UNIVERSITY OF THESSALY

MASTER THESIS

Study & Implementation of an loT Service for
Device Provisioning & Controlling, Data Collection
& Visualization

Author: Antonis KALKANOF

Supervisor: Prof. Athanasios KORAKIS

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in

Computer Science Department of Electrical and Computer Engineering

September 11, 2018

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

Abstract

Designing an loT framework requires a multilayered approach that includes device
programming, provisioning and deployment, as well as connecting those devices, monitoring
and configuring their status and also executing commands on them. Finally we have data
collection of the metrics being monitored from those devices and illustration of said data in a
meaningful and appropriate way so that analysis can take place not just by devices but also
humans that can hopefully reach to a conclusion about the data being monitored. Most free
open source solutions for loT frameworks target prototyping and fast deployment of an loT
idea, providing bare bones utility for the user who is assumed to be an expert and can master
the framework - not an average user. On the other hand advanced and well configurable loT
products require a licence and are closed-source. They offer a lot of scalability and
configurability which come at a cost. loT technology and its community has advanced and can
provide a lot of open source tools, that if carefully picked, configured and integrated can provide
an open source and free solution. For the purposes of this thesis and the reasons described
above, we created agnoNIT, an open source loT framework for device provisioning and
management, data collection and monitoring. agnoNIT was also created for the purposes of
learning the inner workings of an loT framework.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

MepiAnyn

O oxediaoudg piag loT couitag atmaitei Pia TTOAUETTITTEDN TTPOCEYYIoN n otroia TTepIAapBAvel
TIPOYPOMMATIONO, TAUTOTTOINCON KAl EYKATAOTAON OUOKEUWYV, OTTWG ETTIONG Kol TNV
ouvdeopoAoyia, TTapakoAoUBnon Kal eTTe¢epyaia TNG KATAOTACHG TOUG, KABWG Kal TNV EKTEAEDN
EVIOAWV TTAVW Toug. AKOAOUBWG, €xoupe Tnv OUAAoyr Oedopévwy atrd TIGC PETPNOEIC TTOU
TTAIPVOUV Ol OUOCKEUEG KAl TNV OTITIKOTTOINON QuTWV Twv Oedopévwv e €va XPAOIYO Kal
KatdAAnAo TpOTTO oUTWG wWOoTe va yivel avdAuon oOxI uévo atrd CUOKEUEG OAAG Kal aTtrd
avOpwWITIVO TTapAyovTa WOTE va Byouve xprioiya ocuptrepdopara. O TTepIocOTEPES AUCEIG
Owpedv €AeUBepou AoyIoHIKOU GTOXEUOUV GTNV ypriyopn onuioupyia kal eykatdoTtacn yiag loT
10€aG, TTPooPEépovTag Ta Bacikd povo gpyalcia otov Xprotn. O1 AUoEIg auTéG atreuBuvovTal o€
KATapTnoMEVOUG Kal OXI atTAoug XpnoTteg. Ao Tnv AAAN TTAeupd Ta TTponypéva Kal QpKETA
TTapapeTpoTroifjoiya loT Tpoidvra arraitouv adeia, eival KAEIoToU AoyiouikoU Kal atreuBuvovTal
KUpiwg o€ eTaIpieg. NMpoo@Epouv apKETEC dUVATOTNTEG KAIMAKWONG KAl TTAPAUETPOTTOINONG OAAG
ME TO avaloyo k6oTog. H 0T TexvoAloyia Kal KovoTnTa £xel TTPo0deUCEl APKETA WOTE VA UTTOPEI
va TTpoo@épel TTANBwpa epyaleiwy eAeUBepou AoyIOMIKOU, Ta oOTToia €dv €TTIAEXBoUv,
TTOPAPETPOTTOINBOUV KAl EVOWHATWOOUV GwOoTd, TOTEUOUNE OTI UTTOPOUV VA TTPOCPEPOUV HIC
oAoKANpwuEVN Auon. Ta Toug OKOTTOUG TNG OITTAWMATIKAG AUTHAS KAl OPUWHEVOI ATTO TOUG
Tapatmavw Adyoug, uAotroijoape 10 agnoNIT, pia 0T ocouita €AelBepou AoyIouIKOU yia
avayvwpelion Kal €AeyXo OUOKEUWV, KaBwg kal OUAAoyry Kal OTITIKoTToinan oedopévwy. To
agnoNIT dnuioupynBnKe Kal yia Tov TITTAEOV AOYO TNG eKPUABNONG TWV PEPWV TTOU OTTOTEAOUV
Mia loT oouita.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

Acknowledgements

| am grateful to my family and friends for their support over the years.

| sincerely thank my supervisor, professor Athanasios Korakis, whose advice and knowledge
helped me a lot on and off this thesis.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

Abstract

MepiAnyn
Acknowledgements

loT
Essential loT technologies
Radio frequency identification (RFID)
Wireless sensor networks (WSN)
Middleware
Cloud computing
loT applications

loT platform
loT platform technology stack
Advanced loT platforms

agnoNIT

Connectivity

Device management

Data collection

Data processing and analytics

Data visualization

Configuration management

Command execution

Over the air updates

Software Architecture
General Design
Backend
Front-end

Conclusions & Future work

References

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

© © © 0 0 W N » W N

=
N = O

NN N NNRRRPRR R 3 R
P O OO0 0O W OV W N NMNWN

NN
NN

loT

The Internet of Things (loT), also called the Internet of Everything or the Industrial Internet, is a
new technology paradigm envisioned as a global network of machines and devices capable of
interacting with each other over a network without requiring human-to-human or
human-to-computer interaction. The loT is recognized as one of the most important areas of
future technology and is gaining vast attention from a wide range of industries.

An loT ecosystem consists of web-enabled smart devices that use embedded processors,
sensors and communication hardware to collect, send and act on data they acquire from their
environments. loT devices share the sensor data they collect by connecting to an loT gateway
or other edge device where data is either sent to the cloud to be analyzed or analyzed locally.
Sometimes, these devices communicate with other related devices and act on the information
they get from one another. The devices do most of the work without human intervention,
although people can interact with the devices -- for instance, to set them up, give them
instructions or access the data. The connectivity, networking and communication protocols
used with these web-enabled devices largely depend on the specific loT applications deployed.

The internet of things offers a number of benefits to organizations, enabling them to:
e monitor their overall business processes

improve the customer experience

save time and money

enhance employee productivity

integrate and adapt business models

make better business decisions and

generate more revenue

The adoption of this technology is rapidly gaining momentum as technological, societal, and
competitive pressures push firms to innovate and transform themselves. As loT technology
advances and increasing numbers of firms adopt the technology, companies are urged to
rethink the ways they approach their businesses, industries and markets and gives them the
tools to improve their business strategies.

At the same time loT enhances individuals’ experience at home, by offering remote monitoring
of both video and sensor data such as the house’s temperature and humidity, as well as smart
regulated devices (such as lamps, thermostats etc)

In general loT enables each component connected to the network to become ‘smart’ and
interconnect/interface with the rest of the devices by exchanging data.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

Essential loT technologies

Five loT technologies are widely used for the deployment of successful loT-based products and
services:
1. Radio frequency identification (RFID)
Wireless sensor networks (WSN)
Middleware
Cloud computing
loT application software

ok wN

Radio frequency identification (RFID)

Radio frequency identification (RFID) allows automatic identification and data capture using
radio waves, a tag, and a reader. The tag can store more data than traditional barcodes. The tag
contains data in the form of the Electronic Product Code (EPC), a global RFID-based item
identification system developed by the Auto-ID Center. Three types of tags are used. Passive
RFID tags rely on radio frequency energy transferred from the reader to the tag to power the
tag; they are not battery-powered. Applications of these can be found in supply chains,
passports, electronic tolls, and item-level tracking. Active RFID tags have their own battery
supply and can instigate communication with a reader. Active tags can contain external sensors
to monitor temperature, pressure, chemicals, and other conditions. Active RFID tags are used in
manufacturing, hospital laboratories, and remote-sensing IT asset management. Semi-passive
RFID tags use batteries to power the microchip while communicating by drawing power from
the reader. Active and semi-passive RFID tags cost more than passive tags.

Wireless sensor networks (WSN)

Wireless sensor networks (WSN) consist of spatially distributed autonomous sensor-equipped
devices to monitor physical or environmental conditions and can cooperate with RFID systems
to better track the status of things such as their location, temperature, and movements (Atzori,
lera, & Morabito, 2010). WSN allow different network topologies and multihop communication.
Recent technological advances in low-power integrated circuits and wireless communications
have made available efficient, low-cost, low-power miniature devices for use in WSN
applications (Gubbi, Buyya, Marusic, & Palaniswami, 2013).

WSN have primarily been used in cold chain logistics that employ thermal and refrigerated
packaging methods to transport temperature-sensitive products (Hsueh and Chang, 2010,
White and Cheong, 2012). WSN are also used for maintenance and tracking systems. For
example, General Electric deploys sensors in its jet engines, turbines, and wind farms. By
analyzing data in real time, GE saves time and money associated with preventive maintenance.

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

Likewise, American Airlines uses sensors capable of capturing 30 terabytes of data per flight
for services such as preventive maintenance.

Middleware

Middleware is a software layer interposed between software applications to make it easier for
software developers to perform communication and input/output. Its feature of hiding the
details of different technologies is fundamental to free loT developers from software services
that are not directly relevant to the specific loT application. Middleware gained popularity in the
1980s due to its major role in simplifying the integration of legacy technologies into new ones.
It also facilitated the development of new services in the distributed computing environment. A
complex distributed infrastructure of the loT with numerous heterogeneous devices requires
simplifying the development of new applications and services, so the use of middleware is an
ideal fit with loT application development. For example, Global Sensor Networks (GSN) is an
open source sensor middleware platform enabling the development and deployment of sensor
services with almost zero programming effort. Most middleware architectures for the loT follow
a service-oriented approach in order to support an unknown and dynamic network topology.

Cloud computing

Cloud computing is a model for on-demand access to a shared pool of configurable resources
(e.g., computers, networks, servers, storage, applications, services, software) that can be
provisioned as Infrastructure as a Service (laaS) or Software as a Service (SaaS). One of the
most important outcomes of the loT is an enormous amount of data generated from devices
connected to the Internet (Gubbi et al., 2013). Many loT applications require massive data
storage, huge processing speed to enable real-time decision making, and high-speed
broadband networks to stream data, audio, or video. Cloud computing provides an ideal
back-end solution for handling huge data streams and processing them for the unprecedented
number of loT devices and humans in real time.

loT applications

The loT facilitates the development of myriad industry-oriented and user-specific loT
applications. Whereas devices and networks provide physical connectivity, loT applications
enable device-to-device and human-to-device interactions in a reliable and robust manner. loT
applications on devices need to ensure that data/messages have been received and acted upon
properly in a timely manner. For example, transportation and logistics applications monitor the
status of transported goods such as fruits, fresh-cut produce, meat, and dairy products. During
transportation, the conservation status (e.g., temperature, humidity, shock) is monitored
constantly and appropriate actions are taken automatically to avoid spoilage when the
connection is out of range. For example, FedEx uses SenseAware to keep tabs on the

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

temperature, location, and other vital signs of a package, including when it is opened and
whether it was tampered with along the way.

While device-to-device applications do not necessarily require data visualization, more and
more human-centered loT applications provide visualization to present information to end users
in an intuitive and easy-to-understand way and to allow interaction with the environment. It is
important for loT applications to be built with intelligence so devices can monitor the
environment, identify problems, communicate with each other, and potentially resolve problems
without the need for human intervention.

loT platform

Fig.1 IoT platform architecture

An loT platform is a multi-layer technology that enables straightforward provisioning,
management, and automation of connected devices within the Internet of Things universe. It
basically connects your hardware, however diverse, to the cloud by using flexible connectivity
options, enterprise-grade security mechanisms, and broad data processing powers. For
developers, an loT platform provides a set of ready-to-use features that greatly speed up
development of applications for connected devices as well as take care of scalability and
cross-device compatibility.

Thus, an loT platform can be wearing different hats depending on how you look at it. It is
commonly referred to as middleware (Essential loT technologies no.3) when we talk about how
it connects remote devices (WSN: Essential loT technologies no.2) to user applications (or other
devices) and manages all the interactions between the hardware and the application layers. It is
also known as a cloud enablement platform (Essential loT technologies no.4) or loT enablement
platform to pinpoint its major business value, that is empowering standard devices with
cloud-based applications and services. Finally, under the name of the loT application
enablement platform, it shifts the focus to being a key tool for loT developers.(Essential loT
technologies no.5)

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

loT platforms originated in the form of loT middleware, which purpose was to function as a
mediator between the hardware and application layers. Its primary tasks included data
collection from the devices over different protocols and network topologies, remote device
configuration and control, device management, and over-the-air firmware updates.

To be used in real-life heterogeneous loT ecosystems, loT middleware is expected to support
integration with almost any connected device and blend in with third-party applications used
by the device. This independence from underlying hardware and overhanging software allows
a single loT platform to manage any kind of connected device in the same straightforward way.
Modern loT platforms go further and introduce a variety of valuable features into the hardware
and application layers as well. They provide components for frontend and analytics, on-device
data processing, and cloud-based deployment. Some of them can handle end-to-end loT
solution implementation from the ground up.

loT platform technology stack

In the four typical layers of the loT stack, which are things, connectivity, core loT features, and
applications & analytics, a top-of-the-range loT platform should provide you with the majority
of loT functionality needed for developing your connected devices and smart things.

Your devices connect to the platform, which sits in the cloud or in your on-premises data center,
either directly or by using an loT gateway. A gateway comes useful whenever your endpoints
aren’t capable of direct cloud communication or, for example, you need some computing power
on edge. You can also use an loT gateway to convert protocols, for example, when your
endpoints are in LoRaWan network but you need them to communicate with the cloud over
MQTT.

An loT platform itself can be decomposed into several layers. At the bottom there is the
infrastructure level, which is something that enables the functioning of the platform. You can
find here components for container management, internal platform messaging, orchestration of
loT solution clusters, and others.

The communication layer enables messaging for the devices; in other words, this is where
devices connect to the cloud to perform different operations.

The following layer represents core loT features provided by the platform. Among the essential
ones are data collection, device management, configuration management, messaging, and OTA
software updates.

Sitting on top of core loT features, there is another layer, which is less related to data exchange
between devices but rather to processing of this data in the platform. There is reporting, which
allows you to generate custom reports. There is visualization for data representation in user

10

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

applications. Then, there are a rule engine, analytics, and alerting for notifying you about any
anomalies detected in your loT solution.

Importantly, the best loT platforms allow you to add your own industry-specific components
and third-party applications. Without such flexibility adapting an loT platform for a particular
business scenario could bear significant extra cost and delay the solution delivery indefinitely.

Advanced loT platforms

There are some other important criteria that differentiate loT platforms between each other,
such as scalability, customizability, ease of use, code control, integration with 3rd party
software, deployment options, and the data security level.

e Scalable (cloud native) — advanced loT platforms ensure elastic scalability across any
number of endpoints that the client may require. This capability is taken for granted for
public cloud deployments but it should be specifically put to the test in case of an
on-premises deployment, including the platform’s load balancing capabilities for
maximized performance of the server cluster.

e Customizable — a crucial factor for the speed of delivery. It closely relates to flexibility of
integration APIs, louse coupling of the platform’s components, and source code
transparency. For small-scale, undemanding loT solutions good APIs may be enough to
fly, while feature-rich, rapidly evolving loT ecosystems usually require developers to
have a greater degree of control over the entire system, its source code, integration
interfaces, deployment options, data schemas, connectivity and security mechanisms,
etc.

e Secure — data security involves encryption, comprehensive identity management, and
flexible deployment. End-to-end data flow encryption, including data at rest, device
authentication, user access rights management, and private cloud infrastructure for
sensitive data — this is the basics of how to avoid potentially compromising breaches in
your loT solution.

Cutting across these aspects, there are two different paradigms of loT solution cluster
deployment offered by loT platform providers: a public cloud loT Paa$S and a self-hosted private
loT cloud.

agnoNIT

Our desire to build an loT platform from scratch stems from the fact that we design our own
hardware for loT nodes, using a range of different wireless interfaces (IEEE 802.15.4, LoRa,
etc) and loT gateways on boards such as Raspberry Pi, Beaglebone & Arduino. agnoNIT, the
framework we built, covers sectors 2 through 5 from the essential loT technologies (WSN,

11

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

middleware, Cloud and loT apps). We've already made several unique working deployments for
smart cities, smart agriculture etc. and decided we needed a framework that orchestrates and
automates the whole process of a setting up and monitoring a WSN. Since there are several
individuals in our lab working on different projects with limited time, this framework shouldn’t
rely on a single admin, but rather each user should be able to set up their own topology of
sensors and acquire data without much hassle. Because of the diversity of the projects involved
in our lab, agnoNIT shouldn’t take anything for granted regarding the type of data being
collected, the type of loT nodes, or anything in general really. It should be agnostic to all stages
of the deployment and offer ways for the user to specify and config parameters on each stage.
Speaking of stages, here are all the layers the agnoNIT framework is comprised of.

Fig.2 agnoNIT’s architecture

Connectivity

Connectivity is all about messaging between the cloud and the devices. That is how the devices
connect to the cloud to perform different operations.

agnoNIT is built on top of MQTT. MQTT (Message Queuing Telemetry Transport) is a
publish/subscribe messaging protocol built on ton of the TCP/IP stack, designed for constrained
Internet of Things devices and low-bandwidth, high-latency or unreliable networks. Because
MQTT specializes in low-bandwidth, high-latency environments, it is an ideal protocol for
machine-to-machine (M2M) communication.

MQTT defines basic rules of communication between the platform and the devices. The
protocol is fully open, asynchronous, and allows for arbitrary message formats. Furthermore,
you can choose between encrypted and unencrypted channels. Use the encrypted channel to
secure sensitive data or the unencrypted channel for open data. MQTT Mosca broker is used in
the heart of the pub-sub network. (fig. 3)

12

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

In case your device does not have an IP connectivity or already implements some
communication capabilities, agnoNIT employs a gateway architecture where a gateway talks to
the device over a local network protocol and performs transport-level message conversion or
even represents them to the cloud. For example if the loT node has direct access to the Internet
via WiFi or 3G/4G, then the gateway acts as an MQTT client and connects to the MQTT broker
which resides on the central server. A second way of communication may be through the
LoRaWAN interface where the Gateway communicates with a LoRaWAN gateway which in
turn acts as an MQTT client.

Fig.3 MQTT pub-sub system with db

Device management

At software level agroNIT provides a register of digital twins, which represent things, devices,
and other entities managed by the platform. agnoNIT also allows you to store device attributes,
which provide more detailed information about any characteristic of the device. Examples of
such attributes could be serial number, MAC address, location, software version, etc. In addition

13

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

to simple data types, attributes can contain more complex, structured objects, such as a list of
connected peripherals and their properties.

The devices we program in our lab shown below (fig. 4). There’s a variety of wireless interfaces
(LoRa, ZigBee, WiFi etc) and sensors (humidity, temperature, etc) to choose from for each
deployment.

Fig.4 agnoNIT’s monitoring devices

To connect to the platform, a device has to present valid credentials, such as pre-shared keys,
tokens, login and password combinations, certificates, etc. You can use agnoNIT credential
management APIs to provision, suspend, or revoke access (fig .5). IWT tokens are being used
for authorization and authentication of devices which integrate nicely with the MQTT protocol.

agnoNIT tracks the device throughout its lifecycle, from the initial provisioning and connectivity
events to software updates and final decommissioning. You can create and assign custom
handlers to automate the corresponding workflows.

14

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

Fig.5 Device auth with JWT tokens

Data collection

agnoNIT’s protocol for collecting data ensures reliable data delivery, leveraging MQTT's
protocol QoS and topic structure, with response codes, which indicate the result of data
processing by the platform. Once received by the platform, the device data can be dispatched
to multiple processing pipelines. In case there is any error in the middle of processing, disk
crash, or processor overload, the device is notified of that. As a result, the device always knows
whether the submitted data is safe to delete or should be resent.

To minimize network usage and improve the data throughput, the protocol supports batching. It
provides your devices with the capability to buffer data locally before uploading it in one
message. Additionally, intermediary gateways can perform the store and forward function.
Besides optimizing the network efficiency, this capability is useful in loT deployments with
intermittent connectivity and helps preserve the device battery life.

agnoNIT allows you to collect both structured and unstructured data. It can be of primitive
types, such as plain numbers or text, or compound, such as key-value maps, arrays, or nested
objects.

15

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

Fig.6 Data collected from different devices (loT nodes, loT sensors, loT gateway) and stored at the same place.

Data processing and analytics

For the purposes of storing loT data we concluded that time-series databases were the way to
go, since they provide flexibility for such metrics. InfluxDB(fig .2 and 6) in particular is our
database of choice. InfluxDB is an open-source time series database developed by InfluxData. It
is written in Go and optimized for fast, high-availability storage and retrieval of time series data
in fields such as operations monitoring, application metrics, Internet of Things sensor data, and
real-time analytics. InfluxDB has no external dependencies and provides an SQL-like language
with built-in time-centric functions for querying a data structure composed of measurements,
series, and points. Each point consists of several key-value pairs called the fieldset and a
timestamp. When grouped together by a set of key-value pairs called the tagset, these define a
series. Finally, series are grouped together by a string identifier to form a measurement. Values
can be 64-bit integers, 64-bit floating points, strings, and booleans. Points are indexed by their
time and tagset. Retention policies are defined on a measurement and control how data is
downsampled and deleted. Continuous Queries run periodically, storing results in a target
measurement.

Raw (unstructured) or normal data can be transformed into well-structured time series,
convenient for analytics, pattern analysis, visualization, charting, etc.

Working with time series is very flexible with agnoNIT. Apart from displaying the main value for
a time series, e.g., temperature, the platform allows users to set up tags, which allow viewing
some additional data, such as location, light intensity, humidity, etc. Tag values are extracted

16

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

from the collected raw data and attached to each data point in a time series. Also, it is possible
to build multiple time series from one data sample.

Time series consumers (fig. 3) can be configured to listen to new data points and trigger
particular actions, for example, send mobile push notifications.

Data visualization

The data visualization component of agnoNIT comprises a rich set of widgets, such as gauges,
charts, maps, tables, etc. You can use these widgets to visualize different types of data,
whether telemetry, statistics, geolocation, metadata, or other—both historical and current. All
widgets are configurable and allow you to change their data sources as well as visual
representation. To address special use cases, agnoNIT visualization component allows you to
easily plug in custom widgets.

agnoNIT makes extensive use of the open source tool Chronograf (fig .7). which pairs nicely
with InfluxDB as the front-end.

Besides data visualization, widgets allow you to interact with devices by sending commands,
changing configuration and metadata, etc.

Dashboards help you organize widgets into logical groups and define their layout. Dashboards
can be hyperlinked to streamline navigation in the complex multi-device data sets. Moreover,
agnoNIT supports dashboard templating, which allows you to reuse one configuration for
multiple device dashboards.

Fig. 7 power/humidity/temperature and door status for a home

17

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

Configuration management

Configuration management is essential for controlling the device behavior, managing data
processing parameters, edge analytics, feature flagging, and other functions. The agnoNIT
platform allows you to implement all of this functionality by providing the configuration
management feature that works with arbitrary data structures. Thus, you can apply the
configuration data that is as simple as a set of key-values or as complex as nested objects.
Since loT devices might not be constantly connected, agnoNIT tracks already applied
configuration data as well as pending delivery.

For the purposes of this setup, we used Kapacitor. Kapacitor is a native data processing engine.
It can process both stream and batch data from InfluxDB. It lets a user plug in his own custom
logic or user-defined functions to process alerts with dynamic thresholds, match metrics for
patterns, compute statistical anomalies, and perform specific actions based on these alerts like
dynamic load rebalancing.

The default configuration management protocol of agnoNIT supports both the push and pull
modes. In other words, a device may subscribe to be notified whenever the configuration is
changed on the agnoNIT server or, alternatively, may periodically poll for changes itself. To
ensure reliability, the configuration delivery is based on configuration application confirmations
and result codes.

When the device changes its current configuration, agnoNIT generates a configuration change
event. These events may be used to trigger different actions and automation processes inside
and outside the platform.

The agnoNIT platform allows you to manage configuration of the devices individually or at
scale. You can define configuration for a specific device or for a group of devices based on their
individual characteristics, such as software version, location, or other attributes.

Command execution

Command execution is the agnoNIT platform feature that allows you to deliver messages with
the arbitrary payload to connected devices, execute commands, and receive near-real time
responses. For example, you can remotely check current temperature on a home thermostat.
agnoNIT implements the two-way communication that allows devices to send a response back
to the server. The caller can wait for the response either synchronously or asynchronously. For
lightweight commands you may go with the synchronous option meaning that the caller will be
put on hold until the command execution result is delivered. For the resource-consuming
commands you may choose the asynchronous option, which enables the platform to notify the
caller about the command execution result.

18

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

From the device perspective, the agnoNIT platform supports both push and pull models of
delivery: a device can either periodically check for new commands or rely on the server to push
them. In the case of constrained devices that are unable to maintain a persistent session,
agnoNIT can buffer scheduled messages until they are successfully delivered or timed out.

Over the air updates

agnoNIT allows you to reliably deliver software updates by utilizing the confirmation response
codes sent by devices upon the update result.

Out of the box, agnoNIT allows tracking the current software version installed on the managed
devices. Each software version is represented in agnoNIT by a flexible descriptor that is
delivered to the device as an instruction to perform an update. For example, common descriptor
fields include the download URL, the new software version name, etc. With this information,
the device can easily download the new software, install, and report back success.

Software Architecture

General Design

Due to the nature of agroNIT, which is highly distributed and interconnected, we followed the
pattern of microservices for our software development. A microservice is a software
development technique—a variant of the service-oriented architecture (SOA) architectural style
that structures an application as a collection of loosely coupled services. In a microservices
architecture, services are fine-grained and the protocols are lightweight. The benefit of
decomposing an application into different smaller services is that it improves modularity and
makes the application easier to understand, develop, and test and more resilient to architecture
erosion. It also allows the architecture of an individual service to emerge through continuous
refactoring. Microservices-based architectures enable continuous delivery and deployment.

All the services (and microservices) we created are RESTful due to the simplicity and
asynchronous nature of the HTTP protocol.

Backend

A microservice architecture requires a lot of communication between its components. This is
the reason we selected Node.js as the underlying back-end technology, which has
asynchronous events at its core. Node.js is an open-source, cross-platform JavaScript run-time
environment that executes JavaScript code outside of a browser. Historically, JavaScript was
used primarily for client-side scripting, in which scripts written in JavaScript are embedded in a
webpage's HTML and run client-side by a JavaScript engine in the user's web browser. Node.js

19

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

lets developers use JavaScript to write Command Line tools and for server-side
scripting—running scripts server-side to produce dynamic web page content before the page is
sent to the user's web browser. Consequently, Node.js represents a "JavaScript everywhere"
paradigm, unifying web application development around a single programming language,
rather than different languages for server side and client side scripts.

Node.js has an event-driven architecture capable of asynchronous I/O. These design choices
aim to optimize throughput and scalability in web applications with many input/output
operations, as well as for real-time Web applications (e.g., real-time communication programs
and browser games).

Node is paired nicely with Expressl)S, a lightweight web framework that provides good
abstraction for core HTTP actions and backend services in general.

Front-end

agnoNIT is front-end agnostic, the same way it is data agnostic. For this reason we wanted a
technology that can be used and is supported for both desktop/PC and mobile devices. We
chose Angular]S which can be used for Desktop versions as is, and through Hybrid app
frameworks like lonic and Meteor for mobile development.

Angular]S is built on the belief that declarative programming should be used to create user
interfaces and connect software components, while imperative programming is better suited to
defining an application's business logic.The framework adapts and extends traditional HTML to
present dynamic content through two-way data-binding that allows for the automatic
synchronization of models and views. As a result, Angular]S de-emphasizes explicit DOM
manipulation with the goal of improving testability and performance. Angular)S design goals
include:
e to decouple DOM manipulation from application logic. The difficulty of this is
dramatically affected by the way the code is structured.
e to decouple the client side of an application from the server side. This allows
development work to progress in parallel, and allows for reuse of both sides.
e to provide structure for the journey of building an application: from designing the Ul,
through writing the business logic, to testing.
Angular]S implements the MVC pattern to separate presentation, data, and logic components.
Using dependency injection, Angular brings traditionally server-side services, such as
view-dependent controllers, to client-side web applications. Consequently, much of the burden
on the server can be reduced.

For the mobile versions of the front-end we used lonic an open-source SDK for hybrid mobile
app development built on top of Angular)S and Apache Cordova. lonic provides tools and
services for developing hybrid mobile apps using Web technologies like CSS, HTML5, and Sass.

20

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

Apps can be built with these Web technologies and then distributed through native app stores
to be installed on devices by leveraging Cordova.

Conclusions & Future work

Our framework has been used for pilot deployments in several fields, some of each are:
Smart Agriculture for smart irrigation purposes and growth monitoring of fruit.
Power and environmental monitoring of homes.

Underwater monitoring of substances such as CO, NO2, SO2 etc.

Presence and environmental monitoring for buildings.

We managed to have a clearer understanding of what is required to build a functioning loT
framework and reduced the overhead of setting up a new loT monitoring deployment.

What's missing from the framework at the moment is a mechanism for acquiring specific
intelligence for each unique deployment. We are working on some Machine Learning
techniques for incorporating that. Also an area that needs improvement is the range of the
devices we support. We work mainly with Arduino, Raspberry Pi and Beaglebone boards but
we plan to support more. Finally the security sector can benefit from improvements such as
secure OTA updates and OAUTH?2.

21

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

References

[1] White-paper-loT-platforms-The-central-backbone-for-the-Internet-of-Things-Nov-2015-vfi5

[2] IEEE-loT-Towards-Definition-Internet-Of-Things

[3] https://thingsboard.io/docs/reference/architecture/

(4]
https://primalcortex.wordpress.com/2015/02/25/setting-up-an-iot-frameworkdashboard-with-nod
ered-moscamosquitto-and-freeboard-io-dashboard/

[5] https://www.hivemg.com/mqtt-essentials/

[6] https://mqgtt.org/

[7] https://docs.influxdata.com/influxdb/v1.6/

[8] https://jwt.io/

22

Institutional Repository - Library & Information Centre - University of Thessaly
20/05/2024 18:24:18 EEST - 13.58.158.87

https://thingsboard.io/docs/reference/architecture/
https://primalcortex.wordpress.com/2015/02/25/setting-up-an-iot-frameworkdashboard-with-nodered-moscamosquitto-and-freeboard-io-dashboard/
https://primalcortex.wordpress.com/2015/02/25/setting-up-an-iot-frameworkdashboard-with-nodered-moscamosquitto-and-freeboard-io-dashboard/
https://www.hivemq.com/mqtt-essentials/
https://mqtt.org/
https://docs.influxdata.com/influxdb/v1.6/
https://jwt.io/

