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ABSTRACT 

Contrast agents are encapsulated microbubbles that are used in a wide variety of biomedical 

applications in modern diagnostics and therapeutics. When they are insonated (hit by an 

ultrasonic acoustic wave) they start oscillating and reflecting a characteristic echo, enhancing 

the contrast between the blood and the surrounding tissue, thus providing a better visual 

representation of the medical circumstances at hand. 

In the present thesis, phase diagrams of such microbubbles are created, allowing us to observe 

their behavior when they have different viscoelastic properties as well as when the acoustic 

stimuli differ. Of the properties discussed later the shear viscosity in particular is of utmost 

interest. Through consistent studying of the phase diagrams that were constructed during this 

assignment, valuable information was obtained about how plenty of the microbubbles’ 

properties affect the reaction they have towards an insonifying stimulus. By acquiring better 

understanding of the way that the contrast agents operate, we might be able to further the 

technological advances and creating more suitable contrast agents or expanding the range of 

applications in the biomedical field. 
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1. INTRODUCTION 

1.1. General Background 

Ultrasound contrast agents are encapsulated microbubbles, 1 to 5 μm in radius and were 

originally developed for diagnostic imaging purposes. The agents have a gas core and are 

surrounded by a shell made from a variety of materials. Currently, polymer, lipid and protein 

materials are used for shell construction in prototype and approved agents. When driven 

acoustically, the agents have unique scattering signatures from the nonlinear oscillations 

about their equilibrium radii. [3] 

One of the main functions of contrast agents is that they are used in ultrasound imaging to 

enhance the contrast between the blood pool and the surrounding tissue as a result of the high 

echogenicity of the microbubbles. Tissue reflects the sound waves at the fundamental 

frequency so by taking advantage of the nonlinear backscattering properties of the contrast 

agents the contrast between the blood and the tissue is heightened. [4] 

Because of their high echogenicity and their ability to reflect a characteristic echo when 

caught in an ultrasonic frequency field, these targeted agents can be detected by an ultrasound 

system with high sensitivity. Therefore they can provide important information when used in 

biomedical scanning applications such as the spatial distribution and extent of tumor 

angiogenesis, its inflammatory response or thrombus. [5] 

Additionally, microbubbles have the ability of focusing and concentrating energy, forces and 

stresses and that leads to a variety of phenomena caused by them like cavitation damage, 

sonoporation and sonoluminescence [11]. Sonoporation is the process by which micropores 

are generated on the surface of membranes by the application of sound waves. In this fashion 

microbubbles can be used for therapeutic applications instead of cell wall permeation 

techniques such as electroporation. [6] 

During the application of ultrasonic excitation, microbubbles have been observed to merge, 

fragment, crack and jet. The jetting phenomenon can be described as follows. When the 

insonification occurs, during the maximum expanse phase of the microbubble, it collapses 

due to the vast difference between the pressure inside the bubble and the atmospheric 

pressure. [13] If there is a boundary near the bubble when it breaks, the water flow on the side 

of the boundary gets retarded and due to pressure difference between the side of the bubble 

close to the boundary and its opposite side the fluid volume gets accelerated and focused to 

the formation of the jet causing the jetting phenomenon. [7],[9] 

The pressure at the tip of the jet is high enough to penetrate any human cell so it is presumed 

that the liquid jet might be able to act as a microsyringe delivering a drug to a region of 

interest. [7] 

The contrast agents disappear after a while once they’ve been inserted in the human body 

through various mechanisms such as getting captured by lungs and other organs, gas diffusion 

or dissolution. The destruction mechanisms of the contrast agents depend heavily on their 

type. [8] 
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1.2. Types of Shells Used to Coat Microbubbles 

Protein Shells 

One of the most well known proteins that is used to coat microbubbles, meant to be used in 

contrast sound imaging, is Albumin. When it was first introduced as a formulation it was 

considered revolutionary and it functioned as the prototype after which plenty of other 

formulations were created that could pass the lung capillaries and provide contrast in the left 

ventricle of the heart. [12] The procedures through which Albumin-coated microbubbles are 

created involve sonication and thermal processing. Sonication helps to create the air bubble 

and the heating helps to keep it together. [10] 

Apart from Albumin, several other proteins are used to create coated microbubbles. The 

amphipathic nature of most proteins makes them highly surface active which is a very 

desirable trait for contrast agents to have. 

Surfactant Shells 

Surfactants are compounds that lower the surface tension (or interfacial tension) between two 

liquids, between a gas and a liquid, or between a liquid and a solid. One pretty well known 

mixture of surfactants that is used to coat microbubbles is that formulated by Wheatley et al. 

and is a combination of SPAN-40 and TWEEN-40. The solution was sonicated in the 

presence of air to form stable microbubbles. 

It was recently reported by Dressaire et al. that stable microbubbles managed to be formed 

from sucrose stearate by a blending process in a certain type of glucose syrup. These 

microbubbles were suspended for over a year and they demonstrated exceptional polygonal 

domains. [15] It is suggested that this unique domain morphology is due to the interplay 

between surface tension, domain boundary line tension and spontaneous curvature of the 

surfactant monolayer. Despite them not being suitable for biomedical implementations due to 

them being unstable upon dilution, the importance of surface heterogeneity and domain 

bending with regard to microbubble stability becomes clear through their study. [10] 

Lipid Shells 

Lipid-coated microbubbles are some of the most useful and remarkable formulations used in 

biomedical applications and drug delivery. The shell is nature inspired since most 

microbubbles that are found directly in the environment such as the oceans are known to be 

stabilized by lipids [16]. Also its stability and compliance matches that of lung surfactant. 

Two examples of the most widely used contrast agents coated by lipid shells are Definity by 

Lantheus Medical Imaging and Sonovue® by Bracco Diagnostics. [10] 

Lipid shells have a plethora of advantages. One of them is that a lipid monolayer can be 

spontaneously formed around a bubble of air, since their hydrophobic acyl chains face the gas 

and their hydrophilic headgroups face the water [14]. In addition, lipid monolayers are highly 

cohesive thus increasing the stability of the shell and the lipid molecules are held together by 

‘weak’ physical forces which makes the shell compliant to area expansion and compression 

during ultrasound insonification. Due to all the aforementioned reasons the lipid coated 

microbubbles possess favorable ultrasound characteristics for example they exhibit minimal 
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damping at resonance. They’re also easily functionalized for drug delivery and molecular 

imaging. [10] 

Polymer Shells 

The term “polymer microbubble” typically refers to a type of microbubbles that are 

stabilized by a thick shell that consists of different kinds of polymers which makes it more 

resistant to area compression and expansion, in comparison with the lipid or albumin ones but 

in turn reduces their echogenicity and drug delivery activity. The polymer shelled 

microbubbles have been observed to crack under insonification thereby releasing the content 

of their core through the shell defect. [10] 

An additional categorization that applies for the membrane that surrounds the microbubble is 

whether its material is strain softening or strain hardening. If its elasticity modulus increases 

during expansion it is considered as strain hardening [1]. If its elasticity modulus decreases 

during expansion then it is considered as strain softening.  The elasticity modulus 

characterizes the resistance of the shell to deform. Possible examples of strain hardening 

materials are the membrane of the red blood cells as well as certain polymers used to coat 

contrast agents. One example of strain softening material is rubber.  

In mathematical modeling of the membranes used in simulating the contrast agents in a 

computational environment, different constitutive laws are applied in order to account for the 

fact that the material being tested is strain softening or hardening. The Skalak law is used to 

describe strain hardening membranes and the Mooney-Rivlin law is used for strain softening 

membranes. [1] 
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2. METHODOLOGY 

The main purpose of this thesis is the construction of the phase diagrams of strain-softening 

contrast agents that are subjected to a variety of different acoustic stimuli. Doing a parametric 

analysis of the results and through careful observation a few important conclusions can be 

drawn that show how each parameter affects the dynamic behavior of the contrast agent in 

question. 

The Phase diagrams of this particular assignment are constructed in the R0-ε plane, and define 

the regions that instabilities occur. The instabilities that are examined are the Excitation of 

Shape Modes through Static Buckling, Dynamic Buckling and Parametric Mode Excitation. 

The method used to create these diagrams was to estimate the sound amplitude for which 

shape mode excitation was taking place depending on the viscoelastic and geometrical 

characteristics of the shell and the bubble as well as the frequency of the acoustic disturbance. 

Phase diagrams are extremely helpful because they depict the stability patterns of certain 

contrast agents under the effect of a specific forcing frequency, thus allowing the prediction 

of its behavior and in turn its manipulation. 

A contrast agent subject to an acoustic disturbance of a certain sinusoidal form with given 

forcing frequency starts pulsating. In the beginning, for low sound amplitude and after a small 

transient period has elapsed, the contrast agent undergoes spherosymmetric oscillations 

assuming that the oscillations are stable. In case stability is not taking place, the 

microbubble’s pulsating morphology changes and it pulsates assuming different deformed 

shapes. Depending on the size of the bubble as well as the sound amplitude of the forcing 

frequency the shape of the microbubble is different. The different shapes that the microbubble 

turns into are categorized as shape modes. In the image below the first shape modes can be 

depicted so that the reader can have a more accurate understanding of what the different 

shapes and geometry of the eigenmode look like. 

Such mode excitation that is associated with an acoustic disturbance is referred to as 

parametric shape mode excitation. Besides this mechanism shelled microbubbles may be 

destabilized statically by simple imposition of a certain uniform and constant pressure 

disturbance. This process is known as static buckling and typically occurs at higher 

amplitudes of the pressure disturbance in comparison with parametric instability [1]. In the 

present study it will be seen how these attributes are affected when the shell is already under 

stress at the time of the disturbance or when the shell rheology is altered. In particular the 

impact of a measurable discrepancy between shear and dilatational shell viscosity on 

microbubble stability will be investigated. 
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Picture 1: The shapes of a pulsating microbubble while no mode is present as well as when 

the 3rd, 4th, 5th and 6th modes are excited.  
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2.1 Formulation 

It is of particular interest to examine the phase diagrams of the contrast agents’ eigenmodes 

and observe how those are affected when the shear and dilatational viscosities are of the same 

value or differ [17], as well as by the existence of pre-stress. In order for that to happen the 

model presented by Dr. Tsiglifis and Dr. Pelekasis has been enriched with the addition of 

terms and equations that consider both of the existing viscosities. The mathematical model as 

well as the numerical methods that are used to carry out this assignment are based on the 

work done previously by Tsiglifis & Pelekasis [1],[2]. 

 

An encapsulated microbubble can be described as a spherical configuration of ideal gas that is 

enclosed in a viscoelastic membrane of small thickness δsh, in comparison with its radius. 

Some of their properties include: the equilibrium radius Req, the membrane’s surface shear 

modulus, its bending elasticity kB as well as its shear and dilatational viscosities μshear and μsk 

respectively. The microbubble is also submerged in a Newtonian liquid of density ρl dynamic 

viscosity μl and static pressure Pst. [1][2] 

 

The Reynolds number used to describe the interaction between the microbubble and the 

surrounding liquid is: 

   
    

 

 
        

  

  
 

where ρ is the liquid density, μ and μs are the surrounding liquid viscosity and the shell 

viscosity respectively, ω is the forcing frequency and R0 is the radius of the microbubble at 

equilibrium. The flow is assumed to be incompressible. 

The surface of the bubble is described via spherical coordinates with r denoting the distance 

from the center of the bubble,      F    where F      is the dimensionless radial 

position of the interface between the membrane and the surrounding liquid. The 

surface tension σ is used for the nondimensionalization of the pressure inside the 

bubble,             . The normal vector on the interface n is expressed through 

the unit vectors in spherical coordinates er, eθ: 

  
 F   F    

 
 

F  F 
            

where F   F      

The dimensionless equations and boundary conditions that describe the dynamic 

response of the microbubble are: 

 

               F                                                                                (1) 

 
  

  
 

 

 
                    F                                                      (2) 
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 F

  
 

  

  
   

F 
 

F  

 
  

        F                                                                     (3) 

                      F                                                               (4) 

                                                                                                                            (5) 

                                                                                                            (6) 

 

The Laplace Equation (1) and the Bernoulli equation (2) describe the pressure and the 

velocity around the microbubble. The kinematic equation (3) is applied on the 

interface of the microbubble and correlates the velocity with the shape of the surface. 

The normal and tangential force equilibria (4,5) equalize the pressure difference of the 

interior and exterior of the microbubble with the surface tension and the residual 

viscoelastic tensions that are induced from the shell. The eq. (6) shows the assumption 

that the host liquid far away from the microbubble remains at a constant pressure. 

2.1.1. Stability Analysis For Small Axisymmetric Disturbances 

 

The Stability Analysis of the microbubble separates into two problems, depending on their 

order. We’re mainly concerned about the zeroth and linear order problems and their respective 

equations.  

 

To zeroth order, we have [2]: 

    
 

 
         

   
 

  
    

             (7) 

 

The equation presented above gives the instantaneous radial position of the surface of 

the microbubble, neglecting any perturbations of the system, where    is the pressure 

inside the bubble, 
0

NF  the normal component of the elastic stresses on the shell at 

equilibrium,   
  the average curvature of the bubble and We is the Weber number. 

The initial state of the system at equilibrium is: 

     

    
        

                                                                                                                        (8) 
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where in the last equation, it is shown that the pressure of the encapsulated gas is determined 

by the pressure of the surrounding liquid and the surface tension, by having the residual 

elastic stresses Tel being zero. 

The equations that describe a perturbating system are derived from the oscillations of 

quantities circling the values given above, according to the oscillations’ theory, as follows: 

                       

       
         

             

                                                                                                                                    (9) 

        
  

  
        

Since   
          , the initial velocity and the the residual elastic stresses Tel equal zero. 

Where       ,       are the radial and azimuthal displacements of the microbubble’s 

surface and ε is the magnitude of perturbation. Eq. (3) can be rewritten for the 

continuity of the normal velocity in the linear region and Eq. (4) as follows: 

   

  
 

   

  
   

   

   
 
   

   

  
    

     
      

  

At the same time the encapsulated gas oscillates approximately isothermally. 

Considering from the Poisson equation for isothermal process, we have: 

         
 

       
  

 
 

 

   
     

    
 
  

 

  
 

 

       
    

 

0 1
1 0

0

3 G
G

P w
P

R


    

Where γ is the polytropic gas constant and has values 1 ≤ γ ≤ 1.4, V is the 

instantaneous dimensionless volume of the microbubble and V0 is the initial volume 

of the microbubble, and since the bubble is spherical:    
 

 
  (dimensionless). For an 

adiabatic process of the internal gas, γ=1.4 and for an isothermal process γ=1 instead. 

For the second term of the Bernoulli equation between a particle of liquid near the 

microbubble and another in the far field, for the initially quiescent liquid we have: 

 
   

  
   

    

While considering negligible pressure variations away from the microbubble. 
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To linear order and by ignoring compressibility and viscous effects on the surrounding liquid 

the equation of the normal force balance becomes: 

 

           
   

  
      

   
 

  
    

                                                                              (10) 

In the following Φ is the Velocity potential of the velocity to linear order, R is the 

microbubble radius,    is the membrane velocity,    is the membrane acceleration and    is the 

radial displacement of the membrane. We proceed the analysis by expanding each term of eq. 

(10) 

 

By utilizing the Momentum equilibrium we obtain: 

            
   

     
       

           
       

          
      

     
          

                                                                                                (11) 

 

In the above we have implicitly introduced the expansions:  

     
 

 
 1 1 1

1 1
1 1 1

, ,
n n

n n n nn n
n n n

t p t
w w t P P P P

r r
  

  

 
  


                              (11a) 

where we neglect volume variations in order to study parametric shape mode excitation. 

The second term of the Eq(4) becomes: 

 

 
   

  
        

          

   
 

 

     

                  
   

  
                    (12) 

 

The third term of the Eq(4) becomes: 

 
   

  
  

 

    
           

         

           
              

    
 
     

            
          

      
     

for each Fourier component of the normal displacement of the membrane w: 
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By utilizing the Kinematic Condition in the normal direction, we get: 
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Upon substitution in eq. (14) it is obtained: 
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By substituting the terms expanded above (12,13,14,15,16,17) and (18) in Eq (10) describing 

the normal force balance and modifying for the n-th eigenmode, we obtain: 
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Which is the equation employed by Tsiglifis [2]. 

In order to complete the analysis of Eq (12) there is a need to examine the force balance in the 

normal direction. The Normal force balance consists of elastic and viscous components: 

   
   

                                          
   

      
   

  

      
   

          
   

        
   

 

   
        

       
       

        
   

 

 

 

  
     

 
                                              (20) 

 

In order to calculate the normal force balance we need to first calculate the elastic stresses and 

the viscous stresses τss
el, τφφ

el and τss
v, τφφ

v respectively.  

2.1.2. Elastic Stresses for Neo-Hookean Shell 

Initiating the analysis for the elastic stresses in the Neo-Hookean type of shell: 
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Where χ is a dimensionless number,              and                   

 

Regarding the λs and λφ variables we have: 

 

   
  

   
 

     
    

 

     
        

   

     
  

where    θ0=πξ,              ,       
      

 
  

By differentiating each of the coordinates r,θ with the Lagrangian variable ξ we get: 

       
  

 
 ,         

By raising λs, rξ and θξ to the second power and executing the calculations in dimensionless 

form: 
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By working in a similar manner for λφ it is obtained: 
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By applying    and    in the tension equations and expanding it, it is received: 
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And finally, 
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By working similarly for the     tension equation we receive: 
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2.1.3. Viscous Stresses for Neo-Hookean Shell 

Next we have to evaluate the viscous stresses where both the dilatational and shear viscosities 

are considered. 

   
   

 

   
 

 

       
  

    

  
  

 

   
 

 

       
  

  

 
  

   
   

 

   
 

 

       
  

  

 
  

 

   
 

 

       
  

    

  
  

As for Sξ: 

          
  

 
         

   

  
         

          
  

 
 

   

  
     

In dimensionless form:                                                                      (27) 

From Tsiglifis & Pelekasis [2] we have that: 
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By expanding the last two terms it is obtained: 
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Following this, by substituting the expanded expressions (22),(23) in the viscous stresses     
  

and    
 , we get: 
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Consequently the contribution of the viscous terms to the linear problem assumes the 

following form to linear order: 
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Solving the above Equation (32) for the n-th eigenmode, we obtain: 
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Where:   
  

  
  , u being the displacement in the azimuthal direction. 

κφ and κs are calculated in dimensionless form: 
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Where       are the two principal curvatures and    is the mean curvature. 

 

2.1.4. Bending Stresses for Neo-Hookean Shell 

 

Moving on to the next part, the bending stresses [2] are processed: 
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Where   ,   , are the bending moments manifesting on the membrane,      is the bending 

stress and   vectorial transverse shear tension. Also   
 ,   

  are the dimensionless reference 

curvatures in the principal directions. 

 

   and    are the bending measures of strain as introduced by [1] 

 

By replacing the expanded terms on the equations (31-34) we get: 
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where:   
   

  
 

   
  

  

  

  

Also:  

                       
  

 
          

                                 

  

  
 

  

  
 

              

   
      

 

 

The contribution of the bending stresses in the tangential force balance is the following: 
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Where         

 

 

By differentiating ρ with s we get: 
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By doing further differentiations to various terms we receive the forms used in the 

aforementioned equations: 

 

   

  
  

  

  
            

      

  
                        

  

  
       

    

 
  

Then by applying those terms to the equation of the transverse shear stresses (45) and by 

expanding we receive: 

 

    
  

                                  
  

             
      

   
   

                       

    
  

                                      

              
 

   
                 

 

So the bending stresses equation becomes: 
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Based on the identities noted in the appendix we have: 
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2.1.5. Normal Force Balance on the Shell 

Since both the elastic and the viscous stresses are evaluated, as well as the bending stresses 

and moments, we proceed with the expansion of the normal force balance: 
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2.1.6. Tangential Stress Balance on the Shell  

 

The next equation that needs to be expanded to linear order including the viscous contribution 

is the tangential stress balance: 
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From Tsiglifis & Pelekasis [2] it is shown that: 

  

  
      

    
  

  

   

   

  
       

     

  
  

   
       

     

  

Plus, the cylindrical coordinates are given by the equations: 
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Where: w,u: displacements along the radial and azimuthal direction respectively 

By differentiating the terms of the tangential stress balance equation with the initial angle   , 

we get: 
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By utilizing the identities that appear in the appendix A, it is proven that: 

  
       

      
 

    
     

      
 

           

                        
         

     
        

   
          

     
         

    
   

    
         

  
 

   
           

    
   

   
            

Where:    
  

  
 

It is also proven that: 
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By substituting the above expansions in the tangential stress balance and by simplifying it is 

obtained: 

 

    

   

   

  
 

 

     

        

   

   

  
           

 
 

 
    

    

 
      

 

   
 

 

       
  

        

 
 

  

  
           

  
 

   
 

 

       
  

                    
 

 
 

  

  
                  

      

 
 

      
                    

 

  
    

    

 
          

           
  

 
      

  

 
 

 

 
          

    
 

   
 

 

       
  

           

 
 

  

  
              

 

   
 

 

       
             

  
           

 
 

  

  
                                                                                                      (60) 

 

Thus, the final form of the tangential stress balance (51), when the dilatational and shear 

viscosities reads as: 
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By moving the right hand side of the equation (61) to the left we have: 
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2.1.7 Tangential Force Balance on the Shell 

Additionally, the Tangential Force balance for the linear problem is calculated: 

   
    

    
 

  
 

 

 

  

  
    

     
   

    
  

  
 

 

 

  

  
    

      
        

 

  

By substituting the viscous and elastic stresses in the Tangential Force balance we have: 
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By substituting eq. (62) to the viscous term of eq. (63) we obtain: 
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which shows the contribution of the shear viscosity to the tangential force balance. 

 

2.1.8. Stability Analysis to Non-Spherical Disturbances 

 

In this section the manner in which the equations that pertain to the stability analysis are 

affected is shown, and the relevant analysis is conducted. 

By letting            ,            and by substituting the terms in the normal and 

tangential force balance equations (19) and (61) we obtain: 
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Upon carrying out the calculations, the resulting equations for the normal force balance: 
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and the equivalent equation for the tangential force balance assume the form: 

 
 

   
                          

 
 

    
 
                     

 

  
                                              (68) 

Then we proceed by extracting the terms    and    as common factors and by allowing R to 

be equal to 1, since we are not interested in volume variations leading to buckling: 

(67)          
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(68)      
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Where four new terms are introduced:                     as: 
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In the next step, it is required that the determinant of the (67) and (68) system of equations to 

be zero and solve for    thus allowing the eigenfrequencies of the particular problem to be 

evaluated. So we solve for:                   
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2.2. Static Buckling 

Static Buckling of a microbubble is the loss of its sphericity when the bubble is subjected to 

an external compressive load. This effect doesn’t necessarily happen when the microbubble is 

insonated, but instead is more relevant when the forcing frequency of the acoustic excitation 

is much smaller than the eigenfrequency of volume pulsations of the microbubble, a situation 

most commonly known as slow compression. Static Buckling takes place when the external 

overpressure that is applied on the microbubble surpasses a critical value, for given 

viscoelastic properties and equilibrium radius for that microbubble. When the external 

overpressure becomes higher than that critical threshold then the spherosymmetric 
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configuration requires higher energy content than the buckled axisymmetric state, leading to 

the deformation of the shell to a shape governed by a Legendre eigenmode [2]. While the 

spherosymmetric configuration is solely composed of strain energy, the buckled state allows 

for both strain and bending energy to take place so the total elastic energy of the shell 

acquires a lower value. For small disturbances, the formula from which the external critical 

overpressure is provided is the following,: 

     
       

        
 
   

   
         (76) 

Then, by letting 

         ,           

And substituting in Equations (65) and (66), we obtain an eigenvalue problem of the form 

                          
  

  
    

And more specifically the set of equations presented below: 
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In order for the above set of equations to have a non trivial solution, its determinant must 

vanish, 

                                

which in turn provides the eigenvalues of the problem. 

 

2.2.1. The Static Buckling Algorithm and its Initial Values 

In order to be able to estimate the Pcritical for a certain contrast agent at varying radii, the 

viscoelastic properties of the contrast agent are required as well as, in the case where prestress 

was applied, the amount of prestress. After the viscoelastic properties were properly selected, 

a procedure of trial and error took place through which the stability of the contrast agent was 

evaluated. The range of radii that were examined was from 1.5 μm to 5μm and the 

eigenmodes listed were the Legendre modes P2 to P6. The main variable of the problem was 
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the ratio of the compressed bubble radius to the initial radius of the spherical bubble through 

which the critical pressure was later calculated. As soon the ratio dropped below a certain 

threshold, the solutions of the eigenvalue problem indicate that the microbubble becomes 

unstable. By repeating this process for the rest of the eigenmodes for a given initial radius, 

Pcritical values for each mode were obtained. After the stability analysis was completed, in 

order to find the sound amplitude for which the Pcritical was achieved the following equation 

was used: 

                                                    (79) 

coupled with the condition for static equilibrium, i.e eq(3). 

For slow compression, the pressure excitation is better simulated by a disturbance: 

                                   
                (80) 

In the limit as ωf tends to zero and after the initial transient has elapsed, the step change in the 

static pressure of the host fluid              is simulated and the buckling behavior is 

recovered. 

By substituting Pcritical as     in the equation               and solving for ε, the sound 

amplitude for criticality was obtained. This procedure was repeated for the whole range of 

radii resulting in finding the sound amplitudes for the Pcriticals in each radius for every mode 

under consideration. Finally in order to obtain the curve for the static stability, the chosen 

mode for each radius was the one that required the lowest sound amplitude, meaning that 

mode would become present and excited before any other causing the loss of spherosymmetry 

in the microbubble. That allowed for the curve of Static Buckling to be plotted in the R0-ε 

Plane. 

2.4. Parametric shape mode excitation and Dynamic Buckling 

For growth of shape modes to be detected the procedure followed was quite different. An 

iterative parametric method took place where a computational algorithm was applied. 

The main objective of the algorithm is to figure out the sound amplitude for which shape 

instabilities begin to occur for a certain contrast agent. In order for that to happen, an input of 

the viscoelastic and geometric properties of the microbubble as well as the environmental 

parameters was required. A range of radii and sound amplitudes was selected and for each 

pair of values in the radius amplitude plane, and given shell properties and forcing frequency, 

a time integration procedure took place in order to examine the evolution of the different 

shape modes. To this end eq (7) that describes the radial pulsations, R(t), of a microbubble 

was solved along with eq’s (65) and (66) for the evolution of wn(t) and ψn(t). For the case of 

parametric mode excitation to be examined the smallest amplitude for a certain mode to be 

excited was investigated, alternatively one can perform Floquet analysis [2], whereas for the 

onset of dynamic buckling a certain small number of periods of the forcing was set, e.g. 6 

periods of the forcing frequency, and subsequently the critical sound amplitude was registered 

for which shape mode excitation occurred.  
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2.4.1 Initial Values and Algorithm 

The method utilized had a few steps. Initially, the viscoelastic properties of the microbubble, 

the surrounding fluid and the sonic disturbance were given.  

The thickness of the shell was considered to be 1nm. The bending elasticity of the membrane 

kB is equal to 3*10-14 N m. The three dimensional shell shear modulus G3d being 40*106 

N/m2, 80*106 N/m2 and 160*106 N/m2 and all of those cases were examined separately. The 

three dimensional dilatational viscosity μsk3d of the membrane was set to 20 Pa s. The three 

dimensional shear viscosity μsh3d of the membrane was given two values during the 

computational experiments. It was set to 20 Pa s and 1 Pa s in order to observe what happens 

when the two viscosities are on the same level of value or not respectively. Poisson ratio v 

was set equal to 0.5 and the polytropic constant was set equal to 1.07. 

The density of the surrounding liquid was taken to be that of water’s i.e. 998 kg/m
3
 while the 

viscosity was given the value of 0.001 Pa s. The sound velocity Cl is equal to 1540 m/s but, in 

order to compare with numerical simulations for which incompressibility was assumed, in the 

present study Cl was set to infinity. Three separated cases for the forcing frequency were 

selected: 1.0 MHz, 1.2 MHz and finally 1.7 MHz, while the static far field pressure was taken 

to be that of the atmosphere equal to 101325 Pa. In order to study the effect of prestress on 

the microbubbles the initial radius R was set to be lower than the stress free radius R0 

signifying an initial loss of the enclosed gas, possibly due to slow diffusion through the 

protective shell. The internal gas pressure was set so that the equilibrium of the normal 

stresses is satisfied along with the adiabatic gas law in the manner described in the previous 

subsection.  

After configuring this initial input, there were three fields that needed to be defined to begin 

the simulations: a range of radii, a range for sound amplitude and a specific shape mode that 

was investigated in order to obtain the critical sound amplitude for its excitation. The radii of 

the microbubbles was selected to range between 1.5 μm and 5 μm with the step for the radius 

set to 0.05 μm. The sound amplitude was checked for values between 0.3 and 8.5 with a step 

of 0.05. Finally, the shape modes that were investigated were the 2
nd

, 3
rd

, 4
th

, 5
th
 and 6

th 

Legendre modes. Those were the modes observed to mostly get excited in these conditions 

and therefore they were investigated. 

After deciding which shape mode we want to investigate, the n value that identifies the 

Legendre polynomial is selected and the algorithm starts. The algorithm completes two main 

functions while running. It provides the radial position and speed of the membrane particles. 

In addition it performs time integration on the evolution of the amplitude of the nth 

component of the radial displacement wn and the derivative ψn of the displacement in the 

azimuthal direction, eq (7),(65),(66).  

This way the algorithm makes a sweep over every sound amplitude value from the desirable 

range until it hits the one where instabilities arise in the sense that wn and ψn start growing. 

That process is repeated for all radii in the range of input so, in the end, every radius in 

question has a sound amplitude value assigned to it. That helps constructing the phase 

diagrams with the radius and amplitude values in the axes showing when the n th mode will 

appear. The stability procedure is described in the formulation presented above and is also 

explained in greater detail by Tsiglifis [1]. 
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By running the algorithm explained above for each shape mode that is to be examined, 

enough information is collected to create a phase diagram. In the next chapter, the phase 

diagrams of the contrast agents investigated are presented along with some useful 

observations made about their general behavior. 
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3. RESULTS & DISCUSSION 

 

                                  (a)                                                                                         (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 1. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1MHz, with viscoelastic shell properties 

Gs=40*106 N/m2, μs=20 Pa*s and (a) μshear=1 Pa*s without applying any prestress, (b) μshear=1 

Pa*s with the application of a 16.9% initial compression on the rest radius, (c) μshear=20 Pa*s 

without applying any prestress and (d) μshear=20 Pa*s with the application of a 16.9% initial 

compression on the rest radius. 
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                                 (a)                                                                                          (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 2. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1.2MHz, with viscoelastic shell properties 

Gs=40*10
6
 N/m

2
, μs=20 Pa*s and (a) μshear=1 Pa*s without applying any prestress, (b) μshear=1 

Pa*s with the application of a 16.9% initial compression on the rest radius, (c) μshear=20 Pa*s 

without applying any prestress and (d) μshear=20 Pa*s with the application of a 16.9% initial 

compression on the rest radius. 
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                                 (a)                                                                                          (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 3. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1.7MHz, with viscoelastic shell properties 

Gs=40*10
6
 N/m

2
, μs=20 Pa*s and (a) μshear=1 Pa*s without applying any prestress, (b) μshear=1 

Pa*s with the application of a 16.9% initial compression on the rest radius, (c) μshear=20 Pa*s 

without applying any prestress and (d) μshear=20 Pa*s with the application of a 16.9% initial 

compression on the rest radius. 
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                                 (a)                                                                                          (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 4. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1MHz, with viscoelastic shell properties 

Gs=80*106 N/m2, μs=20 Pa*s and (a) μshear=1 Pa*s without applying any prestress, (b) μshear=1 

Pa*s with the application of a 12.8% initial compression on the rest radius, (c) μshear=20 Pa*s 

without applying any prestress and (d) μshear=20 Pa*s with the application of a 12.8% initial 

compression on the rest radius. 
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                                 (a)                                                                                          (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 5. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1.2MHz, with viscoelastic shell properties 

Gs=80*106 N/m2, μs=20 Pa*s and (a) μshear=1 Pa*s without applying any prestress, (b) μshear=1 

Pa*s with the application of a 12.8% initial compression on the rest radius, (c) μshear=20 Pa*s 

without applying any prestress and (d) μshear=20 Pa*s with the application of a 12.8% initial 

compression on the rest radius. 
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                                 (a)                                                                                          (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 6. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1.7MHz, with viscoelastic shell properties 

Gs=80*10
6
 N/m

2
, μs=20 Pa*s and (a) μshear=1 Pa*s without applying any prestress, (b) μshear=1 

Pa*s with the application of a 12.8% initial compression on the rest radius, (c) μshear=20 Pa*s 

without applying any prestress and (d) μshear=20 Pa*s with the application of a 12.8% initial 

compression on the rest radius. 
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                                 (a)                                                                                          (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 7. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1MHz, with viscoelastic shell properties 

Gs=160*10
6
 N/m

2
, μs=20 Pa*s and (a) μshear=1 Pa*s without applying any prestress, (b) 

μshear=1 Pa*s with the application of a 8.3% initial compression on the rest radius, (c) μshear=20 

Pa*s without applying any prestress and (d) μshear=20 Pa*s with the application of a 8.3% 

initial compression on the rest radius. 
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                                 (a)                                                                                          (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 8. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1.2MHz, with viscoelastic shell properties 

Gs=160*10
6
 N/m

2
, μs=20 Pa*s and (a) μshear=1 Pa*s without applying any prestress, (b) 

μshear=1 Pa*s with the application of a 8.3% initial compression on the rest radius, (c) μshear=20 

Pa*s without applying any prestress and (d) μshear=20 Pa*s with the application of a 8.3% 

initial compression on the rest radius. 
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                                 (a)                                                                                          (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 9. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1.7MHz, with viscoelastic shell properties 

Gs=160*10
6
 N/m

2
, μs=20 Pa*s and (a) μshear=1 Pa*s without applying any prestress, (b) 

μshear=1 Pa*s with the application of a 8.3% initial compression on the rest radius, (c) μshear=20 

Pa*s without applying any prestress and (d) μshear=20 Pa*s with the application of a 8.3% 

initial compression on the rest radius. 
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In order to examine the effect that the prestress and the discrepancy between the shear and 

dilatational shell viscosity have on the critical thresholds for the onset for static buckling and 

for parametric mode excitation we first consider a stain softening shell with a shear modulus 

Gs=40MPa, a bending modulus 143 10bk N m   , a thickness equal to 1nm and a dilatational 

shell viscosity of 20 Pa·s. The surface tension is set to 0.051 Ν/m, the polytropic ideal gas 

constant to γ=1.07 and the surrounding liquid is assumed to have the properties of water. In 

figures 1a,b  it is presented the stability thresholds  for a shear shell viscosity of 1Pa·s with no 

initial prestress and with an initial prestress of 16.9% compared to the stress free radius 

respectively, whereas in figures 1c,d the cases of equal shear and dilatational shell viscosities 

with no prestress and an initial prestressed state are shown respectively. In all figures the 

acoustic frequency is set to 1MHz. Upon examining the diagrams and comparing them with 

each other a few notable observations can be made regarding how each one of those 

parameters affects the behavior of the contrast agents. It is clear that the initial prestress of the 

bubble reduces significantly the thresholds for static buckling whereas it hardly affects the 

parametric mode excitation thresholds. The static curve of the prestressed contrast agents is 

moved to the left which means that static buckling happens for very low sound amplitudes 

when prestress is exerted on the membrane and it usually takes place at smaller amplitudes 

than the amplitudes needed for shape mode excitation. On the other hand, as it is expected the 

difference between the two shell viscosities has no effect on the static buckling thresholds and 

reduces only the thresholds for parametric mode excitation. When the two shell viscosities are 

equal, fig 1c, it can be seen that the sound amplitudes for parametric excitation are increased 

compared to the different shell viscosities of fig. 1a, especially for the smaller radii. It can also 

be noticed that the lesser the mode, the greater the increase in sound amplitude is and while in 

Fig 1a the mode curves of P2,P3,P4,P5 and P6 are in close proximity, in Fig 1c the modes are 

getting further apart, especially for the smaller radii.   

In figures 2 and 3 the diagrams that correspond to the same cases presented in figure 1 but for 

an acoustic disturbance of 1.2MHz and 1.7MHz respectively are given. The same overall 

pattern is observed as above.  By comparing the diagrams of figure 1 and figures 2 and 3, it 

appears that the increase of the forcing frequency increases slightly the sound thresholds for 

parametric instability and it is also evident that when the frequency is higher the dynamic 

curves of the modes seem to be growing apart. In figure 1 the curves are all banded together 

and the limits in amplitude of the shape modes with the same radius are really close, letting 

them to arise one after another while upping the amplitude. This behavior is even more evident 

while comparing figures 1 to 2 and then to 3 and observing the higher and lower parts of the 

curves. In figure 3 the upper and lower parts of the curves have grown very far apart. This is 

especially obvious between graphs 3a and 3c where the shear viscosity is much lower than the 

dilatational. Let it be reminded at this point that the static curve is the same for figures 1a,c, 

2a,c and 3a,c as the acoustic imposed frequency has no effect on the static buckling thresholds.  

In order to better assess the effect that the shear viscosity of the membrane has in the mode 

excitation four additional graphs are presented, figs 10a,b,c,d. A single radius equal to 3.6 μm 

has been selected and the forcing frequency of the simulation has been set to 1.2 MHz. The 

surface shear modulus for the samples has been set to 40 and 80 MPa. These graphs depict the 

change of the sound amplitude as the shear viscosity of the membrane gradually increases 

from a low value to that of the dilatational. From a first glance it becomes apparent that the 

shear viscosity has a direct impact on the sound amplitude for parametric mode excitation. For 

all the shape modes under observation, it is seen that the sound amplitude for excitation rises 
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along with the value of the shear viscosity. There is constant rise of the sound amplitude for all 

the modes, apart from the fifth one where in a few areas of the diagrams without prestress, a 

reduction of the amplitude takes place. Other than that, the second and the fifth modes seem to 

be the ones that experience the biggest raise. The surface shear modulus doesn’t seem to affect 

the modes that much since the values of the sound amplitudes don’t change that much with the 

exception of the fifth mode. Overall it is observed that the sound amplitude for parametric 

instability increases by raising the shear viscosity of the membrane. 

 

 

                                 (a)                                                                                          (b) 

 

                                 (c)                                                                                          (d) 

 

Figure 10. Phase Diagrams for the dynamic response subject to an external acoustic 

disturbance of a contrast agent insonated at 1.2MHz, with dilatational viscosity μs=20 Pa*s at 

radius=3.6μm and (a) Gs=40*106 N/m2 without applying any prestress, (b) Gs=40*106 N/m2 

with the application of a 16.9% initial compression on the rest radius, (c) Gs=80*106 N/m2 

without applying any prestress and (d) Gs=80*106 N/m2 with the application of a 12.8% initial 

compression on the rest radius. 
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We proceed to investigate the effect that the prestress and the discrepancy between the shear 

and dilatational shell viscosity have on the stability of harder shells. For this reason we 

consider the same contrast agent as above and we examine two different shear modules, 

Gs=80MPa and Gs=160MPa. In figures 4-6 it is presented the case of Gs=80MPa for 

frequencies 1, 1.2 and 1.7MHz respectively, whereas the same cases are shown in figures 7-9 

for the case of Gs=160MPa. The amount of prestress applied on each microbubble depends on 

the surface shear modulus of its membrane. It should be noted that it was necessary to reduce 

the prestress exerted on microbubbles with higher Gs so that the membrane wouldn’t buckle 

instantly due to the intensity of the loads since the critical threshold for static buckling reduces 

as the shell becomes harder. So for Gs equal 80 and 160 the prestress applied was 12.8% and 

8.3% respectively.  

Firstly, we focus on figures 4-6 that correspond to a shear modulus of 80MPa and we observe 

that the static curve is moved a bit to the left when compared with figures 1-3 meaning that 

static buckling occurs for even lower values of sound amplitude. An additional reduction is 

observed when the shear modulus is increased on 160MPa, figs 7-9.. It is also noted that for 

the case of shear modulus 80*106 N/m2, for equal shear and dilatational shell viscosities 

(meaning fig 4c, 5c and 6c) the static buckling occurs before the parametric mode excitation 

for small radii meaning about below 2.8μmFor the case of the further increased shear modulus 

160*106 N/m2 and with no discrepancy between shell viscosities (meaning fig 7c, 8c and 9c) 

static buckling occurs before parametric mode excitation for small radii meaning about below 

3.5μm. Nevertheless, in all cases when an initial prestressed state is considered the thresholds 

for static buckling are significantly decreased, whereas the difference between the two shell 

viscosities reduces only the thresholds for parametric mode excitation.  

To sum up, by examining separately four different parameters i.e. the prestress, the forcing 

frequency, the shear viscosity and the surface shear modulus, we can observe common themes 

in the behavior of the contrast agents. More specifically: 

Prestress Prestress doesn’t affect dynamic modes that much. The most 

drastic change that appears when comparing the diagrams with 

prestress and those without, is the static curve. In 

microbubbles where prestress is applied, static buckling occurs 

for much lower sound amplitudes. 

Shear Viscosity, μs By increasing the shear viscosity from a low value to equal 

that of the dilatational viscosity, it appears to increase the 

sound amplitude needed for mode excitation. Some modes 

seem to be affected more than others. 

Forcing Frequency, vf By increasing the forcing frequency, an increase of the 

required sound amplitude for mode excitation follows, plus the 

curves of each mode seem to be growing further apart. That 

means that the excitation of multiple shape modes becomes 

harder to achieve. 

Surface Shear Modulus, Gs By increasing the surface shear modulus Gs, the amplitude 

values of the static curve seem to drop (movement to the left). 

Greater decrease is witnessed while changing from 40 to 80 

than when changing from 80 to 160. This change is more 

apparent to the diagrams without the application of prestress. It 

also increases the required amplitude of the parametric mode 

excitation curves to appear even further. 
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4. CONCLUSIONS 

The main objective of this thesis was the construction and evaluation of phase diagrams of 

coated microbubbles when those are subjected to specific conditions. Those microbubbles 

have a gas core, which is assumed to be comprised of ideal gas, and are coated by a thin 

viscoelastic membrane made of lipids. The encapsulated bubble is surrounded by an ideal 

incompressible liquid. 

The phase diagrams of such microbubbles are illustrated in an R0-ε space and depict the 

circumstances of appearance of shape modes. Shape modes are geometrical configurations that 

the microbubble assumes in order to minimize the total elastic energy of the shell. Once a 

particular contrast agent becomes insonated, it starts to oscillate spherosymmetrically. If the 

sound amplitude of the pressure wave exceeds a certain threshold, shape mode excitation takes 

place and the microbubble enters a buckled state. The phase diagrams show the relationship 

between the radius of a microbubble and the sound amplitude required for a specific shape 

mode to be excited. 

To achieve the construction of such diagrams, rheological models were used that described the 

stresses and forces that strained the shell of the microbubble as well as the deformation that 

the shell went under. The models used were those for Mooney-Rivlin and Neo-Hookean 

membranes, meaning the ones that had a strain softening shell, focusing mostly on Neo-

Hookean membranes. Using the formulation presented in the above segment, two pieces of 

code were created, one in a Mathematica computational environment and one in ForTran, 

describing the static buckling and the parametric mode excitation respectively. 

The codes mentioned worked as intended and produced the required results for the diagrams to 

be successfully constructed. The parametric analysis that took place after that involved mainly 

four different variables. More specifically them being: the prestress exerted on the shell, the 

shear viscosity of the shell, the forcing frequency of the sound waves and the surface shear 

modulus of the membrane. By comparing and contrasting the results with each other, some 

rather interesting conclusions were drawn regarding the behavior of contrasts agents that had 

both different viscoelastic properties and acoustic stimuli. 

In all cases examined during the presentation of the results, the contrast agents were behaving 

quite similarly when the same circumstances where imposed leading to the belief that the 

variables mentioned above affect the shape mode excitation in specific ways. A brief 

repetition of the conclusions drawn follows. 

The prestress exerted on the microbubble has a major role in the appearance of the static shape 

modes since it seems that while the prestress increases, the sound amplitude required is 

reduced for static buckling signicantly. However it doesn’t seem to affect the parametric 

excitation of the shape modes. 

The membrane’s shear viscosity is linked directly to the sound amplitude that is required for 

mode excitation since while the shear viscosity of the shell increases, the sound amplitude is 

increased as well. 

Regarding the forcing frequency and the surface shear modulus, as they increase, the sound 

amplitude of the sound waves slightly increases. The static buckling threshold is observed to 

decrease slightly while the surface shear modulus is increased. In addition, the forcing 
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frequency increase, causes the different shape modes curves to grow further apart, and with 

the shear modulus increasing, the static buckling seems to be taking place for lower sound 

amplitudes. 

The construction of the aforementioned phase diagrams provided some insight as to how 

differently manufactured contrast agents react when they get insonated and it allowed a 

prediction as to when certain shape modes may arise. By utilizing the codes mentioned, an 

even further exploration of the encapsulated microbubbles’ behavior might be eligible thus 

allowing greater understanding of their nature and enabling the creation of more suitable 

agents for specific biomedical and further applications. 
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APPENDIX A 

In this part, the identities needed for the expansions of certain terms of the equations in 

formulation are presented. 
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Operators H( ) and HH( ) are typically employed in classical axisymmetric shell theory in 

order to simplify the algebra by utilizing the useful properties of the Legendre polynomials 

Pn. [1],[2] 
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