
Improving operational autonomy
for unmanned aerial vehicles

Βελτίωση επιχειρησιακής αυτονομίας για μη επανδρωμένα

εναέρια οχήματα

Polychronis Georgios

Supervisor: Assoc. Prof. Lalis Spyros

2nd committe member: Assist. Prof. Katsaros Dimitrios

A Thesis submitted in fulfillment of the requirements
for the degree of Diploma Thesis

in the

Department of Electrical and Computer Engineering
University of Thessaly

Volos, Greece

October 2018

Dedicated to
family and friends

Βελτίωση επιχειρησιακής αυτονομίας για μη επανδρωμένα

εναέρια οχήματα

Περίληψη

Στην παρούσα εργασία εξετάζουμε μία παραλλαγή του Vehicle routing problem.

΄Εχοντας ένα σύνολο από σημεία ενδιαφέροντος, θέλουμε να επισκευτούμε αυτά χρη-

σιμοποιώντας ένα όχημα με περιορισμένο ενεργειακό απόθεμα, αλλά με τη δυνατότητα

επαναφορτισμού σε συγκεκριμένους κόμβους. Επίσης υποθέτουμε ότι το κόστος κίνη-

σης του οχήματος, καθώς και ο επαναφορτισμός του αποτελούν τυχαίες μεταβλητές.

Καθώς η επίσκεψη όλων των κόμβων ενδιαφέροντος μπορεί να μην είναι εφικτή, στο-

χεύουμε στη μεγιστοποίηση του αριθμού των κόμβων ενδιαφέροντος που θα επισκευ-

τούμε. Προτείνουμε κάποιες ευρετικές λύσεις για το παρόν πρόβλημα και συγκρίνουμε

την επίδοσή τους με ενδεικτικούς αλγορίθμους αναφοράς.

Improving operation autonomy for unmanned

aerial vehicles

Abstract

This work focuses in a variation of the vehicle routing problem (VRP). The goal

is to visit a set of target nodes using a vehicle with energy restrictions but also

with the ability to refuel/recharge in some depot nodes. We also consider the travel

costs and gain to be stochastic. As it may not always be possible to visit all of

the target locations, we aim at maximizing the number of the locations visited. We

are proposing two heuristic solutions and compare them with indicative reference

algorithms.

Acknowledgements

I would like to thank my supervisor Professor Lalis Spyros for all his help, support

and advice. It was a privilege to have him as professor and supervisor.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 Related work 3

2.1 Vechicle routing with fuel/enery constraints and periodic visits 3

2.2 Vehicle routing with stochastic elements 4

2.3 Energy-efficient path planning . 6

3 Model 7

3.1 Terrain and travel paths . 7

3.2 Energy reserves . 8

3.3 Energy costs . 8

3.4 Energy gains . 9

3.5 Configurations and scenarios . 9

3.6 Path feasibility . 9

3.7 Success metrics . 11

4 Algorithmic skeleton 12

4.1 Complexity . 15

5 Budget maximization heuristic 16

5.1 Plug-in functions . 16

5.2 Adapted Bellman-Ford algorithm . 18

vi

Contents vii

5.2.1 Adaptations . 18

5.2.2 Code . 22

5.3 Complexity . 25

6 Risk minimization heuristic 26

6.1 Complexity . 27

7 Reference algorithms 30

7.1 Hop minimization . 30

7.2 Ant colony optimization . 30

7.3 Oracle . 31

8 Evaluation 32

8.1 Setup . 32

8.2 Testing different thresholds . 34

8.3 Comparison with MinHops and ACO 35

8.4 Comparison with oracle . 37

9 Conclusion 41

List of Figures

5.1 The same cycle (N2, N3, N4, N2) can be beneficial (a) or not bene-

ficial (b), depending on the current budget. The edge costs are shown

on the respective edges, the node gains are shown inside each node.

In both cases, the maximum budget is 10. 20

5.2 For start node N1, destination node N4, and initial budget is 9,

the path that minimize the cost is not the same as the path that

maximizes the budget. The edge costs are shown on the respective

edges, the node gains are shown inside each node. The maximum

budget is 10. 21

8.1 Graph used in the experiments. The start node (0, 0) is in blue and

the depot nodes (2, 5), (8, 6) in green. 33

8.2 Effect of Thresholdnormal on the MaxBudget heuristic. 36

8.3 Effect of Thresholdnormal on the MinRisk heuristic. 36

8.4 Effect of Thresholdoptimistic on the MaxBudget heuristic. 37

8.5 Effect of Thresholdoptimistic on the MinRisk heuristic. 37

8.6 Comparison of our heuristics with ACO and minimizing hops algo-

rithm. 38

8.7 Comparison of our heuristics and the oracle. 40

viii

Chapter 1

Introduction

Unamnned vehicles (UVs) will play a major role in next-generation applications. In

particular, unmanned aerial vehicles (UAVs) are already being used in the domain

of argiculture and surveillance. Other types of UVs, such as unmanned ground

vehicles (UGVs) or umanned underwater vehicles (UUVs), though more exotic, are

also becoming more mature, and will most likely be used in several applications in

the future.

A typical scenario is for UVs to visit certain points of interest in order to take

some measurements or to detect certain objects or phenomena. For example, in

agriculture, UVs scan a crop field to detect problematic spots that are infected with

pests. Similarly, in search and rescue missions, UVs can scan a wide area to find

missing people. Yet another example is for a UV to patrol an area by going through

pre-defined locations. In all these cases, it is desired for the UV to perform the

mission as efficiently as possible.

This problem is known as the vehicle routing problem (VRP), which in turn is an

extension of the travelling salesman problem (TSP). In a nutshell, the VRP consists

in finding a plan that can be followed by a vehicle to visit all the target locations.

The problem has been widely studied with many variations on different constrains,

e.g., regarding the specific paths that can be followed by the vehicle, the locations

to be visited, or the time when certain locations have to be visited. Also, in several

formulations, the vehicle is assumed to have finite fuel/energy reserves or serving

capacity, which can be replenished by visiting special depot nodes.

1

Chapter 1. Introduction 2

We investigate a special variant of the VRP problem where there is some uncer-

tainty regarding the cost of travel and the energy harvesting / refueling opportunities

of the depot nodes. Algorithms that compute the travel plan based on static data

are not suitable in this case, because these plans may actually turn out to be in-

feasible. Instead, a more dynamic approach is required, where the system state is

reviewed en route and the routing decisions are adjusted accordingly, at runtime.

The rest of the thesis is structured as follows. Chapter 2 gives an overview of

related work. Chapter 3 describes the system model and the problem we study in

a more formal way. Chapter 4 gives a common high-level skeleton/pattern that is

followed by all the proposed heuristics. Then, two different heuristic algorithms are

presented in Chapter 5 and Chapter 6, respectively. As a reference, we use two more

algorithms, described in Chapter 7. In Chapter 8, we evaluate the algorithms for a

range of different scenarios. Finally, Chapter 9 concludes the thesis.

Chapter 2

Related work

Different variants of the VRP and the TSP have already been investigated. Next,

we give a brief overview, and compare with the problem we address in our work.

2.1 Vechicle routing with fuel/enery constraints

and periodic visits

In the so-called periodic vehicle routing problem and multi-depot periodic vehicle

routing problem [1,2,6,8,23], the objective is to periodically visit a set of destinations

(target nodes), using one or multiple vehicles. Vehicles have limited energy reserves,

and may recharge/refuel at special depot stations. There are more variations where

the targets have different priorities, vehicles have different capabilities/capacities,

and the targets must be visited within a time interval. We briefly dicuss such work

below.

Work in [17] investigates the problems of persistent visitation with fuel con-

straints. In this case, the vehicle perpetually visits the target nodes (customer

nodes), while each customer must be visted at a specific rate. The fuel of the vehi-

cle is limited, so it is necessary to visit nodes with refueling properties. The problem

aims at satisfying the rate of visit for each destination, as well as at minimizing the

total cost of fuel consumption.

The probem of continued monitoring is studied in [18], where the mission is

accomplished by several heterogeneous vehicles of different types with limited re-

3

2.2. Vehicle routing with stochastic elements 4

sources. The objective is to visit periodically a set of target nodes with different

priorities in a given time interval. The rate at which each target node requires a

visit (by any of the vehicles) is proportional to its priority. There is also a set of

depot nodes where vehicles can change their batteries, however each type of vehicle

requires a different type of battery; only vehciles of the same type can use the same

type of battery. Also, the number of the different types of batteries available at each

depot is limited.

All the above formulations correspond to VRPs with a fleet of one or more

vehicles that have energy/fuel limitations. Each edge of the graph is associated

with a cost, and the energy of the vehicles decreases accordingly based on that cost.

There are also one or more so-called depot nodes, where the vehicles can refuel, fully

or partially. The main goal is to find a path that minimizes the total cost of the

mission, which is the sum of the costs of the edges chosen to be used in the path of

the vehicles. Another objective is to satisfy the visit rates of the target nodes.

The main difference between the above and our work is that in our case the cost

of travel between nodes as well as the amount of energy/fuel that can be gained at

depot nodes, is not known with full certainty.

2.2 Vehicle routing with stochastic elements

The objective of vehicle routing problem with stochastic demands is for a fleet of

one or more vehicles, which have a finite serving capacity and may also have fuel

constraints, to visit and serve a set of known target nodes (customers). However,

the exact demand of each customer is not known beforehand. As a result, when a

vehicle visits a customer, it may find out that the demand exceeds its remaining

capacity. The failure to properly service the customer can be ignored, at a penalty,

and the vehicle may proceed to the next customer. Aternatively, the vehicle may go

to a depot node in order to acquire the missing resources to restore its servicing ca-

pacity, and then return to service the customer. This problem is researched in many

works [5, 16, 20]. Moreover, in [7] the problem is investigated for the more general

case where the goal is to minimize the travel time with the additional constraint of

2.2. Vehicle routing with stochastic elements 5

keeping the travel time lower than a given upper bound.

In the vehicle routing problem with stochastic travel times, a fleet of one or more

vehicles, which may have capacity and/or fuel constraints, visit a set of known

targets, but in this case, the travel time is a random variable. Also, each target

has a time window when it is available for visits by a vehicle. If the target is not

visited/served within that time window, there is a penalty. The objective is to route

the vehicles so as to minimize the total penatly. Models like this are described

in [14,15,21,22].

The vehicle routing problem with stochastic customers consists in using a fleet

of one or more vehicles, which may have capacity and/or fuel constraints, to visit a

set of potential target customers. However, these targets require a visit only with

some probability. As a result, a vehile may visit a node that does not need to be

serviced. Indicative work can be found in [4, 9, 10].

Our work is more similar to the VRP with stochastic travel times. However, in

this case the main constraint is the time, whereas in our work the main constraint

is the energy of the vehicle, which can also increase its energy reserves by visiting

certain nodes. It is also important to note that in our work the mission ends when

the vehicle exhausts its energy. This is a major difference compared to the VRP

with stochastic demands, in which case the vehicle can always go to a depot node

in order to restore its capacity. As a consequence, in our work, it is not always

possible to visit all nodes, in contrast to most other problem formulations where

this is always feasible and the problem consists in minimizing the travel cost and/or

time violation penalty. In this sense, our work is closer to [7], which has a similar

constraint for the travel cost. But in our case the stochasticity concerns the travel

cost and enegy gains, not the customer demands. The difference between this work

and ours is that we have stochastic travel costs and energy gains, as well as that our

goal is to maximize the number of target nodes that are visited.

2.3. Energy-efficient path planning 6

2.3 Energy-efficient path planning

Several algorihtms have been designed to compute an energy-efficient route between

two nodes, based on an abstract graph where the weights at edges represent the

energy consumption or the energy restoration. The difference to a typical shortest-

path algorithm, is that the computed routes minimize the sum of edge costs, not

the number of edges. For instance, [19] deals with the problem of energy-efficiency

as a special case of the constrained shortest path problem, while in [3] the authors

see the problem of energy-efficient path planning as a cost minimization problem.

In both cases, the ability of the vehicle to gain energy / recharge is modeled by

introducing edges with negative weights.

Our work is also related to the problem of findind a cost-effective path between

two nodes. However, the mimimization of the the cost of travel per se is not as central

as in the above algorithms, because it can be counter-balanced by gaining energy at

depot nodes. What is ultimately important is for the vehicle to take a route that

turns out to be feasible, while visiting as many target nodes as possible. To this end,

one of our heuristics use (as a component) a suitably adapted version of the Bellman-

Ford algorithm [11], which finds the path between two nodes that maximizes the

energy reserves of the vehicle (as opposed to minimizing the travel cost). Notably,

our version allows beneficial cycles, which are not allowed in the original algorithm

since this would mean that the travel cost can be reduced infinitely.

Chapter 3

Model

This section briefly presents the system model, and defines the problem we study in

a more formal way.

3.1 Terrain and travel paths

The terrain of travel is modeled as an incomplete directed graph (N,E), where

N is the set of nodes and E is the set of edges between nodes. Each node ni ∈ N

represents a distinct geographical location in the terrain. Each edge ei,j ∈ E denotes

the fact that the vehicle can move directly from node ni to node nj without having

to go via one or more intermediate nodes.

Edges have a direction and there can be at most one edge between two nodes per

direction. The fact that it is possible to move directly from ni to nj does not mean

that this is possible in the reverse direction. In other words, ei,j ∈ E 6=⇒ ej,i ∈ E.

The vehicle can vist nodes by travelling across the edges of the graph. The

travel path of the vehicle is encoded as the sequence of nodes that are visited by the

vehicle, including the start and end node of the path. Let pk1,k2,k3,..,km−1,km denote

the path that starts from node nk1 and goes through nk2 , nk3 etc to end at node nkm ,

corresponding to the list of edges (ek1,k2 , ek2,k3 , ..., ekm−1,km). Let occ(p, ei,j) denote

the number of times edge ei,j occurs in p, and occ(p, ni) be the number of times

node ni occurs as the starting point of an edge in p. Also, let p ⊕ ei,j denote the

path that results by appending edge ei,j to p. Finally, let nodes(p) denote the set

7

3.2. Energy reserves 8

of nodes in p (a node ni will appear only once in this set even if it appears multiple

times in the path), and let len(p) denote the number of edges or hops in p.

The set of nodes V ⊆ N includes all the nodes that correspond to the target

locations that have to be visited by the vehicle. We are interested in algorithms that

guide the movement of the vehicle so that the vehicle visits all nodes in V . Note

that the vehicle may be required to start its journey from node ns 6∈ V , and may

be required to end its journey at node nd 6∈ V . Also, the path it will follow may

include more nodes than the ones in V . So, in the general case, the end result can

be a path ps,k1,k2,k3,..,km,d so that V ⊆ nodes(p).

3.2 Energy reserves

We assume that the vehicle has limited energy storage capacity Bmax. This can be

thought of as the capacity of a fuel tank or the capacity of a battery. Let the current

energy budget (reserves) of the vehicle be denoted by b. Obviously, b ≤ Bmax holds

at any point in time.

3.3 Energy costs

The movement of the vehicle comes at a cost. Let ci,j denote the cost incurred when

the vehicle travels from ni to nj over ei,j, also referred to as edge cost.

The edge cost is not known in advance with certainty. However, we assume that

the edge cost ci,j follows a known random distribution over the range [cmin
i,j ..cmax

i,j]

with an expected/mean value of cmean
i,j, .

Without loss of generality, we assume that the edge cost is equal to the amount

of energy that needs to be spent by the vehicle in order to perform this movement. If

the vehicle has an energy budget b and moves from ni to nj over ei,j, the remainining

budget will be b′ = b− ci,j. If b′ ≤ 0, the vehicle will exhaust its energy and end its

journey before reaching nj.

3.4. Energy gains 9

3.4 Energy gains

The vehicle may increase its energy budget, by gaining some energy at certain nodes.

One can think of theses nodes as refueling/recharging stations or geographical areas

where the vehicle may gain some dynamic energy.

Similarly to the edge costs, the amount of energy that can be gained at node ni is

a random variable gi, which follows a known random distribution range [gmin
i ..gmax

i]

with an expected/mean value of gmean
i .

It may be known in advance that certain nodes cannot be used by the vehicle

to gain some energy. In this case, gmin
i = gmax

i = 0, hence these nodes have zero

probability for energy gains. Let the set of nodes G = {ni|gmin
i , gmax

i > 0} include all

the nodes with a non-zero probability of energy gain. In the general case, V ∩G 6= ∅,

in other words it is possible for a node which the vehicle has to visit to also offer

some energy gain opportunities.

3.5 Configurations and scenarios

We refer to a given graph (N,E) with a given random distribution for each edge

cost ci,j and a given random distribution for each node gain gi, as a configuration.

As noted, the actual edge costs ci,j and node gains gi are not a priori known, and

may change each time the vehicle crosses edge ei,j or visits node ni, respectively.

To capture the ground truth, we refer to the actual values of edges costs and

node gains, as scenarios. Of course, the scenario is not known to the vehicle (but it

can be known to an oracle path planner). For a given scenario, we let cki,j denote the

actual cost of edge ei,j when the vehicle crosses that edge for the kth time. Similarly,

gki is the gain of node ni when the vehicle visits that node for the kth time.

3.6 Path feasibility

In order for a planned path to be feasible, the budget of the vehicle must be sufficient

to cover the cost for crossing each edge along that path. In the following, we capture

this constraint in a more formal way.

3.6. Path feasibility 10

First, we capture the budget that remains available when starting with an initial

budget b and performing a hop from ni to nj over edge ei,j:

rem1hop(b, cp, pi,j) = min(Bmax, b + gocc(cp,ni)+1)− c
occ(cp,ei,j)+1
i,j (3.6.1)

where cp (for current path) is the path that has already been followed by the vehicle

until this point. In words, the node gain of ni is added to the budget b (up to the

maximum energy storage capacity Bmax) and then the edge cost is substracted in

order for the vehicle to cross the edge that leads from ni to nj. Note the usage of

occ() in order to take into account previous occurances of node ni and edge ei,j in

the path that has already been followed by the vehicle. The equation does not take

into account the energy gain at the destination node nj (if any), as this cannot be

exploited in order to cross the edge ei,j.

Based on the above equation, we can define the remaining budget for the general

case of a multi-hop path p from node ni to node nj, using a recursive formula:

rem(b, cp, pi,k1,k2,...,km,j) =

rem1hop(b, cp, pi,j) m = 0

rem(rem(b, cp, pi,k1), cp⊕ ei,k1 , pk2,...,km,j) m > 0

(3.6.2)

In words, the budget that remains after taking a multi-hop path equals the

remainining budget for the path without the first hop, starting with a budget that

is equal to the remaining budget after taking the first hop. As this is the case for

the 1-hop path, the remaining budget of a multi-hop path does not include the gain

of the destination node.

We can then define the feasibility of a planned path, if the vehicles has already

travelled along the path cp and has a current budget of b, as follows. We say that

pk1,k2,...,km is feasible if all prefix paths pk1,k2,...,kx , 1 < x ≤ m (including the full path

itself) have a positive remaining budget. More formally:

feasible(b, cp, pk1,k2,...,km) ≡ rem(b, cp, pk1,k2,...kx) > 0 : ∀x : 1 < x ≤ m (3.6.3)

It is obvious that feasible(b, cp, p) =⇒ rem(b, cp, p) > 0. In other words, if a

path is feasible then the budget will not be completely exhausted at the destination

node. But, if p is a multi-hop path, the reverse does not hold, rem(b, cp, p) > 0 6=⇒

3.7. Success metrics 11

feasible(b, p). This is because the fact that the remaining budget is positive at the

end of a path does not guarantee that it will not be (temporarily) exhausted at some

point along that path.

3.7 Success metrics

We wish to find an algorithm that guides the vehicle so that it manages to visit all

nodes in V without exhausting its budget while en route. In other words, starting

with an initial budget b, it is desired to find a path pk1,k2,,..,km so that V ⊆ nodes(p)

and feasible(b, p). We call such paths perfect solutions.

Note that for certain system configurations and/or scenarios, a perfect solution

may not even exist. Neverthelss, imperfect solutions are not a total failure, and

some imperfect solutions can be clearly better than others. To have a more general

metric, we introduce the so-called success ratio of a path p as the ratio between

the number of the nodes of interest that are part of the path that was followed by

the vehcile and the total number of nodes of interest that the vehicle should visit:

success(p, V) = |nodes(p) ∩ V |/|V |.

Chapter 4

Algorithmic skeleton

In this section, we describe a common algorithmic skeleton that is followed by all

the proposed heuristics. The input to the algorithm is the graph (N,E), the set V

of the nodes to visit, the node ns from where the patrol starts, and the initial energy

budget b of the vehicle (without the gains of the start node).

Our heuristics work according to a specific pattern, as follows. In a first step,

a path is chosen from the source node to some node of interest. In a second step,

the vehicle tries to follow that path, hop by hop. After each hop, an assessment of

the current situation is made, and this is compared to the assumptions of the path

planning step. If things go more or less according to plan, the vehicle continues its

journey along the current path, else it stops following the current path and a fresh

path planning step is performed, based on the situation at hand. When a node of

interest is reached, this is removed from the set of nodes to visit, and the algorithm

continues for the rest of the nodes, by planning and then following a path to another

node of interest.

In the planning phase, the paths are chosen based on estimated values for the

edge costs and node gains. Two different estimation modes are employed. In the

normal mode, these estimates correspond to the expected/mean values (cmean
i,j and

gmean
i) of the respective random distributions. In the optimistic mode, the estimates

used for the edge costs are equal to the minimum values (cmin
i,j) of the respective

distributions, while the estimates for the node gains are the maximum (gmax
i) values

of the respective distributions. In each iteration, first, an attempt is made to find a

12

Chapter 4. Algorithmic skeleton 13

path using the normal mode. If this does not lead to a feasible path, the search is

repeated, for a second time, in the optimistic mode. If this fails then the algorithm

has arrived at a dead end — it is certain that there is no feasible path from the

current location of the vehicle to any of the remaining nodes of interest. In this case,

the algorithm terminates without the vehicle having visited all nodes of interest.

This algorithmic pattern is captured in the form of a generic skeleton, given in

Algorithm 1. The functionality of the different heuristics, which will be discussed

in the following sections, is captured via two plug-in functions that have different

implementations depending on the rationale of the heuristic.

More concretely, the plug-in function ChoosePath(ns, b, V,mode) contains the

logic that encodes the core heuristic. It takes as parameters the node ns where

the vehicle is currently located, the current available/remaining budget b, the set of

nodes V that (still) have to be visited and the edge cost / node gain estimation mode

mode, and returns the path to folow. It is important to note that the path that is

returned by ChoosePath(), is a complex data structure p, where the individual hops

are recorded as an array p.hops[k], 0 ≤ k ≤ len(p), and where p.hops[k].n is the node

at the kth hop of the path; more specifically, p.hops[0].n is the start node of p (this

is always equal to node ncur that was supplied as a parameter), and p.hops[len(p)].n

is the end node of the path.

The estimates used in ChoosePath() for the edge costs and node gains to pick

the preferred path (in the first phase of the algorithm), may prove wrong in reality,

when the vehicle actually tries to follow the suggested path (in the second phase

of the algorithm). For this reason, function UnexpectedOutcome() is used to check

if the outcome turns out to be (significantly) different than what was expected in

ChoosePath(). If things do not go as planned, the plan is updated by invoking once

again the ChoosePath() function. A new path is also chosen when the current path

is successfully followed to its end, and there are still some nodes of interest that

have not yet been visited.

Note that, depending on the heuristic, the path data structure can be extended

to include additional information. In the same vein, the skeleton can be extended to

keep track of additional information, which can be passed as an additional parameter

Chapter 4. Algorithmic skeleton 14

Algorithm 1 Skeleton for the heuristics

function Skeleton(node set V , node ns, int budget)

node ncur ← ns . current node

int b← budget . remaining budget

node set remV ← V 	 ncur . nodes to visit

path p← null . path to follow

while remV 6= ∅ do

b←min(b + gcur, B) . exploit node gain

if p = null then

p← ChoosePath(ncur, b, remV,NORMAL)

if p = null then

p← ChoosePath(ncur, b, remV,OPTIMISIC)

if p = null then . dead end, terminate

return remV

end if

end if

k ← 1 . set path hop counter

end if

nnxt ← p.hops[k].n . hop to next node of the path

b← b− ccur,nxt . pay travel cost for edge ecur,nxt

if b < 0 then . budget exhausted, terminate

return remV

end if

ncur ← nnxt

remV ← remV 	 ncur

if k = len(p) ∨ UnexpectedOutcome(p, k, b, ...,mode) then

p← null . plan new path

else

k ← k + 1 . proceed with the next hop

end if

end while

return remV

end function

4.1. Complexity 15

to the UnexpectedOutcome() function.

4.1 Complexity

The complexity of the skeleton depends on the complexity of the path finding heuris-

tic, implemented in ChoosePath(), and the number of times this is invoked in order

for the vehicle manages to visit all nodes of interest.

In the best case, the path heuristic will be invoked |V | number of times, once for

each node of interest, yielding a complexity of O(|V |×P) where P is the complexity

of the path heuristic. For the case where |V | << N , the complexity is dominated

by the path heursitic and becomes equal to O(P).

In the worst case, the path heuristic will be performed after every single hop

performed, in both modes. Assuming that the length of each path followed to

reach a node of interest is in the order of magnitude of the graph diameter D, the

complexity is O(|V | × D × 2 × P). Again, if |V | << N , the comlexity becomes

O(D × P).

Chapter 5

Budget maximization heuristic

One heuristic is to favor paths that lead to nodes of interest while maximizing the

remaining budget. The intuition is that the budget that remains available after

visiting a node of interest can be further exploited to pursue more paths and to visit

more nodes of interest in the future.

5.1 Plug-in functions

The code for the respective plug-in functions is given in Algorithm 2.

Function ChoosePath(ns, budget, V,mode) is implemented as follows. In a first

step, a path is found from the source node ns and an initial budget budget to

each other node ni ∈ N so that this maximizes the remaining budget. This logic is

abstracted in a separate function FindMaxBudgetPathsToAll(), which is discussed

separetely in the sequel. Then, in a second step, from all the paths that lead to some

node of interest nv ∈ V , the one that maximizes the remaining budget at the end

of the path is chosen. Ties are broken by giving preference to shorter paths.

The ChoosePath() function returns an array of paths, one path p[nv] for each

nv ∈ N . Each path p[nv] has the structure discussed Section 4. In addition,

the path data structure is extended to store in p[nv].hops[k].b the estimated avail-

able/remaining budget after the kth hop (without taking into account any potential

gain at p[nv].hops[k].n). For notational convenience, we let the available/remaining

budget at the end of the path be also stored at the level of the entire path p[nv].b =

16

5.1. Plug-in functions 17

Algorithm 2 Plug-in functions for the MaxBudget heuristic

function ChoosePath(node ns, int budget, node set V , string mode)

node nd ← null . preferred destination node

int maxb← −∞ . remaining budget for nd

array of path p[]← FindMaxBudgetPathsToAll(ns, budget,mode)

for nv ∈ V do

if p[nv] 6= null then

if p[nv].b > maxb ∨ p[nv].b = maxb ∧ len(p[nv]) < len(p[nd]) then

maxb, nd ← p[nv].b, nv

end if

end if

end for

if nd = null then

return null

else

return p[nd]

end if

end function

function UnexpectedOutcome(path p, int k, int budget, string mode)

if mode = NORMAL then

return |p.hops[k].b−budget|p.hops[k].b > Thresholdnormal

else

return |p.hops[k].b−budget|p.hops[k].b < Thresholdoptimistic

end if

end function

5.2. Adapted Bellman-Ford algorithm 18

p[nv].hops[len(p[nv)].b.

In this heuristic, function UnexpectedOutcome() takes as input the chosen path

p that was returned by ChoosePath(), the index k corresponding to the hop that

was taken, the remaining budget b after that hop (without including the gain at

the destination node of the hop, and the mode of the search. It then compares the

remaining budget with the estimated remaining budget for that hop as this was

calculated by FindMaxBudgetPathsToAll(). In the normal mode, the function

returns true if this difference is larger than a threshold, to trigger a plan update. In

contrast, in the optimistic mode, it returns true if the difference is smaller than a

threshold. The rationale is that if reality proves to be close to an optimistic estimate

then it might be possible to plan the rest of travel based on a more realistic/normal

estimate. For each estimation mode we use a different threshold, but in both cases

the threshold is a pecentage reflecting the relative difference between the expected

and the actual remaining budget at the given hop. The selection of these thresholds

is discussed in the evaluation section.

5.2 Adapted Bellman-Ford algorithm

Function FindMaxBudgetPathsToAll() is implemented using a suitably adapted

version of the Bellmann-Ford (BF) algorithm [11]. BF is designed to find the shortest

paths from a given source node to all the other nodes in a graph. More specifically,

the edges of the graph are associated with a distance attribute, and the paths found

are those that minimize the total distance between the source and the destination

node. In our case, we use BF to find the most beneficial paths (the ones that

maximize the budget) between a given source node and all other nodes in the graph.

To this end, we adapt the algorthm to our needs, as explained below.

5.2.1 Adaptations

The notion of distance in BF can be mapped directly to the notion of edge cost in

our case. However, in BF, the edge distance values are fixed, whereas in our case

the edge costs (as well as the node gains) are random variables. Therefore, we use

5.2. Adapted Bellman-Ford algorithm 19

estimated fixed values. As discussed in Section 4, the values chosen depend on the

mode used (normal or optimistic).

In BF, so-called negative cycles whose edges sum to a negative value, are con-

sidered invalid. If such a path is found, BF, exits with error. While in our case

negative edges do not exist (recall that ci,j ≥ 0), energy gains at nodes can have

the same effect because they can increase the budget, leading to so-called beneficial

cycles where the budget at the end of the cycle is greater than the budget in the

begining of the cycle. Unlike BF, in our case, beneficial cycles are allowed. In fact,

letting the vehicle peform such cycles may be necessary in order to complete the

mission/patrol successfully. Therefore, instead of exiting, we change the algorithm

to accept such cycles and continue as usual. However, note that the same cycle can

be beneficial or not, depending on the current budget. For example, Figure 5.1a

illustrates the case where the cycle N2, N3, N4, N2 is beneficial if the vehicle has a

budget of 3, which is increased to 5. In contrast, as shown in Figure 5.1b, the same

cycle is not beneficial if the vehicle arrives at N2 with a budget of 6. Going through

the same cycle will decrease the budget to 5.

BF iteratively checks and updates the mimimum distance for reaching a node.

We check and update the best budget that can be achieved by reaching a node

(provided there is sufficient budget to reach that node). Note that mimimizing

the edge costs is not the same as maximizing the budget. Also note that, due

to the maximum budget constraint, the remaining budget along a path cannot be

caclulated simply by subtracting the sum of edge costs from the sum of the respective

node gains. For example, in the graph shown in Figure 5.2, the path from node N1

to node N4 with a starting budget of 9 that minimizes the cost is via node N3 which

provides a gain that cannot be fully exploited due to the budget constraint, whereas

the path that maximizes the budget is via node N2 which provides the same gain

that can be exploited to a full extent.

BF associates each node with a predecessor (that corresponds to the previous

hop of the path with the smallest distance so far for that node. This is because a

path can be determined by following back the predecessors from a destination node

back to the source node. In our case, we record the entire path. This is because, in

5.2. Adapted Bellman-Ford algorithm 20

(a) Cycle is beneficial.

(b) Cycle is not beneficial.

Figure 5.1: The same cycle (N2, N3, N4, N2) can be beneficial (a) or not beneficial

(b), depending on the current budget. The edge costs are shown on the respective

edges, the node gains are shown inside each node. In both cases, the maximum

budget is 10.

5.2. Adapted Bellman-Ford algorithm 21

Figure 5.2: For start node N1, destination node N4, and initial budget is 9, the

path that minimize the cost is not the same as the path that maximizes the budget.

The edge costs are shown on the respective edges, the node gains are shown inside

each node. The maximum budget is 10.

5.2. Adapted Bellman-Ford algorithm 22

the presence of cycles, knowing the predecessor node is not sufficient to re-construct

the path that needs to be followed, as this way one cannot encode the point of

entry/exit of a cycle.

BF re-computes the distances and node predecessors N − 1 times, where N is

the number of nodes in the graph. It is guaranteed that this suffices to find the

shortest paths from the destination node to all nodes. This is not sufficient in our

case, where beneficial cycles may exist and thus paths can be longer than N − 1

hops. For this reason, we run the algorithm as long as some updates still take place

for some nodes.

5.2.2 Code

To show the differences in a more tangible way, Algorithm 3 gives the pseudocode

of the original Bellman-Ford algorithm, while the code of the modified version with

the adaptations that were discussed above is given in Algorithm 4.

Our adapted code takes as input the starting node ns and the initial available

budget of the vehicle (which does not include the gain gs of the starting node).

When the search ends, the code returns the most “beneficial path (the path that

maximizes the budget) from node ns to every other ni ∈ N and the budget that

remains available when taking this path. Again, the remaining budget does not

include the gain of the end node of the path.

The principle of operation of the adapted version is the same as in the original

algoritm. Instead of using the distance, the remaining budget is used as the met-

ric for comparing among different options. Like in the original algorithm, in each

iteration the decisive factor for choosing the next edge is the cost. The gain of the

source node that can increase the current budget (subject to the budget constraint),

applies to all edge options and merely affects the feasibility of certain options.

Note that the algorithm will terminate. Even though beneficial cycles may exist,

the same cycle cannot remain beneficial for ever, due to the budget constraint. In

other words, there is a finite number of beneficial cycles. Also note that if there

are no beneficial cycles, the algorithm works like the original version and finds the

optimal path.

5.2. Adapted Bellman-Ford algorithm 23

Algorithm 3 Bellman-Ford

function BellmanFord(ns)

node prev[N] . predecessor of each node

int dist[N] . path distance via predecessor

for each ni ∈ N do

prev[ni], dist[ni]← null,∞

end for

dist[ns]← 0

for 1 ≤ k ≤ |N − 1| do

for each nj |ei,j ∈ E do

tmpdist← dist[ni] + ci,j

if tmpdist < dist[nj] then

dist[nj], prev[nj]← tmpdist, ni

end if

end for

end for

for each ei,j ∈ E do

if dist[ni] + ci,j < dist[nj] then

return error . negative cycle found

end if

end for

return dist[], prev[]

end function

5.2. Adapted Bellman-Ford algorithm 24

Algorithm 4 Adapted Bellman-Ford algorithm

function AdaptedBellmanFord(node ns, int budget, string mode)

path p[N] . array of paths from ns to every other node

boolean update . flag used for termination

if mode = NORMAL then . use normal estimates

cmode, gmode← mean,mean

else . use optimiztic estimates

cmode, gmode← min,max

end if

for each ni ∈ N do

p[ni]← (null,−∞)

end for

p[ns], p[ns].b← (ns, budget), budget

update← true

while update do

update← false

for each nj |eij ∈ E do

tmpb←min(p[ni].b + ggmode
i , Bmax)− ccmode

ij . try edge

if (tmpb > 0) ∧ (tmpb > p[nj].b) then

p[nj], p[nj].b← p[ni]⊕ (nj , tmpb), tmpb

update← true

end if

end for

end while

return p[]

end function

5.3. Complexity 25

5.3 Complexity

The time complexity of the original Bellman-Ford algorithm is O(|N | × |E|), where

|N | and |E| are the number of nodes and the number of edges, respectively.

In the adapted version of the algorithm, the time complexity also depends on

the number of beneficial cycles and the number of the nodes involved in each such

cycle. More concretely, assuming K beneficial cycles (including iterations of the

same cycle) and an average of M nodes in each cycle, the time complexity of the

algorithm is O((|N |+K ×M)× |E|). In case of no beneficial cycles exist, the time

complexity is the same as the original algorithm, O(|N | ∗ |E|).

Chapter 6

Risk minimization heuristic

Another heuristc is to favor paths that minimize the risk of turning out to be in-

feasible in practice. One metric that captures this risk is the minimum difference

between the estimated available budget and estimated edge cost, over all the hops

of a path. For brevity, we refer to this metric as the difference score or simply path

score. The lower the difference score of a path, the more likely it is for that path to

turn out to be infeasible when the vehicle tries to follow it. So, to minimize the the

risk, the difference score has to be maximized.

To this end, the plug-in function ChoosePath(ns, budget, V,mode) finds a path

from the source node ns to a node nv ∈ V so that this path maximizes the difference

score. This is implemented as a best-first algorithm with a priority queue that con-

tains the path options to be explored. The data structure used to store information

for each path p follows the pattern discussed in Section 4. In addition the path data

structure is extended so that the estimated difference score at the kth hop of the

path is stored as p.hops[k].diff , and the estimated available remaining budget at

the last hop of the path is stored in p.b. The difference score is used as the priority

of the path entries.

The priority queue is initialized with a zero-length path with ns as the start node,

budget as the difference score, and budget as the available remaining budget. Then,

iteratively, as long as the queue is not empty, the next entry is removed (the one

with the largest priority) and new entries are added to the queue for each possible

hop with appropriately updated fields. When a path to a node of interest is found,

26

6.1. Complexity 27

no new entries are added to the queue beyond that point, and all entries with lower

scores are removed from the queue —this is because the score of a path can only

get lower as more hops are added to it. Also, the path is compared to the best path

found so far to a node of interest, and it is used as the best option if it has a higher

difference score (again, ties are broken by giving preference to shorter paths). Else,

if the path does not lead to a node of interest, all feasible continuations are added in

the quue for further explotation. The search stops when the queue becomes empty.

If no feasible path is found to any node of interest based on the estimated edge costs

and node gains, the function does not return a path.

The code for the respective plug-in functions is given in Algorithm 5.

As in the previous heuristic, in the normal mode, UnexpectedOutcome() returns

true if the metric used (in this case, the difference score) turns out to be signifi-

cantly different in practice than the respective estimate that was calculated by the

ChoosePath() function, whereas in the optimistic mode it returns true if the metric

turns out to be close to the estimated value. Similarly, the thresholds used apply to

the relative difference between the expected and the actual value of the difference

score at the given hop.

Note that, in this case too, the skeleton code must be extended accordingly, to

track the actual difference score for each hop that is performed by the vehicle. This

value is then passed as a parameter to the UnexpectedOutcome() function, to be

compared with the corresponding estimated value.

6.1 Complexity

An unbounded best-first search has time complexity of O(bd), where b is the branch-

ing factor and d is the distance of the solution from the starting node. Nevertheless,

based on empirical data this complexity has a significant difference from the real per-

formance of this algorithm. The real performance is mostly affected by the goodness

of the heuristic function, but also by the optimizations that have been applied. The

optimizations that we applied on the previous algorithm are the following: 1) re-

move all entries in queue that have score lower than the score of the solution found,

6.1. Complexity 28

Algorithm 5 Plug-in functions for the MinRisk heuristic.

function ChoosePath(node ns, int budget, node set V , string mode)

priority queue q ← ∅ . queue with path options to explore

path bp← null . best path so far

int bdiff ← −∞ . best/max diff so far

if mode = NORMAL then . use normal estimates

cmode, gmode← mean,mean

else . use optimistic estimates

cmode, gmode← min,max

end if

insert(q, budget,< (ns, budget), budget >) . start path

while q 6= ∅ do

p← removeHighPrio(q) . get path option with higest score

ni, b← p.hops[len(p)].n, p.b

for each nj |eij ∈ E do . each neighbor of ni

remb← min(b + gmode
i , Bmax)− cmode

ij . budget after this hop

if remb > 0 then . budget not exhausted

diff ← min(remb, p.hops[len(p)].diff)

if diff > bdiff ∨ diff = bdiff ∧ len(p) < len(bp) then

if nj ∈ V then

deleteLowPrio(q, diff) . delete paths with lower score

bdiff, bp← diff, p⊕ (nj , diff)

else

insert(q, diff,< p⊕ (nj , diff), remb >)

end if

end if

end if

end for

end while

return bp

end function

function UnexpectedOutcome(path p, int k, int diff , string mode)

if mode = NORMAL then

return |p.hops[k].diff−diff |p.hops[k].diff > Thresholdnormal

else

return |p.hops[k].diff−diff |p.hops[k].diff < Thresholdoptimistic

end if

end function

6.1. Complexity 29

and 2) do not add to queue nodes that have been visited and the budget of the

previous visit was greater or equal.

Chapter 7

Reference algorithms

To put the performance of the above heuristics into perspective, we use three addi-

tional algorithms as a reference.

7.1 Hop minimization

As a first reference we use a hop minimization algorithm. This algorithm chooses

every time to visit the node of interest that is closest in hops to the node that

the vehicle is currently located and travels using the shortest, in hops, path. This

approach is implemented as a BFS algrithm. In our case that each cost distribution

is the same, this path planning will behave as a constrained shortest path algorithm.

7.2 Ant colony optimization

As a second reference, we use an ant colony optimization technique [13]. This

is a probabilistic approach for solving path finding problems, and has been used

expensively in previous works, which study vehicle routing problems (VRP) as well

as traveling salesman problems (TSP). More specifically, in our case, a number n of

ants are generated for m generations and each ant has a specific budget. Each ant

follows at first a randomly chosen route. In our case the ants leave the pheromone

trail of their path if they visit all of the nodes of interest or their budget is exhausted

but they have achieved the best score. The pheromone trail increases the probability

30

7.3. Oracle 31

of an ant of a future generation to choose that specific path. When an ant stops

traveling, which means that its budget is exahusted or it has visited all of the nodes

of interest, it submits its score. The path returned is the one with the maximum

submited score

7.3 Oracle

As a third reference, we use an oracle algorithm that has full knowledge of the

outcome of any action that will be taken — it knows the actual edge costs and

node gains that will apply each time the vehicle would cross and edge and visit a

depot node, respectively. We refer to this as the Oracle. The algorithm works in

three steps. In the first step, its finds the minimum cost path from each ni ∈ V

to each nd ∈ G (based on the actual edge costs). Then, for each depot node nd, it

constructs “out” and “in” node clusters. Node nv ∈ V belongs to the out cluster of

nd if it can be reached from nd with the smallest cost compared to any other depot

node. Node nv ∈ V belongs to the in cluster of nd if the cost for reaching nd is the

smallest among all other depot nodes. In the second step, the algorithm visits as

many nodes of interest it can based on the current budget, before returning to a

depot node to gain some energy (this is done based on the adapted Bellman-Ford

code discused earlier). This is repeated, until it is not possible to visit some of

the remaining nodes of interest and then return to some depot node. Finally, in a

third step, the algorithm tries to visit as many nodes as possible with the remaning

budget (without returning to a depot node). This is done by runnning the Held-

Karp algorithm [12] (which is an exact solution to the TSP). Initially, the algorithm

is run for all remaining nodes of interest, let k. If no solution is found for k, the

algorithm is run for k − 1, and if no solution is found, then it is run for k − 2 etc.

If a solution is found for k ≤ 2, the path returned by the Held-Karp algorithm is

adopted. For k = 1, the algorithm simply picks the cheapest path to any node of

interest, and marks the node as visited if the budget suffices to reach that node.

Chapter 8

Evaluation

8.1 Setup

We evaluate the above heuristics through a series of experiments. For the graph G,

we use a 10× 10 grid with a total of 100 nodes. Each node is connected only to its

horizontal and vertical neighbours. So, each node that is not at the periphery has 4

edges. The diameter d of the graph is 18 hops.

We fix the number of depot nodes to 2. The depot nodes are chosen randomly

once, and remain the same for every experiment. More specifically, the two depot

nodes are the green nodes, at position (2, 5) and (8, 6) in the grid. Also, in all

experiments, the vehicle always starts its journey from the same node. This node is

chosen under the restriction that the vehicle can reach at least one depot node with

the initially available budget. More specifically, the starting node is blue node, at

position (0, 0) in the grid. Figure 8.1 shows the setup. With no loss of generality,

we set the maximum budget limit Bmax = 1000. We also set the initial budget of

the vehicle b = Bmax = 1000.

The set of nodes V to be visted by the vehicle are chosen randomly. We ex-

periment with different Vx where x = |Vx|
|N | , for x = 5%, 10%, 20%, 100%. For each

Vx, x < 100, we test 3 different (randomly generated) sets, Vxk
, 1 ≤ k ≤ 3. To draw

more meaningful conclusions across the different Vx, in each case, we ensure that

V5k ⊂ V10k ⊂ V20k .

The gain of depot nodes follows a symmetrical double-truncated normal distri-

32

8.1. Setup 33

Figure 8.1: Graph used in the experiments. The start node (0, 0) is in blue and the

depot nodes (2, 5), (8, 6) in green.

bution with mean value gmean, lower bound gmin = gmean − gmean

3
and upper bound

gmax = gmean + gmean

3
. In all experiments, we use the random distribution for all

depot nodes, with gmean = 3
4
× Bmax. The rationale behind this is that, when the

vehicle reaches a depot with marginally exhausted budget, we want it to continue

its travel with expected budget the 75% of the maximum budget.

The edge costs also follow a symmetrical double-truncated normal distribution

with mean value cmean, lower bound cmin = cmean − cmean

2
and upper bound cmax =

cmean + cmean

2
. However, we perform experiments for different edge cost distributions

— in each experiment, all edges follow the same cost distribution. More specifically,

we let cmean = Bmax

a
, where a is the so-called autonomy degree, corresponding to

the average number of hops that can be performed by the vehicle with a maximum

initial budget. We perform experiments for 4 different autonomy degrees, 1
2
× d = 9

(low), 2
3
× d = 12 (low-medium), 5

6
× d = 15 (medium-high) and d = 18 (high).

Clearly, higher degrees of autonomy enable the vehicle to perform a larger number

of hops and visit more of nodes before having to gain some energy at a depot node.

For each autonomy degree, we produce 100 different edge cost and node gain

8.2. Testing different thresholds 34

scenarios. For each scenario, the cost of each edge and the gain of each depot node

is produced offline. These values are stored in a scenario file, from where they are

retrieved at runtime. Note that the cost of an edge changes each time the edge is

crossed; in the scenario file, 5 different values are produced for each edge, which are

retrieved in a round-robin fashion each time the vehicle crosses that particular edge.

The same applies to the gain for each depot node. The edge cost and node gain

values of each scenario are a priori known only to the oracle heuristic.

For each configuration (combination of a and V x), we perform 3 × 100 runs

(100 scenarios for each Vxk
), and present the average coverage and efficiency scores

achieved by each heuristic. In order for the ant colony optimization method (ACO)

to produce good results, in each run we use 10 ants and 200 generations of ants

(recall that the method returns the path with the best score achieved by any ant).

Finally, the Thresholds used in the UnexpectedOutcome() function is set as the

best result of the first series of experiments. We will discuss about this experiment

in the next subsection.

8.2 Testing different thresholds

In these experiments we vary the thresholds used in the UnexpectedOutcome().

Based on the different autonomy degrees, the number of destination nodes and

the heuristics used, we evaluate different percentages and decide what is the best

percentage to be used as the threshold. We compare 3 threshold values for each

mode. The values of the thresholds tested are 10%, 25%, 40% and 4%, 10%, 16%, for

the normal and optimistic mode, respectively. The fact that we use a more strict

observation for the optimistic mode, is due to the ”unrealistic” assumption made by

the mode. The best case scenario, which is what the optimistic mode assumes, is

hard to be achieved, so we need to lower the toleration for errors. In this experiment,

we calculate the average score and average number of plannings (how many times

does a planning for a new path is needed). The average values are computed on

each autonomy degree from all the different Vx and scenarios.

In the Figures-8.2,8.3,8.4,8.5, we can see the results of the current experiment.

8.3. Comparison with MinHops and ACO 35

The first observation we make is that for the different values of the Thresholdoptimistic

we see no differences at all except one small deviation on the number of plannings

for the 2 heuristics. That means that when the mode changes to optimistic, the

UV travels pointlessly. As for the Thresholdnormal, the different values affect the 2

models more obviously. For the maximizing budget heuristic, we have a rise on the

number of plannings when the threshold takes small values, but we also have a rise

in the score. So we choose to use for this model a low value for threshold. However

for the minimizing risk, when decreasing the threshold we have a rise only in the

number of plannings and not in the score. So in this model it is obvious that it is

in our interest to keep a high value as threshold.

We come to conlusion that the best value for Thresholdoptimistic is 4% and the

best value for Thresholdnormal is 10% for the maximizing budget heuristic and 40%

for the minimizing risk heuristic.

8.3 Comparison with MinHops and ACO

For this set of experiments we use the best thresholds that we found from the above

experiment. For each Vx we calculate the average score of the 2 models over the 4

autonomy degrees. As a mean of comparison we use the ACO algorithm and the

minimizing hops algorithm that we previously mentioned.

In Figure-8.6 we can see the results of the current series of experiments. It’s

clear to see that the maximizing budget heuristic has the best score over all the

other algorithms in any configuration and any Vx. The score of our other heuristic,

on the other hand, is low. It deviates from the maximizing budget algorithm more

and more, with the raise of the number of nodes of interest and when lowering the

autonomy degree. It is intreseting, but also rational, the fact that the minimizing

risk heuristic has the same score as the minimizing hops algorithm in the special

case of V100 (Figure-8.6e). This is because risk the minimization heuristic will always

8.3. Comparison with MinHops and ACO 36

Figure 8.2: Effect of Thresholdnormal on the MaxBudget heuristic.

Figure 8.3: Effect of Thresholdnormal on the MinRisk heuristic.

pick as next destination, the node that has maximum minimum remaining budget.

So when there is always a node of interest in the 1 hop neighborhood, 2 hop paths,

or longer, will never be examined. It is also intresting the fact that the ACO seems

to have a little better score in the normal configuration than the wide one. It could

mean that the topology has high enough consumption that the ants tend to the

depot nodes earlier but not high enough to stop them from traveling.

8.4. Comparison with oracle 37

Figure 8.4: Effect of Thresholdoptimistic on the MaxBudget heuristic.

Figure 8.5: Effect of Thresholdoptimistic on the MinRisk heuristic.

8.4 Comparison with oracle

In the final set of experiments we compare our two heuristic solutions with the oracle

we mentioned before. In order not to add an addition complexity to the search of

an exact solution in the oracle algorithm, just for this experiment we use only one

value from each scenario (we do not pick the values with round-robin order, we use

only one).

In Figure 8.7 we can see the results of this experiment. Now it is more clear

how much, each heuristic, deviated from the best score. We can see that for high

8.4. Comparison with oracle 38

(a) 5 destinations (b) 10 destinations

(c) 20 destinations (d) 30 destinations

(e) 100 destinations (f) Overall

Figure 8.6: Comparison of our heuristics with ACO and minimizing hops algorithm.

8.4. Comparison with oracle 39

autonomy degrees the maximizing budget heuristic has a score very close to the

best score. When the autonomy degree is lower then both of the heuristics deviate

more from the best score. We can also observe that, maximizing budget heuristic

has better score when the nodes of interest increase in number. This is because

the heuristic will choose to visit the nodes that are closer to the depot nodes first

(because these nodes are the nodes will have higher remaining budget) and then

visit the ones that is more likely to fail. So it is more possible to visit a higher

percentage of the nodes of interest.

8.4. Comparison with oracle 40

(a) 5 destinations (b) 10 destinations

(c) 20 destinations (d) 30 destinations

Figure 8.7: Comparison of our heuristics and the oracle.

Chapter 9

Conclusion

In this project, we created and tested two heuristic algorithms, with target to max-

imize the number of the nodes of interest that they visit before running out of

budget, while traveling in a stochastic environment. The design of our first heuris-

tic, maximizing budget, relies on energy efficient paths, while our second heuristic,

minimizing risk, relies on paths that are not close to infeasibility.

As we show the maximizing budget heuristic achieves better scores in all the

autonomy degrees and all the different sizes of sets of nodes of interest. This is

because this approach is more farsighted. Since we have multiple destination nodes

and not a single one, when we pick paths that maximize the budget, is much more

efficient, because we also take into account the future paths as well. If we had a

single target, then minimizing the risk of the paths could prove that it is a better

approach.

As future work there are two intresting things to be done. First of all, further

experimenting. The above experiments gave us an idea of the goodness of each

algorithm, but retrieving real data would be even more helpful to understand the

performance of each algorithm. As real data we refer to the consumption of a vehicle

in an unstable environment, to be applied as cost distributions. But also real world

gain values to be applied into the gain distribution. Secondly, we could find more

heuristic algorithms. Now that we have a first image of the results, it would be a

great support to design new algorithms. For example we need farsighted algorithms

that minimize the risk of each travel, so a combination of the two proposed heuristic

41

Chapter 9. Conclusion 42

would have great results (using adapted bellman ford to calculate paths but pick

the one with the maximum minimum remaining budget).

Bibliography

[1] Federico Alonso, M Jesús Alvarez, and John E Beasley. A tabu search algorithm

for the periodic vehicle routing problem with multiple vehicle trips and accessi-

bility restrictions. Journal of the Operational Research Society, 59(7):963–976,

2008.

[2] Enrico Angelelli and Maria Grazia Speranza. The periodic vehicle routing

problem with intermediate facilities. European journal of Operational research,

137(2):233–247, 2002.

[3] Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachen-

bacher. The optimal routing problem in the context of battery-powered electric

vehicles. In CPAIOR Workshop on Constraint Reasoning and Optimization for

Computational Sustainability (CROCS), 2010.

[4] Russell W Bent and Pascal Van Hentenryck. Scenario-based planning for par-

tially dynamic vehicle routing with stochastic customers. Operations Research,

52(6):977–987, 2004.

[5] Dimitris J Bertsimas. A vehicle routing problem with stochastic demand. Op-

erations Research, 40(3):574–585, 1992.

[6] Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu search

heuristic for periodic and multi-depot vehicle routing problems. Networks: An

International Journal, 30(2):105–119, 1997.

[7] Alan L Erera, Juan C Morales, and Martin Savelsbergh. The vehicle rout-

ing problem with stochastic demand and duration constraints. Transportation

Science, 44(4):474–492, 2010.

43

Bibliography 44

[8] Manlio Gaudioso and Giuseppe Paletta. A heuristic for the periodic vehicle

routing problem. Transportation Science, 26(2):86–92, 1992.

[9] Michel Gendreau, Gilbert Laporte, and René Séguin. An exact algorithm for the

vehicle routing problem with stochastic demands and customers. Transportation

science, 29(2):143–155, 1995.

[10] Michel Gendreau, Gilbert Laporte, and René Séguin. A tabu search heuristic for

the vehicle routing problem with stochastic demands and customers. Operations

Research, 44(3):469–477, 1996.

[11] Maher Helaoui. Extended shortest path problem - generalized dijkstra-moore

and bellman-ford algorithms. In Proceedings of the 6th International Conference

on Operations Research and Enterprise Systems - Volume 1: ICORES,, pages

306–313. INSTICC, SciTePress, 2017.

[12] Michael Held and Richard M Karp. A dynamic programming approach to

sequencing problems. Journal of the Society for Industrial and Applied Mathe-

matics, 10(1):196–210, 1962.

[13] Karl O Jones. Ant colony optimization, by marco dorgio and thomas stützle,

a bradford book, the mit press, 2004, xiii+ 305 pp. with index, isbn: 0-262-

04219-3, 475 references at the end.(hardback£ 25.95)-. Robotica, 23(6):815–815,

2005.

[14] Astrid S Kenyon and David P Morton. Stochastic vehicle routing with random

travel times. Transportation Science, 37(1):69–82, 2003.

[15] Gilbert Laporte, Francois Louveaux, and Hélène Mercure. The vehicle routing

problem with stochastic travel times. Transportation science, 26(3):161–170,

1992.

[16] Gilbert Laporte, François V Louveaux, and Luc Van Hamme. An integer l-

shaped algorithm for the capacitated vehicle routing problem with stochastic

demands. Operations Research, 50(3):415–423, 2002.

Bibliography 45

[17] Jonathan Las Fargeas, Baro Hyun, Pierre Kabamba, and Anouck Girard. Per-

sistent visitation with fuel constraints. Procedia-Social and Behavioral Sciences,

54:1037–1046, 2012.

[18] Vera Mersheeva. UAV Routing Problem for Area Monitoring in a Disaster

Situation. PhD thesis, 2015.

[19] Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Hasel-

mayr. Efficient energy-optimal routing for electric vehicles. In AAAI, pages

1402–1407, 2011.

[20] Nicola Secomandi. A rollout policy for the vehicle routing problem with stochas-

tic demands. Operations Research, 49(5):796–802, 2001.

[21] Duygu Taş, Nico Dellaert, Tom Van Woensel, and Ton De Kok. Vehicle routing

problem with stochastic travel times including soft time windows and service

costs. Computers & Operations Research, 40(1):214–224, 2013.

[22] T Van Woensel, L Kerbache, H Peremans, and Nico Vandaele. A vehicle routing

problem with stochastic travel times. In Fourth Aegean International Confer-

ence on Analysis of Manufacturing Systems location, Samos, Greece, 2003.

[23] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and

Walter Rei. A hybrid genetic algorithm for multidepot and periodic vehicle

routing problems. Operations Research, 60(3):611–624, 2012.

	Abstract
	Acknowledgements
	Introduction
	Related work
	Vechicle routing with fuel/enery constraints and periodic visits
	Vehicle routing with stochastic elements
	Energy-efficient path planning

	Model
	Terrain and travel paths
	Energy reserves
	Energy costs
	Energy gains
	Configurations and scenarios
	Path feasibility
	Success metrics

	Algorithmic skeleton
	Complexity

	Budget maximization heuristic
	Plug-in functions
	Adapted Bellman-Ford algorithm
	Adaptations
	Code

	Complexity

	Risk minimization heuristic
	Complexity

	Reference algorithms
	Hop minimization
	Ant colony optimization
	Oracle

	Evaluation
	Setup
	Testing different thresholds
	Comparison with MinHops and ACO
	Comparison with oracle

	Conclusion

