateralfilterKernel 39(13%) 56(25%) 34166(32%) 20570(38%)

IntegrateKernel 22(7%) 142(64%) 31455(29%) 45156(84%)

RaycastKernel 32(11%) 143(65%) 24870(23%) 39714(74%)

Available resources 280 220 106400 53200

Table 3.5: Zedboard: Final Kernels - Utilization
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Figure 3.22: Initial and Final implementation of accelerators on Zedboard



3.8. Zedboard experimental results 42

3.8.5 Zedboard HW implementations

As the size of the Zedboard is not big enough to accommodate integratekernel and

bilateralfilterkernel together in an implementation we have to choose one of them to

implement each time. The raycasting step in HW did not achieve a better execution

time than the SW implementation so no approach with a raycastekernel accelerator

will be presented in Fig. 3.23.

Figure 3.23: Hardware implementation of accelerators on Zedboard



Chapter 4

Conclusion

In conclusion, the execution time of the KinectFusion algorithm on a re-configurable

platform shows promising results. Optimizations both on algorithmic and architec-

tural optimizations were tested. The HLS design, despite lacking the precision of

a RTL design, can still be used with satisfying results that are comparable to the

x86’s . An implementation of nearly 3 FPS is far behind any real time applica-

tion. However, there is still room for future improvements in order to increase the

performance of the design.

4.1 Future work

In this thesis a HLS based design is implemented and presented on the ZCU102,

however a RTL design can be examined. With a design so much closer the hardware

of the re-configurable platform , there is a good chance that an extremely good

performance will be achieved. However, there are still plenty of ideas that we could

try to apply to the HLS based implementation.

Let’s make it clear that not all kernels can fit together on a Zynq-7020 FPGA,

however on a Zynq c©UltraScale+MPSoC that may be possible. So in the future, a

design with all kernels integrated can be researched. However,as always we choose

the right candidates first for an accelerator. By resource usages alone raycastkernel

should be an accelerator, but in our implementation we could not design an IP good

enough to achieve any good performance numbers. More research is needed so as to

43
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make an approach of the raycasting step that will be good enough to be integrated

as an accelerator . In this implementation, the m-axi and s-axiilite interface used in

all kernels can be altered. An interface with an AXI-streaming protocol may give

better results. Furthermore, it enables the usage of a Zynq High-Performance port

together with the AXI Direct Memory Access (DMA). A DMA may relieve some

stress from the processor as it was used for memory transfers.
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