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Abstract

Cloud computing has gained popularity over the last decade leading companies
and organizations to either offer or use Infrastructure as a Service (laaS). By utilizing
such technologies they succeed in using computer resources according to their everyday
needs. In laaS, the computer resources are shared between many users and usage is much
more effective. Even so, when a user binds an amount of resources and deploys an
application, the clients may create varying loads, because clients’ needs vary during a 24
hour period. Therefore, users of laaS need a way to increase or decrease their resources
according to their clients’ needs in order to satisfy the higher loads during peak hours, but
not bind more resources than needed during periods of lower traffic. This bind and
release process can be achieved either manually, or by following a simple policy that is
offered by several administrating systems

In this work we study Tiramola’s performance, a system that offers automatic
adaptation of the size of a NoSQL database according to user’s policy. We use the last
version of Tiramola, where the Decision Making module implements Reinforcement
Learning algorithms along with adaptive partitioning of the State Space, using Decision
Trees. In order to succeed in partitioning the State Space, Tiramola uses metrics as
splitting parameters from the cluster of VMs where a NoSQL database (HBase in our
case) is deployed and stressed under a load. In the first two phases of experiments we
study the behavior of the metrics of the HBase-cluster under linear increasing load and
constant load. Based on this data analysis we estimate which one of them can behave
better as a splitting parameter when used by Tiramola. In the third phase of experiments,
we stress the HBase cluster under sinusoidal load, use the metrics we studied as splitting
parameters and verify our evaluation. Tiramola’s performance reveals which metrics are
efficient as splitting parameters and which are not. In the fourth and last phase of
experiments, we configure Tiramola to use the best splitting parameters and study its
performance by stressing the HBase cluster under unpredictable load.
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Iepiinyn

H avénon g dNpoTikdTToS TV DTOAOYIGTIKGOV VEQP®V, YVOGTOG 0pog w¢ cloud
computing, éyet odnynoel 6e TPocPopd YTOdopmdV ©¢ YTNPESieg, YVOOTEG Kl O
Infrastructure as a Service (laaS). Mg avtég ot yprioTeC UTOPOVV VO dEGUEVGOVY TOPOLG
Yol EKTEAECT] OTTADV EQOPLOYDV 1 TEWPAUATOV KATA TO doKOVV. ¢ amoTéleopa, 1 YpoN
TOV VAMKOV TOPOV SLOUOpdleTon avAIeso 6€ TOALOVS YPNOTES Kl AEI0TOINCT TOV TOPWV
elvar mo amotedeopatikn. [Hapammpeiton mavro avEopeimon otn ypNon oLTOV TOV
CLOTNUATOV KOOMG 0 POPTOC TOL ONUIOLPYOLV Ol TEAKOL YPNOTEG TV EPUPUOYDV
oAAGCel kaTd T ddpkela TG HEPOC. Q¢ €k TOVTOV, LITAPYEL amaitnon Yo avEopeimon
™G SBEGIUOTNTOC TOV TOPOV MCTE amd TN Mo Ol EQUPUOYEC TOL TPEYOLV AV GE
TETOL0. GLOTNHHOTA VO £XOVV GUVETELD KOl VoL eEumnpetovv ) {NTNom aKOH Kot TIG MPES
UG, OAAG amd TV GAAN va un OEGUEVOVY TTEPICCOTEPOVS OO TOVS GTOITOVLEVOLS
TOPOVG TIC VITOAOUTEG YPOVIKEG TEPLOOOVE. AVTN N aw&opeimon pmopel va emttevydel gite
Yepokivnta, eite pe ypnon omAng TOKTIKNG 7OV TPOGPEPOLY SLAPOPO. GLOTNLOTO
JLoL(ELPIONG LITOOOUMV.

Y avth TV gpyocio peretodpe T enidoon tov Tiramola, evoc cuoTiuatog mov
emupénel v avtopartn avéopeioon tov peyéBouvg piog NoSQL Pdong dedopévov
aKOAOVOOVTOS OTOL0ONTOTE TAKTIKY OPIGEL O YPNOTNG. XPNGIUOTOOVUE TNV TEAELTALN
ékdoon tov Tiramola, o6mov ot povado omOEooNg  YIVETOL TPOGAPUOCTIKOC
dwpopacudg xopov kKataotdoewv Mapkoflovav poviédwv. o va  emtevybel o
SlpHopacuds TV KOTOOTAGE®MY  YPNOIULOTOIOVVTIOL Ol  HETPIKEG TAOV  EIKOVIKAOV
unyovnuatov omov tpéyel pee NoSQL kataveunuévn PBaon dedopévov (HBase) vmd
@optio. ZT1g dV0 TPATES PACELS TEWPAUATOV £EETALOVIE TNV GLUTEPLPOPH TOV LETPIKMOV
NG OLOTASNG EWOVIK®OV pnyovnudtov g HBase vrd ypappkd avéoavopevo goprio,
oALG Kot otafepd, @ote va AEI0AOYNCOVUE TOEG OMO TIG UETPIKES UTOPOLV VO
AertoVpPYNoOVY KOADTEPO G TaPAUETPOL dtaywpiopol MapkoPlovdv KatasTdce®y ond
tov Tiramola. Xty tpitm ¢don zmewpapdtov cmPefaidvovps v a&loddynon tov
LETPIKOV/TAPAUETPOV da®PIoUOD TapakorovddvTag Tig enddoelg tov Tiramola vrd
NWTOVOEWES PopTio mpog ™ Pdomn. Ltnv Té€Taptn Kot TEAELTOiO (PACT TEWPAUATOV,
YPNOUOTOOVUE TIG PEATIOTEG TOPAUETPOVS OOYOPIGHOD Kot TapokoAovBoldue Tig
emdooelg Tov Tiramola vid anpofiento poprio.

A€Eerc KAheowd

Kotavepumuéva  Xvomuota, Ymoloyiotikd Néeoc, Mapkofrovée  Koartaotdoel,
Elaotikomnto, Aloyeipion [opwv, Avaivon Asdopévaov, NoSQL, HBase, Tiramola
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Chapter 1

Introduction

1.1 Cloud Computing, NoSQL databases and elasticity

The explosive growth of data during the last decade led us to employ new ways of
storing and processing them. New Kkinds infrastructures were created and cloud
computing was adopted very quickly both by companies and researchers. The volume of
the data is so vast that it became necessary to divide them into more than one machines.
Distributed systems were evolved and distributed file systems like the Hadoop DFS were
created. Along with distributed storage, platforms of distributed processing were
developed like Apache Hadoop, Apache Spark and many more. Furthermore, the
computing society needed to find an SQL equivalent for distributed data and NoSQL
distributed databases came to play like HBase, Cassandra, Riak, VVoldemort and many
more.

NoSQL databases are horizontally scalable distributed non-relational storage
spaces. They are designed to run on large scale distributed systems, managing the
distribution of data and the coordination of machines. Also, they tolerate hardware
failures.

One of their most important characteristics of NoSQL databases is elasticity. It
makes them the most suitable for using Infrastructure as a Service (laaS) offered by cloud
computing platforms. laaS gives the ability of elastically scale up or down according to
the user’s needs. Elasticity is a very important ability giving the opportunity to users to
adapt to the incoming traffic caused by clients. Adapting to the resources according to
incoming traffic can reduce the cost during periods of low incoming load, while keeping
an application available during the periods of high demand.

Tiramola is a system that allows automating elasticity of NoSQL databases
according to a user defined policy. Unlike other systems, Tiramola is not using simplified
methods to automate elasticity like defining a simple threshold or asking from the user to
set the conditions. Tiramola’s last version is using Reinforcement Learning algorithms
such as Markov Decision Processes and Q-Learning enriched with adaptive State Spaces
by utilizing Decision Trees. This enrichment allows Tiramola to better adapt the State
Space and capture the complexity of the system.

11
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1.2 Thesis subject

In this work, we are going to use the last version of Tiramola and evaluate its
behavior when unpredictable load runs against an HBase cluster. Tiramola’s last version
has already been evaluated as an improvement in comparison to older versions that
implement more traditional Reinforcement Learning algorithms, but not yet been tested
adequately as to which are the optimal splitting parameters. Also, all the related works
about automating elasticity with Tiramola were always using sinusoidal load, but in this
work we are going to experiment using unpredictable loads.

The first challenge hides a bigger topic that has never been fully covered in any
previous relevant work, the HBase cluster’s behavior. Every Tiramola version has a
Decision Making module that implements Reinforcement Learning algorithms. That’s
how Tiramola decides about the size of the cluster. For doing so, every Tiramola version
uses the metrics of a NoSQL cluster and these metrics have never been analyzed
adequately. So, in the first two parts of the experiments we study the behavior of the
HBase cluster while it is stressed. We monitor the metrics of the cluster and considering
how the splitting parameters in Decision Trees are used, we evaluate the suitability of the
metrics as splitting parameters. During the third phase of experiments we verify our
evaluation and finally decide which of the metrics can be the optimal splitting parameters
for Tiramola’s Decision Trees. That’s how we meet the challenge about using optimally
the last version of Tiramola.

The second challenge is split into two smaller ones. In the first phase we try to
find the level of randomness of an unpredictable load. When we find it, in the second
phase we configure Tiramola’s range of actions in order to have a fair encounter between
the big changes of the load and Tiramola’s flexibility. Then, we study and evaluate
Tiramola’s behavior against the most reasonably unpredictable loads.

1.3 How this work is organized

In the second chapter we present all the tools and platforms that are used in this work and
give an overview of our infrastructure.

In the third chapter we dive into Tiramola and explain its workflow in a technical way
and give an overview of what happens when we use Tiramola.

In the fourth chapter we present the first three round of experiments. By analyzing the
HBase cluster’s metrics we accomplish to describe how HBase reacts when stressed.
Also, by knowing how the splitting algorithm works, we can make solid assumptions
about which one of them can be used efficiently as a splitting parameter. In the third
round, we verify which parameters are more efficient

12
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In the fifth chapter we are testing Tiramola by using the optimal splitting parameters. We
run several types of unpredictable loads against the HBase, study its behavior, extend its

flexibility and finally evaluate it.
In the sixth and last chapter, we present our conclusions.
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Chapter 2

Technical Aspects

2.1 Technical Overview

In order to test automation of the elasticity of a NoSQL database we need to
reproduce the whole environment. So, except of the cluster of machines that have a
NoSQL database installed, we also want machines that will act as clients of the database
and make the queries, a system that can monitor everything and of course, we want the
tool that decides automatically to expand or contract the NoSQL cluster.

We use OpenStack to create all the virtual machines (VMs) we need. By using
OpensStack, we create cluster of VMs where a NoSQL database is installed, HBase in our
case, and a second cluster of VMs that will act as clients. In each client VM we install the
YCSB tool which can insert records into HBase, make either read or update queries and
even delete the records. For monitoring everything, we use Ganglia. The Open Stack
installation offered by the Computer Science Laboratory of the National and Technical
University already has Ganglia that monitors the installation (outside of our VMs). We
also install another Ganglia on the HBase cluster, because we want metrics from inside of
the HBase cluster. Last but not least, Tiramola is installed on the master of the HBase
cluster and is in charge of everything: start/stop the clients, define what kind of load the
clients create, get all kinds of metrics, decide the size of the cluster and send all
commands either to the HBase cluster about start/stop/restart or to the OpenStack
installation about add/remove VMs to the HBase cluster.

2.2 OpenStack

OpensStack [7] is a cloud operating system that controls large pools of compute,
storage and networking resources throughout a datacenter, all managed through a
dashboard that gives administrators control while empowering their users to provision
resources through a web interface.

OpenStack began in 2010 as a joint project of Rackspace Hosting and NASA. As
of 2016, it is managed by the OpenStack Foundation, a non-profit corporate entity
established in September 2012 to promote OpenStack software and its community.
OpenStack is a free and open-source software platform for cloud computing, mostly

14
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deployed as infrastructure-as-a-service (laaS), whereby virtual servers and other
resources are made available to customers. The software platform consists of interrelated
components that control diverse, multi-vendor hardware pools of processing, storage, and
networking resources throughout a data center. Users either manage it through a web-
based dashboard, through command-line tools, or through RESTful web services.

2.2.1 OpenStack components

OpenStack Compute, also known as Nova, is a platform whose aim is to manage
the OpenStack infrastructure. It provides an interface and an API that allows the
management of large networks of virtual machines and scalable architectures. It is written
in Python and is designed to scale horizontally on standard hardware with no proprietary
requirements.

Imaging Service manages the storage of the images of virtual machines that can
later be used as a template for new ones. It provides a RESTful API to perform queries
for information about the images hosted on different storage systems.

Object Storage is a storage space that is designed for long term storage of large
volumes, and can host up to multiple petabytes of data. Objects and files are written to
multiple disk drives spread throughout servers in the data center, while data replication is
used to provide data integrity across the cluster.

Figure 2.1: OpenStack components
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The OpenStack services can be accessed through the OpenStack Dashboard,
Horizon, which provides a graphical interface for users and administrators to access,
provision, and automate cloud-based resources. Its design also accommodates third party
products and services, such as billing, monitoring, and additional management tools.

OpenStack Identity, Keystone, provides a mapping of users to the OpenStack
services they can access. It acts as a common authentication system across the cloud
operating system, and supports multiple forms of authentication including standard
username and password credentials, token-based systems and AWS-style logins

2.3 Hadoop

Installing Hadoop is a prerequisite for installing HBase. Hadoop [9] is consisted
of two main parts, the Hadoop Distributed File System, known as HDFS and the
MapReduce which is a programming model for data processing. HBase is using HDFS
for storing its data. The HDFS is a distributed file system designed to run on commodity
hardware. It is an open source implementation of the Google File System (GFS) [10] and
is a filesystem designed for storing very large files with streaming data access patterns,
running on clusters of commodity hardware providing scalability and fault tolerance.

2.3.1 HDFS architecture

HDFS [8] uses a master/slave architecture. The Namenode takes on the role of the
master, and is responsible for coordinating the filesystem and providing access to its files
to the clients. Even though data in the HDFS are stored in multiple physical machines,
the Namenode maintains a traditional hierarchical file organization. Clients can create
files and directories, move and rename them in a manner similar to other existing file
systems. Any change to the file system is recorded by the Namenode, which is
responsible for maintaining the file system namespace. If the Namenode is not active,
clients lose the ability to access the data stored in the HDFS, making it the single point of
failure of the system. However, in order to increase reliability, a secondary Namenode is
active at all times, and can recover the file system in case of a Master failure.

The slaves in HDFS are called Datanodes, and their responsibility is to store file
data and serve read and write requests from the file system’s clients. At the same time,
they perform block creation, deletion and replication upon instruction of the Namenode.
Each file in the file system is stored in multiple equally sized blocks (typically 64MB),
and each of these blocks is hosted in multiple Datanodes in order to increase fault
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tolerance. It is possible for applications to specify or change the replication factor for
each separate file.

Figure 2.2: HDFS architecture

In order for the Namenode to have an up-to-date knowledge of the active blocks
in the system, Heartbeat messages are periodically sent to it from each of the Datanodes.
If a Datanode fails to transmit a heartbeat message, the Namenode assumes that the
Datanode is dead, stops forwarding new requests to it and attempts to quickly restore the
replication factor of its blocks.

The placement of the blocks is decided by the Namenode. The criteria by which
this is done is not only to increase fault tolerance, but also to improve performance. In the
common case where the replication factor is three, HDFS’s placement policy is to put one
replica on one node in the local rack, another on a node in a different (remote) rack, and
the last on a different node in the same remote rack. This policy reduces the required
communication between different racks during writes, while at the same time does not
leave the system vulnerable to a single rack failure. However, it does reduce the
aggregate network bandwidth used when reading data since a block is placed in only two
unique racks rather than three.
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2.4 HBase

HBase [12] is an open source, distributed database for storing structured data. Its
design is based on Google’s BigTable [13], and runs on top of the HDFS to enhance its
storing capabilities. Its data model is different from traditional relational databases. It
does not support a structured query language like SQL, but instead uses a key/value
model where data are organized in columns.

2.4.1 HBase building blocks

Table. The biggest building block in the database.

Row. Each table consists of a number of rows. Each row possesses a unique key through
which it can be identified, and all rows within a table are sorted based on that key. This
enables the programmer to control the way data are stored and allows for easy and
efficient access to ranges of rows.

Column Family. Data within each row are split to separate column families that are the
same for each row and need to be specified upon table creation (even though some rows
may not contain data in all column families). Data stored within each column family are
also physically stored in adjacent locations in order to more efficiently serve queries
requesting data from them.

Column. Each column family contains a number of columns. Unlike column families,
columns are allowed to differ from row to row, and can change dynamically.

Cell. A combination of a row key, a column family and a column uniquely identifies a
cell. Each cell stores a byte array, which is its value.

Timestamp. HBase has a built-in data versioning and recovery mechanism through the
use of its timestamps. Instead of storing a single value in each cell, HBase stores a
number of recent values. That number can be configured to be different for each column
family, and is by default equal to three. If not specified, HBase will store data using the
current timestamp and read the data with the latest timestamp, though the user is free to
read and write the versions of the data she specifies

2.4.2 HBase architecture
HBase follows a master-slave architecture [11] consisted of the following
components:

Master Server. The Master Server in HBase holds the metadata for all the tables stored
in the database, and performs schema changes and table creation or deletion operations.
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At the same time, it controls the distribution of the regions among the Region Servers in
order to evenly balance the workload.

Figure 2.3: The HBase architecture

Region Servers. Each Region Server is responsible for serving and managing a number
of regions. Even though data stored in the HDFS are spread across different physical
locations, each region server stores the data that correspond to the regions it serves within
the local HDFS DataNode in order to be able to serve requests locally.

ZooKeeper. It is a centralized service for maintaining configuration information,
naming, providing distributed synchronization, and providing group services. HBase uses
ZooKeeper to track the state of the servers in the cluster and handle communication
between the master and the region servers.

HBase’s architecture allows it to easily scale and store large amounts of sparse
data. The fact that it runs on top of HDFS provides high availability and fault tolerance,
and makes HBase easy to integrate with other tools within the Hadoop ecosystem, such
as MapReduce. Finally, having only a single server responsible for each piece of data,
allows it to guarantee strong consistency and perform atomic row operations.

2.5 Yahoo Cloud Serving Benchmark

The Yahoo! Cloud Serving Benchmark (YCSB) [14] is an open-source
specification and program suite for evaluating retrieval and maintenance capabilities of
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computer programs. It is often used to compare relative performance of NoSQL database
management systems.

The YCSB Client is a Java program for generating the data to be loaded to the
database, and generating the operations which make up the workload. The architecture of
the client is shown in figure 2.4. The basic operation is that the workload executor drives
multiple client threads. Each thread executes a sequential series of operations by making
calls to the database interface layer, both to load the database (the load phase) and to
execute the workload (the transaction phase). The threads throttle the rate at which they
generate requests, so that we may directly control the offered load against the database.
The threads also measure the latency and achieved throughput of their operations, and
report these measurements to the statistics module. At the end of the experiment, the
statistics module aggregates the measurements and reports average, 95th and 99th
percentile latencies, and either a histogram or time series of the latencies.

Workload file Command line properties
— Read/write mix — DB to use

— Record size — Workload to use

— Populanty distribution — Target throughput

=50 — Number of threads

YCSB Client /
. Client — - G
;g g Threads % '% §, ‘/
5 5 I
= Stats AT

Figure 2.4: The YCSB client architecture

The client takes a series of properties (name/value pairs) which define its
operation. By convention, we divide these properties into two groups:
Workload properties. Properties defining the workload, independent of a given database
or experimental run. For example, the read/write mix of the database, the distribution to
use (zipfian, latest, etc.), and the size and number of fields in a record.
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Runtime properties. Properties specific to a given experiment. For example, the
database interface layer to use (e.g., Cassandra, HBase, etc.), properties used to initialize
that layer (such as the database service hostnames), the number of client threads, etc.
Thus, there can be workload property files which remain static and are used to benchmark
a variety of databases. In contrast, runtime properties, while also potentially stored in
property files, will vary from experiment to experiment, as the database, target
throughput, etc., change.

2.6 Ganglia

Ganglia [16] is a scalable distributed monitoring system for high performance
computing systems such as clusters and grids, developed by the University of California,
Berkeley. It is based on a multicast, listen/announce protocol to monitor the state of the
cluster, and uses a tree of point to point connections between representative cluster nodes
to federate clusters and aggregate their state. Data are represented in XML format,
exchanged using the XDR protocol and stored and visualized with the RRD tool. It
manages to achieve very low per node overhead and high concurrency, and is available in
a wide range of operating systems.

2.6.1 Ganglia architecture

The Ganglia’s components [15] are:

gmond. The Ganglia Monitoring Daemon is installed in every node of the cluster
from which metrics are to be collected. Its job is to collect the required metrics with the
help of the operating system, as well as announce them to a multicast channel through
UDP. It is organized as a collection of threads, most of which are assigned with the task
of collecting data for a specific metric. The collect and publish thread takes on the
responsibility of gathering the metrics collected by the local threads and publishing it on
a well-known multicast channel in periodic messages called heartbeats. The listening
threads are responsible for listening on the multicast channel for data transmitted by
other nodes and storing it in a local hash table. This allows the data for the whole cluster
to be available through any one of its nodes. Finally, a number of XML export threads
accept and process client requests to provide access to that data

gmetad. Federation in Ganglia is achieved using a tree of point-to-point
connections amongst representative cluster nodes to aggregate the state of multiple
clusters. At each node in the tree, a Ganglia Meta Daemon periodically polls a collection
of child data sources, parses the collected XML, saves all numeric, volatile metrics to
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round-robin databases and exports the aggregated XML over TCP sockets to clients. Data
sources may be either gmond daemons, representing specific clusters, or other gmetad
daemons, representing sets of clusters. Data collection in gmetad is done by periodically
polling a collection of child data sources which are specified in a configuration file,
dedicating a unique data collection thread to each child source. Collected data is parsed in
an efficient manner to reduce CPU overhead and the memory footprint.

RRDtool Storage and visualization of the historical monitoring information for
the grid is managed by Round Robin Database. RRDtool is specialized in storing time
series data and is able to maintain different time granularities ranging from minutes to
years in compact, constant size databases. Additionally, RRDtool is able to plot the
historical trends of these metrics on graphs that are used by the Ganglia PHP web front-
end, to be presented through a web interface

client
connect < > data
gmetad
poll poll

gmetad

Cluster Cluster
Figure 2.5: The Ganglia architecture
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2.7 Tiramola

Tiramola [3] is a modular cloud-enabled framework for monitoring and
adaptively resizing NoSQL clusters. Its implementation is open-source, and contains
modules that can control a number of different NoSQL databases, including Cassandra,
HBase, Riak and VVoldemort.

2.7.1 Tiramola Architecture

Tiramola [4] is an open-source project that delivers automatic resource allocation
for NoSQL clusters. It features a modular architecture illustrated in figure. 2.6. The
Decision Making module incorporates both the user-policy defined through an
optimization function as well as cluster-side and client-side monitored metrics and
periodically decides on cluster resize actions. It outputs resize action to the Cloud
Management module that interacts with the cloud vendor in order to release or acquire
more virtual machines. The Cluster Coordinator is then responsible for orchestrating the
addition and removal commands relative to the particular NoSQL cluster in hand. The
Monitoring module maintains up-to-date performance metrics collected from both cluster
nodes and client nodes.

Figure 2.6: The Tiramola architecture
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Decision Making Module. This module is responsible for deciding the appropriate
cluster resize action according to the applied load, cluster and user-perceived
performance and optimization policy. Tiramola formulates this process as a Markov
Decision Process (MDP) that continuously identifies the most beneficial action relative to
the current system state. The goals are defined through a reward function that translates
the optimization each application wishes to adhere to. Upon reaching a resize decision,
the module forwards this command to the Cloud Management module.

Monitoring. Tiramola uses Ganglia, a scalable distributed monitoring tool that allows
remote collection of live or historical cluster statistics (such as CPU load averages,
network, memory or disk utilization, number of open client threads, etc) through its XML
API.

Cloud management. The system interacts with the cloud vendor using the well-known
euca2ools, an Amazon EC2 compliant REST-based client library. This module receives
as input commands for a NoSQL cluster resize (in the number of running VMSs). The use
of euca2ools along with the creation of Amazon Machine Images (AMIs) with pre-
installed versions of the supported NoSQL systems and Ganglia guarantees that Tiramola
can be deployed in practically any EC2-compliant laaS cloud.

Cluster coordinator. The orchestration of newly commissioned or freed resources from
the NoSQL cluster is performed with the remote execution of shell scripts and the
injection of automatically created NoSQL-specific configuration files to each VM. A
high-level “start cluster”, “add NoSQL node(s)” and “remove NoSQL node(s)” command
is thus translated to a workflow of the aforementioned primitives. The implementation
ensured that each step has succeeded before moving to the next one, using applicable
time-outs. The framework has already [1] successfully incorporated three popular
NoSQL systems that exhibit elastic behavior: HBase, Cassandra and Riak. The system is
extensible enough to include more engines that support elastic operations by
implementing the system’s abstract primitives in the Cluster Coordinator module and by
including the system’s binaries to the existing AMI virtual machine image. The
precooked virtual machine image is available for download from the project’s web site.
Tiramola also strives to be robust: It periodically checkpoints and can be restarted after a
failure; required state is maintained through the monitoring module as well as the
underlying laaS platform

2.7.2 Tiramola’s Decision Making Module
Tiramola’s decision-making module is the unit that is responsible for
materializing user defined policies into cluster-resizing actions. The user policies come in

the form of reward functions that can evaluate the state of the cluster, and point Tiramola
towards states that are in accordance to the user’s needs. The state of the cluster is
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acquired by Tiramola’s Monitoring module, which collects a number of metrics from
both the cluster and the user, and makes them available to the decision-making module.
Once a resizing action has been decided, the Cloud Management module communicates
with the cloud provider as well as the virtual machines in order to modify and configure
the cluster into its new state.

Tiramola models the cluster as a Markov Decision Process (MDP). The states of
the MDP correspond to the current size of the cluster where k is the number of VMs
currently in the cluster and min and max are the minimum and maximum cluster sizes.
The available actions of the MDP are the resizing actions and include adding or removing
pre-specified numbers of VMs, or simply leaving the cluster unmodified. If a certain
resizing action would exceed the minimum or maximum cluster size if executed from a
certain state, then that action is made unavailable at that state (for example if the
minimum cluster size is four, an action that removes two VMs would not be available at
state s5).

In an MDP, the rewards are the feedback of the world towards the agent that
informs it how good or bad the outcome of an action was. In the case of Tiramola, the
result of an action is the state of the cluster after executing that action. Therefore, the
reward function was calculated using the resulting state after each transition. In order to
achieve a balance between giving enough resources to satisfy the user’s needs, but at the
same time keeping the cost of the cluster as low as possible, the reward function
generally can include both positive and negative terms. For example, a reward function
that aims to direct Tiramola towards performing actions that maximize the throughput
and minimize the latency, while at the same time keeping the size of the cluster as low as
possible, can be in the form.
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Chapter 3

3. Using Tiramola

3.1 Tiramola workflow

Tiramola is responsible for the whole workflow of the experiments. When
running, Tiramola is making the following steps:

a) The NoSQL-cluster has X running nodes.

b) Tiramola is a Reinforcement Learning (RL) Agent knowing its State S; by retrieving

cluster’s metrics and decides to take an action A1 defining if the cluster will expand,

contract or stay stable.

c) Due to action Az the cluster ends up having Y running nodes.

b) The YCSB tool is running in machines that are the VM-clients stresses the NoSQL-

cluster with constant load Li. The duration of the load involves 2 3-minute periods with

an 1-minute break between them.

c) Each time the NoSQL-cluster is stressed, Tiramola is gathering metrics from 3 sources:
i) An external ganglia system that monitors the whole OpenStack installation.
(external-ganglia-metrics)

ii) An internal ganglia system that is installed in all the NoSQL nodes. (internal-

ganglia-metrics)

iii) Metrics reported from the YCSB running in clients. Each time YCSB-load

ends, a report with metrics is generated. (YCSB-metrics)

d) When the whole YCSB-session ends, Tiramola is taking into consideration only the

metrics gathered from the 2nd 3-minute period of YCSB-load. The 1st period considered

as a warm-up.

e) Tiramola’s Decision Making module defines the exact new State S» based on all

retrieved metrics.

f) Tiramola is getting a reward R for selecting the Action A1, based on the reward-

function that is user-defined.

g) Tiramola updates the value of the State S; and the Action-values, known as Q-Values

of the corresponding Actions based on the reward and runs the splitting algorithm, if such

involved by the selected model.

The iteration ends and the system is starting again from (a), where the NoSQL-
cluster now has Y running nodes, Tiramola is in State S; and going to decide to take
Action Az and so on...

We will call the whole iteration a “time-step”, which lasts about 10’ if no extra delays

happen.
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3.2 Type of load

YCSB always stresses the NoSQL-cluster with constant load Lx. The load that is
stated as sinusoidal in previous works that benchmark Tiramola [4 - 7] is the overall
image of all different Lx loads. So, it is not a continuous sinusoidal load, but has distinct
values.

In this work we are going to stress the NoSQL-cluster with the same kind of
sinusoidal load when we evaluate the parameters of the MDP-DT model. Until now, all
previous works [1 - 7] benchmarked Tiramola by running sinusoidal load against the
NoSQL cluster. There is no prior knowledge on using Tiramola to change the size of a
NoSQL-cluster that is stressed under unpredictable load, thus we are going to experiment
on that case.

3.3 Modes of the Decision Making module

Tiramola is composed by 4 modules: Monitoring, Cluster Coordinator, Cloud

Management and Decision Making [4]. The latter is the “brain” of Tiramola. It defines
the whole State Space, the permissible Actions and the way that Tiramola evaluates each
Reward and decides its next Action. Most changes and improvements on Tiramola [1 - 5]
are related with this module and so did the last work [7].
In this work, we use the most recent version of Tiramola as described in [7]. In this
version the Decision Making module has 4 different modes that correspond to the
implementation of 4 different algorithms. The user decides which one of them to use and
defines it in a properties file:

i) Q-Learning (Q)

i) Markov Decision Process (MDP)

iii) Q-Learning with Decision Trees (Q-DT)

iv) Markov Decision Process with Decision Trees (MDP-DT)

3.4 Available metrics

As described in 3.1 (Tiramola workflow), Tiramola retrieves metrics about the
NoSQL cluster during each time-step. The Monitoring module retrieves metrics from 3
sources:

) An external ganglia system that monitors the whole OpenStack

installation.(external-ganglia-metrics)
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i) An internal ganglia system that is installed in all the NoSQL nodes.
(internal-ganglia-metrics)

iii) Metrics reported from the YCSB running in clients. Each time a YCSB-

load ends, a report with metrics is generated. (YCSB-metrics)

The metrics is the most crucial part, because they define the state of the NoSQL-
cluster and thus the environment of the Tiramola-agent. By retrieving these metrics the
agent defines its State. The following tables contain all the 44 metrics that are available
from the 3 sources along with a brief description.

laaS metrics (external Ganglia)

cpu | cpu of the whole user’s system

number_of threads | number of threads used by all VMs (NoSQL-cluster and clients)

read_io_reqs | read io requests of the cluster (NoSQL-cluster and clients)

write_io_reqgs | write io requests of the cluster (NoSQL-cluster and clients)

Table 3.1: laaS metrics

NoSQL-cluster metrics (internal Ganglia)

bytes in | bytes flowing into the cluster

bytes out | bytes flowing out of the cluster

cpu_idle | percentage of cpu that is not used

cpu_nice | percentage of CPU cycles spent on nice processes

cpu_system | Percentage of CPU cycles spent in non-user mode

cpu_user | Percentage of CPU cycles spent in user mode

cpu_wio | Percentage of CPU cycles spent waiting for 1/0

disk_free | The amount of the HDD that is free

load_fifteen | Reported system load, averaged over fifteen minutes

load_five | Reported system load, averaged over five minutes
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load_one | Reported system load, averaged over one minute

mem_buffers | Amount of memory allocated to system buffers

mem_cached [ Amount of memory allocated to cached data

mem_free | Amount of free memory

mem_shared [ Amount of memory occupied by processes

mem_total | Total amount of physical memory

part_max_used | Maximum percent used for all partitions

pkts_in | Packets in per second

pkts_out | Packets out per second

proc_run | Total number of running processes

proc_total | Total number of processes

Table 3.2: NoSQL cluster metrics

YCSB-metrics

% read_load | Percentage of read load

incoming_load | Amount of the whole load that YCSB sends

read_latency | Latency of the read queries

read_throughput | Throughput of the read queries

total_throughput | Total throughput for all queries (read, update or delete)

update_latency | Latency of the update queries

update_throughput | Throughput of the update queries

Table 3.3: YCSB client metrics
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Tiramola-made metrics

number_of VMs | Number of VMs of the NoSQL-cluster (with master, if NoSQL
has master-slave arch)

RAM _size | Mean RAM size of all slaves of NoSQL-cluster

number_of CPUs | Mean number of CPUs of all slaves of NoSQL-cluster

storage_capacity | Mean amount of HDD storage capacity of all slaves of NoSQL-
cluster

i0_reqs | =read_io_reqs + write_io_reqs

%_free_ RAM | = mem_free / mem_total

% _cached RAM [ = mem_cached / mem_total

% _ CPU usage | = 100 - cpu_idle

% _read_throughput | = read_throughput / total _throughput

total_latency | = (READ_LATENCY * READ_THROUGHPUT +
UPDATE_LATENCY * UPDATE_THROUGHPUT) /
(READ_THROUGHPUT + UPDATE_THROUGHPUT)

next_load | =2 * current_load - last_load.
It is a simple linear forecasting of the next load.

network _usage | = bytes_in + bytes out

Table 3.4: Combined metrics

3.5 State Spaces
3.5.1 State Spaces for beginners in Reinforcement Learning

One of the most well-known examples for beginners in Reinforcement Learning
(RL) involves an agent that moves around in a grid, which has 12 squares defining 12

different states for the RL-agent. One of the states is usually the goal and gives the
maximum Reward and another one is something like trap giving minimum or negative
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Reward. The available Actions of the agent and all the other possible Rewards are
defined and the student has all the data for solving the first RL-problem.

GOAL

Figure 3.1: State-space of RL-exercise for beginners

START

During the next lessons an RL-student will deal with more RL-problems having
similar State Spaces defined as 4X4, or 4X5 etc. grids. Each State Space is defined in
Cartesian-like names, chess-like or each State may have a serial number.

Figure 3.2: Simple State Spaces in Reinforcement Learning

These all are simple cases for exercises, where the Agent is usually allowed to
decide between the Actions: Up, Down, Left and Right. The grid is like a map and the
RL-agent is just a walker in the map, having a certain goal in each problem. It is also
clear that the State Space in each of the above has 2 Dimensions and each Dimension has
units specified by each square.

3.5.2 State Spaces in Tiramola
During every time-step, the NoSQL-cluster is stressed with load. When the
stressing is over, Tiramola receives the 44 metrics which describe NoSQL-cluster’s

reaction. As stated earlier, the Tiramola-agent can use them to define its State, but first
we should decide which one of them the agent will use. For instance, if we let the agent
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use them all, then a State Space of 44 Dimensions will be available, which is surely a too
complicated State Space.

We want the Tiramola-agent to be able to add or remove VMs, so the available
Actions are “Add X Vms”, “Remove X Vms”, “No Action”, with X being 1, 2, or
whatever the user decides. Thus, it is obvious that one of the State Space’s Dimensions
will be the number_of VMs, but one Dimension cannot be enough. We should define at
least one more.

Part of this work will be to define which of the rest 43 metrics are the most
appropriate to be used as Dimensions of the State Space. Seeing this problem from a
different point of view, we are going to evaluate which if the 43 metrics are the most
suitable to be used from the MDP-DT algorithm as splitting parameters. The reason for
this equivalence of these 3 terms is that for the Tiramola’s Decision Making Module the
metrics of the cluster, the Dimensions of the State Space and the splitting parameters are
all the same thing. Tiramola gets the cluster metrics, uses some of them as splitting
parameters to create a State Space and from the State Space point of view these metrics /
splitting parameters are its Dimensions.

3.5.2.1 State Space in Q and MDP modes

The Q and MDP algorithms create a State Space that is more affected by the user
than the Q-DT and MDP-DT ones. In both Q and MDP algorithms, we modify a .json file
where we define which of the metrics will be considered as parameters of the State
Space. To make it clear, a metric and a parameter is the same, but a metric gets its value
from the cluster’s behavior, while a parameter has its values defined by the user. Taking
into account the previous descriptions of the State Space, a parameter is a Dimension of
the State Space and its user-defined values are the units of that Dimension. The user
selects number_of VMs as a parameter and most of the times next_load is selected as the
second parameter.

Having these 2 parameters, the Tiramola-agent can now define the State Space.
We can think of it like a grid we often see in Reinforcement Learning problems.
Tiramola’s Dimensions of the State Space are defined by number of VMs values and by
next_load value-range. Both of these parameters and their values are defined by the user.
For instance, if we have a NoSQL-cluster that can contract or expand from 4 VMs to 10
VMs, the obvious choice for the values of number_of VMs is 4, 5, 6, 7, 8, 9 and 10.
Also, we will define values for the next_load that will be converted to value-ranges. For
instance if we select [1000, 5000, 10000, 22000, 35000], the Tiramola-agent will convert
it to 4 value-ranges: [1000, 5000], [5000, 10000], [10000, 22000], and [22000, 35000].
Eventually, the State Space will look like the grids of the exercises for RL-beginners and
will be composed from a number of states equal to the product of number_of VMs
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values by next_load value-ranges, meaning 7 * 4 = 28 States. The States will be created
based on these two parameters as follows:

S0: [4, [1000, 5000]], S1: [5, [1000, 5000]] ...etc... S6: [10, [1000, 5000]], S7: [4, [1000,
500011, S8: [5, [5000, 10000]] ...etc... S13: 10, [5000, 10000]]...etc, until S27.

Now, as described in steps (b) and (e) in 3.1 (Tiramola workflow), the Tiramola-
agent by retrieving the metrics can define its State. For instance, if during the load-time
the NoSQL-cluster has 5 VMs (number_of VMs = 5) and the next_load metric has value
of 3,000, then Tiramola-agent knows that it is in S; State.

Leaving aside that Q and MDP have a huge difference in their updating algorithm
and are considered as model-free and model-based RL approaches respectively, seeing
these algorithms from the Tiramola-agent point of view, they have a great similarity.
Each of them has its State Space fully defined by the user.

3.5.2.2 State Space in Q-DT and MDP-DT modes

In Q-DT and MDP-DT algorithms, the user defines the metrics that will be used
as parameters for the State Space, but does not define their values or value-ranges. In fact
the user may not even know what the values of each parameter are at all. After each time-
step, Q-DT or MDP-DT are updating the values of the current State and the Action-
values (Q-Values) of every Action based on their updating algorithm and the Reward.
Then, they evaluate whether they can split the current State or not, based on the
accumulated experience. When a splitting algorithm runs, each of the (user-defined)
parameters are being checked if they are suitable to split the current State into two new
States. Each of the parameters is checked separately and the user-selected statistical test
returns a value. By using that value, the splitting algorithm calculates if a parameter is
suitable for splitting the current State. The lower the value, the bigger the probability of
doing the split. If more than 1 parameters are suitable for a split, the algorithm selects the
most probable one.

The original algorithm of the Decision Trees [18] defines that the Decision Tree
starts with only one node, the root. While the experiment is running and especially during
the training period, the splits happen and the Decision Tree grows. Each Decision Node is
defined by a parameter and a specific value and points to 2 Leafs, either a State or a
Decision Node, which are the Children. Only the last level of the Decision Tree is
composed exclusively by States.

Starting the Decision Tree / State Space with only one Leaf / State, means we
have no clue about the Tiramola-environment. Considering that such a case does not
exist, we can boost the Decision Tree with some initial Leafs. As in Q and MDP
algorithms, the most suitable metric to be a parameter for the initiation of the Decision
Tree is the number_of VMs, complying with the fact that we surely know the possible
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number of VMs the NoSQL-cluster has. As the preliminary experiments showed, even if
we start a session with only one starting-State, Q-DT and MDP-DT algorithms will surely
find the exact possible number of VMs. All the splits based on all different
number_of VMs values will eventually happen and Tiramola will have perfect
knowledge of its environment regarding the number of VMs. Considering that fact, there
IS no need in consuming time-steps for this to happen when we can give that information
to the algorithm from the beginning.

3.6 Using the last version of Tiramola

In the work that implemented the last version of Tiramola [7] we can clearly
distinguish that the full-model with Decision Trees, the MDP-DT performs better than
the other models. Also, a lot of effort was given in experimenting with several parameters
either of the MDP algorithm or of the Decision Trees and it was made clear which values
are preferred for each one of the model-related parameters.

In this work, the primary target is to run Tiramola and study its behavior while the
NoSQL-cluster is stressed by unpredictable load. In all previous works [1 - 7] Tiramola
was always stressed by periodical load. For doing this challenging task, Tiramola should
work at its best and even though the last work [7] defined the best values for the most
model-related parameters (epsilon, initial_gvalues, discount, min_measurements, splitting
criterion, statistical test, model, update algorithm), there are still some more to clarify
before using it.

In this work we will define which metrics are better to use as parameters for the
Decision Trees and we will try to explain why there are better or worse parameters. To do
this, we will study the metrics of an HBase-cluster in order to describe its behavior when
it is stressed. For doing the experiments more effectively, we will separate Tiramola’s
workflow. At first we will get the metrics stressing the NoSQL-cluster by all possible
loads and for all possible number_of VMs. Then we will study these metrics to abstractly
define the behavior of the NoSQL cluster. In the end, we can run the Virtual Tiramola
where the Decision Making procedure will retrieve in each time-step the previously
retrieved metrics. This will give us the freedom to run many more experiments/sessions
in less time, because the time-step will last some milliseconds, instead of 10 minutes.
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Chapter 4

ANALYZING HBASE CLUSTER METRICS

4.1 Objective

In order to decide the proper size of a NoSQL cluster, the metrics we retrieve
while it is up and running and stressed under any kind of load are the raw material that is
used by any system. So does Tiramola in order to automate elasticity of NoSQL clusters.
The great difference is the way each system exploits these metrics.

In this chapter, we are going to study the behaviour of these metrics. Later, we
will combine this kind of knowledge with the way Tiramola is exploiting them, in order
to come up with a conclusion. At the first part of experiments, we study the behavior of
10 different HBase metrics while linear increasing load runs against the HBase cluster. In
the second part, we study the metrics’ behavior, while the cluster is under constant load.

The total number of metrics is 44, but we can divide them to the direct metrics
and indirect ones. By studying the latter, we practically studying the direct ones too. By
looking at the tables 3.1, 3.2, 3.3 and 3.4, we can see that studying the metrics:
%_ CPU_usage, total latency, network usage, load_one, total throughput, io_regs,
cpu_wio, %_free RAM, disk free and %_ cached RAM, we also manage to study
another 11 metrics: read_io_reqs, write_io_reqs, bytes in, bytes out, cpu_idle,
mem_free, mem_total, read_latency, read_throughput, update_latency,
update_throughput. In addition to that, number_of vms and next_load do not require
further study, and load_fifteen and load_five are useless, because each time the clients
stress the HBase cluster they do it for less than 5 minutes. Consequently, we manage to
study the behavior of 21 out of 40 metrics that need to and can be studied, and more
importantly, we cover all areas of metrics that define a running cluster of machines: CPU
usage, RAM usage, disk usage and network usage, thus having an adequate view.

4.2 Experiments pt. 1: Linear increasing load

We have 13 VMs available for experiments, so we will use 1 + 8 VMs for the
HBase-cluster and 4 client-VMs running the YCSB tool. Selecting for the replication
factor of HDFS to be 2, we set the minimum size of the HBase-cluster at 2 VMs-slaves
and maximum at 8 VM-slaves and do the benchmarking against 3, 4, 5, 6, 7, 8 and 9
VMs (master included). The load we will run has range 1,000 to 25,000 reqgs/sec in steps
of 100 regs/sec. While the load increases the size of the Hbase cluster reamains the same.
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Figure 4.1: %_CPU_usage behavior against linear increasing load

Figure 4.2: total_latency behavior against linear increasing load
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Figure 4.3: load_one behavior against linear increasing load

Figure 4.4: total_throughput behavior against linear increasing load
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Figure 4.5: network_usage behavior against linear increasing load

Figure 4.6: disk_free behavior against linear increasing load

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 20:26:55 EEST - 18.224.179.84

38



Figure 4.7: %free_RAM behavior against linear increasing load

Figure 4.8: %_cached_RAM behavior against linear increasing load
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Figure 4.9: cpu_wio behavior against linear increasing load

Figure 4.10: io_reqgs behavior against linear increasing load
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4.2.1 Metrics’ behavior under linear load

Based on their behavior against linear increasing load, we can divide the metrics

into two groups.

Group 1

Group 2

% _CPU _usage

i0_reqgs

total_latency

cpu_wio

network_usage

%_free. RAM

load_one

disk_free

total_throughput

%_cached_RAM

Table 4.1: Metrics according to behavior under linear increasing load

In the first group the metrics are increasing alongside the load, until a specific
point. After that point, despite that the load continues to increase, each of the metrics
seems to be almost stable. This shows that the cluster reaches the maximum of its
performance and can’t go higher. We can call this load, the “critical load”. The critical
load is different for different size of the cluster, but the same for each metric.

In the next table we show the critical load for different sizes of the cluster based
on the total_throughput.

Critical Load
5300
8200
9700
11600
12900
15300
17000

Cluster Size

O oo N o &~ W

Table 4.2: Critical load for each cluster size

4.2.2 Conclusions about metrics behavior for linear increasing load

As it is expected, when the cluster has more nodes it also has a higher
performance maximum. While the load increases the values of the metrics of the 1%
group also increases. On the other hand, we cannot distinguish any pattern at all for the
metrics of the second group.
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4.3 Experiments pt. 2: Constant load

We will dive more into each metric’s behavior by running the same load 10 times
against all available HBase-cluster sizes. For each cluster size we divide the range of
loads from 1000 reqgs/sec until the critical (different for every cluster size) in several
steps. We will show the behavior of 2 metrics, one of the 1st group, (%_CPU_usage)
and one of the 2nd, (io_reqs) in graphs in order to have a view of how the metrics of each
group behave under specific loads that are lower than the critical load for 3 different sizes
of the HBase-cluster. For loads equal or higher than the critical, all metrics reach a global
maximum, or minimum and we get no useful information by viewing such graphs.

We stressed the HBase with loads from 1000 regs/sec until the critical one (different for
every cluster size). Given that we did it for all the different available sizes of the cluster:
3,4,5, 6,7, 8and 9 VMs it means that in total there are 70 graphs. Based on the data
gathered by all 70 graphs, we choose to present the 3 most representative for each
respective group of metrics. For clarity purposes, we select to present the results only for
3, 6 and 9 VMs for only 2 metrics (%_CPU_usage and io_reqs), one from each group.

Figure 4.11: % CPU_usage @ 3VMs against constant loads: 2000, 3600 and 5000
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Figure 4.12: %_ CPU_usage @ 6VMs against constant loads: 10000, 11400 and 12800

Figure 4.13: %_CPU_usage @ 6VMs against constant loads: 15200, 16400 and 17200
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Figure 4.14: io_reqs @ 3VMs against constant loads: 2000, 3600 and 5000

Figure 4.15: io_regs @ 6VMs against constant loads: 10000, 11400 and 12800
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Figure 4.16: io_regs @ 6VMs against constant loads: 15200, 16400 and 17200

4.3.1 Metrics’ behavior under constant load

The graphs are showing that the metrics of the 1% group, like %_CPU_usage are
more stable against the same load. Also, for different loads that are lower than the critical
one, they differentiate enough.

On the other hand graphs of the metrics of the 2" group, like io_reqgs are less
stable against the same load. Also, for different loads that are lower than the critical one,
they do not differentiate.

We already had a clue of such behavior when studying the graphs from the 1%
phase of experiments (4.2). By running the same load many times and watching each
metric alone, we can be more certain of how stable a metric is when the HBase cluster is
stressed against the same load. Furthermore, we can compare the values of one metric
when the same HBase cluster size is stressed against different loads.

In 4.3.2 we can see the average and the coefficient of variance for each metric for
all cluster sizes and each metric’s behavior will be even clearer.

45

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 20:26:55 EEST - 18.224.179.84



4.3.2 Data analysis of metrics. Cluster is stressed by constant load close to critical

Load @ 3 VMs

2,000 reqs/sec

3,600 regs/sec

5,000 regs/sec

average

cf _var

average

cf var

average

cf var

%_CPU_usage

77.72381

0.01593

92.172

0.004844

95.85738

0.00493

load_one

1.8075

0.08843

2.978738

0.154038

4.40281

0.08295

total_throughput

1980

0.00025

3564

0.00094

4948

0.00045

total_latency

5.452527

0.02654

7.568624

0.023333

9.696665

0.01817

network_usage

1131310

0.00607

20401833

0.007231

2985658

0.02769

% cached RAM

0.590990

0.00201

0.588234

0.000777

0.590121

0.00047

% free_ RAM

0.028435

0.01099

0.028745

0.016131

0.02785

0.01011

cpu_wio

4.074286

0.16767

2.051905

0.184826

0.436667

0.15534

disk_free

29.94177

0.00106

30.00871

0.002268

30.00585

0.00142

10_regs

68.62142

0.20337

143.3857

0.09652

92.28095

0.13455

Table 4.3: avg and cf_var of metrics @ 3 VMs

Load @ 4 VMs

4800 reqs/sec

6000 regs/sec

7200 regs/sec

average

cf _var

average

cf_var

average

cf _var

% _CPU_usage

86.70111

0.008913

90.306

0.003178

93.02809

0.00803

load _one

2412111

0.087961

3.001302

0.070168

4.468651

0.16461

total_throughput

4750

0.000596

5936

0.000697

7061

0.01753

total_latency

6.074851

0.014771

7.055016

0.03071

9.660051

0.17736

network_usage

1861754

0.010418

2341309

0.010243

2779146

0.03125

% cached RAM

0.588928

0.000817

0.588384

0.000824

0.576348

0.00369

% free RAM

0.028313

0.012940

0.028355

0.012172

0.028955

0.03457

Cpu_wio

0.895238

0.298173

0.624444

0.434906

0.592857

1.21474

disk_free

29.99079

0.000794

29.97785

0.001515

29.98571

0.00219

i0_regs

33.40317

0.358443

41.8937

0.472

78.44285

1.25439

Table 4.4: avg and cf_var of metrics @ 4 VMs
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Load @ 5 VMs

7,200 regs/sec

8,600 regs/sec

10,000 regs/sec

average

cf var

average

cf _var

average

cf _var

% CPU _usage

87.182619

0.008003

90.51059

0.008356

91.64190

0.003329

load _one

2.503595

0.06692

3.330357

0.05715

4.24244

0.066959

total_throughput

7127

0.000309

8510

0.000636

9421

0.012224

total_latency

6.325773

0.020495

8.023636

0.028752

8.604582

0.018364

network_usage

22718157

0.016769

2690874

0.005056

3029105

0.015186

% cached  RAM

0.583332

0.001211

0.586646

0.002060

0.597155

0.000303

% free. RAM

0.028362

0.014757

0.028554

0.007577

0.027915

0.007157

Cpu_wio

0.457857

0.614129

0.414286

0.572392

0.553929

0.477591

disk_free

29.971383

0.001554

29.98094

0.001463

29.93228

0.000889

i0_regs

19.715476

0.573954

33.18928

0.467146

37.65476

0.36236

Table 4.5: avg and cf_var of metrics @ 5 VMs

Load @ 6 VMs

10,000 regs/sec

11,400 regs/sec

12,800 regs/sec

average

cf_var

average

cf _var

average

cf_var

% _CPU_usage

86.081048

0.007915

88.724381

0.007022

89.015524

0.004424

load _one

2.564143

0.060328

3.186514

0.062241

3.328762

0.077475

total_throughput

9886

0.002148

11275

0.001143

11612

0.014052

total_latency

5.985481

0.022798

6.208749

0.021719

6.687669

0.021069

network_usage

25644203

0.00551

24697072

0.020199

25474216

0.014908

% cached RAM

0.592324

0.000702

0.563658

0.011544

0.543696

0.006677

% free RAM

0.028158

0.010977

0.035834

0.097463

0.028886

0.016598

Cpu_wio

0.868476

0.335025

0.232571

0.624887

0.342667

0.749432

disk_free

29.931784

0.00079

30.011533

0.00112

30.011155

0.00125

i0_regs

24.981905

0.339644

12.446667

0.629897

17.566667

0.610754

Table 4.6: avg and cf_var of metrics @ 6 VMs
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Load @ 7 VMs

12,800 regs/sec

14,000 regs/sec

15,000 regs/sec

average

cf var

average

cf _var

average

cf _var

%_CPU_usage

85.088651

0.006111

86.370397

0.006523

86.582778

0.004482

load _one

2.569897

0.078018

2.779032

0.057983

2.786476

0.064373

total_throughput

12666

0.000437

13480

0.012062

13219

0.008765

total_latency

4.829598

0.018814

5.425167

0.019126

5.573686

0.016596

network_usage

23284062

0.006517

24568631

0.019852

25994527

0.011533

% cached_ RAM

0.586181

0.000365

0.587606

0.000925

0.593965

0.000456

% free RAM

0.028107

0.007338

0.028469

0.011896

0.02794

0.010601

Cpu_wio

0.359841

0.237559

0.535079

0.701306

0.544841

0.574781

disk_free

29.965803

0.000528

29.964808

0.000392

29.970753

0.00106

10_regs

11.361111

0.44737

18.285714

0.972801

22.200794

0.455183

Table 4.7:

avg and cf_var of metrics @ 7 VMs

Load @ 8 VMs

14,000 regs/sec

15,200 regs/sec

16,400 regs/sec

average

cf _var

average

cf var

average

cf var

% CPU _usage

82.641769

0.006251

84.26966

0.006423

83.852245

0.005462

load_one

2.217776

0.059248

2.399449

0.048643

2.344

0.052588

total_throughput

13857

0.000677

14909

0.005279

14992

0.006868

total_latency

4.274929

0.027742

4.625379

0.014695

4.611362

0.004256

network_usage

23772741

0.003649

25512127

0.007383

25633135

0.009593

% cached RAM

0.584463

0.001431

0.586576

0.000611

0.587318

0.000617

% free RAM

0.028802

0.010101

0.028724

0.013494

0.029026

0.013826

cpu_wio

0.451293

0.251733

0.495714

0.720546

0.283946

0.197408

disk_free

29.985271

0.000377

29.978847

0.000817

29.979841

0.001001

i0_reqs

15.055102

0.321264

13.705442

0.488938

11.678912

0.391404

Table 4.8: avg and cf_var of metrics @ 8 VMs
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Load @ 9 VMs 15,200 regs/sec 16,400 regs/sec 17,200 regs/sec
average cf var | average | cf var | average | cf var
% _CPU _usage | 78.55779 | 0.008779 (80.356607 | 0.005831 (81.462381| 0.007533
load one| 1.966202 | 0.059277 | 2.07722 | 0.036486 | 2.126738 | 0.027519
total_throughput 15048 0.000984 | 16232 | 0.000617 | 16946 | 0.003409
total_latency | 3.112685 0.036 | 3.301108 | 0.021883 | 3.483197 | 0.020624
network_usage | 17434238 | 0.011549 | 18857000 | 0.003708 | 19638832 | 0.007305
% cached RAM | 0.50802 | 0.021791 | 0.547197 | 0.017802 | 0.573302 | 0.007521
% _free. RAM | 0.106464 | 0.104371 | 0.066956 | 0.145066 | 0.04171 | 0.081629
cpu_wio | 0.436726 | 1.232836 | 0.321369 | 0.562276 | 0.603929 | 0.673864
disk_free | 30.01915 | 0.001249 [30.007959| 0.001275 |30.010566| 0.00142
io_reqs | 4.396429 | 0.966439 | 6.407143 | 0.720265 |12.529762 | 0.443305

Table 4.9: avg and cf_var of metrics @ 9 VMs

4.3.3 Conclusions about metrics behavior under constant load

The experiments with constant load lead us to two conclusions. The first is about
the variation of each metric and the second is how we can distinguish the different
environment-status of the HBase-cluster.

cpu_wio and io_reqgs have higher variation than all the others. We run the same
load 10 times in a row against the same size HBase-cluster, but cpu_wio’s and io_reqs’
values are quite different each time, resulting in a high value in the coefficient of
variation (cf_var). cf_var shows the level of variation, is a measure of relative variability
and free of measurement units, so we can use it as a comparator among all metrics.

% _cached RAM, % free. RAM and disk_free have low variation, but their
values do not differ when the load or the HBase-cluster size change. If we take only them
into account we get the impression that there is no difference in HBase-cluster’s behavior
whether there are changes in the load or the size of the HBase-cluster. Such a behavior is
somewhat strange and not helpful as a Dimension of the State Space.

On the other hand, all the metrics of the 1st group have a low coefficient of
variation when the HBase-cluster has the same size and is stressed under the same load.
When the size of the cluster or the load change, the values of the metrics change. When
the load is above the critical load each of these metrics have almost the same value,
showing that the cluster is performing at its maximum.
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Chapter 5

EXPERIMENTAL RESULTS

5.1 Objective

In this round of experiments we use the last version of Tiramola and focus on the
MDP-DT algorithm. This algorithm is already evaluated as the optimal among MDP, Q
and Q-DT in previous work. Also, the optimal values for its parameters, have already
been defined [6] (5.2.3).

In chapter 4 we studied the metrics of the HBase cluster and led into conclusions
about their behavior and assumptions about their role as Dimensions of a State Space
(4.3.3). In this chapter we will test them as splitting parameters, using the MDP-DT,
which utilizes Decision Trees and is also optimal.

We are going to test the 10 metrics as splitting parameters in several setups.
Firstly, we will use each one alone. Secondly, we will use them in groups, as they were
grouped in chapter 4. Finally, we will use them all together. For each setup we will
evaluate Tiramola’s performance and therefore we will draw conclusions about how
much each metric helped as a splitting parameter.

For doing such evaluation, we are going to keep the same policy, which is “we
want the cluster to have the smallest possible size, but always serve the incoming load”.
Based on this policy, we are going to define the ideal performance of Tiramola for a
sinusoidal load. Therefore, every time we do an experiment we will compare the current
performance of Tiramola against the ideal one and introduce our measure of comparison
which is the Mistake (5.2.3).

Having completed our evaluation of the splitting parameters and having defined
the optimal ones, we go to the 4" and last phase of experiments. In that phase we test
Tiramola with MDP-DT algorithm and all optimal parameters, general and splitting ones,
by sending unpredictable load against the HBase cluster. This last phase brings new
challenges like defining the level of randomness of an unpredictable load and the level of
Tiramola’s flexibility.
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5.2 Experiments pt. 3: Sinusoidal load
5.2.1 Metrics as splitting parameters

As it is stated in chapter 4, the basic parameter that defines the environment of the
Tiramola-agent is the number_of VMs. The second most selected parameter is the
next_load. These two parameters are used in Q and MDP algorithms and are selected by
the user with their values defined. In this chapter we are going to use Decision Trees, by
experimenting with the MDP-DT algorithm, which uses the splitting algorithm [6]. In
MDP-DT we define some of the metrics as parameters and let the algorithm grow the
Decision Tree starting from only few States. Each time a split happens, the algorithm
decides which of the parameters is more suitable for splitting the current State into two
new States and in which point.

Also, we can help the algorithm by defining an initial parameter with its values. In
this case the algorithm knows from the beginning 1 Dimension of the State Space and
starts with a Tree having a small number of States from the beginning. The work [6]
defines the “small number of States” as 6 or something similar. In this work we choose to
use as initial parameter the number_of VMs by defining all its possible values: 3, 4, 5, 6,
7, 8, 9. So, the algorithm will fully know from the beginning the 1st Dimension of the
State Space and start the Decision Tree with 7 States. We do this for several reasons.

- number_of VVMs is the most critical parameter that describes the cluster because the
size of the cluster is what matters most for the Tiramola-agent.

- During the preliminary experiments with Decision Trees (MDP-DT), we noticed that
the algorithm always preferred the number_of VVMs as the splitting parameter among the
others and always found out the exact splitting points/values which were identical with
the different sizes of the cluster.

- The MDP-DT spends many time-steps doing splits and growing the Decision Tree
(State Space). The bigger the Tree, the more detailed the description of the environment
within the Tiramola-agent acts. Obviously there is no need to deprive this knowledge and
let the algorithm spending time-steps for doing splits considering number_of _VMs,
given that we can define both the number_of VMs as a parameter and its values/splitting
points from the beginning.

- Another reason for this decision is that we always know the accurate possible sizes of
the NoSQL-cluster (in our case, 3 - 9 VMs) and can easily define the number of VMs’
values in the .json file where all the parameters are defined. On the other hand, it is not
equally easy to know the possible values of all the other parameters!
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5.2.2 The splitting algorithm

The splitting algorithm is involved in both models that have Decision Trees, the
Q-DT and the MDP-DT. Taking into consideration the Tiramola’s workflow, the splitting
algorithm is part of the (g) step, and runs right after updating the values of the current
State and Q-State. When the conditions are mature, it splits the current State by replacing
it with a Decision Node and creates 2 new States and thus makes the Decision Tree to
grow bigger.

From the beginning of the MDP-DT algorithm a vector of all States is created. As
required for a Markov Decision Process, a list of Q-states is stored in each State, and each
one of the Q-States corresponds to a possible Action the Tiramola-agent can do. Each Q-
state holds the number of transitions and sum of rewards towards each State, along with
the total number of times its corresponding Action has been taken. The Tiramola-agent
knows its current State S; from the retrieved metrics M. It decides to take Action A, the
NoSQL-cluster modifies its size and the clients run the load against it. During the load-
time, the Monitoring module gathers the metrics M2 and when the load-time is over, the
Tiramola-agent obtains its Reward R. The value of the Reward is determined by the
reward function, which is user-defined and usually depended by the value of one or more
metrics of the M2 set. Now, the Tiramola-agent has all the required information to update
the Values of State S; and Q-Values of Si’s Q-States, according to the user-selected
update algorithm. Except of these values, it also updates all the variables that define the
number of transitions and other valuable statistics.

One of the previously mentioned as “valuable statistics” is the quartet <Ms, A,
M2, R> that corresponds to metrics M1 and M, the obtained Reward R and the selected
Action A, as described in the previous paragraph. This quartet is stored in the State Si’s
list that corresponds to S,. When the updating ends, the algorithm checks for a possible
split on State Sy, so it follows this workflow:

(i) It retrieves the current best Action of Si, which is the Action that corresponds to the
Q-State with the higher Q-Value of all S1’s Q-States.

(i) It isolates the experiences <M1, A, M2, R> where the Action happened and by using
each quartet finds the State S that corresponds to M. based on the current Decision Tree
and calculates q(m, a) =r + yV(s’), that is called “instantaneous Q-Value”.

(iii) For each user-defined parameter p it calculates all the tuples <m[p], q(m, a)> and
sorts them based on the value of the parameter m[p].

(iv) For each two consecutive unequal values of the parameter mi[p] and mi+1[p] in that
list, we consider splitting the state at their mid-point. For that purpose it runs a statistical
test on the sets of instantaneous Q-values dividing them in two groups. The g- = {g(m, a)
| k <=1} and the g+ = {q(mk, &) | k > i}. Each of the groups must have at least a number of
values equal to the user-defined min_num_experiences. If not, splitting the State on the
current point is aborted.
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(v) If the condition in (iv) is fulfilled, the g- and the g+ groups are fed in a statistical test
to check if they are statistically indifferent. The result of the statistical test is compared
each time to the user-defined max_type | error. If the result is lower than
max_type_I_error, the mid-point is a possible splitting point.

For each parameter we have many possible splitting points to check. For all these
points that fulfil all the conditions the winner is the one with the lowest achieved result of
the statistical test. This point becomes a possible splitting point. So, we have only one
splitting point for each one of the parameters. If there are more than one parameters with
a possible splitting point, we also chose the one with the lowest achieved result in the
statistical test. This means that when the splitting algorithm is running, only one point can
be a splitting point and each time we have only one split at most. As it is obvious, there is
a tuple that describes each split: <splitting_parameter, splitting_point>.

5.2.2.1 Assumptions on the splitting algorithm

It is obvious from step (iii) that if the parameter has always constant value, no real
sorting can be done. Also, in this case, step (iv) is practically aborted. The parameter has
always the same value, so the algorithm cannot define any splitting point.

The splitting algorithm tries to correlate the values of a parameter with the level
of success of an Action. If the parameter’s values vary a lot under the same circumstances
(load, size of NoSQL-cluster), as we noticed in experiments with constant load, or do not
have any certain pattern when the load or the size of the NoSQL-cluster changes, as we
noticed in the linear load experiments, the algorithm will not be able to be efficient. The
instantaneous Q-Values will be correlated with parameter-values that explain practically
nothing, because these parameters cannot describe reliably the effort of the NoSQL-
cluster in different circumstances. In such cases the split won’t be efficient and the
resulting States won’t be useful for the Tiramola-agent to be aware of the environment.

Our assumption is that metrics of the 2nd group will produce worse Decision
Trees and thus worse State Spaces than the ones of the 1st group, if they are used as
splitting parameters for the *-DT algorithms.

5.2.3 Experimental setup

In the previous work [6] there is a lot of effort on defining the most efficient
algorithms and the best values for their parameters. We will take into consideration the
previous work and we will choose only the best algorithms and parameters in order to
focus on defining the more and less efficient parameters for the splitting algorithm. The
selected algorithms and parameters in the following experiments are:
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- The HBase-cluster could expand and contract from 3 VMs to 9 VMs (including master).
- The Tiramola-agent could decide among the Actions: add 1 VM, add 2 VMs, no action,
remove 1 VM and remove 2 VMs.

epsilon

0.5

RL model

MDP-DT

Update Algorithm

Prioritized Sweeping

Update Algorithm error

0.1

Max Steps

100

Initial Q-Values

0

Discount y

0.5

Splitting Algorithm

Q-value test (mid-point)

Split error (max_type_|_error)

0.005

Minimum number of experiences | 2

Statistical Test | Mann-Whitney test

Table 5.1: Selected parameters for MDP

master slave client
number of VMs 1 8 4
vcpu 4 2 1
RAM (GB) 16 4 2
storage (GB) 10 40 10

Table 5.2: VM characteristics for experiments

We loaded 3,000,000 records in the HBase and by defining the HBase-parameter
hbase.hregion.max.filesize to 32 MB we managed to have about 650 regions. The HDFS
replication factor was set to 2.

54

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 20:26:55 EEST - 18.224.179.84



In each of the following experiments we run sinusoidal load from 1,000 to 19,000
regs/sec. We let the Tiramola agent to train for 2,000 time-steps while the epsilon
parameter is set to 0.5. This means that the agent in each time-step has 50% possibility to
choose a random Action (exploration) and 50% to decide the optimal Action
(exploitation). Then, it runs for 200 more steps exploiting the accumulated knowledge
and choosing only the optimal Action. Each load-period needs 40 steps, so all the
evaluation time-steps were equal to 5 load-periods. In the following tables we study
Tiramola’s behavior and efficiency during the first 2 load-periods of evaluation and
during the last (5th) load-period of evaluation.

5.2.4 Introducing comparison measurement

Based on the policy “we want the cluster to have the smallest possible size, but
always serve the incoming load”, we define the ideal performance of Tiramola for a
sinusoidal load. During every time step the cluster is stressed by a specific load and there
is an optimal size of the HBase-cluster with which the Tiramola-agent obtains the biggest
Reward. For each time-step in the experiments we compare the selected size of the
cluster by Tiramola with the optimal one and find the difference. If Tiramola selects the
size of the cluster to be X, but the optimal size is X-1 or X+1, we say that this is 1
Mistake. In this way we distinguish clearly Tiramola’s performance in each experiment.
By changing only the splitting parameter in the whole experiment setup, Tiramola’s
performance determines the effectiveness of each splitting parameter.

Figure 5.1: Ideal Tiramola performance against sinusoidal load
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5.2.5. Performance of splitting parameters

We ran every experiment with number_of vms being the default Dimension of
the State Space. We use every metric as the only splitting parameter and run each
experiment 10 times. Each time we run an experiment, we calculate the mistakes for the
1st, 2nd and 5th period during exploitation. In this set of experiments the whole training
lasts 2000 time steps (50 sinusoidal periods), while the exploitation lasts 200 time steps
(5 sinusoidal periods). We exclude the best and the worst performance based on the
number of mistakes and calculate the average of mistakes of the remaining 8
experiments.

In the experiments where we use multiple metrics as splitting parameters, we
expect Tiramola to split the State Space faster, so we are stricter and train Tiramola for
1000 time steps (25 sinus periods).

AVG num of Mistakes AVG num of Mistakes
Parameters 1st and 2nd period 5th period
2000 time-step-training
% _ CPU _usage 36.3 16.3
1st 1st group
group net_usage 40.6 g:ltcg:g;% 19.6 calculated
total_throughput 37.3 . 18.6 average:
average: 16.9
total _latency 36.6 37.05 15 '
load_one 38 15
10_reqs 85.3 78.3
2nd - 2nd group 1st group
group cpu_Wio 119 calculated 58 calculated
%_free_ RAM 154 average: 73 average:
disk_free|  197.6 1295 95 713.26
%_cached RAM 91.6 62
next_load 31.6 10.3
1000 time-step-training
1st group + next_load 33.25 15
2nd group 82.75 28.75
All 96 24.75

Table 5.3: Tiramola performance for one or more splitting parameters
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When Tiramola is using a splitting parameter of the 1st group of parameters the
average Mistakes for 2 periods right after training is approximately 37. The following
chart is an example of how Tiramola’s performance looks like using total throughput as
a parameter in a similar case.

Figure 5.2: Tiramola performace with total _thgoughput as splitting parameter
When Tiramola is using a splitting parameter of the 2nd group, the average
Mistakes for 2 periods right after training is approximately 130. The following chart is an
example of how Tiramola’s performance looks like using cpu_wio as a parameter in a
similar case.

Figure 5.3: Tiramola performace with cpu_wio as splitting parameter
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When Tiramola is using a splitting parameter of the 1st group, the average
Mistakes during the 5th period after the training is approximately 16. The following chart
is an example of how Tiramola’s performance looks like using total latency as a
parameter in a similar case.

Figure 5.4: Tiramola performace with total_latency as splitting parameter

When Tiramola is using a splitting parameter of the 2nd group, the average
Mistakes during the 5th period after the training is approximately 73. The following chart
is an example of how Tiramola’s performance looks like using % free RAM as a
parameter in a similar case.

Figure 5.5: Tiramola performace with %_free_RAM as splitting parameter
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When Tiramola is using next load, % CPU _usage, network usage,
total_throughput, total_latency and load_one (the whole 1% group) as splitting
parameters, the average Mistakes during the 1st exploitation sinus period is around 33,
while during the 5th period is 15. The following chart shows a similar performance.

Figure 5.6: Tiramola performace with all 1% group as splitting parameters

When Tiramola is using io_reqs, cpu_wio, % free RAM, disk free and
%_cached_RAM (the whole 2" group) as splitting parameters, the average Mistakes
during the 1st exploitation sinus period is approximately 80, while during the 5th is 29.
The following chart show a similar performance.

Figure 5.7: Tiramola performace with all 2" group as splitting parameters
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5.2.6 Conclusions on splitting parameters’ performance

It is obvious that the parameters of the 1st group have better performance than the
ones of the 2nd group when used separately.

The more Tiramola is going further from training period the more it improves its
performance when it uses parameters from the 1st group. On the other hand this happens
less often when it uses the ones of the second, and when it does, the improvement on its
performance is not that great.

When using parameters of the 1st group altogether, Tiramola’s performance is
better than using those of the 2nd altogether.

When we use all 11 parameters the performance is worse than using only the ones
of the 1st group. That means that parameters of the 2nd group are not only worse when
used alone, but they also harm the whole performance.

Using more parameters is not necessarily a smart choice. More Dimensions in
State-Spaces doesn’t imply better performance.
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5.3 Experiments pt. 4: Unpredictable Load

After defining the best parameters and algorithms of Tiramola, we are going to
run unpredictable load against the HBase-cluster and we will study Tiramola’s
performance. Tiramola’s configuration is the same as in the previous stages and the
chosen parameters are those of the 1st group. Never before the Tiramola has been tested
in such a load, so we are going to do a lot of preliminary tests in order to define the level
of unpredictability of the load, the range of the its values and when Tiramola is able to
react by taking into account the frequency in load’s transitions from very low values to
very high ones. Summing up, we are going to study and define a fair unpredictable load
according to Tiramola’s skills and then come to a conclusion about Tiramola’s speed of
reaction.

We run 4 different types of unpredictable load against the HBase-cluster.
unpredictable load1: In every time step, each of the 7 different loads is randomly chosen
and runs against the cluster.
unpredictable load2: The same load stresses the cluster for 2 successive time steps. After
that, the load’s value is a new random one.
unpredictable load3: The same load stresses the cluster for 3 successive time steps. After
that, the load’s value is a new random one.
unpredictable load4: The same load stresses the cluster for 4 successive time steps. After
that, the load’s value is a new random one.

We run every load in 4 different sessions changing only the number of training
time-steps. Tiramola has different number of training time steps: 1000, 2000, 4000 and
8000. During each experiment Tiramola runs for 100 more time steps choosing the
optimal Action. We present its performance in the next charts.
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5.3.1. HBase cluster stressed under 1%t type unpredictable load

Figure 5.8: Tiramola performance: 1% type of Unpredictable load. 1000 t.s. training

Figure 5.9: Tiramola performance: 1% type of Unpredictable load. 2000 t.s. training
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Figure 5.10: Tiramola performance: 1 type of Unpredictable load. 4000 t.s. training

Figure 5.11: Tiramola performance: 1% type of Unpredictable load. 8000 t.s. training
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5.3.2 HBase cluster stressed under 2" type unpredictable load

Figure 5.12: Tiramola performance: 2" type of Unpredictable load. 1000 t.s. training

Figure 5.13: Tiramola performance: 2" type of Unpredictable load. 2000 t.s. training
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Figure 5.14: Tiramola performance: 2" type of Unpredictable load. 4000 t.s. training

Figure 5.15: Tiramola performance: 2" type of Unpredictable load. 8000 t.s. training
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5.3.3 HBase cluster stressed under 3" type unpredictable load

Figure 5.16: Tiramola performance: 3" type of Unpredictable load. 1000 t.s. training

Figure 5.17: Tiramola performance: 3™ type of Unpredictable load. 2000 t.s. training

66

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 20:26:55 EEST - 18.224.179.84



Figure 5.18: Tiramola performance: 3" type of Unpredictable load. 4000 t.s. training

Figure 5.19: Tiramola performance: 3™ type of Unpredictable load. 8000 t.s. training
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5.3.4 HBase cluster stressed under 4" type unpredictable load

Figure 5.20: Tiramola performance: 4™ type of Unpredictable load. 1000 t.s. training

Figure 5.21: Tiramola performance: 4" type of Unpredictable load. 2000 t.s. training
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Figure 5.22: Tiramola performance: 4" type of Unpredictable load. 4000 t.s. training

Figure 5.23: Tiramola performance: 4" type of Unpredictable load. 8000 t.s. training

69

Institutional Repository - Library & Information Centre - University of Thessaly
23/04/2024 20:26:55 EEST - 18.224.179.84



5.3.5 Conclusions on Tiramola’s performance under unpredictable load

Against 1% type of unpredictable load

Tiramola is completely incapable of following such load. Only after a big number
of training time steps (only at 8000) it seems to react a bit, but the changes in the cluster’s
size seem hopeless. However, we should remind that based on the reward function we
defined, Tiramola must choose the smallest cluster size that serves the incoming load (the
less cost). Considering that fact, Tiramola cannot practically follow such an unpredictable
load and chooses to keep the cluster’s size in an average value and chooses 6 VMs (3
VMs minimum, 9 VMs maximum). In this way, it achieves a balance between serving the
loads and keeping the cost low.

Against 2" type of unpredictable load

Each load is random, but changes every 2 time steps. Tiramola now has one more
time step to modify the cluster’s size, but fails to adequately follow the load. By
increasing the training time-steps, Tiramola seems to be more stable, but still performing
poorly.

Against 3" type of unpredictable load

During the 3rd type of unpredictable load, Tiramola has 2 more time-steps to
recognize the load. Under this load Tiramola starts performing well, especially when the
training lasts 4000 time-steps or more.

Against 4™ type of unpredictable load

During the 4th type of unpredictable load, Tiramola has more opportunities to
react and adjust the cluster’s size to the incoming load. It is not only performing well
after 4000 time-steps of training or more, but also achieves a slightly good performance
even after 2000 time steps of training.

5.3.6 Extending Tiramola’s flexibility

Every time the load’s value changes the possible next value can be any of 7
predefined values. In the 2 worst cases for Tiramola the load goes from the lowest value
to the highest one or the opposite. In such cases it is possible that the cluster has the
smallest available size (3 VMs). In the case of the total increase of the load Tiramola
needs to expand the cluster to its biggest available size (9 VMs). During these
experiments we kept the previous availability of Actions for Tiramola, meaning that the
biggest expansion or contraction of the cluster is by 2 VMs. So, Tiramola needs 4 time
steps to expand the cluster by 6 VMs (2 + 2 + 2), considering that during the first time
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step Tiramola has no way of knowing how much the load will change. In conclusion, if
Tiramola is able to choose only such Actions, then it is fair to study its performance only
against unpredictable loads of the 5th type. Tiramola’s available flexibility must be
proportionate to the changes of the load. In the next experiments that will follow we will
enable more Actions for the Tiramola, and we will study its performance under such
unpredictable loads.

As the previous experiments showed, it is unfair to have extreme changes in the
load, i.e. from 6000 reqs/sec to 14000 reqs/sec, that can be served by 3 and 7 VMs
respectively, and Tiramola’s maximum flexibility being only 2 VMs (plus or minus). So,
we increased Tiramola’s flexibility by leaving all the other features as they were. Now
Tiramola can add or remove 1, 2, 3, 4, 5 and 6 VMs. Even so, Tiramola and no other
system can be able to predict a load that is completely unpredictable, meaning that
Tiramola can never follow adequately a load that is different in every time-step,
previously presented as “unpredictable load of 1st type”. So, we are going to test
Tiramola by stressing the HBase-cluster under loads of 2nd and 3rd type. Also, we will
randomly select a specific sequence of both loads for 100 time-steps that will be the
evaluation sequences. We will going to define the ideal reaction of Tiramola for these
100 steps in each case, thus being able to accurately define Tiramola’s performance.

5.3.6.1 Tiramola against unpredictable load of 2™ type

As previously mentioned, the load changes randomly every 2 time steps. During
the 1st time-step Tiramola is unable to predict the load, so we stress the cluster with the
same load for one more step giving a realistic opportunity to Tiramola to follow it. Such
load is stressing the cluster for the whole training session, but we have a specific
sequence of this type of 100 loads in every experiment during the evaluation period. In
the next chart we can see this sequence of 100 loads and the ideal reaction of Tiramola, if
it was able to fully predict the load.
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Figure 5.24: ldeal Tiramola performance against 2" type of unpredictable load

We evaluate Tiramola after 1000, 2000, 4000 and 8000 training steps. After every
training session the same sequence of loads for 100 time-steps happens during which we
study Tiramola’s behavior. Stressing the cluster under the same sequence of loads we
compare Tiramola’s reaction with the ideal one and count the Mistakes, our comparison
measurement, as defined in previous experiments with the sinusoidal load (if Tiramola
chooses 4 VMs, but the ideal choice is 3 or 5 VMs, this is 1 mistake and so on).

Every experiment is conducted 10 times and each time we study Tiramola’s
performance by counting mistakes. Then, we neglect the best and the worst performance
and calculate the average number of mistakes based on the other 8 times we conducted
the experiment. Except of studying Tiramola’s performance for the whole 100 time steps
we will pay more attention on Tiramola’s performance during each 2nd time-step of the
evaluation sequence. During this time-step Tiramola has its realistic opportunity to react.

Unpredictable 1000 training | 2000 training | 4000 training | 8000 training
Load of 2nd type time-steps time-steps time-steps time-steps
AVG mistakes at 167.4 155.3 136.6 131.1
100 evaluation t.s.

AVG mistakes 66.3 52.1 39.6 35.1

every 2 eval. t.s.

Table 5.4: Tiramola performace against 2" type of unp. load. Standard evaluation load
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In the next 4 charts we see how Tiramola’s performance looks like in similar cases as
depicted in the table above:

Figure 5.25: Tiramola perf.: Standard evaluation 2" type of unpr. load, 1000 train t.s.

Figure 5.26: Tiramola perf.: Standard evaluation 2" type of unpr. load, 2000 train t.s.
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Figure 5.27: Tiramola perf.: Standard evaluation 2" type of unpr. load, 4000 train t.s.

Figure 5.28: Tiramola perf.: Standard evaluation 2" type of unpr. load, 8000 train t.s.
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5.3.6.2 Tiramola against unpredictable load of 3™ type

As previously mentioned, the load changes randomly every 3 time steps. During
the 1st time-step Tiramola is unable to predict the load, so we stress the cluster with the
same load for two more steps. Now Tiramola has 2 opportunities to follow the load and
adapt the size of the cluster. Such load is stressing the cluster for the whole training
session, but during the evaluation we stress the cluster under the same sequence of 100
loads in every experiment. In the next chart we can see this sequence of 100 loads and the
ideal reaction of Tiramola, if it was able to fully predict the load.

Figure 5.29: ldeal Tiramola performance against 3" type of unpredictable load

We evaluate Tiramola after 1000, 2000, 4000 and 8000 training steps. After every
training session the same sequence of loads for 100 time-steps happens during which we
study Tiramola’s behavior.

Every experiment is conducted 10 times and each time we study Tiramola’s
performance by counting mistakes. Then, we neglect the best and the worst performance
and calculate the average number of mistakes based on the other 8 times we conducted
the experiment. Except of studying Tiramola’s performance for the whole 100 time steps
we will pay more attention on Tiramola’s performance during the 2nd and 3rd time-step
every 3 time-steps of the evaluation sequence. During these 2 time-steps Tiramola has 2
realistic opportunities to react.
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2nd and 3rd eval t.s.

Unpredictable Load 1000 2000 4000 8000
of 3rd type training training training training
time-steps time-steps time-steps time-steps
AVG mistakes 100 126 105.1 94.2 89.8
evaluation time-steps
AVG mistakes on 64.3 46 33.7 27

In the next 4 charts we see how Tiramola’s performance looks like in similar
cases as depicted in the table above:

Figure 5.30: Tiramola perf.: Standard evaluation 3™ type of unpr. load, 1000 train t.s.
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Figure 5.31: Tiramola perf.: Standard evaluation 3™ type of unpr. load, 2000 train t.s.

Figure 5.32: Tiramola perf.: Standard evaluation 3" type of unpr. load, 4000 train t.s.
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Figure 5.33: Tiramola perf.: Standard evaluation 3™ type of unpr. load, 8000 train t.s.

5.3.7 Conclusions on extended Tiramola performance against unpredictable load

By making Tiramola’s flexibility proportionate to the volume of load-changes,
Tiramola able to have much better performance under more demanding loads. Under
unpredictable load of the 2nd type Tiramola performs sufficiently after 4000 training
time-steps. In the previous experiments, having less flexibility, Tiramola’s behavior was
poor even after 8000 training time-steps. In the case of 3rd type of unpredictable load,
Tiramola is performing sufficiently after 2000 training time-steps, while in the previous
experiments it needed at least 4000 training time-steps to follow the load. So, if we let
Tiramola to be flexible enough and train it sufficiently enough, Tiramola can have a good
performance under unpredictable loads.
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Chapter 6

EPILOGUE

In this work we used the last version of Tiramola which implements Markov
Decision Process with Decision Trees that use the HBase cluster’s metrics as splitting
parameters and create a multi-dimension State Space based on them. We evaluated the
performance of Tiramola when an HBase cluster is stressed under unpredictable load and
Tiramola is trying to contract or expand the cluster under the policy “keep the cluster to
the smallest possible size, but always serve the incoming load”.

For doing such challenging task, we decided that it is of high importance to tune
Tiramola to its optimal condition. All the MDP related parameters (epsilon, update
algorithm, discount vy etc. [see 5.2.3]) were already evaluated and we already knew the
optimal values, so we focused on the splitting parameters. Tiramola’s Decision Tree uses
the NoSQL cluster’s metrics, while cluster is stressed, as splitting parameters to create
new States, so these metrics are also becoming the Dimensions of the State Space. All
things considered, studying the behavior of these metrics in depth was very important.

6.1 Conclusions

In the 4™ chapter we present several experiments where we don’t use Tiramola,
but we send two different kinds of loads against an HBase cluster, while keeping the
cluster’s size constant. This allows us to study the behavior of 10 metrics directly and 21
metrics indirectly. Given that the total amount of useful metrics is 40 and we cover CPU,
memory, disk and network usage we consider that our study on cluster’s metrics is
complete.

During the 1% phase of experiments we run linear increasing load and realize that
we can divide the metrics into two groups based on the behavior. The ones that have a
consistent behavior while the load is increasing and the ones that have unpredictable
behavior. Also, we define the critical load for each cluster size, which is the highest load
that the HBase cluster serves the requests for each size.

During the 2" phase of experiments we run several loads under the critical load
for each size of the HBase cluster (3, 4, 5, 6, 7, 8 and 9 VMs, master included). Doing so,
we managed to present some basic analytics about the metrics that helped us understand
deeper the behavior of metrics.
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Based on these two phases of experiments and thinking that the cluster’s metrics
will be used as splitting parameters and Dimensions of the State Space, we conclude that:

- The ones of the 2" group (4.2.1) have high variance when the cluster’s size is
constant and is stressed under the same load multiple times and/or their values do
not differ when the load or the cluster’s size is changing. Thinking of them as
splitting parameters and/or Dimensions, we can make the assumption that they
will not be efficient. Both characteristics make them inappropriate for creating a
State Space that will describe the environment for the Tiramola agent reliably.
Also, when Tiramola is using any of them as splitting parameters cannot correlate
reliably under which circumstances a specific State will bring positive or negative
Reward.

- On the other hand, the metrics of the 1% group (4.2.1) have the opposite behavior
and thus, they can be used as Dimensions of a State Space that reliably describes
the environment for the Tiramola agent. Also, being consistent makes them
reliable as splitting parameters.

In the 5" chapter we use Tiramola in two phases of experiments.

During the 3" phase we confirm our assumptions about which metrics can be
used as splitting parameters in Decision Trees and as Dimensions for the State Space. To
accomplish that, we run sinusoidal load against the HBase cluster and do multiple
experiments using each metric as a splitting parameter. In order to do the evaluation we
introduce the Mistake, which is a comparison measurement for evaluating Tiramola’s
performance that can be used when a NoSQL cluster is stressed under a standard load.

During the 4™ phase we used Tiramola optimally, while the HBase cluster was
stressed under unpredictable load. In this part of experiments we manage to:

- Define different level of randomness for unpredictable loads (4 different types).
Never before such loads were used in relevant works, so this was a challenging
task.

- Define when Tiramola is performing acceptably: against what type of
unpredictable loads and after how many training time steps.

- Go further by extending Tiramola’s flexibility about contracting or extending the
cluster. Doing so, we made the encounter (Tiramola VS unpredictable load) to be
fairer and saw that Tiramola can perform better against unpredictable loads that
have high randomness, while Tiramola is less trained.
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