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ΠΕΡΙΛΗΨΗ  

 

Εισαγωγή: Ενδοκράνια ανευρύσματα (ΕΑ) ονομάζονται οι παθολογικες διατάσεις των ενδοκράνιων 

αγγείων, με υψηλή επικινδυνότητα σε περίπτωση ρήξης. Οι μεταλλοπρωτεϊνάσες (ΜΜΠ) αποτελούν 

μια ομάδα πρωτεασών της εξωκυττάριας ουσίας και έχουν σημαντικό ρόλο στην εμφάνιση, εξέλιξη 

και ρήξη των ΕΑ. Συνεπώς, υπάρχει μεγάλο ενδιαφέρον για την συμβολή τους στην παθοφυσιολογία 

των ΕΑ και την πρόβλεψη της έκβασης. 

Στόχοι: Σκοπός της μελέτης είναι η ανασκόπηση των δημοσιευμένων ερευνών σχετικά με τις ΜΜΠ 

και τα ΕΑ. 

Μέθοδοι: Πραγματοποιήθηκε εκτενής αναζήτηση στο Pubmed και η βιβλιογραφία εξετάστηκε ως 

προς τη συνάφεια. 

Αποτελέσματα: 81 μελέτες συμπεριλήφθηκαν στην ανασκόπηση μετά την εφαρμογή κριτηρίων 

αποκλεισμού. Υψηλή έκφραση των ΜΜΠ (κυρίως ΜΜΠ-2 και ΜΜΠ-9) έχει παρατηρηθεί σε ιστικά 

δείγματα ΕΑ, ενώ τα επίπεδα των ΜΜΠ σε ορό και εγκεφαλονωτιατίο υγρό έχουν συσχετισθεί με την 

ύπαρξη και έκβαση της ρήξης των ΕΑ. Υπάρχουν αμφιλεγόμενα συμπεράσματα σχετικά με τη 

συσχέτιση μονονουκλεοτιδικών πολυμορφισμών των γονιδίων των ΜΜΠ και των αναστολέων τους 

και τα ΕΑ. Τέλος, πειραματικά πρότυπα θηλαστικών έχουν χρησιμοποιηθεί για τη μελέτη των ΜΜΠ 

και φαρμακευτικών σκευασμάτων με ανασταλτική δράση στην εξέλιξη και ρήξη των ΕΑ. 

Συμπεράσματα: Η παρούσα μελέτη αποτελεί ποιοτική συστηματική ανασκόπηση της βιβλιογραφίας, 

με περιορισμούς. Για ποσοτικά αποτελέσματα, μεγαλύτερες μελέτες και μετα-αναλύσεις πρέπει να 

λάβουν χώρα. 
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ABSTRACT  

 

Introduction: Intracranial aneurysms (IAs) are pathological dilatations of the cerebrovasculature, 

hazardous in case of rupture. Matrix metalloproteinases (MMPs) are a proteases family of extracellular 

matrix, significant in initiation, development and rupture of IAs. Thus, there is great interest 

concerning their impact on IAs pathophysiology and their role as biomarkers predicting outcome. 

Aim: The aim of the current study is to examine the studies published regarding the association 

between MMPs and IAs. 

Methodology: An extended search was performed in Pubmed and the whole literature was examined. 

Results: After applying exclusion criteria, 81 studies were included. Elevated MMPs (especially MMP-2 

and MMP-9) expression has been noted in aneurysmal tissue, while serum and cerebrospinal fluid 

levels of MMPs have been associated with occurrence of IAs and outcome after rupture. Correlation 

between single nucleotide polymorphisms in MMPs and MMPs inhibitors genes and IAs has been 

controversial. Animal models have been used in order to assess the role of MMPs in IAs and 

pharmacological agents preventing the development and rupture of experimentally induced IAs. 

Conclusions: The present study constitutes a qualitative systematic review of the literature concerning 

MMPs and IAs, with limitations. For quantitative results, larger scale studies and meta-analysis should 

be conducted. 
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INTRODUCTION 

 

Intracranial or cerebral aneurysms (IAs) are pathological focal dilatations of the cerebrovasculature. 

Based on morphology, IAs are classified as saccular, fusiform and dissecting. Saccular IAs are the most 

common type and are described as “berry-like” aneurysms, while fusiform (or dolichoectatic) IAs 

constitute dilatations of the entire vessel wall. Dissecting IAs are formed by blood accumulation within 

the vessel wall. IAs may be asymptomatic, present with headache, focal neurological deficits or in case 

of rupture, with sudden onset headache and impaired consciousness. Rupture of an IA leads to 

intracranial bleeding and subarachnoid hemorrhage (SAH). SAH has a high rate of morbidity and 

mortality, commonly attributed to delayed cerebral vasospasm that unrarely occurs after rupture. The 

most dreadful consequence of cerebral vasospasm is delayed cerebral ischemia.  

The gold standard for the diagnosis of an unruptured IA is angiography. If rupture occurs, computed 

tomography assists in the diagnosis of SAH, while post-SAH outcome is monitored with transcranial 

Doppler and magnetic resonance imaging. There is no approved medication for IAs treatment, except 

from pharmacological management of hypertension. Surgical clipping or endovascular techniques are 

necessary for the treatment of IAs, whereas in case of rupture, surgical intervention may be urgent 

and involve decompression of the subsequent cerebral edema.  

The etiology of IAs formation is unknown. Although several genetic and acquired factors seem to 

attribute to their development and rupture, there is a distinct histological pattern of the cerebral 

vasculature that enables their initiation. Normal arterial walls present with three distinct layers: the 

intima, media and adventitia layer. Intima is lined by a layer of endothelial cells. An internal elastic 

lamina separates the intima from media, providing mechanical support. Smooth muscle cells are seen 

in the media layer. In intracranial arteries, there is no external elastic lamina between the media and 

adventitia layer, as it is found in extracranial arteries. Moreover, the adventitia of intracranial arteries 

is thinner than usual for extracranial arteries of the same size. These histological characteristics make 

cerebral arteries more prone to IAs. 

IAs development has been associated with genetic components (ethnicity, gender and familial history), 

connective tissue disorders (such as Marfan and Ehlers- Danlos syndromes), substance abuse (alcohol, 

smoking, cocaine) and vascular diseases, mainly hypertension and atherosclerosis. These etiologic 

factors are assumed to cause hemodynamic alterations within the cerebrovascular system (Penn, et 

al., 2011). Hemodynamic and oxidative stress, along with pro-inflammatory genetic predisposition and 

various environmental hazardous factors, lead to pathological alterations in microvasculature 
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morphology. Thus, increased concentration of proteases is observed, as inflammatory cells infiltration 

occurs and endothelial structure and function are disrupted (Amenta, et al., 2015). As a result of the 

structural remodeling, the arterial wall is focally weakened and dilated, forming the lesion that is 

called an aneurysm.  

Histology shows that all three layers of aneurysmal arterial wall are abnormal. Endothelial cells are 

found reduced in the intima, while collagen fibers are increased, throughout the wall. Smooth muscle 

cells of media are abnormally located and reduced, while inflammatory cell infiltrate into media and 

adventitia. Lipid deposition is also common in adventitia layer (Austin, et al., 1993). (Figure 1) 

 

 

 

 

 

 

 

 

 

 

 

As presented, proteases play a key role in the development of aneurysms. Matrix metalloproteinases 

(MMPs) are a protein family that includes over 20 known members (Table 1) and is involved in 

extracellular matrix remodeling, by degrading macromolecular components of extracellular matrix. 

Extracellular matrix is a dynamic network of proteins and proteoglycans. MMPs have been linked to 

many functions, such as signaling, inflammation and angiogenesis. Within the cerebral 

microvasculature environment, these proteases are produced by smooth muscle cells, macrophages 

and glial cells (Amenta, et al., 2015). Because of their well-studied proteolytic activity in the 

extracellular matrix, abnormal MMPs function has been associated with many pathological conditions, 

including insulting vessels’ integrity, thus inducing formation of aneurysms and rupture; a known 

mechanism in abdominal aortic aneurysms. MMPs seem to also play a key role in the vasospasm that 

may follow IA rupture and SAH. 

Figure 1. A) Trichrome stain of normal cerebral artery wall.  Collagen is shown 

with green, while smooth muscle cells are red. B) Trichrome stain of an IA, 

presenting complete loss of architecture. (Austin, et al., 1993) 
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Table 1. Members of matrix metalloprotease (MMP) family. (Yong, et al., 2001) 

Member Name Member Name 

MMP-1 Collagenase 1 MMP-16 MT3-MMP 
MMP-2 Gelatinase A MMP-17 MT4-MMP 
MMP-3 Stromelysin 1 MMP-18 Collagenase 4 
MMP-7 Matrilysin  MMP-19 RAS I 1 
MMP-8 Collagenase 2 MMP-20 Enamelysin  
MMP-9 Gelatinase B MMP-21 Xenopus MMP 
MMP-10 Stromelysin 2 MMP-22 Chick embryo MMP 
MMP-11 Stromelysin 3 MMP-23  
MMP-12 Metalloelastase  MMP-24 MT5-MMP 
MMP-13 Collagenase 3 MMP-25 MT6-MMP 
MMP-14 MT1-MMP MMP-26 Matrilysin 2/ Endometase 
MMP-15 MT2-MMP MMP-27 Human MMP-22 
MMP-16 MT3-MMP MMP-28 Epilysin  

MMP-4, MMP-5 and MMP-6 were excluded, as it is mentioned to be similar to other MMPs 
 

MMPs are part of a larger protein family that includes structurally related zinc-dependent 

metalloproteinases, called metzincins. Other subfamilies of the metzincins are ADAMs, bacterial 

serralysins and the astacins. At the active site of the metzincins, three histidine residues are 

responsible for binding the zinc ion, while a distinct β-turn is present, delineated by a methionine 

residue (‘met-turn’), playing an important role in protein activity (Yong, et al., 2001). Structurally, 

MMPs present with three different domains: an amino-terminal propeptide region, an amino-terminal 

catalytic domain (which contains the zinc-binding site) and a carboxy-terminal domain, which has a 

high level of similarity to members of the hemopexin family and includes four repeat units. The last 

two domains are connected via a hinge (Figure 2). MMP-2 and MMP-9 present a unique fibronectin 

type II-like domain in the catalytic site, while MT-MMPs have a transmembrane domain at the 

carboxy-terminal part.  (Yong, et al., 2001). 

 

 

 

 

 

 

 

 

 Figure 2. Structure of MMPs. Pro-domain includes “cysteine switch”. GPI: 

glycosylphosphatidylinositol, Ig: immunoglobin (Löffek, et al., 2011) 
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MMPs regulation takes place at three steps (Figure 3A). First regulatory step is at the level of 

transcription, as most MMPs are expressed after cell activation/stimulation by inflammatory cytokines, 

growth factors, chemokins, oncogenes and cell–cell or cell–matrix interactions (Yong, et al., 2001). 

Post-translational modifications provide the second step of MMPs regulation. MMPs are secreted as 

inactive zymogens. Activating factors include the plasminogen– plasmin cascade, as well as other 

MMPs (Figure 3B) that disrupt the interaction between cysteine and zinc (the so-called ‘cysteine 

switch’ mechanism) and then remove the propeptide region for full activation (Van Wart & Birkedal-

Hansen, 1990). Zymogens may be activated also by non-proteolytic compounds, such as sulphydryl-

reactive agents, denaturants (urea) or heat (Yong, 1999). MT-MMPs are activated during secretion and 

appear on the cell surface in the active form (Yong, et al., 2001). Third step of MMPs regulation is the 

interaction of active MMPs with tissue inhibitors of metalloproteinases (TIMPs). Four TIMPs have been 

studied: TIMP-1, TIMP-2, TIMP-3 and TIMP-4. These molecules bind themselves to the catalytic site of 

MMPs, resulting in their inactivation. However, some TIMPs are involved in the activation process of 

MMPs (Yong, 1999). Imbalance between MMPs and TIMPs has been accused of excessive collagen and 

elastin breakdown within the extracellular matrix and arterial wall weakening (Amenta, et al., 2015). 

 

 

 

 

 

 

 

 

 

There is a great interest in the literature concerning the association between MMPs and the initiation 

and rupture of IAs. The aim of this study is to provide a qualitative synopsis of the published literature, 

concerning the impact of MMPs on IAs pathogenesis, development and rupture in human and 

experimental animal models. For that purpose, a systematic review of the published studies was 

conducted. 

 

Figure 3. Regulation of MMPs. A) Steps of regulation (Ronco, et al., 2007). B) The 

activation interaction between MMPs. Author: M. Bauer, from Chakraborti et al. 

(2003) (Chakraborti, et al., 2003) 
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METHODS 

 

The whole literature concerning MMPs and IAs was reviewed by an extended search in PUBMED, using 

the terms: “intracranial aneurysms”, “cerebral aneurysms”, “subarachnoid hemorrhage”, “matrix 

metalloproteinases”, “MMPs”, “tissue inhibitors of metalloproteinases” and “TIMP”, combined. 

Duplicates were removed using the Mendeley® reference management software. After duplicates 

removal, titles and abstracts of the remaining studies were examined for relativity. Studies that were 

not written in English language and did not produce an original outcome were excluded. Additionally, 

studies concerning experimentally induced SAH and common carotid aneurysm induction animal 

models were also excluded. All other published material was included. Last date of search was 

01.09.2017. 

 

 

RESULTS 

 

Studies included in the systematic review 

After the original search in Pubmed library, 

850 articles were found, while 13 articles 

were found manually by other sources. 

Duplicates were removed and titles/abstracts 

of the remaining studies were reviewed. 

Studies with no relevant subject were 

excluded. This process resulted in the review 

of 134 full-text manuscripts, from which 53 

were excluded based on reasons described in 

the Methodology.   

 

Wang’s et al. article (1999) with title: “Analysis of coding sequences for tissue inhibitor of 

metalloproteinases 1 (TIMP1) and 2 (TIMP2) in patients with aneurysms.” was excluded as it did not 

provide information on patients with IAs. 

  

Figure 4. Flow-diagram presenting the study selection process 
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Human studies on IAs and MMPs 

 

Many studies have been published concerning the association between IAs and MMPs. Multiple 

histological and molecular techniques have been used to assess the expression and activity of MMPs in 

tissue samples acquired during surgery, serum and cerebrospinal fluid (CSF), such as zymography, 

immunohistology, RT-PCR and western blotting, while the impact of genetic component has recently 

been investigated. One of the first published studies that associated IAs formation and rupture with 

excessive catabolism of extracellular matrix macromolecular components was written by 

Chyatte&Lewis in 1997. The authors concluded that there was a statistically significant threefold 

increase of native serum gelatinase activity in patients with IAs compared to control (Chyatte & Lewis, 

1997). Approximately one year later, the same laboratory identified the increased serum gelatinase of 

a subgroup of IA patients as pro-MMP-2 (Todor, et al., 1998). Also in 1997, Kim et al. reported elevated 

expression of MMP-9 and TIMP in IAs tissue, compared to normal arteries, but no elevation of MMP-9 

plasma concentration (Kim, et al., 1997). Significantly elevated concentration of serum elastase and 

increased IAs tissue activity of elastases and collagenases has also been mentioned in cases of 

ruptured IAs compared to unruptured IAs and control (Gaetani, et al., 1999) 

In another study, MMP-2 was found focally expressed in more than half of the IAs studied, while rarely 

found in normal arterial tissue. Additionally, MMP-9 was expressed in both normal and IAs arterial 

tissue, however its expression was focally increased in some IAs. MMP-14 (MT1-MMP) was solely 

found in IAs tissue (Bruno, et al., 1998). Plasmin was also found focally expressed only in IAs; both 

MMP-14 and plasmin are known to upregulate the MMPs transcription, entering in a cascade of MMPs 

activation and active vessel remodeling. Elevated expression in IAs tissue and association between 

MMP-2 and NF-κ B factor (Cheng & Wang, 2013), as well as between MMP-2, MMP-9 and osteonectin  

(Li, et al., 2013) has also been mentioned in the literature, implying the multiplicity of MMPs activation 

pathways. Additionally, the association between atherosclerosis, IAs and MMPs expression profile has 

been studied, indicating that although both MMP-2 and MMP-9 expression was found elevated in IAs 

tissue, only MMP-2 was detected in non- atherosclerotic IAs (Caird, et al., 2006).  

Two studies have been published, noting MMP-16 (MT3-MMP) (Li, et al., 2009) and TIMP-4 (Li, et al., 

2009) significant increased and decreased expression in unruptured IAs tissue compared to control, 

respectively, while MMP-1 expression was examined in the study of Ameku et al. (2016) in relation to 

IAs in patients with autosomal dominant polycystic disease. MMP-1 expression was found elevated in 

endothelia, but decreased in smooth muscle cells derived from skin fibroblasts induced pluripotent 

stem cells. Serum MMP-1 levels were also significantly elevated in nephrology patients with IAs  

(Ameku, et al., 2016). Elevated MMP-1 expression in IA tissue has been mentioned in a case report of 
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an IA located at the non-branching part of the distal middle cerebral artery, too, along with increased 

expression of MMP-2 and MMP-9 compared to the parent artery, while no MMP-8 expression was 

detected in either arterial tissue (Takemura, et al., 2010). Finally, a strong correlation of low MMP-3 

serum levels, but no association between plasma levels of MMP-2 and MMP-9, with unruptured 

fusiform IAs was described by Pico et al. (2010). The authors also noted a negative correlation between 

basilar artery diameter and MMP-3 plasma levels (Pico, et al., 2010).  

Ruptured IAs seem to present different expression of MMPs and TIMPs than unruptured IA. In the 

study of Jin et al. (2007), it was observed that MMP-2 and MMP-9, along with TIMP-1, TIMP-2 and 

TIMP-3, presented elevated expression within ruptured versus unruptured IA and mainly found in the 

intima layer and extracellular matrix. The ratios between MMP-9 to TIMP-2 and MMP-2 to TIMP-1, 

TIMP-2 and TIMP-3 were elevated in ruptured IAs. The authors also observed elevated MMP-2 and 

MMP-9 serum concentrations after IAs rupture, while they concluded that the upregulation of TIMPs 

could be an adaptive reaction to MMPs elevated expression in the extracellular matrix (Jin , et al., 

2007). In other studies, increase of TIMP-1 mRNA was found in ruptured and unruptured IA tissue 

versus control (Ohkuma, et al., 2003), whereas downregulation of TIMP-3 and upregulation of MMP-2 

and MMP-9 has been noted by Marchese et al (2010) (Marchese, et al., 2010). In the meta-analysis of 

Roder et al. (2012) on whole-genome microarray gene expression studies (Krischek, et al., 2008; 

Marchese, et al., 2010; Pera, et al., 2010), it was concluded that the expression of TIMP-4 was 

downregulated in IAs patients, compared to control (Roder, et al., 2012).  

In patients presenting with ruptured IAs, higher tissue expression and serum MMP-9 and neutrophil 

gelatinase-associated lipocalin levels were also found compared to unruptured IA cases in the small 

study of Serra et al. (2014) (Serra, et al., 2014). Additionally, significantly increased tissue expression of 

MMP-9 in ruptured versus unruptured IAs, along with decreased expression of a particularly 

interesting Cys-His-rich protein has been mentioned in the literature (Peng, et al., 2016). In a ruptured 

dissecting IA case, markedly increased expression of MMP-2, MMP-9 and TIMP-2 was observed in the 

ruptured tissue, as opposed to weak expression noted in the unruptured dissecting IA of the same 

patient (Saito, et al., 2010), while in another case report of multiple ruptured IAs, no MMP-2 or MMP-9 

expression was observed (Peters, et al., 2001). Finally, 7-fold increase of MMP-13 expression was 

found in ruptured IA tissue compared to normal in a miRNA microarray study (Bekelis, et al., 2016). 
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Human studies on SAH and MMPs 

 

MMPs levels in serum and CSF have been widely studied in the literature as potential biomarkers for 

IAs outcome. In 2002, McGIrt et al. published a cohort study including 35 patients presenting with 

aneurysmal SAH, 7 patients with unruptured IAs and a third group of 42 patients with focal ischemic 

stroke. Patients with SAH were monitored with transcranial Doppler and blood samples were obtained 

until cerebral vasospasm occurred. Serum MMP-9 concentrations were measured, along with serum 

von Willebrand and vascular endothelial growth factors during the pre-vasospasm period. 57% of the 

SAH patients presented vasospasm. Mean serum MMP-9 levels were significantly elevated after the 

second day of the bleeding in the pre-vasospasm SAH group, compared to the rest SAH patients and 

the stroke group, presenting peak value three days before the vasospasm occurred. Interestingly, the 

authors also mentioned that serum MMP-9 levels were not significantly different among patients with 

SAH and unruptured IA. Their findings suggested that MMP-9, as well as serum von Willebrand and 

vascular endothelial growth factors, may be candidates for predicting vasospasm (McGirt, et al., 2002). 

Afterwards, several studies have been published, concerning serum MMPs levels and SAH in humans. 

Horstmann et al. (2006) studied patients presenting with SAH and serum MMP-2 and MMP-9 levels. 

MMP-9 levels were observed significantly elevated until day 12, whereas MMP-2 levels appeared 

decreased, compared to healthy control. Nevertheless, only 73% of the studied patients presented 

with aneurysmal IA (Horstmann, et al., 2006). In a recent study, serum MMP-9 levels were found 

elevated in SAH patients, as well as in cases of vasospasm, compared to patients with unruptured IAs, 

within the first two weeks after the bleeding; however the study also included patients with 

multifactorial SAH and the results were not statistically significant (Akpinar, et al., 2016). 

Another study investigated the concentration of MMP-9 in serum and in CSF of patients with SAH and 

in need of an external ventricular drain, up to 14 days after the bleeding. Patients with traumatic SAH, 

central nervous system malignancies, infection or systematic disease were excluded. It was concluded 

that early elevation of MMP-9 levels in both serum and cerebrospinal fluid were strongly associated 

with poor 3-month outcome, but not with cerebral vasospasm. Additionally, the authors reported that 

early high blood neutrophil count is correlated with both vasospasm and poor outcome (Chou, et al., 

2011i). In the same year, decreased concentrations of anti-inflammatory plasma-type gelsolin in blood 

and cerebrospinal fluid, along with elevated levels of MMP-9, were reported in patients with SAH 

compared to control (Chou, et al., 2011ii). In patients of aneurysmal SAH, correlation of pro-MMP-9 

concentrations in cerebral extracellular matrix with clinical severity (Sarrafzadeh, et al., 2012) and 

markedly elevated levels of MMP-9 in cerebral microdialysate during early neuromonitoring has also 

documented in the literature (Helbok, et al., 2015), whereas in a recent observational study of 

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 04:42:21 EEST - 18.224.52.217



9 
 

aneurysmal SAH patients, MMP-9 CSF levels at 24 hours after SAH have been found to provide high 

sensitivity and specificity in predicting delayed cerebral ischemia (Triglia, et al., 2016). 

Significant elevation and association of serum MMP-9 levels with cerebral vasospasm and ischemia, 

but not with 6-months outcome in cases of aneurysmal SAH, compared to healthy control, was 

reported in the study of Fischer et al. (2013). The authors also studied the effect of TIMP-1 and TIMP-3 

levels, as well as MMP-3, a known MMP-9 activator (Ramos-DeSimone, et al., 1999). Along with 

elevated serum MMP-9 levels, TIMP-1 levels were found significantly elevated in SAH patients, as 

opposed to MMP-3 and TIMP-3, which were decreased in the first days after SAH. MMP-3 levels were 

also elevated (but lower than in control) in cases of vasospasm. TIMP-1 and TIMP-3 were not 

associated with vasospasm or poor outcome (Fischer, et al., 2013). On the contrary, no association 

between serum MMP-9 levels and vasospasm was supported in the study of Lago et al. (2015). The 

authors studied patients with SAH (approximately 66% aneurysmal) and examined the association 

between MMP-9 serum levels, vasospasm and delayed cerebral ischemia, using magnetic resonance 

imaging. It was concluded that MMP-9 levels were elevated compared to healthy volunteers, whereas 

there was no correlation between MMP-9 levels and vasospasm or poor outcome (Lago, et al., 2015). 

 

Single nucleotide polymorphisms (SNPs) of MMPs genes and IAs  

 

Several genetic association studies investigated the potential correlation between known SNPs of 

MMPs genes and IAs (Table 2), with controversial results. Concerning the MMP-9 gene, (CA)23 

microsatellite polymorphism (Peters, et al., 1999) and SNP 7476 C/T of the non-coding area (Pannu, et 

al., 2006) were significantly associated with IAs  in separate studies. However, these findings were not 

confirmed by other researchers (Yoon, et al., 1999; Zhang, et al., 2001; Krex, et al., 2004; Pannu, et al., 

2006; Olsson, et al., 2012). Additionally, MMP-9 1562 C/T SNP prevalence was not found significantly 

different within patients with ruptured or unruptured IAs (Zhang, et al., 2001; Krex, et al., 2004; Pannu, 

et al., 2006; Szczudlik & Borratyńska, 2010; Alg, et al., 2013). 

Two SNPs of MMP-2 gene have been found significantly associated with male IAs patients in a 

Japanese population (Low, et al., 2011), although opposite results came from Caucasian studies 

(Pannu, et al., 2006; Olsson, et al., 2012) and meta-analysis  (Alg, et al., 2013). In addition, strong 

correlation between MMP-3 5A/6A SNP and fusiform IAs has been mentioned (Pico, et al., 2010), but 

no other study (Yoon, et al., 1999; Zhang, et al., 2001 or meta-analysis (McColgan, et al., 2010; Alg, et 

al., 2013) confirmed this finding in saccular or ruptured IAs. Finally, although scarcely studied, none of 

the studied MMP-1, MMP-12 and TIMP- 1 to -3 SNPs was found associated with occurrence of IAs. 
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* genotype frequencies not provided **male, adjusted for age/hypertension/smoking 

Table 2. Studies on MMPs&TIMPs polymorphisms and patients with intracranial aneurysms (IA) or aneurysmal SAH (aSAH). 
(pos/neg: significant positive association / no association) 

Year Authors Population IA/aSAH Controls MMP SNPs result 

1999 Peters et al. European white 76 IA 93 MMP-9 microsatellite (CA)n pos 
1999 Yoon et al. Finish  57 IA 

with family 
history 

174 MMP-3 5A/6A neg 
MMP-9 A1-A11 

including (CA)n microsatellite 
neg 

2001 Zhang et al. European white 72 aSAH 158 MMP-1 1G/2G neg 
MMP-3 5A/6A neg 

MMP-9 1562 C/T (rs3918248) neg 
microsatellite neg 

MMP-12 -82 A/G neg 
2003 Krex et al. European white 44 IA 44 TIMP-1 19 C/T neg 

261 C/T neg 
372 T/C neg 

41 TIMP-2 621 C/T neg 
596 A/C neg 
261 G/A neg 
303 G/A neg 

40 TIMP-3 249 T/C neg 
261 C/T neg 

2004 Krex et al. Caucasian 40+40 IA 44+40 MMP-9 rs3918248 neg 
rs2274755 neg 
rs17576 neg 
rs3918256 neg 
rs2250889 neg 
rs13969 neg 
rs2274756 neg 
rs13925 neg 
rs20544 neg 
rs9509 neg 

2006 Pannu et al. Caucasian  125 sporadic IA, 
69% ruptured 

234 MMP-2 1306 C/T (rs243865) neg 
3307 G/A neg 
6447 G/C neg 
10910 C/T neg 

MMP-9 1562 C/T(rs3918248) neg 
(CA) microsatellie neg 
1977 C/T neg 
7476 C/T (rs20544) pos 

2010 Szczudlik & 
Borratyńska 

Polish  211 aSAH 
789 other 

766 MMP-9 1562 C/T (rs3918248) neg 

2010 Pico et al.* Caucasian 49 fusiform IA 378 MMP-3 5A/6A pos 

2011 Low et al.* Japanese  2050 IA 1835 MMP-2 rs243865 C/T pos** 
rs243847  pos (male) 
rs17859859 neg 

 rs1132896 neg 
MMP-9 rs3918242 neg 
 plus two SNPs, missing info neg 
MMP-12 rs2276109 neg 
TIMP-1 one SNP, missing info neg 
TIMP-2 rs2277698 neg 
 rs2009196 neg 
 rs8179090 neg 
TIMP-3 rs5749511 neg 

      rs2234921 neg 
2012 Olsson et al. Sweden (?) 183 aSAH 366 MMP-2 rs243864 neg 

rs865094 neg 
rs12934241 neg 
rs243847 neg 
rs2287074 neg 
rs1163996 neg 
rs11541998 neg 
rs7201 neg 

MMP-9 rs17576 neg 
rs2236416 neg 
rs20544 neg 
rs3918256 neg 
rs3787268 neg 
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Animal models and studies on IAs and MMPs 

 

The first report of an animal model with induced IAs was described by Nagata et al. in 1980, using rats. 

After anesthesia, the left common carotid artery and the posterior branches of both renal arteries 

were ligated. The animals were fed a special diet, including 8% sodium chloride and 0.12% 

aminopropionitrile, which is an inhibitor of lysyl oxidase that catalyzes the cross-linking of elastin and 

collagen. The sodium chloride intake, along with the renal arteries iatrogenic occlusion, provided the 

necessary conditions for systemic hypertension. Common carotid artery ligation and 

aminopropionitrile led to the necessary hemodynamic and microvasculature changes that made the 

cerebral vasculature prone to IAs formation (Nagata, et al., 1980). Several studies have been published 

since using this model in order to study the association between MMPs and IAs. 

In 2007, Aoki et al. used the aforementioned animal model in order to study the association between 

MMP-2 and MMP-9 with IAs development. The authors concluded that macrophages infiltration was 

gradually increasing within three months from IA induction and at three months, both MMP-2 and 

MMP-9 were elevated within IAs tissue. Sources of MMP-2 and MMP-9 were macrophages and 

secondly smooth muscle cells. MMP-2 mRNA was constantly elevated within the studied time, 

whereas MMP-9 mRNA was not detected within the first month but increased later. In situ 

zymography revealed that gelatinase activity was prominent in the aneurysmal neck at four months. 

Finally, the authors tested the efficacy of tolyslam, a competitive inhibitor of MMP-2, MMP-9 and 

MMP-12 on IAs formation. Although IAs formation was the same at four months, the incidence of 

advanced IAs was significantly lower in the tolyslam group (Aoki, et al., 2007i). 

In the same year, Aoki et al. published a second study using the Nagata et al. rodent model in order to 

investigate the role of TIMP-1 and TIMP-2 in IAs formation. One month after surgery, early changes 

leading to IAs initiation were obvious in more than half the specimens; TIMP-1 and TIMP-2 expression 

was already elevated in the affected regions. Three months later, advanced IAs were seen in the 

majority of specimens, however interestingly, TIMP-1 and TIMP-2 expression pattern was the same. 

The main source of TIMP-1 and TIMP-2 expression was smooth muscle cells, while expression was also 

evident from macrophages and endothelial cells. No expression was noted on normal arterial walls. 

MMP-2 and MMP-9 expression was found gradually elevated over the three months period. Thus, the 

ratio of MMP-9 to TIMP-1 and MMP-2 to TIMP-2 was significantly increased over time. The ratio of 

MMP-9 and MMP-2 to TIMP-3 was unchanged (Aoki, et al., 2007ii). 

Moreover, the authors tested normal, TIMP-1 and TIMP-2 knock-out (KO) mice, although they ligated 

the posterior branches of renal arteries bilaterally a week after the common carotid artery ligation and 
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studied the animals five months after IAs formation. TIMP KO mice presented a higher incidence of IAs 

formation than control. TIMP-1, TIMP-2, MMP-2 and MMP-9 expression was observed in IAs tissue of 

wild type mice. Zymography showed increased activity of MMP-2 in the TIMP-2 KO mice and elevated 

MMP-9 activity in the TIMP-1 KO mice, compared to the control; however, MMP-2 and MMP-9 mRNA 

expression were strangely decreased in the TIMP-2 and TIMP-1 KO mice, respectively. The authors 

concluded that this may indicate the existence of a positive feedback mechanism of the TIMPs to the 

MMPs transcriptional regulation (Aoki, et al., 2007ii).  

More recently, a modification in the aforementioned rat model was introduced by Miyamoto et al. 

(2016). Along with the ligation of the left common carotid artery and the posterior branches of the 

renal arteries bilaterally, the right pterygopalatine and external carotid artery were also ligated in a 

group of rats. The results showed that in the test group, there was a higher number and rupture rate 

of IAs located at the posterior and anterior Willis circle arteries, compared to the control, partly 

attributable to a site-specific elevation of MMP-9 expression caused by altered hemodynamics 

(Miyamoto, et al., 2017).  

The hypothesis that drugs with inhibitory effect on MMPs activity may reduce the incidence of IAs has 

also been studied on Nagata et al. rodent model (Nagata, et al., 1980). Kaufmann et al. (2006) tested 

the effect of doxycycline, an MMPs antagonist used commonly as antibiotic, however no significant 

difference in IAs incidence was observed within a year of follow-up (Kaufmann, et al., 2006). In another 

study, nifedipine, a dihydropyridine based calcium antagonist used as an anti-hypertensive, was found 

efficient in decreasing IAs development, macrophages infiltration into the IA wall and MMP-2 activity 

and expression (Aoki, et al., 2008). Within a short period of time, the same authors published their 

results on efficacy of simvastatin and pitavastatin on IAs progression and MMPs expression; they 

concluded that both statins may inhibit the progression of IAs development, reducing significantly the 

expression and activity of MMP-2 and MMP-9, that were elevated compared to control before the 

treatment (Aoki, et al., 2008; Aoki, et al., 2009). 

The important role of mast cells in IAs development was shown in the study of Ishibashi et al. (2010), 

as treatment with tranilast, an agent that prevents mast cells degranulation, attenuated the increase 

in MMP-2 and MMP-9 expression (Ishibashi, et al., 2010). A couple of years later, the same authors 

used imidapril as an MMP-9 inhibitor to test the effect on IAs formation. The authors concluded that 

imidapril suppressed IAs formation and development, by inhibiting the gelatinolytic activity of MMP-9. 

Indeed, although MMP-9 expression remained unchanged, in vitro zymography showed that imidapril 

could dosedependently inhibit MMP-9 activity. Interestingly, MMP-2 expression was not found 

elevated in IAs tissue (Ishibashi, et al., 2012).  
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Erythopoietin has been also found to reduce IAs size and development by reducing MMP-2 and MMP-9 

elevated levels (Xu, et al., 2011). Erythropoietin could increase endothelial progenitor cells; thus, Li et 

al. (2014) used endothelial colony forming cells transfusion and examined IAs development and MMPs. 

The authors concluded that MM-2 and MMP-9 were upregulated, while TIMP-1 was downregulated in 

IAs tissue and transfusion of endothelial colony forming cells reversed these findings and attenuated 

IAs degeneration (Li, et al., 2014).  Ibudilast and tumor necrosis factor-a inhibitor have also been noted 

to suppress the development of IAs  by reducing the upregulation of MMP-9 and other inflammation-

related molecules (Yagi, et al., 2010; Yokoi, et al., 2014). Finally, Li et al. (2015) tested the anti-

inflammatory effect of aspirin on IAs development, concluding that MMP-2 and MMP-9 expression 

was significantly higher in IAs walls compared to normal and significantly decreased when aspirin was 

taken, along with the size of IAs (Li, et al., 2015). 

 

A new animal model was introduced by Nuki et al. in 2009. By combining angiotensin-II infusion and 

elastase injection into the cerebrospinal fluid of mice, IAs formation is achieved within two weeks. 

Elastase is used in order to provoke disorganization of the cerebrovascular elastic lamina, while 

systemic hypertension, caused by angiotensin-II infusion, provides the essential hemodynamic insult. 

After multiple experiments with normal, MMP-9 and MMP-2 KO mice, the authors reported that IAs 

incidence in wild type mice was 70%. Elevated activity of MMPs was observed in IAs tissue, unlike 

normal arteries. Moreover, as opposed to MMP-2 KO mice, MMP-9 KO mice presented significantly 

lower IAs incidence compared to control. Finally, treatment with doxycycline reduced the IAs incidence 

significantly to 10%. These results show the potent protective role of doxycycline, as well as MMP-9 

impact on IAs formation (Nuki, et al., 2009). 

The same team of authors, some years later, published a second study, examining the impact of MMP-

12 in IAs formation. Using their introduced angiotensin II-elastase model on wild type and MMP-12 KO 

mice, they concluded that the incidence of IAs formation was not significantly different between the 

two groups, thus implying that MMP-12 may not be implicated in the IA development process. The 

study also proved the important role of macrophages in the formation of IAs, using clodronate 

liposome-induced macrophage depletion and monocyte chemotactic protein -1 KO mice (Kanematsu, 

et al., 2011). The role of myeloperoxidase on IA formation has also been studied on IAs patients that 

underwent IA coiling and myeloperoxidase KO mice. The researchers reported that in humans, 

myeloperoxidase concentration was almost 3 times higher in the blood drawn from the IA site than in 

remote vessels, while IAs incidence was significantly lower in the myeloperoxidase KO group compared 

to control; MMP-9 and MMP-8 genes were down-regulated, as well as MMP-3 and MMP-13 genes 

(Chu, et al., 2015), which are found to be activators of MMP-9 (Vempati , et al., 2007). In another 
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study, the impact of lymphocytes in IA initiation and rupture was investigated, using a slightly modified 

wild type and lymphocyte deprived mice model. It was concluded that in the lymphocyte deprived 

mice, MMP-2 and MMP-9 expression, along with IAs number and rupture incidence, was significantly 

reduced (Sawyer, et al., 2016). 

In the study of Peña Silva et al. (2014), a series of experiments were performed using the angiotensin 

II-elastase model (Nuki, et al., 2009) versus sham operated mice and Mas-receptor KO mice. Moreover, 

angiotensin 1-7, a functional antagonist of angiotensin II which binds to the Mas receptor, was used as 

intervention. The authors noted the increased expression of MMP-9, MMP-2 and TIMP-1 in IA tissue 

versus control, while co-infusion with angiotensin 1-7 drastically reduced the increase in MMP-9 and 

the incidence of SAH and mortality. No difference was observed with angiotensin 1-7 treatment on 

Mas-receptor KO mice  (Peña Silva, et al., 2014).  

Finally, the hypothesis of pharmacological stabilization of IAs was tested on the angiotensin II-elastase 

model (Nuki, et al., 2009). Doxycycline, minocycline and selective inhibitors of MMP-2 and MMP-9 were 

used in order to assess their effect on IA rupture. The authors stated that there was elevated 

gelatinase activity in IAs tissue and they concluded that treatment with doxycycline and minocycline 

reduced significantly the incidence of IA rupture, as opposed to treatment with selective inhibitors of 

MMPs (Makino, et al., 2012). 

 

In a rabbit model, IAs formation was induced by ligation of both common carotid arteries and 

subsequent increase in of the blood flow in the basilar artery. This shortly resulted in the appearance 

of aneurysmal alterations in the basilar artery (Gao, et al., 2008). Using this model, the impact of 

smooth muscle cells on induced IAs formation was studied (Kolega, et al., 2011; Mandelbaum , et al., 

2013). It was concluded that smooth muscle cells play an important role in the initiation of IAs in 

response to hemodynamic insult, producing MMPs (especially MMP-2 and MMP-9) that promote early 

disruption of internal elastic lamina and IAs initiation, whereas macrophages did not seem essential in 

IAs initiation. In addition, when doxycycline was used, IAs formation and size was lower (Mandelbaum , 

et al., 2013). Finally, the injurious role of nitric oxide synthase and superoxide in IAs initiation, via MMP 

regulation, was documented by Liaw et al. (2014), as MMP-2 and MMP-9 expression was elevated in 

IAs tissue versus control and associated with nitric oxide synthase inhibition. (Liaw, et al., 2014) 
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CONCLUSIONS 

 

Even though the prevalence of IAs in population is low, the potential complications in case of rupture 

are of high significance. Because of the fact that IAs are commonly asymptomatic, the diagnosis 

unrarely takes place before rupture. SAH may lead to disability and death and has a disproportionately 

large socioeconomic effect. Thus, there is great interest in investigating pathophysiological and 

etiologic factors, in order to establish screening tests for early diagnosis and treatment in 

asymptomatic cases, as well as predictive tests for outcome after bleeding occurs. 

Intrinsic characteristics of cerebral vasculature and pathological conditions, mainly hypertension and 

substance abuse, enable IAs formation and rupture. Hemodynamic changes, inflammation and 

oxidative stress coordinate the acquired disorganization of microvasculature morphology, leading to 

disruption of the vessel’s internal elastic lamina and focal dilatation, while persistent insult leads to IAs 

rupture and SAH. MMPs and a whole activation signaling network play a key role during the initiation 

and rupture of IAs. MMPs are family of zinc-dependent proteases with tight regulation, multiple 

functions and well-known participation in many conditions of the central nervous system, including 

IAs. Therefore, many studies have been conducted examining the MMPs and TIMPs altered expression 

in IA tissue, blood and CSF of patients presenting with IAs, along with genetic associations of SNPs in 

MMPs and TIMPs genes with IAs occurrence and rupture. The current study was performed in order to 

assess the published literature correlating MMPs and IAs. 

Using histological and molecular techniques, elevated expression of gelatinases MMP-9 and MMP-2 

has been reported in many studies of IAs tissue, indicating their role in IAs initiation and rupture (Kim, 

et al., 1997; Bruno, et al., 1998). In particular, MMP-9 expression and activity was found increased in 

the IAs tissue, compared to control, presenting altered expression pattern (Bruno, et al., 1998) and 

association with atherosclerosis (Caird, et al., 2006). Association of MMP-2 and MMP-9 expression 

with other molecules, such as the plasmin, NF-κ B factor, osteonectin and other MMPs indicate the 

complex regulation signaling that takes part in the IAs development (Bruno, et al., 1998; Cheng & 

Wang, 2013; Li, et al., 2013). Elevated expression of MMP-2 and MMP-9 and altered expression of 

TIMPs has been associated with IAs rupture (Jin , et al., 2007; Marchese, et al., 2010; Saito, et al., 2010; 

Roder, et al., 2012; Peng, et al., 2016); this imbalance between MMPs and TIMPs could be an adaptive 

reaction to the increased proteolytic activity of MMPs (Jin , et al., 2007). Other MMPs mentioned to 

have elevated expression in IAs tissue are MMP-1, MMP-14, MMP-13 and MMP-16 (Bruno, et al., 

1998; Li, et al., 2009; Takemura, et al., 2010; Ameku, et al., 2016; Bekelis, et al., 2016).  
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Significant elevation of serum levels of MMP-2 and MMP-9 in patients with unruptured saccular IAs 

compared to control has been suggested in the literature (Chyatte & Lewis, 1997; Todor, et al., 1998; 

Gaetani, et al., 1999; Jin , et al., 2007; Serra, et al., 2014), while no association between MMP-2 and 

MMP-9 but strong correlation of low MMP-3 serum levels and fusiform IAs has been also described 

(Pico, et al., 2010). These findings reinforce the hypothesis that MMPs levels may be used for 

predicting the presence of IAs in asymptomatic patients; however larger scale studies should be 

conducted in order to assess the possibility of an MMP-2 and MMP-9 screening test. 

Moreover, MMPs concentration in serum and CSF of patients with SAH has been examined based on 

the hypothesis that MMP levels may serve as a biomarker for predicting vasospasm, delayed cerebral 

ischemia and outcome. MMP-9 serum and CSF levels have been found significantly elevated in most 

studies of SAH compared to unruptured IAs patients or healthy individuals (Horstmann, et al., 2006; 

Chou, et al., 2011; Chou, et al., 2011; Fischer, et al., 2013; Triglia, et al., 2016), whereas the results on  

the association between MMP-9 levels and cerebral vasospasm development have been controversial 

(McGirt, et al., 2002; Chou, et al., 2011; Fischer, et al., 2013; Sarrafzadeh, et al., 2012; Lago, et al., 

2015). Finally, MMP-9 serum levels have been proposed to predict long-term outcome after SAH 

(McGirt, et al., 2002; Triglia, et al., 2016), but other authors dispute this hypothesis (Fischer, et al., 

2013; Lago, et al., 2015). 

In addition, genetic association studies have not yet succeeded in enlightening the genetic component 

of MMPs and TIMPs association with IAs occurrence. In 2013, a comprehensive review and meta-

analysis including all genetic association studies correlating SNPs to sporadic IAs was published (Alg, et 

al., 2013); however, no correlation between MMPs genes and IAs was proved. As it is described in 

Table 2, only a few separate studies provided positive results on SNPs correlation with IAs, regarding a 

microsatellite polymorphism in MMP-9, two SNPs in MMP-2 gene and one SNP in MMP-3 promoter 

region, while opposite results have been published in various studies for all of the above genetic loci 

(Peters, et al., 2001; Pannu, et al., 2006; Pico, et al., 2010; Low, et al., 2011). Thus, there is no distinct 

SNP in MMPs genes that may play a significant role in IAs formation and rupture. 

Experiments on animal models of acquired IAs are common in the literature, as they provide some 

insights to pathophysiological mechanisms and treatment options, overcoming the barriers of studies 

on humans. For each animal model, the basic principles are the same: hemodynamic changes due to 

hypertension and disorganization of the microvasculature environment (Nagata, et al., 1980; Gao, et 

al., 2008; Nuki, et al., 2009). The short incubation time and the opportunity of interventions are the 

main advantages of animal studies. Many agents have been shown promising against IAs formation in 

the literature; amongst them, the effects of doxycycline, statins, anti-hypertension and anti-

inflammation medication are of great interest, as they may provide pharmacological stabilization of IAs 
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(Nuki, et al., 2009; Ishibashi, et al., 2010; Yagi, et al., 2010; Xu, et al., 2011; Ishibashi, et al., 2012; 

Makino, et al., 2012; Mandelbaum , et al., 2013; Li, et al., 2014; Peña Silva, et al., 2014; Yokoi, et al., 

2014; Li, et al., 2015). Finally, several studies have been published, examining the association between 

MMPs and experimental SAH in animal models. However, experimental SAH is mainly provoked by 

injection of autologous blood into the animals’ cranium, although in some cases, SAH was induced by 

endovascular perforation of a vessel. Those studies were excluded from the current review, as no IA 

formation was induced. Recently, a modified rat model was suggested, presenting high incidence of 

IAs rupture and SAH (Miyamoto, et al., 2017), allowing investigators to study aneurysmal SAH.  

The current study constitutes a qualitative systematic review of the literature concerning the impact of 

MMPs on IAs initiation, development and rupture. However, due to the heterogeneity of the published 

studies, no quantitative data are provided, limiting the impact of the results. As described, there are 

controversial findings regarding the role of MMPs on IAs formation and complications of rupture. 

Therefore, larger scale studies and meta-analysis should take place in order to assess the mechanisms 

implicating MMPs and IAs, as well as the potential role of MMPs levels as biomarkers for early 

diagnosis of IAs presence, rupture and outcome. 
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