
UNIVERSITY OF THESSALY

Diploma Thesis

Machine learning algorithms for fake
news detection

Αλγόριθμοι μηχανικής μάθησης για την

αναγνώριση ψευδών ειδήσεων

Author:
Georgios
STAVROPOULOS

Supervisors:
Dimitrios KATSAROS

Gerasimos POTAMIANOS

A thesis submitted in fulfillment of the requirements
for the degree of Diploma Thesis

in the

Department of Electrical And Computer Engineering

July 4, 2018

http://uth.gr/
mailto:gstavropoulos@e-ce.uth.gr
mailto:gstavropoulos@e-ce.uth.gr
https://faculty.e-ce.uth.gr/dkatsar/
https://faculty.e-ce.uth.gr/gpotamianos/
http://e-ce.uth.gr/

i

Declaration of Authorship
I, Georgios STAVROPOULOS, declare that this thesis titled, “Machine learning
algorithms for fake news detection” and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

ii

“I am not young enough to know everything”

Oscar Wilde

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Περίληψη

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διπλωματική Εργασία

Αλγόριθμοι μηχανικής μάθησης για την

αναγνώριση ψευδών ειδήσεων

Γεώργιος Σταυρόπουλος

Η αναγνώριση ψευδών ειδήσεων αποκτά σταδιακά πρωταρχική σημασία για την

κοινωνία προκειμένου να αποφευχθεί το λεγόμενο reality-vertigo και να προστα-
τευθούν ιδιαίτερα τα λιγότερο μορφωμένα άτομα ή ακόμη και τα μορφωμένα σε

τομείς όπως τα ιατρικά νέα όπου η τεχνογνωσία τους δεν επαρκεί για την άμεση

αναγνώριση των ψευδών ειδήσεων. Διάφορες τεχνικές μηχανικής μάθησης έχουν
προταθεί εώς τώρα για την αντιμετώπιση αυτού του ζητήματος. Η διπλωματική
αυτή παρουσιάζει μια ολοκληρωμένη αξιολόγηση της απόδοσης οκτώ αλγορίθμων

μηχανικής μάθησης για την αναγνώριση/ταξινόμηση ψευδών ειδήσεων. Αυτές οι
μέθοδοι βασίζονται στην Παλινδρόμηση (Regression), τις Μηχανές Διανυσμάτων
Υποστήριξης (SVMs), τα ΝευρωνικάΔίκτυα (Neural Networks), ταΔέντρα Αποφ-
άσεων (Decision Trees) και τη θεωρία Bayes. Η αξιολόγηση διεξάγεται σε σχέση
με τρία διαθέσιμα datasets και απαντά σε ερωτήσεις που σχετίζονται με το είδος
του training και τον αριθμό των διαστάσεων που θα πρέπει να χρησιμοποιηθούν
για κάθε αλγόριθμο και τελικώς, σχετικά με τη μέθοδο δημιουργίας διανυσματικών
αναπαραστάσεων κειμένου. ΄Οπως αναμενόταν, η μελέτη αυτή επιβεβαιώνει το ανα-
μενόμενο αποτέλεσμα, ότι δηλαδή η φύση των δεδομένων είναι η παράμετρος που
καθορίζει την απόδοση κάθε αλγορίθμου. Παρ’ όλα αυτά, η μελέτη ρίχνει φως και
αντλεί γενικά συμπεράσματα σχετικά με το ζήτημα του αριθμού των διαστάσεων

που πρέπει να χρησιμοποιηθεί ως χαρακτηριστικό των αλγορίθμων και του είδους

των διανυσματικών αναπαραστάσεων του κειμένου.

HTTP://UTH.GR/
https://www.e-ce.uth.gr/

iv

UNIVERSITY OF THESSALY

Abstract
Department of Electrical And Computer Engineering

Diploma Thesis

Machine learning algorithms for
fake news detection

by Georgios STAVROPOULOS

Fake news detection/classification is gradually becoming of paramount
importance to out society in order to avoid the so-called reality vertigo, and
protect in particular the less educated persons or even the educated ones in
fields such as medical news where their expertise is not adequate to immedi-
ate understand the fraudulent articles. Various machine learning techniques
have been proposed to address this issue. This thesis presents a comprehen-
sive performance evaluation of eight machine learning algorithms for fake
news detection/classification. These methods are based on Regression, Sup-
port Vector Machines, Neural Networks, Decision Trees and Bayes theory.
The evaluation is conducted against three publicly available datasets, and
answers questions related to the number of dimensions that should be used
for each algorithm, to the kind of training that must be performed, and fi-
nally related to the method of generating vector representations of textual
information. As expected, this study confirms the expected result that the
nature of data is the parameter that defines the performance of each algo-
rithm. Nevertheless, this study sheds light and draws safe generic conclu-
sions with respect to the issue of the number of dimensions that should be
used as features for the algorithms and the kind of vector representation of
the information.

HTTP://UTH.GR/
http://e-ce.uth.gr/

v

Acknowledgements
First and foremost, I am particularly grateful to my advisor Dimitrios Kat-

saros for all his help, the valuable critique and the time he has spent during
the development of this thesis. His guidance and support has been instru-
mental in helping me bring this work to a successful end. I would also like
to thank all of my friends, old and new, that made these 5 years a great ex-
perience. Finally, I would like to thank my family, for their support and their
continuous efforts until today.

Thank you all!

vi

Contents

Declaration of Authorship i

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Context . 1
1.2 Thesis Motivations & Contributions 1

2 Related Work 3

3 Models And Approch 5
3.1 Preprocessing . 5
3.2 Representation . 5

3.2.1 Term Frequency-Inverse Document Frequency 6
3.2.2 Word Embeddings . 6

3.3 Competing algorithms . 7
3.3.1 L1 Regularized Logistic Regression 7
3.3.2 C-Support Vector Classification 7
3.3.3 Multi-layer Perceptron (MLP) 8
3.3.4 Gaussian and Multinomial Naive Bayes 9

Gaussian Naive Bayes 9
Multinomial Naive Bayes 9

3.3.5 Decision Trees . 10
3.3.6 Random Forests . 10
3.3.7 Convolutional Neural Networks 10

4 Experimental Setup and Evaluation 13
4.1 Execution environment . 13
4.2 Datasets . 13
4.3 Performance measures . 14
4.4 Performance Evaluation . 16

4.4.1 K-Fold Cross-Validation 16
4.4.2 Execution time . 18
4.4.3 Algorithms Comparison 20
4.4.4 Method of choice to generate vector representations . . 24

5 Web-Based Application 28

vii

6 Conclusions 32
6.1 Summary . 32
6.2 Future Work . 33

viii

List of Abbreviations

LR Logistic Regression
SVM Support Vector Machines
MLP Multi Layer Perceptron
GNB Gaussian Naive Bayes
MNB Multinomial Naive Bayes
DT Decision Trees
RF Random Forests
CNN Convolutional Neural Networks

ix

To my dear Mirsini. . .

1

Chapter 1

Introduction

1.1 Context

Nowadays online information grows at unprecedented rates, and gradually
more and more people consult online media, e.g., the Web, Online Social Net-
works (OSN) such as Facebook and Twitter, for satisfying their information
needs. However, not all information/knowledge producers are trustworthy,
and the problem of fake news – fabricated stories presented as if they were
originating from legitimate sources with an intention to deceive – and their
spreading is getting more and more severe. It is speculated that by 2020,
people in developed countries will encounter more fake than real news. This
phenomenon is termed reality vertigo1.

This problem emerged as a major issue particularly during the 2016 US
Presidential election, and it is even believed that fake news affected the final
outcome. Unfortunately this is not an isolated event; a study [12] shows
that false medical information gets more views, likes, comments than true
medical information. Even worse, fake news are not only (more) popular,
but they are spreading at a faster pace [20] than real news.

So, countermeasures against fake news started to develop rapidly. There
are already some fact-checking organizations, such as snopes.com, politi-
fact.com, fact-check.com, truthorfiction.com. Efforts are taking place to de-
ploy fact checking services in browsers; a notable effort by two Yalies which
have garnered media attention2 is the development of a Google Chrome ex-
tension to combat fake news. Other anti-fake news techniques include tag-
ging with "Disputed by 3rd party fact-checkers", and adding publisher logos
to the information items.

1.2 Thesis Motivations & Contributions

The need for detecting fake news – or classifying a news item as fake, true, or
suspicious – is of paramount importance if we wish to avoid reality vertigo
and protect our society, especially the less educated persons of our society.
Even though manual or crowd-sourced verification efforts could be a solid

1https://www.nature.com/news/astronomers-explore-uses-for-ai-generated-images-
1.21398

2https://yaledailynews.com/blog/2018/01/22/yale-students-design-chrome-
extension-to-combat-fake-news/

Chapter 1. Introduction 2

solution to the problem, scalability issues, due to the tremendous volume of
items to be examined, would soon turn such efforts of limited applicability.
Thus, algorithmic techniques are the only viable option for addressing the
problem at its full scale.

Machine learning has been proven very effective in combating spam email,
which is one type of misinformation; so, algorithms belonging to this cate-
gory of techniques were among the very first whose efficacy has been in-
vestigated. Support Vector Machines (SVM), Neural Networks (NN), Bayes
Classifiers are some popular families of machine learning algorithms. In par-
ticular, the following algorithms have been examined in the context of fake
news detection:

• L1 Regularized Logistic Regression

• C-Support Vector Classification

• Multi-Layer Perceptron

• Gaussian Naive Bayes

• Multinomial Naive Bayes

• Decision Trees

• Random Forests

• Convolutional Neural Networks

However, their relative performance is unknown, and so is their generic
behavior when tested against diverse datasets. The aim of this thesis is to
answer these two broad questions. In this context the present thesis makes
the following contributions:

• It contrasts the effectiveness and efficiency of the competitors for sev-
eral diverse datasets, and various performance measures.

• It contrasts the speed of the competitors for these datasets.

• It introduces a public Web-based application to test the competitors
against any real URL for possible fake news.

The rest of the thesis is organized as follows: Chapter 2 presents briefly
the related work. Chapter 3 introduces the algorithms that will be evaluated,
the preprocessing that was made and the word representation techniques.
Chapter 4 describes the evaluation environment, i.e., competitors, datasets,
performance measures, and on, and also presents the actual evaluation of the
competing algorithms. Chapter 5 presents the Web-Based Application that
was made in order to make our findings publicly available. Finally, Chapter 6
concludes this thesis and presents the future work.

3

Chapter 2

Related Work

Machine learning and data mining algorithms have been considered as a
very significant arsenal in the battle against fake news. Several supervised
models have been proposed. For instance, a ranking model based on SVM
and Pseudo-Relevance Feedback for tweet credibility has been developed
in [7]. A credible news classifier based on regression was proposed in [8].
SVM on content-based features was utilized in [9] in order to detect fake,
satirical and real news items. A comprehensive survey of data mining algo-
rithms employed for fake news detection is contained in article [16].

A different line of research was taken by [4, 10] where the actual content
was analyzed and news items were represented as multi-dimensional ten-
sors. This is in contrast to aforementioned works which are based on feature
extraction.

Finally, some works investigated the issue of fake news detection follow-
ing a credibility diffusion-based approach. All these works [6] construct com-
plex networks of heterogeneous entities (persons, tweets, events, message,
etc) and study the paths of fake news propagation in order to find out non-
credible sources of information, and thus infer fake news.

There are academic efforts to develop online services which will study
how misinformation spreads and competes in online social networks. For
instance Hoaxy1 [12] is such a service for Twitter; it as actually a platform for
the study of diffusion of misinformation in Twitter.

Similarly to this thesis’ work, [22] did a research on the topic but empha-
sized more in Decision Trees, Random Forests and Gradient Descent algo-
rithms. He concludes that term frequency is potentially predictive of fake
news which is an important first step toward using machine classification for
identification and that there is definitely scope for more improvements.

Less related areas are those concerning rumor classification, trust discov-
ery, clickbait detection, spammer and bot detection, as well as related online
services e.g., Botometer which checks Twitter accounts and assigns them a
score based on how likely they are to be a bot. However, there are significant
differences among that areas and fake news detection as explained in [16],
and thus we do not consider them here. Finally, there are algorithms for de-
tecting fake images online [5], but these are beyond the scope of the current
thesis.

On the other hand, there are some more precise efforts that are based
on expert-oriented fact-checking which obviously heavily relies on human

1https://hoaxy.iuni.iu.edu/

Chapter 2. Related Work 4

domain experts to investigate relevant data and documents to construct the
verdicts of claim veracity, for example PolitiFact2 and Snopes3. However,
expert-oriented fact-checking is a very demanding and time-consuming pro-
cess, which limits the potential for high efficiency and scalability. So although
it seems like a more confident solution to the problem, because of the volume
of information it becomes imposssible.

Other than expert-oriented efforts, Crowdsourcing-oriented fact-checking
has given the opportunity to normal people to annotate news content. These
annotations are then aggregated to produce an overall assessment of the
news veracity. For example, Fiskkit4 allows users to discuss and annotate the
accuracy of specific parts of a news article. As another example, an anti-fake
news bot named "For real" is a public account in the instant communication
mobile application LINE5, which allows people to report suspicious news
content which is then further checked by editors.

2http://www.politifact.com/
3http://www.snopes.com
4http://fiskkit.com/
5https://grants.g0v.tw/projects/588fa7b382223f001e022944

5

Chapter 3

Models And Approch

3.1 Preprocessing

Before using any of our datasets, firstly we subjected them to some refine-
ments like stop-word, punctuation and non-letters removal and finally we
used the Porter2 English Stemmer algorithm for stemming, due to its im-
provements over the widely used Porter stemmer [18]. This was done in
order to avoid noise in our data and make classification faster and more effi-
cient.

Stop Word Removal
Stop words are insignificant words in a language that will create noise

when used as features in text classification.These are words commonly used
in a lot sentences to help connect thought or to assist in the sentence structure.
Prepositions, conjunctions and some pronouns are considered stop words.
We removed common words such as, a, an, i, me, my, we, the, and, but, if, as,
of, at, by, for, there, when, where, why, will, etc. Those words were removed
from each document, and the processed documents were stored and passed
on to the next step.

Stemming
Following the Stop Word Removal, Stemming, simply, is changing the

words into their original form, and decreasing the number of word types or
classes in the data. For example, the words "Running," "Ran" and "Runner"
will be reduced to the word "run." We use stemming to make classification
faster and efficient. It is important to appreciate that we use stemming with
the intention of improving the performance of our models. It is not an exer-
cise in etymology or grammar. In fact from an etymological or grammatical
viewpoint, a stemming algorithm is liable to make many mistakes.

3.2 Representation

In order to use a machine learning algorithm or a statistical technique on
any form of text, it is prescribed to transform the text into some numeric or
vector representation. This numeric representation should depict significant

Chapter 3. Models And Approch 6

characteristics of the text. There are many such techniques, for example, oc-
currence, term-frequency, TF-IDF, word co-occurrence matrix, word2vec and
GloVe. In our tests, we used the following two techniques:

3.2.1 Term Frequency-Inverse Document Frequency

TF-IDF weighting scheme is the combination of two terms, the Term Fre-
quency (TF) and Inverse Document Frequency (IDF). Term Frequency, mea-
sures how frequently a term t occurs in a document and Inverse Document
Frequency, measures the importance of this term t. More specifically,

t ft,d =
Number of times term t appears in a document

Total number of terms in the document

id ft = log
Total number of documents

Number of documents with term t in it

So the final TF-IDF weight of the term t is given by,

t f − id ft.d = t ft,d × id ft

As a result, every document can be interpreted as a vector with one compo-
nent corresponding to each term in the dictionary together with its weight.
For any other term that doesn’t occur in the document, we assign this weight
equal to zero.

3.2.2 Word Embeddings

A word embedding is a parameterized function mapping words in some lan-
guage to high-dimensional vectors

W : words→ Rn

In our tests two different techniques were used:

• Pre-trained Word Vectors
We use the publicly available Glove vectors [17] trained on 6B tokens of
Wikipedia 2014 + Gigaword 5. The vectors have dimensionality of 50,
100, 300.

• Trained Word Vectors Based on the datasets
We use word2vec from genism library to train our own vectors based
on the selected datasets. The vectors have dimensionality of 50, 100,
300 and were trained using the continuous bag-of-words architecture.

In order to get a single vector representation within each headline/article we
averaged the corresponding word vectors.

Chapter 3. Models And Approch 7

3.3 Competing algorithms

The version of the first seven algorithms is that provided by scikit-learn1,
whereas for the last one we developed our own code according to [11].

3.3.1 L1 Regularized Logistic Regression

Logistic Regression is basically a linear model accompanied by the sigmoid
function which is being applied to the linear model in order to convert the
output from any real number into the range of [0, 1]. Using the L1-regularization,
we add the term ‖w‖1 to the cost function where ‖ • ‖1 denotes the 1-norm
and w values are the model’s learned weights. So as an optimization problem
is trying to minimize the following cost function:

min
w,c
‖w‖1 + C

n

∑
i=1

log(exp(−yi(XT
i w + c)) + 1.

With L1 regularization only a sparse subset of the most important inputs
is used and neurons become nearly invariant to the noisy inputs.

3.3.2 C-Support Vector Classification

C-Support Vector Classification is one type of Support Vector Machines (SVM)
that can incorporate different basic kernels. Given training vectors
xi ∈ Rn i=1,. . . ,l in the two class case and the corresponding class labels deci-
sion yi ∈ {-1,1}, the statement of C-SVC optimization for classification prob-
lems may be the following [3, 19]:

min
w,b,ξ

1
2

wTw + C
l

∑
i=1

ξi

with constraints: yi(wTφ(xi) + b ≥ 1− ξi where ξi are the slack variables.
The dual problem definition is:

min
∝

1
2

∝T Q ∝ −eT ∝, 0 ≤ ai ≤ C, i = 1, ..., l

with constraints: yT ∝= 0, where e is the vector of all ones, C > 0 is the upper
bound, Q is a l by l positive semidefinite matrix, Qij ≡ yiyjK(xi, xj) and

K(xi, xj) ≡ φ(xi)
Tφ(xj)

1http://scikit-learn.org/stable/index.html

Chapter 3. Models And Approch 8

is the kernel. Function φ transforms training vectors xi into a higher dimen-
sional space. The decision function is:

sgn(
l

∑
i=1

yi ∝i K(xi, x) + b).

The choice of the appropriate kernel for a specific application is often a dif-
ficult task. A necessary and sufficient condition for a kernel to be valid is
that it must satisfy Mercer’s theorem, but other than that, there is really no
mathematically structured approach to prefer one kernel to the other. Obvi-
ously, we would expect that a non-linear kernel based C-SVC would perform
better than the one based on a linear kernel, if the data is known to be not
linearly separable. The choice of kernel results indifferent kinds of C-SVCs
with different performance levels. For the purpose of this research, radial
basis function (RBF) is being used.

3.3.3 Multi-layer Perceptron (MLP)

A Multi-Layer Perceptron belongs to the class of feed-forward neural net-
works, and it includes at least three layers of nodes; an input layer, an output
layer, and an arbitrary number of hidden layers. An MLP with a single hid-
den layer can be represented graphically as shown in Figure 3.1.

output layer

hidden layer

input layer

FIGURE 3.1: The topology of a multi-layer perceptron.

A one-hidden-layer MLP is a function f : RD → RL, where D is the size of
input vector x and L is the size of the output vector f (x), such that, in matrix
notation

f (x) = G(b(2) + W(2)(s(b(1) + W(1)x)))

with b(1), b(2) being the bias vectors, W(1), W(2) the weight matrices, G the
logistic sigmoid function and s the rectified linear unit function. To train the
MLP, in order to learn the set of parameters {b(1), W(1), b(2), W(2)} the L-
BFGS optimization algorithm is used.

Chapter 3. Models And Approch 9

3.3.4 Gaussian and Multinomial Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on
applying Bayes’ theorem with the naive assumption of independence be-
tween every pair of features. For a given data point x = {x1, ..., xn} of n fea-
tures and a class variable y, Bayes’ theorem states the following relationship:

P(y|x1, . . . , xn) = P(y)
P(x1, ..., xn|y)
P(x1, ..., xn)

.

Using the naive independence assumption that

P(xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P(xi|y)

and since P(x1, . . . , xn) is constant given the input, this can be formulated as

P(y|x1, . . . , xn) ∝ P(y)
n

∏
i=1

P(xi|y)

Thus, the most likely class assignment for a data point x = x1, . . . , xn can be
found by assigning the class for which the above value is largest. In mathe-
matical notation, this is defined as

y = arg max
y

P(y)
n

∏
i=1

P(xi|y).

The different naive Bayes classifiers differ mainly by the assumptions
they make regarding the distribution of P(xi|y).

Gaussian Naive Bayes

The likelihood of the features is assumed to be Gaussian:

P(xi|y) =
1√

2πσ2
y

exp(−
(xi − µy)2

2σ2
y

).

Multinomial Naive Bayes

Multinomial Naive Bayes implements the naive Bayes algorithm for multi-
nomially distributed data. The distribution is parameterized by vectors

θy = (θy1 , . . . , θyn)

for each class y, where n is the number of features (in text classification, the
size of the vocabulary) and θyi is the probability P(xi|y) of feature i appearing
in a sample belonging to class y. The parameter y is estimated by a smoothed
version of maximum likelihood, i.e., relative frequency counting:

ˆθyi =
Nyi + a
Ny + an

Chapter 3. Models And Approch 10

where Nyi = ∑x∈T xi is the number of times feature i appears in a sample of

class y in the training set T, and Ny = ∑|T|i=1 Nyi is the total count of all features
for class y. In our tests we used Laplace smoothing by setting a = 1.

3.3.5 Decision Trees

Despite the various decision tree algorithms, the type of decision tree that we
used was first discussed by Breiman [1] and is known as CART (Classification
And Regression Trees). The decision tree begins with a root node t derived
from whichever variable in the feature space minimizes a measure of the
impurity of the two sibling nodes. Let p(wj|t) be the proportion of patterns
xi allocated to class wj at node t. Then, the measure of the impurity (in our
case we chose Gini) at node t, denoted by i(t) is computed by:

i(t) = ∑
k

p(wj|t)(1− p(wj|t)).

Each non-terminal node is then divided into two further nodes, tL and tR,
such that pL, pR are the proportions of entities passed to the new nodes tL, tR
respectively. The best division is that which maximizes the difference given
in the equation below:

∆i(s, t) = i(t)− pLi(tL)− pRi(tR).

The decision tree grows by means of the successive sub-divisions until a
stage is reached in which there is no significant decrease in the measure of
impurity when a further additional division s is implemented. When this
stage is reached, the node t is not subdivided further, and automatically be-
comes a terminal node. The class wj associated with the terminal node t is
that which maximizes the conditional probability p(wj|t).

3.3.6 Random Forests

Random forests is a popular and efficient algorithm which belongs to the
family of ensemble methods. It was introduced by Breiman [2] and can be
used for either classification or regression problems. During training, the al-
gorithm creates multiple trees using the CART [1] methodology with each
tree trained on a bootstrapped sample of the original training data. In con-
trast to the original publication, the scikit-learn implementation combines
classifiers by averaging their probabilistic prediction, instead of letting each
classifier vote for a single class.

3.3.7 Convolutional Neural Networks

The model architecture, shown in Figure 3.2, is a slight variant of the CNN
architecture of Collobert et al. (2011) [23]. Let xi ∈ Rk be the k-dimensional
word vector corresponding to the i-th word in the sentence. A sentence of

Chapter 3. Models And Approch 11

FIGURE 3.2: Model architecture with two channels for an ex-
ample sentence.

length n (padded where necessary) is represented as

x1:n = x1 ⊕ x2...⊕ xn (3.1)

where ⊕ is the concatenation operator. In general, let xi:i+j refer to the con-
catenation of words xi, xi+1, ..., xi + j. A convolution operation involves a fil-
ter w ∈ Rhk, which is applied to a window of h words to produce a new fea-
ture. For example, a feature ci is generated from a window of words xi:i+h−1
by

ci = f (w · xi:i+h−1 + b)

Here b ∈ R is a bias term and f is a non-linear function such as the hyper-
bolic tangent. This filter is applied to each possible window of words in the
sentence {x1:h, x2:h+1, ..., xn−h+1:n} to produce a feature map

c = [c1, c2, . . . , cn−h+1]

with c ∈ R(n−h+1). We then apply a max-over- time pooling operation (Col-
lobert et al., 2011) over the feature map and take the maximum value ĉ =
max{c} as the feature corresponding to this particular filter. The idea is
to capture the most important feature–one with the highest value–for each
feature map. This pooling scheme naturally deals with variable sentence
lengths.

We have described the process by which one feature is extracted from one
filter. The model uses multiple filters (with varying window sizes) to obtain
multiple features. These features form the penultimate layer and are passed
to a fully connected softmax layer whose output is the probability distribu-
tion over labels.

Regularization
For regularization dropout is employed on the penultimate layer with

a constraint on l2-norms of the weight vectors (Hinton et al., 2012 [24]).

Chapter 3. Models And Approch 12

Dropout prevents co-adaptation of hidden units by ran- domly dropping
out–i.e., setting to zero–a proportion p of the hidden units during foward-
backpropagation. That is, given the penultimate layer z = [ĉ1, . . . , ˆcm] (note
that here we have m filters), instead of using

y = w · z + b (3.2)

for output unit y in forward propagation, dropout uses

y = w · (z ◦ r) + b (3.3)

where ◦ is the element-wise multiplication operator and r ∈ Rm is a "mask-
ing" vector of Bernoulli random variables with probability p of being 1. Gra-
dients are backpropagated only through the unmasked units. At test time,
the learned weight vectors are scaled by p such that ŵ = pw, and ŵ is
used (without dropout) to score unseen sentences. We additionally constrain
l2 − norms of the weight vectors by rescaling w to have ‖ w ‖2= s whenever
‖ w ‖2> s after a gradient descent step.

13

Chapter 4

Experimental Setup and Evaluation

4.1 Execution environment

Our tests were executed in two different servers, the first one was used for
training the CNNs on a Tesla K20x GPU, and the second one for the rest of the
algorithms. This is due to the fact that CNN training is a highly intensive task
compared to the rest of the algorithms. The following table has the detailed
specifications of the machines used in our experiments.

Server Name 1 Server Name 2
CPU Architecture Haswell Ivy Bridge

Model No. Xeon E5-2695V3 Xeon E5-2620V2
of Cores 14 6

Core Frequency 2.30 GHz 2.10 GHz
Main Memory 128 GB 128 GB

GPU Nvidia Tesla K20x None

TABLE 4.1: Server Specifications

4.2 Datasets

We strived for using freely available datasets that have been used in earlier
studies, to ease reproducibility. The datasets are described in Table 4.2.

Before using any of our datasets, firstly we subjected them to some refine-
ments that were described in Section 3.1. As it was already mentioned, this
was done in order to make our data less "noisy" and speedup the classifica-
tion.

Using the datasets from Table 4.2, we created three input datasets (ex-
periments) on which we evaluated the algorithms. For the first experiment
we used the Wang’s training dataset [21] which contains various statements
from PolitiFact3, a Pulitzer Prize-winning Website. From this dataset we used
only the headline of each news story and two labels for the truthfulness rat-
ings (real/fake).

3http://www.politifact.com/

Chapter 4. Experimental Setup and Evaluation 14

TABLE 4.2: Datasets used in the evaluation.

dataset Dataset properties
name size property source

“Liar, liar pants on
fire": A new

benchmark dataset
for fake news

detection

Training
set size of

10269
articles

Two labels for
the truthfulness

ratings
(real/fake)
were used

instead of the
original six

[21]

The Signal Media
One-Million News

Articles Dataset

1 million
articles

13000 articles
were selected at

random and
marked as real

news

Signalmedia1

Getting Real about
Fake News

13000
articles

All 13000
articles were

marked as fake
news

Kaggle2

Using the two remaining datasets, we created two new datasets which
contained a mix of true/fake headlines and a mix of true/fake body texts
respectively. For the newly created datasets we chose to keep a balance be-
tween the true and fake news using the same number for them from the
original datasets. The headlines dataset finally contained 25000 news sto-
ries titles that were selected at random from both original datasets and about
the body text dataset, using the fact that the average length of stories from
five of the top sites that were shared on social media on December 2016
was between 200–1000 words4, we collected 10000 body texts of a length be-
tween 150–4000 words. We will call these three datasets as Dataset 1, Dataset
2 and Dataset 3.

4.3 Performance measures

In this section, we’ll define the primary metrics we’ll use to evaluate the clas-
sification models.

A true positive is an outcome where the model correctly predicts a fake
news article. Similarly, a true negative is an outcome where the model cor-
rectly predicts a non-fake news article.

A false positive is an outcome where the model incorrectly predicts a fake
news article. And a false negative is an outcome where the model incorrectly
predicts a non-fake news article.

4https://www.newswhip.com/2017/01/long-shared-stories-social-media/

Chapter 4. Experimental Setup and Evaluation 15

Since we consider the fake news detection problem as a binary classifica-
tion task, we evaluated the competitors in terms of the following commonly
used measures, namely F1-measure and accuracy whose precise definition
are as follows:

• Accuracy is the fraction of predictions that are correctly classified as ei-
ther fake or real news by the model. More precisely:

Accuracy =
Number of correct predictions

Total number of predictions
=

TP + TN
TP + TN + FP + FN

• F1-measure is the harmonic mean of precision and recall, where preci-
sion and recall are defined as follows:

– Recall is the percentage of all fake news that are correctly classified
as fake by the model:

Recall =
TP

TP + FN

– Precision is the percentage of news items being actually fake out of
all news items returned as fake by the model:

Precision =
TP

TP + FP

So F1-Measure can be written as:

F1 = 2 · precision · recall
precision + recall

Moreover, we consider the execution time as another significant quantity
to measure; it is comprised by the time to complete two tasks, namely train-
ing and classification. So, we measured the following two quantities:

• Training time, which indicates the total time (in seconds) needed for
training the model.

• Classification time, which indicates the total time (in seconds) needed for
providing the classification decision.

Chapter 4. Experimental Setup and Evaluation 16

4.4 Performance Evaluation

4.4.1 K-Fold Cross-Validation

Learning the parameters of a prediction function and testing it on the same
data is a methodological mistake: a model that would just repeat the labels
of the samples that it has just seen would have a perfect score but would fail
to predict anything useful on yet-unseen data. This situation is called over-
fitting. To avoid it, it is common practice when performing a (supervised)
machine learning experiment to hold out part of the available data as a test
set (Xtest, Ytest).

When evaluating different settings ("hyperparameters") for estimators (such
as the C parameter that must be manually set for an SVM) there is still a risk
of overfitting on the test set because the parameters can be tweaked until the
estimator performs optimally. This way, knowledge about the test set can
"leak" into the model and evaluation metrics no longer report on generaliza-
tion performance. To solve this problem, yet another part of the dataset can
be held out as a so-called "validation set": training proceeds on the training
set, after which evaluation is done on the validation set, and when the exper-
iment seems to be successful, final evaluation can be done on the test set.

However, by partitioning the available data into three sets, we drastically
reduce the number of samples which can be used for learning the model, and
the results can depend on a particular random choice for the pair of (train,
validation) sets.

A solution to this problem is a procedure called cross-validation (CV for
short). A test set should still be held out for final evaluation, but the vali-
dation set is no longer needed when doing CV. In the basic approach, called
k-fold CV, the training set is split into k smaller sets (other approaches are
described below, but generally follow the same principles). The following
procedure is followed for each of the k "folds":

• A model is trained using k− 1 of the folds as training data;

• the resulting model is validated on the remaining part of the data (i.e.,
it is used as a test set to compute a performance measure such as accu-
racy).

The performance measure reported by k-fold cross-validation is then the
average of the values computed in the loop. This approach can be computa-
tionally expensive, but does not waste too much data (as it is the case when
fixing an arbitrary test set), which is a major advantage in problem such as
inverse inference where the number of samples is very small.

In our tests we chose K = 10 which is generally preferred by most re-
searches and can be represented graphically as shown in Figure 4.1

Chapter 4. Experimental Setup and Evaluation 17

FIGURE 4.1: 10-Fold Cross-Validation

Chapter 4. Experimental Setup and Evaluation 18

4.4.2 Execution time

As far as the execution time is concerned, Tables 4.3–4.5 show the execution
time – training and classification time – of all variants of the algorithms for
Dataset 1, Dataset 2 & Dataset 3. In general, SVM and the neural network-
based algorithms are the most time-consuming during the training phase,
which is expected.

TABLE 4.3: Training/classification times (in seconds) Times (in
seconds) on Dataset 1

Glove Vectors
Model 50D 100D 300D 50D 100D 300D TF/IDF

LR 0.69
0.01

0.97
0.01

0.58
0.01

5.75
0.01

7.36
0.0

3.13
0.01

0.04
0.0

MLP 8.37
0.0

7.4
0.0

11.45
0.0

8.12
0.0

6.45
0.0

10.74
0.0

8.46
0.0

DT 1.1
0.0

02.01
0.0

6.39
0.0

1.1
0.0

1.76
0.0

5.44
0.0

0.58
0.0

RF 1.02
0.01

1.39
0.01

2.31
0.01

0.96
0.01

1.33
0.01

2.26
0.01

0.84
0.01

GNB 0.01
0.0

0.01
0.0

0.03
0.01

0.01
0.0

0.01
0.0

0.03
0.01

0.05
0.01

MNB 0.01
0.0

0.01
0.0

0.03
0.0

0.01
0.0

0.01
0.0

0.02
0.0

0.00
0.00

SVM 14.44
01.08

19.08
1.68

54.86
4.81

13.04
01.09

19.09
1.72

53.44
4.78

10.39
0.91

CNN 9.88
0.24

12.28
0.27

16.99
0.27

12.11
0.29

14.72
0.28

17.15
0.29

Chapter 4. Experimental Setup and Evaluation 19

TABLE 4.4: Training/classification times (in seconds) Times (in
seconds) on Dataset 2

Glove Vectors
Model 50D 100D 300D 50D 100D 300D TF/IDF

LR 12.85
0.01

13.82
0.01

8.57
0.01

128.28
0.01

154.76
0.0

39.14
0.01

0.03
0.0

MLP 16.57
0.01

15.47
0.0

25.49
0.01

15.33
0.0

13.39
0.0

20.67
0.01

10.69
0.0

DT 2.64
0.0

5.74
0.0

18.48
0.0

2.6
0.0

5.44
0.0

17.81
0.0

0.06
0.0

RF 2.82
0.01

4.01
0.01

6.95
0.02

2.82
0.01

4.03
0.01

6.87
0.02

0.29
0.01

GNB 0.03
0.0

0.05
0.0

0.19
0.02

0.03
0.0

0.04
0.0

0.17
0.01

0.03
0.0

MNB 0.01
0.0

0.02
0.0

0.04
0.0

0.01
0.0

0.02
0.0

0.04
0.0

0.01
0.0

SVM 81.71
6.94

159.31
11.78

350.03
28.46

77.13
6.36

149.52
11.37

365.56
30.93

21.01
1.77

CNN 25.85
0.63

36.26
0.76

56.09
0.7

26.41
0.6

30.35
0.6

56.49
0.64

TABLE 4.5: Training/classification times (in seconds) (in sec-
onds) on Dataset 3

Glove Vectors
Model 50D 100D 300D 50D 100D 300D TF/IDF

LR 4.32
0.0

12.36
0.0

3.99
0.0

23.07
0.0

31.59
0.0

33.04
0.01

0.12
0.0

MLP 5.8
0.0

6.6
0.0

10.26
0.0

5.69
0.0

06.07
0.0

10.1
0.0

27.26
0.01

DT 0.72
0.0

1.59
0.0

4.74
0.0

0.76
0.0

1.49
0.0

4.72
0.0

3.3 0.0

RF 0.78
0.01

1.13
0.01

1.96
0.01

0.77
0.01

1.1
0.01

1.95
0.01

1.18
0.01

GNB 0.01
0.0

0.01
0.0

0.03
0.01

0.01
0.0

0.01
0.0

0.03
0.01

0.56
0.03

MNB 0.0
0.0

0.01
0.0

0.02
0.0

0.0
0.0

0.01
0.0

0.02
0.0

0.01
0.0

SVM 12.18
0.97

19.39
1.69

48.14
4.36

12.42
1.0

17.95
1.58

52.57
4.85

44.83
4.3

CNN 21.95
0.93

32.71
0.97

66.25
0.9

21.46
0.84

31.01
0.9

67.12
0.95

Chapter 4. Experimental Setup and Evaluation 20

4.4.3 Algorithms Comparison

We ask the following two questions: How many dimensions are preferable for
our algorithms?, and Is it training based on the examined dataset or on benchmark
datasets a better solution? We present the average accuracy of the six variants
of each algorithm in Figures 4.2–4.4. Deviation is small, so average is quite a
good measure for all algorithms with the exception of DT for Dataset 1.

LR MLP DT RF GNB MNB SVM CNN0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Av
er
ag

e
Ac

cu
ra
cy

50D
100D

300D
Glove 50D

Glove 100D
Glove 300D

FIGURE 4.2: Average accuracies on Dataset 1.

LR MLP DT RF GNB MNB SVM CNN0.4

0.5

0.6

0.7

0.8

Av
er
ag

e
Ac

cu
ra
cy

50D
100D

300D
Glove 50D

Glove 100D
Glove 300D

FIGURE 4.3: Average accuracies on Dataset 2.

Chapter 4. Experimental Setup and Evaluation 21

LR MLP DT RF GNB MNB SVM CNN0.4

0.5

0.6

0.7

0.8

0.9

Av
er
ag
e
Ac
cu
ra
cy

50D
100D

300D
Glove 50D

Glove 100D
Glove 300D

FIGURE 4.4: Average accuracies on Dataset 3.

Chapter 4. Experimental Setup and Evaluation 22

We present the average F1-measure of the six variants of each algorithm
in Figures 4.5–4.7.

LR MLP DT RF GNB MNB SVM CNN0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Av
er
ag

e
F1

50D
100D

300D
Glove 50D

Glove 100D
Glove 300D

FIGURE 4.5: Average F1-measure on Dataset 1.

LR MLP DT RF GNB MNB SVM CNN

0.3

0.4

0.5

0.6

0.7

0.8

Av
er
ag

e
F1

50D
100D

300D
Glove 50D

Glove 100D
Glove 300D

FIGURE 4.6: Average F1-measure on Dataset 2.

Chapter 4. Experimental Setup and Evaluation 23

LR MLP DT RF GNB MNB SVM CNN

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er
ag

e
F1

50D
100D

300D
Glove 50D

Glove 100D
Glove 300D

FIGURE 4.7: Average F1-measure on Dataset 3.

Chapter 4. Experimental Setup and Evaluation 24

It is expected that no choice on the number of dimensions and/or train-
ing on any kind of data can generate a variant of an algorithm that will be
the champion one; such problems and the associated algorithms are highly
dependent on data distributions. In Table 4.6 we present the variant of each
algorithm that showed the best performance.

TABLE 4.6: Champion variant of each algorithm with respect to
the number of dimensions and type of training.

Algorithm Dataset1 Dataset2 Dataset3
LT 100D Glove 100D 50D
MLP 100D Glove 100D 50D
DT 100D Glove 100D Glove 50D Glove
RF 100D 300D Glove 50D
GNB 100D Glove 300D Glove 50D Glove
MNB any variant 300D Glove 50D
SVM any variant 50D 50D Glove
CNN 300D Glove 100D Glove 300D Glove

We can draw two quite evident conclusions from Table 4.6. The first ob-
servations is that a small or moderate number of dimensions is preferable
because they do not create overfitted models. Secondly, pretraining based
on benchmark datasets can be quite effective, meaning that such kind of pre-
training is able to create models beating those generated on the specific data
that are the target of investigation; this is a quite encouraging result.

4.4.4 Method of choice to generate vector representations

Based on the identified "champion" variant of each algorithm from the pre-
vious section, we ask the following question: Is is preferable to use a TF-IDF
scheme or word embeddings to generate vector representations of textual informa-
tion? The answer to this question is illustrated in Figures 4.8–4.13. The first
three plots compare the performance of the champion word embedding vari-
ant against the TF-IDF variant of each algorithm from the perspective of av-
erage accuracy; whereas the other three plots contain the results from the
perspective of average F1-measure.

The results show clearly that the TF-IDF representation is a better alter-
native for the great majority of cases and algorithms. In particular, this rep-
resentation achieves a 10% better performance in almost cases, in some cases
this gap widens to reach a 30%. The only exception is for SVM in the case of
Dataset 3.

Chapter 4. Experimental Setup and Evaluation 25

LR MLP DT RF GNB MNB SVM0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e

Ac
cu

ra
cy

Word Embeddings TF-IDF

FIGURE 4.8: Average accuracies on Dataset 1.

LR MLP DT RF GNB MNB SVM

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Ac
cu

ra
cy

Word Embeddings TF-IDF

FIGURE 4.9: Average accuracies on Dataset 2.

Chapter 4. Experimental Setup and Evaluation 26

LR MLP DT RF GNB MNB SVM

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er
ag
e
Ac
cu
ra
cy

Word Embeddings TF-IDF

FIGURE 4.10: Average accuracies on Dataset 3.

LR MLP DT RF GNB MNB SVM0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e

F1

Word Embeddings TF-IDF

FIGURE 4.11: Average F1-measure on Dataset 1.

Chapter 4. Experimental Setup and Evaluation 27

LR MLP DT RF GNB MNB SVM

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

F1

Word Embeddings TF-IDF

FIGURE 4.12: Average F1-measure on Dataset 2.

LR MLP DT RF GNB MNB SVM0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er
ag

e
F1

Word Embeddings TF-IDF

FIGURE 4.13: Average F1-measure on Dataset 3.

28

Chapter 5

Web-Based Application

We have also implemented a Web-based application in order to make our
implemented models publicly available. Our application is able to extract
the heading and the body text of a news article, and then classifies it as real
or fake news based on our models. The application is available at http:
//fenaki.e-ce.uth.gr.1 In the entry page of the application the user can
provide a URL in the textbox, and then click on the button to run the algo-
rithms.

FIGURE 5.1: Fenaki execution flowchart

1The greek word φενακη (spelled ‘fenaki’ with latin characters) describes a lie that is
being told with the purpose to deceive or to mislead, i.e., the fraudulent lie.

http://fenaki.e-ce.uth.gr
http://fenaki.e-ce.uth.gr

Chapter 5. Web-Based Application 29

The home page is shown in Figure 5.2

FIGURE 5.2: Fenaki Home-Page

Following the home-page, the results are shown in a page such as the one
shown in Figures 5.3-5.5.

FIGURE 5.3: Domain evaluation based on its credibility from
OpenSources.co

Chapter 5. Web-Based Application 30

FIGURE 5.4: Results page for the query with the following in-
put: https://www.nytimes.com/2018/06/15/us/politics/us-

china-tariffs-trade.html which is classified as "Real news".

Chapter 5. Web-Based Application 31

FIGURE 5.5: Classification results of all the different versions of
our models

32

Chapter 6

Conclusions

6.1 Summary

In summary, our experimentation showed that a small or moderate number
of dimensions is adequate, and that pre-trained models based on benchmark
datasets can achieve steadily good performance. As far as the method to
generate vector representation of textual information is concerned we found
out that the TF-IDF method is the clear winner. Finally, among all examined
methods and their variants, convolutional neural networks can be consid-
ered as the champion algorithm.

The fast spreading of fake news and the impact they are having on our
society, along with the inscalability of manually detecting them, have cre-
ated a surge of research and development in machine learning algorithms
to battle them. In this thesis, we evaluated representatives from eight well-
known families of algorithms, namely regression, support vector classifica-
tion, multi-layer perceptron, gaussian and multinomial naive Bayes, random
forests, decision trees and convolutional neural networks against three pub-
licly available datasets. We tested the efficiency and training speed of these
algorithms. We concluded that a space with a hundred dimensions is of ad-
equate dimensionality to capture the needed text features and get high ac-
curacy of detection. Moreover, we established that the TF-IDF method for
generating vectors from the text is a better alternative relative to word em-
beddings, and finally that pretraining based on benchmark datasets is able to
reap performance benefits similar to that when training is performed based
on the data under study. As far as the champion algorithm is concerned,
we have shown that convolutional neural networks is the best performing
algorithm with the downside of requiring significantly higher training time.

Chapter 6. Conclusions 33

6.2 Future Work

The findings of this thesis reinforce the fact that fake news detection is a diffi-
cult task to achieve and needs more research. Probably, the biggest problem
is the lack of a reliable dataset that contains news articles and their corre-
sponding label of being real or fake news. The Datasets that we used, al-
though LIAR Dataset is the first of its kind with such a large magnitude, its
main focus is politics and statements. Regarding the other two Datasets, al-
though the Dataset from Signal Media includes a huge amount of real news
articles, only some of them could be used because of the Dataset from Kaggle
which is 1:100 in size compared to the one from Signal Media.

The work of this thesis showed that it is possible to create an unbiased
system capable of classifying fake, or maliciously written, news by using only
the articles’ content (mainly headline and bodytext), without any meta-data
from the original source. Of course, more work still needs to be done to
improve the performance of the techniques used in this study.

In the future, a proper Dataset of a large magnitude might enable more
space for research with diverse data. Along with that, it might be useful
to combine NLP-techniques with information retrieval and reinforcement
learning to see if those hybrid-approaches improve the distinction.

Moreover, the Web Application we built could be further developed in
order to be made available as an extension for any browser but more impor-
tantly in order to see some improvements the system must be fair, robust,
and always learning.

34

Bibliography

[1] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Re-
gression Trees, Brooks/Cole Publishing, 1984.

[2] L. Breiman, “Random forests," Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

[3] C. Cortes and V. Vapnik, “Support-vector network," Machine Learning,
vol. 20, pp. 273–297, 1995.

[4] G.B. Guacho, S. Abdali, N. Shah and E. Papalexakis, “Semi-supervised
content-based detection of misinformation via tensor embeddings,"
Technical Report. Available at: https://arxiv.org/abs/1804.09088, 2018.

[5] A. Gupta, H. Lamba, P. Kumaraguru and A. Joshi, “Faking Sandy: Char-
acterizing and identifying fake images on Twitter during Hurricane
Sandy," Proceedings of the ACM International Conference on World Wide Web
(WWW), pp. 729–736, 2010.

[6] M. Gupta, P. Zhao and J. Han, “Evaluating event credibility on Twitter,"
Proceedings of the SIAM International Conference on Data Mining (SDM),
pp. 153–164, 2012.

[7] A. Gupta and P. Kumaraguru, “Credibility ranking of tweets during
high impact events," Proceedings of the Workshop on Privacy and Security
in Online Social Media, 2012.

[8] M. Hardalov, I. Koychev and P. Nakov, “In search of credible news," Pro-
ceedings of the Artificial Intelligence: Methodology, Systems and Applications,
pp. 172–180, 2016.

[9] B.D. Horne and S. Adali, “This just in: Fake news packs a lot in title, uses
simpler, repetitive content in text body, more similar to satire than real
news," Technical Report. Available at http://arxiv.org/abs/1703.09398

[10] S. Hosseinimotlagh, E. Papalexakis, “Unsupervised content-based iden-
tification of fake news articles with tensor decomposition ensembles,"
Proceedings of the Workshop on Misinformation and Misbehavior Mining on
the Web (MIS2), 2018.

[11] Y. Kim, “Convolutional neural networks for sentence classification," Pro-
ceedings of the Empirical Methods in Natural Language Processing (EMNLP),
2014.

BIBLIOGRAPHY 35

[12] X. Liu, B. Zhang, A. Susarla, R. Padman, “Go to YouTube and See me
tomorrow: The role of social media in managing chronic conditions."
Available at https://ssrn.com/abstract=3061149.

[13] C.D. Manning, P. Ragnavan and H. Schütze, Introduction to Information
Retrieval, Cambridge University Press, 2008.

[14] G. Pennycook, D.G. Rand, “Assessing the effect of “disputed" warnings
and source salience on perceptions of fake news accuracy," Working pa-
per, Yale University, September, 2017.

[15] C. Shao, P.-M. Hui, L. Wang, X. Jiang, A. Flammini, F. Menczer,
G.L. Ciampaglia, “Anatomy of an online misinformation network,"
PLOS One, vol. 13, no. 4, e0196087, 2018.

[16] K. Shu, A. Sliva, S. Wang, J. Tang, H. Liu, “Fake news detection on social
media: A data mining perspective," ACM SIGKDD Explorations, vol. 19,
iss. 1, pp. 22–36, 2017.

[17] J. Pennington, R. Socher, and C.D. Manning, “Glove: Global vectors
for word representation," Proceedings of the Empirical Methods in Natural
Language Processing (EMNLP), 2014.

[18] M.F. Porter, “An algorithm for suffix stripping", Program, vol. 14, no. 3,
pp. 130–137, 1980.

[19] V. Vapnik, Statistical Learning Theory, Wiley, 1998.

[20] S. Vosoughi, D. Roy, S. Aral, “The spread of true and false news online,"
Science, vol. 359, iss. 6380, pp. 1146–1151, 2018.

[21] W.Y. Wang, ““Liar, Liar Pants on Fire": A New Benchmark Dataset for
Fake News Detection," Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pp. 422–426, 2017.

[22] S. Gilda, "Evaluating machine learning algorithms for fake news de-
tection", IEEE 15th Student Conference on Research and Development
(SCOReD), 2017.

[23] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuglu, P. Kuksa.
"Natural Language Processing (Almost) from Scratch",Journal of Machine
Learning Research, 2011.

[24] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. Salakhutdinov.
"Improving neural networks by preventing co-adaptation of feature de-
tectors", CoRR, 2012.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context
	Thesis Motivations & Contributions

	Related Work
	Models And Approch
	Preprocessing
	Representation
	Term Frequency-Inverse Document Frequency
	Word Embeddings

	Competing algorithms
	L1 Regularized Logistic Regression
	C-Support Vector Classification
	Multi-layer Perceptron (MLP)
	Gaussian and Multinomial Naive Bayes
	Gaussian Naive Bayes
	Multinomial Naive Bayes

	Decision Trees
	Random Forests
	Convolutional Neural Networks

	Experimental Setup and Evaluation
	Execution environment
	Datasets
	Performance measures
	Performance Evaluation
	K-Fold Cross-Validation
	Execution time
	Algorithms Comparison
	Method of choice to generate vector representations

	Web-Based Application
	Conclusions
	Summary
	Future Work

