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Abstract 

 

Bayesian learning of parameters of skeletal muscle models 

 
By 

Stamatina Μoraiti 

 

Thesis Supervisor: Dr. Costas Papadimitriou 

 

 

Computational modeling and experimental investigations have been developed in 

order to investigate the structural composition of a skeletal muscle and its biological 

and mechanical properties. However, this goal presents challenges as parameters are 

not identifiable due to the incomplete experimental data available. As a results the 

parameter may take values over a low dimensional manifold in the parameter space 

and a unique set of values is not available. In addition, the parameter values may vary 

among the different species tested.  

The current diploma thesis utilizes complex methods so that we can make a step 

closer to the identification of the structural internal properties of a muscle. In order to 

accomplish this task, we use a model that exhibits the mechanical response of the 

skeletal muscle and we try to approach some experimental data in the most efficient 

way. Firstly, we implement a simple optimization process, comparing the model with 

the measured data. As it will be proved, there is a variety of combinations of optimal 

parameter values such that the model prediction can approach efficiently the realistic 

experimental response. This multiple solution was our stimulus for developing an 

elaborate analysis to face this variability, as it is the main factor of the model 

uncertainty. This method is the Bayesian analysis-approach which is a stochastic 

analysis leading to the best model inference regarding the realistic data. It is useful set 

of techniques to deal with the uncertainties which we are confronted with. We have 

implemented some other applications form Bayesian analysis, too.  

We also implement a sensitivity analysis called Sobol analysis, which also contributes 

to the final results. It is proposed to enhance the performance of the applied methods 

in terms of the parameter inference in this specific model. Another feature that we 

will discover is the parameter variability between the species. As the literature offers 

us a large number of experimental data for each different species, we will be 

confronted with a great variety in the mechanical behavior of them. So, some steps 

that are done in this thesis can prove this species variability. 
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Introduction and literature review 

Skeletal muscle is attached with the skeleton and is used to affect skeletal movement, 

support of the body and other important functions of the living organisms. The 

movement is achieved by the muscle contraction which is the activation of the tension 

generating sites of the muscle fibers. Muscle tension is not meant necessarily length 

change. For instance, human can manage to stand and keep balance without making 

any movement and shortening his/her skeletal muscles. Seeing this great importance 

of the muscles in every living organism, every effort of knowing better their internal 

structure seems useful. Studying skeletal muscles’ physiology, their mechanical 

properties and finally their function is of particular interest as it involves several 

different physiological aspects. 

A variety of extensive research activities in biomechanics have been developed. These 

are experimental studies, model development and computational analysis. 

Experimental techniques are fundamental to the research of soft tissues like a muscle 

as they are done to define the mechanical behavior of biological materials. At the 

macroscopic level, the experimental measurements are typically stress-strain or force-

displacement relationship. A characteristic of the experiments is that they include a 

large amount of differences among them, such as the species, the kind of the 

examined muscle, the age and the sex of the animal and the conditions of the 

experiments. In recent years, mechanical experiments were carried out on a wide 

variety of species and a large account of specimens from rats [1],[2], rabbits [3] and 

human [4]. All the mentioned factors influence the final result of the study and the 

goal of direct properties’ determination by the experiments seems to be highly 

demanding.  

Some other researches have been developed, combining the experiments with a model 

analysis so the barriers of the uncertain factors can be faced [5],[2],[6],[7]. Some of 

them use a direct comparison of the measured and prediction model data, by 

developing the weighted least-squares approaches, minimizing the error between them 

[8]. While this method provides point estimates of the model parameters, it fails to 

quantify uncertainties in the values of the model parameters or address 

unidentifiability issues. Instead, the uncertainty quantification is highly 

recommended. Indeed, this method has gained a lot of attention in the last years  [9-

12],[13, 14]. So far, only a few publications target the probabilistic identification. In 

this research, we focus on the most efficient learning of the parameter by 

implementing not only a direct comparison between model and experimental data but 

also uncertainty quantification. In this way, we take advantage of each of them, 

leading to more informed conclusions. 

As it is mentioned, model analysis and computational modeling that are based on 

experimental findings can be used to predict the mechanical response of the muscle 

and its internal properties. Thus, it is highly recommended to use a greatly 
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representative model that can approach the muscle’s mechanical response. Moreover, 

this model should combine the microscale with the macroscale as the functioning of 

skeletal muscles crucially depends on their characteristics and their mechanical 

properties. In order to achieve the research goal, we chose the model proposed by 

Spyrou et al. [15] . This model depends on several parameters, some of which 

represent phenomenological mathematical parameters but some others are not 

properties only with biological, but also with mechanical meaning. This is a great 

advantage as other studies have basically used approximate relationships, using 

parameters without any direct physical meaning. A muscle is a complex mechanical 

structure while the internal properties and their changes have a crucial impact on the 

macroscopic mechanical response. Thus, the model parameter estimation of this 

specific model has great importance. Particularly, it is a three-dimensional 

constitutive model that takes into account several mechanical and biological 

characteristics. One of the most important of them is the fiber and the connective 

tissue volume fraction. The details of the model are also described in the Chapter 1. 

Another point that needs to be done is that there is a large diversity and value 

variability of these biological and mechanical properties, which is caused by the 

differences in the biological characteristics, muscle structure, sex and age among the 

species. Thus, reliable characterization of skeletal muscle properties is demanded for 

efficient predictions of the muscle mechanical loading and behavior. It is the goal of 

this thesis to estimate representative values of these parameters along with their 

uncertainties. 

Firstly, we introduce an optimization process, presented in Chapter 2. We seek the 

best set of parameters values that minimizes the discrepancy between the model 

predicted and the experimental data for the quantity of interest corresponding to the 

stress-strain relationship. It is noticeable that there is no unique solution for the model 

parameters. In fact the solution set occupies a lower dimensional manifold in the 

parameter space, which is indicative of the infinite number of solutions along this 

manifold. This unidentifiability related to the estimation of the model parameters 

originates from the fact that the experimental data are not enough to uniquely estimate 

the model parameters. Consequently, a point-based definition of the parameters seems 

inaccurate and this is why we investigate more complex methods, such as the 

Bayesian approach, in order to identify the solution manifold in the parameter space. 

The same statement is supported in several papers [10] This analysis has been the 

cornerstone of this research, considering it as an efficient tool for the uncertainty 

quantification and uncertainty analysis. To reduce the dimensionality of the problem 

global sensitivity analysis using Sobol indices is performed. Not only can each 

different result give significant information but the combination of these two analyses 

can also help us to improve our perception of biological structures.  

 

The used method is a statistical approach named Bayesian inference. Using this, not 

only can we infer the most probable values of the parameters but we can also quantify 

the uncertainty that characterize all the model parameters of the muscle. The theory of 

the Bayes approach is described in [10, 16]and the appropriate software is introduced 

in [17]. It is a highly qualified method that is used in a variety of mechanical system. 
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The methodology will be briefly described in chapter 2. More details can be found in 

the aforementioned paper. It will lead to the whole domain of the optimal parameter 

set that gives the best model fitting with the realistic response.  

 

The Sobol global sensitivity analysis is applied to identify which parameters are most 

important in predicting the stress-strain relationship. The most challenging issue in this 

structure is the typically large amount of the unknown inputs and the internal 

parameters. The system can be considered as over defined by unknown parameters 

that are characterized by a large uncertainty. This fact leads also to a large 

computation cost while implementing complex software. Using this analysis, one can 

understand which variables are most important, affecting the output quantity of 

interest. Another great aspect of this method is that one can spot unimportant 

parameters and reduce the dimension of the problem, leading to the reduction of the 

computational cost through the analysis. In the first step, this is highly helpful to deal 

with the uncertainties. Finally, it enhances the performance of the considered 

methods, helping us to examine and describe each result. Thus, combining the results 

of all these methods we gain valuable insight on the estimation of the model 

parameters. The current software is the Global Sensitivity Analysis Toolbox (GSAT), 

which is a free given software. The theory will be described in chapter 2 but there are 

also some useful references in [18], as the same analysis is used. 

The results delivered by these analyses are described in the Chapter 3. One can find 

results for six different experiments of the same species and same type of muscle. 

Particularly, the specimens are taken by six different rats but by the tibialis anterior 

muscle. The results of each different analysis for every specimens are carefully 

evaluated and described, so as to make some general conclusions, that will be drawn 

in the Chapter 4. 
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CHAPTER 1 

Model and parameter description 

1.1  Principles of the model-Formulation 

Muscle is a complex hierarchical structure, shown in the Fig. 1. Starting from the 

microscale, each myofibril is surrounded by endomysium. A group of muscle fibers 

(myofibrils) is bordered to the others by perimysium and a muscle fascicle is formed. 

In the macroscale, all these fascicles are organized to the entire muscle volume which 

is wrapped in an epimysial connective tissue layer. In each connective tissue, the 

collagenous fibrils are surrounded by biofluids and other biological materials. Thus, 

the model is an analytical model of this type of muscle, the equations of which have 

been introduced, regarding the structure and its microstructural characteristics. The 

model is the one proposed by Spyrou, Agoras and Danas [15]. 

 

 
 

Fig 1.1: Structure of the skeletal muscle 

 

Thus, a muscle can be considered as a fiber reinforced material while it is made from 

two constituent materials-fibers and biofluid matrix contained in connective tissue. 

The connective tissue, surrounding the fibers, is the endomysium, perimysium and 

epimysium. These three types are called collectively extracecullar matrix (ECM). 

Each component has significantly different physical or chemical properties, nearly 

incompressible and transversely isotropic solids, characterized by the symmetry axis 

m0 . Thus, it has different mechanical behavior contributing to the final mechanical 

response of the muscle. This contribution depends on the fiber volume fraction c. This 

property describes the percent of the fibers contained in the muscle. So, it is essential 

that we should focus on every component’s stress-strain relation. It should be 

remarked that some components are not characterized by a simple linear elastic 

behavior, but a hyperelastic one, based on nonlinear continuum mechanics [19]. 

 

In the reference paper [15], a simple homogenization 3D model is proposed. The 

macroscopic –homogenized behavior of the muscle is expressed by the Voigt 

hypothesis that the strain field in the composite is uniform. Moreover, a great 

advantage of this model is that it can combine the microstructural characteristics with 

the macroscaled response. The appropriate equations are described below. 

https://en.wikipedia.org/wiki/Physical_property
https://en.wikipedia.org/wiki/Chemical_property
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Before the formulation about the stress-strain relation is exhibited, it is vital to 

introduce the vector of the symmetry axis 0m . The fibers are assumed to be aligned 

along this direction 0m  in the undeformed configuration. It can be supposed that the 

deformation is applied in the direction of the longitudinal axis, which is the symmetry 

axis, too. So, considering that the skeletal muscle is subjected to the stretch λi, where 

i=1, 2.., N, the whole information about the deformation in the case of the tension is 

given by the deformation gradient F. Additionally, the deformation of the volume is 

given by: 

 

 0detdV dV= F   (1.1) 

 

Eq. (1.1) The determinant of the F characterizes the volumetric changes. Skeletal 

muscle can be considered as an incompressible material. Consequently, the volume 

does not change under any applied deformation. Under this assumption, it is 

demanded that: 

 

 det 1=F   (1.2) 

 

Thus, it can be proved that the F is described by: 

 

 

1
0 0

1
0 0

0 0

i

i

i







 
 
 
 

=  
 
 
 
 

F   (1.3) 

                                             

 

It is worth to be noted that, the third coordinate represents the considered direction 

which is the longitudinal axis of muscle. 

 

Now, the vector m
 
, representing the unit vector along the symmetry axis of isotropy 

in the deformed configuration, is given by: 

 

 
0

0

1
= 


m F m

F m
  (1.4) 

 

The current total stress tensor
(r)
σ at any given material point in the continuum can be 

written as the sum of an isotropic part 
(r)

iσ  and an anisotropic part
(r)

aσ  : 

 

 (r) (r) (r)

i a= +σ σ σ   (1.5) 

Where r  represents the different phases ( 1r =  in the fiber phase and 2r =  in the 

ECM phase). 
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The isotropic response is caused by the matrix of the composite material and it is 

associated with any response under shearing or transverse loading. The anisotropic 

part is caused by the fibers and represents the stress response in the preferred direction 

which is also the symmetry axis and axis of the fibers and in our case it is the third 

coordinate. 

 

1.1.1 Isotropic part of the muscle 

There is an isotropic part i  in muscle and connective tissue phase. This stress is 

produced by a non fibrous matrix and biofluids that surround the fibrils in any phase. 

These materials behave as hyperelastic, given a current mechanical stress described 

by the neo-Hookean form, as follows: 

 

 
(r)

(r) (r)1
( ) ( 1)

3
i

G
tr K J

J

 
= − + − 

 
σ B B δ δ   (1.6) 

where 

• iσ   is the stress given the stretch λi ,i=1,2,..,N 

• 
(r)G  is the shear modulus. In particular, (1)G is the fiber shear modulus , (2)G  is the 

ECM matrix shear modulus and c  is the fiber volume fraction. 

• detJ = F , where F is the deformation gradient  

• 2/3J −=B B  with T=B FF  being the left Cauchy-green deformation tensor. 

              ( )tr B  is the sum of the diagonal elements of the matrix B  . 

• K is the bulk modulus  
• δ is the identity tensor 

 

Three statements need to be noted: 

1. We do not take into consideration the bulking part of the incompressible Neo-

Hookean behavior because of the constraint det 1=F .  

2. We are interested in the third coordinate of the tensor. 

3. The microstructural properties for estimation are the fiber volume fraction c 

and the shear modulus, (1)G  and (2)G
.
 

 

 

1.1.2 Anisotropic part of the muscle 

As it is mentioned, there are two types of fibrils in the muscle. There are the 

myofibrils contained in the fascicles and the collagenous fibrils inside the connective 

tissue. These fibers produce anisotropic current stress. It is 1  for the myofibrils and 

2 for the collagenous fibrils. The appropriate equations are described in the next 
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sections. The anisotropic part in each phase can be expressed by the reference stress 

σα
0(r) as follows: 

 

 (r) 0(r) 0(r) (1 )      = = +   (1.7) 

 

It is worth to be noted that we are interested in the third coordinate which is the 

direction of the loading condition and the symmetry axis. Thus: 

 (r) (r)

,33 =σ mm   (1.8) 

where m is the unit vector along the axis symmetry in the deformed configuration. 

 

After the definition of the 1 and 2  , we can estimate the total anisotropic stress of 

the skeletal muscle ,using the equation below: 

 0 0(1) 0(2)(1 c)c    = + −   (1.9) 

 

The Eq.(1.9) is a result of the Voigt hypothesis which will be proved in the section 

1.3. 

Let’s concentrate on each anisotropic mechanical behavior. 

1.1.2α Anisotropic part of the muscle fibers 

Muscle fibers are not as every other material which is subjected to a loading. Not only 

does it response to this loading giving a “passive” stress, but it also produces an 

“active” part, caused by the nerves’ function. Thus, the nominal anisotropic stress is 

the sum of the passive and the active part: 

 0(1) 0(1) 0(1)

,pas ,act    = +   (1.10) 

 

In this research we focus on the fiber passive part, which is a linear function of the 

strain as: 

 0(1)

, ( )a pas p optE  = −   (1.11) 

where  

• opt  is the minimum strain at which it is the first time that we get
0(1)

, 0pas   . 

• PE  is the fiber passive elastic modulus 

 

Here the properties, which should be inferred from experimental data, are the PE and

opt
. 
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1.1.2b Anisotropic part of the ECM 

The structure of the ECM’s collagenous fibrils (C.F) is helical, wrapped around the 

fibers with a mean angle with respect of the preferred direction m0. According to the 

literature, this mean angle   between C.F and myofibrils should be about 55-60o. 

Thus, the direction of collagenous fibrils is different from the myofibrils’ one. The 

latter is also the direction of the stretch m  . For this reason, a suitable formula, 

considered the different direction and the angle, is essential to be used. So, the stretch 

in the collagenous fibrils’ direction is described by: 

 

 2 2 2 1
cos ( ) sin ( )

180 180
H m

m

 

 
 


= +   (1.12) 

Where  

 0 0m =  m C m   (1.13) 

Now, we can define the stress strain relation that expresses the C.F response and 

consequently its influence to the total stress. It can be shown that this relation is an 

exponential one. So, it can be approximated by:   

 

 0(2) 1exp(T 2( 1)) 1 =  − −  , 1    (1.14) 

Otherwise 0

2 0 =   

The parameters 1T  and 2T  do not have a specific physical meaning by themselves. 

They are mathematical parameters that their values give us the information about the 

ECM’s response. So, they need also to be inferred from experimental data as they are 

consequently related to the total response. Another property, which is introduced in 

this stage and it should be estimated, is the angle . 

 

1.2 Homogenization –Voigt hypothesis 

Consider a representative volume element V  of the skeletal muscle material .Let’s 

assume X and (t)x  are the position vector of any point in the undeformed  and 

deformed volume element , respectively. The boundary condition, in microscale, is: 

 

 (t) ( , t)=x F X X   (1.15) 
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where (X, t)F  is the deformation gradient which might be changed with the time. 

 If we assume that the deformation gradient is depended of the position vector X  then 

it is different all over the volume element. It can be proved that: 

 

 
1

( , t)d (t)
V

V
=F X X F   (1.16) 

 

This equation combines the microscale with the macroscale. It is the same equation 

for the stress, too. Thus, we need to realize that the calculation of every single and 

local deformation gradient or stress in every different point, leading to the numeric 

solution of the integral, it is difficult to be solved and it has a great computational 

cost.  

Consequently, the homogenization of heterogeneous materials has gained a lot of 

attention as it is proved to be a very useful tool. In our case, the Voigt hypothesis is 

introduced, supporting that the deformation gradient field is uniform in the volume 

element. Consequently, 

 ( , t) (t)=F X F   (1.17) 

 

And thus the stresses of each different component are also uniform. Secondly, it can 

be shown that the macroscopic stress of the volume element can be expressed by the 

stresses of each individual component (fibers and connective tissue). Thus,  

 1 2(1 )c c= + −σ σ σ   (1.18) 

 

where: 

• 1σ  denotes the stress in the phase of the fibers 

• 2σ  denotes the stress in the phase of the ECM 

•  c  is the fiber volume fraction 

   
In particular, the isotropic total part is given by Neo-Hookean form where 

(1) (2)(1 )GG cG c= + − . In the light of this hypothesis, the anisotropic stress of the 

skeletal muscle can be estimated by calculating the Eq.(1.9). 
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1.3 Parameter set 

Describing the appropriate formulation that creates a bond between the macro scale 

muscle’s response and the microstructure of it, we are confronted with an unknown 

parameter set, which is a group of internal microstructural properties. Several 

experimental studies have been developed so these properties could be estimated or 

some possible ranges of values could be recommended. However, there is a variety of 

uncertain factors that would influence the results. Generally, there are some indicative 

values of the parameters originated from these experiments or other computational 

analyses, but they cannot represent any animal’s response. In this research, Bayesian 

inference is used as a useful tool for learning the unknown properties from 

experimental data. In this section we introduce the parameter set and the physical 

limitations regarding their possible values. (Table 1.1) 

Table1.1: Parameter set, the meaning and the range of each parameter 

PARAMETERS MEANING(CODE SYMBOL) RANGES 

c Fiber volume fraction (VOLF) 
[0.5-0.99] 

[6] 

pt  Fiber optimal strain (EOPT) [0-0.2] 

PE  Fiber elastic modulus (P1) 
[0.0001-0.5] 

[20] 

1T  
Mathematical parameter related to the ECM’s 

response (T1) 
[0-∞] 

2T  
Mathematical parameter related to the ECM’s 

response (T2) 
[0-∞] 

  
Angle between myofibrils and collagenous 

fibrils (THETA) 
[55-60][7] 

(1)G  Fiber shear modulus (GF) [0.0001-0.1] 
(2)G  ECM shear modulus (GM) [0.0001-0.1] 

 

It is worth to be noted that after assigning values to the aforementioned parameter set, 

the numerical implementation of the analytical constitutive model can be 

accomplished. It is also necessary to assign to the maximum strain max  and the 

increments n . Using these variables, the algorithm calculates the displacement i and 

the strain i  in each different increment and subsequently the stress i  in the loading 

direction. The equations of the algorithm are described in order in the paper [15]. 
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CHAPTER 2 

Estimation of model parameters based on the experimental 

data 

2.1 Background and stimulus  

As it is mentioned in the previous chapter, some typical values of the internal 

properties have been proposed in the literature. They recommend that by using these 

parameter values, we can predict the muscle’s response in an indicative way. 

However this action seems to insert an error since choices of the parameter values 

may not be supported by the available experimental data. Thus, we developed an 

optimization process, comparing the model with some experimental data. In this way, 

we can estimate the optimal parameter values in each different tissue case for which 

experimental data are available. This analysis is described below. 

 

2.1.1 Optimization problem for estimating model parameters  

In order to estimate the model parameters we minimize a measure of the discrepancy 

between the stress-strain relationship obtained experimentally and the stress strain 

relationship predicted from the model described in Chapter 1. The optimization 

problem is: 

Min  

2

model exp

1

(x , )
i i

n
j i

i e

Er
  

=

− 
=  

 
                                     (1.19) 

  

 

max

exp

expmax ,
10 ie


 

  
=  

  
  (1.20) 

 

Such that jlb x ub                                                        (1.21) 

The objective function is similar with the second norm of the error between model 

and experimental stress matrix and the bounds are determined by physical limitations 

(Table 1.1) Implementing this procedure, we seek an optimal set of parameter values 

x such that the error between the model prediction and the set of measured data is 

globally minimized. However, due to insufficient number of experimental data we do 

not get a unique solution in this optimization problem. This fact will be analyzed in 

the Chapter 3. Noticing this multiple solution which is a barrier caused by the 

experimental data available we use more complex analysis that is capable to give us 

the whole domain of the optimal parameter values and the optimal relationship among 
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the parameters. The suitable analysis is carried by the Bayesian method .The theory 

and the methodology are described in the next section. 

 

 

2.2 Uncertainty quantification 

As we said previously, there are a large number of uncertainties in our model that 

need to be identified. The uncertainty quantification uses the probability and other 

stochastic quantities in order to deal with the several types of the uncertainties that we 

face. Probability models are used to model the incomplete information. For instance, 

the probability of a statement represents the degree of belief or the plausibility of this 

statement to be true regarding the incomplete information that we have. Thus, the 

probability density functions (PDF) assigned on a parameter, are used to quantify how 

plausible each possible value of this parameter is. 

 

In our model, there are a lot of unknown parameters for estimation .They can get a 

specific value, but this is inaccurate. Firstly we base on wide information collected 

from the literature (previous information) in order to improve the accuracy of the 

parameter estimation. Using the Bayesian statistic, we hope to gain more clues about 

the appropriate values of the internal muscle properties. Particularly the most 

important advantage of this method is that we can estimate the possible values of each 

property across a wide range rather than a point estimation losing a large amount of 

information, as it happens in the previous method. It is also fundamental that the 

correlations among these parameters can be investigated through this method. In this 

section the basic theory and its methodology are described. More information can be 

found in [21]. 

 

 

2.2.1 Bayesian uncertainty quantification based on the experimental data  

Consider the PDF of a parameter x. The interval [a,b] indicates the possible values of 

x and the PDF indicates how plausible is each possible value of x. A distribution is 

assigned based in previous information and our perception. This probability is called 

prior PDF (x | I) and it is typically illustrated in the Figure 2.1. As it is shown, there 

is the most probable value inside the red range with a probability 1p . Using the 

Bayesian analysis, we will update the prior PDF to an updated (posterior) PDF in an 

effort to learn the parameters using experimental data available by the system. As it 

seems in the Figure 2.2, if the experimental data are informative, the spread of the 

posterior is smaller than that of the prior. 
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Figure2.1: Prior PDF                              Figure2.2: Posterior- prior PDF 

 

Let’s consider: 

• ̂  as the experimental data/observation of the muscle stress

 1 2
ˆ ˆ ˆ ˆ, ,..., , 1,2,...,n i n   = =   

• x  as the unknown parameters 

• I as the information  

 

BAYES THEOREM: 

 
ˆ( |x,I) (x|I)

ˆ(x
|

| ,
ˆ( )

)p
p

p 






=   (1.22) 

 

Bayes theorem gives the posterior PDF ˆ(x | , I)p   of the model parameters which 

quantifies how plausible each possible value of the parameters is in light of the 

available observations from the system. 

The posterior is based on two quantities: 

1. Likelihood ˆ( | x, I)p   denotes the probability to observe the data from the 

model given some possible values in the parameter set. 

2. Prior (x | I)  is the probability of the parameters based on previous 

information 

It should be noted that the evidence is a constant term and it does not play any 

significant role in the probability updating as it is independent from the parameters. 

However, we use it for the model selection.  
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2.2.2  Methodology- Software Description  

The Bayes theorem is the cornerstone in this analysis. Thus, we need to focus on it in 

detail so to realize how it is utilized. 

The model: 

        x                                                                                                                 σ 

 

Figure 2.3: Schematic diagram of the model 

• σ: output quantity of interest(QoI) given the strain ε. 

• x:parameter set x=[x1 x2 x3 x4 x5 x6 x7 x8]. The parameter set is presented in 

the section 1.3. 

• g : mathematical or computational model described in Chapter 1. 

Using this model, we can predict the stress of the skeletal muscle which is the output 

QoI. To calculate this, we need specific values of the parameter set which is the input 

of the model, while the stresses are finally estimated for each different strain of the 

experimental data that we have collected. The algorithm is described in the paper [15] 

The prediction model (noise model): 

 

    x,s                                                                          ̂  

 unknown                                                                                                          known  
 

Figure 2.4: Schematic diagram of the prediction model 

• ̂  : the observations/experimental data which are stress-strain sets 

• er : prediction error ,assumed to follow Gaussian PDF 
        er~N(0,s)   

This model represents the discrepancy between the prediction and the experiment. 

The Gaussian distribution of it expresses that the data are normally distributed around 

the model output QoI. We will use this expression to develop the Bayes theorem so as 

to infer the model parameters. Another parameter that we need to quantify is the 

variances of the prediction error. 

We assign a uniform prior PDF to the model parameters with lower and upper bounds 

defined by the physical limitations and biology knowledge enhanced by previous 

researchers (Table 1.1). The next quantity which should be defined is the likelihood. 

The noise model is used to estimate this quantity. Under the assumption that the data 

Model 

(x, )g =  

 

Model 

ˆ (x, ) erg = +  
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are independent and the prediction error follows a Gaussian distribution, the total 

form of it is: 

 2

2
1

1 1
ˆ ˆ( | x,s, I) exp ( (x, ))

2( 2 )

n

i in n
i

p g
ss

  
 =

 
= − − 

 
   (1.23) 

 

Thus, the posterior can be quantified as it is the product of the likelihood and the 

prior. The software that it is used in this research has two main components-methods. 

One is a method for finding the most probable value by minimizing the posterior PDF 

of the model parameters. We use the Covariance Matrix Adaptation-Evolutionary 

Stratefy (CMA-ES) [8]. The other one is method for sampling from the posterior 

distribution. We use the Transitional Markov chain Monte Carlo (TMCMC) method 

[17]. According to TMCMC, the strategy is to draw samples from the optimal 

posterior of the model parameter x such that the model (x, )g   has a good 

approximation to the observations. We obtain samples that distributed in the whole 

support of the posterior, expressing a measure of the variability. It is a repeated 

process that generates temporary samples from intermediate posterior PDF till finding 

the samples from the target posterior PDF of the parameters x. In the end, the samples 

populate the posterior PDF, finding the support of the posterior PDF and thus 

characterizing the uncertainty in the model parameters. These samples can eventually 

be used to estimate the mean value and the covariance of the parameters. In addition, 

it can be used to obtain the marginal distribution of the model parameters. More 

details are presented in the next chapter. 

. 

Each component is described in the next paragraphs. 

 

2.2.2.A  The CMA-ES software applied in Bayesian analysis 

 It is used to quantify the most probable values of the parameter set, by optimizing the 

posterior. Specifically, it minimizes the 

 ˆln(p(x | , ))−    (1.24) 

 

As we described before, the posterior is the product of the likelihood and the prior. 

The prior is a uniform distribution and as a consequence it is a constant term in the 

whole range. Thus the posterior is only dependent on the likelihood and the 

optimization problem is transformed to optimizing the  

 ˆln(p( | x, I))   (1.25) 
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The question that this framework answers is “what are the optimal values of the 

parameters such that the –ln-likelihood takes the minimum value. In other words, this 

component combined with the MCMC methods leads to the most probable values of 

the parameters x and the smallest uncertainty of then included in the prediction error 

regarding the experiments, so that the model has the best fit to the experimental data. 

In this way, the resulting posterior probability can then be used to robustly quantify 

the uncertainty in the model predictions. More details about development of this code 

are exhibited in [8]. 

 

2.2.2.B  TMCMC sampling method 

The practical value and computational cost of the Bayesian framework is largely 

determined by the effective way of sampling the resulting posterior distribution. 

MCMC is the key step to implement the Bayesian method in the case of complex 

distributions. In the last decades a number of software have been developed of the 

purpose of the most efficient sampling by using Markov Chain Monte Carlo or other 

improved concepts of it like transitional MCMC(TMCMC) or manifold transitional 

MCMC(mTMCMC). These sampling algorithms generate a large number of samples 

originated from the optimal posterior distribution following specific steps. The 

posterior of the parameters x depends on the likelihood, which is not a Gaussian while 

it has a term of the model inside it. 

We used two types of MCMC software – the TMCMC and the mTMCMC. We 

started with the TMCMC but as we will describe later in chapter 3, mTMCMC gives 

us better results including more information. The main difference between of them is 

that the mTMCMC takes into consideration the derivatives of the posterior with 

respect to each parameter and introduces a new quantity, the Fisher information 

matrix which hides the mean of the squared gradient of the model. As the prior is 

uniform, the derivative of the prior vanishes and the derivatives of the posterior 

transformed to the gradient of the log-likelihood. As this extensive method needs to 

be described fastidiously and it is not the purpose of this thesis, more details can be 

found in paper [17]. 

The sampling part of the code is extremely computationally expensive. As the number 

of the unknown parameters increase in the model, the number of the samples also 

increases. The user should choose a large number of samples so that accurate results 

are obtained without losing significant information.  It was found in this research that 

this task is a great challenge because the problem is unidentifiable. The 

unidentifiability arises from the fact that a large number of parameters exist that are 

difficult to be estimated due to the limited available information originated by the 

experimental data. The model parameters are eight plus the variance of the prediction 

error. The number of samples considered reached 100000. Consequently, this is 

exhaustively expensive and it cannot guarantee that we will get accurate results, 
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characterized by uniformly generated samples in the whole range-domain of the 

posterior distribution.  

This is the reason why we seek for a way to reduce the parameter dimension in this 

model or uncertainty of the model. At first sight, we understand that we cannot choose 

inconsiderately the parameters that need to be rejected. This decision can be based on 

the variance that characterizes the multiple optimal solutions from the optimization 

process. This is also described in detail in the next chapter.  

 

 

2.3 Sensitivity analysis 

We have also implemented a global sensitivity analysis based on Sobol indices. The 

results of it can help us to understand the importance of each parameter and how it 

influences the output QoI of the model. In this way the analysis of the results can be 

enhanced, as we can explain the most probable values and the variances of the 

marginal distributions of the parameters. The current analysis is presented in the next 

paragraph. 

 

2.3.1 Sobol analysis 

Sobol analysis calculates the sensitivities , tot

i iS S of the QoI to the i-th parameter, which 

is given by: 

 
var{E[ | ]}

var{ }

i
iS

 


=   (1.26) 

 

 This quantity represents how much the variability in a parameter value can influence 

the model output. Noticing the values of the sensitivities, we can separate the 

important parameters, based on our perception. The small values of the sensitivities 

mean less importance of the associated parameters in the output. There is also a table 

shown below and taken from the paper[18] that advices us how we can distinguish the 

less sensitive parameters from the important ones.  

Table2.1: Relevance of an input parameter from its global sensitivities 

Very important 0.8 , 1tot

i iS S   

Important 0.5 , 0.8tot

i iS S   

Unimportant 0.3 , 0.5tot

i iS S   

Irrelevant 0 , 0.3tot

i iS S   
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At first, knowing the results from Sobol, we can examine the results of the Bayes 

framework, like the most probable values and the variance of each different 

parameter. This method helps us to improve our perception about the parameters 

values, their variance and the impact of them on the model, lead us to more informed 

conclusions. As a final step, one can say that small divergences of the optimal values 

in the most insensitive parameters cannot change the results given by the Bayes 

analysis, while we can conclude the exact opposite about the important parameters. 

The analysis is described in aforementioned paper. 
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CHAPTER 3 

Applications 
 

In this chapter were present the applications of the theory developed in this research. 

The first section illustrates the experiments that are used for the purpose of 

optimization and Bayes framework implementation. In the next sections, we present 

the result of each different application and we examine them. The analysis is 

enhanced by the Sobol analysis results that they are also described in this chapter. 

Specifically, the sections are developed with regard to the experiments. Thus, the 

Section 3.1 is about the first experiment taken from [1] and the Section 3.2 is about 

the second selected from [2], according to the Table in the Appendix A. In the 

following section, we investigate the species variability that is based on the nature of 

the system.  

 

3.1 First experiment selected from the paper of Hawkins and Bey [1] 

The stress-strain relationship from the experiment is illustrated in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:Hawkins and Bey’s experiment, stress-strain relationship 
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3.1.1 Optimization process 

Comparing the model with the experiment we get multiple solutions. Let’s note that 

Hawkins and Bey [1] propose a specific value for the variable 
pt =0.192 which is 

directly obtained from the experimental data of their experimental study. Thus, we use 

this recommended value. We run the optimization framework which is CMA-ES and 

its procedure and methodology has been described before. In particular, we execute 

the same code with the same inputs and options several times. The Figure 3.2 

indicates the curve of the model and the experimental data. As it is shown, in all the 

executions the model approaches in the same “global” way the experimental data, 

managing to reduce the error between them. The figures below show the variance in 

the optimal parameter solutions. It is worth noting that we choose to illustrate only the 

trials that give us the same optimal objective function, which is the global minimum 

of it. It seems there is a variety of combinations of the optimal parameter values that 

identify the minimization of the objective function. However, there are several runs 

that could not give us this optimal result, trapped in local minima, or cannot converge. 

Thus, it seems that this method is not always able to give accurate information about 

the appropriate optimal values of parameters that fulfill simultaneously the physical 

conditions and the mathematical global optimization. Consequently, sometimes we 

need either to filter the results or interfere. In this case, we exhibit only the global 

minima. 

 

Figure 3.2: Optimized model curves,model propagation for the experiement 
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In the Figures 3.3, we present the optimal values of each parameter and the fact that 

they are characterized by a variance in each different execution. As we can observe, 

there are some important differences in the results of point-based parameter 

estimation. 

 

 

 

 

 

 

 

                              (a)                                                                                     (b) 

 

 

 

 

 

 

 

                               (c)                                                                                    (d) 

 

 

 

 

 

 

 

                            (e)                                                                             (f) 
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                                                                       (g) 

Figure 3.3: Variability of the optimized parameter values for the first experiment, 

(a)VOLF: fiber volume fraction, (b)P1: fiber elastic modulus, (c),(d)T1,T2: 

mathematical parameters related to the CME’s response, (e)THETA: angle between 

collagenous fibrils and myofibrils, (f),(g)GF,GM: fiber and connective tissue shear 

modulus 

The purpose of this section is to investigate the variability of the optimal parameter 

values. We illustrate the results about this experiment so that we can focus on the 

point of this statement and the next step which is also a greatly important part of the 

research. Realizing that this variability cannot give us the whole information that we 

seek, we need to search in other methods. Moreover, implementing this framework 

we were confronted with the obstacles regarding the local minima. As the point based 

estimation loses accuracy, the Bayesian seems to be the solution. It is able to give us 

not only the optimal parameters values but a measure of the uncertainty by 

representing the support of the posterior distribution. In the next section, the results of 

the Bayesian approach are illustrated for each different experiment.  

At first sight, another attribute that someone can notice is that there is variability, 

large in some and small in other parameters. This is an interesting characteristic that 

may be allied with the sensitivity of the model to each different parameter. This 

feature will be discovered by implementing a more evaluate method, called Sobol 

analysis.  
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3.1.3 Bayesian framework 

Firstly, we present some results of the Bayesian analysis using this experiment. In 

these results, as it is shown we used only four variables of the unknown parameter set. 

These four parameters were chosen regarding their variances, while examining the 

optimization process results. In the next step, we will explore the 8th dimension of the 

unknown model parameters. However, the results of the current parameter set which 

is θ= [VOL T1 GF GM σ], are also worth to be noted. Although it is vital to 

implement this framework for all the parameters, searching about less parameters than 

eight has some advantages. We manage to reduce the exhaustive computational cost 

of the sampling task and subsequently the time that every single execution needs. 

Moreover, we limit the model uncertainties and we can handle and estimate the results 

at the first sight. 

As we mentioned in the chapter 2, section 2.2.2B, we developed two frameworks 

based in MCMC (Markov Chain Monte Carlo). The figure 3.4 shows the results of the 

TMCMC. Each different plot has a meaning. The diagonal plots are the marginal 

distributions of the parameters. Under the diagonal, the contour plots in 2D space of a 

parameter set [ , ], i ji j  =   are shown. The yellow points are the most probable 

values of the parameters. Upper than the diagonal, there are the samples of the 

optimal parameter values. In these plots we can also notice the correlation between 

the parameters. The mTMCMC plots are similar.  

 

 

 

 

 

 

 

 

 

 

Figure 3.4: TMCMC results about 5 parameters 

As we can observe in the Figure 3.4, the TMCMC algorithm is unable to produce 

samples from the posterior distribution. It has a difficulty in generating uniformly 

samples in the whole parameter space and subsequently it cannot provide good quality 

marginal distributions of the parameters because the model is highly unidentifiable. 
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Furthermore, it seems that it does not have the capability to gives us the contour plots 

of the most probable values in the whole parameter domain, as they are centered in 

some points. This is also the explanation of the multiple picks that the distributions 

have. Another point that needs to be noted is that these results can be different in 

several same runs because of the demanding task of sampling method, leading us not 

to trust each result. However, this framework can give us a good quality of model 

predictions, while using the generated samples the model’s response approaches 

efficiently the experimental data. Consequently, we implement another improved 

version of MCMC which is called manifold TMCMC and it delivers more accurate 

results. The results of this method are illustrated in Figure 3.5. 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 3.5: (a)mTMCMC results and (b)current model uncertainty propagation 
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These plots illustrate the most probable values of the parameter set. Let us remind 

ourselves that the considered model parameter set is [VOLF,T1,GF,GM] =  and the 

subplots are distributed appropriately. These values can give efficient model 

propagation with a small variance as it is shown in the bottom plot of Figure 3.5. As 

we mentioned before, the diagonal elements-plots are the marginal distributions of 

each parameter. For instance the plot (1,1) illustrates that the parameter 1 (fiber 

volume fraction)can take value in the range [0.75-0.99] with some possibility. The 

most possible value is in the range [0.8-0.9], as it seems not only from the distribution 

but from the contour plots, too. However there are also some other samples over this 

range that can give equally the best model fitting with the experimental data. 

Consequently, someone can say that the first parameter can take values inside the 

range [0.75-0.99] such that the model is able to approach the data. 

Let’s introduce the second parameter in our analysis. This parameter represents a 

mathematical parameter, related to the connective tissue’s response. Let’s give some 

emphasis to the plot (1,2) that determines a correlation between the first and the 

second parameter . It says that if someone chooses a specific value of the first, then he 

should follow this thin and strict parabolic curve. Every combination outside of this 

curve cannot give the same efficient approximation of the experimental data. 

Furthermore, the most probable values of the shear modulus came from the contour 

plots where are yellow in a specific area around the value 0.006. 

Regarding all these points, we can say that the suitable ranges of the parameters are: 

Table 3.3: Suitable parameter ranges 

PARAMETERS RANGES 

VOLF [0.75-0.99] 

T1 [0-0.3] 

GF [0.005-0.01] 

GM [0.005-0.01] 

 

The probable values are: 

Table 3.4: Probable parameter values 

PARAMETERS MPV 

VOLF Multiple 

T1 Multiple 

GF ~0.006 

GM ~0.006 

 

This conclusion can be proved also comparing the optimization results with 

mTMCMC results. The Figure 3.6 illustrates the CMA points and the mTMCMC 

samples in the same plots and the accuracy of each different result. CMA points are 

generated while we execute optimization framework only for the interested 
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parameters and the others are fixed in their globally values proposed by the Figures 

3.3. 

 

 

 

 

 

 

 

 

 

Figure 3.6: mTMCMC and optimization results 

The red points are generated by the optimization framework and the others are painted 

with different color with respect to the values of the 2  . It is noticeable in the Figure 

3.6 that the two analyses converge in the global solutions, as the CMA results 

coincide with the mTMCMC results. So, it is recommended to compare, combine and 

take into account all these results so as to make a conclusion about the most suitable 

parameter values which are capable to give model prediction that approximates 

efficiently the realistic behavior. 

Regarding the optimization results, it is proved that the fiber volume fraction can take 

a value inside the range [0.5-0.99]. However, if this experiment refers to a healthy rat, 

this means that the fiber volume fraction should take values only inside the range 

[0.9-0.99]. This is a physical limitation that needs also to be considered. 

Consequently, the second parameter needs to satisfy the parabolic relationship and the 

shear moduli can be equal to 0.006. This parameter estimation includes typical 

parameter values proved that the model response fits the Hawkins experiment very 

well. 
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Parameter set θ=[VOLF P1 T1 T2 THETA GF GM s] 

Let’s direct our attention to the eight-parameter inference, so we can make some 

accurate conclusions for all the model parameters. The Figure 3.7 indicates the 

mTMCMC results about the whole parameter set which is θ= [VOLF P1 T1 T2 

THETA GF GM s]. The figure 3.8 illustrates the samples of the posterior colored with 

respect to the first parameter (fiber volume fraction). In the same figure there are also 

the optimal parameter sets generated by the optimization process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: mTMCMC results for parameter set θ=[VOLF P1 T1 T2 THETA GF GM s] 
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Figure 3.8: mTMCMC results, colored with respect to the VOLF, and CMA results 

 

Figure 3.9: Model uncertainty propagation, resulted from mTMCMC 

 

  



29 

 

The Figure 3.8 illustrates the accuracy of both analyses, as the CMA points are 

included in the mTMCMC results. This figure has the whole information about the 

model parameter set. It advices us what are the optimal parameter values and it gives 

us also some instructions about the support of the posterior. The values of the model 

parameters match with specific values of the other parameters, as they are colored 

with respect to the VOLF. That means that every appropriate optimal parameter set of 

the colored mTMCMC results can give very good model propagation with a small 

uncertainty. This fact is also proved by the Figure 3.9, which illustrates the model 

prediction using not only the samples from the posterior of the model parameters but 

also the prediction error. Consequently, examining this figure, one we can say, that 

the discrepancy between model and experimental data using the samples from the 

mTMCMC or from the CMA is very low. 

In the Figure 3.8, the samples of the optimal posterior are colored with respect to the 

VOLF’s values. Examining them, the values of this parameter match with specific 

values of the others. So, if the fiber volume fraction is chosen to be equal or around to 

0.97 (yellow point), the other parameter should take a value of a yellow sample, 

approximately close to the values, shown in Table 3.5: 

Table 3.5: Probable parameter values 

PARAMETER 
SUITABLE 

VALUES 
EXPLANATION 

Eopt 0.192 Hawkins’s recommendation 

P1 ~[0.0001,0.01] 

Uniform distribution, range: [0.0001, 0.01]. 

There are yellow points in the whole domain. 

One can follow the instruction of the literature 

about this parameter. 

T1 ~[0.1,0.4] 
1 dimensional manifold ,strict correlation(figure 

3.10) 

T2 ~162 
Highest probability at this value(figure 3.7), 

gradually reduced 

THETA 60 
Marginal distribution centered on this value( 

59.8 proposed by the optimization) 

GF 0.006 Marginal distribution centered on this value 

GM 0.006 Marginal distribution centered on this value 

 

We continue our analysis by discovering the strict correlation between the fiber 

volume fraction and the T1 by using the CMA-ES framework. Particularly, we 

generate CMA points of the optimal parameter values with an automated way by 

doing multiple executions of the CMA-ES framework and changing the bounds of the 

fiber volume fraction in each different time. The way that we change the bounds is 

described below: 
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%Total bounds of the VOLF: [0.5-0.99] 

 user's: step(di  choice)   

 _ _i iUpper bound lower bound di= +   

We choose the VOLF because it has a great meaning for each leaving organism and 

as it seems the model can approach efficiently each realistic mechanical behavior 

using several different values of this parameter. This attribute is noticed also in some 

other parameters as it is illustrated in the Figure 3.3. 

The Figure 3.10 indicates the trend line of the CMA-ES results about the fiber volume 

fraction and the T1 parameter. We use the cubic spline interpolation and we can 

approach the CMA-ES points, as it is shown in the figure. In order to follow this 

correlation, someone needs to choose the appropriate constant terms of the cubic 

function which is: 

 2 3

i i i i iC a b x c x d x= + + +   

 

In the appendix B, one can find the basic theory of cubic spline interpolation and the 

optimal values of the considered constants. 

 

Figure 3.10: Trend line satisfying the strict correlation VOLF-T1 

We can observe in the Fig. 3.8 that the samples of the parameters THETA, GM and 

GF are chaotically distributed and they are not lined up respect to the color (blew, 

cyan, green, yellow).This is related to the fact that the marginal distributions and the 

contour plots are centered on a specific value. So, the most of the generated samples 

of these parameters are point-centered but characterized by a standard deviation. The 

standard deviation of the GM and GF’s marginal distribution is larger than the 

THETA’s. Another parameter that has a great variance is the P1, which approximately 
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follows a uniform distribution. The variance of the GM, GF and P1 is related to the 

model’s sensitivities. As it is proved by using the Sobol analysis, the model has low 

sensitivity on the mentioned parameters. For this reason, a recommended value can be 

specific but any other small divergence from this value cannot considerably influence 

the output, remaining the accuracy in a high level. Specifically, the Sobol analysis 

results are shown in the next paragraph. 

 

Sobol analysis results: The Table 3.6 indicates the sensitivities, listed in descending 

order. 

Table 3.6: Sobol results 

Parameters Relevance 

THETA Great important 

T1 Important 

VOLF Important 

T2 Partially important 

P1,GM,GF Irrelevant 

 

Seeing this result, we can conclude that the P1, GM, GF are so unimportant that any 

discrepancy of a specific value cannot change the output QoI. Consequently, the 

optimization process can give various solutions especially for the unimportant 

parameters such that give the same global value of the objective function. It would be 

useful to proving this variability once more, by running the optimization (CMA-ES) 

while we keep the fiber volume fraction (VOLF) fixed in an optimal value. The 

choice of VOLF to be standard seems appropriate as it has a great meaning for the 

living beings and the final mechanical behavior of the muscle. The Figure 3.11 

illustrates five different optimal values of the GF and GM respect to each execution, 

which gives the same global minimum of the error between model and experiment. 
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Figure 3.11: GM and GF optimal values to each execution, measure of variability  

This result is combined with the Sobol results and explains one more time the 

variance of the GM, GF marginal distributions. Sobol also proves us the 

approximately uniform distribution of the P1. Thus, the P1 can take any values inside 

the considered range without losing the efficiency of the model propagation and the 

user’s decision depends on his knowledge or previous information. 

On the other hand, examining the Sobol results, the parameter THETA has a great 

effect on the output quantity of interest, fact that is also proved by the optimization 

problem (Figure 3.3) and by the sensitivity analysis. It is also inferred in [15]. This is 

the reason why the PDF of THETA has smaller standard deviation and subsequently 

high probability in the most probable value. So, the parameter THETA must be in the 

strict range of [59.7, 60] and particularly a recommended value is 59.8 so that we can 

take a good model propagation. 

In order to underline this attribute and to enhance the result analysis, we implement 

the Bayes framework for the three most important parameters which are VOLF, T1 

and THETA, while the others are fixed in some typical values. 
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Figure 3.12: mTMCMC implementation about θ= [VOLF T1 THETA] 

The software results in the best likelihood, found at VOLF=0.989, T1=0.265, 

THETA=59.8. Noticing the results, we can prove once more what we analyze before 

.It becomes evident that the fiber volume fraction for healthy species can take any 

value inside the range [0.9-0.99], the T1 parameter needs to satisfy the correlation and 

the THETA must be equal to the value 59.7. 

Another notation that should be done, is that it is finally undeniable after finishing the 

whole analysis that the fiber volume fraction can take any value inside the range given 

by the physical limitation which is [0.5-0.99]. The model can approach the 

mechanical behavior of a skeletal muscle about either a healthy or an unhealthy 

organism. Consequently, the value of it depends on the purpose of each research and 

the researcher’s decision. 

  



34 

 

3.2 Experiments selected form the paper of Calvo et al. [2] 

Let’s continue with another experiment. It is also a rat and the same type of muscle 

(Table in the Appendix A). We implement the same analyses and we will see if the 

results about the rats can match, so that we can result in a general conclusion about 

these species. These experiments are five and the experimental data are illustrated in 

the Figure 3.13. A great advantage of this group of experiments is that they are five 

rats that are grown up in the same environment with the same conditions and 

treatment. Seeing this, we can ensure that any conclusion resulted from the analyses 

about this group include specific uncertain factors, like measurement uncertainty, and 

we know that these factors cannot change in each different experiment. This 

measurement uncertainty may arise from variability in set up of the experiment, 

several errors in the measuring equipment or errors in the measuring procedure. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Experiments from the paper of Calvo et al. 

As we can see, there is a great difference along the experimental data, despite the fact 

that the same species are objected to the same experimental conditions and 

equipment. For this reason we implement all the methods for each case as we expect 

some divergence in the results, too. As it seems with a first sight, there may be 

different optimal model parameters such that the model can efficiently identify this 

variety of mechanical responses. 
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3.2.1 First experiment 

In the next paragraphs 3.2.1.1 and 3.2.1.2 we analyze the results from the CMA-ES 

and mTMCMC frameworks, executed for the first experiment from [2], respectively. 

3.2.1.1 Optimization analysis 

We run the optimization process for this experiment and we get multiple solutions 

once more. We implement the CMA-ES by changing every time the bounds of the 

fiber volume fraction to smaller bounds than [0.5, 0.99] with a step of 0.01. Doing 

this, we gain a lot of different optimal parameter values that give the same global 

minimum of the error, as it is shown in Figure 3.14 (model with solid line). We are 

interested in the strict correlation between the fiber volume fraction and T1 as it is 

proved in the previous experiment. In the next figure the multiple optimal parameter 

values are illustrated. Moreover, seeing this solution the next step is the Bayes 

framework implementation. 

 

Figure 3.14: Global model approximation of the 1st experiment from [2] 

 

The multiple solutions are illustrated in a clear way in the next Figures 3.15 
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                                     (g)                                                                                        (h) 

Figure 3.15: Variability of the optimized parameter values for the first experiment from 

[2], (a)VOLF: fiber volume fraction, (b)Eopt: optimal fiber strain, (c)P1: fiber elastic 

modulus, (d),(e)T1,T2: mathematical parameters related to the CME’s response, 

(f)THETA: angle between collagenous fibrils and myofibrils, (g),(h)GF,GM: fiber and 

connective tissue shear modulus 

 

Examining the results of the CMA-ES framework, we can notice that the VOLF, P1, 

T1 have a great variance, GF and GM have middle and Eopt, T2 and THETA have a 

null variance. Regarding also the Sobol analysis that we have already run, the P1 has 

irrelevant influence in the model. So, it is recommended to start the Bayesian analysis 

for VOLF, T1, GF and GM. 
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3.2.1.2 Bayesian framework 

As we explained before, we choose the parameter set θ=[VOLF T1 GF GM] and we 

execute the mTMCMC framework. The results are the following.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: mTMCMC results for the 1st experiment, θ=[VOLF,T1,GF,GM] 

 

Figure 3.17: Model uncertainty propagation using mTMCMC samples, θ=[VOLF T1 

GF GM] 
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As it seems the software generate samples in several different spaces, without getting 

uniformly distributed samples. This is because the model is highly identified by 

several parameters, regarding the available data that can give us some information. 

Realizing this difficulty of our model, we run again the mTMCMC but we separate 

the prior bounds of the volume fraction in smaller ranges. In this way we hope to get 

more accurate samples. The first case is about the bounds [0.5-0.75].  

 

Figure 3.18: mTMCMC results for VOLF bounds [0.5-0.75] 

 

 Figure 3.19: Model uncertainty propagation using mTMCMC samples, θ=[VOLF T1 

GF GM], VOLF [0.5-0.75] 
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The next case is about the bounds [0.75-0.92] 

 

Figure 3.20: mTMCMC results for VOLF bounds [0.75-0.92] 

 

Figure 3.21: Model uncertainty propagation using mTMCMC samples, θ=[VOLF T1 

GF GM], VOLF[0.75-0.92] 
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The next case is about [0.92-0.99] 

 

Figure 3.22: mTMCMC results for VOLF bounds [0.92-0.99] 

 

Figure 3.23: Model uncertainty propagation using mTMCMC samples, θ=[VOLF T1 

GF GM] and VOLF[0.92-0.99] 
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Noticing the result from the mTMCMC, we can say that the generated samples are 

able to give perfect model propagation with a slight quantile space, which means that 

the discrepancy between model and experiment, expressed by the prediction error is 

greatly low. The first figures (3.18, 3.20, 3.22), as we analyzed in the other 

experiment from [1], illustrate the support of the posterior distribution and give us 

wide information about the appropriate values of the parameters. So, the 

recommended values of the parameters are exhibited in the next tables. 

Table 3.7: Suitable parameter ranges 

PARAMETERS RANGES 

VOLF [0.5-0.99] 

T1 [0-15] 

GF [0.005-0.03] 

GM [0.0001-0.02] 

 

Examining all the results, we would say that the most suitable values are not random. 

If someone needs to give in the fiber volume fraction a value inside the range [0.5-

0.75], [0.75-0.92] or [0.92-0.99], then he needs to bear it in his mind so that he can 

make a decision about the T1, the shear modulus’ values. For instance, if the VOLF 

takes a value inside the [0.5-0.75], then the most appropriate value of the fiber shear 

modulus is around 0.02. However, if the VOLF is inside [0.92-0.99], then the GF 

should be around 0.012. 

Table 3.8:  Probable parameter values 

PARAMETERS MPV 

VOLF 
Multiple 

(User’s choice) 

T1 Strict correlation 

GF Multiple, depends on VOLF 

GM Multiple, depends on VOLF 

 

It is noticeable that the strict correlation between the fiber volume fraction and the T1 

is a characteristic of our model and it is not dependent of the experiment. For this 

reason, we expect a similar relationship in each different case of the experiments. 

After implementing the appropriate analyses for the group of these experiments, we 

will have an interest in discovering these correlations and comparing them among the 

different specimens. This task is accomplished and described in the paragraph 3.3.6. 

 

Let’s direct out attention to the other parameters, too. Considering that the other 

parameters do not have a large variability (Figures 3.15), we take advantage of it and 

we reduce the bounds of the prior. In this way, we hopefully ensure the accuracy of 

the results. The parameter set is θ= [VOLF Eopt P1 T1 T2 GF GM]. We also consider 
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that THETA=60 as the variance of the CMA results is zero and the Sobol has shown 

that any discrepancy of this value has a great impact on the output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: mTMCMC results for parameter set θ=[VOLF Eopt P1 T1 T2 GF GM] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: colored mTMCMC results and CMA points 
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Examining the results, we can make the next conclusions, included in the next table: 

Table 3.9: Most probable parameter values 

PARAMETERS 
SUITABLE 

VALUES 
EXPLANATION 

VOLF [0.5-0.99] User’s choice 

Eopt ~0.184 
Proved by CMA and mTMCMC, small variance 

and uniformly distributed samples in this range 

P1 ~0.13 Yellow contour plot 

T1 [0-12] Strict correlation 

T2 9.3 Highest probability in this value 

THETA 60 CMA, no variance 

GF ~0.012 
Recommended values from the figures 3.18, 

3.20, 3.22. Depended on the VOLF value. 

GM ~0.009 
Recommended values from the figures 3.18, 

3.20, 3.22. Depended on the VOLF value. 

 

The samples, generated by the mTMCMC, give the model propagation, illustrated in 

the Figure 3.26. As it seems the mTMCMC achieves to reduce the influence of the 

model prediction error such that all the samples give a great model approximation of 

the first experiment from [2]. The CMA points are also very close to the 

measurements as the mean model propagation using mTMCMC samples does. This 

figure proves us the accuracy of the analyses’ results. 

 

Figure 3.26: Model uncertainty propagation using mTMCMC samples and CMA results 
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As it is mentioned, the prior bounds in mTMCMC software are defined narrow, 

bearing in mind the CMA results. In this way we limit the range in which the 

parameters can take a possible value. If the bounds are extremely small, we finally 

result in ignoring the considered parameters in the analysis. For this reason, it is better 

to enlarge the bounds up to a point that the sampling procedure will be completed 

successfully. These obstacles are standing because of the high dimensional 

unidentifiable model that we have and few experimental data that are not enough so 

that we can gain as much information as we need for the parameter identification. 

The next figure illustrates another execution of the mTMCMC for the whole 

parameter set. This time we have enlarged the prior bounds in some parameters. 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.27: mTMCMC with larger prior bounds 

Regarding the marginal distributions of the parameters, we can also make some useful 

conclusions: 

1. The fiber volume fraction is recommended to be around 0.9. Seeing the CMA 

results, we know that the fiber can take a variety of values inside the range 

[0.5-0.99]. 

2. The Eopt is characterized by an approximately uniform distribution in the 

range [0.16-0.19]. The yellow points are centered on the highest values of this 

range. Moreover, the optimal value of Eopt is around 0.184. However the 

model propagation shows us that any other value inside this range can give a 
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good model approximation with a small discrepancy of the experimental data 

(Figure 3.26). 

3. The P1 is more centered on the value around 0.15 but with an important 

variance. This is explained also by the Sobol analysis.  

4. The T1 marginal distribution recommends the 1.5 as the most probable value. 

This is not accurate as we know that T1 can take a variety of values with the 

condition the follows the strict correlation that it has with the VOLF. 

5. The T2 should take a value around 9.3. However the samples from the optimal 

posterior distribution generated in the support of it can give an efficient 

approximation of the experimental data with an extremely small error. 

6. The THETA must be equal to 60 as it is shown in the CMA results. Let’s also 

remind that the model is extremely sensitive to this parameter. 

7. The marginal distribution of GF is centered on 0.012. However, the Figures 

3.18, 3.20, 3.22 recommend as several different values. This attribute is also 

clear in Figure 3.25 where the colored points are somehow lined up respect to 

the color. This is also a clue that the value of this parameter is depended on the 

VOLF’s value. 

8. The same conclusion with GF we can also make about GM. 
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3.2.2 Second experiment 

In this paragraph we analyze the results from the applied frameworks for the second 

experiment from [2]. 

 

3.2.2.1 Optimization analysis 

The optimization framework has given multiple optimal parameter values, shown in 

Figures 3.29, such that the model fits globally to the experimental data (Figure 3.28). 

 
Figure 3.28: Global model approximation of the 2nd experiment 

 

The multiple solutions and their variances are illustrated in a clear way in Figures 

3.29. 

  

 

 

 

 

 

 

 

                                 (a)                                                                                          (b) 
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                                    (e)                                                                                          (f)  

 

 

 

 

 

 

 

 

                                   (g)                                                                                          (h)   

Figure 3.29: Variability of the optimized parameter values for the second experiment, 

(a)VOLF: fiber volume fraction, (b)Eopt: optimal fiber strain, (c)P1: fiber elastic 

modulus, (d),(e)T1,T2: mathematical parameters related to the CME’s response, 

(f)THETA: angle between collagenous fibrils and myofibrils, (g),(h)GF,GM: fiber and 

connective tissue shear modulus 
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3.2.2.2 Bayesian framework 

We execute the mTMCMC framework for the second experiment. The parameter set 

in which we are interested in is θ=[VOLF T1 GF GM], while the variances of the 

CMA points of the other parameters are small. The results are exhibited in Figures 

3.30 and 3.31. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30: mTMCMC results for the 2nd experiment, θ=[VOLF T1 GF GM] 

 

 

 

 

 

 

 

 

 

Figure 3.31: Model uncertainty propagation using mTMCMC samples 

Examining the results, we gain information about the most probable values of the 

considered parameter set. It is clear that the VOLF and T1 can take a large number of 
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appropriate values, only with the condition of satisfying their correlation. Moreover 

the most probable values of GF and GM are 0.06 and 0.02, respectively. Let’s remind 

ourselves that the other parameters are fixed in the values, proposed by the CMA 

results. It also needs to be noted that the discrepancy between model and experimental 

data is larger than other case possibly because of the measurement errors. 

 

We continue with the whole parameter set θ=[VOLF Eopt P1 T1 T2 THETA GF 

GM]. The results are illustrated below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: mTMCMC results 
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Figure 3.33: Model propagation using mTMCMC samples and CMAresults 

As it seems, the mTMCMC cannot manage efficient sampling of the T2 parameter. 

Another disadvantage of the execution is that the optimal solution resulting from the 

CMA software can approach the data better than the model propagation originated by 

the mTMCMC results. In the next figure, the results from a second execution are 

exhibited. 
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Figure 3.34: mTMCMC results 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35: Colored mTMCMC samples and CMA points 
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Figure 3.36: Model uncertainty propagation using mTMCMC samples and CMA results 

Examining the results, the conclusions are: 

1. The VOLF can take a large number of values inside the range [0.5-0.99] 

2. The most probable values of the Eopt are less than 0.1. CMA recommends the 

value 0. However, the uncertainty of the posterior is large enough so that the 

marginal distribution of it approximates a uniform distribution. 

3. The marginal distribution of P1 is centered on the values around 1e-4. The 

CMA points are also the same. 

4. The T1 must follow the strict correlation that has with the VOLF 

5. The T2 is extremely centered on the value 16. 

6. The THETA must be equal to 60. 

7. The most probable value of GF is 0.035 

8. The most probable value of GM is 0.03. As the yellow points are distributed 

uniformly in the considered range, we can say that the range is to small and all 

the values inside it can give a good model propagation 
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3.2.3 Third experiment 

Now, we present the same result for the third experiment from [2]. 

 

3.2.3.1 Optimization analysis 

We exhibits the results from the automated multiple executions of the CMA-ES 

framework. In the first figure, we prove that we get only the global optimal parameter 

values that give the optimal model propagation. 

 

Figure 3.37: Global model approximation of the 3rd experiment 

 

The multiple solutions are illustrated in a clear way in Figures 3.38. 

 

 

 

 

 

 

 

 

(a) (b) 
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                                  (g)                                                                                        (h) 

Figure 3.38: Variability of the optimized parameter values for the third experiment, 

(a)VOLF: fiber volume fraction, (b)Eopt: optimal fiber strain, (c)P1: fiber elastic 

modulus, (d),(e)T1,T2: mathematical parameters related to the CME’s response, 

(f)THETA: angle between collagenous fibrils and myofibrils, (g),(h)GF,GM: fiber and 

connective tissue shear modulus 
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3.2.3.2 Bayesian framework 

The parameters set that is characterized by some variance in the CMA results is θ= 

[VOLF P1 T1 T2 GF GM]. Thus, we execute the Bayesian framework for this 

parameter set. The results are below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.39: mTMCMC results for the 3rd experiment, θ= [VOLF P1 T1 T2 GF GM] 

 

Figure 3.40: Model uncertainty propagation using mTMCMC samples 
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Table 3.10: Probable parameter values 

PARAMETERS MPV 

VOLF 
Multiple 

(User’s choice) 

P1 Depends on the VOLF 

T1 “Surface” correlation 

T2 “Surface” correlation 

GF ~0.06 

GM ~0.02 

 

As it seems, the correlation between VOLF and T1 is not a line but a surface. In other 

words, one specific value of fiber volume fraction doesn’t correspond to a specific 

value of T1 but to a variety of values. Let’s discover this characteristic by using the 

CMA points and mTMCMC results. 

 

Figure 3.41: Correlation between VOLF-T1 for the 3rd experiment 
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Now, we run the CMA again keeping the T1 fixed on the values 30, 50, 60, 80. If the 

VOLF gives multiple values with the same global minimum of the objective function, 

then we have proved the “surface” characteristic. 

 

Figure 3.42: Correlation between VOLF-T1, surface characteristic using CMA points 

 

Another fact that can be easily proved is the correlation between VOLF and T2, too. 

 

Figure 3.43: Correlation between VOLF-T2 for the 3rd experiment 
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Now, we execute the mTMCMC framework for the parameter set θ= [VOLF Eopt P1 

T1 T2 THETA GF GM]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.44: mTMCMC results for the parameter set θ=[VOLF Eopt P1 T1 T2 THETA 

GF GM] 

 

Figure 3.45 Model uncertainty propagation using mTMCMC and CMA results 
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The samples generated by the mTMCMC are illustrated in Figure 3.33. They give 

efficient model propagation with small error. However, an important disadvantage of 

the results is that the mTMCMC could not generate sample for the highest values of 

VOLF. As it is proved by CMA, the values inside the range [0.8-0.99] can also be 

accepted despite the fact that mTMCMC has not generated samples in this range. 

Thus, we execute the mTMCMC framework once more. The bounds of the VOLF are 

defined to be [0.8-0.99]. The results are illustrated in the next figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.45: mTMCMC results for VOLF [0.8-0.99] 

The sampling task is highly demanding for this experiment .As it is mentioned the 

correlation between VOLF and T1 is wider than for the other experiments .That 

means that the optimal parameter values are increased and the problem become more 

unidentifiable. For this reason, generating samples in the whole domain is more 

difficult to be accomplished. 
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Examining the results from both analyses, some conclusions can be done: 

1. The VOLF takes a variety of values. So, it is researcher’s choice. 

2. The Eopt should take a value larger than 0.16. CMA recommends the value 

around 0.16, but mTMCMC propose more probable values that can give 

model propagation with small uncertainty. 

3. The P1 takes also a large account of values such that the model propagation is 

very good. This attribute is also explained by Sobol. 

4. The T1 should follow the correlation. However, as it was previously proved, 

this correlation is not too narrow to reduce the options of the optimal values. 

5. The T2 takes also a large number of values. It also has a correlation with the 

VOLF 

6. The THETA must be equal to 60. 

7. The GF should be around 0.04. However, its value depends on the VOLF’s 

value, as it is noticed through the different executions. 

8. The GM should be around 0.04. However, its value depends on the VOLF’s 

value, as it is noticed through the different executions. 
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3.2.4 Fourth experiment 

In the next paragraphs, we exhibit the same result for the fourth experiment from [2]. 

3.2.4.1 Optimization analysis 

We follow the same procedure once again. In the next figures we present the results 

from the automated multiple executions of the CMA-ES framework. In the first 

figure, we prove that we get only the global optimal parameter values that give the 

optimal model propagation. 

 

Figure 3.46: Global model approximation of the 4th experiment 

 

The multiple solutions are illustrated in a clear way in Figures 3.47. 
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                                     (g)                                                                                           (h) 

Figure 3.47: Variability of the optimized parameter values for the fourth experiment, 

(a)VOLF: fiber volume fraction, (b)Eopt: optimal fiber strain, (c)P1: fiber elastic 

modulus, (d),(e)T1,T2: mathematical parameters related to the CME’s response, 

(f)THETA: angle between collagenous fibrils and myofibrils, (g),(h)GF,GM: fiber and 

connective tissue shear modulus 
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3.2.4.2 Bayesian framework 

The model parameter set we are interested in is θ = [VOLF P1 T1 GF GM]. The 

results from the mTMCMC framework are exhibited below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.48: mTMCMC results for the 4th experiment, θ = [VOLF P1 T1 GF GM] 

 

Figure 3.49 Model uncertainty propagation using mTMCMC  
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Table 3.11: Probable parameter values 

PARAMETERS MPV 

VOLF 
Multiple 

(User’s choice) 

P1 Depends on VOLF 

T1 Strict correlation 

GF ~ 0.03 

GM ~0.02 

 

Now, we develop the same analysis for the whole parameter set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.50: mTMCMC results for the parameter set θ=[VOLF Eopt P1 T1 T2 THETA 

GF GM] 
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Figure 3.51: Colored mTMCMC samples and CMA points 

 

Figure 3.52: Model uncertainty propagation using mTMCMC and CMA results 
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3.2.5 Fifth experiment 

In the next paragraphs, we exhibit the same result for the fifth experiment from [2]. 

 

3.2.5.1 Optimization analysis 

In the next figures we present the results from the automated multiple executions of 

the CMA-ES framework. In the first figure, we prove that we get only the global 

optimal parameter values that give the optimal model propagation. 

 

Figure 3.53: Global model approximation of the 5th experiment 

The multiple solutions are illustrated in a clear way in Figures 3.54. 

 

 

 

 

 

 

 

 

 

                                   (a)                                                                                                (b)                                                         



68 

 

 

 

 

 

 

 

 

                                    (c)                                                                                            (d)   

 

 

 

 

 

 

 

 

                                   (e)                                                                                             (f) 
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Figure 3.54: Variability of the optimized parameter values for the fifth experiment, 

(a)VOLF: fiber volume fraction, (b)Eopt: optimal fiber strain, (c)P1: fiber elastic 

modulus, (d),(e)T1,T2: mathematical parameters related to the CME’s response, 

(f)THETA: angle between collagenous fibrils and myofibrils, (g),(h)GF,GM: fiber and 

connective tissue shear modulus 
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3.2.5.2 Bayesian framework 

We run the mTMCMC framework for the parameter set θ=[VOLF P1 T1 GF GM]. 

 

Figure 3.55: mTMCMC results for the 5th experiment, θ = [VOLF P1 T1 GF GM] 

 

Figure 3.56: Model uncertainty propagation using mTMCMC 
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Table 3.12: Probable parameter values 

PARAMETERS MPV 

VOLF 
Multiple 

(User’s choice) 

P1 Correlation 

T1 Strict correlation 

GF ~ 0.06 

GM ~0.04 

 

Examining the results, the VOLF takes a leading role about the parameter estimation 

by affecting the other optimal parameters’ values. In this case of experiment, 

optimization results and mTMCMC samples have discover another possible 

correlation between VOLF and P1. Although this correlation is also shown up in other 

experiments in the CMA results, in this specific case the mTMCMC samples are also 

similarly distributed. As we can see the mTMCMC samples for the other experiments 

are uniformly distributed in the whole domain. This correlation is clearly illustrated in 

the next figures. Subsequently, there are correlations between VOLF and T1 and T1 

and P1, respectively. 

 

(a) 
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(b) 

 

(c) 

Figure 3.57: Several correlations among the parameters, (a) VOLF-P1, (b) VOLF-T1, 

(c) T1-P1 

The CMA points are included in the mTMCMC samples. That proves the accuracy of 

the analyses. However, it is also noticeable that the sampling method was unable to 

give sample for the VOLF’s values upper than 0.95, affecting the samples from the 

other parameters. 
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Let’s concentrate to the whole parameter set which is θ=[VOLF Eopt P1 T1 T2 

THETA GF GM]. 
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Figure 3.58: mTMCMC results for the parameter set θ=[VOLF Eopt P1 T1 T2 THETA 

GF GM] 
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Figure 3.59: Model uncertainty propagation using mTMCMC and CMA results 

Examining the results, we can say that the Eopt‘s most probable value is around 0.21 

while the T2’s is around 24, as the results from mTMCMC and CMA agree. The GF 

and GM can take values around 0.04. Any small discrepancy around this value cannot 

influence the mechanical response as it is proved through the Sobol analysis. 

According the mTMCMC, the angle (THETA) can take two possible values such that 

can give good approximation of the fifth Calvo’s experiment. This is a unique 

characteristic of this specific marginal distribution. Implementing the optimization 

process limiting the THETA inside the range [59-60], there are also acceptable 

solutions, with a little larger error between model and experiment. Another 

characteristic of this case that is noticeable specifically in the results for θ=[VOLF P1 

T1 GF GM] is the correlations between some parameters ,as it is also shown 

previously. 

However, it is also clear the barrier existed in the sampling procedure. This is why we 

run once more. The results are exhibited below. 
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Figure 3.60: mTMCMC results 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.61: Colored samples respect to VOLF 
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Figure 3.62: Model uncertainty propagation using mTMCMC and CMA results 
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3.3 Specimens’ variability 

Examining the results of the analyses that have been run for all the experiments, we 

notice that there is a large variance in the values of the parameters among the 

specimens. Seeing their different mechanical behavior, it is proved that the 

microstructure of the skeletal muscle has a great impact on the response of it. Thus, 

the variance of the mechanical behavior is caused by the differences in biological 

characteristics such as weight, gender or age or other microstructural properties. In 

this section we will give some emphasis in this attribute. 

 

3.3.1 Comparison among the experiments from Calvo et al. [2] using CMA results 

As we have mentioned, it would be very useful to compare the results from the 

experiments from [2], as these rats have been grown up in the same conditions and 

treatment and they have been objected to the same experiment by the same 

equipment. Let‘s direct our attention to each different parameter. The fiber volume 

fraction takes values inside the range [0.5-0.99] in each different case of experiment. 

Regarding the other parameters, they are characterized by a variance, as it is 

illustrated in the next figures. 
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                                   (e)                                                                                        (f) 

 

 

 

 

 

 

 

                                  (g)                                                                                        (h) 

Figure 3.60: CMA points among the specimens from [2], (a)VOLF: fiber volume 

fraction, (b)Eopt: optimal fiber strain, (c)P1: fiber elastic modulus, (d),(e)T1,T2: 

mathematical parameters related to the CME’s response, (f)THETA: angle between 

collagenous fibrils and myofibrils, (g),(h)GF,GM: fiber and connective tissue shear 

modulus 
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Examining these figures, we can notice that the CMA results differ from each other. 

In some figure (b, c, d, e, f), the parameters are changed in a same way. However, the 

GF and GM of the fifth experiment take values that are chaotically distributed in their 

considered range. Regarding these characteristics, we can conclude that the different 

mechanical responses of the skeletal muscle of the specimens are caused by 

differences in their microstructure and their characteristics. We develop analyses that 

can be implemented for each different experiment. These analyses can give us vital 

information about the microstructure of an organism but cannot take into 

consideration this species variability. For this reason, we cannot make any general 

conclusion about these 5 specimens. It seems that these properties are characterized 

by individuality. 

We are also interested in the correlation between VOLF and T1 and the comparison of 

them among the experiments from [2]. 

 

 

 

 

 

 

 

 

Figure 3.61: Correlation VOLF-T1 among the experiments 

As it seems there is a large divergence between these correlations. This fact is related 

to the variety of mechanical behaviors that took from the experiments. This variability 

is depended in the species and their biological differences. Someone can say that the 

third and the fifth experiment from [2] have given the most divergent correlations 

VOLF-T1, as it is shown. The T1 is described as a mathematical variable related to 

the connective tissue’s response and consequently it doesn’t have a direct physical 

meaning. For this reason, we cannot explain this large variability as it does not have a 

reasonable impact on the microstuctural characteristics of the skeletal muscle. 

However, there is no doubt that its different value of T1 and the other parameters 

related to it, such as T2 and THETA have an impact on the final mechanical behavior. 

Moreover, it is a great proof that there is the same form of relationship between these 

two parameters regardless the experiment. 

It is also worth to be noted that examining the CMA results for the third experiment, 

the correlation is not a strict line but it seems to be a surface. 
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3.3.2 Model prediction of a Fusiform type of skeletal muscle based on the 

specimens’ variability 

There are several types of skeletal muscle that response in a different way in loading 

conditions. In this paragraph we direct our attention to the Fusiform type of muscle. 

Fusiform muscles consist of the muscle and the tendon and have fibers that run 

parallel to one another following the direction of the tendon (Figure 3.62). These 

muscles are built to provide large ranges and a great variety of motion. We use the 

finite element model proposed in [22], as it is shown in Figure 3.63. It is an 

axisymmetric geometry in which every finite element follows the formulation that is 

described in the Chapter 1. More details are exhibited in the considered paper. 

 

 

 

 

 

 

    Figure 3.62: Types of skeletal muscle                 Figure 3.63: Finite element model 

 

Firstly, we want to ensure that the model prediction of the model described in the 

Chapter 1 for larger strain than the experimental strain will be accurate, characterized 

by a small discrepancy. 
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Figure 3.64: Model prediction for strains larger than the experimental using CMA 

points 

As we can notice, the stresses, calculated for the large strains, are characterized by a 

small divergence that is not noticeable in Figures 3.64. This is why the stress-strain 

curves are seemed to coincide. This attribute is related to the fact that we optimized 

only till the maximum strain of the experimental data. Thus any discrepancy for larger 

strains is reasonable. In our case, it does not play any significant role for the model 

prediction, except for the 3rd experiment from [2] in which it is distinguishable.  
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In the next step, we focus on the Fusiform skeletal muscle. The optimal parameter sets 

are used to determine the properties of each different finite element. In the next figure, 

the model prediction of this model is illustrated. In this case we present only the result 

originated by using the CMA points of the experiment from [1]. Let‘s take into 

consideration that this framework propose several different optimal sets. These 

optimal parameter sets were originated so that they can give the same model 

propagation that minimizes globally the error between model and experimental data. 

As it is shown, the structure of the Fusiform muscle has the same model prediction, 

regardless which optimal parameter set we use. This is reasonable as we have proved 

that all these sets give the same global approximation of the experiment (Figure 3.2) 

 

Figure 3.65: Model prediction of the Fusiform skeletal muscle using CMA points of  

experiment from [1] 

As it seems, the curves coincide with each other. This is useful while we can focus on 

the model predictions of this muscle for different specimens using only one optimal 

parameter set without losing accuracy. The previous steps were necessary to prove the 

accuracy of the results generated for the purpose of this study, so that someone based 

on it can make an efficient model prediction. Moreover, according to the last result, 

we also manage to find a valid way for the model prediction of a macroscale structure 

of skeletal muscle, while reducing effectively the computational cost of this task. 

Regarding this, we continue with implementing model prediction for each different 
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specimen of rats. In this way we investigate the species variability and its influence in 

the total mechanical response of a structure of a muscle in the macroscale.   

 

Figure 3.66: Model prediction of Fusiform skeletal muscle for each different 

experiment 

 

Seeing the Figure 3.66, we can say that the macroscaled mechanical response of a 

specimen is strongly bonded with its unique microstructural characteristics. This 

attribute of the uniqueness of each living organism should be also investigated.  
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CHAPTER 4 

Conclusions and future work 
 

In this thesis Bayesian analysis is used to make parameters estimation and uncertainty 

quantification of a skeletal muscle model. We were confronted with a three 

dimensional constitutive model that is proposed by [15] and it is characterized by a 

large dimensional unknown parameter space. Particularly, the unknown parameters 

are eight, included biological, mechanical properties and mathematical parameters 

(constants). Estimating them is vital about understanding how the microstructure has 

an impact on the macroscaled mechanical behavior of the muscle. However, the lack 

of previous knowledge and a few experimental data stand as an obstacle through our 

mission. The model can be characterized as unidentifiable while the uncertainties 

cannot be dealt with, using only one set of experimental data at the time which are 

stress-strain relationship. The information that is included in the experiments is not 

capable of uniquely inferring the values of the eight unknown model parameters using 

the Bayesian framework.  

Seeing this, we seek alternative ways to estimate them, by combining several different 

approaches to identify this model. Thus, we implement not only Bayesian approach, 

but also optimization process and Sobol analysis so that we are capable of examine 

our results and evaluate them. In this way, we take advantage of each different 

analysis that provides also different types of information and results which are finally 

combined so as to result in an accurate conclusion. 

The current research has given to us the opportunity to make a step closer to 

parameter estimation, leading us to broaden our knowledge and perspective not only 

about this model but also about uncertainty quantification and its capabilities. In this 

regard, there are many topics that may enable the expansion of this thesis. It would 

gain a lot of interest to implement hierarchical Bayesian analysis by assuming that the 

prior follows a Gaussian distribution with the mean and the covariance matrix to 

constitute the hyperparameters to be estimated. In this way, someone increase his 

previous information about the model and this may be useful to better quantify the 

variability in the values of the model parameters. However, this task demands high 

knowledge of the structure of skeletal muscle and experimental at different 

hierarchical modeling levels, something that we did not have access. 

Future work should concentrate on using in the analysis other experimental data 

focused on subsystems of the skeletal muscles. For instance, mechanical experiments 

were recently carried out on a wide variety of scales, from the myofibrils, fibres and 

tissue. One could take advantage of these experimental data and use the Bayesian 

framework for the different components of the tissue to learn the values and the 

uncertainties in the model parameters so that they are consistent with the experimental 
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data obtained from different components. It is expected that the additional 

experiments at the component level will also significantly reduce the uncertainty in 

the model parameters of the skeletal muscle system. 

Another interesting step of a future research should be the Hierarchical Bayesian 

implementation applied on experimental data available from different components of 

the tissue. Developing this analysis, we take into consideration several different 

experimental data characterizing the different mechanical response among the species. 

As it is proved through this research the properties characterize individually each 

different organism. This variability, based on the species’ uniqueness, should be 

investigated. The Hierarchical Bayesian approach is capable to accomplish that. Let‘s 

keep in mind that implementing the classical Bayesian analysis, we managed to make 

an accurate parameter investigation about each different organism. 

To sum up, this model combines the microstuctural characteristics of the skeletal 

muscle with the macroscale mechanical behavior. This attribute renders its parameters 

essential to be inferred, while it has a fundamental meaning for the skeletal muscle’s 

response. We made the some steps to this direction by fulfilling the task of this thesis 

and we can continue our exploration by developing more strategies. 
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APPENDIX  

Appendix A 

The measured data that we use are collected by previous experimental studies. In this 

section, a table of them is presented so that it can be clear what data we use in every 

presented result in the next sections. There is also a table about the characteristics of 

each experiment. 

TENSION      

PAPERS   CODE SPECIES 
NUMBER OF 

DATA 

Hawkins and 

Bey [1] (1994) 
  A Rat 1 

Calvo 

[2](2010) 
  B Rat 5 

     6 

      

CHARACTERISTICS     

CODE 
TYPE OF 

MUSCLE 

TYPE OF 

EXPERIMENT 

STRAIN 

RATE 

TIMELI

NE 

A Tibialis anterior In vitro - - 

B Tibialis anterior 
In vitro 

(In vivo) 
0.022%sec-1 Fresh 
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Appendix B 

Cubic spline interpolation: 

Given a set of n data (xi,yi) , where i=1,2,…n. We are interested in finding a function 

that satisfies S(xi)=yi. The cubic spline S(xi) is determined by: 

S(xi)=Ci(x), x i-1< x <x i 

where 
2 3

i i i i iC a b x c x d x= + + +  

In our case, we seek a group of functions that satisfy S(Eopti)=VOLFi 

 The next table illustrates the optimal values of the constants respect to the ranges of 

the Eopt 

 Hawkins experiment 

Ranges 

Eopt ia  ib  ic  id  

0.0078-

0.0081 
-2645790,8564 -2767,57819 61,0517 0,5099 

0.0081-

0.0084 
-2645790,8564 -5212,2846 58,5939 0,5285 

0.0084-

0.0089 
2296860,4511 -7886,78275 54,18015 0,54751 

0.0089-

0.0093 
-1598943,9183 -4533,01917 48,1352 0,57228 

0.0093-

0.0097 
2562251,6615 -6232,34317 44,3215 0,58869 

0.0097-

0.0104 
-475146,5874 -3159,82406 40,5673 0,60557 

0.0104-

0.0106 
2515482,5027 -4227,72917 35,03271 0,63399 

0.0106-

0.0115 
-93356,09326 -2574,91841 33,5428 0,64149 

0.0115-

0.0124 
447844,1794 -2821,67153 28,78816 0,66898 

0.0124-

0.0131 
-133682,1704 -1644,78472 24,8757 0,69233 

0.0131-

0.0144 
203761,3134 -1934,7185 22,2879 0,70940 

0.0144-

0.152 
1241,5356 -1123,2183 18,2284 0,73606 

0.152-

0.0168 
68235,0465 -1120,5185 16,602 0,74868 

0.0168-

0.0187 
37649,51105 -784,59984 13,4757 0,77321 

0.0187-

0.0197 
21462,1484 -565,8362 10,8602 0,79664 
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0.0197-

0.0221 
22235,8614 -502,416 9,80794 0,80681 

0.0221-

0.0258 
11334,68865 -343,079 7,7884 0,82767 

0.0258-

0.0302 
6444,5951 -218,7334 5,73398 0,85212 

0.0302-

0.0355 
3150,8894 -133,0486 4,17492 0,8738 

0.0355-

0.04 
1380,8118 -83,10816 3,03292 0,892607 

0.04-

0.0404 
10435,9908 -64,3576 2,36543 0,904761 

0.0404-

0.0448 
763,92581 -52,45474 2,32101 0,905651 

0.0448-

0.052 
727,6683 -42,35786 1,9033 0,914924 

0.0520-

0.0575 
479,2253 -26,6251 1,40614 0,926713 

0.0575-

0.0585 
-184,3744 -18,7244 1,1569 0,933716 

0.0585-

0.0696 
251,2772 -19,27426 1,11915 0,934848 

0.0696-

0.0759 
152,9245 -10,9301 0,7848 0,945215 

0.0756-

0.1082 
55,7633 -8,00795 0,66419 0,94981 

0.1082-

0.1317 
12,7689 -2,60295 0,3214 0,964791 

0.1317-

0.1594 
10,9781 -1,7035 0,2202 0,971067 

0.1594-

0.2523 
2,00252 -0,7936 0,15126 0,976083 

0.2523-

0.31 
2,00252 -0,2353 0,05564 0,984893 
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